Commit 3d1ce27b authored by Aram Hăvărneanu's avatar Aram Hăvărneanu

cmd/7l: add the ARM64 linker

Only internal linking without cgo is supported for now.

Change-Id: I91eb1572c1ccc805db62fc4c29080df98797d51a
Reviewed-on: https://go-review.googlesource.com/7048Reviewed-by: default avatarMinux Ma <minux@golang.org>
Reviewed-by: default avatarRuss Cox <rsc@golang.org>
parent 18d9ddc3
......@@ -33,11 +33,12 @@ package main
import (
"cmd/internal/ld"
"cmd/internal/obj"
"encoding/binary"
"fmt"
"log"
)
func gentext() {}
func needlib(name string) int {
if name[0] == '\x00' {
return 0
......@@ -56,258 +57,12 @@ func needlib(name string) int {
return 0
}
func gentext() {
var s *ld.LSym
var stub *ld.LSym
var pprevtextp **ld.LSym
var r *ld.Reloc
var n string
var o1 uint32
var i int
// The ppc64 ABI PLT has similar concepts to other
// architectures, but is laid out quite differently. When we
// see an R_PPC64_REL24 relocation to a dynamic symbol
// (indicating that the call needs to go through the PLT), we
// generate up to three stubs and reserve a PLT slot.
//
// 1) The call site will be bl x; nop (where the relocation
// applies to the bl). We rewrite this to bl x_stub; ld
// r2,24(r1). The ld is necessary because x_stub will save
// r2 (the TOC pointer) at 24(r1) (the "TOC save slot").
//
// 2) We reserve space for a pointer in the .plt section (once
// per referenced dynamic function). .plt is a data
// section filled solely by the dynamic linker (more like
// .plt.got on other architectures). Initially, the
// dynamic linker will fill each slot with a pointer to the
// corresponding x@plt entry point.
//
// 3) We generate the "call stub" x_stub (once per dynamic
// function/object file pair). This saves the TOC in the
// TOC save slot, reads the function pointer from x's .plt
// slot and calls it like any other global entry point
// (including setting r12 to the function address).
//
// 4) We generate the "symbol resolver stub" x@plt (once per
// dynamic function). This is solely a branch to the glink
// resolver stub.
//
// 5) We generate the glink resolver stub (only once). This
// computes which symbol resolver stub we came through and
// invokes the dynamic resolver via a pointer provided by
// the dynamic linker. This will patch up the .plt slot to
// point directly at the function so future calls go
// straight from the call stub to the real function, and
// then call the function.
// NOTE: It's possible we could make ppc64 closer to other
// architectures: ppc64's .plt is like .plt.got on other
// platforms and ppc64's .glink is like .plt on other
// platforms.
// Find all R_PPC64_REL24 relocations that reference dynamic
// imports. Reserve PLT entries for these symbols and
// generate call stubs. The call stubs need to live in .text,
// which is why we need to do this pass this early.
//
// This assumes "case 1" from the ABI, where the caller needs
// us to save and restore the TOC pointer.
pprevtextp = &ld.Ctxt.Textp
for s = *pprevtextp; s != nil; (func() { pprevtextp = &s.Next; s = *pprevtextp })() {
for i = range s.R {
r = &s.R[i]
if r.Type != 256+ld.R_PPC64_REL24 || r.Sym.Type != ld.SDYNIMPORT {
continue
}
// Reserve PLT entry and generate symbol
// resolver
addpltsym(ld.Ctxt, r.Sym)
// Generate call stub
n = fmt.Sprintf("%s.%s", s.Name, r.Sym.Name)
stub = ld.Linklookup(ld.Ctxt, n, 0)
stub.Reachable = stub.Reachable || s.Reachable
if stub.Size == 0 {
// Need outer to resolve .TOC.
stub.Outer = s
// Link in to textp before s (we could
// do it after, but would have to skip
// the subsymbols)
*pprevtextp = stub
stub.Next = s
pprevtextp = &stub.Next
gencallstub(1, stub, r.Sym)
}
// Update the relocation to use the call stub
r.Sym = stub
// Restore TOC after bl. The compiler put a
// nop here for us to overwrite.
o1 = 0xe8410018 // ld r2,24(r1)
ld.Ctxt.Arch.ByteOrder.PutUint32(s.P[r.Off+4:], o1)
}
}
}
// Construct a call stub in stub that calls symbol targ via its PLT
// entry.
func gencallstub(abicase int, stub *ld.LSym, targ *ld.LSym) {
if abicase != 1 {
// If we see R_PPC64_TOCSAVE or R_PPC64_REL24_NOTOC
// relocations, we'll need to implement cases 2 and 3.
log.Fatalf("gencallstub only implements case 1 calls")
}
plt := ld.Linklookup(ld.Ctxt, ".plt", 0)
stub.Type = ld.STEXT
// Save TOC pointer in TOC save slot
ld.Adduint32(ld.Ctxt, stub, 0xf8410018) // std r2,24(r1)
// Load the function pointer from the PLT.
r := ld.Addrel(stub)
r.Off = int32(stub.Size)
r.Sym = plt
r.Add = int64(targ.Plt)
r.Siz = 2
if ld.Ctxt.Arch.ByteOrder == binary.BigEndian {
r.Off += int32(r.Siz)
}
r.Type = ld.R_POWER_TOC
r.Variant = ld.RV_POWER_HA
ld.Adduint32(ld.Ctxt, stub, 0x3d820000) // addis r12,r2,targ@plt@toc@ha
r = ld.Addrel(stub)
r.Off = int32(stub.Size)
r.Sym = plt
r.Add = int64(targ.Plt)
r.Siz = 2
if ld.Ctxt.Arch.ByteOrder == binary.BigEndian {
r.Off += int32(r.Siz)
}
r.Type = ld.R_POWER_TOC
r.Variant = ld.RV_POWER_LO
ld.Adduint32(ld.Ctxt, stub, 0xe98c0000) // ld r12,targ@plt@toc@l(r12)
// Jump to the loaded pointer
ld.Adduint32(ld.Ctxt, stub, 0x7d8903a6) // mtctr r12
ld.Adduint32(ld.Ctxt, stub, 0x4e800420) // bctr
}
func adddynrela(rel *ld.LSym, s *ld.LSym, r *ld.Reloc) {
log.Fatalf("adddynrela not implemented")
}
func adddynrel(s *ld.LSym, r *ld.Reloc) {
targ := r.Sym
ld.Ctxt.Cursym = s
switch r.Type {
default:
if r.Type >= 256 {
ld.Diag("unexpected relocation type %d", r.Type)
return
}
// Handle relocations found in ELF object files.
case 256 + ld.R_PPC64_REL24:
r.Type = ld.R_CALLPOWER
// This is a local call, so the caller isn't setting
// up r12 and r2 is the same for the caller and
// callee. Hence, we need to go to the local entry
// point. (If we don't do this, the callee will try
// to use r12 to compute r2.)
r.Add += int64(r.Sym.Localentry) * 4
if targ.Type == ld.SDYNIMPORT {
// Should have been handled in elfsetupplt
ld.Diag("unexpected R_PPC64_REL24 for dyn import")
}
return
case 256 + ld.R_PPC64_ADDR64:
r.Type = ld.R_ADDR
if targ.Type == ld.SDYNIMPORT {
// These happen in .toc sections
adddynsym(ld.Ctxt, targ)
rela := ld.Linklookup(ld.Ctxt, ".rela", 0)
ld.Addaddrplus(ld.Ctxt, rela, s, int64(r.Off))
ld.Adduint64(ld.Ctxt, rela, ld.ELF64_R_INFO(uint32(targ.Dynid), ld.R_PPC64_ADDR64))
ld.Adduint64(ld.Ctxt, rela, uint64(r.Add))
r.Type = 256 // ignore during relocsym
}
return
case 256 + ld.R_PPC64_TOC16:
r.Type = ld.R_POWER_TOC
r.Variant = ld.RV_POWER_LO | ld.RV_CHECK_OVERFLOW
return
case 256 + ld.R_PPC64_TOC16_LO:
r.Type = ld.R_POWER_TOC
r.Variant = ld.RV_POWER_LO
return
case 256 + ld.R_PPC64_TOC16_HA:
r.Type = ld.R_POWER_TOC
r.Variant = ld.RV_POWER_HA | ld.RV_CHECK_OVERFLOW
return
case 256 + ld.R_PPC64_TOC16_HI:
r.Type = ld.R_POWER_TOC
r.Variant = ld.RV_POWER_HI | ld.RV_CHECK_OVERFLOW
return
case 256 + ld.R_PPC64_TOC16_DS:
r.Type = ld.R_POWER_TOC
r.Variant = ld.RV_POWER_DS | ld.RV_CHECK_OVERFLOW
return
case 256 + ld.R_PPC64_TOC16_LO_DS:
r.Type = ld.R_POWER_TOC
r.Variant = ld.RV_POWER_DS
return
case 256 + ld.R_PPC64_REL16_LO:
r.Type = ld.R_PCREL
r.Variant = ld.RV_POWER_LO
r.Add += 2 // Compensate for relocation size of 2
return
case 256 + ld.R_PPC64_REL16_HI:
r.Type = ld.R_PCREL
r.Variant = ld.RV_POWER_HI | ld.RV_CHECK_OVERFLOW
r.Add += 2
return
case 256 + ld.R_PPC64_REL16_HA:
r.Type = ld.R_PCREL
r.Variant = ld.RV_POWER_HA | ld.RV_CHECK_OVERFLOW
r.Add += 2
return
}
// Handle references to ELF symbols from our own object files.
if targ.Type != ld.SDYNIMPORT {
return
}
// TODO(austin): Translate our relocations to ELF
ld.Diag("unsupported relocation for dynamic symbol %s (type=%d stype=%d)", targ.Name, r.Type, targ.Type)
log.Fatalf("adddynrel not implemented")
}
func elfreloc1(r *ld.Reloc, sectoff int64) int {
......@@ -316,43 +71,17 @@ func elfreloc1(r *ld.Reloc, sectoff int64) int {
}
func elfsetupplt() {
plt := ld.Linklookup(ld.Ctxt, ".plt", 0)
if plt.Size == 0 {
// The dynamic linker stores the address of the
// dynamic resolver and the DSO identifier in the two
// doublewords at the beginning of the .plt section
// before the PLT array. Reserve space for these.
plt.Size = 16
}
// TODO(aram)
return
}
func machoreloc1(r *ld.Reloc, sectoff int64) int {
return -1
}
// Return the value of .TOC. for symbol s
func symtoc(s *ld.LSym) int64 {
var toc *ld.LSym
if s.Outer != nil {
toc = ld.Linkrlookup(ld.Ctxt, ".TOC.", int(s.Outer.Version))
} else {
toc = ld.Linkrlookup(ld.Ctxt, ".TOC.", int(s.Version))
}
if toc == nil {
ld.Diag("TOC-relative relocation in object without .TOC.")
return 0
}
return toc.Value
}
func archreloc(r *ld.Reloc, s *ld.LSym, val *int64) int {
if ld.Linkmode == ld.LinkExternal {
// TODO(minux): translate R_ADDRPOWER and R_CALLPOWER into standard ELF relocations.
// R_ADDRPOWER corresponds to R_PPC_ADDR16_HA and R_PPC_ADDR16_LO.
// R_CALLPOWER corresponds to R_PPC_REL24.
// TODO(minux): translate R_CALLARM64 into standard ELF relocation.
return -1
}
......@@ -365,59 +94,8 @@ func archreloc(r *ld.Reloc, s *ld.LSym, val *int64) int {
*val = ld.Symaddr(r.Sym) + r.Add - ld.Symaddr(ld.Linklookup(ld.Ctxt, ".got", 0))
return 0
case ld.R_ADDRPOWER:
// r->add is two ppc64 instructions holding an immediate 32-bit constant.
// We want to add r->sym's address to that constant.
// The encoding of the immediate x<<16 + y,
// where x is the low 16 bits of the first instruction and y is the low 16
// bits of the second. Both x and y are signed (int16, not uint16).
o1 := uint32(r.Add >> 32)
o2 := uint32(r.Add)
t := ld.Symaddr(r.Sym)
if t < 0 {
ld.Ctxt.Diag("relocation for %s is too big (>=2G): %d", s.Name, ld.Symaddr(r.Sym))
}
t += int64((o1&0xffff)<<16 + uint32(int32(o2)<<16>>16))
if t&0x8000 != 0 {
t += 0x10000
}
o1 = o1&0xffff0000 | (uint32(t)>>16)&0xffff
o2 = o2&0xffff0000 | uint32(t)&0xffff
// when laid out, the instruction order must always be o1, o2.
if ld.Ctxt.Arch.ByteOrder == binary.BigEndian {
*val = int64(o1)<<32 | int64(o2)
} else {
*val = int64(o2)<<32 | int64(o1)
}
return 0
case ld.R_CALLPOWER:
// Bits 6 through 29 = (S + A - P) >> 2
var o1 uint32
if ld.Ctxt.Arch.ByteOrder == binary.BigEndian {
o1 = ld.Be32(s.P[r.Off:])
} else {
o1 = ld.Le32(s.P[r.Off:])
}
t := ld.Symaddr(r.Sym) + r.Add - (s.Value + int64(r.Off))
if t&3 != 0 {
ld.Ctxt.Diag("relocation for %s+%d is not aligned: %d", r.Sym.Name, r.Off, t)
}
if int64(int32(t<<6)>>6) != t {
// TODO(austin) This can happen if text > 32M.
// Add a call trampoline to .text in that case.
ld.Ctxt.Diag("relocation for %s+%d is too big: %d", r.Sym.Name, r.Off, t)
}
*val = int64(o1&0xfc000003 | uint32(t)&^0xfc000003)
return 0
case ld.R_POWER_TOC: // S + A - .TOC.
*val = ld.Symaddr(r.Sym) + r.Add - symtoc(s)
case ld.R_CALLARM64:
*val = int64((0xfc000000 & uint32(r.Add)) | uint32((ld.Symaddr(r.Sym)+r.Add*4-(s.Value+int64(r.Off)))/4))
return 0
}
......@@ -425,249 +103,12 @@ func archreloc(r *ld.Reloc, s *ld.LSym, val *int64) int {
}
func archrelocvariant(r *ld.Reloc, s *ld.LSym, t int64) int64 {
switch r.Variant & ld.RV_TYPE_MASK {
default:
ld.Diag("unexpected relocation variant %d", r.Variant)
fallthrough
case ld.RV_NONE:
return t
case ld.RV_POWER_LO:
if r.Variant&ld.RV_CHECK_OVERFLOW != 0 {
// Whether to check for signed or unsigned
// overflow depends on the instruction
var o1 uint32
if ld.Ctxt.Arch.ByteOrder == binary.BigEndian {
o1 = ld.Be32(s.P[r.Off-2:])
} else {
o1 = ld.Le32(s.P[r.Off:])
}
switch o1 >> 26 {
case 24, // ori
26, // xori
28: // andi
if t>>16 != 0 {
goto overflow
}
default:
if int64(int16(t)) != t {
goto overflow
}
}
}
return int64(int16(t))
case ld.RV_POWER_HA:
t += 0x8000
fallthrough
// Fallthrough
case ld.RV_POWER_HI:
t >>= 16
if r.Variant&ld.RV_CHECK_OVERFLOW != 0 {
// Whether to check for signed or unsigned
// overflow depends on the instruction
var o1 uint32
if ld.Ctxt.Arch.ByteOrder == binary.BigEndian {
o1 = ld.Be32(s.P[r.Off-2:])
} else {
o1 = ld.Le32(s.P[r.Off:])
}
switch o1 >> 26 {
case 25, // oris
27, // xoris
29: // andis
if t>>16 != 0 {
goto overflow
}
default:
if int64(int16(t)) != t {
goto overflow
}
}
}
return int64(int16(t))
case ld.RV_POWER_DS:
var o1 uint32
if ld.Ctxt.Arch.ByteOrder == binary.BigEndian {
o1 = uint32(ld.Be16(s.P[r.Off:]))
} else {
o1 = uint32(ld.Le16(s.P[r.Off:]))
}
if t&3 != 0 {
ld.Diag("relocation for %s+%d is not aligned: %d", r.Sym.Name, r.Off, t)
}
if (r.Variant&ld.RV_CHECK_OVERFLOW != 0) && int64(int16(t)) != t {
goto overflow
}
return int64(o1)&0x3 | int64(int16(t))
}
overflow:
ld.Diag("relocation for %s+%d is too big: %d", r.Sym.Name, r.Off, t)
return t
}
func addpltsym(ctxt *ld.Link, s *ld.LSym) {
if s.Plt >= 0 {
return
}
adddynsym(ctxt, s)
if ld.Iself {
plt := ld.Linklookup(ctxt, ".plt", 0)
rela := ld.Linklookup(ctxt, ".rela.plt", 0)
if plt.Size == 0 {
elfsetupplt()
}
// Create the glink resolver if necessary
glink := ensureglinkresolver()
// Write symbol resolver stub (just a branch to the
// glink resolver stub)
r := ld.Addrel(glink)
r.Sym = glink
r.Off = int32(glink.Size)
r.Siz = 4
r.Type = ld.R_CALLPOWER
ld.Adduint32(ctxt, glink, 0x48000000) // b .glink
// In the ppc64 ABI, the dynamic linker is responsible
// for writing the entire PLT. We just need to
// reserve 8 bytes for each PLT entry and generate a
// JMP_SLOT dynamic relocation for it.
//
// TODO(austin): ABI v1 is different
s.Plt = int32(plt.Size)
plt.Size += 8
ld.Addaddrplus(ctxt, rela, plt, int64(s.Plt))
ld.Adduint64(ctxt, rela, ld.ELF64_R_INFO(uint32(s.Dynid), ld.R_PPC64_JMP_SLOT))
ld.Adduint64(ctxt, rela, 0)
} else {
ld.Diag("addpltsym: unsupported binary format")
}
}
// Generate the glink resolver stub if necessary and return the .glink section
func ensureglinkresolver() *ld.LSym {
glink := ld.Linklookup(ld.Ctxt, ".glink", 0)
if glink.Size != 0 {
return glink
}
// This is essentially the resolver from the ppc64 ELF ABI.
// At entry, r12 holds the address of the symbol resolver stub
// for the target routine and the argument registers hold the
// arguments for the target routine.
//
// This stub is PIC, so first get the PC of label 1 into r11.
// Other things will be relative to this.
ld.Adduint32(ld.Ctxt, glink, 0x7c0802a6) // mflr r0
ld.Adduint32(ld.Ctxt, glink, 0x429f0005) // bcl 20,31,1f
ld.Adduint32(ld.Ctxt, glink, 0x7d6802a6) // 1: mflr r11
ld.Adduint32(ld.Ctxt, glink, 0x7c0803a6) // mtlf r0
// Compute the .plt array index from the entry point address.
// Because this is PIC, everything is relative to label 1b (in
// r11):
// r0 = ((r12 - r11) - (res_0 - r11)) / 4 = (r12 - res_0) / 4
ld.Adduint32(ld.Ctxt, glink, 0x3800ffd0) // li r0,-(res_0-1b)=-48
ld.Adduint32(ld.Ctxt, glink, 0x7c006214) // add r0,r0,r12
ld.Adduint32(ld.Ctxt, glink, 0x7c0b0050) // sub r0,r0,r11
ld.Adduint32(ld.Ctxt, glink, 0x7800f082) // srdi r0,r0,2
// r11 = address of the first byte of the PLT
r := ld.Addrel(glink)
r.Off = int32(glink.Size)
r.Sym = ld.Linklookup(ld.Ctxt, ".plt", 0)
r.Siz = 8
r.Type = ld.R_ADDRPOWER
// addis r11,0,.plt@ha; addi r11,r11,.plt@l
r.Add = 0x3d600000<<32 | 0x396b0000
glink.Size += 8
// Load r12 = dynamic resolver address and r11 = DSO
// identifier from the first two doublewords of the PLT.
ld.Adduint32(ld.Ctxt, glink, 0xe98b0000) // ld r12,0(r11)
ld.Adduint32(ld.Ctxt, glink, 0xe96b0008) // ld r11,8(r11)
// Jump to the dynamic resolver
ld.Adduint32(ld.Ctxt, glink, 0x7d8903a6) // mtctr r12
ld.Adduint32(ld.Ctxt, glink, 0x4e800420) // bctr
// The symbol resolvers must immediately follow.
// res_0:
// Add DT_PPC64_GLINK .dynamic entry, which points to 32 bytes
// before the first symbol resolver stub.
s := ld.Linklookup(ld.Ctxt, ".dynamic", 0)
ld.Elfwritedynentsymplus(s, ld.DT_PPC64_GLINK, glink, glink.Size-32)
return glink
log.Fatalf("unexpected relocation variant")
return -1
}
func adddynsym(ctxt *ld.Link, s *ld.LSym) {
if s.Dynid >= 0 {
return
}
if ld.Iself {
s.Dynid = int32(ld.Nelfsym)
ld.Nelfsym++
d := ld.Linklookup(ctxt, ".dynsym", 0)
name := s.Extname
ld.Adduint32(ctxt, d, uint32(ld.Addstring(ld.Linklookup(ctxt, ".dynstr", 0), name)))
/* type */
t := ld.STB_GLOBAL << 4
if s.Cgoexport != 0 && s.Type&ld.SMASK == ld.STEXT {
t |= ld.STT_FUNC
} else {
t |= ld.STT_OBJECT
}
ld.Adduint8(ctxt, d, uint8(t))
/* reserved */
ld.Adduint8(ctxt, d, 0)
/* section where symbol is defined */
if s.Type == ld.SDYNIMPORT {
ld.Adduint16(ctxt, d, ld.SHN_UNDEF)
} else {
ld.Adduint16(ctxt, d, 1)
}
/* value */
if s.Type == ld.SDYNIMPORT {
ld.Adduint64(ctxt, d, 0)
} else {
ld.Addaddr(ctxt, d, s)
}
/* size of object */
ld.Adduint64(ctxt, d, uint64(s.Size))
} else {
ld.Diag("adddynsym: unsupported binary format")
}
log.Fatalf("adddynsym not implemented")
}
func adddynlib(lib string) {
......
......@@ -62,7 +62,7 @@ package main
// THE SOFTWARE.
const (
thechar = '9'
thechar = '7'
PtrSize = 8
IntSize = 8
RegSize = 8
......@@ -73,5 +73,5 @@ const (
/* Used by ../ld/dwarf.c */
const (
DWARFREGSP = 1
DWARFREGSP = 31
)
......@@ -46,11 +46,7 @@ func main() {
func linkarchinit() {
ld.Thestring = obj.Getgoarch()
if ld.Thestring == "ppc64le" {
ld.Thelinkarch = &ld.Linkppc64le
} else {
ld.Thelinkarch = &ld.Linkppc64
}
ld.Thelinkarch = &ld.Linkarm64
ld.Thearch.Thechar = thechar
ld.Thearch.Ptrsize = ld.Thelinkarch.Ptrsize
......@@ -72,18 +68,11 @@ func linkarchinit() {
ld.Thearch.Elfsetupplt = elfsetupplt
ld.Thearch.Gentext = gentext
ld.Thearch.Machoreloc1 = machoreloc1
if ld.Thelinkarch == &ld.Linkppc64le {
ld.Thearch.Lput = ld.Lputl
ld.Thearch.Wput = ld.Wputl
ld.Thearch.Vput = ld.Vputl
} else {
ld.Thearch.Lput = ld.Lputb
ld.Thearch.Wput = ld.Wputb
ld.Thearch.Vput = ld.Vputb
}
ld.Thearch.Lput = ld.Lputl
ld.Thearch.Wput = ld.Wputl
ld.Thearch.Vput = ld.Vputl
// TODO(austin): ABI v1 uses /usr/lib/ld.so.1
ld.Thearch.Linuxdynld = "/lib64/ld64.so.1"
ld.Thearch.Linuxdynld = "/lib/ld-linux-aarch64.so.1"
ld.Thearch.Freebsddynld = "XXX"
ld.Thearch.Openbsddynld = "XXX"
......@@ -129,9 +118,7 @@ func archinit() {
}
case ld.Hlinux: /* ppc64 elf */
if ld.Thestring == "ppc64" {
ld.Debug['d'] = 1 // TODO(austin): ELF ABI v1 not supported yet
}
ld.Debug['d'] = 1 // TODO(aram): dynamic linking is not supported yet.
ld.Elfinit()
ld.HEADR = ld.ELFRESERVE
if ld.INITTEXT == -1 {
......
......@@ -15,6 +15,15 @@ var Linkarm = LinkArch{
Regsize: 4,
}
var Linkarm64 = LinkArch{
ByteOrder: binary.LittleEndian,
Name: "arm64",
Thechar: '7',
Minlc: 4,
Ptrsize: 8,
Regsize: 8,
}
var Linkamd64 = LinkArch{
ByteOrder: binary.LittleEndian,
Name: "amd64",
......
......@@ -164,6 +164,7 @@ const (
EM_ST100 = 60
EM_TINYJ = 61
EM_X86_64 = 62
EM_AARCH64 = 183
EM_486 = 6
EM_MIPS_RS4_BE = 10
EM_ALPHA_STD = 41
......@@ -344,6 +345,9 @@ const (
R_X86_64_GOTTPOFF = 22
R_X86_64_TPOFF32 = 23
R_X86_64_COUNT = 24
R_AARCH64_ABS64 = 257
R_AARCH64_ABS32 = 258
R_AARCH64_CALL26 = 283
R_ALPHA_NONE = 0
R_ALPHA_REFLONG = 1
R_ALPHA_REFQUAD = 2
......@@ -757,8 +761,7 @@ func Elfinit() {
}
fallthrough
// fallthrough
case '6':
case '6', '7':
elf64 = 1
ehdr.phoff = ELF64HDRSIZE /* Must be be ELF64HDRSIZE: first PHdr must follow ELF header */
......@@ -1367,14 +1370,15 @@ func elfdynhash() {
elfwritedynentsym(s, DT_VERSYM, Linklookup(Ctxt, ".gnu.version", 0))
}
if Thearch.Thechar == '6' || Thearch.Thechar == '9' {
switch Thearch.Thechar {
case '6', '7', '9':
sy := Linklookup(Ctxt, ".rela.plt", 0)
if sy.Size > 0 {
Elfwritedynent(s, DT_PLTREL, DT_RELA)
elfwritedynentsymsize(s, DT_PLTRELSZ, sy)
elfwritedynentsym(s, DT_JMPREL, sy)
}
} else {
default:
sy := Linklookup(Ctxt, ".rel.plt", 0)
if sy.Size > 0 {
Elfwritedynent(s, DT_PLTREL, DT_REL)
......@@ -1627,7 +1631,8 @@ func doelf() {
Debug['s'] = 0
Debug['d'] = 1
if Thearch.Thechar == '6' || Thearch.Thechar == '9' {
switch Thearch.Thechar {
case '6', '7', '9':
Addstring(shstrtab, ".rela.text")
Addstring(shstrtab, ".rela.rodata")
Addstring(shstrtab, ".rela.typelink")
......@@ -1635,7 +1640,8 @@ func doelf() {
Addstring(shstrtab, ".rela.gopclntab")
Addstring(shstrtab, ".rela.noptrdata")
Addstring(shstrtab, ".rela.data")
} else {
default:
Addstring(shstrtab, ".rel.text")
Addstring(shstrtab, ".rel.rodata")
Addstring(shstrtab, ".rel.typelink")
......@@ -1711,9 +1717,10 @@ func doelf() {
dynstr := s
/* relocation table */
if Thearch.Thechar == '6' || Thearch.Thechar == '9' {
switch Thearch.Thechar {
case '6', '7', '9':
s = Linklookup(Ctxt, ".rela", 0)
} else {
default:
s = Linklookup(Ctxt, ".rel", 0)
}
s.Reachable = true
......@@ -1755,9 +1762,10 @@ func doelf() {
Thearch.Elfsetupplt()
if Thearch.Thechar == '6' || Thearch.Thechar == '9' {
switch Thearch.Thechar {
case '6', '7', '9':
s = Linklookup(Ctxt, ".rela.plt", 0)
} else {
default:
s = Linklookup(Ctxt, ".rel.plt", 0)
}
s.Reachable = true
......@@ -1790,11 +1798,12 @@ func doelf() {
}
elfwritedynentsym(s, DT_STRTAB, Linklookup(Ctxt, ".dynstr", 0))
elfwritedynentsymsize(s, DT_STRSZ, Linklookup(Ctxt, ".dynstr", 0))
if Thearch.Thechar == '6' || Thearch.Thechar == '9' {
switch Thearch.Thechar {
case '6', '7', '9':
elfwritedynentsym(s, DT_RELA, Linklookup(Ctxt, ".rela", 0))
elfwritedynentsymsize(s, DT_RELASZ, Linklookup(Ctxt, ".rela", 0))
Elfwritedynent(s, DT_RELAENT, ELF64RELASIZE)
} else {
default:
elfwritedynentsym(s, DT_REL, Linklookup(Ctxt, ".rel", 0))
elfwritedynentsymsize(s, DT_RELSZ, Linklookup(Ctxt, ".rel", 0))
Elfwritedynent(s, DT_RELENT, ELF32RELSIZE)
......@@ -1870,6 +1879,9 @@ func Asmbelf(symo int64) {
case '6':
eh.machine = EM_X86_64
case '7':
eh.machine = EM_AARCH64
case '8':
eh.machine = EM_386
......@@ -2033,7 +2045,8 @@ func Asmbelf(symo int64) {
switch eh.machine {
case EM_X86_64,
EM_PPC64:
EM_PPC64,
EM_AARCH64:
sh := elfshname(".rela.plt")
sh.type_ = SHT_RELA
sh.flags = SHF_ALLOC
......
......@@ -84,6 +84,7 @@ const (
ElfMachSH = 42
ElfMachSparc9 = 43
ElfMachAmd64 = 62
ElfMachArm64 = 183
)
const (
......@@ -432,6 +433,12 @@ func ldelf(f *Biobuf, pkg string, length int64, pn string) {
return
}
case '7':
if e != binary.LittleEndian || elfobj.machine != ElfMachArm64 || hdr.Ident[4] != ElfClass64 {
Diag("%s: elf object but not arm64", pn)
return
}
case '8':
if e != binary.LittleEndian || elfobj.machine != ElfMach386 || hdr.Ident[4] != ElfClass32 {
Diag("%s: elf object but not 386", pn)
......
......@@ -1064,7 +1064,7 @@ var (
// allow stack checks here.
func haslinkregister() bool {
return Thearch.Thechar == '5' || Thearch.Thechar == '9'
return Thearch.Thechar == '5' || Thearch.Thechar == '9' || Thearch.Thechar == '7'
}
func callsize() int {
......@@ -1183,6 +1183,7 @@ func stkcheck(up *Chain, depth int) int {
// Direct call.
case R_CALL,
R_CALLARM,
R_CALLARM64,
R_CALLPOWER:
ch.limit = int(int32(limit) - pcsp.value - int32(callsize()))
......
......@@ -219,6 +219,7 @@ const (
R_SIZE
R_CALL
R_CALLARM
R_CALLARM64
R_CALLIND
R_CALLPOWER
R_CONST
......
......@@ -58,6 +58,7 @@ func putelfstr(s string) int {
func putelfsyment(off int, addr int64, size int64, info int, shndx int, other int) {
switch Thearch.Thechar {
case '6',
'7',
'9':
Thearch.Lput(uint32(off))
Cput(uint8(info))
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment