Commit e917f2ed authored by Raymond Hettinger's avatar Raymond Hettinger Committed by GitHub

bpo-36546: Add more tests and expand docs (#13406)

parent 73934b9d
......@@ -511,22 +511,33 @@ However, for reading convenience, most of the examples show sorted sequences.
is not least 1.
The *dist* can be any iterable containing sample data or it can be an
instance of a class that defines an :meth:`~inv_cdf` method.
instance of a class that defines an :meth:`~inv_cdf` method. For meaningful
results, the number of data points in *dist* should be larger than *n*.
Raises :exc:`StatisticsError` if there are not at least two data points.
For sample data, the cut points are linearly interpolated from the
two nearest data points. For example, if a cut point falls one-third
of the distance between two sample values, ``100`` and ``112``, the
cut-point will evaluate to ``104``. Other selection methods may be
offered in the future (for example choose ``100`` as the nearest
value or compute ``106`` as the midpoint). This might matter if
there are too few samples for a given number of cut points.
If *method* is set to *inclusive*, *dist* is treated as population data.
The minimum value is treated as the 0th percentile and the maximum
value is treated as the 100th percentile. If *dist* is an instance of
a class that defines an :meth:`~inv_cdf` method, setting *method*
has no effect.
cut-point will evaluate to ``104``.
The *method* for computing quantiles can be varied depending on
whether the data in *dist* includes or excludes the lowest and
highest possible values from the population.
The default *method* is "exclusive" and is used for data sampled from
a population that can have more extreme values than found in the
samples. The portion of the population falling below the *i-th* of
*m* data points is computed as ``i / (m + 1)``.
Setting the *method* to "inclusive" is used for describing population
data or for samples that include the extreme points. The minimum
value in *dist* is treated as the 0th percentile and the maximum
value is treated as the 100th percentile. The portion of the
population falling below the *i-th* of *m* data points is computed as
``(i - 1) / (m - 1)``.
If *dist* is an instance of a class that defines an
:meth:`~inv_cdf` method, setting *method* has no effect.
.. doctest::
......
......@@ -2161,12 +2161,13 @@ class TestQuantiles(unittest.TestCase):
# Quantiles should be idempotent
if len(expected) >= 2:
self.assertEqual(quantiles(expected, n=n), expected)
# Cross-check against other methods
if len(data) >= n:
# After end caps are added, method='inclusive' should
# give the same result as method='exclusive' whenever
# there are more data points than desired cut points.
padded_data = [min(data) - 1000] + data + [max(data) + 1000]
# Cross-check against method='inclusive' which should give
# the same result after adding in minimum and maximum values
# extrapolated from the two lowest and two highest points.
sdata = sorted(data)
lo = 2 * sdata[0] - sdata[1]
hi = 2 * sdata[-1] - sdata[-2]
padded_data = data + [lo, hi]
self.assertEqual(
quantiles(data, n=n),
quantiles(padded_data, n=n, method='inclusive'),
......@@ -2188,6 +2189,11 @@ class TestQuantiles(unittest.TestCase):
actual = quantiles(statistics.NormalDist(), n=n)
self.assertTrue(all(math.isclose(e, a, abs_tol=0.0001)
for e, a in zip(expected, actual)))
# Q2 agrees with median()
for k in range(2, 60):
data = random.choices(range(100), k=k)
q1, q2, q3 = quantiles(data)
self.assertEqual(q2, statistics.median(data))
def test_specific_cases_inclusive(self):
# Match results computed by hand and cross-checked
......@@ -2233,6 +2239,11 @@ class TestQuantiles(unittest.TestCase):
actual = quantiles(statistics.NormalDist(), n=n, method="inclusive")
self.assertTrue(all(math.isclose(e, a, abs_tol=0.0001)
for e, a in zip(expected, actual)))
# Natural deciles
self.assertEqual(quantiles([0, 100], n=10, method='inclusive'),
[10.0, 20.0, 30.0, 40.0, 50.0, 60.0, 70.0, 80.0, 90.0])
self.assertEqual(quantiles(range(0, 101), n=10, method='inclusive'),
[10.0, 20.0, 30.0, 40.0, 50.0, 60.0, 70.0, 80.0, 90.0])
# Whenever n is smaller than the number of data points, running
# method='inclusive' should give the same result as method='exclusive'
# after the two included extreme points are removed.
......@@ -2242,6 +2253,11 @@ class TestQuantiles(unittest.TestCase):
data.remove(max(data))
expected = quantiles(data, n=32)
self.assertEqual(expected, actual)
# Q2 agrees with median()
for k in range(2, 60):
data = random.choices(range(100), k=k)
q1, q2, q3 = quantiles(data, method='inclusive')
self.assertEqual(q2, statistics.median(data))
def test_equal_inputs(self):
quantiles = statistics.quantiles
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment