Commit 20a96a1f authored by Robert Griesemer's avatar Robert Griesemer

math/big: split rat conversion routines and tests into separate files

No other functional changes.

Change-Id: I8be1fc488caa4f3d4c00afcb8c00475bfcd10709
Reviewed-on: https://go-review.googlesource.com/3673Reviewed-by: default avatarAlan Donovan <adonovan@google.com>
parent a0c5d284
......@@ -10,10 +10,7 @@ import (
"encoding/binary"
"errors"
"fmt"
"io"
"math"
"strconv"
"strings"
)
// A Rat represents a quotient a/b of arbitrary precision.
......@@ -514,229 +511,6 @@ func (z *Rat) Quo(x, y *Rat) *Rat {
return z.norm()
}
func ratTok(ch rune) bool {
return strings.IndexRune("+-/0123456789.eE", ch) >= 0
}
// Scan is a support routine for fmt.Scanner. It accepts the formats
// 'e', 'E', 'f', 'F', 'g', 'G', and 'v'. All formats are equivalent.
func (z *Rat) Scan(s fmt.ScanState, ch rune) error {
tok, err := s.Token(true, ratTok)
if err != nil {
return err
}
if strings.IndexRune("efgEFGv", ch) < 0 {
return errors.New("Rat.Scan: invalid verb")
}
if _, ok := z.SetString(string(tok)); !ok {
return errors.New("Rat.Scan: invalid syntax")
}
return nil
}
// SetString sets z to the value of s and returns z and a boolean indicating
// success. s can be given as a fraction "a/b" or as a floating-point number
// optionally followed by an exponent. If the operation failed, the value of
// z is undefined but the returned value is nil.
func (z *Rat) SetString(s string) (*Rat, bool) {
if len(s) == 0 {
return nil, false
}
// len(s) > 0
// parse fraction a/b, if any
if sep := strings.Index(s, "/"); sep >= 0 {
if _, ok := z.a.SetString(s[:sep], 0); !ok {
return nil, false
}
s = s[sep+1:]
var err error
if z.b.abs, _, _, err = z.b.abs.scan(strings.NewReader(s), 0, false); err != nil {
return nil, false
}
if len(z.b.abs) == 0 {
return nil, false
}
return z.norm(), true
}
// parse floating-point number
r := strings.NewReader(s)
// sign
neg, err := scanSign(r)
if err != nil {
return nil, false
}
// mantissa
var ecorr int
z.a.abs, _, ecorr, err = z.a.abs.scan(r, 10, true)
if err != nil {
return nil, false
}
// exponent
var exp int64
var ebase int
exp, ebase, err = scanExponent(r)
if ebase == 2 || err != nil {
return nil, false
}
// there should be no unread characters left
if _, err = r.ReadByte(); err != io.EOF {
return nil, false
}
// correct exponent
if ecorr < 0 {
exp += int64(ecorr)
}
// compute exponent power
expabs := exp
if expabs < 0 {
expabs = -expabs
}
powTen := nat(nil).expNN(natTen, nat(nil).setWord(Word(expabs)), nil)
// complete fraction
if exp < 0 {
z.b.abs = powTen
z.norm()
} else {
z.a.abs = z.a.abs.mul(z.a.abs, powTen)
z.b.abs = z.b.abs[:0]
}
z.a.neg = neg && len(z.a.abs) > 0 // 0 has no sign
return z, true
}
func scanExponent(r io.ByteScanner) (exp int64, base int, err error) {
base = 10
var ch byte
if ch, err = r.ReadByte(); err != nil {
if err == io.EOF {
err = nil // no exponent; same as e0
}
return
}
switch ch {
case 'e', 'E':
// ok
case 'p':
base = 2
default:
r.UnreadByte()
return // no exponent; same as e0
}
var neg bool
if neg, err = scanSign(r); err != nil {
return
}
var digits []byte
if neg {
digits = append(digits, '-')
}
// no need to use nat.scan for exponent digits
// since we only care about int64 values - the
// from-scratch scan is easy enough and faster
for i := 0; ; i++ {
if ch, err = r.ReadByte(); err != nil {
if err != io.EOF || i == 0 {
return
}
err = nil
break // i > 0
}
if ch < '0' || '9' < ch {
if i == 0 {
r.UnreadByte()
err = fmt.Errorf("invalid exponent (missing digits)")
return
}
break // i > 0
}
digits = append(digits, byte(ch))
}
// i > 0 => we have at least one digit
exp, err = strconv.ParseInt(string(digits), 10, 64)
return
}
// String returns a string representation of x in the form "a/b" (even if b == 1).
func (x *Rat) String() string {
s := "/1"
if len(x.b.abs) != 0 {
s = "/" + x.b.abs.decimalString()
}
return x.a.String() + s
}
// RatString returns a string representation of x in the form "a/b" if b != 1,
// and in the form "a" if b == 1.
func (x *Rat) RatString() string {
if x.IsInt() {
return x.a.String()
}
return x.String()
}
// FloatString returns a string representation of x in decimal form with prec
// digits of precision after the decimal point and the last digit rounded.
func (x *Rat) FloatString(prec int) string {
if x.IsInt() {
s := x.a.String()
if prec > 0 {
s += "." + strings.Repeat("0", prec)
}
return s
}
// x.b.abs != 0
q, r := nat(nil).div(nat(nil), x.a.abs, x.b.abs)
p := natOne
if prec > 0 {
p = nat(nil).expNN(natTen, nat(nil).setUint64(uint64(prec)), nil)
}
r = r.mul(r, p)
r, r2 := r.div(nat(nil), r, x.b.abs)
// see if we need to round up
r2 = r2.add(r2, r2)
if x.b.abs.cmp(r2) <= 0 {
r = r.add(r, natOne)
if r.cmp(p) >= 0 {
q = nat(nil).add(q, natOne)
r = nat(nil).sub(r, p)
}
}
s := q.decimalString()
if x.a.neg {
s = "-" + s
}
if prec > 0 {
rs := r.decimalString()
leadingZeros := prec - len(rs)
s += "." + strings.Repeat("0", leadingZeros) + rs
}
return s
}
// Gob codec version. Permits backward-compatible changes to the encoding.
const ratGobVersion byte = 1
......
......@@ -9,10 +9,7 @@ import (
"encoding/gob"
"encoding/json"
"encoding/xml"
"fmt"
"math"
"strconv"
"strings"
"testing"
)
......@@ -56,128 +53,6 @@ func TestZeroRat(t *testing.T) {
z.Quo(&x, &y)
}
type StringTest struct {
in, out string
ok bool
}
var setStringTests = []StringTest{
{"0", "0", true},
{"-0", "0", true},
{"1", "1", true},
{"-1", "-1", true},
{"1.", "1", true},
{"1e0", "1", true},
{"1.e1", "10", true},
{in: "1e"},
{in: "1.e"},
{in: "1e+14e-5"},
{in: "1e4.5"},
{in: "r"},
{in: "a/b"},
{in: "a.b"},
{"-0.1", "-1/10", true},
{"-.1", "-1/10", true},
{"2/4", "1/2", true},
{".25", "1/4", true},
{"-1/5", "-1/5", true},
{"8129567.7690E14", "812956776900000000000", true},
{"78189e+4", "781890000", true},
{"553019.8935e+8", "55301989350000", true},
{"98765432109876543210987654321e-10", "98765432109876543210987654321/10000000000", true},
{"9877861857500000E-7", "3951144743/4", true},
{"2169378.417e-3", "2169378417/1000000", true},
{"884243222337379604041632732738665534", "884243222337379604041632732738665534", true},
{"53/70893980658822810696", "53/70893980658822810696", true},
{"106/141787961317645621392", "53/70893980658822810696", true},
{"204211327800791583.81095", "4084226556015831676219/20000", true},
{in: "1/0"},
}
// These are not supported by fmt.Fscanf.
var setStringTests2 = []StringTest{
{"0x10", "16", true},
{"-010/1", "-8", true}, // TODO(gri) should we even permit octal here?
{"-010.", "-10", true},
{"0x10/0x20", "1/2", true},
{"0b1000/3", "8/3", true},
// TODO(gri) add more tests
}
func TestRatSetString(t *testing.T) {
var tests []StringTest
tests = append(tests, setStringTests...)
tests = append(tests, setStringTests2...)
for i, test := range tests {
x, ok := new(Rat).SetString(test.in)
if ok {
if !test.ok {
t.Errorf("#%d SetString(%q) expected failure", i, test.in)
} else if x.RatString() != test.out {
t.Errorf("#%d SetString(%q) got %s want %s", i, test.in, x.RatString(), test.out)
}
} else if x != nil {
t.Errorf("#%d SetString(%q) got %p want nil", i, test.in, x)
}
}
}
func TestRatScan(t *testing.T) {
var buf bytes.Buffer
for i, test := range setStringTests {
x := new(Rat)
buf.Reset()
buf.WriteString(test.in)
_, err := fmt.Fscanf(&buf, "%v", x)
if err == nil != test.ok {
if test.ok {
t.Errorf("#%d (%s) error: %s", i, test.in, err)
} else {
t.Errorf("#%d (%s) expected error", i, test.in)
}
continue
}
if err == nil && x.RatString() != test.out {
t.Errorf("#%d got %s want %s", i, x.RatString(), test.out)
}
}
}
var floatStringTests = []struct {
in string
prec int
out string
}{
{"0", 0, "0"},
{"0", 4, "0.0000"},
{"1", 0, "1"},
{"1", 2, "1.00"},
{"-1", 0, "-1"},
{".25", 2, "0.25"},
{".25", 1, "0.3"},
{".25", 3, "0.250"},
{"-1/3", 3, "-0.333"},
{"-2/3", 4, "-0.6667"},
{"0.96", 1, "1.0"},
{"0.999", 2, "1.00"},
{"0.9", 0, "1"},
{".25", -1, "0"},
{".55", -1, "1"},
}
func TestFloatString(t *testing.T) {
for i, test := range floatStringTests {
x, _ := new(Rat).SetString(test.in)
if x.FloatString(test.prec) != test.out {
t.Errorf("#%d got %s want %s", i, x.FloatString(test.prec), test.out)
}
}
}
func TestRatSign(t *testing.T) {
zero := NewRat(0, 1)
for _, a := range setStringTests {
......@@ -608,321 +483,6 @@ func TestIssue3521(t *testing.T) {
}
}
// Test inputs to Rat.SetString. The prefix "long:" causes the test
// to be skipped in --test.short mode. (The threshold is about 500us.)
var float64inputs = []string{
// Constants plundered from strconv/testfp.txt.
// Table 1: Stress Inputs for Conversion to 53-bit Binary, < 1/2 ULP
"5e+125",
"69e+267",
"999e-026",
"7861e-034",
"75569e-254",
"928609e-261",
"9210917e+080",
"84863171e+114",
"653777767e+273",
"5232604057e-298",
"27235667517e-109",
"653532977297e-123",
"3142213164987e-294",
"46202199371337e-072",
"231010996856685e-073",
"9324754620109615e+212",
"78459735791271921e+049",
"272104041512242479e+200",
"6802601037806061975e+198",
"20505426358836677347e-221",
"836168422905420598437e-234",
"4891559871276714924261e+222",
// Table 2: Stress Inputs for Conversion to 53-bit Binary, > 1/2 ULP
"9e-265",
"85e-037",
"623e+100",
"3571e+263",
"81661e+153",
"920657e-023",
"4603285e-024",
"87575437e-309",
"245540327e+122",
"6138508175e+120",
"83356057653e+193",
"619534293513e+124",
"2335141086879e+218",
"36167929443327e-159",
"609610927149051e-255",
"3743626360493413e-165",
"94080055902682397e-242",
"899810892172646163e+283",
"7120190517612959703e+120",
"25188282901709339043e-252",
"308984926168550152811e-052",
"6372891218502368041059e+064",
// Table 14: Stress Inputs for Conversion to 24-bit Binary, <1/2 ULP
"5e-20",
"67e+14",
"985e+15",
"7693e-42",
"55895e-16",
"996622e-44",
"7038531e-32",
"60419369e-46",
"702990899e-20",
"6930161142e-48",
"25933168707e+13",
"596428896559e+20",
// Table 15: Stress Inputs for Conversion to 24-bit Binary, >1/2 ULP
"3e-23",
"57e+18",
"789e-35",
"2539e-18",
"76173e+28",
"887745e-11",
"5382571e-37",
"82381273e-35",
"750486563e-38",
"3752432815e-39",
"75224575729e-45",
"459926601011e+15",
// Constants plundered from strconv/atof_test.go.
"0",
"1",
"+1",
"1e23",
"1E23",
"100000000000000000000000",
"1e-100",
"123456700",
"99999999999999974834176",
"100000000000000000000001",
"100000000000000008388608",
"100000000000000016777215",
"100000000000000016777216",
"-1",
"-0.1",
"-0", // NB: exception made for this input
"1e-20",
"625e-3",
// largest float64
"1.7976931348623157e308",
"-1.7976931348623157e308",
// next float64 - too large
"1.7976931348623159e308",
"-1.7976931348623159e308",
// the border is ...158079
// borderline - okay
"1.7976931348623158e308",
"-1.7976931348623158e308",
// borderline - too large
"1.797693134862315808e308",
"-1.797693134862315808e308",
// a little too large
"1e308",
"2e308",
"1e309",
// way too large
"1e310",
"-1e310",
"1e400",
"-1e400",
"long:1e400000",
"long:-1e400000",
// denormalized
"1e-305",
"1e-306",
"1e-307",
"1e-308",
"1e-309",
"1e-310",
"1e-322",
// smallest denormal
"5e-324",
"4e-324",
"3e-324",
// too small
"2e-324",
// way too small
"1e-350",
"long:1e-400000",
// way too small, negative
"-1e-350",
"long:-1e-400000",
// try to overflow exponent
// [Disabled: too slow and memory-hungry with rationals.]
// "1e-4294967296",
// "1e+4294967296",
// "1e-18446744073709551616",
// "1e+18446744073709551616",
// http://www.exploringbinary.com/java-hangs-when-converting-2-2250738585072012e-308/
"2.2250738585072012e-308",
// http://www.exploringbinary.com/php-hangs-on-numeric-value-2-2250738585072011e-308/
"2.2250738585072011e-308",
// A very large number (initially wrongly parsed by the fast algorithm).
"4.630813248087435e+307",
// A different kind of very large number.
"22.222222222222222",
"long:2." + strings.Repeat("2", 4000) + "e+1",
// Exactly halfway between 1 and math.Nextafter(1, 2).
// Round to even (down).
"1.00000000000000011102230246251565404236316680908203125",
// Slightly lower; still round down.
"1.00000000000000011102230246251565404236316680908203124",
// Slightly higher; round up.
"1.00000000000000011102230246251565404236316680908203126",
// Slightly higher, but you have to read all the way to the end.
"long:1.00000000000000011102230246251565404236316680908203125" + strings.Repeat("0", 10000) + "1",
// Smallest denormal, 2^(-1022-52)
"4.940656458412465441765687928682213723651e-324",
// Half of smallest denormal, 2^(-1022-53)
"2.470328229206232720882843964341106861825e-324",
// A little more than the exact half of smallest denormal
// 2^-1075 + 2^-1100. (Rounds to 1p-1074.)
"2.470328302827751011111470718709768633275e-324",
// The exact halfway between smallest normal and largest denormal:
// 2^-1022 - 2^-1075. (Rounds to 2^-1022.)
"2.225073858507201136057409796709131975935e-308",
"1152921504606846975", // 1<<60 - 1
"-1152921504606846975", // -(1<<60 - 1)
"1152921504606846977", // 1<<60 + 1
"-1152921504606846977", // -(1<<60 + 1)
"1/3",
}
// isFinite reports whether f represents a finite rational value.
// It is equivalent to !math.IsNan(f) && !math.IsInf(f, 0).
func isFinite(f float64) bool {
return math.Abs(f) <= math.MaxFloat64
}
func TestFloat32SpecialCases(t *testing.T) {
for _, input := range float64inputs {
if strings.HasPrefix(input, "long:") {
if testing.Short() {
continue
}
input = input[len("long:"):]
}
r, ok := new(Rat).SetString(input)
if !ok {
t.Errorf("Rat.SetString(%q) failed", input)
continue
}
f, exact := r.Float32()
// 1. Check string -> Rat -> float32 conversions are
// consistent with strconv.ParseFloat.
// Skip this check if the input uses "a/b" rational syntax.
if !strings.Contains(input, "/") {
e64, _ := strconv.ParseFloat(input, 32)
e := float32(e64)
// Careful: negative Rats too small for
// float64 become -0, but Rat obviously cannot
// preserve the sign from SetString("-0").
switch {
case math.Float32bits(e) == math.Float32bits(f):
// Ok: bitwise equal.
case f == 0 && r.Num().BitLen() == 0:
// Ok: Rat(0) is equivalent to both +/- float64(0).
default:
t.Errorf("strconv.ParseFloat(%q) = %g (%b), want %g (%b); delta = %g", input, e, e, f, f, f-e)
}
}
if !isFinite(float64(f)) {
continue
}
// 2. Check f is best approximation to r.
if !checkIsBestApprox32(t, f, r) {
// Append context information.
t.Errorf("(input was %q)", input)
}
// 3. Check f->R->f roundtrip is non-lossy.
checkNonLossyRoundtrip32(t, f)
// 4. Check exactness using slow algorithm.
if wasExact := new(Rat).SetFloat64(float64(f)).Cmp(r) == 0; wasExact != exact {
t.Errorf("Rat.SetString(%q).Float32().exact = %t, want %t", input, exact, wasExact)
}
}
}
func TestFloat64SpecialCases(t *testing.T) {
for _, input := range float64inputs {
if strings.HasPrefix(input, "long:") {
if testing.Short() {
continue
}
input = input[len("long:"):]
}
r, ok := new(Rat).SetString(input)
if !ok {
t.Errorf("Rat.SetString(%q) failed", input)
continue
}
f, exact := r.Float64()
// 1. Check string -> Rat -> float64 conversions are
// consistent with strconv.ParseFloat.
// Skip this check if the input uses "a/b" rational syntax.
if !strings.Contains(input, "/") {
e, _ := strconv.ParseFloat(input, 64)
// Careful: negative Rats too small for
// float64 become -0, but Rat obviously cannot
// preserve the sign from SetString("-0").
switch {
case math.Float64bits(e) == math.Float64bits(f):
// Ok: bitwise equal.
case f == 0 && r.Num().BitLen() == 0:
// Ok: Rat(0) is equivalent to both +/- float64(0).
default:
t.Errorf("strconv.ParseFloat(%q) = %g (%b), want %g (%b); delta = %g", input, e, e, f, f, f-e)
}
}
if !isFinite(f) {
continue
}
// 2. Check f is best approximation to r.
if !checkIsBestApprox64(t, f, r) {
// Append context information.
t.Errorf("(input was %q)", input)
}
// 3. Check f->R->f roundtrip is non-lossy.
checkNonLossyRoundtrip64(t, f)
// 4. Check exactness using slow algorithm.
if wasExact := new(Rat).SetFloat64(f).Cmp(r) == 0; wasExact != exact {
t.Errorf("Rat.SetString(%q).Float64().exact = %t, want %t", input, exact, wasExact)
}
}
}
func TestFloat32Distribution(t *testing.T) {
// Generate a distribution of (sign, mantissa, exp) values
// broader than the float32 range, and check Rat.Float32()
......
// Copyright 2015 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// This file implements rat-to-string conversion functions.
package big
import (
"errors"
"fmt"
"io"
"strconv"
"strings"
)
func ratTok(ch rune) bool {
return strings.IndexRune("+-/0123456789.eE", ch) >= 0
}
// Scan is a support routine for fmt.Scanner. It accepts the formats
// 'e', 'E', 'f', 'F', 'g', 'G', and 'v'. All formats are equivalent.
func (z *Rat) Scan(s fmt.ScanState, ch rune) error {
tok, err := s.Token(true, ratTok)
if err != nil {
return err
}
if strings.IndexRune("efgEFGv", ch) < 0 {
return errors.New("Rat.Scan: invalid verb")
}
if _, ok := z.SetString(string(tok)); !ok {
return errors.New("Rat.Scan: invalid syntax")
}
return nil
}
// SetString sets z to the value of s and returns z and a boolean indicating
// success. s can be given as a fraction "a/b" or as a floating-point number
// optionally followed by an exponent. If the operation failed, the value of
// z is undefined but the returned value is nil.
func (z *Rat) SetString(s string) (*Rat, bool) {
if len(s) == 0 {
return nil, false
}
// len(s) > 0
// parse fraction a/b, if any
if sep := strings.Index(s, "/"); sep >= 0 {
if _, ok := z.a.SetString(s[:sep], 0); !ok {
return nil, false
}
s = s[sep+1:]
var err error
if z.b.abs, _, _, err = z.b.abs.scan(strings.NewReader(s), 0, false); err != nil {
return nil, false
}
if len(z.b.abs) == 0 {
return nil, false
}
return z.norm(), true
}
// parse floating-point number
r := strings.NewReader(s)
// sign
neg, err := scanSign(r)
if err != nil {
return nil, false
}
// mantissa
var ecorr int
z.a.abs, _, ecorr, err = z.a.abs.scan(r, 10, true)
if err != nil {
return nil, false
}
// exponent
var exp int64
var ebase int
exp, ebase, err = scanExponent(r)
if ebase == 2 || err != nil {
return nil, false
}
// there should be no unread characters left
if _, err = r.ReadByte(); err != io.EOF {
return nil, false
}
// correct exponent
if ecorr < 0 {
exp += int64(ecorr)
}
// compute exponent power
expabs := exp
if expabs < 0 {
expabs = -expabs
}
powTen := nat(nil).expNN(natTen, nat(nil).setWord(Word(expabs)), nil)
// complete fraction
if exp < 0 {
z.b.abs = powTen
z.norm()
} else {
z.a.abs = z.a.abs.mul(z.a.abs, powTen)
z.b.abs = z.b.abs[:0]
}
z.a.neg = neg && len(z.a.abs) > 0 // 0 has no sign
return z, true
}
func scanExponent(r io.ByteScanner) (exp int64, base int, err error) {
base = 10
var ch byte
if ch, err = r.ReadByte(); err != nil {
if err == io.EOF {
err = nil // no exponent; same as e0
}
return
}
switch ch {
case 'e', 'E':
// ok
case 'p':
base = 2
default:
r.UnreadByte()
return // no exponent; same as e0
}
var neg bool
if neg, err = scanSign(r); err != nil {
return
}
var digits []byte
if neg {
digits = append(digits, '-')
}
// no need to use nat.scan for exponent digits
// since we only care about int64 values - the
// from-scratch scan is easy enough and faster
for i := 0; ; i++ {
if ch, err = r.ReadByte(); err != nil {
if err != io.EOF || i == 0 {
return
}
err = nil
break // i > 0
}
if ch < '0' || '9' < ch {
if i == 0 {
r.UnreadByte()
err = fmt.Errorf("invalid exponent (missing digits)")
return
}
break // i > 0
}
digits = append(digits, byte(ch))
}
// i > 0 => we have at least one digit
exp, err = strconv.ParseInt(string(digits), 10, 64)
return
}
// String returns a string representation of x in the form "a/b" (even if b == 1).
func (x *Rat) String() string {
s := "/1"
if len(x.b.abs) != 0 {
s = "/" + x.b.abs.decimalString()
}
return x.a.String() + s
}
// RatString returns a string representation of x in the form "a/b" if b != 1,
// and in the form "a" if b == 1.
func (x *Rat) RatString() string {
if x.IsInt() {
return x.a.String()
}
return x.String()
}
// FloatString returns a string representation of x in decimal form with prec
// digits of precision after the decimal point and the last digit rounded.
func (x *Rat) FloatString(prec int) string {
if x.IsInt() {
s := x.a.String()
if prec > 0 {
s += "." + strings.Repeat("0", prec)
}
return s
}
// x.b.abs != 0
q, r := nat(nil).div(nat(nil), x.a.abs, x.b.abs)
p := natOne
if prec > 0 {
p = nat(nil).expNN(natTen, nat(nil).setUint64(uint64(prec)), nil)
}
r = r.mul(r, p)
r, r2 := r.div(nat(nil), r, x.b.abs)
// see if we need to round up
r2 = r2.add(r2, r2)
if x.b.abs.cmp(r2) <= 0 {
r = r.add(r, natOne)
if r.cmp(p) >= 0 {
q = nat(nil).add(q, natOne)
r = nat(nil).sub(r, p)
}
}
s := q.decimalString()
if x.a.neg {
s = "-" + s
}
if prec > 0 {
rs := r.decimalString()
leadingZeros := prec - len(rs)
s += "." + strings.Repeat("0", leadingZeros) + rs
}
return s
}
// Copyright 2015 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package big
import (
"bytes"
"fmt"
"math"
"strconv"
"strings"
"testing"
)
type StringTest struct {
in, out string
ok bool
}
var setStringTests = []StringTest{
{"0", "0", true},
{"-0", "0", true},
{"1", "1", true},
{"-1", "-1", true},
{"1.", "1", true},
{"1e0", "1", true},
{"1.e1", "10", true},
{in: "1e"},
{in: "1.e"},
{in: "1e+14e-5"},
{in: "1e4.5"},
{in: "r"},
{in: "a/b"},
{in: "a.b"},
{"-0.1", "-1/10", true},
{"-.1", "-1/10", true},
{"2/4", "1/2", true},
{".25", "1/4", true},
{"-1/5", "-1/5", true},
{"8129567.7690E14", "812956776900000000000", true},
{"78189e+4", "781890000", true},
{"553019.8935e+8", "55301989350000", true},
{"98765432109876543210987654321e-10", "98765432109876543210987654321/10000000000", true},
{"9877861857500000E-7", "3951144743/4", true},
{"2169378.417e-3", "2169378417/1000000", true},
{"884243222337379604041632732738665534", "884243222337379604041632732738665534", true},
{"53/70893980658822810696", "53/70893980658822810696", true},
{"106/141787961317645621392", "53/70893980658822810696", true},
{"204211327800791583.81095", "4084226556015831676219/20000", true},
{in: "1/0"},
}
// These are not supported by fmt.Fscanf.
var setStringTests2 = []StringTest{
{"0x10", "16", true},
{"-010/1", "-8", true}, // TODO(gri) should we even permit octal here?
{"-010.", "-10", true},
{"0x10/0x20", "1/2", true},
{"0b1000/3", "8/3", true},
// TODO(gri) add more tests
}
func TestRatSetString(t *testing.T) {
var tests []StringTest
tests = append(tests, setStringTests...)
tests = append(tests, setStringTests2...)
for i, test := range tests {
x, ok := new(Rat).SetString(test.in)
if ok {
if !test.ok {
t.Errorf("#%d SetString(%q) expected failure", i, test.in)
} else if x.RatString() != test.out {
t.Errorf("#%d SetString(%q) got %s want %s", i, test.in, x.RatString(), test.out)
}
} else if x != nil {
t.Errorf("#%d SetString(%q) got %p want nil", i, test.in, x)
}
}
}
func TestRatScan(t *testing.T) {
var buf bytes.Buffer
for i, test := range setStringTests {
x := new(Rat)
buf.Reset()
buf.WriteString(test.in)
_, err := fmt.Fscanf(&buf, "%v", x)
if err == nil != test.ok {
if test.ok {
t.Errorf("#%d (%s) error: %s", i, test.in, err)
} else {
t.Errorf("#%d (%s) expected error", i, test.in)
}
continue
}
if err == nil && x.RatString() != test.out {
t.Errorf("#%d got %s want %s", i, x.RatString(), test.out)
}
}
}
var floatStringTests = []struct {
in string
prec int
out string
}{
{"0", 0, "0"},
{"0", 4, "0.0000"},
{"1", 0, "1"},
{"1", 2, "1.00"},
{"-1", 0, "-1"},
{".25", 2, "0.25"},
{".25", 1, "0.3"},
{".25", 3, "0.250"},
{"-1/3", 3, "-0.333"},
{"-2/3", 4, "-0.6667"},
{"0.96", 1, "1.0"},
{"0.999", 2, "1.00"},
{"0.9", 0, "1"},
{".25", -1, "0"},
{".55", -1, "1"},
}
func TestFloatString(t *testing.T) {
for i, test := range floatStringTests {
x, _ := new(Rat).SetString(test.in)
if x.FloatString(test.prec) != test.out {
t.Errorf("#%d got %s want %s", i, x.FloatString(test.prec), test.out)
}
}
}
// Test inputs to Rat.SetString. The prefix "long:" causes the test
// to be skipped in --test.short mode. (The threshold is about 500us.)
var float64inputs = []string{
// Constants plundered from strconv/testfp.txt.
// Table 1: Stress Inputs for Conversion to 53-bit Binary, < 1/2 ULP
"5e+125",
"69e+267",
"999e-026",
"7861e-034",
"75569e-254",
"928609e-261",
"9210917e+080",
"84863171e+114",
"653777767e+273",
"5232604057e-298",
"27235667517e-109",
"653532977297e-123",
"3142213164987e-294",
"46202199371337e-072",
"231010996856685e-073",
"9324754620109615e+212",
"78459735791271921e+049",
"272104041512242479e+200",
"6802601037806061975e+198",
"20505426358836677347e-221",
"836168422905420598437e-234",
"4891559871276714924261e+222",
// Table 2: Stress Inputs for Conversion to 53-bit Binary, > 1/2 ULP
"9e-265",
"85e-037",
"623e+100",
"3571e+263",
"81661e+153",
"920657e-023",
"4603285e-024",
"87575437e-309",
"245540327e+122",
"6138508175e+120",
"83356057653e+193",
"619534293513e+124",
"2335141086879e+218",
"36167929443327e-159",
"609610927149051e-255",
"3743626360493413e-165",
"94080055902682397e-242",
"899810892172646163e+283",
"7120190517612959703e+120",
"25188282901709339043e-252",
"308984926168550152811e-052",
"6372891218502368041059e+064",
// Table 14: Stress Inputs for Conversion to 24-bit Binary, <1/2 ULP
"5e-20",
"67e+14",
"985e+15",
"7693e-42",
"55895e-16",
"996622e-44",
"7038531e-32",
"60419369e-46",
"702990899e-20",
"6930161142e-48",
"25933168707e+13",
"596428896559e+20",
// Table 15: Stress Inputs for Conversion to 24-bit Binary, >1/2 ULP
"3e-23",
"57e+18",
"789e-35",
"2539e-18",
"76173e+28",
"887745e-11",
"5382571e-37",
"82381273e-35",
"750486563e-38",
"3752432815e-39",
"75224575729e-45",
"459926601011e+15",
// Constants plundered from strconv/atof_test.go.
"0",
"1",
"+1",
"1e23",
"1E23",
"100000000000000000000000",
"1e-100",
"123456700",
"99999999999999974834176",
"100000000000000000000001",
"100000000000000008388608",
"100000000000000016777215",
"100000000000000016777216",
"-1",
"-0.1",
"-0", // NB: exception made for this input
"1e-20",
"625e-3",
// largest float64
"1.7976931348623157e308",
"-1.7976931348623157e308",
// next float64 - too large
"1.7976931348623159e308",
"-1.7976931348623159e308",
// the border is ...158079
// borderline - okay
"1.7976931348623158e308",
"-1.7976931348623158e308",
// borderline - too large
"1.797693134862315808e308",
"-1.797693134862315808e308",
// a little too large
"1e308",
"2e308",
"1e309",
// way too large
"1e310",
"-1e310",
"1e400",
"-1e400",
"long:1e400000",
"long:-1e400000",
// denormalized
"1e-305",
"1e-306",
"1e-307",
"1e-308",
"1e-309",
"1e-310",
"1e-322",
// smallest denormal
"5e-324",
"4e-324",
"3e-324",
// too small
"2e-324",
// way too small
"1e-350",
"long:1e-400000",
// way too small, negative
"-1e-350",
"long:-1e-400000",
// try to overflow exponent
// [Disabled: too slow and memory-hungry with rationals.]
// "1e-4294967296",
// "1e+4294967296",
// "1e-18446744073709551616",
// "1e+18446744073709551616",
// http://www.exploringbinary.com/java-hangs-when-converting-2-2250738585072012e-308/
"2.2250738585072012e-308",
// http://www.exploringbinary.com/php-hangs-on-numeric-value-2-2250738585072011e-308/
"2.2250738585072011e-308",
// A very large number (initially wrongly parsed by the fast algorithm).
"4.630813248087435e+307",
// A different kind of very large number.
"22.222222222222222",
"long:2." + strings.Repeat("2", 4000) + "e+1",
// Exactly halfway between 1 and math.Nextafter(1, 2).
// Round to even (down).
"1.00000000000000011102230246251565404236316680908203125",
// Slightly lower; still round down.
"1.00000000000000011102230246251565404236316680908203124",
// Slightly higher; round up.
"1.00000000000000011102230246251565404236316680908203126",
// Slightly higher, but you have to read all the way to the end.
"long:1.00000000000000011102230246251565404236316680908203125" + strings.Repeat("0", 10000) + "1",
// Smallest denormal, 2^(-1022-52)
"4.940656458412465441765687928682213723651e-324",
// Half of smallest denormal, 2^(-1022-53)
"2.470328229206232720882843964341106861825e-324",
// A little more than the exact half of smallest denormal
// 2^-1075 + 2^-1100. (Rounds to 1p-1074.)
"2.470328302827751011111470718709768633275e-324",
// The exact halfway between smallest normal and largest denormal:
// 2^-1022 - 2^-1075. (Rounds to 2^-1022.)
"2.225073858507201136057409796709131975935e-308",
"1152921504606846975", // 1<<60 - 1
"-1152921504606846975", // -(1<<60 - 1)
"1152921504606846977", // 1<<60 + 1
"-1152921504606846977", // -(1<<60 + 1)
"1/3",
}
// isFinite reports whether f represents a finite rational value.
// It is equivalent to !math.IsNan(f) && !math.IsInf(f, 0).
func isFinite(f float64) bool {
return math.Abs(f) <= math.MaxFloat64
}
func TestFloat32SpecialCases(t *testing.T) {
for _, input := range float64inputs {
if strings.HasPrefix(input, "long:") {
if testing.Short() {
continue
}
input = input[len("long:"):]
}
r, ok := new(Rat).SetString(input)
if !ok {
t.Errorf("Rat.SetString(%q) failed", input)
continue
}
f, exact := r.Float32()
// 1. Check string -> Rat -> float32 conversions are
// consistent with strconv.ParseFloat.
// Skip this check if the input uses "a/b" rational syntax.
if !strings.Contains(input, "/") {
e64, _ := strconv.ParseFloat(input, 32)
e := float32(e64)
// Careful: negative Rats too small for
// float64 become -0, but Rat obviously cannot
// preserve the sign from SetString("-0").
switch {
case math.Float32bits(e) == math.Float32bits(f):
// Ok: bitwise equal.
case f == 0 && r.Num().BitLen() == 0:
// Ok: Rat(0) is equivalent to both +/- float64(0).
default:
t.Errorf("strconv.ParseFloat(%q) = %g (%b), want %g (%b); delta = %g", input, e, e, f, f, f-e)
}
}
if !isFinite(float64(f)) {
continue
}
// 2. Check f is best approximation to r.
if !checkIsBestApprox32(t, f, r) {
// Append context information.
t.Errorf("(input was %q)", input)
}
// 3. Check f->R->f roundtrip is non-lossy.
checkNonLossyRoundtrip32(t, f)
// 4. Check exactness using slow algorithm.
if wasExact := new(Rat).SetFloat64(float64(f)).Cmp(r) == 0; wasExact != exact {
t.Errorf("Rat.SetString(%q).Float32().exact = %t, want %t", input, exact, wasExact)
}
}
}
func TestFloat64SpecialCases(t *testing.T) {
for _, input := range float64inputs {
if strings.HasPrefix(input, "long:") {
if testing.Short() {
continue
}
input = input[len("long:"):]
}
r, ok := new(Rat).SetString(input)
if !ok {
t.Errorf("Rat.SetString(%q) failed", input)
continue
}
f, exact := r.Float64()
// 1. Check string -> Rat -> float64 conversions are
// consistent with strconv.ParseFloat.
// Skip this check if the input uses "a/b" rational syntax.
if !strings.Contains(input, "/") {
e, _ := strconv.ParseFloat(input, 64)
// Careful: negative Rats too small for
// float64 become -0, but Rat obviously cannot
// preserve the sign from SetString("-0").
switch {
case math.Float64bits(e) == math.Float64bits(f):
// Ok: bitwise equal.
case f == 0 && r.Num().BitLen() == 0:
// Ok: Rat(0) is equivalent to both +/- float64(0).
default:
t.Errorf("strconv.ParseFloat(%q) = %g (%b), want %g (%b); delta = %g", input, e, e, f, f, f-e)
}
}
if !isFinite(f) {
continue
}
// 2. Check f is best approximation to r.
if !checkIsBestApprox64(t, f, r) {
// Append context information.
t.Errorf("(input was %q)", input)
}
// 3. Check f->R->f roundtrip is non-lossy.
checkNonLossyRoundtrip64(t, f)
// 4. Check exactness using slow algorithm.
if wasExact := new(Rat).SetFloat64(f).Cmp(r) == 0; wasExact != exact {
t.Errorf("Rat.SetString(%q).Float64().exact = %t, want %t", input, exact, wasExact)
}
}
}
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment