Commit 0b6332eb authored by David Chase's avatar David Chase

cmd/compile: fix another bug in dominator computation

Here, "fix" means "replace".  The new dominator computation
is the "simple" algorithm from Lengauer and Tarjan's TOPLAS
paper, with minimal changes.

Also included is a test that tweaks the fixed error.

Change-Id: I0abdf53d5d64df1e67e4e62f55e88957045cd63b
Reviewed-on: https://go-review.googlesource.com/22401
Run-TryBot: David Chase <drchase@google.com>
TryBot-Result: Gobot Gobot <gobot@golang.org>
Reviewed-by: default avatarKeith Randall <khr@golang.org>
parent 6b02a192
......@@ -20,6 +20,9 @@ const (
// postorder computes a postorder traversal ordering for the
// basic blocks in f. Unreachable blocks will not appear.
func postorder(f *Func) []*Block {
return postorderWithNumbering(f, []int{})
}
func postorderWithNumbering(f *Func, ponums []int) []*Block {
mark := make([]markKind, f.NumBlocks())
// result ordering
......@@ -36,6 +39,9 @@ func postorder(f *Func) []*Block {
// Children have all been visited. Pop & output block.
s = s[:len(s)-1]
mark[b.ID] = done
if len(ponums) > 0 {
ponums[b.ID] = len(order)
}
order = append(order, b)
case notExplored:
// Children have not been visited yet. Mark as explored
......@@ -56,14 +62,14 @@ func postorder(f *Func) []*Block {
type linkedBlocks func(*Block) []*Block
const nscratchslices = 8
const nscratchslices = 7
// experimentally, functions with 512 or fewer blocks account
// for 75% of memory (size) allocation for dominator computation
// in make.bash.
const minscratchblocks = 512
func (cfg *Config) scratchBlocksForDom(maxBlockID int) (a, b, c, d, e, f, g, h []ID) {
func (cfg *Config) scratchBlocksForDom(maxBlockID int) (a, b, c, d, e, f, g []ID) {
tot := maxBlockID * nscratchslices
scratch := cfg.domblockstore
if len(scratch) < tot {
......@@ -90,216 +96,143 @@ func (cfg *Config) scratchBlocksForDom(maxBlockID int) (a, b, c, d, e, f, g, h [
e = scratch[4*maxBlockID : 5*maxBlockID]
f = scratch[5*maxBlockID : 6*maxBlockID]
g = scratch[6*maxBlockID : 7*maxBlockID]
h = scratch[7*maxBlockID : 8*maxBlockID]
return
}
// dfs performs a depth first search over the blocks starting at the set of
// blocks in the entries list (in arbitrary order). dfnum contains a mapping
// from block id to an int indicating the order the block was reached or
// 0 if the block was not reached. order contains a mapping from dfnum
// to block.
func (f *Func) dfs(entries []*Block, succFn linkedBlocks, dfnum, order, parent []ID) (fromID []*Block) {
maxBlockID := entries[0].Func.NumBlocks()
fromID = make([]*Block, maxBlockID)
for _, entry := range entries[0].Func.Blocks {
eid := entry.ID
if fromID[eid] != nil {
panic("Colliding entry IDs")
}
fromID[eid] = entry
}
n := ID(0)
s := make([]*Block, 0, 256)
for _, entry := range entries {
if dfnum[entry.ID] != 0 {
continue // already found from a previous entry
}
s = append(s, entry)
parent[entry.ID] = entry.ID
for len(s) > 0 {
node := s[len(s)-1]
s = s[:len(s)-1]
if dfnum[node.ID] != 0 {
continue // already found from a previous entry
}
n++
dfnum[node.ID] = n
order[n] = node.ID
for _, w := range succFn(node) {
// if it has a dfnum, we've already visited it
if dfnum[w.ID] == 0 {
s = append(s, w)
parent[w.ID] = node.ID // keep overwriting this till it is visited.
}
}
}
}
return
}
// dominators computes the dominator tree for f. It returns a slice
// which maps block ID to the immediate dominator of that block.
// Unreachable blocks map to nil. The entry block maps to nil.
func dominators(f *Func) []*Block {
preds := func(b *Block) []*Block { return b.Preds }
succs := func(b *Block) []*Block { return b.Succs }
//TODO: benchmark and try to find criteria for swapping between
// dominatorsSimple and dominatorsLT
return f.dominatorsLT([]*Block{f.Entry}, preds, succs)
return f.dominatorsLTOrig(f.Entry, preds, succs)
}
// postDominators computes the post-dominator tree for f.
func postDominators(f *Func) []*Block {
if len(f.Blocks) == 0 {
return nil
}
// find the exit blocks
var exits []*Block
for _, b := range f.Blocks {
switch b.Kind {
case BlockExit, BlockRet, BlockRetJmp, BlockCall, BlockCheck:
exits = append(exits, b)
}
}
// TODO: postdominators is not really right, and it's not used yet
preds := func(b *Block) []*Block { return b.Preds }
succs := func(b *Block) []*Block { return b.Succs }
// infinite loop with no exit
if exits == nil {
return make([]*Block, f.NumBlocks())
}
return f.dominatorsLT(exits, succs, preds)
}
// dominatorsLt runs Lengauer-Tarjan to compute a dominator tree starting at
// dominatorsLTOrig runs Lengauer-Tarjan to compute a dominator tree starting at
// entry and using predFn/succFn to find predecessors/successors to allow
// computing both dominator and post-dominator trees.
func (f *Func) dominatorsLT(entries []*Block, predFn linkedBlocks, succFn linkedBlocks) []*Block {
// Based on Lengauer-Tarjan from Modern Compiler Implementation in C -
// Appel with optimizations from Finding Dominators in Practice -
// Georgiadis
maxBlockID := entries[0].Func.NumBlocks()
dfnum, vertex, parent, semi, samedom, ancestor, best, bucket := f.Config.scratchBlocksForDom(maxBlockID)
// dfnum := make([]ID, maxBlockID) // conceptually int32, but punning for allocation purposes.
// vertex := make([]ID, maxBlockID)
// parent := make([]ID, maxBlockID)
// semi := make([]ID, maxBlockID)
// samedom := make([]ID, maxBlockID)
// ancestor := make([]ID, maxBlockID)
// best := make([]ID, maxBlockID)
// bucket := make([]ID, maxBlockID)
func (f *Func) dominatorsLTOrig(entry *Block, predFn linkedBlocks, succFn linkedBlocks) []*Block {
// Adapted directly from the original TOPLAS article's "simple" algorithm
maxBlockID := entry.Func.NumBlocks()
semi, vertex, label, parent, ancestor, bucketHead, bucketLink := f.Config.scratchBlocksForDom(maxBlockID)
// This version uses integers for most of the computation,
// to make the work arrays smaller and pointer-free.
// fromID translates from ID to *Block where that is needed.
fromID := make([]*Block, maxBlockID)
for _, v := range f.Blocks {
fromID[v.ID] = v
}
idom := make([]*Block, maxBlockID)
// Step 1. Carry out a depth first search of the problem graph. Number
// the vertices from 1 to n as they are reached during the search.
fromID := f.dfs(entries, succFn, dfnum, vertex, parent)
n := f.dfsOrig(entry, succFn, semi, vertex, label, parent)
idom := make([]*Block, maxBlockID)
// Step 2. Compute the semidominators of all vertices by applying
// Theorem 4. Carry out the computation vertex by vertex in decreasing
// order by number.
for i := maxBlockID - 1; i > 0; i-- {
for i := n; i >= 2; i-- {
w := vertex[i]
if w == 0 {
continue
}
if dfnum[w] == 0 {
// skip unreachable node
continue
}
// Step 3. Implicitly define the immediate dominator of each
// vertex by applying Corollary 1. (reordered)
for v := bucket[w]; v != 0; v = bucket[v] {
u := eval(v, ancestor, semi, dfnum, best)
if semi[u] == semi[v] {
idom[v] = fromID[w] // true dominator
} else {
samedom[v] = u // v has same dominator as u
}
}
p := parent[w]
s := p // semidominator
var sp ID
// calculate the semidominator of w
// step2 in TOPLAS paper
for _, v := range predFn(fromID[w]) {
if dfnum[v.ID] == 0 {
if semi[v.ID] == 0 {
// skip unreachable predecessor
// not in original, but we're using existing pred instead of building one.
continue
}
if dfnum[v.ID] <= dfnum[w] {
sp = v.ID
} else {
sp = semi[eval(v.ID, ancestor, semi, dfnum, best)]
}
if dfnum[sp] < dfnum[s] {
s = sp
u := evalOrig(v.ID, ancestor, semi, label)
if semi[u] < semi[w] {
semi[w] = semi[u]
}
}
// link
ancestor[w] = p
best[w] = w
// add w to bucket[vertex[semi[w]]]
// implement bucket as a linked list implemented
// in a pair of arrays.
vsw := vertex[semi[w]]
bucketLink[w] = bucketHead[vsw]
bucketHead[vsw] = w
linkOrig(parent[w], w, ancestor)
semi[w] = s
if semi[s] != parent[s] {
bucket[w] = bucket[s]
bucket[s] = w
// step3 in TOPLAS paper
for v := bucketHead[parent[w]]; v != 0; v = bucketLink[v] {
u := evalOrig(v, ancestor, semi, label)
if semi[u] < semi[v] {
idom[v] = fromID[u]
} else {
idom[v] = fromID[parent[w]]
}
}
}
// Final pass of step 3
for v := bucket[0]; v != 0; v = bucket[v] {
idom[v] = fromID[bucket[0]]
// step 4 in toplas paper
for i := ID(2); i <= n; i++ {
w := vertex[i]
if idom[w].ID != vertex[semi[w]] {
idom[w] = idom[idom[w].ID]
}
}
// Step 4. Explicitly define the immediate dominator of each vertex,
// carrying out the computation vertex by vertex in increasing order by
// number.
for i := 1; i < maxBlockID-1; i++ {
w := vertex[i]
if w == 0 {
continue
return idom
}
// dfs performs a depth first search over the blocks starting at entry block
// (in arbitrary order). This is a de-recursed version of dfs from the
// original Tarjan-Lengauer TOPLAS article. It's important to return the
// same values for parent as the original algorithm.
func (f *Func) dfsOrig(entry *Block, succFn linkedBlocks, semi, vertex, label, parent []ID) ID {
n := ID(0)
s := make([]*Block, 0, 256)
s = append(s, entry)
for len(s) > 0 {
v := s[len(s)-1]
s = s[:len(s)-1]
// recursing on v
if semi[v.ID] != 0 {
continue // already visited
}
// w has the same dominator as samedom[w]
if samedom[w] != 0 {
idom[w] = idom[samedom[w]]
n++
semi[v.ID] = n
vertex[n] = v.ID
label[v.ID] = v.ID
// ancestor[v] already zero
for _, w := range succFn(v) {
// if it has a dfnum, we've already visited it
if semi[w.ID] == 0 {
// yes, w can be pushed multiple times.
s = append(s, w)
parent[w.ID] = v.ID // keep overwriting this till it is visited.
}
}
}
return idom
return n
}
// eval function from LT paper with path compression
func eval(v ID, ancestor []ID, semi []ID, dfnum []ID, best []ID) ID {
a := ancestor[v]
if ancestor[a] != 0 {
bid := eval(a, ancestor, semi, dfnum, best)
ancestor[v] = ancestor[a]
if dfnum[semi[bid]] < dfnum[semi[best[v]]] {
best[v] = bid
// compressOrig is the "simple" compress function from LT paper
func compressOrig(v ID, ancestor, semi, label []ID) {
if ancestor[ancestor[v]] != 0 {
compressOrig(ancestor[v], ancestor, semi, label)
if semi[label[ancestor[v]]] < semi[label[v]] {
label[v] = label[ancestor[v]]
}
ancestor[v] = ancestor[ancestor[v]]
}
return best[v]
}
// evalOrig is the "simple" eval function from LT paper
func evalOrig(v ID, ancestor, semi, label []ID) ID {
if ancestor[v] == 0 {
return v
}
compressOrig(v, ancestor, semi, label)
return label[v]
}
func linkOrig(v, w ID, ancestor []ID) {
ancestor[w] = v
}
// dominators computes the dominator tree for f. It returns a slice
......
......@@ -372,32 +372,6 @@ func TestDominatorsMultPred(t *testing.T) {
verifyDominators(t, fun, dominatorsSimple, doms)
}
func TestPostDominators(t *testing.T) {
c := testConfig(t)
fun := Fun(c, "entry",
Bloc("entry",
Valu("mem", OpInitMem, TypeMem, 0, nil),
Valu("p", OpConstBool, TypeBool, 1, nil),
If("p", "a", "c")),
Bloc("a",
If("p", "b", "c")),
Bloc("b",
Goto("c")),
Bloc("c",
If("p", "b", "exit")),
Bloc("exit",
Exit("mem")))
doms := map[string]string{"entry": "c",
"a": "c",
"b": "c",
"c": "exit",
}
CheckFunc(fun.f)
verifyDominators(t, fun, postDominators, doms)
}
func TestInfiniteLoop(t *testing.T) {
c := testConfig(t)
// note lack of an exit block
......@@ -415,10 +389,6 @@ func TestInfiniteLoop(t *testing.T) {
doms := map[string]string{"a": "entry",
"b": "a"}
verifyDominators(t, fun, dominators, doms)
// no exit block, so there are no post-dominators
postDoms := map[string]string{}
verifyDominators(t, fun, postDominators, postDoms)
}
func TestDomTricky(t *testing.T) {
......@@ -465,3 +435,138 @@ func TestDomTricky(t *testing.T) {
verifyDominators(t, fun, dominatorsSimple, doms)
}
}
// generateDominatorMap uses dominatorsSimple to obtain a
// reference dominator tree for testing faster algorithms.
func generateDominatorMap(fut fun) map[string]string {
blockNames := map[*Block]string{}
for n, b := range fut.blocks {
blockNames[b] = n
}
referenceDom := dominatorsSimple(fut.f)
doms := make(map[string]string)
for _, b := range fut.f.Blocks {
if d := referenceDom[b.ID]; d != nil {
doms[blockNames[b]] = blockNames[d]
}
}
return doms
}
func TestDominatorsPostTricky(t *testing.T) {
c := testConfig(t)
fun := Fun(c, "b1",
Bloc("b1",
Valu("mem", OpInitMem, TypeMem, 0, nil),
Valu("p", OpConstBool, TypeBool, 1, nil),
If("p", "b3", "b2")),
Bloc("b3",
If("p", "b5", "b6")),
Bloc("b5",
Goto("b7")),
Bloc("b7",
If("p", "b8", "b11")),
Bloc("b8",
Goto("b13")),
Bloc("b13",
If("p", "b14", "b15")),
Bloc("b14",
Goto("b10")),
Bloc("b15",
Goto("b16")),
Bloc("b16",
Goto("b9")),
Bloc("b9",
Goto("b7")),
Bloc("b11",
Goto("b12")),
Bloc("b12",
If("p", "b10", "b8")),
Bloc("b10",
Goto("b6")),
Bloc("b6",
Goto("b17")),
Bloc("b17",
Goto("b18")),
Bloc("b18",
If("p", "b22", "b19")),
Bloc("b22",
Goto("b23")),
Bloc("b23",
If("p", "b21", "b19")),
Bloc("b19",
If("p", "b24", "b25")),
Bloc("b24",
Goto("b26")),
Bloc("b26",
Goto("b25")),
Bloc("b25",
If("p", "b27", "b29")),
Bloc("b27",
Goto("b30")),
Bloc("b30",
Goto("b28")),
Bloc("b29",
Goto("b31")),
Bloc("b31",
Goto("b28")),
Bloc("b28",
If("p", "b32", "b33")),
Bloc("b32",
Goto("b21")),
Bloc("b21",
Goto("b47")),
Bloc("b47",
If("p", "b45", "b46")),
Bloc("b45",
Goto("b48")),
Bloc("b48",
Goto("b49")),
Bloc("b49",
If("p", "b50", "b51")),
Bloc("b50",
Goto("b52")),
Bloc("b52",
Goto("b53")),
Bloc("b53",
Goto("b51")),
Bloc("b51",
Goto("b54")),
Bloc("b54",
Goto("b46")),
Bloc("b46",
Exit("mem")),
Bloc("b33",
Goto("b34")),
Bloc("b34",
Goto("b37")),
Bloc("b37",
If("p", "b35", "b36")),
Bloc("b35",
Goto("b38")),
Bloc("b38",
Goto("b39")),
Bloc("b39",
If("p", "b40", "b41")),
Bloc("b40",
Goto("b42")),
Bloc("b42",
Goto("b43")),
Bloc("b43",
Goto("b41")),
Bloc("b41",
Goto("b44")),
Bloc("b44",
Goto("b36")),
Bloc("b36",
Goto("b20")),
Bloc("b20",
Goto("b18")),
Bloc("b2",
Goto("b4")),
Bloc("b4",
Exit("mem")))
CheckFunc(fun.f)
doms := generateDominatorMap(fun)
verifyDominators(t, fun, dominators, doms)
}
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment