Commit 249842c8 authored by Rob Pike's avatar Rob Pike

cmd/vet: delete; it now lives in the go.tools subrepo

R=golang-dev, dsymonds, rsc, iant, dave
CC=golang-dev
https://golang.org/cl/9496043
parent 60214492
# Copyright 2010 The Go Authors. All rights reserved.
# Use of this source code is governed by a BSD-style
# license that can be found in the LICENSE file.
# Assumes go/types is installed
test testshort:
go build -tags 'vet_test gotypes'
../../../test/errchk ./vet -printfuncs='Warn:1,Warnf:1' test_*.go test_*.s
test_notypes:
go build -tags 'vet_test'
# Only those tests that do not depend on types.
# Excluded: test_print.go
../../../test/errchk ./vet -printfuncs='Warn:1,Warnf:1' test_asm.go test_assign.go test_atomic.go test_buildtag.go test_buildtag_bad.go test_deadcode.go test_method.go test_rangeloop.go test_structtag.go test_taglit.go test_*.s
// Copyright 2013 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Identify mismatches between assembly files and Go func declarations.
package main
import (
"bytes"
"fmt"
"go/ast"
"go/token"
"regexp"
"strconv"
"strings"
)
// 'kind' is a kind of assembly variable.
// The kinds 1, 2, 4, 8 stand for values of that size.
type asmKind int
// These special kinds are not valid sizes.
const (
asmString asmKind = 100 + iota
asmSlice
asmInterface
asmEmptyInterface
)
// An asmArch describes assembly parameters for an architecture
type asmArch struct {
name string
ptrSize int
intSize int
bigEndian bool
}
// An asmFunc describes the expected variables for a function on a given architecture.
type asmFunc struct {
arch *asmArch
size int // size of all arguments
vars map[string]*asmVar
varByOffset map[int]*asmVar
}
// An asmVar describes a single assembly variable.
type asmVar struct {
name string
kind asmKind
typ string
off int
size int
inner []*asmVar
}
var (
asmArch386 = asmArch{"386", 4, 4, false}
asmArchArm = asmArch{"arm", 4, 4, false}
asmArchAmd64 = asmArch{"amd64", 8, 8, false}
arches = []*asmArch{
&asmArch386,
&asmArchArm,
&asmArchAmd64,
}
)
var (
re = regexp.MustCompile
asmPlusBuild = re(`//\s+\+build\s+([^\n]+)`)
asmTEXT = re(`\bTEXT\b.*·([^\(]+)\(SB\)(?:\s*,\s*([0-9]+))?(?:\s*,\s*\$([0-9]+)(?:-([0-9]+))?)?`)
asmDATA = re(`\b(DATA|GLOBL)\b`)
asmNamedFP = re(`([a-zA-Z0-9_\xFF-\x{10FFFF}]+)(?:\+([0-9]+))\(FP\)`)
asmUnnamedFP = re(`[^+\-0-9]](([0-9]+)\(FP\))`)
asmOpcode = re(`^\s*(?:[A-Z0-9a-z_]+:)?\s*([A-Z]+)\s*([^,]*)(?:,\s*(.*))?`)
)
func asmCheck(pkg *Package) {
if !vet("asmdecl") {
return
}
// No work if no assembly files.
if !pkg.hasFileWithSuffix(".s") {
return
}
// Gather declarations. knownFunc[name][arch] is func description.
knownFunc := make(map[string]map[string]*asmFunc)
for _, f := range pkg.files {
if f.file != nil {
for _, decl := range f.file.Decls {
if decl, ok := decl.(*ast.FuncDecl); ok && decl.Body == nil {
knownFunc[decl.Name.Name] = f.asmParseDecl(decl)
}
}
}
}
var fn *asmFunc
for _, f := range pkg.files {
if !strings.HasSuffix(f.name, ".s") {
continue
}
Println("Checking file", f.name)
// Determine architecture from file name if possible.
var arch string
for _, a := range arches {
if strings.HasSuffix(f.name, "_"+a.name+".s") {
arch = a.name
break
}
}
lines := strings.SplitAfter(string(f.content), "\n")
for lineno, line := range lines {
lineno++
warnf := func(format string, args ...interface{}) {
f.Warnf(token.NoPos, "%s:%d: [%s] %s", f.name, lineno, arch, fmt.Sprintf(format, args...))
}
if arch == "" {
// Determine architecture from +build line if possible.
if m := asmPlusBuild.FindStringSubmatch(line); m != nil {
Fields:
for _, fld := range strings.Fields(m[1]) {
for _, a := range arches {
if a.name == fld {
arch = a.name
break Fields
}
}
}
}
}
if m := asmTEXT.FindStringSubmatch(line); m != nil {
if arch == "" {
f.Warnf(token.NoPos, "%s: cannot determine architecture for assembly file", f.name)
return
}
fn = knownFunc[m[1]][arch]
if fn != nil {
size, _ := strconv.Atoi(m[4])
if size != fn.size && (m[2] != "7" || size != 0) {
warnf("wrong argument size %d; expected $...-%d", size, fn.size)
}
}
continue
} else if strings.Contains(line, "TEXT") && strings.Contains(line, "SB") {
// function, but not visible from Go (didn't match asmTEXT), so stop checking
fn = nil
continue
}
if asmDATA.FindStringSubmatch(line) != nil {
fn = nil
}
if fn == nil {
continue
}
for _, m := range asmUnnamedFP.FindAllStringSubmatch(line, -1) {
warnf("use of unnamed argument %s", m[1])
}
for _, m := range asmNamedFP.FindAllStringSubmatch(line, -1) {
name := m[1]
off := 0
if m[2] != "" {
off, _ = strconv.Atoi(m[2])
}
v := fn.vars[name]
if v == nil {
// Allow argframe+0(FP).
if name == "argframe" && off == 0 {
continue
}
v = fn.varByOffset[off]
if v != nil {
warnf("unknown variable %s; offset %d is %s+%d(FP)", name, off, v.name, v.off)
} else {
warnf("unknown variable %s", name)
}
continue
}
asmCheckVar(warnf, fn, line, m[0], off, v)
}
}
}
}
// asmParseDecl parses a function decl for expected assembly variables.
func (f *File) asmParseDecl(decl *ast.FuncDecl) map[string]*asmFunc {
var (
arch *asmArch
fn *asmFunc
offset int
failed bool
)
addVar := func(outer string, v asmVar) {
if vo := fn.vars[outer]; vo != nil {
vo.inner = append(vo.inner, &v)
}
fn.vars[v.name] = &v
for i := 0; i < v.size; i++ {
fn.varByOffset[v.off+i] = &v
}
}
addParams := func(list []*ast.Field) {
for i, fld := range list {
// Determine alignment, size, and kind of type in declaration.
var align, size int
var kind asmKind
names := fld.Names
typ := f.gofmt(fld.Type)
switch t := fld.Type.(type) {
default:
switch typ {
default:
f.Warnf(fld.Type.Pos(), "unknown assembly argument type %s", typ)
failed = true
return
case "int8", "uint8", "byte", "bool":
size = 1
case "int16", "uint16":
size = 2
case "int32", "uint32", "float32":
size = 4
case "int64", "uint64", "float64":
align = arch.ptrSize
size = 8
case "int", "uint":
size = arch.intSize
case "uintptr", "iword", "Word", "Errno", "unsafe.Pointer":
size = arch.ptrSize
case "string":
size = arch.ptrSize * 2
align = arch.ptrSize
kind = asmString
}
case *ast.ChanType, *ast.FuncType, *ast.MapType, *ast.StarExpr:
size = arch.ptrSize
case *ast.InterfaceType:
align = arch.ptrSize
size = 2 * arch.ptrSize
if len(t.Methods.List) > 0 {
kind = asmInterface
} else {
kind = asmEmptyInterface
}
case *ast.ArrayType:
if t.Len == nil {
size = arch.ptrSize + 2*arch.intSize
align = arch.ptrSize
kind = asmSlice
break
}
f.Warnf(fld.Type.Pos(), "unsupported assembly argument type %s", typ)
failed = true
case *ast.StructType:
f.Warnf(fld.Type.Pos(), "unsupported assembly argument type %s", typ)
failed = true
}
if align == 0 {
align = size
}
if kind == 0 {
kind = asmKind(size)
}
offset += -offset & (align - 1)
// Create variable for each name being declared with this type.
if len(names) == 0 {
name := "unnamed"
if decl.Type.Results != nil && len(decl.Type.Results.List) > 0 && &list[0] == &decl.Type.Results.List[0] && i == 0 {
// Assume assembly will refer to single unnamed result as r.
name = "ret"
}
names = []*ast.Ident{{Name: name}}
}
for _, id := range names {
name := id.Name
addVar("", asmVar{
name: name,
kind: kind,
typ: typ,
off: offset,
size: size,
})
switch kind {
case 8:
if arch.ptrSize == 4 {
w1, w2 := "lo", "hi"
if arch.bigEndian {
w1, w2 = w2, w1
}
addVar(name, asmVar{
name: name + "_" + w1,
kind: 4,
typ: "half " + typ,
off: offset,
size: 4,
})
addVar(name, asmVar{
name: name + "_" + w2,
kind: 4,
typ: "half " + typ,
off: offset + 4,
size: 4,
})
}
case asmEmptyInterface:
addVar(name, asmVar{
name: name + "_type",
kind: asmKind(arch.ptrSize),
typ: "interface type",
off: offset,
size: arch.ptrSize,
})
addVar(name, asmVar{
name: name + "_data",
kind: asmKind(arch.ptrSize),
typ: "interface data",
off: offset + arch.ptrSize,
size: arch.ptrSize,
})
case asmInterface:
addVar(name, asmVar{
name: name + "_itable",
kind: asmKind(arch.ptrSize),
typ: "interface itable",
off: offset,
size: arch.ptrSize,
})
addVar(name, asmVar{
name: name + "_data",
kind: asmKind(arch.ptrSize),
typ: "interface data",
off: offset + arch.ptrSize,
size: arch.ptrSize,
})
case asmSlice:
addVar(name, asmVar{
name: name + "_base",
kind: asmKind(arch.ptrSize),
typ: "slice base",
off: offset,
size: arch.ptrSize,
})
addVar(name, asmVar{
name: name + "_len",
kind: asmKind(arch.intSize),
typ: "slice len",
off: offset + arch.ptrSize,
size: arch.intSize,
})
addVar(name, asmVar{
name: name + "_cap",
kind: asmKind(arch.intSize),
typ: "slice cap",
off: offset + arch.ptrSize + arch.intSize,
size: arch.intSize,
})
case asmString:
addVar(name, asmVar{
name: name + "_base",
kind: asmKind(arch.ptrSize),
typ: "string base",
off: offset,
size: arch.ptrSize,
})
addVar(name, asmVar{
name: name + "_len",
kind: asmKind(arch.intSize),
typ: "string len",
off: offset + arch.ptrSize,
size: arch.intSize,
})
}
offset += size
}
}
}
m := make(map[string]*asmFunc)
for _, arch = range arches {
fn = &asmFunc{
arch: arch,
vars: make(map[string]*asmVar),
varByOffset: make(map[int]*asmVar),
}
offset = 0
addParams(decl.Type.Params.List)
if decl.Type.Results != nil && len(decl.Type.Results.List) > 0 {
offset += -offset & (arch.ptrSize - 1)
addParams(decl.Type.Results.List)
}
fn.size = offset
m[arch.name] = fn
}
if failed {
return nil
}
return m
}
// asmCheckVar checks a single variable reference.
func asmCheckVar(warnf func(string, ...interface{}), fn *asmFunc, line, expr string, off int, v *asmVar) {
m := asmOpcode.FindStringSubmatch(line)
if m == nil {
warnf("cannot find assembly opcode")
}
// Determine operand sizes from instruction.
// Typically the suffix suffices, but there are exceptions.
var src, dst, kind asmKind
op := m[1]
switch fn.arch.name + "." + op {
case "386.FMOVLP":
src, dst = 8, 4
case "arm.MOVD":
src = 8
case "arm.MOVW":
src = 4
case "arm.MOVH", "arm.MOVHU":
src = 2
case "arm.MOVB", "arm.MOVBU":
src = 1
default:
if fn.arch.name == "386" || fn.arch.name == "amd64" {
if strings.HasPrefix(op, "F") && (strings.HasSuffix(op, "D") || strings.HasSuffix(op, "DP")) {
// FMOVDP, FXCHD, etc
src = 8
break
}
if strings.HasPrefix(op, "F") && (strings.HasSuffix(op, "F") || strings.HasSuffix(op, "FP")) {
// FMOVFP, FXCHF, etc
src = 4
break
}
if strings.HasSuffix(op, "SD") {
// MOVSD, SQRTSD, etc
src = 8
break
}
if strings.HasSuffix(op, "SS") {
// MOVSS, SQRTSS, etc
src = 4
break
}
if strings.HasPrefix(op, "SET") {
// SETEQ, etc
src = 1
break
}
switch op[len(op)-1] {
case 'B':
src = 1
case 'W':
src = 2
case 'L':
src = 4
case 'D', 'Q':
src = 8
}
}
}
if dst == 0 {
dst = src
}
// Determine whether the match we're holding
// is the first or second argument.
if strings.Index(line, expr) > strings.Index(line, ",") {
kind = dst
} else {
kind = src
}
vk := v.kind
vt := v.typ
switch vk {
case asmInterface, asmEmptyInterface, asmString, asmSlice:
// allow reference to first word (pointer)
vk = v.inner[0].kind
vt = v.inner[0].typ
}
if off != v.off {
var inner bytes.Buffer
for i, vi := range v.inner {
if len(v.inner) > 1 {
fmt.Fprintf(&inner, ",")
}
fmt.Fprintf(&inner, " ")
if i == len(v.inner)-1 {
fmt.Fprintf(&inner, "or ")
}
fmt.Fprintf(&inner, "%s+%d(FP)", vi.name, vi.off)
}
warnf("invalid offset %s; expected %s+%d(FP)%s", expr, v.name, v.off, inner.String())
return
}
if kind != 0 && kind != vk {
var inner bytes.Buffer
if len(v.inner) > 0 {
fmt.Fprintf(&inner, " containing")
for i, vi := range v.inner {
if i > 0 && len(v.inner) > 2 {
fmt.Fprintf(&inner, ",")
}
fmt.Fprintf(&inner, " ")
if i > 0 && i == len(v.inner)-1 {
fmt.Fprintf(&inner, "and ")
}
fmt.Fprintf(&inner, "%s+%d(FP)", vi.name, vi.off)
}
}
warnf("invalid %s of %s; %s is %d-byte value%s", op, expr, vt, vk, inner.String())
}
}
// Copyright 2013 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
/*
This file contains the code to check for useless assignments.
*/
package main
import (
"go/ast"
"go/token"
"reflect"
)
// TODO: should also check for assignments to struct fields inside methods
// that are on T instead of *T.
// checkAssignStmt checks for assignments of the form "<expr> = <expr>".
// These are almost always useless, and even when they aren't they are usually a mistake.
func (f *File) checkAssignStmt(stmt *ast.AssignStmt) {
if !vet("assign") {
return
}
if stmt.Tok != token.ASSIGN {
return // ignore :=
}
if len(stmt.Lhs) != len(stmt.Rhs) {
// If LHS and RHS have different cardinality, they can't be the same.
return
}
for i, lhs := range stmt.Lhs {
rhs := stmt.Rhs[i]
if reflect.TypeOf(lhs) != reflect.TypeOf(rhs) {
continue // short-circuit the heavy-weight gofmt check
}
le := f.gofmt(lhs)
re := f.gofmt(rhs)
if le == re {
f.Warnf(stmt.Pos(), "self-assignment of %s to %s", re, le)
}
}
}
// Copyright 2013 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package main
import (
"go/ast"
"go/token"
)
// checkAtomicAssignment walks the assignment statement checking for common
// mistaken usage of atomic package, such as: x = atomic.AddUint64(&x, 1)
func (f *File) checkAtomicAssignment(n *ast.AssignStmt) {
if !vet("atomic") {
return
}
if len(n.Lhs) != len(n.Rhs) {
return
}
for i, right := range n.Rhs {
call, ok := right.(*ast.CallExpr)
if !ok {
continue
}
sel, ok := call.Fun.(*ast.SelectorExpr)
if !ok {
continue
}
pkg, ok := sel.X.(*ast.Ident)
if !ok || pkg.Name != "atomic" {
continue
}
switch sel.Sel.Name {
case "AddInt32", "AddInt64", "AddUint32", "AddUint64", "AddUintptr":
f.checkAtomicAddAssignment(n.Lhs[i], call)
}
}
}
// checkAtomicAddAssignment walks the atomic.Add* method calls checking for assigning the return value
// to the same variable being used in the operation
func (f *File) checkAtomicAddAssignment(left ast.Expr, call *ast.CallExpr) {
arg := call.Args[0]
broken := false
if uarg, ok := arg.(*ast.UnaryExpr); ok && uarg.Op == token.AND {
broken = f.gofmt(left) == f.gofmt(uarg.X)
} else if star, ok := left.(*ast.StarExpr); ok {
broken = f.gofmt(star.X) == f.gofmt(arg)
}
if broken {
f.Warn(left.Pos(), "direct assignment to atomic value")
}
}
// Copyright 2013 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package main
import (
"bytes"
"fmt"
"os"
"strings"
"unicode"
)
var (
nl = []byte("\n")
slashSlash = []byte("//")
plusBuild = []byte("+build")
)
// checkBuildTag checks that build tags are in the correct location and well-formed.
func checkBuildTag(name string, data []byte) {
if !vet("buildtags") {
return
}
lines := bytes.SplitAfter(data, nl)
// Determine cutpoint where +build comments are no longer valid.
// They are valid in leading // comments in the file followed by
// a blank line.
var cutoff int
for i, line := range lines {
line = bytes.TrimSpace(line)
if len(line) == 0 {
cutoff = i
continue
}
if bytes.HasPrefix(line, slashSlash) {
continue
}
break
}
for i, line := range lines {
line = bytes.TrimSpace(line)
if !bytes.HasPrefix(line, slashSlash) {
continue
}
text := bytes.TrimSpace(line[2:])
if bytes.HasPrefix(text, plusBuild) {
fields := bytes.Fields(text)
if !bytes.Equal(fields[0], plusBuild) {
// Comment is something like +buildasdf not +build.
fmt.Fprintf(os.Stderr, "%s:%d: possible malformed +build comment\n", name, i+1)
continue
}
if i >= cutoff {
fmt.Fprintf(os.Stderr, "%s:%d: +build comment appears too late in file\n", name, i+1)
setExit(1)
continue
}
// Check arguments.
Args:
for _, arg := range fields[1:] {
for _, elem := range strings.Split(string(arg), ",") {
if strings.HasPrefix(elem, "!!") {
fmt.Fprintf(os.Stderr, "%s:%d: invalid double negative in build constraint: %s\n", name, i+1, arg)
setExit(1)
break Args
}
if strings.HasPrefix(elem, "!") {
elem = elem[1:]
}
for _, c := range elem {
if !unicode.IsLetter(c) && !unicode.IsDigit(c) && c != '_' && c != '.' {
fmt.Fprintf(os.Stderr, "%s:%d: invalid non-alphanumeric build constraint: %s\n", name, i+1, arg)
setExit(1)
break Args
}
}
}
}
continue
}
// Comment with +build but not at beginning.
if bytes.Contains(line, plusBuild) && i < cutoff {
fmt.Fprintf(os.Stderr, "%s:%d: possible malformed +build comment\n", name, i+1)
continue
}
}
}
// Copyright 2013 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Check for syntactically unreachable code.
package main
import (
"go/ast"
"go/token"
)
type deadState struct {
f *File
hasBreak map[ast.Stmt]bool
hasGoto map[string]bool
labels map[string]ast.Stmt
breakTarget ast.Stmt
reachable bool
}
// checkUnreachable checks a function body for dead code.
func (f *File) checkUnreachable(body *ast.BlockStmt) {
if !vet("unreachable") || body == nil {
return
}
d := &deadState{
f: f,
hasBreak: make(map[ast.Stmt]bool),
hasGoto: make(map[string]bool),
labels: make(map[string]ast.Stmt),
}
d.findLabels(body)
d.reachable = true
d.findDead(body)
}
// findLabels gathers information about the labels defined and used by stmt
// and about which statements break, whether a label is involved or not.
func (d *deadState) findLabels(stmt ast.Stmt) {
switch x := stmt.(type) {
default:
d.f.Warnf(x.Pos(), "internal error in findLabels: unexpected statement %T", x)
case *ast.AssignStmt,
*ast.BadStmt,
*ast.DeclStmt,
*ast.DeferStmt,
*ast.EmptyStmt,
*ast.ExprStmt,
*ast.GoStmt,
*ast.IncDecStmt,
*ast.ReturnStmt,
*ast.SendStmt:
// no statements inside
case *ast.BlockStmt:
for _, stmt := range x.List {
d.findLabels(stmt)
}
case *ast.BranchStmt:
switch x.Tok {
case token.GOTO:
d.hasGoto[x.Label.Name] = true
case token.BREAK:
stmt := d.breakTarget
if x.Label != nil {
stmt = d.labels[x.Label.Name]
}
if stmt != nil {
d.hasBreak[stmt] = true
}
}
case *ast.IfStmt:
d.findLabels(x.Body)
if x.Else != nil {
d.findLabels(x.Else)
}
case *ast.LabeledStmt:
d.labels[x.Label.Name] = x.Stmt
d.findLabels(x.Stmt)
// These cases are all the same, but the x.Body only works
// when the specific type of x is known, so the cases cannot
// be merged.
case *ast.ForStmt:
outer := d.breakTarget
d.breakTarget = x
d.findLabels(x.Body)
d.breakTarget = outer
case *ast.RangeStmt:
outer := d.breakTarget
d.breakTarget = x
d.findLabels(x.Body)
d.breakTarget = outer
case *ast.SelectStmt:
outer := d.breakTarget
d.breakTarget = x
d.findLabels(x.Body)
d.breakTarget = outer
case *ast.SwitchStmt:
outer := d.breakTarget
d.breakTarget = x
d.findLabels(x.Body)
d.breakTarget = outer
case *ast.TypeSwitchStmt:
outer := d.breakTarget
d.breakTarget = x
d.findLabels(x.Body)
d.breakTarget = outer
case *ast.CommClause:
for _, stmt := range x.Body {
d.findLabels(stmt)
}
case *ast.CaseClause:
for _, stmt := range x.Body {
d.findLabels(stmt)
}
}
}
// findDead walks the statement looking for dead code.
// If d.reachable is false on entry, stmt itself is dead.
// When findDead returns, d.reachable tells whether the
// statement following stmt is reachable.
func (d *deadState) findDead(stmt ast.Stmt) {
// Is this a labeled goto target?
// If so, assume it is reachable due to the goto.
// This is slightly conservative, in that we don't
// check that the goto is reachable, so
// L: goto L
// will not provoke a warning.
// But it's good enough.
if x, isLabel := stmt.(*ast.LabeledStmt); isLabel && d.hasGoto[x.Label.Name] {
d.reachable = true
}
if !d.reachable {
switch stmt.(type) {
case *ast.EmptyStmt:
// do not warn about unreachable empty statements
default:
d.f.Warnf(stmt.Pos(), "unreachable code")
d.reachable = true // silence error about next statement
}
}
switch x := stmt.(type) {
default:
d.f.Warnf(x.Pos(), "internal error in findDead: unexpected statement %T", x)
case *ast.AssignStmt,
*ast.BadStmt,
*ast.DeclStmt,
*ast.DeferStmt,
*ast.EmptyStmt,
*ast.GoStmt,
*ast.IncDecStmt,
*ast.SendStmt:
// no control flow
case *ast.BlockStmt:
for _, stmt := range x.List {
d.findDead(stmt)
}
case *ast.BranchStmt:
switch x.Tok {
case token.BREAK, token.GOTO, token.FALLTHROUGH:
d.reachable = false
case token.CONTINUE:
// NOTE: We accept "continue" statements as terminating.
// They are not necessary in the spec definition of terminating,
// because a continue statement cannot be the final statement
// before a return. But for the more general problem of syntactically
// identifying dead code, continue redirects control flow just
// like the other terminating statements.
d.reachable = false
}
case *ast.ExprStmt:
// Call to panic?
call, ok := x.X.(*ast.CallExpr)
if ok {
name, ok := call.Fun.(*ast.Ident)
if ok && name.Name == "panic" && name.Obj == nil {
d.reachable = false
}
}
case *ast.ForStmt:
d.findDead(x.Body)
d.reachable = x.Cond != nil || d.hasBreak[x]
case *ast.IfStmt:
d.findDead(x.Body)
if x.Else != nil {
r := d.reachable
d.reachable = true
d.findDead(x.Else)
d.reachable = d.reachable || r
} else {
// might not have executed if statement
d.reachable = true
}
case *ast.LabeledStmt:
d.findDead(x.Stmt)
case *ast.RangeStmt:
d.findDead(x.Body)
d.reachable = true
case *ast.ReturnStmt:
d.reachable = false
case *ast.SelectStmt:
// NOTE: Unlike switch and type switch below, we don't care
// whether a select has a default, because a select without a
// default blocks until one of the cases can run. That's different
// from a switch without a default, which behaves like it has
// a default with an empty body.
anyReachable := false
for _, comm := range x.Body.List {
d.reachable = true
for _, stmt := range comm.(*ast.CommClause).Body {
d.findDead(stmt)
}
anyReachable = anyReachable || d.reachable
}
d.reachable = anyReachable || d.hasBreak[x]
case *ast.SwitchStmt:
anyReachable := false
hasDefault := false
for _, cas := range x.Body.List {
cc := cas.(*ast.CaseClause)
if cc.List == nil {
hasDefault = true
}
d.reachable = true
for _, stmt := range cc.Body {
d.findDead(stmt)
}
anyReachable = anyReachable || d.reachable
}
d.reachable = anyReachable || d.hasBreak[x] || !hasDefault
case *ast.TypeSwitchStmt:
anyReachable := false
hasDefault := false
for _, cas := range x.Body.List {
cc := cas.(*ast.CaseClause)
if cc.List == nil {
hasDefault = true
}
d.reachable = true
for _, stmt := range cc.Body {
d.findDead(stmt)
}
anyReachable = anyReachable || d.reachable
}
d.reachable = anyReachable || d.hasBreak[x] || !hasDefault
}
}
// Copyright 2010 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
/*
Vet examines Go source code and reports suspicious constructs, such as Printf
calls whose arguments do not align with the format string. Vet uses heuristics
that do not guarantee all reports are genuine problems, but it can find errors
not caught by the compilers.
Its exit code is 2 for erroneous invocation of the tool, 1 if a
problem was reported, and 0 otherwise. Note that the tool does not
check every possible problem and depends on unreliable heuristics
so it should be used as guidance only, not as a firm indicator of
program correctness.
By default all checks are performed, but if explicit flags are provided, only
those identified by the flags are performed.
Available checks:
1. Printf family, flag -printf
Suspicious calls to functions in the Printf family, including any functions
with these names:
Print Printf Println
Fprint Fprintf Fprintln
Sprint Sprintf Sprintln
Error Errorf
Fatal Fatalf
Panic Panicf Panicln
If the function name ends with an 'f', the function is assumed to take
a format descriptor string in the manner of fmt.Printf. If not, vet
complains about arguments that look like format descriptor strings.
It also checks for errors such as using a Writer as the first argument of
Printf.
2. Methods, flag -methods
Non-standard signatures for methods with familiar names, including:
Format GobEncode GobDecode MarshalJSON MarshalXML
Peek ReadByte ReadFrom ReadRune Scan Seek
UnmarshalJSON UnreadByte UnreadRune WriteByte
WriteTo
3. Struct tags, flag -structtags
Struct tags that do not follow the format understood by reflect.StructTag.Get.
4. Untagged composite literals, flag -composites
Composite struct literals that do not use the type-tagged syntax.
Usage:
go tool vet [flag] [file.go ...]
go tool vet [flag] [directory ...] # Scan all .go files under directory, recursively
The other flags are:
-v
Verbose mode
-printfuncs
A comma-separated list of print-like functions to supplement
the standard list. Each entry is in the form Name:N where N
is the zero-based argument position of the first argument
involved in the print: either the format or the first print
argument for non-formatted prints. For example,
if you have Warn and Warnf functions that take an
io.Writer as their first argument, like Fprintf,
-printfuncs=Warn:1,Warnf:1
*/
package main
// Copyright 2010 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Vet is a simple checker for static errors in Go source code.
// See doc.go for more information.
package main
import (
"bytes"
"flag"
"fmt"
"go/ast"
"go/build"
"go/parser"
"go/printer"
"go/token"
"io/ioutil"
"os"
"path/filepath"
"strconv"
"strings"
)
var verbose = flag.Bool("v", false, "verbose")
var exitCode = 0
// Flags to control which checks to perform. "all" is set to true here, and disabled later if
// a flag is set explicitly.
var report = map[string]*bool{
"all": flag.Bool("all", true, "check everything; disabled if any explicit check is requested"),
"asmdecl": flag.Bool("asmdecl", false, "check assembly against Go declarations"),
"assign": flag.Bool("assign", false, "check for useless assignments"),
"atomic": flag.Bool("atomic", false, "check for common mistaken usages of the sync/atomic package"),
"buildtags": flag.Bool("buildtags", false, "check that +build tags are valid"),
"composites": flag.Bool("composites", false, "check that composite literals used type-tagged elements"),
"methods": flag.Bool("methods", false, "check that canonically named methods are canonically defined"),
"printf": flag.Bool("printf", false, "check printf-like invocations"),
"rangeloops": flag.Bool("rangeloops", false, "check that range loop variables are used correctly"),
"structtags": flag.Bool("structtags", false, "check that struct field tags have canonical format"),
"unreachable": flag.Bool("unreachable", false, "check for unreachable code"),
}
// vet tells whether to report errors for the named check, a flag name.
func vet(name string) bool {
return *report["all"] || *report[name]
}
// setExit sets the value for os.Exit when it is called, later. It
// remembers the highest value.
func setExit(err int) {
if err > exitCode {
exitCode = err
}
}
// Usage is a replacement usage function for the flags package.
func Usage() {
fmt.Fprintf(os.Stderr, "Usage of %s:\n", os.Args[0])
fmt.Fprintf(os.Stderr, "\tvet [flags] directory...\n")
fmt.Fprintf(os.Stderr, "\tvet [flags] files... # Must be a single package\n")
flag.PrintDefaults()
os.Exit(2)
}
// File is a wrapper for the state of a file used in the parser.
// The parse tree walkers are all methods of this type.
type File struct {
pkg *Package
fset *token.FileSet
name string
content []byte
file *ast.File
b bytes.Buffer // for use by methods
}
func main() {
flag.Usage = Usage
flag.Parse()
// If a check is named explicitly, turn off the 'all' flag.
for name, ptr := range report {
if name != "all" && *ptr {
*report["all"] = false
break
}
}
if *printfuncs != "" {
for _, name := range strings.Split(*printfuncs, ",") {
if len(name) == 0 {
flag.Usage()
}
skip := 0
if colon := strings.LastIndex(name, ":"); colon > 0 {
var err error
skip, err = strconv.Atoi(name[colon+1:])
if err != nil {
errorf(`illegal format for "Func:N" argument %q; %s`, name, err)
}
name = name[:colon]
}
name = strings.ToLower(name)
if name[len(name)-1] == 'f' {
printfList[name] = skip
} else {
printList[name] = skip
}
}
}
if flag.NArg() == 0 {
Usage()
}
dirs := false
files := false
for _, name := range flag.Args() {
// Is it a directory?
fi, err := os.Stat(name)
if err != nil {
warnf("error walking tree: %s", err)
continue
}
if fi.IsDir() {
dirs = true
} else {
files = true
}
}
if dirs && files {
Usage()
}
if dirs {
for _, name := range flag.Args() {
walkDir(name)
}
return
}
doPackage(flag.Args())
os.Exit(exitCode)
}
// prefixDirectory places the directory name on the beginning of each name in the list.
func prefixDirectory(directory string, names []string) {
if directory != "." {
for i, name := range names {
names[i] = filepath.Join(directory, name)
}
}
}
// doPackageDir analyzes the single package found in the directory, if there is one,
// plus a test package, if there is one.
func doPackageDir(directory string) {
pkg, err := build.Default.ImportDir(directory, 0)
if err != nil {
// If it's just that there are no go source files, that's fine.
if _, nogo := err.(*build.NoGoError); nogo {
return
}
// Non-fatal: we are doing a recursive walk and there may be other directories.
warnf("cannot process directory %s: %s", directory, err)
return
}
var names []string
names = append(names, pkg.GoFiles...)
names = append(names, pkg.CgoFiles...)
names = append(names, pkg.TestGoFiles...) // These are also in the "foo" package.
names = append(names, pkg.SFiles...)
prefixDirectory(directory, names)
doPackage(names)
// Is there also a "foo_test" package? If so, do that one as well.
if len(pkg.XTestGoFiles) > 0 {
names = pkg.XTestGoFiles
prefixDirectory(directory, names)
doPackage(names)
}
}
type Package struct {
types map[ast.Expr]Type
values map[ast.Expr]ExactValue
files []*File
}
// doPackage analyzes the single package constructed from the named files.
func doPackage(names []string) {
var files []*File
var astFiles []*ast.File
fs := token.NewFileSet()
for _, name := range names {
f, err := os.Open(name)
if err != nil {
// Warn but continue to next package.
warnf("%s: %s", name, err)
return
}
defer f.Close()
data, err := ioutil.ReadAll(f)
if err != nil {
warnf("%s: %s", name, err)
return
}
checkBuildTag(name, data)
var parsedFile *ast.File
if strings.HasSuffix(name, ".go") {
parsedFile, err = parser.ParseFile(fs, name, bytes.NewReader(data), 0)
if err != nil {
warnf("%s: %s", name, err)
return
}
astFiles = append(astFiles, parsedFile)
}
files = append(files, &File{fset: fs, content: data, name: name, file: parsedFile})
}
pkg := new(Package)
pkg.files = files
// Type check the package.
err := pkg.check(fs, astFiles)
if err != nil && *verbose {
warnf("%s", err)
}
for _, file := range files {
file.pkg = pkg
if file.file != nil {
file.walkFile(file.name, file.file)
}
}
asmCheck(pkg)
}
func visit(path string, f os.FileInfo, err error) error {
if err != nil {
warnf("walk error: %s", err)
return err
}
// One package per directory. Ignore the files themselves.
if !f.IsDir() {
return nil
}
doPackageDir(path)
return nil
}
func (pkg *Package) hasFileWithSuffix(suffix string) bool {
for _, f := range pkg.files {
if strings.HasSuffix(f.name, suffix) {
return true
}
}
return false
}
// walkDir recursively walks the tree looking for Go packages.
func walkDir(root string) {
filepath.Walk(root, visit)
}
// errorf formats the error to standard error, adding program
// identification and a newline, and exits.
func errorf(format string, args ...interface{}) {
fmt.Fprintf(os.Stderr, "vet: "+format+"\n", args...)
os.Exit(2)
}
// warnf formats the error to standard error, adding program
// identification and a newline, but does not exit.
func warnf(format string, args ...interface{}) {
fmt.Fprintf(os.Stderr, "vet: "+format+"\n", args...)
setExit(1)
}
// Println is fmt.Println guarded by -v.
func Println(args ...interface{}) {
if !*verbose {
return
}
fmt.Println(args...)
}
// Printf is fmt.Printf guarded by -v.
func Printf(format string, args ...interface{}) {
if !*verbose {
return
}
fmt.Printf(format+"\n", args...)
}
// Bad reports an error and sets the exit code..
func (f *File) Bad(pos token.Pos, args ...interface{}) {
f.Warn(pos, args...)
setExit(1)
}
// Badf reports a formatted error and sets the exit code.
func (f *File) Badf(pos token.Pos, format string, args ...interface{}) {
f.Warnf(pos, format, args...)
setExit(1)
}
func (f *File) loc(pos token.Pos) string {
if pos == token.NoPos {
return ""
}
// Do not print columns. Because the pos often points to the start of an
// expression instead of the inner part with the actual error, the
// precision can mislead.
posn := f.fset.Position(pos)
return fmt.Sprintf("%s:%d: ", posn.Filename, posn.Line)
}
// Warn reports an error but does not set the exit code.
func (f *File) Warn(pos token.Pos, args ...interface{}) {
fmt.Fprint(os.Stderr, f.loc(pos)+fmt.Sprintln(args...))
}
// Warnf reports a formatted error but does not set the exit code.
func (f *File) Warnf(pos token.Pos, format string, args ...interface{}) {
fmt.Fprintf(os.Stderr, f.loc(pos)+format+"\n", args...)
}
// walkFile walks the file's tree.
func (f *File) walkFile(name string, file *ast.File) {
Println("Checking file", name)
ast.Walk(f, file)
}
// Visit implements the ast.Visitor interface.
func (f *File) Visit(node ast.Node) ast.Visitor {
switch n := node.(type) {
case *ast.AssignStmt:
f.walkAssignStmt(n)
case *ast.CallExpr:
f.walkCallExpr(n)
case *ast.CompositeLit:
f.walkCompositeLit(n)
case *ast.Field:
f.walkFieldTag(n)
case *ast.FuncDecl:
f.walkFuncDecl(n)
case *ast.FuncLit:
f.walkFuncLit(n)
case *ast.InterfaceType:
f.walkInterfaceType(n)
case *ast.RangeStmt:
f.walkRangeStmt(n)
}
return f
}
// walkAssignStmt walks an assignment statement
func (f *File) walkAssignStmt(stmt *ast.AssignStmt) {
f.checkAssignStmt(stmt)
f.checkAtomicAssignment(stmt)
}
// walkCall walks a call expression.
func (f *File) walkCall(call *ast.CallExpr, name string) {
f.checkFmtPrintfCall(call, name)
}
// walkCallExpr walks a call expression.
func (f *File) walkCallExpr(call *ast.CallExpr) {
switch x := call.Fun.(type) {
case *ast.Ident:
f.walkCall(call, x.Name)
case *ast.SelectorExpr:
f.walkCall(call, x.Sel.Name)
}
}
// walkCompositeLit walks a composite literal.
func (f *File) walkCompositeLit(c *ast.CompositeLit) {
f.checkUntaggedLiteral(c)
}
// walkFieldTag walks a struct field tag.
func (f *File) walkFieldTag(field *ast.Field) {
if field.Tag == nil {
return
}
f.checkCanonicalFieldTag(field)
}
// walkMethod walks the method's signature.
func (f *File) walkMethod(id *ast.Ident, t *ast.FuncType) {
f.checkCanonicalMethod(id, t)
}
// walkFuncDecl walks a function declaration.
func (f *File) walkFuncDecl(d *ast.FuncDecl) {
f.checkUnreachable(d.Body)
if d.Recv != nil {
f.walkMethod(d.Name, d.Type)
}
}
// walkFuncLit walks a function literal.
func (f *File) walkFuncLit(x *ast.FuncLit) {
f.checkUnreachable(x.Body)
}
// walkInterfaceType walks the method signatures of an interface.
func (f *File) walkInterfaceType(t *ast.InterfaceType) {
for _, field := range t.Methods.List {
for _, id := range field.Names {
f.walkMethod(id, field.Type.(*ast.FuncType))
}
}
}
// walkRangeStmt walks a range statement.
func (f *File) walkRangeStmt(n *ast.RangeStmt) {
checkRangeLoop(f, n)
}
// gofmt returns a string representation of the expression.
func (f *File) gofmt(x ast.Expr) string {
f.b.Reset()
printer.Fprint(&f.b, f.fset, x)
return f.b.String()
}
// Copyright 2010 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// This file contains the code to check canonical methods.
package main
import (
"fmt"
"go/ast"
"go/printer"
"strings"
)
type MethodSig struct {
args []string
results []string
}
// canonicalMethods lists the input and output types for Go methods
// that are checked using dynamic interface checks. Because the
// checks are dynamic, such methods would not cause a compile error
// if they have the wrong signature: instead the dynamic check would
// fail, sometimes mysteriously. If a method is found with a name listed
// here but not the input/output types listed here, vet complains.
//
// A few of the canonical methods have very common names.
// For example, a type might implement a Scan method that
// has nothing to do with fmt.Scanner, but we still want to check
// the methods that are intended to implement fmt.Scanner.
// To do that, the arguments that have a = prefix are treated as
// signals that the canonical meaning is intended: if a Scan
// method doesn't have a fmt.ScanState as its first argument,
// we let it go. But if it does have a fmt.ScanState, then the
// rest has to match.
var canonicalMethods = map[string]MethodSig{
// "Flush": {{}, {"error"}}, // http.Flusher and jpeg.writer conflict
"Format": {[]string{"=fmt.State", "rune"}, []string{}}, // fmt.Formatter
"GobDecode": {[]string{"[]byte"}, []string{"error"}}, // gob.GobDecoder
"GobEncode": {[]string{}, []string{"[]byte", "error"}}, // gob.GobEncoder
"MarshalJSON": {[]string{}, []string{"[]byte", "error"}}, // json.Marshaler
"MarshalXML": {[]string{}, []string{"[]byte", "error"}}, // xml.Marshaler
"Peek": {[]string{"=int"}, []string{"[]byte", "error"}}, // image.reader (matching bufio.Reader)
"ReadByte": {[]string{}, []string{"byte", "error"}}, // io.ByteReader
"ReadFrom": {[]string{"=io.Reader"}, []string{"int64", "error"}}, // io.ReaderFrom
"ReadRune": {[]string{}, []string{"rune", "int", "error"}}, // io.RuneReader
"Scan": {[]string{"=fmt.ScanState", "rune"}, []string{"error"}}, // fmt.Scanner
"Seek": {[]string{"=int64", "int"}, []string{"int64", "error"}}, // io.Seeker
"UnmarshalJSON": {[]string{"[]byte"}, []string{"error"}}, // json.Unmarshaler
"UnreadByte": {[]string{}, []string{"error"}},
"UnreadRune": {[]string{}, []string{"error"}},
"WriteByte": {[]string{"byte"}, []string{"error"}}, // jpeg.writer (matching bufio.Writer)
"WriteTo": {[]string{"=io.Writer"}, []string{"int64", "error"}}, // io.WriterTo
}
func (f *File) checkCanonicalMethod(id *ast.Ident, t *ast.FuncType) {
if !vet("methods") {
return
}
// Expected input/output.
expect, ok := canonicalMethods[id.Name]
if !ok {
return
}
// Actual input/output
args := typeFlatten(t.Params.List)
var results []ast.Expr
if t.Results != nil {
results = typeFlatten(t.Results.List)
}
// Do the =s (if any) all match?
if !f.matchParams(expect.args, args, "=") || !f.matchParams(expect.results, results, "=") {
return
}
// Everything must match.
if !f.matchParams(expect.args, args, "") || !f.matchParams(expect.results, results, "") {
expectFmt := id.Name + "(" + argjoin(expect.args) + ")"
if len(expect.results) == 1 {
expectFmt += " " + argjoin(expect.results)
} else if len(expect.results) > 1 {
expectFmt += " (" + argjoin(expect.results) + ")"
}
f.b.Reset()
if err := printer.Fprint(&f.b, f.fset, t); err != nil {
fmt.Fprintf(&f.b, "<%s>", err)
}
actual := f.b.String()
actual = strings.TrimPrefix(actual, "func")
actual = id.Name + actual
f.Badf(id.Pos(), "method %s should have signature %s", actual, expectFmt)
}
}
func argjoin(x []string) string {
y := make([]string, len(x))
for i, s := range x {
if s[0] == '=' {
s = s[1:]
}
y[i] = s
}
return strings.Join(y, ", ")
}
// Turn parameter list into slice of types
// (in the ast, types are Exprs).
// Have to handle f(int, bool) and f(x, y, z int)
// so not a simple 1-to-1 conversion.
func typeFlatten(l []*ast.Field) []ast.Expr {
var t []ast.Expr
for _, f := range l {
if len(f.Names) == 0 {
t = append(t, f.Type)
continue
}
for _ = range f.Names {
t = append(t, f.Type)
}
}
return t
}
// Does each type in expect with the given prefix match the corresponding type in actual?
func (f *File) matchParams(expect []string, actual []ast.Expr, prefix string) bool {
for i, x := range expect {
if !strings.HasPrefix(x, prefix) {
continue
}
if i >= len(actual) {
return false
}
if !f.matchParamType(x, actual[i]) {
return false
}
}
if prefix == "" && len(actual) > len(expect) {
return false
}
return true
}
// Does this one type match?
func (f *File) matchParamType(expect string, actual ast.Expr) bool {
if strings.HasPrefix(expect, "=") {
expect = expect[1:]
}
// Strip package name if we're in that package.
if n := len(f.file.Name.Name); len(expect) > n && expect[:n] == f.file.Name.Name && expect[n] == '.' {
expect = expect[n+1:]
}
// Overkill but easy.
f.b.Reset()
printer.Fprint(&f.b, f.fset, actual)
return f.b.String() == expect
}
// Copyright 2010 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// This file contains the printf-checker.
package main
import (
"flag"
"go/ast"
"go/token"
"strconv"
"strings"
"unicode/utf8"
)
var printfuncs = flag.String("printfuncs", "", "comma-separated list of print function names to check")
// printfList records the formatted-print functions. The value is the location
// of the format parameter. Names are lower-cased so the lookup is
// case insensitive.
var printfList = map[string]int{
"errorf": 0,
"fatalf": 0,
"fprintf": 1,
"panicf": 0,
"printf": 0,
"sprintf": 0,
}
// printList records the unformatted-print functions. The value is the location
// of the first parameter to be printed. Names are lower-cased so the lookup is
// case insensitive.
var printList = map[string]int{
"error": 0,
"fatal": 0,
"fprint": 1, "fprintln": 1,
"panic": 0, "panicln": 0,
"print": 0, "println": 0,
"sprint": 0, "sprintln": 0,
}
// checkCall triggers the print-specific checks if the call invokes a print function.
func (f *File) checkFmtPrintfCall(call *ast.CallExpr, Name string) {
if !vet("printf") {
return
}
name := strings.ToLower(Name)
if skip, ok := printfList[name]; ok {
f.checkPrintf(call, Name, skip)
return
}
if skip, ok := printList[name]; ok {
f.checkPrint(call, Name, skip)
return
}
}
// literal returns the literal value represented by the expression, or nil if it is not a literal.
func (f *File) literal(value ast.Expr) *ast.BasicLit {
switch v := value.(type) {
case *ast.BasicLit:
return v
case *ast.ParenExpr:
return f.literal(v.X)
case *ast.BinaryExpr:
if v.Op != token.ADD {
break
}
litX := f.literal(v.X)
litY := f.literal(v.Y)
if litX != nil && litY != nil {
lit := *litX
x, errX := strconv.Unquote(litX.Value)
y, errY := strconv.Unquote(litY.Value)
if errX == nil && errY == nil {
return &ast.BasicLit{
ValuePos: lit.ValuePos,
Kind: lit.Kind,
Value: strconv.Quote(x + y),
}
}
}
case *ast.Ident:
// See if it's a constant or initial value (we can't tell the difference).
if v.Obj == nil || v.Obj.Decl == nil {
return nil
}
valueSpec, ok := v.Obj.Decl.(*ast.ValueSpec)
if ok && len(valueSpec.Names) == len(valueSpec.Values) {
// Find the index in the list of names
var i int
for i = 0; i < len(valueSpec.Names); i++ {
if valueSpec.Names[i].Name == v.Name {
if lit, ok := valueSpec.Values[i].(*ast.BasicLit); ok {
return lit
}
return nil
}
}
}
}
return nil
}
// checkPrintf checks a call to a formatted print routine such as Printf.
// call.Args[formatIndex] is (well, should be) the format argument.
func (f *File) checkPrintf(call *ast.CallExpr, name string, formatIndex int) {
if formatIndex >= len(call.Args) {
return
}
lit := f.literal(call.Args[formatIndex])
if lit == nil {
if *verbose {
f.Warn(call.Pos(), "can't check non-literal format in call to", name)
}
return
}
if lit.Kind != token.STRING {
f.Badf(call.Pos(), "literal %v not a string in call to", lit.Value, name)
}
format, err := strconv.Unquote(lit.Value)
if err != nil {
// Shouldn't happen if parser returned no errors, but be safe.
f.Badf(call.Pos(), "invalid quoted string literal")
}
firstArg := formatIndex + 1 // Arguments are immediately after format string.
if !strings.Contains(format, "%") {
if len(call.Args) > firstArg {
f.Badf(call.Pos(), "no formatting directive in %s call", name)
}
return
}
// Hard part: check formats against args.
argNum := firstArg
for i, w := 0, 0; i < len(format); i += w {
w = 1
if format[i] == '%' {
verb, flags, nbytes, nargs := f.parsePrintfVerb(call, format[i:])
w = nbytes
if verb == '%' { // "%%" does nothing interesting.
continue
}
// If we've run out of args, print after loop will pick that up.
if argNum+nargs <= len(call.Args) {
f.checkPrintfArg(call, verb, flags, argNum, nargs)
}
argNum += nargs
}
}
// TODO: Dotdotdot is hard.
if call.Ellipsis.IsValid() && argNum != len(call.Args) {
return
}
if argNum != len(call.Args) {
expect := argNum - firstArg
numArgs := len(call.Args) - firstArg
f.Badf(call.Pos(), "wrong number of args for format in %s call: %d needed but %d args", name, expect, numArgs)
}
}
// parsePrintfVerb returns the verb that begins the format string, along with its flags,
// the number of bytes to advance the format to step past the verb, and number of
// arguments it consumes.
func (f *File) parsePrintfVerb(call *ast.CallExpr, format string) (verb rune, flags []byte, nbytes, nargs int) {
// There's guaranteed a percent sign.
flags = make([]byte, 0, 5)
nbytes = 1
end := len(format)
// There may be flags.
FlagLoop:
for nbytes < end {
switch format[nbytes] {
case '#', '0', '+', '-', ' ':
flags = append(flags, format[nbytes])
nbytes++
default:
break FlagLoop
}
}
getNum := func() {
if nbytes < end && format[nbytes] == '*' {
nbytes++
nargs++
} else {
for nbytes < end && '0' <= format[nbytes] && format[nbytes] <= '9' {
nbytes++
}
}
}
// There may be a width.
getNum()
// If there's a period, there may be a precision.
if nbytes < end && format[nbytes] == '.' {
flags = append(flags, '.') // Treat precision as a flag.
nbytes++
getNum()
}
// Now a verb.
c, w := utf8.DecodeRuneInString(format[nbytes:])
nbytes += w
verb = c
if c != '%' {
nargs++
}
return
}
// printfArgType encodes the types of expressions a printf verb accepts. It is a bitmask.
type printfArgType int
const (
argBool printfArgType = 1 << iota
argInt
argRune
argString
argFloat
argPointer
anyType printfArgType = ^0
)
type printVerb struct {
verb rune
flags string // known flags are all ASCII
typ printfArgType
}
// Common flag sets for printf verbs.
const (
numFlag = " -+.0"
sharpNumFlag = " -+.0#"
allFlags = " -+.0#"
)
// printVerbs identifies which flags are known to printf for each verb.
// TODO: A type that implements Formatter may do what it wants, and vet
// will complain incorrectly.
var printVerbs = []printVerb{
// '-' is a width modifier, always valid.
// '.' is a precision for float, max width for strings.
// '+' is required sign for numbers, Go format for %v.
// '#' is alternate format for several verbs.
// ' ' is spacer for numbers
{'b', numFlag, argInt | argFloat},
{'c', "-", argRune | argInt},
{'d', numFlag, argInt},
{'e', numFlag, argFloat},
{'E', numFlag, argFloat},
{'f', numFlag, argFloat},
{'F', numFlag, argFloat},
{'g', numFlag, argFloat},
{'G', numFlag, argFloat},
{'o', sharpNumFlag, argInt},
{'p', "-#", argPointer},
{'q', " -+.0#", argRune | argInt | argString},
{'s', " -+.0", argString},
{'t', "-", argBool},
{'T', "-", anyType},
{'U', "-#", argRune | argInt},
{'v', allFlags, anyType},
{'x', sharpNumFlag, argRune | argInt | argString},
{'X', sharpNumFlag, argRune | argInt | argString},
}
const printfVerbs = "bcdeEfFgGopqstTvxUX"
func (f *File) checkPrintfArg(call *ast.CallExpr, verb rune, flags []byte, argNum, nargs int) {
// Linear scan is fast enough for a small list.
for _, v := range printVerbs {
if v.verb == verb {
for _, flag := range flags {
if !strings.ContainsRune(v.flags, rune(flag)) {
f.Badf(call.Pos(), "unrecognized printf flag for verb %q: %q", verb, flag)
return
}
}
// Verb is good. If nargs>1, we have something like %.*s and all but the final
// arg must be integer.
for i := 0; i < nargs-1; i++ {
if !f.matchArgType(argInt, call.Args[argNum+i]) {
f.Badf(call.Pos(), "arg %s for * in printf format not of type int", f.gofmt(call.Args[argNum+i]))
}
}
for _, v := range printVerbs {
if v.verb == verb {
arg := call.Args[argNum+nargs-1]
if !f.matchArgType(v.typ, arg) {
typeString := ""
if typ := f.pkg.types[arg]; typ != nil {
typeString = typ.String()
}
f.Badf(call.Pos(), "arg %s for printf verb %%%c of wrong type: %s", f.gofmt(arg), verb, typeString)
}
break
}
}
return
}
}
f.Badf(call.Pos(), "unrecognized printf verb %q", verb)
}
// checkPrint checks a call to an unformatted print routine such as Println.
// call.Args[firstArg] is the first argument to be printed.
func (f *File) checkPrint(call *ast.CallExpr, name string, firstArg int) {
isLn := strings.HasSuffix(name, "ln")
isF := strings.HasPrefix(name, "F")
args := call.Args
// check for Println(os.Stderr, ...)
if firstArg == 0 && !isF && len(args) > 0 {
if sel, ok := args[0].(*ast.SelectorExpr); ok {
if x, ok := sel.X.(*ast.Ident); ok {
if x.Name == "os" && strings.HasPrefix(sel.Sel.Name, "Std") {
f.Badf(call.Pos(), "first argument to %s is %s.%s", name, x.Name, sel.Sel.Name)
}
}
}
}
if len(args) <= firstArg {
// If we have a call to a method called Error that satisfies the Error interface,
// then it's ok. Otherwise it's something like (*T).Error from the testing package
// and we need to check it.
if name == "Error" && f.isErrorMethodCall(call) {
return
}
// If it's an Error call now, it's probably for printing errors.
if !isLn {
// Check the signature to be sure: there are niladic functions called "error".
if firstArg != 0 || f.numArgsInSignature(call) != firstArg {
f.Badf(call.Pos(), "no args in %s call", name)
}
}
return
}
arg := args[firstArg]
if lit, ok := arg.(*ast.BasicLit); ok && lit.Kind == token.STRING {
if strings.Contains(lit.Value, "%") {
f.Badf(call.Pos(), "possible formatting directive in %s call", name)
}
}
if isLn {
// The last item, if a string, should not have a newline.
arg = args[len(call.Args)-1]
if lit, ok := arg.(*ast.BasicLit); ok && lit.Kind == token.STRING {
if strings.HasSuffix(lit.Value, `\n"`) {
f.Badf(call.Pos(), "%s call ends with newline", name)
}
}
}
}
// Copyright 2012 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
/*
This file contains the code to check range loop variables bound inside function
literals that are deferred or launched in new goroutines. We only check
instances where the defer or go statement is the last statement in the loop
body, as otherwise we would need whole program analysis.
For example:
for i, v := range s {
go func() {
println(i, v) // not what you might expect
}()
}
See: http://golang.org/doc/go_faq.html#closures_and_goroutines
*/
package main
import "go/ast"
// checkRangeLoop walks the body of the provided range statement, checking if
// its index or value variables are used unsafely inside goroutines or deferred
// function literals.
func checkRangeLoop(f *File, n *ast.RangeStmt) {
if !vet("rangeloops") {
return
}
key, _ := n.Key.(*ast.Ident)
val, _ := n.Value.(*ast.Ident)
if key == nil && val == nil {
return
}
sl := n.Body.List
if len(sl) == 0 {
return
}
var last *ast.CallExpr
switch s := sl[len(sl)-1].(type) {
case *ast.GoStmt:
last = s.Call
case *ast.DeferStmt:
last = s.Call
default:
return
}
lit, ok := last.Fun.(*ast.FuncLit)
if !ok {
return
}
ast.Inspect(lit.Body, func(n ast.Node) bool {
id, ok := n.(*ast.Ident)
if !ok || id.Obj == nil {
return true
}
if key != nil && id.Obj == key.Obj || val != nil && id.Obj == val.Obj {
f.Warn(id.Pos(), "range variable", id.Name, "enclosed by function")
}
return true
})
}
// Copyright 2010 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// This file contains the test for canonical struct tags.
package main
import (
"go/ast"
"reflect"
"strconv"
)
// checkField checks a struct field tag.
func (f *File) checkCanonicalFieldTag(field *ast.Field) {
if !vet("structtags") {
return
}
if field.Tag == nil {
return
}
tag, err := strconv.Unquote(field.Tag.Value)
if err != nil {
f.Badf(field.Pos(), "unable to read struct tag %s", field.Tag.Value)
return
}
// Check tag for validity by appending
// new key:value to end and checking that
// the tag parsing code can find it.
if reflect.StructTag(tag+` _gofix:"_magic"`).Get("_gofix") != "_magic" {
f.Badf(field.Pos(), "struct field tag %s not compatible with reflect.StructTag.Get", field.Tag.Value)
return
}
}
// Copyright 2012 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// This file contains the test for untagged struct literals.
package main
import (
"flag"
"go/ast"
"strings"
)
var compositeWhiteList = flag.Bool("compositewhitelist", true, "use composite white list; for testing only")
// checkUntaggedLiteral checks if a composite literal is a struct literal with
// untagged fields.
func (f *File) checkUntaggedLiteral(c *ast.CompositeLit) {
if !vet("composites") {
return
}
typ := c.Type
for {
if typ1, ok := c.Type.(*ast.ParenExpr); ok {
typ = typ1
continue
}
break
}
switch typ.(type) {
case *ast.ArrayType:
return
case *ast.MapType:
return
case *ast.StructType:
return // a literal struct type does not need to use tags
case *ast.Ident:
// A simple type name like t or T does not need tags either,
// since it is almost certainly declared in the current package.
// (The exception is names being used via import . "pkg", but
// those are already breaking the Go 1 compatibility promise,
// so not reporting potential additional breakage seems okay.)
return
}
// Otherwise the type is a selector like pkg.Name.
// We only care if pkg.Name is a struct, not if it's a map, array, or slice.
isStruct, typeString := f.pkg.isStruct(c)
if !isStruct {
return
}
if typeString == "" { // isStruct doesn't know
typeString = f.gofmt(typ)
}
// It's a struct, or we can't tell it's not a struct because we don't have types.
// Check if the CompositeLit contains an untagged field.
allKeyValue := true
for _, e := range c.Elts {
if _, ok := e.(*ast.KeyValueExpr); !ok {
allKeyValue = false
break
}
}
if allKeyValue {
return
}
// Check that the CompositeLit's type has the form pkg.Typ.
s, ok := c.Type.(*ast.SelectorExpr)
if !ok {
return
}
pkg, ok := s.X.(*ast.Ident)
if !ok {
return
}
// Convert the package name to an import path, and compare to a whitelist.
path := pkgPath(f, pkg.Name)
if path == "" {
f.Badf(c.Pos(), "unresolvable package for %s.%s literal", pkg.Name, s.Sel.Name)
return
}
typeName := path + "." + s.Sel.Name
if *compositeWhiteList && untaggedLiteralWhitelist[typeName] {
return
}
f.Warn(c.Pos(), typeString+" composite literal uses untagged fields")
}
// pkgPath returns the import path "image/png" for the package name "png".
//
// This is based purely on syntax and convention, and not on the imported
// package's contents. It will be incorrect if a package name differs from the
// leaf element of the import path, or if the package was a dot import.
func pkgPath(f *File, pkgName string) (path string) {
for _, x := range f.file.Imports {
s := strings.Trim(x.Path.Value, `"`)
if x.Name != nil {
// Catch `import pkgName "foo/bar"`.
if x.Name.Name == pkgName {
return s
}
} else {
// Catch `import "pkgName"` or `import "foo/bar/pkgName"`.
if s == pkgName || strings.HasSuffix(s, "/"+pkgName) {
return s
}
}
}
return ""
}
var untaggedLiteralWhitelist = map[string]bool{
/*
These types are actually slices. Syntactically, we cannot tell
whether the Typ in pkg.Typ{1, 2, 3} is a slice or a struct, so we
whitelist all the standard package library's exported slice types.
find $GOROOT/src/pkg -type f | grep -v _test.go | xargs grep '^type.*\[\]' | \
grep -v ' map\[' | sed 's,/[^/]*go.type,,' | sed 's,.*src/pkg/,,' | \
sed 's, ,.,' | sed 's, .*,,' | grep -v '\.[a-z]' | \
sort | awk '{ print "\"" $0 "\": true," }'
*/
"crypto/x509/pkix.RDNSequence": true,
"crypto/x509/pkix.RelativeDistinguishedNameSET": true,
"database/sql.RawBytes": true,
"debug/macho.LoadBytes": true,
"encoding/asn1.ObjectIdentifier": true,
"encoding/asn1.RawContent": true,
"encoding/json.RawMessage": true,
"encoding/xml.CharData": true,
"encoding/xml.Comment": true,
"encoding/xml.Directive": true,
"go/scanner.ErrorList": true,
"image/color.Palette": true,
"net.HardwareAddr": true,
"net.IP": true,
"net.IPMask": true,
"sort.Float64Slice": true,
"sort.IntSlice": true,
"sort.StringSlice": true,
"unicode.SpecialCase": true,
// These image and image/color struct types are frozen. We will never add fields to them.
"image/color.Alpha16": true,
"image/color.Alpha": true,
"image/color.Gray16": true,
"image/color.Gray": true,
"image/color.NRGBA64": true,
"image/color.NRGBA": true,
"image/color.RGBA64": true,
"image/color.RGBA": true,
"image/color.YCbCr": true,
"image.Point": true,
"image.Rectangle": true,
}
// Copyright 2010 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// +build ignore
// This file contains declarations to test the assembly in test_asm.s.
package main
func arg1(x int8, y uint8)
func arg2(x int16, y uint16)
func arg4(x int32, y uint32)
func arg8(x int64, y uint64)
func argint(x int, y uint)
func argptr(x *byte, y *byte, c chan int, m map[int]int, f func())
func argstring(x, y string)
func argslice(x, y []string)
func argiface(x interface{}, y interface {
m()
})
func returnint() int
func returnbyte(x int) byte
func returnnamed(x byte) (r1 int, r2 int16, r3 string, r4 byte)
// Copyright 2013 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// +build amd64
// +build vet_test
TEXT ·arg1(SB),0,$0-2
MOVB x+0(FP), AX
MOVB y+1(FP), BX
MOVW x+0(FP), AX // ERROR "\[amd64\] invalid MOVW of x\+0\(FP\); int8 is 1-byte value"
MOVW y+1(FP), AX // ERROR "invalid MOVW of y\+1\(FP\); uint8 is 1-byte value"
MOVL x+0(FP), AX // ERROR "invalid MOVL of x\+0\(FP\); int8 is 1-byte value"
MOVL y+1(FP), AX // ERROR "invalid MOVL of y\+1\(FP\); uint8 is 1-byte value"
MOVQ x+0(FP), AX // ERROR "invalid MOVQ of x\+0\(FP\); int8 is 1-byte value"
MOVQ y+1(FP), AX // ERROR "invalid MOVQ of y\+1\(FP\); uint8 is 1-byte value"
MOVB x+1(FP), AX // ERROR "invalid offset x\+1\(FP\); expected x\+0\(FP\)"
MOVB y+2(FP), AX // ERROR "invalid offset y\+2\(FP\); expected y\+1\(FP\)"
TESTB x+0(FP), AX
TESTB y+1(FP), BX
TESTW x+0(FP), AX // ERROR "invalid TESTW of x\+0\(FP\); int8 is 1-byte value"
TESTW y+1(FP), AX // ERROR "invalid TESTW of y\+1\(FP\); uint8 is 1-byte value"
TESTL x+0(FP), AX // ERROR "invalid TESTL of x\+0\(FP\); int8 is 1-byte value"
TESTL y+1(FP), AX // ERROR "invalid TESTL of y\+1\(FP\); uint8 is 1-byte value"
TESTQ x+0(FP), AX // ERROR "invalid TESTQ of x\+0\(FP\); int8 is 1-byte value"
TESTQ y+1(FP), AX // ERROR "invalid TESTQ of y\+1\(FP\); uint8 is 1-byte value"
TESTB x+1(FP), AX // ERROR "invalid offset x\+1\(FP\); expected x\+0\(FP\)"
TESTB y+2(FP), AX // ERROR "invalid offset y\+2\(FP\); expected y\+1\(FP\)"
RET
TEXT ·arg2(SB),0,$0-4
MOVB x+0(FP), AX // ERROR "invalid MOVB of x\+0\(FP\); int16 is 2-byte value"
MOVB y+2(FP), AX // ERROR "invalid MOVB of y\+2\(FP\); uint16 is 2-byte value"
MOVW x+0(FP), AX
MOVW y+2(FP), BX
MOVL x+0(FP), AX // ERROR "invalid MOVL of x\+0\(FP\); int16 is 2-byte value"
MOVL y+2(FP), AX // ERROR "invalid MOVL of y\+2\(FP\); uint16 is 2-byte value"
MOVQ x+0(FP), AX // ERROR "invalid MOVQ of x\+0\(FP\); int16 is 2-byte value"
MOVQ y+2(FP), AX // ERROR "invalid MOVQ of y\+2\(FP\); uint16 is 2-byte value"
MOVW x+2(FP), AX // ERROR "invalid offset x\+2\(FP\); expected x\+0\(FP\)"
MOVW y+0(FP), AX // ERROR "invalid offset y\+0\(FP\); expected y\+2\(FP\)"
TESTB x+0(FP), AX // ERROR "invalid TESTB of x\+0\(FP\); int16 is 2-byte value"
TESTB y+2(FP), AX // ERROR "invalid TESTB of y\+2\(FP\); uint16 is 2-byte value"
TESTW x+0(FP), AX
TESTW y+2(FP), BX
TESTL x+0(FP), AX // ERROR "invalid TESTL of x\+0\(FP\); int16 is 2-byte value"
TESTL y+2(FP), AX // ERROR "invalid TESTL of y\+2\(FP\); uint16 is 2-byte value"
TESTQ x+0(FP), AX // ERROR "invalid TESTQ of x\+0\(FP\); int16 is 2-byte value"
TESTQ y+2(FP), AX // ERROR "invalid TESTQ of y\+2\(FP\); uint16 is 2-byte value"
TESTW x+2(FP), AX // ERROR "invalid offset x\+2\(FP\); expected x\+0\(FP\)"
TESTW y+0(FP), AX // ERROR "invalid offset y\+0\(FP\); expected y\+2\(FP\)"
RET
TEXT ·arg4(SB),0,$0-2 // ERROR "wrong argument size 2; expected \$\.\.\.-8"
MOVB x+0(FP), AX // ERROR "invalid MOVB of x\+0\(FP\); int32 is 4-byte value"
MOVB y+4(FP), BX // ERROR "invalid MOVB of y\+4\(FP\); uint32 is 4-byte value"
MOVW x+0(FP), AX // ERROR "invalid MOVW of x\+0\(FP\); int32 is 4-byte value"
MOVW y+4(FP), AX // ERROR "invalid MOVW of y\+4\(FP\); uint32 is 4-byte value"
MOVL x+0(FP), AX
MOVL y+4(FP), AX
MOVQ x+0(FP), AX // ERROR "invalid MOVQ of x\+0\(FP\); int32 is 4-byte value"
MOVQ y+4(FP), AX // ERROR "invalid MOVQ of y\+4\(FP\); uint32 is 4-byte value"
MOVL x+4(FP), AX // ERROR "invalid offset x\+4\(FP\); expected x\+0\(FP\)"
MOVL y+2(FP), AX // ERROR "invalid offset y\+2\(FP\); expected y\+4\(FP\)"
TESTB x+0(FP), AX // ERROR "invalid TESTB of x\+0\(FP\); int32 is 4-byte value"
TESTB y+4(FP), BX // ERROR "invalid TESTB of y\+4\(FP\); uint32 is 4-byte value"
TESTW x+0(FP), AX // ERROR "invalid TESTW of x\+0\(FP\); int32 is 4-byte value"
TESTW y+4(FP), AX // ERROR "invalid TESTW of y\+4\(FP\); uint32 is 4-byte value"
TESTL x+0(FP), AX
TESTL y+4(FP), AX
TESTQ x+0(FP), AX // ERROR "invalid TESTQ of x\+0\(FP\); int32 is 4-byte value"
TESTQ y+4(FP), AX // ERROR "invalid TESTQ of y\+4\(FP\); uint32 is 4-byte value"
TESTL x+4(FP), AX // ERROR "invalid offset x\+4\(FP\); expected x\+0\(FP\)"
TESTL y+2(FP), AX // ERROR "invalid offset y\+2\(FP\); expected y\+4\(FP\)"
RET
TEXT ·arg8(SB),7,$0-2 // ERROR "wrong argument size 2; expected \$\.\.\.-16"
MOVB x+0(FP), AX // ERROR "invalid MOVB of x\+0\(FP\); int64 is 8-byte value"
MOVB y+8(FP), BX // ERROR "invalid MOVB of y\+8\(FP\); uint64 is 8-byte value"
MOVW x+0(FP), AX // ERROR "invalid MOVW of x\+0\(FP\); int64 is 8-byte value"
MOVW y+8(FP), AX // ERROR "invalid MOVW of y\+8\(FP\); uint64 is 8-byte value"
MOVL x+0(FP), AX // ERROR "invalid MOVL of x\+0\(FP\); int64 is 8-byte value"
MOVL y+8(FP), AX // ERROR "invalid MOVL of y\+8\(FP\); uint64 is 8-byte value"
MOVQ x+0(FP), AX
MOVQ y+8(FP), AX
MOVQ x+8(FP), AX // ERROR "invalid offset x\+8\(FP\); expected x\+0\(FP\)"
MOVQ y+2(FP), AX // ERROR "invalid offset y\+2\(FP\); expected y\+8\(FP\)"
TESTB x+0(FP), AX // ERROR "invalid TESTB of x\+0\(FP\); int64 is 8-byte value"
TESTB y+8(FP), BX // ERROR "invalid TESTB of y\+8\(FP\); uint64 is 8-byte value"
TESTW x+0(FP), AX // ERROR "invalid TESTW of x\+0\(FP\); int64 is 8-byte value"
TESTW y+8(FP), AX // ERROR "invalid TESTW of y\+8\(FP\); uint64 is 8-byte value"
TESTL x+0(FP), AX // ERROR "invalid TESTL of x\+0\(FP\); int64 is 8-byte value"
TESTL y+8(FP), AX // ERROR "invalid TESTL of y\+8\(FP\); uint64 is 8-byte value"
TESTQ x+0(FP), AX
TESTQ y+8(FP), AX
TESTQ x+8(FP), AX // ERROR "invalid offset x\+8\(FP\); expected x\+0\(FP\)"
TESTQ y+2(FP), AX // ERROR "invalid offset y\+2\(FP\); expected y\+8\(FP\)"
RET
TEXT ·argint(SB),0,$0-2 // ERROR "wrong argument size 2; expected \$\.\.\.-16"
MOVB x+0(FP), AX // ERROR "invalid MOVB of x\+0\(FP\); int is 8-byte value"
MOVB y+8(FP), BX // ERROR "invalid MOVB of y\+8\(FP\); uint is 8-byte value"
MOVW x+0(FP), AX // ERROR "invalid MOVW of x\+0\(FP\); int is 8-byte value"
MOVW y+8(FP), AX // ERROR "invalid MOVW of y\+8\(FP\); uint is 8-byte value"
MOVL x+0(FP), AX // ERROR "invalid MOVL of x\+0\(FP\); int is 8-byte value"
MOVL y+8(FP), AX // ERROR "invalid MOVL of y\+8\(FP\); uint is 8-byte value"
MOVQ x+0(FP), AX
MOVQ y+8(FP), AX
MOVQ x+8(FP), AX // ERROR "invalid offset x\+8\(FP\); expected x\+0\(FP\)"
MOVQ y+2(FP), AX // ERROR "invalid offset y\+2\(FP\); expected y\+8\(FP\)"
TESTB x+0(FP), AX // ERROR "invalid TESTB of x\+0\(FP\); int is 8-byte value"
TESTB y+8(FP), BX // ERROR "invalid TESTB of y\+8\(FP\); uint is 8-byte value"
TESTW x+0(FP), AX // ERROR "invalid TESTW of x\+0\(FP\); int is 8-byte value"
TESTW y+8(FP), AX // ERROR "invalid TESTW of y\+8\(FP\); uint is 8-byte value"
TESTL x+0(FP), AX // ERROR "invalid TESTL of x\+0\(FP\); int is 8-byte value"
TESTL y+8(FP), AX // ERROR "invalid TESTL of y\+8\(FP\); uint is 8-byte value"
TESTQ x+0(FP), AX
TESTQ y+8(FP), AX
TESTQ x+8(FP), AX // ERROR "invalid offset x\+8\(FP\); expected x\+0\(FP\)"
TESTQ y+2(FP), AX // ERROR "invalid offset y\+2\(FP\); expected y\+8\(FP\)"
RET
TEXT ·argptr(SB),7,$0-2 // ERROR "wrong argument size 2; expected \$\.\.\.-40"
MOVB x+0(FP), AX // ERROR "invalid MOVB of x\+0\(FP\); \*byte is 8-byte value"
MOVB y+8(FP), BX // ERROR "invalid MOVB of y\+8\(FP\); \*byte is 8-byte value"
MOVW x+0(FP), AX // ERROR "invalid MOVW of x\+0\(FP\); \*byte is 8-byte value"
MOVW y+8(FP), AX // ERROR "invalid MOVW of y\+8\(FP\); \*byte is 8-byte value"
MOVL x+0(FP), AX // ERROR "invalid MOVL of x\+0\(FP\); \*byte is 8-byte value"
MOVL y+8(FP), AX // ERROR "invalid MOVL of y\+8\(FP\); \*byte is 8-byte value"
MOVQ x+0(FP), AX
MOVQ y+8(FP), AX
MOVQ x+8(FP), AX // ERROR "invalid offset x\+8\(FP\); expected x\+0\(FP\)"
MOVQ y+2(FP), AX // ERROR "invalid offset y\+2\(FP\); expected y\+8\(FP\)"
TESTB x+0(FP), AX // ERROR "invalid TESTB of x\+0\(FP\); \*byte is 8-byte value"
TESTB y+8(FP), BX // ERROR "invalid TESTB of y\+8\(FP\); \*byte is 8-byte value"
TESTW x+0(FP), AX // ERROR "invalid TESTW of x\+0\(FP\); \*byte is 8-byte value"
TESTW y+8(FP), AX // ERROR "invalid TESTW of y\+8\(FP\); \*byte is 8-byte value"
TESTL x+0(FP), AX // ERROR "invalid TESTL of x\+0\(FP\); \*byte is 8-byte value"
TESTL y+8(FP), AX // ERROR "invalid TESTL of y\+8\(FP\); \*byte is 8-byte value"
TESTQ x+0(FP), AX
TESTQ y+8(FP), AX
TESTQ x+8(FP), AX // ERROR "invalid offset x\+8\(FP\); expected x\+0\(FP\)"
TESTQ y+2(FP), AX // ERROR "invalid offset y\+2\(FP\); expected y\+8\(FP\)"
MOVL c+16(FP), AX // ERROR "invalid MOVL of c\+16\(FP\); chan int is 8-byte value"
MOVL m+24(FP), AX // ERROR "invalid MOVL of m\+24\(FP\); map\[int\]int is 8-byte value"
MOVL f+32(FP), AX // ERROR "invalid MOVL of f\+32\(FP\); func\(\) is 8-byte value"
RET
TEXT ·argstring(SB),0,$32 // ERROR "wrong argument size 0; expected \$\.\.\.-32"
MOVW x+0(FP), AX // ERROR "invalid MOVW of x\+0\(FP\); string base is 8-byte value"
MOVL x+0(FP), AX // ERROR "invalid MOVL of x\+0\(FP\); string base is 8-byte value"
MOVQ x+0(FP), AX
MOVW x_base+0(FP), AX // ERROR "invalid MOVW of x_base\+0\(FP\); string base is 8-byte value"
MOVL x_base+0(FP), AX // ERROR "invalid MOVL of x_base\+0\(FP\); string base is 8-byte value"
MOVQ x_base+0(FP), AX
MOVW x_len+0(FP), AX // ERROR "invalid offset x_len\+0\(FP\); expected x_len\+8\(FP\)"
MOVL x_len+0(FP), AX // ERROR "invalid offset x_len\+0\(FP\); expected x_len\+8\(FP\)"
MOVQ x_len+0(FP), AX // ERROR "invalid offset x_len\+0\(FP\); expected x_len\+8\(FP\)"
MOVW x_len+8(FP), AX // ERROR "invalid MOVW of x_len\+8\(FP\); string len is 8-byte value"
MOVL x_len+8(FP), AX // ERROR "invalid MOVL of x_len\+8\(FP\); string len is 8-byte value"
MOVQ x_len+8(FP), AX
MOVQ y+0(FP), AX // ERROR "invalid offset y\+0\(FP\); expected y\+16\(FP\)"
MOVQ y_len+8(FP), AX // ERROR "invalid offset y_len\+8\(FP\); expected y_len\+24\(FP\)"
RET
TEXT ·argslice(SB),0,$48 // ERROR "wrong argument size 0; expected \$\.\.\.-48"
MOVW x+0(FP), AX // ERROR "invalid MOVW of x\+0\(FP\); slice base is 8-byte value"
MOVL x+0(FP), AX // ERROR "invalid MOVL of x\+0\(FP\); slice base is 8-byte value"
MOVQ x+0(FP), AX
MOVW x_base+0(FP), AX // ERROR "invalid MOVW of x_base\+0\(FP\); slice base is 8-byte value"
MOVL x_base+0(FP), AX // ERROR "invalid MOVL of x_base\+0\(FP\); slice base is 8-byte value"
MOVQ x_base+0(FP), AX
MOVW x_len+0(FP), AX // ERROR "invalid offset x_len\+0\(FP\); expected x_len\+8\(FP\)"
MOVL x_len+0(FP), AX // ERROR "invalid offset x_len\+0\(FP\); expected x_len\+8\(FP\)"
MOVQ x_len+0(FP), AX // ERROR "invalid offset x_len\+0\(FP\); expected x_len\+8\(FP\)"
MOVW x_len+8(FP), AX // ERROR "invalid MOVW of x_len\+8\(FP\); slice len is 8-byte value"
MOVL x_len+8(FP), AX // ERROR "invalid MOVL of x_len\+8\(FP\); slice len is 8-byte value"
MOVQ x_len+8(FP), AX
MOVW x_cap+0(FP), AX // ERROR "invalid offset x_cap\+0\(FP\); expected x_cap\+16\(FP\)"
MOVL x_cap+0(FP), AX // ERROR "invalid offset x_cap\+0\(FP\); expected x_cap\+16\(FP\)"
MOVQ x_cap+0(FP), AX // ERROR "invalid offset x_cap\+0\(FP\); expected x_cap\+16\(FP\)"
MOVW x_cap+16(FP), AX // ERROR "invalid MOVW of x_cap\+16\(FP\); slice cap is 8-byte value"
MOVL x_cap+16(FP), AX // ERROR "invalid MOVL of x_cap\+16\(FP\); slice cap is 8-byte value"
MOVQ x_cap+16(FP), AX
MOVQ y+0(FP), AX // ERROR "invalid offset y\+0\(FP\); expected y\+24\(FP\)"
MOVQ y_len+8(FP), AX // ERROR "invalid offset y_len\+8\(FP\); expected y_len\+32\(FP\)"
MOVQ y_cap+16(FP), AX // ERROR "invalid offset y_cap\+16\(FP\); expected y_cap\+40\(FP\)"
RET
TEXT ·argiface(SB),0,$0-32
MOVW x+0(FP), AX // ERROR "invalid MOVW of x\+0\(FP\); interface type is 8-byte value"
MOVL x+0(FP), AX // ERROR "invalid MOVL of x\+0\(FP\); interface type is 8-byte value"
MOVQ x+0(FP), AX
MOVW x_type+0(FP), AX // ERROR "invalid MOVW of x_type\+0\(FP\); interface type is 8-byte value"
MOVL x_type+0(FP), AX // ERROR "invalid MOVL of x_type\+0\(FP\); interface type is 8-byte value"
MOVQ x_type+0(FP), AX
MOVQ x_itable+0(FP), AX // ERROR "unknown variable x_itable; offset 0 is x_type\+0\(FP\)"
MOVQ x_itable+1(FP), AX // ERROR "unknown variable x_itable; offset 1 is x_type\+0\(FP\)"
MOVW x_data+0(FP), AX // ERROR "invalid offset x_data\+0\(FP\); expected x_data\+8\(FP\)"
MOVL x_data+0(FP), AX // ERROR "invalid offset x_data\+0\(FP\); expected x_data\+8\(FP\)"
MOVQ x_data+0(FP), AX // ERROR "invalid offset x_data\+0\(FP\); expected x_data\+8\(FP\)"
MOVW x_data+8(FP), AX // ERROR "invalid MOVW of x_data\+8\(FP\); interface data is 8-byte value"
MOVL x_data+8(FP), AX // ERROR "invalid MOVL of x_data\+8\(FP\); interface data is 8-byte value"
MOVQ x_data+8(FP), AX
MOVW y+16(FP), AX // ERROR "invalid MOVW of y\+16\(FP\); interface itable is 8-byte value"
MOVL y+16(FP), AX // ERROR "invalid MOVL of y\+16\(FP\); interface itable is 8-byte value"
MOVQ y+16(FP), AX
MOVW y_itable+16(FP), AX // ERROR "invalid MOVW of y_itable\+16\(FP\); interface itable is 8-byte value"
MOVL y_itable+16(FP), AX // ERROR "invalid MOVL of y_itable\+16\(FP\); interface itable is 8-byte value"
MOVQ y_itable+16(FP), AX
MOVQ y_type+16(FP), AX // ERROR "unknown variable y_type; offset 16 is y_itable\+16\(FP\)"
MOVW y_data+16(FP), AX // ERROR "invalid offset y_data\+16\(FP\); expected y_data\+24\(FP\)"
MOVL y_data+16(FP), AX // ERROR "invalid offset y_data\+16\(FP\); expected y_data\+24\(FP\)"
MOVQ y_data+16(FP), AX // ERROR "invalid offset y_data\+16\(FP\); expected y_data\+24\(FP\)"
MOVW y_data+24(FP), AX // ERROR "invalid MOVW of y_data\+24\(FP\); interface data is 8-byte value"
MOVL y_data+24(FP), AX // ERROR "invalid MOVL of y_data\+24\(FP\); interface data is 8-byte value"
MOVQ y_data+24(FP), AX
RET
TEXT ·returnint(SB),0,$0-8
MOVB AX, ret+0(FP) // ERROR "invalid MOVB of ret\+0\(FP\); int is 8-byte value"
MOVW AX, ret+0(FP) // ERROR "invalid MOVW of ret\+0\(FP\); int is 8-byte value"
MOVL AX, ret+0(FP) // ERROR "invalid MOVL of ret\+0\(FP\); int is 8-byte value"
MOVQ AX, ret+0(FP)
MOVQ AX, ret+1(FP) // ERROR "invalid offset ret\+1\(FP\); expected ret\+0\(FP\)"
MOVQ AX, r+0(FP) // ERROR "unknown variable r; offset 0 is ret\+0\(FP\)"
RET
TEXT ·returnbyte(SB),0,$0-9
MOVQ x+0(FP), AX
MOVB AX, ret+8(FP)
MOVW AX, ret+8(FP) // ERROR "invalid MOVW of ret\+8\(FP\); byte is 1-byte value"
MOVL AX, ret+8(FP) // ERROR "invalid MOVL of ret\+8\(FP\); byte is 1-byte value"
MOVQ AX, ret+8(FP) // ERROR "invalid MOVQ of ret\+8\(FP\); byte is 1-byte value"
MOVB AX, ret+7(FP) // ERROR "invalid offset ret\+7\(FP\); expected ret\+8\(FP\)"
RET
TEXT ·returnnamed(SB),0,$0-41
MOVB x+0(FP), AX
MOVQ AX, r1+8(FP)
MOVW AX, r2+16(FP)
MOVQ AX, r3+24(FP)
MOVQ AX, r3_base+24(FP)
MOVQ AX, r3_len+32(FP)
MOVB AX, r4+40(FP)
MOVL AX, r1+8(FP) // ERROR "invalid MOVL of r1\+8\(FP\); int is 8-byte value"
RET
// Copyright 2013 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// +build 386
// +build vet_test
TEXT ·arg1(SB),0,$0-2
MOVB x+0(FP), AX
MOVB y+1(FP), BX
MOVW x+0(FP), AX // ERROR "\[386\] invalid MOVW of x\+0\(FP\); int8 is 1-byte value"
MOVW y+1(FP), AX // ERROR "invalid MOVW of y\+1\(FP\); uint8 is 1-byte value"
MOVL x+0(FP), AX // ERROR "invalid MOVL of x\+0\(FP\); int8 is 1-byte value"
MOVL y+1(FP), AX // ERROR "invalid MOVL of y\+1\(FP\); uint8 is 1-byte value"
MOVQ x+0(FP), AX // ERROR "invalid MOVQ of x\+0\(FP\); int8 is 1-byte value"
MOVQ y+1(FP), AX // ERROR "invalid MOVQ of y\+1\(FP\); uint8 is 1-byte value"
MOVB x+1(FP), AX // ERROR "invalid offset x\+1\(FP\); expected x\+0\(FP\)"
MOVB y+2(FP), AX // ERROR "invalid offset y\+2\(FP\); expected y\+1\(FP\)"
TESTB x+0(FP), AX
TESTB y+1(FP), BX
TESTW x+0(FP), AX // ERROR "invalid TESTW of x\+0\(FP\); int8 is 1-byte value"
TESTW y+1(FP), AX // ERROR "invalid TESTW of y\+1\(FP\); uint8 is 1-byte value"
TESTL x+0(FP), AX // ERROR "invalid TESTL of x\+0\(FP\); int8 is 1-byte value"
TESTL y+1(FP), AX // ERROR "invalid TESTL of y\+1\(FP\); uint8 is 1-byte value"
TESTQ x+0(FP), AX // ERROR "invalid TESTQ of x\+0\(FP\); int8 is 1-byte value"
TESTQ y+1(FP), AX // ERROR "invalid TESTQ of y\+1\(FP\); uint8 is 1-byte value"
TESTB x+1(FP), AX // ERROR "invalid offset x\+1\(FP\); expected x\+0\(FP\)"
TESTB y+2(FP), AX // ERROR "invalid offset y\+2\(FP\); expected y\+1\(FP\)"
RET
TEXT ·arg2(SB),0,$0-4
MOVB x+0(FP), AX // ERROR "invalid MOVB of x\+0\(FP\); int16 is 2-byte value"
MOVB y+2(FP), AX // ERROR "invalid MOVB of y\+2\(FP\); uint16 is 2-byte value"
MOVW x+0(FP), AX
MOVW y+2(FP), BX
MOVL x+0(FP), AX // ERROR "invalid MOVL of x\+0\(FP\); int16 is 2-byte value"
MOVL y+2(FP), AX // ERROR "invalid MOVL of y\+2\(FP\); uint16 is 2-byte value"
MOVQ x+0(FP), AX // ERROR "invalid MOVQ of x\+0\(FP\); int16 is 2-byte value"
MOVQ y+2(FP), AX // ERROR "invalid MOVQ of y\+2\(FP\); uint16 is 2-byte value"
MOVW x+2(FP), AX // ERROR "invalid offset x\+2\(FP\); expected x\+0\(FP\)"
MOVW y+0(FP), AX // ERROR "invalid offset y\+0\(FP\); expected y\+2\(FP\)"
TESTB x+0(FP), AX // ERROR "invalid TESTB of x\+0\(FP\); int16 is 2-byte value"
TESTB y+2(FP), AX // ERROR "invalid TESTB of y\+2\(FP\); uint16 is 2-byte value"
TESTW x+0(FP), AX
TESTW y+2(FP), BX
TESTL x+0(FP), AX // ERROR "invalid TESTL of x\+0\(FP\); int16 is 2-byte value"
TESTL y+2(FP), AX // ERROR "invalid TESTL of y\+2\(FP\); uint16 is 2-byte value"
TESTQ x+0(FP), AX // ERROR "invalid TESTQ of x\+0\(FP\); int16 is 2-byte value"
TESTQ y+2(FP), AX // ERROR "invalid TESTQ of y\+2\(FP\); uint16 is 2-byte value"
TESTW x+2(FP), AX // ERROR "invalid offset x\+2\(FP\); expected x\+0\(FP\)"
TESTW y+0(FP), AX // ERROR "invalid offset y\+0\(FP\); expected y\+2\(FP\)"
RET
TEXT ·arg4(SB),0,$0-2 // ERROR "wrong argument size 2; expected \$\.\.\.-8"
MOVB x+0(FP), AX // ERROR "invalid MOVB of x\+0\(FP\); int32 is 4-byte value"
MOVB y+4(FP), BX // ERROR "invalid MOVB of y\+4\(FP\); uint32 is 4-byte value"
MOVW x+0(FP), AX // ERROR "invalid MOVW of x\+0\(FP\); int32 is 4-byte value"
MOVW y+4(FP), AX // ERROR "invalid MOVW of y\+4\(FP\); uint32 is 4-byte value"
MOVL x+0(FP), AX
MOVL y+4(FP), AX
MOVQ x+0(FP), AX // ERROR "invalid MOVQ of x\+0\(FP\); int32 is 4-byte value"
MOVQ y+4(FP), AX // ERROR "invalid MOVQ of y\+4\(FP\); uint32 is 4-byte value"
MOVL x+4(FP), AX // ERROR "invalid offset x\+4\(FP\); expected x\+0\(FP\)"
MOVL y+2(FP), AX // ERROR "invalid offset y\+2\(FP\); expected y\+4\(FP\)"
TESTB x+0(FP), AX // ERROR "invalid TESTB of x\+0\(FP\); int32 is 4-byte value"
TESTB y+4(FP), BX // ERROR "invalid TESTB of y\+4\(FP\); uint32 is 4-byte value"
TESTW x+0(FP), AX // ERROR "invalid TESTW of x\+0\(FP\); int32 is 4-byte value"
TESTW y+4(FP), AX // ERROR "invalid TESTW of y\+4\(FP\); uint32 is 4-byte value"
TESTL x+0(FP), AX
TESTL y+4(FP), AX
TESTQ x+0(FP), AX // ERROR "invalid TESTQ of x\+0\(FP\); int32 is 4-byte value"
TESTQ y+4(FP), AX // ERROR "invalid TESTQ of y\+4\(FP\); uint32 is 4-byte value"
TESTL x+4(FP), AX // ERROR "invalid offset x\+4\(FP\); expected x\+0\(FP\)"
TESTL y+2(FP), AX // ERROR "invalid offset y\+2\(FP\); expected y\+4\(FP\)"
RET
TEXT ·arg8(SB),7,$0-2 // ERROR "wrong argument size 2; expected \$\.\.\.-16"
MOVB x+0(FP), AX // ERROR "invalid MOVB of x\+0\(FP\); int64 is 8-byte value"
MOVB y+8(FP), BX // ERROR "invalid MOVB of y\+8\(FP\); uint64 is 8-byte value"
MOVW x+0(FP), AX // ERROR "invalid MOVW of x\+0\(FP\); int64 is 8-byte value"
MOVW y+8(FP), AX // ERROR "invalid MOVW of y\+8\(FP\); uint64 is 8-byte value"
MOVL x+0(FP), AX // ERROR "invalid MOVL of x\+0\(FP\); int64 is 8-byte value containing x_lo\+0\(FP\) and x_hi\+4\(FP\)"
MOVL x_lo+0(FP), AX
MOVL x_hi+4(FP), AX
MOVL y+8(FP), AX // ERROR "invalid MOVL of y\+8\(FP\); uint64 is 8-byte value containing y_lo\+8\(FP\) and y_hi\+12\(FP\)"
MOVL y_lo+8(FP), AX
MOVL y_hi+12(FP), AX
MOVQ x+0(FP), AX
MOVQ y+8(FP), AX
MOVQ x+8(FP), AX // ERROR "invalid offset x\+8\(FP\); expected x\+0\(FP\)"
MOVQ y+2(FP), AX // ERROR "invalid offset y\+2\(FP\); expected y\+8\(FP\)"
TESTB x+0(FP), AX // ERROR "invalid TESTB of x\+0\(FP\); int64 is 8-byte value"
TESTB y+8(FP), BX // ERROR "invalid TESTB of y\+8\(FP\); uint64 is 8-byte value"
TESTW x+0(FP), AX // ERROR "invalid TESTW of x\+0\(FP\); int64 is 8-byte value"
TESTW y+8(FP), AX // ERROR "invalid TESTW of y\+8\(FP\); uint64 is 8-byte value"
TESTL x+0(FP), AX // ERROR "invalid TESTL of x\+0\(FP\); int64 is 8-byte value containing x_lo\+0\(FP\) and x_hi\+4\(FP\)"
TESTL y+8(FP), AX // ERROR "invalid TESTL of y\+8\(FP\); uint64 is 8-byte value containing y_lo\+8\(FP\) and y_hi\+12\(FP\)"
TESTQ x+0(FP), AX
TESTQ y+8(FP), AX
TESTQ x+8(FP), AX // ERROR "invalid offset x\+8\(FP\); expected x\+0\(FP\)"
TESTQ y+2(FP), AX // ERROR "invalid offset y\+2\(FP\); expected y\+8\(FP\)"
RET
TEXT ·argint(SB),0,$0-2 // ERROR "wrong argument size 2; expected \$\.\.\.-8"
MOVB x+0(FP), AX // ERROR "invalid MOVB of x\+0\(FP\); int is 4-byte value"
MOVB y+4(FP), BX // ERROR "invalid MOVB of y\+4\(FP\); uint is 4-byte value"
MOVW x+0(FP), AX // ERROR "invalid MOVW of x\+0\(FP\); int is 4-byte value"
MOVW y+4(FP), AX // ERROR "invalid MOVW of y\+4\(FP\); uint is 4-byte value"
MOVL x+0(FP), AX
MOVL y+4(FP), AX
MOVQ x+0(FP), AX // ERROR "invalid MOVQ of x\+0\(FP\); int is 4-byte value"
MOVQ y+4(FP), AX // ERROR "invalid MOVQ of y\+4\(FP\); uint is 4-byte value"
MOVQ x+4(FP), AX // ERROR "invalid offset x\+4\(FP\); expected x\+0\(FP\)"
MOVQ y+2(FP), AX // ERROR "invalid offset y\+2\(FP\); expected y\+4\(FP\)"
TESTB x+0(FP), AX // ERROR "invalid TESTB of x\+0\(FP\); int is 4-byte value"
TESTB y+4(FP), BX // ERROR "invalid TESTB of y\+4\(FP\); uint is 4-byte value"
TESTW x+0(FP), AX // ERROR "invalid TESTW of x\+0\(FP\); int is 4-byte value"
TESTW y+4(FP), AX // ERROR "invalid TESTW of y\+4\(FP\); uint is 4-byte value"
TESTL x+0(FP), AX
TESTL y+4(FP), AX
TESTQ x+0(FP), AX // ERROR "invalid TESTQ of x\+0\(FP\); int is 4-byte value"
TESTQ y+4(FP), AX // ERROR "invalid TESTQ of y\+4\(FP\); uint is 4-byte value"
TESTQ x+4(FP), AX // ERROR "invalid offset x\+4\(FP\); expected x\+0\(FP\)"
TESTQ y+2(FP), AX // ERROR "invalid offset y\+2\(FP\); expected y\+4\(FP\)"
RET
TEXT ·argptr(SB),7,$0-2 // ERROR "wrong argument size 2; expected \$\.\.\.-20"
MOVB x+0(FP), AX // ERROR "invalid MOVB of x\+0\(FP\); \*byte is 4-byte value"
MOVB y+4(FP), BX // ERROR "invalid MOVB of y\+4\(FP\); \*byte is 4-byte value"
MOVW x+0(FP), AX // ERROR "invalid MOVW of x\+0\(FP\); \*byte is 4-byte value"
MOVW y+4(FP), AX // ERROR "invalid MOVW of y\+4\(FP\); \*byte is 4-byte value"
MOVL x+0(FP), AX
MOVL y+4(FP), AX
MOVQ x+0(FP), AX // ERROR "invalid MOVQ of x\+0\(FP\); \*byte is 4-byte value"
MOVQ y+4(FP), AX // ERROR "invalid MOVQ of y\+4\(FP\); \*byte is 4-byte value"
MOVQ x+4(FP), AX // ERROR "invalid offset x\+4\(FP\); expected x\+0\(FP\)"
MOVQ y+2(FP), AX // ERROR "invalid offset y\+2\(FP\); expected y\+4\(FP\)"
TESTB x+0(FP), AX // ERROR "invalid TESTB of x\+0\(FP\); \*byte is 4-byte value"
TESTB y+4(FP), BX // ERROR "invalid TESTB of y\+4\(FP\); \*byte is 4-byte value"
TESTW x+0(FP), AX // ERROR "invalid TESTW of x\+0\(FP\); \*byte is 4-byte value"
TESTW y+4(FP), AX // ERROR "invalid TESTW of y\+4\(FP\); \*byte is 4-byte value"
TESTL x+0(FP), AX
TESTL y+4(FP), AX
TESTQ x+0(FP), AX // ERROR "invalid TESTQ of x\+0\(FP\); \*byte is 4-byte value"
TESTQ y+4(FP), AX // ERROR "invalid TESTQ of y\+4\(FP\); \*byte is 4-byte value"
TESTQ x+4(FP), AX // ERROR "invalid offset x\+4\(FP\); expected x\+0\(FP\)"
TESTQ y+2(FP), AX // ERROR "invalid offset y\+2\(FP\); expected y\+4\(FP\)"
MOVW c+8(FP), AX // ERROR "invalid MOVW of c\+8\(FP\); chan int is 4-byte value"
MOVW m+12(FP), AX // ERROR "invalid MOVW of m\+12\(FP\); map\[int\]int is 4-byte value"
MOVW f+16(FP), AX // ERROR "invalid MOVW of f\+16\(FP\); func\(\) is 4-byte value"
RET
TEXT ·argstring(SB),0,$16 // ERROR "wrong argument size 0; expected \$\.\.\.-16"
MOVW x+0(FP), AX // ERROR "invalid MOVW of x\+0\(FP\); string base is 4-byte value"
MOVL x+0(FP), AX
MOVQ x+0(FP), AX // ERROR "invalid MOVQ of x\+0\(FP\); string base is 4-byte value"
MOVW x_base+0(FP), AX // ERROR "invalid MOVW of x_base\+0\(FP\); string base is 4-byte value"
MOVL x_base+0(FP), AX
MOVQ x_base+0(FP), AX // ERROR "invalid MOVQ of x_base\+0\(FP\); string base is 4-byte value"
MOVW x_len+0(FP), AX // ERROR "invalid offset x_len\+0\(FP\); expected x_len\+4\(FP\)"
MOVL x_len+0(FP), AX // ERROR "invalid offset x_len\+0\(FP\); expected x_len\+4\(FP\)"
MOVQ x_len+0(FP), AX // ERROR "invalid offset x_len\+0\(FP\); expected x_len\+4\(FP\)"
MOVW x_len+4(FP), AX // ERROR "invalid MOVW of x_len\+4\(FP\); string len is 4-byte value"
MOVL x_len+4(FP), AX
MOVQ x_len+4(FP), AX // ERROR "invalid MOVQ of x_len\+4\(FP\); string len is 4-byte value"
MOVQ y+0(FP), AX // ERROR "invalid offset y\+0\(FP\); expected y\+8\(FP\)"
MOVQ y_len+4(FP), AX // ERROR "invalid offset y_len\+4\(FP\); expected y_len\+12\(FP\)"
RET
TEXT ·argslice(SB),0,$24 // ERROR "wrong argument size 0; expected \$\.\.\.-24"
MOVW x+0(FP), AX // ERROR "invalid MOVW of x\+0\(FP\); slice base is 4-byte value"
MOVL x+0(FP), AX
MOVQ x+0(FP), AX // ERROR "invalid MOVQ of x\+0\(FP\); slice base is 4-byte value"
MOVW x_base+0(FP), AX // ERROR "invalid MOVW of x_base\+0\(FP\); slice base is 4-byte value"
MOVL x_base+0(FP), AX
MOVQ x_base+0(FP), AX // ERROR "invalid MOVQ of x_base\+0\(FP\); slice base is 4-byte value"
MOVW x_len+0(FP), AX // ERROR "invalid offset x_len\+0\(FP\); expected x_len\+4\(FP\)"
MOVL x_len+0(FP), AX // ERROR "invalid offset x_len\+0\(FP\); expected x_len\+4\(FP\)"
MOVQ x_len+0(FP), AX // ERROR "invalid offset x_len\+0\(FP\); expected x_len\+4\(FP\)"
MOVW x_len+4(FP), AX // ERROR "invalid MOVW of x_len\+4\(FP\); slice len is 4-byte value"
MOVL x_len+4(FP), AX
MOVQ x_len+4(FP), AX // ERROR "invalid MOVQ of x_len\+4\(FP\); slice len is 4-byte value"
MOVW x_cap+0(FP), AX // ERROR "invalid offset x_cap\+0\(FP\); expected x_cap\+8\(FP\)"
MOVL x_cap+0(FP), AX // ERROR "invalid offset x_cap\+0\(FP\); expected x_cap\+8\(FP\)"
MOVQ x_cap+0(FP), AX // ERROR "invalid offset x_cap\+0\(FP\); expected x_cap\+8\(FP\)"
MOVW x_cap+8(FP), AX // ERROR "invalid MOVW of x_cap\+8\(FP\); slice cap is 4-byte value"
MOVL x_cap+8(FP), AX
MOVQ x_cap+8(FP), AX // ERROR "invalid MOVQ of x_cap\+8\(FP\); slice cap is 4-byte value"
MOVQ y+0(FP), AX // ERROR "invalid offset y\+0\(FP\); expected y\+12\(FP\)"
MOVQ y_len+4(FP), AX // ERROR "invalid offset y_len\+4\(FP\); expected y_len\+16\(FP\)"
MOVQ y_cap+8(FP), AX // ERROR "invalid offset y_cap\+8\(FP\); expected y_cap\+20\(FP\)"
RET
TEXT ·argiface(SB),0,$0-16
MOVW x+0(FP), AX // ERROR "invalid MOVW of x\+0\(FP\); interface type is 4-byte value"
MOVL x+0(FP), AX
MOVQ x+0(FP), AX // ERROR "invalid MOVQ of x\+0\(FP\); interface type is 4-byte value"
MOVW x_type+0(FP), AX // ERROR "invalid MOVW of x_type\+0\(FP\); interface type is 4-byte value"
MOVL x_type+0(FP), AX
MOVQ x_type+0(FP), AX // ERROR "invalid MOVQ of x_type\+0\(FP\); interface type is 4-byte value"
MOVQ x_itable+0(FP), AX // ERROR "unknown variable x_itable; offset 0 is x_type\+0\(FP\)"
MOVQ x_itable+1(FP), AX // ERROR "unknown variable x_itable; offset 1 is x_type\+0\(FP\)"
MOVW x_data+0(FP), AX // ERROR "invalid offset x_data\+0\(FP\); expected x_data\+4\(FP\)"
MOVL x_data+0(FP), AX // ERROR "invalid offset x_data\+0\(FP\); expected x_data\+4\(FP\)"
MOVQ x_data+0(FP), AX // ERROR "invalid offset x_data\+0\(FP\); expected x_data\+4\(FP\)"
MOVW x_data+4(FP), AX // ERROR "invalid MOVW of x_data\+4\(FP\); interface data is 4-byte value"
MOVL x_data+4(FP), AX
MOVQ x_data+4(FP), AX // ERROR "invalid MOVQ of x_data\+4\(FP\); interface data is 4-byte value"
MOVW y+8(FP), AX // ERROR "invalid MOVW of y\+8\(FP\); interface itable is 4-byte value"
MOVL y+8(FP), AX
MOVQ y+8(FP), AX // ERROR "invalid MOVQ of y\+8\(FP\); interface itable is 4-byte value"
MOVW y_itable+8(FP), AX // ERROR "invalid MOVW of y_itable\+8\(FP\); interface itable is 4-byte value"
MOVL y_itable+8(FP), AX
MOVQ y_itable+8(FP), AX // ERROR "invalid MOVQ of y_itable\+8\(FP\); interface itable is 4-byte value"
MOVQ y_type+8(FP), AX // ERROR "unknown variable y_type; offset 8 is y_itable\+8\(FP\)"
MOVW y_data+8(FP), AX // ERROR "invalid offset y_data\+8\(FP\); expected y_data\+12\(FP\)"
MOVL y_data+8(FP), AX // ERROR "invalid offset y_data\+8\(FP\); expected y_data\+12\(FP\)"
MOVQ y_data+8(FP), AX // ERROR "invalid offset y_data\+8\(FP\); expected y_data\+12\(FP\)"
MOVW y_data+12(FP), AX // ERROR "invalid MOVW of y_data\+12\(FP\); interface data is 4-byte value"
MOVL y_data+12(FP), AX
MOVQ y_data+12(FP), AX // ERROR "invalid MOVQ of y_data\+12\(FP\); interface data is 4-byte value"
RET
TEXT ·returnint(SB),0,$0-4
MOVB AX, ret+0(FP) // ERROR "invalid MOVB of ret\+0\(FP\); int is 4-byte value"
MOVW AX, ret+0(FP) // ERROR "invalid MOVW of ret\+0\(FP\); int is 4-byte value"
MOVL AX, ret+0(FP)
MOVQ AX, ret+0(FP) // ERROR "invalid MOVQ of ret\+0\(FP\); int is 4-byte value"
MOVQ AX, ret+1(FP) // ERROR "invalid offset ret\+1\(FP\); expected ret\+0\(FP\)"
MOVQ AX, r+0(FP) // ERROR "unknown variable r; offset 0 is ret\+0\(FP\)"
RET
TEXT ·returnbyte(SB),0,$0-5
MOVL x+0(FP), AX
MOVB AX, ret+4(FP)
MOVW AX, ret+4(FP) // ERROR "invalid MOVW of ret\+4\(FP\); byte is 1-byte value"
MOVL AX, ret+4(FP) // ERROR "invalid MOVL of ret\+4\(FP\); byte is 1-byte value"
MOVQ AX, ret+4(FP) // ERROR "invalid MOVQ of ret\+4\(FP\); byte is 1-byte value"
MOVB AX, ret+3(FP) // ERROR "invalid offset ret\+3\(FP\); expected ret\+4\(FP\)"
RET
TEXT ·returnnamed(SB),0,$0-21
MOVB x+0(FP), AX
MOVL AX, r1+4(FP)
MOVW AX, r2+8(FP)
MOVL AX, r3+12(FP)
MOVL AX, r3_base+12(FP)
MOVL AX, r3_len+16(FP)
MOVB AX, r4+20(FP)
MOVQ AX, r1+4(FP) // ERROR "invalid MOVQ of r1\+4\(FP\); int is 4-byte value"
RET
// Copyright 2013 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// +build arm
// +build vet_test
TEXT ·arg1(SB),0,$0-2
MOVB x+0(FP), AX
MOVB y+1(FP), BX
MOVH x+0(FP), AX // ERROR "\[arm\] invalid MOVH of x\+0\(FP\); int8 is 1-byte value"
MOVH y+1(FP), AX // ERROR "invalid MOVH of y\+1\(FP\); uint8 is 1-byte value"
MOVW x+0(FP), AX // ERROR "invalid MOVW of x\+0\(FP\); int8 is 1-byte value"
MOVW y+1(FP), AX // ERROR "invalid MOVW of y\+1\(FP\); uint8 is 1-byte value"
MOVB x+1(FP), AX // ERROR "invalid offset x\+1\(FP\); expected x\+0\(FP\)"
MOVB y+2(FP), AX // ERROR "invalid offset y\+2\(FP\); expected y\+1\(FP\)"
RET
TEXT ·arg2(SB),0,$0-4
MOVB x+0(FP), AX // ERROR "invalid MOVB of x\+0\(FP\); int16 is 2-byte value"
MOVB y+2(FP), AX // ERROR "invalid MOVB of y\+2\(FP\); uint16 is 2-byte value"
MOVH x+0(FP), AX
MOVH y+2(FP), BX
MOVW x+0(FP), AX // ERROR "invalid MOVW of x\+0\(FP\); int16 is 2-byte value"
MOVW y+2(FP), AX // ERROR "invalid MOVW of y\+2\(FP\); uint16 is 2-byte value"
MOVH x+2(FP), AX // ERROR "invalid offset x\+2\(FP\); expected x\+0\(FP\)"
MOVH y+0(FP), AX // ERROR "invalid offset y\+0\(FP\); expected y\+2\(FP\)"
RET
TEXT ·arg4(SB),0,$0-2 // ERROR "wrong argument size 2; expected \$\.\.\.-8"
MOVB x+0(FP), AX // ERROR "invalid MOVB of x\+0\(FP\); int32 is 4-byte value"
MOVB y+4(FP), BX // ERROR "invalid MOVB of y\+4\(FP\); uint32 is 4-byte value"
MOVH x+0(FP), AX // ERROR "invalid MOVH of x\+0\(FP\); int32 is 4-byte value"
MOVH y+4(FP), AX // ERROR "invalid MOVH of y\+4\(FP\); uint32 is 4-byte value"
MOVW x+0(FP), AX
MOVW y+4(FP), AX
MOVW x+4(FP), AX // ERROR "invalid offset x\+4\(FP\); expected x\+0\(FP\)"
MOVW y+2(FP), AX // ERROR "invalid offset y\+2\(FP\); expected y\+4\(FP\)"
RET
TEXT ·arg8(SB),7,$0-2 // ERROR "wrong argument size 2; expected \$\.\.\.-16"
MOVB x+0(FP), AX // ERROR "invalid MOVB of x\+0\(FP\); int64 is 8-byte value"
MOVB y+8(FP), BX // ERROR "invalid MOVB of y\+8\(FP\); uint64 is 8-byte value"
MOVH x+0(FP), AX // ERROR "invalid MOVH of x\+0\(FP\); int64 is 8-byte value"
MOVH y+8(FP), AX // ERROR "invalid MOVH of y\+8\(FP\); uint64 is 8-byte value"
MOVW x+0(FP), AX // ERROR "invalid MOVW of x\+0\(FP\); int64 is 8-byte value containing x_lo\+0\(FP\) and x_hi\+4\(FP\)"
MOVW x_lo+0(FP), AX
MOVW x_hi+4(FP), AX
MOVW y+8(FP), AX // ERROR "invalid MOVW of y\+8\(FP\); uint64 is 8-byte value containing y_lo\+8\(FP\) and y_hi\+12\(FP\)"
MOVW y_lo+8(FP), AX
MOVW y_hi+12(FP), AX
MOVQ x+0(FP), AX
MOVQ y+8(FP), AX
MOVQ x+8(FP), AX // ERROR "invalid offset x\+8\(FP\); expected x\+0\(FP\)"
MOVQ y+2(FP), AX // ERROR "invalid offset y\+2\(FP\); expected y\+8\(FP\)"
RET
TEXT ·argint(SB),0,$0-2 // ERROR "wrong argument size 2; expected \$\.\.\.-8"
MOVB x+0(FP), AX // ERROR "invalid MOVB of x\+0\(FP\); int is 4-byte value"
MOVB y+4(FP), BX // ERROR "invalid MOVB of y\+4\(FP\); uint is 4-byte value"
MOVH x+0(FP), AX // ERROR "invalid MOVH of x\+0\(FP\); int is 4-byte value"
MOVH y+4(FP), AX // ERROR "invalid MOVH of y\+4\(FP\); uint is 4-byte value"
MOVW x+0(FP), AX
MOVW y+4(FP), AX
MOVQ x+4(FP), AX // ERROR "invalid offset x\+4\(FP\); expected x\+0\(FP\)"
MOVQ y+2(FP), AX // ERROR "invalid offset y\+2\(FP\); expected y\+4\(FP\)"
RET
TEXT ·argptr(SB),7,$0-2 // ERROR "wrong argument size 2; expected \$\.\.\.-20"
MOVB x+0(FP), AX // ERROR "invalid MOVB of x\+0\(FP\); \*byte is 4-byte value"
MOVB y+4(FP), BX // ERROR "invalid MOVB of y\+4\(FP\); \*byte is 4-byte value"
MOVH x+0(FP), AX // ERROR "invalid MOVH of x\+0\(FP\); \*byte is 4-byte value"
MOVH y+4(FP), AX // ERROR "invalid MOVH of y\+4\(FP\); \*byte is 4-byte value"
MOVW x+0(FP), AX
MOVW y+4(FP), AX
MOVQ x+4(FP), AX // ERROR "invalid offset x\+4\(FP\); expected x\+0\(FP\)"
MOVQ y+2(FP), AX // ERROR "invalid offset y\+2\(FP\); expected y\+4\(FP\)"
MOVH c+8(FP), AX // ERROR "invalid MOVH of c\+8\(FP\); chan int is 4-byte value"
MOVH m+12(FP), AX // ERROR "invalid MOVH of m\+12\(FP\); map\[int\]int is 4-byte value"
MOVH f+16(FP), AX // ERROR "invalid MOVH of f\+16\(FP\); func\(\) is 4-byte value"
RET
TEXT ·argstring(SB),0,$16 // ERROR "wrong argument size 0; expected \$\.\.\.-16"
MOVH x+0(FP), AX // ERROR "invalid MOVH of x\+0\(FP\); string base is 4-byte value"
MOVW x+0(FP), AX
MOVH x_base+0(FP), AX // ERROR "invalid MOVH of x_base\+0\(FP\); string base is 4-byte value"
MOVW x_base+0(FP), AX
MOVH x_len+0(FP), AX // ERROR "invalid offset x_len\+0\(FP\); expected x_len\+4\(FP\)"
MOVW x_len+0(FP), AX // ERROR "invalid offset x_len\+0\(FP\); expected x_len\+4\(FP\)"
MOVQ x_len+0(FP), AX // ERROR "invalid offset x_len\+0\(FP\); expected x_len\+4\(FP\)"
MOVH x_len+4(FP), AX // ERROR "invalid MOVH of x_len\+4\(FP\); string len is 4-byte value"
MOVW x_len+4(FP), AX
MOVQ y+0(FP), AX // ERROR "invalid offset y\+0\(FP\); expected y\+8\(FP\)"
MOVQ y_len+4(FP), AX // ERROR "invalid offset y_len\+4\(FP\); expected y_len\+12\(FP\)"
RET
TEXT ·argslice(SB),0,$24 // ERROR "wrong argument size 0; expected \$\.\.\.-24"
MOVH x+0(FP), AX // ERROR "invalid MOVH of x\+0\(FP\); slice base is 4-byte value"
MOVW x+0(FP), AX
MOVH x_base+0(FP), AX // ERROR "invalid MOVH of x_base\+0\(FP\); slice base is 4-byte value"
MOVW x_base+0(FP), AX
MOVH x_len+0(FP), AX // ERROR "invalid offset x_len\+0\(FP\); expected x_len\+4\(FP\)"
MOVW x_len+0(FP), AX // ERROR "invalid offset x_len\+0\(FP\); expected x_len\+4\(FP\)"
MOVQ x_len+0(FP), AX // ERROR "invalid offset x_len\+0\(FP\); expected x_len\+4\(FP\)"
MOVH x_len+4(FP), AX // ERROR "invalid MOVH of x_len\+4\(FP\); slice len is 4-byte value"
MOVW x_len+4(FP), AX
MOVH x_cap+0(FP), AX // ERROR "invalid offset x_cap\+0\(FP\); expected x_cap\+8\(FP\)"
MOVW x_cap+0(FP), AX // ERROR "invalid offset x_cap\+0\(FP\); expected x_cap\+8\(FP\)"
MOVQ x_cap+0(FP), AX // ERROR "invalid offset x_cap\+0\(FP\); expected x_cap\+8\(FP\)"
MOVH x_cap+8(FP), AX // ERROR "invalid MOVH of x_cap\+8\(FP\); slice cap is 4-byte value"
MOVW x_cap+8(FP), AX
MOVQ y+0(FP), AX // ERROR "invalid offset y\+0\(FP\); expected y\+12\(FP\)"
MOVQ y_len+4(FP), AX // ERROR "invalid offset y_len\+4\(FP\); expected y_len\+16\(FP\)"
MOVQ y_cap+8(FP), AX // ERROR "invalid offset y_cap\+8\(FP\); expected y_cap\+20\(FP\)"
RET
TEXT ·argiface(SB),0,$0-16
MOVH x+0(FP), AX // ERROR "invalid MOVH of x\+0\(FP\); interface type is 4-byte value"
MOVW x+0(FP), AX
MOVH x_type+0(FP), AX // ERROR "invalid MOVH of x_type\+0\(FP\); interface type is 4-byte value"
MOVW x_type+0(FP), AX
MOVQ x_itable+0(FP), AX // ERROR "unknown variable x_itable; offset 0 is x_type\+0\(FP\)"
MOVQ x_itable+1(FP), AX // ERROR "unknown variable x_itable; offset 1 is x_type\+0\(FP\)"
MOVH x_data+0(FP), AX // ERROR "invalid offset x_data\+0\(FP\); expected x_data\+4\(FP\)"
MOVW x_data+0(FP), AX // ERROR "invalid offset x_data\+0\(FP\); expected x_data\+4\(FP\)"
MOVQ x_data+0(FP), AX // ERROR "invalid offset x_data\+0\(FP\); expected x_data\+4\(FP\)"
MOVH x_data+4(FP), AX // ERROR "invalid MOVH of x_data\+4\(FP\); interface data is 4-byte value"
MOVW x_data+4(FP), AX
MOVH y+8(FP), AX // ERROR "invalid MOVH of y\+8\(FP\); interface itable is 4-byte value"
MOVW y+8(FP), AX
MOVH y_itable+8(FP), AX // ERROR "invalid MOVH of y_itable\+8\(FP\); interface itable is 4-byte value"
MOVW y_itable+8(FP), AX
MOVQ y_type+8(FP), AX // ERROR "unknown variable y_type; offset 8 is y_itable\+8\(FP\)"
MOVH y_data+8(FP), AX // ERROR "invalid offset y_data\+8\(FP\); expected y_data\+12\(FP\)"
MOVW y_data+8(FP), AX // ERROR "invalid offset y_data\+8\(FP\); expected y_data\+12\(FP\)"
MOVQ y_data+8(FP), AX // ERROR "invalid offset y_data\+8\(FP\); expected y_data\+12\(FP\)"
MOVH y_data+12(FP), AX // ERROR "invalid MOVH of y_data\+12\(FP\); interface data is 4-byte value"
MOVW y_data+12(FP), AX
RET
TEXT ·returnint(SB),0,$0-4
MOVB AX, ret+0(FP) // ERROR "invalid MOVB of ret\+0\(FP\); int is 4-byte value"
MOVH AX, ret+0(FP) // ERROR "invalid MOVH of ret\+0\(FP\); int is 4-byte value"
MOVW AX, ret+0(FP)
MOVQ AX, ret+1(FP) // ERROR "invalid offset ret\+1\(FP\); expected ret\+0\(FP\)"
MOVQ AX, r+0(FP) // ERROR "unknown variable r; offset 0 is ret\+0\(FP\)"
RET
TEXT ·returnbyte(SB),0,$0-5
MOVW x+0(FP), AX
MOVB AX, ret+4(FP)
MOVH AX, ret+4(FP) // ERROR "invalid MOVH of ret\+4\(FP\); byte is 1-byte value"
MOVW AX, ret+4(FP) // ERROR "invalid MOVW of ret\+4\(FP\); byte is 1-byte value"
MOVB AX, ret+3(FP) // ERROR "invalid offset ret\+3\(FP\); expected ret\+4\(FP\)"
RET
TEXT ·returnnamed(SB),0,$0-21
MOVB x+0(FP), AX
MOVW AX, r1+4(FP)
MOVH AX, r2+8(FP)
MOVW AX, r3+12(FP)
MOVW AX, r3_base+12(FP)
MOVW AX, r3_len+16(FP)
MOVB AX, r4+20(FP)
MOVB AX, r1+4(FP) // ERROR "invalid MOVB of r1\+4\(FP\); int is 4-byte value"
RET
// Copyright 2013 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// This file contains tests for the useless-assignment checker.
// +build vet_test
package main
type ST struct {
x int
}
func (s *ST) SetX(x int) {
// Accidental self-assignment; it should be "s.x = x"
x = x // ERROR "self-assignment of x to x"
// Another mistake
s.x = s.x // ERROR "self-assignment of s.x to s.x"
}
// Copyright 2013 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// +build vet_test
// This file contains tests for the atomic checker.
package main
import (
"sync/atomic"
)
type Counter uint64
func AtomicTests() {
x := uint64(1)
x = atomic.AddUint64(&x, 1) // ERROR "direct assignment to atomic value"
_, x = 10, atomic.AddUint64(&x, 1) // ERROR "direct assignment to atomic value"
x, _ = atomic.AddUint64(&x, 1), 10 // ERROR "direct assignment to atomic value"
y := &x
*y = atomic.AddUint64(y, 1) // ERROR "direct assignment to atomic value"
var su struct{ Counter uint64 }
su.Counter = atomic.AddUint64(&su.Counter, 1) // ERROR "direct assignment to atomic value"
z1 := atomic.AddUint64(&su.Counter, 1)
_ = z1 // Avoid err "z declared and not used"
var sp struct{ Counter *uint64 }
*sp.Counter = atomic.AddUint64(sp.Counter, 1) // ERROR "direct assignment to atomic value"
z2 := atomic.AddUint64(sp.Counter, 1)
_ = z2 // Avoid err "z declared and not used"
au := []uint64{10, 20}
au[0] = atomic.AddUint64(&au[0], 1) // ERROR "direct assignment to atomic value"
au[1] = atomic.AddUint64(&au[0], 1)
ap := []*uint64{&au[0], &au[1]}
*ap[0] = atomic.AddUint64(ap[0], 1) // ERROR "direct assignment to atomic value"
*ap[1] = atomic.AddUint64(ap[0], 1)
}
// Copyright 2013 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// This file contains tests for the buildtag checker.
// +build vet_test
// +builder // ERROR "possible malformed \+build comment"
// +build !ignore
package main
// +build toolate // ERROR "build comment appears too late in file"
var _ = 3
// This file contains misplaced or malformed build constraints.
// The Go tool will skip it, because the constraints are invalid.
// It serves only to test the tag checker during make test.
// Mention +build // ERROR "possible malformed \+build comment"
// +build !!bang // ERROR "invalid double negative in build constraint"
// +build @#$ // ERROR "invalid non-alphanumeric build constraint"
// +build toolate // ERROR "build comment appears too late in file"
package bad
// This is package 'bad' rather than 'main' so the erroneous build
// tag doesn't end up looking like a package doc for the vet command
// when examined by godoc.
// Copyright 2013 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// +build vet_test
// +build ignore
// This file contains tests for the dead code checker.
package main
type T int
var x interface{}
var c chan int
func external() int // ok
func _() int {
}
func _() int {
print(1)
}
func _() int {
print(1)
return 2
println() // ERROR "unreachable code"
}
func _() int {
L:
print(1)
goto L
println() // ERROR "unreachable code"
}
func _() int {
print(1)
panic(2)
println() // ERROR "unreachable code"
}
// but only builtin panic
func _() int {
var panic = func(int) {}
print(1)
panic(2)
println() // ok
}
func _() int {
{
print(1)
return 2
println() // ERROR "unreachable code"
}
println() // ok
}
func _() int {
{
print(1)
return 2
}
println() // ERROR "unreachable code"
}
func _() int {
L:
{
print(1)
goto L
println() // ERROR "unreachable code"
}
println() // ok
}
func _() int {
L:
{
print(1)
goto L
}
println() // ERROR "unreachable code"
}
func _() int {
print(1)
{
panic(2)
}
}
func _() int {
print(1)
{
panic(2)
println() // ERROR "unreachable code"
}
}
func _() int {
print(1)
{
panic(2)
}
println() // ERROR "unreachable code"
}
func _() int {
print(1)
return 2
{ // ERROR "unreachable code"
}
}
func _() int {
L:
print(1)
goto L
{ // ERROR "unreachable code"
}
}
func _() int {
print(1)
panic(2)
{ // ERROR "unreachable code"
}
}
func _() int {
{
print(1)
return 2
{ // ERROR "unreachable code"
}
}
}
func _() int {
L:
{
print(1)
goto L
{ // ERROR "unreachable code"
}
}
}
func _() int {
print(1)
{
panic(2)
{ // ERROR "unreachable code"
}
}
}
func _() int {
{
print(1)
return 2
}
{ // ERROR "unreachable code"
}
}
func _() int {
L:
{
print(1)
goto L
}
{ // ERROR "unreachable code"
}
}
func _() int {
print(1)
{
panic(2)
}
{ // ERROR "unreachable code"
}
}
func _() int {
print(1)
if x == nil {
panic(2)
} else {
panic(3)
}
println() // ERROR "unreachable code"
}
func _() int {
L:
print(1)
if x == nil {
panic(2)
} else {
goto L
}
println() // ERROR "unreachable code"
}
func _() int {
L:
print(1)
if x == nil {
panic(2)
} else if x == 1 {
return 0
} else if x != 2 {
panic(3)
} else {
goto L
}
println() // ERROR "unreachable code"
}
// if-else chain missing final else is not okay, even if the
// conditions cover every possible case.
func _() int {
print(1)
if x == nil {
panic(2)
} else if x != nil {
panic(3)
}
println() // ok
}
func _() int {
print(1)
if x == nil {
panic(2)
}
println() // ok
}
func _() int {
L:
print(1)
if x == nil {
panic(2)
} else if x == 1 {
return 0
} else if x != 1 {
panic(3)
}
println() // ok
}
func _() int {
print(1)
for {
}
println() // ERROR "unreachable code"
}
func _() int {
for {
for {
break
}
}
println() // ERROR "unreachable code"
}
func _() int {
for {
for {
break
println() // ERROR "unreachable code"
}
}
}
func _() int {
for {
for {
continue
println() // ERROR "unreachable code"
}
}
}
func _() int {
for {
L:
for {
break L
}
}
println() // ERROR "unreachable code"
}
func _() int {
print(1)
for {
break
}
println() // ok
}
func _() int {
for {
for {
}
break // ERROR "unreachable code"
}
println() // ok
}
func _() int {
L:
for {
for {
break L
}
}
println() // ok
}
func _() int {
print(1)
for x == nil {
}
println() // ok
}
func _() int {
for x == nil {
for {
break
}
}
println() // ok
}
func _() int {
for x == nil {
L:
for {
break L
}
}
println() // ok
}
func _() int {
print(1)
for true {
}
println() // ok
}
func _() int {
for true {
for {
break
}
}
println() // ok
}
func _() int {
for true {
L:
for {
break L
}
}
println() // ok
}
func _() int {
print(1)
select {}
println() // ERROR "unreachable code"
}
func _() int {
print(1)
select {
case <-c:
print(2)
panic("abc")
println() // ERROR "unreachable code"
}
}
func _() int {
print(1)
select {
case <-c:
print(2)
panic("abc")
}
println() // ERROR "unreachable code"
}
func _() int {
print(1)
select {
case <-c:
print(2)
for {
}
println() // ERROR "unreachable code"
}
}
func _() int {
print(1)
select {
case <-c:
print(2)
for {
}
}
println() // ERROR "unreachable code"
}
func _() int {
L:
print(1)
select {
case <-c:
print(2)
panic("abc")
println() // ERROR "unreachable code"
case c <- 1:
print(2)
goto L
println() // ERROR "unreachable code"
}
}
func _() int {
L:
print(1)
select {
case <-c:
print(2)
panic("abc")
case c <- 1:
print(2)
goto L
}
println() // ERROR "unreachable code"
}
func _() int {
print(1)
select {
case <-c:
print(2)
panic("abc")
println() // ERROR "unreachable code"
default:
select {}
println() // ERROR "unreachable code"
}
}
func _() int {
print(1)
select {
case <-c:
print(2)
panic("abc")
default:
select {}
}
println() // ERROR "unreachable code"
}
func _() int {
print(1)
select {
case <-c:
print(2)
}
println() // ok
}
func _() int {
L:
print(1)
select {
case <-c:
print(2)
panic("abc")
goto L // ERROR "unreachable code"
case c <- 1:
print(2)
}
println() // ok
}
func _() int {
print(1)
select {
case <-c:
print(2)
panic("abc")
default:
print(2)
}
println() // ok
}
func _() int {
print(1)
select {
default:
break
}
println() // ok
}
func _() int {
print(1)
select {
case <-c:
print(2)
panic("abc")
break // ERROR "unreachable code"
}
println() // ok
}
func _() int {
print(1)
L:
select {
case <-c:
print(2)
for {
break L
}
}
println() // ok
}
func _() int {
print(1)
L:
select {
case <-c:
print(2)
panic("abc")
case c <- 1:
print(2)
break L
}
println() // ok
}
func _() int {
print(1)
select {
case <-c:
print(1)
panic("abc")
default:
select {}
break // ERROR "unreachable code"
}
println() // ok
}
func _() int {
print(1)
switch x {
case 1:
print(2)
panic(3)
println() // ERROR "unreachable code"
default:
return 4
println() // ERROR "unreachable code"
}
}
func _() int {
print(1)
switch x {
case 1:
print(2)
panic(3)
default:
return 4
}
println() // ERROR "unreachable code"
}
func _() int {
print(1)
switch x {
default:
return 4
println() // ERROR "unreachable code"
case 1:
print(2)
panic(3)
println() // ERROR "unreachable code"
}
}
func _() int {
print(1)
switch x {
default:
return 4
case 1:
print(2)
panic(3)
}
println() // ERROR "unreachable code"
}
func _() int {
print(1)
switch x {
case 1:
print(2)
fallthrough
default:
return 4
println() // ERROR "unreachable code"
}
}
func _() int {
print(1)
switch x {
case 1:
print(2)
fallthrough
default:
return 4
}
println() // ERROR "unreachable code"
}
func _() int {
print(1)
switch {
}
println() // ok
}
func _() int {
print(1)
switch x {
case 1:
print(2)
panic(3)
case 2:
return 4
}
println() // ok
}
func _() int {
print(1)
switch x {
case 2:
return 4
case 1:
print(2)
panic(3)
}
println() // ok
}
func _() int {
print(1)
switch x {
case 1:
print(2)
fallthrough
case 2:
return 4
}
println() // ok
}
func _() int {
print(1)
switch x {
case 1:
print(2)
panic(3)
}
println() // ok
}
func _() int {
print(1)
L:
switch x {
case 1:
print(2)
panic(3)
break L // ERROR "unreachable code"
default:
return 4
}
println() // ok
}
func _() int {
print(1)
switch x {
default:
return 4
break // ERROR "unreachable code"
case 1:
print(2)
panic(3)
}
println() // ok
}
func _() int {
print(1)
L:
switch x {
case 1:
print(2)
for {
break L
}
default:
return 4
}
println() // ok
}
func _() int {
print(1)
switch x.(type) {
case int:
print(2)
panic(3)
println() // ERROR "unreachable code"
default:
return 4
println() // ERROR "unreachable code"
}
}
func _() int {
print(1)
switch x.(type) {
case int:
print(2)
panic(3)
default:
return 4
}
println() // ERROR "unreachable code"
}
func _() int {
print(1)
switch x.(type) {
default:
return 4
println() // ERROR "unreachable code"
case int:
print(2)
panic(3)
println() // ERROR "unreachable code"
}
}
func _() int {
print(1)
switch x.(type) {
default:
return 4
case int:
print(2)
panic(3)
}
println() // ERROR "unreachable code"
}
func _() int {
print(1)
switch x.(type) {
case int:
print(2)
fallthrough
default:
return 4
println() // ERROR "unreachable code"
}
}
func _() int {
print(1)
switch x.(type) {
case int:
print(2)
fallthrough
default:
return 4
}
println() // ERROR "unreachable code"
}
func _() int {
print(1)
switch {
}
println() // ok
}
func _() int {
print(1)
switch x.(type) {
case int:
print(2)
panic(3)
case float64:
return 4
}
println() // ok
}
func _() int {
print(1)
switch x.(type) {
case float64:
return 4
case int:
print(2)
panic(3)
}
println() // ok
}
func _() int {
print(1)
switch x.(type) {
case int:
print(2)
fallthrough
case float64:
return 4
}
println() // ok
}
func _() int {
print(1)
switch x.(type) {
case int:
print(2)
panic(3)
}
println() // ok
}
func _() int {
print(1)
L:
switch x.(type) {
case int:
print(2)
panic(3)
break L // ERROR "unreachable code"
default:
return 4
}
println() // ok
}
func _() int {
print(1)
switch x.(type) {
default:
return 4
break // ERROR "unreachable code"
case int:
print(2)
panic(3)
}
println() // ok
}
func _() int {
print(1)
L:
switch x.(type) {
case int:
print(2)
for {
break L
}
default:
return 4
}
println() // ok
}
// again, but without the leading print(1).
// testing that everything works when the terminating statement is first.
func _() int {
println() // ok
}
func _() int {
return 2
println() // ERROR "unreachable code"
}
func _() int {
L:
goto L
println() // ERROR "unreachable code"
}
func _() int {
panic(2)
println() // ERROR "unreachable code"
}
// but only builtin panic
func _() int {
var panic = func(int) {}
panic(2)
println() // ok
}
func _() int {
{
return 2
println() // ERROR "unreachable code"
}
}
func _() int {
{
return 2
}
println() // ERROR "unreachable code"
}
func _() int {
L:
{
goto L
println() // ERROR "unreachable code"
}
}
func _() int {
L:
{
goto L
}
println() // ERROR "unreachable code"
}
func _() int {
{
panic(2)
println() // ERROR "unreachable code"
}
}
func _() int {
{
panic(2)
}
println() // ERROR "unreachable code"
}
func _() int {
return 2
{ // ERROR "unreachable code"
}
println() // ok
}
func _() int {
L:
goto L
{ // ERROR "unreachable code"
}
println() // ok
}
func _() int {
panic(2)
{ // ERROR "unreachable code"
}
println() // ok
}
func _() int {
{
return 2
{ // ERROR "unreachable code"
}
}
println() // ok
}
func _() int {
L:
{
goto L
{ // ERROR "unreachable code"
}
}
println() // ok
}
func _() int {
{
panic(2)
{ // ERROR "unreachable code"
}
}
println() // ok
}
func _() int {
{
return 2
}
{ // ERROR "unreachable code"
}
println() // ok
}
func _() int {
L:
{
goto L
}
{ // ERROR "unreachable code"
}
println() // ok
}
func _() int {
{
panic(2)
}
{ // ERROR "unreachable code"
}
println() // ok
}
// again, with func literals
var _ = func() int {
}
var _ = func() int {
print(1)
}
var _ = func() int {
print(1)
return 2
println() // ERROR "unreachable code"
}
var _ = func() int {
L:
print(1)
goto L
println() // ERROR "unreachable code"
}
var _ = func() int {
print(1)
panic(2)
println() // ERROR "unreachable code"
}
// but only builtin panic
var _ = func() int {
var panic = func(int) {}
print(1)
panic(2)
println() // ok
}
var _ = func() int {
{
print(1)
return 2
println() // ERROR "unreachable code"
}
println() // ok
}
var _ = func() int {
{
print(1)
return 2
}
println() // ERROR "unreachable code"
}
var _ = func() int {
L:
{
print(1)
goto L
println() // ERROR "unreachable code"
}
println() // ok
}
var _ = func() int {
L:
{
print(1)
goto L
}
println() // ERROR "unreachable code"
}
var _ = func() int {
print(1)
{
panic(2)
}
}
var _ = func() int {
print(1)
{
panic(2)
println() // ERROR "unreachable code"
}
}
var _ = func() int {
print(1)
{
panic(2)
}
println() // ERROR "unreachable code"
}
var _ = func() int {
print(1)
return 2
{ // ERROR "unreachable code"
}
}
var _ = func() int {
L:
print(1)
goto L
{ // ERROR "unreachable code"
}
}
var _ = func() int {
print(1)
panic(2)
{ // ERROR "unreachable code"
}
}
var _ = func() int {
{
print(1)
return 2
{ // ERROR "unreachable code"
}
}
}
var _ = func() int {
L:
{
print(1)
goto L
{ // ERROR "unreachable code"
}
}
}
var _ = func() int {
print(1)
{
panic(2)
{ // ERROR "unreachable code"
}
}
}
var _ = func() int {
{
print(1)
return 2
}
{ // ERROR "unreachable code"
}
}
var _ = func() int {
L:
{
print(1)
goto L
}
{ // ERROR "unreachable code"
}
}
var _ = func() int {
print(1)
{
panic(2)
}
{ // ERROR "unreachable code"
}
}
var _ = func() int {
print(1)
if x == nil {
panic(2)
} else {
panic(3)
}
println() // ERROR "unreachable code"
}
var _ = func() int {
L:
print(1)
if x == nil {
panic(2)
} else {
goto L
}
println() // ERROR "unreachable code"
}
var _ = func() int {
L:
print(1)
if x == nil {
panic(2)
} else if x == 1 {
return 0
} else if x != 2 {
panic(3)
} else {
goto L
}
println() // ERROR "unreachable code"
}
// if-else chain missing final else is not okay, even if the
// conditions cover every possible case.
var _ = func() int {
print(1)
if x == nil {
panic(2)
} else if x != nil {
panic(3)
}
println() // ok
}
var _ = func() int {
print(1)
if x == nil {
panic(2)
}
println() // ok
}
var _ = func() int {
L:
print(1)
if x == nil {
panic(2)
} else if x == 1 {
return 0
} else if x != 1 {
panic(3)
}
println() // ok
}
var _ = func() int {
print(1)
for {
}
println() // ERROR "unreachable code"
}
var _ = func() int {
for {
for {
break
}
}
println() // ERROR "unreachable code"
}
var _ = func() int {
for {
for {
break
println() // ERROR "unreachable code"
}
}
}
var _ = func() int {
for {
for {
continue
println() // ERROR "unreachable code"
}
}
}
var _ = func() int {
for {
L:
for {
break L
}
}
println() // ERROR "unreachable code"
}
var _ = func() int {
print(1)
for {
break
}
println() // ok
}
var _ = func() int {
for {
for {
}
break // ERROR "unreachable code"
}
println() // ok
}
var _ = func() int {
L:
for {
for {
break L
}
}
println() // ok
}
var _ = func() int {
print(1)
for x == nil {
}
println() // ok
}
var _ = func() int {
for x == nil {
for {
break
}
}
println() // ok
}
var _ = func() int {
for x == nil {
L:
for {
break L
}
}
println() // ok
}
var _ = func() int {
print(1)
for true {
}
println() // ok
}
var _ = func() int {
for true {
for {
break
}
}
println() // ok
}
var _ = func() int {
for true {
L:
for {
break L
}
}
println() // ok
}
var _ = func() int {
print(1)
select {}
println() // ERROR "unreachable code"
}
var _ = func() int {
print(1)
select {
case <-c:
print(2)
panic("abc")
println() // ERROR "unreachable code"
}
}
var _ = func() int {
print(1)
select {
case <-c:
print(2)
panic("abc")
}
println() // ERROR "unreachable code"
}
var _ = func() int {
print(1)
select {
case <-c:
print(2)
for {
}
println() // ERROR "unreachable code"
}
}
var _ = func() int {
print(1)
select {
case <-c:
print(2)
for {
}
}
println() // ERROR "unreachable code"
}
var _ = func() int {
L:
print(1)
select {
case <-c:
print(2)
panic("abc")
println() // ERROR "unreachable code"
case c <- 1:
print(2)
goto L
println() // ERROR "unreachable code"
}
}
var _ = func() int {
L:
print(1)
select {
case <-c:
print(2)
panic("abc")
case c <- 1:
print(2)
goto L
}
println() // ERROR "unreachable code"
}
var _ = func() int {
print(1)
select {
case <-c:
print(2)
panic("abc")
println() // ERROR "unreachable code"
default:
select {}
println() // ERROR "unreachable code"
}
}
var _ = func() int {
print(1)
select {
case <-c:
print(2)
panic("abc")
default:
select {}
}
println() // ERROR "unreachable code"
}
var _ = func() int {
print(1)
select {
case <-c:
print(2)
}
println() // ok
}
var _ = func() int {
L:
print(1)
select {
case <-c:
print(2)
panic("abc")
goto L // ERROR "unreachable code"
case c <- 1:
print(2)
}
println() // ok
}
var _ = func() int {
print(1)
select {
case <-c:
print(2)
panic("abc")
default:
print(2)
}
println() // ok
}
var _ = func() int {
print(1)
select {
default:
break
}
println() // ok
}
var _ = func() int {
print(1)
select {
case <-c:
print(2)
panic("abc")
break // ERROR "unreachable code"
}
println() // ok
}
var _ = func() int {
print(1)
L:
select {
case <-c:
print(2)
for {
break L
}
}
println() // ok
}
var _ = func() int {
print(1)
L:
select {
case <-c:
print(2)
panic("abc")
case c <- 1:
print(2)
break L
}
println() // ok
}
var _ = func() int {
print(1)
select {
case <-c:
print(1)
panic("abc")
default:
select {}
break // ERROR "unreachable code"
}
println() // ok
}
var _ = func() int {
print(1)
switch x {
case 1:
print(2)
panic(3)
println() // ERROR "unreachable code"
default:
return 4
println() // ERROR "unreachable code"
}
}
var _ = func() int {
print(1)
switch x {
case 1:
print(2)
panic(3)
default:
return 4
}
println() // ERROR "unreachable code"
}
var _ = func() int {
print(1)
switch x {
default:
return 4
println() // ERROR "unreachable code"
case 1:
print(2)
panic(3)
println() // ERROR "unreachable code"
}
}
var _ = func() int {
print(1)
switch x {
default:
return 4
case 1:
print(2)
panic(3)
}
println() // ERROR "unreachable code"
}
var _ = func() int {
print(1)
switch x {
case 1:
print(2)
fallthrough
default:
return 4
println() // ERROR "unreachable code"
}
}
var _ = func() int {
print(1)
switch x {
case 1:
print(2)
fallthrough
default:
return 4
}
println() // ERROR "unreachable code"
}
var _ = func() int {
print(1)
switch {
}
println() // ok
}
var _ = func() int {
print(1)
switch x {
case 1:
print(2)
panic(3)
case 2:
return 4
}
println() // ok
}
var _ = func() int {
print(1)
switch x {
case 2:
return 4
case 1:
print(2)
panic(3)
}
println() // ok
}
var _ = func() int {
print(1)
switch x {
case 1:
print(2)
fallthrough
case 2:
return 4
}
println() // ok
}
var _ = func() int {
print(1)
switch x {
case 1:
print(2)
panic(3)
}
println() // ok
}
var _ = func() int {
print(1)
L:
switch x {
case 1:
print(2)
panic(3)
break L // ERROR "unreachable code"
default:
return 4
}
println() // ok
}
var _ = func() int {
print(1)
switch x {
default:
return 4
break // ERROR "unreachable code"
case 1:
print(2)
panic(3)
}
println() // ok
}
var _ = func() int {
print(1)
L:
switch x {
case 1:
print(2)
for {
break L
}
default:
return 4
}
println() // ok
}
var _ = func() int {
print(1)
switch x.(type) {
case int:
print(2)
panic(3)
println() // ERROR "unreachable code"
default:
return 4
println() // ERROR "unreachable code"
}
}
var _ = func() int {
print(1)
switch x.(type) {
case int:
print(2)
panic(3)
default:
return 4
}
println() // ERROR "unreachable code"
}
var _ = func() int {
print(1)
switch x.(type) {
default:
return 4
println() // ERROR "unreachable code"
case int:
print(2)
panic(3)
println() // ERROR "unreachable code"
}
}
var _ = func() int {
print(1)
switch x.(type) {
default:
return 4
case int:
print(2)
panic(3)
}
println() // ERROR "unreachable code"
}
var _ = func() int {
print(1)
switch x.(type) {
case int:
print(2)
fallthrough
default:
return 4
println() // ERROR "unreachable code"
}
}
var _ = func() int {
print(1)
switch x.(type) {
case int:
print(2)
fallthrough
default:
return 4
}
println() // ERROR "unreachable code"
}
var _ = func() int {
print(1)
switch {
}
println() // ok
}
var _ = func() int {
print(1)
switch x.(type) {
case int:
print(2)
panic(3)
case float64:
return 4
}
println() // ok
}
var _ = func() int {
print(1)
switch x.(type) {
case float64:
return 4
case int:
print(2)
panic(3)
}
println() // ok
}
var _ = func() int {
print(1)
switch x.(type) {
case int:
print(2)
fallthrough
case float64:
return 4
}
println() // ok
}
var _ = func() int {
print(1)
switch x.(type) {
case int:
print(2)
panic(3)
}
println() // ok
}
var _ = func() int {
print(1)
L:
switch x.(type) {
case int:
print(2)
panic(3)
break L // ERROR "unreachable code"
default:
return 4
}
println() // ok
}
var _ = func() int {
print(1)
switch x.(type) {
default:
return 4
break // ERROR "unreachable code"
case int:
print(2)
panic(3)
}
println() // ok
}
var _ = func() int {
print(1)
L:
switch x.(type) {
case int:
print(2)
for {
break L
}
default:
return 4
}
println() // ok
}
// again, but without the leading print(1).
// testing that everything works when the terminating statement is first.
var _ = func() int {
println() // ok
}
var _ = func() int {
return 2
println() // ERROR "unreachable code"
}
var _ = func() int {
L:
goto L
println() // ERROR "unreachable code"
}
var _ = func() int {
panic(2)
println() // ERROR "unreachable code"
}
// but only builtin panic
var _ = func() int {
var panic = func(int) {}
panic(2)
println() // ok
}
var _ = func() int {
{
return 2
println() // ERROR "unreachable code"
}
}
var _ = func() int {
{
return 2
}
println() // ERROR "unreachable code"
}
var _ = func() int {
L:
{
goto L
println() // ERROR "unreachable code"
}
}
var _ = func() int {
L:
{
goto L
}
println() // ERROR "unreachable code"
}
var _ = func() int {
{
panic(2)
println() // ERROR "unreachable code"
}
}
var _ = func() int {
{
panic(2)
}
println() // ERROR "unreachable code"
}
var _ = func() int {
return 2
{ // ERROR "unreachable code"
}
println() // ok
}
var _ = func() int {
L:
goto L
{ // ERROR "unreachable code"
}
println() // ok
}
var _ = func() int {
panic(2)
{ // ERROR "unreachable code"
}
println() // ok
}
var _ = func() int {
{
return 2
{ // ERROR "unreachable code"
}
}
println() // ok
}
var _ = func() int {
L:
{
goto L
{ // ERROR "unreachable code"
}
}
println() // ok
}
var _ = func() int {
{
panic(2)
{ // ERROR "unreachable code"
}
}
println() // ok
}
var _ = func() int {
{
return 2
}
{ // ERROR "unreachable code"
}
println() // ok
}
var _ = func() int {
L:
{
goto L
}
{ // ERROR "unreachable code"
}
println() // ok
}
var _ = func() int {
{
panic(2)
}
{ // ERROR "unreachable code"
}
println() // ok
}
// Copyright 2010 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// This file contains tests for the canonical method checker.
// +build vet_test
// This file contains the code to check canonical methods.
package main
import (
"fmt"
)
type MethodTest int
func (t *MethodTest) Scan(x fmt.ScanState, c byte) { // ERROR "should have signature Scan"
}
type MethodTestInterface interface {
ReadByte() byte // ERROR "should have signature ReadByte"
}
// Copyright 2010 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// +build vet_test
// This file contains tests for the printf checker.
package main
import (
"fmt"
"unsafe" // just for test case printing unsafe.Pointer
)
func UnsafePointerPrintfTest() {
var up unsafe.Pointer
fmt.Printf("%p, %x %X", up, up, up)
}
// Error methods that do not satisfy the Error interface and should be checked.
type errorTest1 int
func (errorTest1) Error(...interface{}) string {
return "hi"
}
type errorTest2 int // Analogous to testing's *T type.
func (errorTest2) Error(...interface{}) {
}
type errorTest3 int
func (errorTest3) Error() { // No return value.
}
type errorTest4 int
func (errorTest4) Error() int { // Different return type.
return 3
}
type errorTest5 int
func (errorTest5) error() { // niladic; don't complain if no args (was bug)
}
// This function never executes, but it serves as a simple test for the program.
// Test with make test.
func PrintfTests() {
var b bool
var i int
var r rune
var s string
var x float64
var p *int
// Some good format/argtypes
fmt.Printf("")
fmt.Printf("%b %b", 3, i)
fmt.Printf("%c %c %c %c", 3, i, 'x', r)
fmt.Printf("%d %d", 3, i)
fmt.Printf("%e %e", 3e9, x)
fmt.Printf("%E %E", 3e9, x)
fmt.Printf("%f %f", 3e9, x)
fmt.Printf("%F %F", 3e9, x)
fmt.Printf("%g %g", 3e9, x)
fmt.Printf("%G %G", 3e9, x)
fmt.Printf("%o %o", 3, i)
fmt.Printf("%p %p", p, nil)
fmt.Printf("%q %q %q %q", 3, i, 'x', r)
fmt.Printf("%s %s", "hi", s)
fmt.Printf("%t %t", true, b)
fmt.Printf("%T %T", 3, i)
fmt.Printf("%U %U", 3, i)
fmt.Printf("%v %v", 3, i)
fmt.Printf("%x %x %x %x", 3, i, "hi", s)
fmt.Printf("%X %X %X %X", 3, i, "hi", s)
fmt.Printf("%.*s %d %g", 3, "hi", 23, 2.3)
// Some bad format/argTypes
fmt.Printf("%b", "hi") // ERROR "arg .hi. for printf verb %b of wrong type"
fmt.Printf("%c", 2.3) // ERROR "arg 2.3 for printf verb %c of wrong type"
fmt.Printf("%d", 2.3) // ERROR "arg 2.3 for printf verb %d of wrong type"
fmt.Printf("%e", "hi") // ERROR "arg .hi. for printf verb %e of wrong type"
fmt.Printf("%E", true) // ERROR "arg true for printf verb %E of wrong type"
fmt.Printf("%f", "hi") // ERROR "arg .hi. for printf verb %f of wrong type"
fmt.Printf("%F", 'x') // ERROR "arg 'x' for printf verb %F of wrong type"
fmt.Printf("%g", "hi") // ERROR "arg .hi. for printf verb %g of wrong type"
fmt.Printf("%G", i) // ERROR "arg i for printf verb %G of wrong type"
fmt.Printf("%o", x) // ERROR "arg x for printf verb %o of wrong type"
fmt.Printf("%p", 23) // ERROR "arg 23 for printf verb %p of wrong type"
fmt.Printf("%q", x) // ERROR "arg x for printf verb %q of wrong type"
fmt.Printf("%s", b) // ERROR "arg b for printf verb %s of wrong type"
fmt.Printf("%t", 23) // ERROR "arg 23 for printf verb %t of wrong type"
fmt.Printf("%U", x) // ERROR "arg x for printf verb %U of wrong type"
fmt.Printf("%x", nil) // ERROR "arg nil for printf verb %x of wrong type"
fmt.Printf("%X", 2.3) // ERROR "arg 2.3 for printf verb %X of wrong type"
fmt.Printf("%.*s %d %g", 3, "hi", 23, 'x') // ERROR "arg 'x' for printf verb %g of wrong type"
// TODO
fmt.Println() // not an error
fmt.Println("%s", "hi") // ERROR "possible formatting directive in Println call"
fmt.Printf("%s", "hi", 3) // ERROR "wrong number of args for format in Printf call"
fmt.Printf("%"+("s"), "hi", 3) // ERROR "wrong number of args for format in Printf call"
fmt.Printf("%s%%%d", "hi", 3) // correct
fmt.Printf("%08s", "woo") // correct
fmt.Printf("% 8s", "woo") // correct
fmt.Printf("%.*d", 3, 3) // correct
fmt.Printf("%.*d", 3, 3, 3) // ERROR "wrong number of args for format in Printf call"
fmt.Printf("%.*d", "hi", 3) // ERROR "arg .hi. for \* in printf format not of type int"
fmt.Printf("%.*d", i, 3) // correct
fmt.Printf("%.*d", s, 3) // ERROR "arg s for \* in printf format not of type int"
fmt.Printf("%q %q", multi()...) // ok
fmt.Printf("%#q", `blah`) // ok
printf("now is the time", "buddy") // ERROR "no formatting directive"
Printf("now is the time", "buddy") // ERROR "no formatting directive"
Printf("hi") // ok
const format = "%s %s\n"
Printf(format, "hi", "there")
Printf(format, "hi") // ERROR "wrong number of args for format in Printf call"
f := new(File)
f.Warn(0, "%s", "hello", 3) // ERROR "possible formatting directive in Warn call"
f.Warnf(0, "%s", "hello", 3) // ERROR "wrong number of args for format in Warnf call"
f.Warnf(0, "%r", "hello") // ERROR "unrecognized printf verb"
f.Warnf(0, "%#s", "hello") // ERROR "unrecognized printf flag"
// Something that satisfies the error interface.
var e error
fmt.Println(e.Error()) // ok
// Something that looks like an error interface but isn't, such as the (*T).Error method
// in the testing package.
var et1 errorTest1
fmt.Println(et1.Error()) // ERROR "no args in Error call"
fmt.Println(et1.Error("hi")) // ok
fmt.Println(et1.Error("%d", 3)) // ERROR "possible formatting directive in Error call"
var et2 errorTest2
et2.Error() // ERROR "no args in Error call"
et2.Error("hi") // ok, not an error method.
et2.Error("%d", 3) // ERROR "possible formatting directive in Error call"
var et3 errorTest3
et3.Error() // ok, not an error method.
var et4 errorTest4
et4.Error() // ok, not an error method.
var et5 errorTest5
et5.error() // ok, not an error method.
}
// printf is used by the test.
func printf(format string, args ...interface{}) {
panic("don't call - testing only")
}
// multi is used by the test.
func multi() []interface{} {
panic("don't call - testing only")
}
// Copyright 2012 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// This file contains tests for the rangeloop checker.
// +build vet_test
package main
func RangeLoopTests() {
var s []int
for i, v := range s {
go func() {
println(i) // ERROR "range variable i enclosed by function"
println(v) // ERROR "range variable v enclosed by function"
}()
}
for i, v := range s {
defer func() {
println(i) // ERROR "range variable i enclosed by function"
println(v) // ERROR "range variable v enclosed by function"
}()
}
for i := range s {
go func() {
println(i) // ERROR "range variable i enclosed by function"
}()
}
for _, v := range s {
go func() {
println(v) // ERROR "range variable v enclosed by function"
}()
}
for i, v := range s {
go func() {
println(i, v)
}()
println("unfortunately, we don't catch the error above because of this statement")
}
for i, v := range s {
go func(i, v int) {
println(i, v)
}(i, v)
}
for i, v := range s {
i, v := i, v
go func() {
println(i, v)
}()
}
// If the key of the range statement is not an identifier
// the code should not panic (it used to).
var x [2]int
var f int
for x[0], f = range s {
go func() {
_ = f // ERROR "range variable f enclosed by function"
}()
}
}
// Copyright 2010 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// This file contains tests for the structtag checker.
// +build vet_test
// This file contains the test for canonical struct tags.
package main
type StructTagTest struct {
X int "hello" // ERROR "not compatible with reflect.StructTag.Get"
}
// Copyright 2012 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// This file contains tests for the untagged struct literal checker.
// +build vet_test
// This file contains the test for untagged struct literals.
package main
import (
"flag"
"go/scanner"
)
var Okay1 = []string{
"Name",
"Usage",
"DefValue",
}
var Okay2 = map[string]bool{
"Name": true,
"Usage": true,
"DefValue": true,
}
var Okay3 = struct {
X string
Y string
Z string
}{
"Name",
"Usage",
"DefValue",
}
type MyStruct struct {
X string
Y string
Z string
}
var Okay4 = MyStruct{
"Name",
"Usage",
"DefValue",
}
// Testing is awkward because we need to reference things from a separate package
// to trigger the warnings.
var BadStructLiteralUsedInTests = flag.Flag{ // ERROR "untagged fields"
"Name",
"Usage",
nil, // Value
"DefValue",
}
// Used to test the check for slices and arrays: If that test is disabled and
// vet is run with --compositewhitelist=false, this line triggers an error.
// Clumsy but sufficient.
var scannerErrorListTest = scanner.ErrorList{nil, nil}
// Copyright 2010 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// +build gotypes
// This file contains the pieces of the tool that require the go/types package.
// To compile this file, you must first run
// $ go get code.google.com/p/go.exp/go/types
package main
import (
"go/ast"
"go/token"
"code.google.com/p/go.exp/go/exact"
"code.google.com/p/go.exp/go/types"
)
// Type is equivalent to types.Type. Repeating it here allows us to avoid
// having main depend on the go/types package.
type Type interface {
String() string
}
// ExactValue is equivalent to exact.Value. Repeating it here allows us to
// avoid having main depend on the go/exact package.
type ExactValue interface {
Kind() exact.Kind
String() string
}
func (pkg *Package) check(fs *token.FileSet, astFiles []*ast.File) error {
pkg.types = make(map[ast.Expr]Type)
pkg.values = make(map[ast.Expr]ExactValue)
exprFn := func(x ast.Expr, typ types.Type, val exact.Value) {
pkg.types[x] = typ
if val != nil {
pkg.values[x] = val
}
}
// By providing the Context with our own error function, it will continue
// past the first error. There is no need for that function to do anything.
context := types.Context{
Expr: exprFn,
Error: func(error) {},
}
_, err := context.Check(fs, astFiles)
return err
}
// isStruct reports whether the composite literal c is a struct.
// If it is not (probably a struct), it returns a printable form of the type.
func (pkg *Package) isStruct(c *ast.CompositeLit) (bool, string) {
// Check that the CompositeLit's type is a slice or array (which needs no tag), if possible.
typ := pkg.types[c]
// If it's a named type, pull out the underlying type.
actual := typ
if namedType, ok := typ.(*types.NamedType); ok {
actual = namedType.Underlying
}
if actual == nil {
// No type information available. Assume true, so we do the check.
return true, ""
}
switch actual.(type) {
case *types.Struct:
return true, typ.String()
default:
return false, ""
}
}
func (f *File) matchArgType(t printfArgType, arg ast.Expr) bool {
// TODO: for now, we can only test builtin types and untyped constants.
typ := f.pkg.types[arg]
if typ == nil {
return true
}
basic, ok := typ.(*types.Basic)
if !ok {
return true
}
switch basic.Kind {
case types.Bool:
return t&argBool != 0
case types.Int, types.Int8, types.Int16, types.Int32, types.Int64:
fallthrough
case types.Uint, types.Uint8, types.Uint16, types.Uint32, types.Uint64, types.Uintptr:
return t&argInt != 0
case types.Float32, types.Float64, types.Complex64, types.Complex128:
return t&argFloat != 0
case types.String:
return t&argString != 0
case types.UnsafePointer:
return t&(argPointer|argInt) != 0
case types.UntypedBool:
return t&argBool != 0
case types.UntypedComplex:
return t&argFloat != 0
case types.UntypedFloat:
// If it's integral, we can use an int format.
switch f.pkg.values[arg].Kind() {
case exact.Int:
return t&(argInt|argFloat) != 0
}
return t&argFloat != 0
case types.UntypedInt:
return t&argInt != 0
case types.UntypedRune:
return t&(argInt|argRune) != 0
case types.UntypedString:
return t&argString != 0
case types.UntypedNil:
return t&argPointer != 0 // TODO?
case types.Invalid:
if *verbose {
f.Warnf(arg.Pos(), "printf argument %v has invalid or unknown type", arg)
}
return true // Probably a type check problem.
}
return false
}
// numArgsInSignature tells how many formal arguments the function type
// being called has.
func (f *File) numArgsInSignature(call *ast.CallExpr) int {
// Check the type of the function or method declaration
typ := f.pkg.types[call.Fun]
if typ == nil {
return 0
}
// The type must be a signature, but be sure for safety.
sig, ok := typ.(*types.Signature)
if !ok {
return 0
}
return len(sig.Params)
}
// isErrorMethodCall reports whether the call is of a method with signature
// func Error() string
// where "string" is the universe's string type. We know the method is called "Error".
func (f *File) isErrorMethodCall(call *ast.CallExpr) bool {
// Is it a selector expression? Otherwise it's a function call, not a method call.
sel, ok := call.Fun.(*ast.SelectorExpr)
if !ok {
return false
}
// The package is type-checked, so if there are no arguments, we're done.
if len(call.Args) > 0 {
return false
}
// Check the type of the method declaration
typ := f.pkg.types[sel]
if typ == nil {
return false
}
// The type must be a signature, but be sure for safety.
sig, ok := typ.(*types.Signature)
if !ok {
return false
}
// There must be a receiver for it to be a method call. Otherwise it is
// a function, not something that satisfies the error interface.
if sig.Recv == nil {
return false
}
// There must be no arguments. Already verified by type checking, but be thorough.
if len(sig.Params) > 0 {
return false
}
// Finally the real questions.
// There must be one result.
if len(sig.Results) != 1 {
return false
}
// It must have return type "string" from the universe.
result := sig.Results[0].Type
if types.IsIdentical(result, types.Typ[types.String]) {
return true
}
return false
}
// Copyright 2010 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// +build !gotypes
// This file contains stubs for the pieces of the tool that require the go/types package,
// to be used if go/types is not available.
package main
import (
"go/ast"
"go/token"
)
// Type is equivalent to go/types.Type. Repeating it here allows us to avoid
// having main depend on the go/types package.
type Type interface {
String() string
}
// ExactValue is a stub for exact.Value. Stubbing it here allows us to
// avoid having main depend on the go/exact package.
type ExactValue interface {
}
func (pkg *Package) check(fs *token.FileSet, astFiles []*ast.File) error {
return nil
}
func (pkg *Package) isStruct(c *ast.CompositeLit) (bool, string) {
return true, "" // Assume true, so we do the check.
}
func (f *File) matchArgType(t printfArgType, arg ast.Expr) bool {
return true // We can't tell without types.
}
func (f *File) numArgsInSignature(call *ast.CallExpr) int {
return 0 // We don't know.
}
func (f *File) isErrorMethodCall(call *ast.CallExpr) bool {
// Is it a selector expression? Otherwise it's a function call, not a method call.
if _, ok := call.Fun.(*ast.SelectorExpr); !ok {
return false
}
return true // Best guess we can make without types.
}
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment