Commit 33dfd352 authored by Michael Anthony Knyszek's avatar Michael Anthony Knyszek Committed by Michael Knyszek

runtime: remove old page allocator

This change removes the old page allocator from the runtime.

Updates #35112.

Change-Id: Ib20e1c030f869b6318cd6f4288a9befdbae1b771
Reviewed-on: https://go-review.googlesource.com/c/go/+/195700
Run-TryBot: Michael Knyszek <mknyszek@google.com>
TryBot-Result: Gobot Gobot <gobot@golang.org>
Reviewed-by: default avatarAustin Clements <austin@google.com>
parent e6135c27
......@@ -12,8 +12,6 @@ import (
"unsafe"
)
const OldPageAllocator = oldPageAllocator
var Fadd64 = fadd64
var Fsub64 = fsub64
var Fmul64 = fmul64
......@@ -356,16 +354,10 @@ func ReadMemStatsSlow() (base, slow MemStats) {
slow.BySize[i].Frees = bySize[i].Frees
}
if oldPageAllocator {
for i := mheap_.free.start(0, 0); i.valid(); i = i.next() {
slow.HeapReleased += uint64(i.span().released())
}
} else {
for i := mheap_.pages.start; i < mheap_.pages.end; i++ {
pg := mheap_.pages.chunks[i].scavenged.popcntRange(0, pallocChunkPages)
slow.HeapReleased += uint64(pg) * pageSize
}
}
// Unused space in the current arena also counts as released space.
slow.HeapReleased += uint64(mheap_.curArena.end - mheap_.curArena.base)
......@@ -543,170 +535,6 @@ func MapTombstoneCheck(m map[int]int) {
}
}
// UnscavHugePagesSlow returns the value of mheap_.freeHugePages
// and the number of unscavenged huge pages calculated by
// scanning the heap.
func UnscavHugePagesSlow() (uintptr, uintptr) {
var base, slow uintptr
// Run on the system stack to avoid deadlock from stack growth
// trying to acquire the heap lock.
systemstack(func() {
lock(&mheap_.lock)
base = mheap_.free.unscavHugePages
for _, s := range mheap_.allspans {
if s.state.get() == mSpanFree && !s.scavenged {
slow += s.hugePages()
}
}
unlock(&mheap_.lock)
})
return base, slow
}
// Span is a safe wrapper around an mspan, whose memory
// is managed manually.
type Span struct {
*mspan
}
func AllocSpan(base, npages uintptr, scavenged bool) Span {
var s *mspan
systemstack(func() {
lock(&mheap_.lock)
s = (*mspan)(mheap_.spanalloc.alloc())
unlock(&mheap_.lock)
})
s.init(base, npages)
s.scavenged = scavenged
return Span{s}
}
func (s *Span) Free() {
systemstack(func() {
lock(&mheap_.lock)
mheap_.spanalloc.free(unsafe.Pointer(s.mspan))
unlock(&mheap_.lock)
})
s.mspan = nil
}
func (s Span) Base() uintptr {
return s.mspan.base()
}
func (s Span) Pages() uintptr {
return s.mspan.npages
}
type TreapIterType treapIterType
const (
TreapIterScav TreapIterType = TreapIterType(treapIterScav)
TreapIterHuge = TreapIterType(treapIterHuge)
TreapIterBits = treapIterBits
)
type TreapIterFilter treapIterFilter
func TreapFilter(mask, match TreapIterType) TreapIterFilter {
return TreapIterFilter(treapFilter(treapIterType(mask), treapIterType(match)))
}
func (s Span) MatchesIter(mask, match TreapIterType) bool {
return treapFilter(treapIterType(mask), treapIterType(match)).matches(s.treapFilter())
}
type TreapIter struct {
treapIter
}
func (t TreapIter) Span() Span {
return Span{t.span()}
}
func (t TreapIter) Valid() bool {
return t.valid()
}
func (t TreapIter) Next() TreapIter {
return TreapIter{t.next()}
}
func (t TreapIter) Prev() TreapIter {
return TreapIter{t.prev()}
}
// Treap is a safe wrapper around mTreap for testing.
//
// It must never be heap-allocated because mTreap is
// notinheap.
//
//go:notinheap
type Treap struct {
mTreap
}
func (t *Treap) Start(mask, match TreapIterType) TreapIter {
return TreapIter{t.start(treapIterType(mask), treapIterType(match))}
}
func (t *Treap) End(mask, match TreapIterType) TreapIter {
return TreapIter{t.end(treapIterType(mask), treapIterType(match))}
}
func (t *Treap) Insert(s Span) {
// mTreap uses a fixalloc in mheap_ for treapNode
// allocation which requires the mheap_ lock to manipulate.
// Locking here is safe because the treap itself never allocs
// or otherwise ends up grabbing this lock.
systemstack(func() {
lock(&mheap_.lock)
t.insert(s.mspan)
unlock(&mheap_.lock)
})
t.CheckInvariants()
}
func (t *Treap) Find(npages uintptr) TreapIter {
return TreapIter{t.find(npages)}
}
func (t *Treap) Erase(i TreapIter) {
// mTreap uses a fixalloc in mheap_ for treapNode
// freeing which requires the mheap_ lock to manipulate.
// Locking here is safe because the treap itself never allocs
// or otherwise ends up grabbing this lock.
systemstack(func() {
lock(&mheap_.lock)
t.erase(i.treapIter)
unlock(&mheap_.lock)
})
t.CheckInvariants()
}
func (t *Treap) RemoveSpan(s Span) {
// See Erase about locking.
systemstack(func() {
lock(&mheap_.lock)
t.removeSpan(s.mspan)
unlock(&mheap_.lock)
})
t.CheckInvariants()
}
func (t *Treap) Size() int {
i := 0
t.mTreap.treap.walkTreap(func(t *treapNode) {
i++
})
return i
}
func (t *Treap) CheckInvariants() {
t.mTreap.treap.walkTreap(checkTreapNode)
t.mTreap.treap.validateInvariants()
}
func RunGetgThreadSwitchTest() {
// Test that getg works correctly with thread switch.
// With gccgo, if we generate getg inlined, the backend
......
......@@ -464,29 +464,6 @@ func TestReadMemStats(t *testing.T) {
}
}
func TestUnscavHugePages(t *testing.T) {
if !runtime.OldPageAllocator {
// This test is only relevant for the old page allocator.
return
}
// Allocate 20 MiB and immediately free it a few times to increase
// the chance that unscavHugePages isn't zero and that some kind of
// accounting had to happen in the runtime.
for j := 0; j < 3; j++ {
var large [][]byte
for i := 0; i < 5; i++ {
large = append(large, make([]byte, runtime.PhysHugePageSize))
}
runtime.KeepAlive(large)
runtime.GC()
}
base, slow := runtime.UnscavHugePagesSlow()
if base != slow {
logDiff(t, "unscavHugePages", reflect.ValueOf(base), reflect.ValueOf(slow))
t.Fatal("unscavHugePages mismatch")
}
}
func logDiff(t *testing.T, prefix string, got, want reflect.Value) {
typ := got.Type()
switch typ.Kind() {
......
......@@ -317,9 +317,6 @@ const (
//
// This should agree with minZeroPage in the compiler.
minLegalPointer uintptr = 4096
// Whether to use the old page allocator or not.
oldPageAllocator = false
)
// physPageSize is the size in bytes of the OS's physical pages.
......
......@@ -177,10 +177,6 @@ func TestPhysicalMemoryUtilization(t *testing.T) {
}
func TestScavengedBitsCleared(t *testing.T) {
if OldPageAllocator {
// This test is only relevant for the new page allocator.
return
}
var mismatches [128]BitsMismatch
if n, ok := CheckScavengedBitsCleared(mismatches[:]); !ok {
t.Errorf("uncleared scavenged bits")
......
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Page heap.
//
// See malloc.go for the general overview.
//
// Allocation policy is the subject of this file. All free spans live in
// a treap for most of their time being free. See
// https://en.wikipedia.org/wiki/Treap or
// https://faculty.washington.edu/aragon/pubs/rst89.pdf for an overview.
// sema.go also holds an implementation of a treap.
//
// Each treapNode holds a single span. The treap is sorted by base address
// and each span necessarily has a unique base address.
// Spans are returned based on a first-fit algorithm, acquiring the span
// with the lowest base address which still satisfies the request.
//
// The first-fit algorithm is possible due to an augmentation of each
// treapNode to maintain the size of the largest span in the subtree rooted
// at that treapNode. Below we refer to this invariant as the maxPages
// invariant.
//
// The primary routines are
// insert: adds a span to the treap
// remove: removes the span from that treap that best fits the required size
// removeSpan: which removes a specific span from the treap
//
// Whenever a pointer to a span which is owned by the treap is acquired, that
// span must not be mutated. To mutate a span in the treap, remove it first.
//
// mheap_.lock must be held when manipulating this data structure.
package runtime
import (
"unsafe"
)
//go:notinheap
type mTreap struct {
treap *treapNode
unscavHugePages uintptr // number of unscavenged huge pages in the treap
}
//go:notinheap
type treapNode struct {
right *treapNode // all treapNodes > this treap node
left *treapNode // all treapNodes < this treap node
parent *treapNode // direct parent of this node, nil if root
key uintptr // base address of the span, used as primary sort key
span *mspan // span at base address key
maxPages uintptr // the maximum size of any span in this subtree, including the root
priority uint32 // random number used by treap algorithm to keep tree probabilistically balanced
types treapIterFilter // the types of spans available in this subtree
}
// updateInvariants is a helper method which has a node recompute its own
// maxPages and types values by looking at its own span as well as the
// values of its direct children.
//
// Returns true if anything changed.
func (t *treapNode) updateInvariants() bool {
m, i := t.maxPages, t.types
t.maxPages = t.span.npages
t.types = t.span.treapFilter()
if t.left != nil {
t.types |= t.left.types
if t.maxPages < t.left.maxPages {
t.maxPages = t.left.maxPages
}
}
if t.right != nil {
t.types |= t.right.types
if t.maxPages < t.right.maxPages {
t.maxPages = t.right.maxPages
}
}
return m != t.maxPages || i != t.types
}
// findMinimal finds the minimal (lowest base addressed) node in the treap
// which matches the criteria set out by the filter f and returns nil if
// none exists.
//
// This algorithm is functionally the same as (*mTreap).find, so see that
// method for more details.
func (t *treapNode) findMinimal(f treapIterFilter) *treapNode {
if t == nil || !f.matches(t.types) {
return nil
}
for t != nil {
if t.left != nil && f.matches(t.left.types) {
t = t.left
} else if f.matches(t.span.treapFilter()) {
break
} else if t.right != nil && f.matches(t.right.types) {
t = t.right
} else {
println("runtime: f=", f)
throw("failed to find minimal node matching filter")
}
}
return t
}
// findMaximal finds the maximal (highest base addressed) node in the treap
// which matches the criteria set out by the filter f and returns nil if
// none exists.
//
// This algorithm is the logical inversion of findMinimal and just changes
// the order of the left and right tests.
func (t *treapNode) findMaximal(f treapIterFilter) *treapNode {
if t == nil || !f.matches(t.types) {
return nil
}
for t != nil {
if t.right != nil && f.matches(t.right.types) {
t = t.right
} else if f.matches(t.span.treapFilter()) {
break
} else if t.left != nil && f.matches(t.left.types) {
t = t.left
} else {
println("runtime: f=", f)
throw("failed to find minimal node matching filter")
}
}
return t
}
// pred returns the predecessor of t in the treap subject to the criteria
// specified by the filter f. Returns nil if no such predecessor exists.
func (t *treapNode) pred(f treapIterFilter) *treapNode {
if t.left != nil && f.matches(t.left.types) {
// The node has a left subtree which contains at least one matching
// node, find the maximal matching node in that subtree.
return t.left.findMaximal(f)
}
// Lacking a left subtree, look to the parents.
p := t // previous node
t = t.parent
for t != nil {
// Walk up the tree until we find a node that has a left subtree
// that we haven't already visited.
if t.right == p {
if f.matches(t.span.treapFilter()) {
// If this node matches, then it's guaranteed to be the
// predecessor since everything to its left is strictly
// greater.
return t
} else if t.left != nil && f.matches(t.left.types) {
// Failing the root of this subtree, if its left subtree has
// something, that's where we'll find our predecessor.
return t.left.findMaximal(f)
}
}
p = t
t = t.parent
}
// If the parent is nil, then we've hit the root without finding
// a suitable left subtree containing the node (and the predecessor
// wasn't on the path). Thus, there's no predecessor, so just return
// nil.
return nil
}
// succ returns the successor of t in the treap subject to the criteria
// specified by the filter f. Returns nil if no such successor exists.
func (t *treapNode) succ(f treapIterFilter) *treapNode {
// See pred. This method is just the logical inversion of it.
if t.right != nil && f.matches(t.right.types) {
return t.right.findMinimal(f)
}
p := t
t = t.parent
for t != nil {
if t.left == p {
if f.matches(t.span.treapFilter()) {
return t
} else if t.right != nil && f.matches(t.right.types) {
return t.right.findMinimal(f)
}
}
p = t
t = t.parent
}
return nil
}
// isSpanInTreap is handy for debugging. One should hold the heap lock, usually
// mheap_.lock().
func (t *treapNode) isSpanInTreap(s *mspan) bool {
if t == nil {
return false
}
return t.span == s || t.left.isSpanInTreap(s) || t.right.isSpanInTreap(s)
}
// walkTreap is handy for debugging and testing.
// Starting at some treapnode t, for example the root, do a depth first preorder walk of
// the tree executing fn at each treap node. One should hold the heap lock, usually
// mheap_.lock().
func (t *treapNode) walkTreap(fn func(tn *treapNode)) {
if t == nil {
return
}
fn(t)
t.left.walkTreap(fn)
t.right.walkTreap(fn)
}
// checkTreapNode when used in conjunction with walkTreap can usually detect a
// poorly formed treap.
func checkTreapNode(t *treapNode) {
if t == nil {
return
}
if t.span.next != nil || t.span.prev != nil || t.span.list != nil {
throw("span may be on an mSpanList while simultaneously in the treap")
}
if t.span.base() != t.key {
println("runtime: checkTreapNode treapNode t=", t, " t.key=", t.key,
"t.span.base()=", t.span.base())
throw("why does span.base() and treap.key do not match?")
}
if t.left != nil && t.key < t.left.key {
throw("found out-of-order spans in treap (left child has greater base address)")
}
if t.right != nil && t.key > t.right.key {
throw("found out-of-order spans in treap (right child has lesser base address)")
}
}
// validateInvariants is handy for debugging and testing.
// It ensures that the various invariants on each treap node are
// appropriately maintained throughout the treap by walking the
// treap in a post-order manner.
func (t *treapNode) validateInvariants() (uintptr, treapIterFilter) {
if t == nil {
return 0, 0
}
leftMax, leftTypes := t.left.validateInvariants()
rightMax, rightTypes := t.right.validateInvariants()
max := t.span.npages
if leftMax > max {
max = leftMax
}
if rightMax > max {
max = rightMax
}
if max != t.maxPages {
println("runtime: t.maxPages=", t.maxPages, "want=", max)
throw("maxPages invariant violated in treap")
}
typ := t.span.treapFilter() | leftTypes | rightTypes
if typ != t.types {
println("runtime: t.types=", t.types, "want=", typ)
throw("types invariant violated in treap")
}
return max, typ
}
// treapIterType represents the type of iteration to perform
// over the treap. Each different flag is represented by a bit
// in the type, and types may be combined together by a bitwise
// or operation.
//
// Note that only 5 bits are available for treapIterType, do not
// use the 3 higher-order bits. This constraint is to allow for
// expansion into a treapIterFilter, which is a uint32.
type treapIterType uint8
const (
treapIterScav treapIterType = 1 << iota // scavenged spans
treapIterHuge // spans containing at least one huge page
treapIterBits = iota
)
// treapIterFilter is a bitwise filter of different spans by binary
// properties. Each bit of a treapIterFilter represents a unique
// combination of bits set in a treapIterType, in other words, it
// represents the power set of a treapIterType.
//
// The purpose of this representation is to allow the existence of
// a specific span type to bubble up in the treap (see the types
// field on treapNode).
//
// More specifically, any treapIterType may be transformed into a
// treapIterFilter for a specific combination of flags via the
// following operation: 1 << (0x1f&treapIterType).
type treapIterFilter uint32
// treapFilterAll represents the filter which allows all spans.
const treapFilterAll = ^treapIterFilter(0)
// treapFilter creates a new treapIterFilter from two treapIterTypes.
// mask represents a bitmask for which flags we should check against
// and match for the expected result after applying the mask.
func treapFilter(mask, match treapIterType) treapIterFilter {
allow := treapIterFilter(0)
for i := treapIterType(0); i < 1<<treapIterBits; i++ {
if mask&i == match {
allow |= 1 << i
}
}
return allow
}
// matches returns true if m and f intersect.
func (f treapIterFilter) matches(m treapIterFilter) bool {
return f&m != 0
}
// treapFilter returns the treapIterFilter exactly matching this span,
// i.e. popcount(result) == 1.
func (s *mspan) treapFilter() treapIterFilter {
have := treapIterType(0)
if s.scavenged {
have |= treapIterScav
}
if s.hugePages() > 0 {
have |= treapIterHuge
}
return treapIterFilter(uint32(1) << (0x1f & have))
}
// treapIter is a bidirectional iterator type which may be used to iterate over a
// an mTreap in-order forwards (increasing order) or backwards (decreasing order).
// Its purpose is to hide details about the treap from users when trying to iterate
// over it.
//
// To create iterators over the treap, call start or end on an mTreap.
type treapIter struct {
f treapIterFilter
t *treapNode
}
// span returns the span at the current position in the treap.
// If the treap is not valid, span will panic.
func (i *treapIter) span() *mspan {
return i.t.span
}
// valid returns whether the iterator represents a valid position
// in the mTreap.
func (i *treapIter) valid() bool {
return i.t != nil
}
// next moves the iterator forward by one. Once the iterator
// ceases to be valid, calling next will panic.
func (i treapIter) next() treapIter {
i.t = i.t.succ(i.f)
return i
}
// prev moves the iterator backwards by one. Once the iterator
// ceases to be valid, calling prev will panic.
func (i treapIter) prev() treapIter {
i.t = i.t.pred(i.f)
return i
}
// start returns an iterator which points to the start of the treap (the
// left-most node in the treap) subject to mask and match constraints.
func (root *mTreap) start(mask, match treapIterType) treapIter {
f := treapFilter(mask, match)
return treapIter{f, root.treap.findMinimal(f)}
}
// end returns an iterator which points to the end of the treap (the
// right-most node in the treap) subject to mask and match constraints.
func (root *mTreap) end(mask, match treapIterType) treapIter {
f := treapFilter(mask, match)
return treapIter{f, root.treap.findMaximal(f)}
}
// mutate allows one to mutate the span without removing it from the treap via a
// callback. The span's base and size are allowed to change as long as the span
// remains in the same order relative to its predecessor and successor.
//
// Note however that any operation that causes a treap rebalancing inside of fn
// is strictly forbidden, as that may cause treap node metadata to go
// out-of-sync.
func (root *mTreap) mutate(i treapIter, fn func(span *mspan)) {
s := i.span()
// Save some state about the span for later inspection.
hpages := s.hugePages()
scavenged := s.scavenged
// Call the mutator.
fn(s)
// Update unscavHugePages appropriately.
if !scavenged {
mheap_.free.unscavHugePages -= hpages
}
if !s.scavenged {
mheap_.free.unscavHugePages += s.hugePages()
}
// Update the key in case the base changed.
i.t.key = s.base()
// Updating invariants up the tree needs to happen if
// anything changed at all, so just go ahead and do it
// unconditionally.
//
// If it turns out nothing changed, it'll exit quickly.
t := i.t
for t != nil && t.updateInvariants() {
t = t.parent
}
}
// insert adds span to the large span treap.
func (root *mTreap) insert(span *mspan) {
if !span.scavenged {
root.unscavHugePages += span.hugePages()
}
base := span.base()
var last *treapNode
pt := &root.treap
for t := *pt; t != nil; t = *pt {
last = t
if t.key < base {
pt = &t.right
} else if t.key > base {
pt = &t.left
} else {
throw("inserting span already in treap")
}
}
// Add t as new leaf in tree of span size and unique addrs.
// The balanced tree is a treap using priority as the random heap priority.
// That is, it is a binary tree ordered according to the key,
// but then among the space of possible binary trees respecting those
// keys, it is kept balanced on average by maintaining a heap ordering
// on the priority: s.priority <= both s.right.priority and s.right.priority.
// https://en.wikipedia.org/wiki/Treap
// https://faculty.washington.edu/aragon/pubs/rst89.pdf
t := (*treapNode)(mheap_.treapalloc.alloc())
t.key = span.base()
t.priority = fastrand()
t.span = span
t.maxPages = span.npages
t.types = span.treapFilter()
t.parent = last
*pt = t // t now at a leaf.
// Update the tree to maintain the various invariants.
i := t
for i.parent != nil && i.parent.updateInvariants() {
i = i.parent
}
// Rotate up into tree according to priority.
for t.parent != nil && t.parent.priority > t.priority {
if t != nil && t.span.base() != t.key {
println("runtime: insert t=", t, "t.key=", t.key)
println("runtime: t.span=", t.span, "t.span.base()=", t.span.base())
throw("span and treap node base addresses do not match")
}
if t.parent.left == t {
root.rotateRight(t.parent)
} else {
if t.parent.right != t {
throw("treap insert finds a broken treap")
}
root.rotateLeft(t.parent)
}
}
}
func (root *mTreap) removeNode(t *treapNode) {
if !t.span.scavenged {
root.unscavHugePages -= t.span.hugePages()
}
if t.span.base() != t.key {
throw("span and treap node base addresses do not match")
}
// Rotate t down to be leaf of tree for removal, respecting priorities.
for t.right != nil || t.left != nil {
if t.right == nil || t.left != nil && t.left.priority < t.right.priority {
root.rotateRight(t)
} else {
root.rotateLeft(t)
}
}
// Remove t, now a leaf.
if t.parent != nil {
p := t.parent
if p.left == t {
p.left = nil
} else {
p.right = nil
}
// Walk up the tree updating invariants until no updates occur.
for p != nil && p.updateInvariants() {
p = p.parent
}
} else {
root.treap = nil
}
// Return the found treapNode's span after freeing the treapNode.
mheap_.treapalloc.free(unsafe.Pointer(t))
}
// find searches for, finds, and returns the treap iterator over all spans
// representing the position of the span with the smallest base address which is
// at least npages in size. If no span has at least npages it returns an invalid
// iterator.
//
// This algorithm is as follows:
// * If there's a left child and its subtree can satisfy this allocation,
// continue down that subtree.
// * If there's no such left child, check if the root of this subtree can
// satisfy the allocation. If so, we're done.
// * If the root cannot satisfy the allocation either, continue down the
// right subtree if able.
// * Else, break and report that we cannot satisfy the allocation.
//
// The preference for left, then current, then right, results in us getting
// the left-most node which will contain the span with the lowest base
// address.
//
// Note that if a request cannot be satisfied the fourth case will be
// reached immediately at the root, since neither the left subtree nor
// the right subtree will have a sufficient maxPages, whilst the root
// node is also unable to satisfy it.
func (root *mTreap) find(npages uintptr) treapIter {
t := root.treap
for t != nil {
if t.span == nil {
throw("treap node with nil span found")
}
// Iterate over the treap trying to go as far left
// as possible while simultaneously ensuring that the
// subtrees we choose always have a span which can
// satisfy the allocation.
if t.left != nil && t.left.maxPages >= npages {
t = t.left
} else if t.span.npages >= npages {
// Before going right, if this span can satisfy the
// request, stop here.
break
} else if t.right != nil && t.right.maxPages >= npages {
t = t.right
} else {
t = nil
}
}
return treapIter{treapFilterAll, t}
}
// removeSpan searches for, finds, deletes span along with
// the associated treap node. If the span is not in the treap
// then t will eventually be set to nil and the t.span
// will throw.
func (root *mTreap) removeSpan(span *mspan) {
base := span.base()
t := root.treap
for t.span != span {
if t.key < base {
t = t.right
} else if t.key > base {
t = t.left
}
}
root.removeNode(t)
}
// erase removes the element referred to by the current position of the
// iterator. This operation consumes the given iterator, so it should no
// longer be used. It is up to the caller to get the next or previous
// iterator before calling erase, if need be.
func (root *mTreap) erase(i treapIter) {
root.removeNode(i.t)
}
// rotateLeft rotates the tree rooted at node x.
// turning (x a (y b c)) into (y (x a b) c).
func (root *mTreap) rotateLeft(x *treapNode) {
// p -> (x a (y b c))
p := x.parent
a, y := x.left, x.right
b, c := y.left, y.right
y.left = x
x.parent = y
y.right = c
if c != nil {
c.parent = y
}
x.left = a
if a != nil {
a.parent = x
}
x.right = b
if b != nil {
b.parent = x
}
y.parent = p
if p == nil {
root.treap = y
} else if p.left == x {
p.left = y
} else {
if p.right != x {
throw("large span treap rotateLeft")
}
p.right = y
}
x.updateInvariants()
y.updateInvariants()
}
// rotateRight rotates the tree rooted at node y.
// turning (y (x a b) c) into (x a (y b c)).
func (root *mTreap) rotateRight(y *treapNode) {
// p -> (y (x a b) c)
p := y.parent
x, c := y.left, y.right
a, b := x.left, x.right
x.left = a
if a != nil {
a.parent = x
}
x.right = y
y.parent = x
y.left = b
if b != nil {
b.parent = y
}
y.right = c
if c != nil {
c.parent = y
}
x.parent = p
if p == nil {
root.treap = x
} else if p.left == y {
p.left = x
} else {
if p.right != y {
throw("large span treap rotateRight")
}
p.right = x
}
y.updateInvariants()
x.updateInvariants()
}
......@@ -136,9 +136,7 @@ func gcPaceScavenger() {
return
}
mheap_.scavengeGoal = retainedGoal
if !oldPageAllocator {
mheap_.pages.resetScavengeAddr()
}
}
// Sleep/wait state of the background scavenger.
......@@ -252,22 +250,12 @@ func bgscavenge(c chan int) {
unlock(&mheap_.lock)
return
}
if oldPageAllocator {
// Scavenge one page, and measure the amount of time spent scavenging.
start := nanotime()
released = mheap_.scavengeLocked(physPageSize)
crit = nanotime() - start
unlock(&mheap_.lock)
} else {
unlock(&mheap_.lock)
// Scavenge one page, and measure the amount of time spent scavenging.
start := nanotime()
released = mheap_.pages.scavengeOne(physPageSize, false)
crit = nanotime() - start
}
})
if debug.gctrace > 0 {
......
......@@ -32,7 +32,6 @@ type mheap struct {
// lock must only be acquired on the system stack, otherwise a g
// could self-deadlock if its stack grows with the lock held.
lock mutex
free mTreap // free spans
pages pageAlloc // page allocation data structure
sweepgen uint32 // sweep generation, see comment in mspan
sweepdone uint32 // all spans are swept
......@@ -192,7 +191,6 @@ type mheap struct {
spanalloc fixalloc // allocator for span*
cachealloc fixalloc // allocator for mcache*
treapalloc fixalloc // allocator for treapNodes*
specialfinalizeralloc fixalloc // allocator for specialfinalizer*
specialprofilealloc fixalloc // allocator for specialprofile*
speciallock mutex // lock for special record allocators.
......@@ -313,7 +311,6 @@ const (
mSpanDead mSpanState = iota
mSpanInUse // allocated for garbage collected heap
mSpanManual // allocated for manual management (e.g., stack allocator)
mSpanFree
)
// mSpanStateNames are the names of the span states, indexed by
......@@ -429,7 +426,6 @@ type mspan struct {
needzero uint8 // needs to be zeroed before allocation
divShift uint8 // for divide by elemsize - divMagic.shift
divShift2 uint8 // for divide by elemsize - divMagic.shift2
scavenged bool // whether this span has had its pages released to the OS
elemsize uintptr // computed from sizeclass or from npages
limit uintptr // end of data in span
speciallock mutex // guards specials list
......@@ -449,181 +445,6 @@ func (s *mspan) layout() (size, n, total uintptr) {
return
}
// physPageBounds returns the start and end of the span
// rounded in to the physical page size.
func (s *mspan) physPageBounds() (uintptr, uintptr) {
start := s.base()
end := start + s.npages<<_PageShift
if physPageSize > _PageSize {
// Round start and end in.
start = alignUp(start, physPageSize)
end = alignDown(end, physPageSize)
}
return start, end
}
func (h *mheap) coalesce(s *mspan) {
// merge is a helper which merges other into s, deletes references to other
// in heap metadata, and then discards it. other must be adjacent to s.
merge := func(a, b, other *mspan) {
// Caller must ensure a.startAddr < b.startAddr and that either a or
// b is s. a and b must be adjacent. other is whichever of the two is
// not s.
if pageSize < physPageSize && a.scavenged && b.scavenged {
// If we're merging two scavenged spans on systems where
// pageSize < physPageSize, then their boundary should always be on
// a physical page boundary, due to the realignment that happens
// during coalescing. Throw if this case is no longer true, which
// means the implementation should probably be changed to scavenge
// along the boundary.
_, start := a.physPageBounds()
end, _ := b.physPageBounds()
if start != end {
println("runtime: a.base=", hex(a.base()), "a.npages=", a.npages)
println("runtime: b.base=", hex(b.base()), "b.npages=", b.npages)
println("runtime: physPageSize=", physPageSize, "pageSize=", pageSize)
throw("neighboring scavenged spans boundary is not a physical page boundary")
}
}
// Adjust s via base and npages and also in heap metadata.
s.npages += other.npages
s.needzero |= other.needzero
if a == s {
h.setSpan(s.base()+s.npages*pageSize-1, s)
} else {
s.startAddr = other.startAddr
h.setSpan(s.base(), s)
}
// The size is potentially changing so the treap needs to delete adjacent nodes and
// insert back as a combined node.
h.free.removeSpan(other)
other.state.set(mSpanDead)
h.spanalloc.free(unsafe.Pointer(other))
}
// realign is a helper which shrinks other and grows s such that their
// boundary is on a physical page boundary.
realign := func(a, b, other *mspan) {
// Caller must ensure a.startAddr < b.startAddr and that either a or
// b is s. a and b must be adjacent. other is whichever of the two is
// not s.
// If pageSize >= physPageSize then spans are always aligned
// to physical page boundaries, so just exit.
if pageSize >= physPageSize {
return
}
// Since we're resizing other, we must remove it from the treap.
h.free.removeSpan(other)
// Round boundary to the nearest physical page size, toward the
// scavenged span.
boundary := b.startAddr
if a.scavenged {
boundary = alignDown(boundary, physPageSize)
} else {
boundary = alignUp(boundary, physPageSize)
}
a.npages = (boundary - a.startAddr) / pageSize
b.npages = (b.startAddr + b.npages*pageSize - boundary) / pageSize
b.startAddr = boundary
h.setSpan(boundary-1, a)
h.setSpan(boundary, b)
// Re-insert other now that it has a new size.
h.free.insert(other)
}
hpMiddle := s.hugePages()
// Coalesce with earlier, later spans.
var hpBefore uintptr
if before := spanOf(s.base() - 1); before != nil && before.state.get() == mSpanFree {
if s.scavenged == before.scavenged {
hpBefore = before.hugePages()
merge(before, s, before)
} else {
realign(before, s, before)
}
}
// Now check to see if next (greater addresses) span is free and can be coalesced.
var hpAfter uintptr
if after := spanOf(s.base() + s.npages*pageSize); after != nil && after.state.get() == mSpanFree {
if s.scavenged == after.scavenged {
hpAfter = after.hugePages()
merge(s, after, after)
} else {
realign(s, after, after)
}
}
if !s.scavenged && s.hugePages() > hpBefore+hpMiddle+hpAfter {
// If s has grown such that it now may contain more huge pages than it
// and its now-coalesced neighbors did before, then mark the whole region
// as huge-page-backable.
//
// Otherwise, on systems where we break up huge pages (like Linux)
// s may not be backed by huge pages because it could be made up of
// pieces which are broken up in the underlying VMA. The primary issue
// with this is that it can lead to a poor estimate of the amount of
// free memory backed by huge pages for determining the scavenging rate.
//
// TODO(mknyszek): Measure the performance characteristics of sysHugePage
// and determine whether it makes sense to only sysHugePage on the pages
// that matter, or if it's better to just mark the whole region.
sysHugePage(unsafe.Pointer(s.base()), s.npages*pageSize)
}
}
// hugePages returns the number of aligned physical huge pages in the memory
// regioned owned by this mspan.
func (s *mspan) hugePages() uintptr {
if physHugePageSize == 0 || s.npages < physHugePageSize/pageSize {
return 0
}
start := s.base()
end := start + s.npages*pageSize
if physHugePageSize > pageSize {
// Round start and end in.
start = alignUp(start, physHugePageSize)
end = alignDown(end, physHugePageSize)
}
if start < end {
return (end - start) >> physHugePageShift
}
return 0
}
func (s *mspan) scavenge() uintptr {
// start and end must be rounded in, otherwise madvise
// will round them *out* and release more memory
// than we want.
start, end := s.physPageBounds()
if end <= start {
// start and end don't span a whole physical page.
return 0
}
released := end - start
memstats.heap_released += uint64(released)
s.scavenged = true
sysUnused(unsafe.Pointer(start), released)
return released
}
// released returns the number of bytes in this span
// which were returned back to the OS.
func (s *mspan) released() uintptr {
if !s.scavenged {
return 0
}
start, end := s.physPageBounds()
return end - start
}
// recordspan adds a newly allocated span to h.allspans.
//
// This only happens the first time a span is allocated from
......@@ -840,7 +661,6 @@ func pageIndexOf(p uintptr) (arena *heapArena, pageIdx uintptr, pageMask uint8)
// Initialize the heap.
func (h *mheap) init() {
h.treapalloc.init(unsafe.Sizeof(treapNode{}), nil, nil, &memstats.other_sys)
h.spanalloc.init(unsafe.Sizeof(mspan{}), recordspan, unsafe.Pointer(h), &memstats.mspan_sys)
h.cachealloc.init(unsafe.Sizeof(mcache{}), nil, nil, &memstats.mcache_sys)
h.specialfinalizeralloc.init(unsafe.Sizeof(specialfinalizer{}), nil, nil, &memstats.other_sys)
......@@ -862,9 +682,7 @@ func (h *mheap) init() {
h.central[i].mcentral.init(spanClass(i))
}
if !oldPageAllocator {
h.pages.init(&h.lock, &memstats.gc_sys)
}
}
// reclaim sweeps and reclaims at least npage pages into the heap.
......@@ -1195,12 +1013,6 @@ func (h *mheap) allocManual(npage uintptr, stat *uint64) *mspan {
return s
}
// setSpan modifies the span map so spanOf(base) is s.
func (h *mheap) setSpan(base uintptr, s *mspan) {
ai := arenaIndex(base)
h.arenas[ai.l1()][ai.l2()].spans[(base/pageSize)%pagesPerArena] = s
}
// setSpans modifies the span map so [spanOf(base), spanOf(base+npage*pageSize))
// is s.
func (h *mheap) setSpans(base, npage uintptr, s *mspan) {
......@@ -1274,9 +1086,6 @@ func (h *mheap) allocNeedsZero(base, npage uintptr) (needZero bool) {
// The returned span has been removed from the
// free structures, but its state is still mSpanFree.
func (h *mheap) allocSpanLocked(npage uintptr, stat *uint64) *mspan {
if oldPageAllocator {
return h.allocSpanLockedOld(npage, stat)
}
base, scav := h.pages.alloc(npage)
if base != 0 {
goto HaveBase
......@@ -1311,97 +1120,13 @@ HaveBase:
return s
}
// Allocates a span of the given size. h must be locked.
// The returned span has been removed from the
// free structures, but its state is still mSpanFree.
func (h *mheap) allocSpanLockedOld(npage uintptr, stat *uint64) *mspan {
t := h.free.find(npage)
if t.valid() {
goto HaveSpan
}
if !h.grow(npage) {
return nil
}
t = h.free.find(npage)
if t.valid() {
goto HaveSpan
}
throw("grew heap, but no adequate free span found")
HaveSpan:
s := t.span()
if s.state.get() != mSpanFree {
throw("candidate mspan for allocation is not free")
}
// First, subtract any memory that was released back to
// the OS from s. We will add back what's left if necessary.
memstats.heap_released -= uint64(s.released())
if s.npages == npage {
h.free.erase(t)
} else if s.npages > npage {
// Trim off the lower bits and make that our new span.
// Do this in-place since this operation does not
// affect the original span's location in the treap.
n := (*mspan)(h.spanalloc.alloc())
h.free.mutate(t, func(s *mspan) {
n.init(s.base(), npage)
s.npages -= npage
s.startAddr = s.base() + npage*pageSize
h.setSpan(s.base()-1, n)
h.setSpan(s.base(), s)
h.setSpan(n.base(), n)
n.needzero = s.needzero
// n may not be big enough to actually be scavenged, but that's fine.
// We still want it to appear to be scavenged so that we can do the
// right bookkeeping later on in this function (i.e. sysUsed).
n.scavenged = s.scavenged
// Check if s is still scavenged.
if s.scavenged {
start, end := s.physPageBounds()
if start < end {
memstats.heap_released += uint64(end - start)
} else {
s.scavenged = false
}
}
})
s = n
} else {
throw("candidate mspan for allocation is too small")
}
// "Unscavenge" s only AFTER splitting so that
// we only sysUsed whatever we actually need.
if s.scavenged {
// sysUsed all the pages that are actually available
// in the span. Note that we don't need to decrement
// heap_released since we already did so earlier.
sysUsed(unsafe.Pointer(s.base()), s.npages<<_PageShift)
s.scavenged = false
}
h.setSpans(s.base(), npage, s)
*stat += uint64(npage << _PageShift)
memstats.heap_idle -= uint64(npage << _PageShift)
if s.inList() {
throw("still in list")
}
return s
}
// Try to add at least npage pages of memory to the heap,
// returning whether it worked.
//
// h must be locked.
func (h *mheap) grow(npage uintptr) bool {
ask := npage << _PageShift
if !oldPageAllocator {
// We must grow the heap in whole palloc chunks.
ask = alignUp(ask, pallocChunkBytes)
}
ask := alignUp(npage, pallocChunkPages) * pageSize
totalGrowth := uintptr(0)
nBase := alignUp(h.curArena.base+ask, physPageSize)
......@@ -1424,11 +1149,7 @@ func (h *mheap) grow(npage uintptr) bool {
// remains of the current space and switch to
// the new space. This should be rare.
if size := h.curArena.end - h.curArena.base; size != 0 {
if oldPageAllocator {
h.growAddSpan(unsafe.Pointer(h.curArena.base), size)
} else {
h.pages.grow(h.curArena.base, size)
}
totalGrowth += size
}
// Switch to the new space.
......@@ -1441,10 +1162,7 @@ func (h *mheap) grow(npage uintptr) bool {
//
// The allocation is always aligned to the heap arena
// size which is always > physPageSize, so its safe to
// just add directly to heap_released. Coalescing, if
// possible, will also always be correct in terms of
// accounting, because s.base() must be a physical
// page boundary.
// just add directly to heap_released.
memstats.heap_released += uint64(asize)
memstats.heap_idle += uint64(asize)
......@@ -1455,9 +1173,6 @@ func (h *mheap) grow(npage uintptr) bool {
// Grow into the current arena.
v := h.curArena.base
h.curArena.base = nBase
if oldPageAllocator {
h.growAddSpan(unsafe.Pointer(v), nBase-v)
} else {
h.pages.grow(v, nBase-v)
totalGrowth += nBase - v
......@@ -1472,33 +1187,9 @@ func (h *mheap) grow(npage uintptr) bool {
}
h.pages.scavenge(todo, true)
}
}
return true
}
// growAddSpan adds a free span when the heap grows into [v, v+size).
// This memory must be in the Prepared state (not Ready).
//
// h must be locked.
func (h *mheap) growAddSpan(v unsafe.Pointer, size uintptr) {
// Scavenge some pages to make up for the virtual memory space
// we just allocated, but only if we need to.
h.scavengeIfNeededLocked(size)
s := (*mspan)(h.spanalloc.alloc())
s.init(uintptr(v), size/pageSize)
h.setSpans(s.base(), s.npages, s)
s.state.set(mSpanFree)
// [v, v+size) is always in the Prepared state. The new span
// must be marked scavenged so the allocator transitions it to
// Ready when allocating from it.
s.scavenged = true
// This span is both released and idle, but grow already
// updated both memstats.
h.coalesce(s)
h.free.insert(s)
}
// Free the span back into the heap.
//
// large must match the value of large passed to mheap.alloc. This is
......@@ -1577,17 +1268,6 @@ func (h *mheap) freeSpanLocked(s *mspan, acctinuse, acctidle bool) {
memstats.heap_idle += uint64(s.npages << _PageShift)
}
if oldPageAllocator {
s.state.set(mSpanFree)
// Coalesce span with neighbors.
h.coalesce(s)
// Insert s into the treap.
h.free.insert(s)
return
}
// Mark the space as free.
h.pages.free(s.base(), s.npages)
......@@ -1596,118 +1276,6 @@ func (h *mheap) freeSpanLocked(s *mspan, acctinuse, acctidle bool) {
h.spanalloc.free(unsafe.Pointer(s))
}
// scavengeSplit takes t.span() and attempts to split off a span containing size
// (in bytes) worth of physical pages from the back.
//
// The split point is only approximately defined by size since the split point
// is aligned to physPageSize and pageSize every time. If physHugePageSize is
// non-zero and the split point would break apart a huge page in the span, then
// the split point is also aligned to physHugePageSize.
//
// If the desired split point ends up at the base of s, or if size is obviously
// much larger than s, then a split is not possible and this method returns nil.
// Otherwise if a split occurred it returns the newly-created span.
func (h *mheap) scavengeSplit(t treapIter, size uintptr) *mspan {
s := t.span()
start, end := s.physPageBounds()
if end <= start || end-start <= size {
// Size covers the whole span.
return nil
}
// The span is bigger than what we need, so compute the base for the new
// span if we decide to split.
base := end - size
// Round down to the next physical or logical page, whichever is bigger.
base &^= (physPageSize - 1) | (pageSize - 1)
if base <= start {
return nil
}
if physHugePageSize > pageSize && alignDown(base, physHugePageSize) >= start {
// We're in danger of breaking apart a huge page, so include the entire
// huge page in the bound by rounding down to the huge page size.
// base should still be aligned to pageSize.
base = alignDown(base, physHugePageSize)
}
if base == start {
// After all that we rounded base down to s.base(), so no need to split.
return nil
}
if base < start {
print("runtime: base=", base, ", s.npages=", s.npages, ", s.base()=", s.base(), ", size=", size, "\n")
print("runtime: physPageSize=", physPageSize, ", physHugePageSize=", physHugePageSize, "\n")
throw("bad span split base")
}
// Split s in-place, removing from the back.
n := (*mspan)(h.spanalloc.alloc())
nbytes := s.base() + s.npages*pageSize - base
h.free.mutate(t, func(s *mspan) {
n.init(base, nbytes/pageSize)
s.npages -= nbytes / pageSize
h.setSpan(n.base()-1, s)
h.setSpan(n.base(), n)
h.setSpan(n.base()+nbytes-1, n)
n.needzero = s.needzero
n.state.set(s.state.get())
})
return n
}
// scavengeLocked scavenges nbytes worth of spans in the free treap by
// starting from the span with the highest base address and working down.
// It then takes those spans and places them in scav.
//
// Returns the amount of memory scavenged in bytes. h must be locked.
func (h *mheap) scavengeLocked(nbytes uintptr) uintptr {
released := uintptr(0)
// Iterate over spans with huge pages first, then spans without.
const mask = treapIterScav | treapIterHuge
for _, match := range []treapIterType{treapIterHuge, 0} {
// Iterate over the treap backwards (from highest address to lowest address)
// scavenging spans until we've reached our quota of nbytes.
for t := h.free.end(mask, match); released < nbytes && t.valid(); {
s := t.span()
start, end := s.physPageBounds()
if start >= end {
// This span doesn't cover at least one physical page, so skip it.
t = t.prev()
continue
}
n := t.prev()
if span := h.scavengeSplit(t, nbytes-released); span != nil {
s = span
} else {
h.free.erase(t)
}
released += s.scavenge()
// Now that s is scavenged, we must eagerly coalesce it
// with its neighbors to prevent having two spans with
// the same scavenged state adjacent to each other.
h.coalesce(s)
t = n
h.free.insert(s)
}
}
return released
}
// scavengeIfNeededLocked scavenges memory assuming that size bytes of memory
// will become unscavenged soon. It only scavenges enough to bring heapRetained
// back down to the scavengeGoal.
//
// h must be locked.
func (h *mheap) scavengeIfNeededLocked(size uintptr) {
if r := heapRetained(); r+uint64(size) > h.scavengeGoal {
todo := uint64(size)
// If we're only going to go a little bit over, just request what
// we actually need done.
if overage := r + uint64(size) - h.scavengeGoal; overage < todo {
todo = overage
}
h.scavengeLocked(uintptr(todo))
}
}
// scavengeAll visits each node in the free treap and scavenges the
// treapNode's span. It then removes the scavenged span from
// unscav and adds it into scav before continuing.
......@@ -1718,12 +1286,7 @@ func (h *mheap) scavengeAll() {
gp := getg()
gp.m.mallocing++
lock(&h.lock)
var released uintptr
if oldPageAllocator {
released = h.scavengeLocked(^uintptr(0))
} else {
released = h.pages.scavenge(^uintptr(0), true)
}
released := h.pages.scavenge(^uintptr(0), true)
unlock(&h.lock)
gp.m.mallocing--
......@@ -1752,7 +1315,6 @@ func (span *mspan) init(base uintptr, npages uintptr) {
span.allocCount = 0
span.spanclass = 0
span.elemsize = 0
span.scavenged = false
span.speciallock.key = 0
span.specials = nil
span.needzero = 0
......
// Copyright 2019 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package runtime_test
import (
"fmt"
"runtime"
"testing"
)
var spanDesc = map[uintptr]struct {
pages uintptr
scav bool
}{
0xc0000000: {2, false},
0xc0006000: {1, false},
0xc0010000: {8, false},
0xc0022000: {7, false},
0xc0034000: {4, true},
0xc0040000: {5, false},
0xc0050000: {5, true},
0xc0060000: {5000, false},
}
// Wrap the Treap one more time because go:notinheap doesn't
// actually follow a structure across package boundaries.
//
//go:notinheap
type treap struct {
runtime.Treap
}
func maskMatchName(mask, match runtime.TreapIterType) string {
return fmt.Sprintf("%0*b-%0*b", runtime.TreapIterBits, uint8(mask), runtime.TreapIterBits, uint8(match))
}
func TestTreapFilter(t *testing.T) {
var iterTypes = [...]struct {
mask, match runtime.TreapIterType
filter runtime.TreapIterFilter // expected filter
}{
{0, 0, 0xf},
{runtime.TreapIterScav, 0, 0x5},
{runtime.TreapIterScav, runtime.TreapIterScav, 0xa},
{runtime.TreapIterScav | runtime.TreapIterHuge, runtime.TreapIterHuge, 0x4},
{runtime.TreapIterScav | runtime.TreapIterHuge, 0, 0x1},
{0, runtime.TreapIterScav, 0x0},
}
for _, it := range iterTypes {
t.Run(maskMatchName(it.mask, it.match), func(t *testing.T) {
if f := runtime.TreapFilter(it.mask, it.match); f != it.filter {
t.Fatalf("got %#x, want %#x", f, it.filter)
}
})
}
}
// This test ensures that the treap implementation in the runtime
// maintains all stated invariants after different sequences of
// insert, removeSpan, find, and erase. Invariants specific to the
// treap data structure are checked implicitly: after each mutating
// operation, treap-related invariants are checked for the entire
// treap.
func TestTreap(t *testing.T) {
// Set up a bunch of spans allocated into mheap_.
// Also, derive a set of typeCounts of each type of span
// according to runtime.TreapIterType so we can verify against
// them later.
spans := make([]runtime.Span, 0, len(spanDesc))
typeCounts := [1 << runtime.TreapIterBits][1 << runtime.TreapIterBits]int{}
for base, de := range spanDesc {
s := runtime.AllocSpan(base, de.pages, de.scav)
defer s.Free()
spans = append(spans, s)
for i := runtime.TreapIterType(0); i < 1<<runtime.TreapIterBits; i++ {
for j := runtime.TreapIterType(0); j < 1<<runtime.TreapIterBits; j++ {
if s.MatchesIter(i, j) {
typeCounts[i][j]++
}
}
}
}
t.Run("TypeCountsSanity", func(t *testing.T) {
// Just sanity check type counts for a few values.
check := func(mask, match runtime.TreapIterType, count int) {
tc := typeCounts[mask][match]
if tc != count {
name := maskMatchName(mask, match)
t.Fatalf("failed a sanity check for mask/match %s counts: got %d, wanted %d", name, tc, count)
}
}
check(0, 0, len(spanDesc))
check(runtime.TreapIterScav, 0, 6)
check(runtime.TreapIterScav, runtime.TreapIterScav, 2)
})
t.Run("Insert", func(t *testing.T) {
tr := treap{}
// Test just a very basic insert/remove for sanity.
tr.Insert(spans[0])
tr.RemoveSpan(spans[0])
})
t.Run("FindTrivial", func(t *testing.T) {
tr := treap{}
// Test just a very basic find operation for sanity.
tr.Insert(spans[0])
i := tr.Find(1)
if i.Span() != spans[0] {
t.Fatal("found unknown span in treap")
}
tr.RemoveSpan(spans[0])
})
t.Run("FindFirstFit", func(t *testing.T) {
// Run this 10 times, recreating the treap each time.
// Because of the non-deterministic structure of a treap,
// we'll be able to test different structures this way.
for i := 0; i < 10; i++ {
tr := runtime.Treap{}
for _, s := range spans {
tr.Insert(s)
}
i := tr.Find(5)
if i.Span().Base() != 0xc0010000 {
t.Fatalf("expected span at lowest address which could fit 5 pages, instead found span at %x", i.Span().Base())
}
for _, s := range spans {
tr.RemoveSpan(s)
}
}
})
t.Run("Iterate", func(t *testing.T) {
for mask := runtime.TreapIterType(0); mask < 1<<runtime.TreapIterBits; mask++ {
for match := runtime.TreapIterType(0); match < 1<<runtime.TreapIterBits; match++ {
iterName := maskMatchName(mask, match)
t.Run(iterName, func(t *testing.T) {
t.Run("StartToEnd", func(t *testing.T) {
// Ensure progressing an iterator actually goes over the whole treap
// from the start and that it iterates over the elements in order.
// Furthermore, ensure that it only iterates over the relevant parts
// of the treap.
// Finally, ensures that Start returns a valid iterator.
tr := treap{}
for _, s := range spans {
tr.Insert(s)
}
nspans := 0
lastBase := uintptr(0)
for i := tr.Start(mask, match); i.Valid(); i = i.Next() {
nspans++
if lastBase > i.Span().Base() {
t.Fatalf("not iterating in correct order: encountered base %x before %x", lastBase, i.Span().Base())
}
lastBase = i.Span().Base()
if !i.Span().MatchesIter(mask, match) {
t.Fatalf("found non-matching span while iteration over mask/match %s: base %x", iterName, i.Span().Base())
}
}
if nspans != typeCounts[mask][match] {
t.Fatal("failed to iterate forwards over full treap")
}
for _, s := range spans {
tr.RemoveSpan(s)
}
})
t.Run("EndToStart", func(t *testing.T) {
// See StartToEnd tests.
tr := treap{}
for _, s := range spans {
tr.Insert(s)
}
nspans := 0
lastBase := ^uintptr(0)
for i := tr.End(mask, match); i.Valid(); i = i.Prev() {
nspans++
if lastBase < i.Span().Base() {
t.Fatalf("not iterating in correct order: encountered base %x before %x", lastBase, i.Span().Base())
}
lastBase = i.Span().Base()
if !i.Span().MatchesIter(mask, match) {
t.Fatalf("found non-matching span while iteration over mask/match %s: base %x", iterName, i.Span().Base())
}
}
if nspans != typeCounts[mask][match] {
t.Fatal("failed to iterate backwards over full treap")
}
for _, s := range spans {
tr.RemoveSpan(s)
}
})
})
}
}
t.Run("Prev", func(t *testing.T) {
// Test the iterator invariant that i.prev().next() == i.
tr := treap{}
for _, s := range spans {
tr.Insert(s)
}
i := tr.Start(0, 0).Next().Next()
p := i.Prev()
if !p.Valid() {
t.Fatal("i.prev() is invalid")
}
if p.Next().Span() != i.Span() {
t.Fatal("i.prev().next() != i")
}
for _, s := range spans {
tr.RemoveSpan(s)
}
})
t.Run("Next", func(t *testing.T) {
// Test the iterator invariant that i.next().prev() == i.
tr := treap{}
for _, s := range spans {
tr.Insert(s)
}
i := tr.Start(0, 0).Next().Next()
n := i.Next()
if !n.Valid() {
t.Fatal("i.next() is invalid")
}
if n.Prev().Span() != i.Span() {
t.Fatal("i.next().prev() != i")
}
for _, s := range spans {
tr.RemoveSpan(s)
}
})
})
t.Run("EraseOne", func(t *testing.T) {
// Test that erasing one iterator correctly retains
// all relationships between elements.
tr := treap{}
for _, s := range spans {
tr.Insert(s)
}
i := tr.Start(0, 0).Next().Next().Next()
s := i.Span()
n := i.Next()
p := i.Prev()
tr.Erase(i)
if n.Prev().Span() != p.Span() {
t.Fatal("p, n := i.Prev(), i.Next(); n.prev() != p after i was erased")
}
if p.Next().Span() != n.Span() {
t.Fatal("p, n := i.Prev(), i.Next(); p.next() != n after i was erased")
}
tr.Insert(s)
for _, s := range spans {
tr.RemoveSpan(s)
}
})
t.Run("EraseAll", func(t *testing.T) {
// Test that erasing iterators actually removes nodes from the treap.
tr := treap{}
for _, s := range spans {
tr.Insert(s)
}
for i := tr.Start(0, 0); i.Valid(); {
n := i.Next()
tr.Erase(i)
i = n
}
if size := tr.Size(); size != 0 {
t.Fatalf("should have emptied out treap, %d spans left", size)
}
})
}
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment