Commit 54af9a3b authored by Russ Cox's avatar Russ Cox

runtime: reintroduce ``dead'' space during GC scan

Reintroduce an optimization discarded during the initial conversion
from 4-bit heap bitmaps to 2-bit heap bitmaps: when we reach the
place in the bitmap where there are no more pointers, mark that position
for the GC so that it can avoid scanning past that place.

During heapBitsSetType we can also avoid initializing heap bitmap
beyond that location, which gives a bit of a win compared to Go 1.4.
This particular optimization (not initializing the heap bitmap) may not last:
we might change typedmemmove to use the heap bitmap, in which
case it would all need to be initialized. The early stop in the GC scan
will stay no matter what.

Compared to Go 1.4 (github.com/rsc/go, branch go14bench):
name                    old mean              new mean              delta
SetTypeNode64           80.7ns × (1.00,1.01)  57.4ns × (1.00,1.01)  -28.83% (p=0.000)
SetTypeNode64Dead       80.5ns × (1.00,1.01)  13.1ns × (0.99,1.02)  -83.77% (p=0.000)
SetTypeNode64Slice      2.16µs × (1.00,1.01)  1.54µs × (1.00,1.01)  -28.75% (p=0.000)
SetTypeNode64DeadSlice  2.16µs × (1.00,1.01)  1.52µs × (1.00,1.00)  -29.74% (p=0.000)

Compared to previous CL:
name                    old mean              new mean              delta
SetTypeNode64           56.7ns × (1.00,1.00)  57.4ns × (1.00,1.01)   +1.19% (p=0.000)
SetTypeNode64Dead       57.2ns × (1.00,1.00)  13.1ns × (0.99,1.02)  -77.15% (p=0.000)
SetTypeNode64Slice      1.56µs × (1.00,1.01)  1.54µs × (1.00,1.01)   -0.89% (p=0.000)
SetTypeNode64DeadSlice  1.55µs × (1.00,1.01)  1.52µs × (1.00,1.00)   -2.23% (p=0.000)

This is the last CL in the sequence converting from the 4-bit heap
to the 2-bit heap, with all the same optimizations reenabled.
Compared to before that process began (compared to CL 9701 patch set 1):

name                    old mean              new mean              delta
BinaryTree17             5.87s × (0.94,1.09)   5.91s × (0.96,1.06)    ~    (p=0.578)
Fannkuch11               4.32s × (1.00,1.00)   4.32s × (1.00,1.00)    ~    (p=0.474)
FmtFprintfEmpty         89.1ns × (0.95,1.16)  89.0ns × (0.93,1.10)    ~    (p=0.942)
FmtFprintfString         283ns × (0.98,1.02)   298ns × (0.98,1.06)  +5.33% (p=0.000)
FmtFprintfInt            284ns × (0.98,1.04)   286ns × (0.98,1.03)    ~    (p=0.208)
FmtFprintfIntInt         486ns × (0.98,1.03)   498ns × (0.97,1.06)  +2.48% (p=0.000)
FmtFprintfPrefixedInt    400ns × (0.99,1.02)   408ns × (0.98,1.02)  +2.23% (p=0.000)
FmtFprintfFloat          566ns × (0.99,1.01)   587ns × (0.98,1.01)  +3.69% (p=0.000)
FmtManyArgs             1.91µs × (0.99,1.02)  1.94µs × (0.99,1.02)  +1.81% (p=0.000)
GobDecode               15.5ms × (0.98,1.05)  15.8ms × (0.98,1.03)  +1.94% (p=0.002)
GobEncode               11.9ms × (0.97,1.03)  12.0ms × (0.96,1.09)    ~    (p=0.263)
Gzip                     648ms × (0.99,1.01)   648ms × (0.99,1.01)    ~    (p=0.992)
Gunzip                   143ms × (1.00,1.00)   143ms × (1.00,1.01)    ~    (p=0.585)
HTTPClientServer        89.2µs × (0.99,1.02)  90.3µs × (0.98,1.01)  +1.24% (p=0.000)
JSONEncode              32.3ms × (0.97,1.06)  31.6ms × (0.99,1.01)  -2.29% (p=0.000)
JSONDecode               106ms × (0.99,1.01)   107ms × (1.00,1.01)  +0.62% (p=0.000)
Mandelbrot200           6.02ms × (1.00,1.00)  6.03ms × (1.00,1.01)    ~    (p=0.250)
GoParse                 6.57ms × (0.97,1.06)  6.53ms × (0.99,1.03)    ~    (p=0.243)
RegexpMatchEasy0_32      162ns × (1.00,1.00)   161ns × (1.00,1.01)  -0.80% (p=0.000)
RegexpMatchEasy0_1K      561ns × (0.99,1.02)   541ns × (0.99,1.01)  -3.67% (p=0.000)
RegexpMatchEasy1_32      145ns × (0.95,1.04)   138ns × (1.00,1.00)  -5.04% (p=0.000)
RegexpMatchEasy1_1K      864ns × (0.99,1.04)   887ns × (0.99,1.01)  +2.57% (p=0.000)
RegexpMatchMedium_32     255ns × (0.99,1.04)   253ns × (0.99,1.01)  -1.05% (p=0.012)
RegexpMatchMedium_1K    73.9µs × (0.98,1.04)  72.8µs × (1.00,1.00)  -1.51% (p=0.005)
RegexpMatchHard_32      3.92µs × (0.98,1.04)  3.85µs × (1.00,1.01)  -1.88% (p=0.002)
RegexpMatchHard_1K       120µs × (0.98,1.04)   117µs × (1.00,1.01)  -2.02% (p=0.001)
Revcomp                  936ms × (0.95,1.08)   922ms × (0.97,1.08)    ~    (p=0.234)
Template                 130ms × (0.98,1.04)   126ms × (0.99,1.01)  -2.99% (p=0.000)
TimeParse                638ns × (0.98,1.05)   628ns × (0.99,1.01)  -1.54% (p=0.004)
TimeFormat               674ns × (0.99,1.01)   668ns × (0.99,1.01)  -0.80% (p=0.001)

The slowdown of the first few benchmarks seems to be due to the new
atomic operations for certain small size allocations. But the larger
benchmarks mostly improve, probably due to the decreased memory
pressure from having half as much heap bitmap.

CL 9706, which removes the (never used anymore) wbshadow mode,
gets back what is lost in the early microbenchmarks.

Change-Id: I37423a209e8ec2a2e92538b45cac5422a6acd32d
Reviewed-on: https://go-review.googlesource.com/9705Reviewed-by: default avatarRick Hudson <rlh@golang.org>
parent feb8a3b6
...@@ -687,7 +687,7 @@ func haspointers(t *Type) bool { ...@@ -687,7 +687,7 @@ func haspointers(t *Type) bool {
// typeptrdata returns the length in bytes of the prefix of t // typeptrdata returns the length in bytes of the prefix of t
// containing pointer data. Anything after this offset is scalar data. // containing pointer data. Anything after this offset is scalar data.
func typeptrdata(t *Type) uint64 { func typeptrdata(t *Type) int64 {
if !haspointers(t) { if !haspointers(t) {
return 0 return 0
} }
...@@ -699,24 +699,24 @@ func typeptrdata(t *Type) uint64 { ...@@ -699,24 +699,24 @@ func typeptrdata(t *Type) uint64 {
TFUNC, TFUNC,
TCHAN, TCHAN,
TMAP: TMAP:
return uint64(Widthptr) return int64(Widthptr)
case TSTRING: case TSTRING:
// struct { byte *str; intgo len; } // struct { byte *str; intgo len; }
return uint64(Widthptr) return int64(Widthptr)
case TINTER: case TINTER:
// struct { Itab *tab; void *data; } or // struct { Itab *tab; void *data; } or
// struct { Type *type; void *data; } // struct { Type *type; void *data; }
return 2 * uint64(Widthptr) return 2 * int64(Widthptr)
case TARRAY: case TARRAY:
if Isslice(t) { if Isslice(t) {
// struct { byte *array; uintgo len; uintgo cap; } // struct { byte *array; uintgo len; uintgo cap; }
return uint64(Widthptr) return int64(Widthptr)
} }
// haspointers already eliminated t.Bound == 0. // haspointers already eliminated t.Bound == 0.
return uint64(t.Bound-1)*uint64(t.Type.Width) + typeptrdata(t.Type) return (t.Bound-1)*t.Type.Width + typeptrdata(t.Type)
case TSTRUCT: case TSTRUCT:
// Find the last field that has pointers. // Find the last field that has pointers.
...@@ -726,7 +726,7 @@ func typeptrdata(t *Type) uint64 { ...@@ -726,7 +726,7 @@ func typeptrdata(t *Type) uint64 {
lastPtrField = t1 lastPtrField = t1
} }
} }
return uint64(lastPtrField.Width) + typeptrdata(lastPtrField.Type) return lastPtrField.Width + typeptrdata(lastPtrField.Type)
default: default:
Fatal("typeptrdata: unexpected type, %v", t) Fatal("typeptrdata: unexpected type, %v", t)
...@@ -794,7 +794,7 @@ func dcommontype(s *Sym, ot int, t *Type) int { ...@@ -794,7 +794,7 @@ func dcommontype(s *Sym, ot int, t *Type) int {
// zero unsafe.Pointer // zero unsafe.Pointer
// } // }
ot = duintptr(s, ot, uint64(t.Width)) ot = duintptr(s, ot, uint64(t.Width))
ot = duintptr(s, ot, typeptrdata(t)) ot = duintptr(s, ot, uint64(typeptrdata(t)))
ot = duint32(s, ot, typehash(t)) ot = duint32(s, ot, typehash(t))
ot = duint8(s, ot, 0) // unused ot = duint8(s, ot, 0) // unused
...@@ -1428,17 +1428,12 @@ func usegcprog(t *Type) bool { ...@@ -1428,17 +1428,12 @@ func usegcprog(t *Type) bool {
} }
// Calculate size of the unrolled GC mask. // Calculate size of the unrolled GC mask.
nptr := (t.Width + int64(Widthptr) - 1) / int64(Widthptr) nptr := typeptrdata(t) / int64(Widthptr)
size := (nptr + 7) / 8
// Decide whether to use unrolled GC mask or GC program. // Decide whether to use unrolled GC mask or GC program.
// We could use a more elaborate condition, but this seems to work well in practice. // We could use a more elaborate condition, but this seems to work well in practice.
// For small objects GC program can't give significant reduction. // For small objects, the GC program can't give significant reduction.
// While large objects usually contain arrays; and even if it don't return nptr > int64(2*Widthptr*8)
// the program uses 2-bits per word while mask uses 4-bits per word,
// so the program is still smaller.
return size > int64(2*Widthptr)
} }
// Generates GC bitmask (1 bit per word). // Generates GC bitmask (1 bit per word).
...@@ -1450,11 +1445,11 @@ func gengcmask(t *Type, gcmask []byte) { ...@@ -1450,11 +1445,11 @@ func gengcmask(t *Type, gcmask []byte) {
return return
} }
vec := bvalloc(2 * int32(Widthptr) * 8) vec := bvalloc(int32(2 * Widthptr * 8))
xoffset := int64(0) xoffset := int64(0)
onebitwalktype1(t, &xoffset, vec) onebitwalktype1(t, &xoffset, vec)
nptr := (t.Width + int64(Widthptr) - 1) / int64(Widthptr) nptr := typeptrdata(t) / int64(Widthptr)
for i := int64(0); i < nptr; i++ { for i := int64(0); i < nptr; i++ {
if bvget(vec, int32(i)) == 1 { if bvget(vec, int32(i)) == 1 {
gcmask[i/8] |= 1 << (uint(i) % 8) gcmask[i/8] |= 1 << (uint(i) % 8)
......
...@@ -1109,8 +1109,7 @@ func proggenaddsym(g *ProgGen, s *LSym) { ...@@ -1109,8 +1109,7 @@ func proggenaddsym(g *ProgGen, s *LSym) {
// Skip alignment hole from the previous symbol. // Skip alignment hole from the previous symbol.
proggenskip(g, g.pos, s.Value-g.pos) proggenskip(g, g.pos, s.Value-g.pos)
g.pos = s.Value
g.pos += s.Value - g.pos
// The test for names beginning with . here is meant // The test for names beginning with . here is meant
// to keep .dynamic and .dynsym from turning up as // to keep .dynamic and .dynsym from turning up as
...@@ -1142,16 +1141,16 @@ func proggenaddsym(g *ProgGen, s *LSym) { ...@@ -1142,16 +1141,16 @@ func proggenaddsym(g *ProgGen, s *LSym) {
proggendata(g, 0) proggendata(g, 0)
proggenarrayend(g) proggenarrayend(g)
} }
g.pos = s.Value + s.Size g.pos = s.Value + s.Size
} else if decodetype_usegcprog(s.Gotype) != 0 { } else if decodetype_usegcprog(s.Gotype) != 0 {
// gc program, copy directly // gc program, copy directly
// TODO(rsc): Maybe someday the gc program will only describe
// the first decodetype_ptrdata(s.Gotype) bytes instead of the full size.
proggendataflush(g) proggendataflush(g)
gcprog := decodetype_gcprog(s.Gotype) gcprog := decodetype_gcprog(s.Gotype)
size := decodetype_size(s.Gotype) size := decodetype_size(s.Gotype)
if (size%int64(Thearch.Ptrsize) != 0) || (g.pos%int64(Thearch.Ptrsize) != 0) { if (size%int64(Thearch.Ptrsize) != 0) || (g.pos%int64(Thearch.Ptrsize) != 0) {
Diag("proggenaddsym: unaligned gcprog symbol %s: size=%d pos=%d", s.Name, s.Size, g.pos) Diag("proggenaddsym: unaligned gcprog symbol %s: size=%d pos=%d", s.Name, size, g.pos)
} }
for i := int64(0); i < int64(len(gcprog.P)-1); i++ { for i := int64(0); i < int64(len(gcprog.P)-1); i++ {
proggenemit(g, uint8(gcprog.P[i])) proggenemit(g, uint8(gcprog.P[i]))
...@@ -1160,16 +1159,15 @@ func proggenaddsym(g *ProgGen, s *LSym) { ...@@ -1160,16 +1159,15 @@ func proggenaddsym(g *ProgGen, s *LSym) {
} else { } else {
// gc mask, it's small so emit as data // gc mask, it's small so emit as data
mask := decodetype_gcmask(s.Gotype) mask := decodetype_gcmask(s.Gotype)
ptrdata := decodetype_ptrdata(s.Gotype)
size := decodetype_size(s.Gotype) if (ptrdata%int64(Thearch.Ptrsize) != 0) || (g.pos%int64(Thearch.Ptrsize) != 0) {
if (size%int64(Thearch.Ptrsize) != 0) || (g.pos%int64(Thearch.Ptrsize) != 0) { Diag("proggenaddsym: unaligned gcmask symbol %s: size=%d pos=%d", s.Name, ptrdata, g.pos)
Diag("proggenaddsym: unaligned gcmask symbol %s: size=%d pos=%d", s.Name, s.Size, g.pos)
} }
for i := int64(0); i < size; i += int64(Thearch.Ptrsize) { for i := int64(0); i < ptrdata; i += int64(Thearch.Ptrsize) {
word := uint(i / int64(Thearch.Ptrsize)) word := uint(i / int64(Thearch.Ptrsize))
proggendata(g, (mask[word/8]>>(word%8))&1) proggendata(g, (mask[word/8]>>(word%8))&1)
} }
g.pos = s.Value + size g.pos = s.Value + ptrdata
} }
} }
......
...@@ -67,6 +67,11 @@ func decodetype_size(s *LSym) int64 { ...@@ -67,6 +67,11 @@ func decodetype_size(s *LSym) int64 {
return int64(decode_inuxi(s.P, Thearch.Ptrsize)) // 0x8 / 0x10 return int64(decode_inuxi(s.P, Thearch.Ptrsize)) // 0x8 / 0x10
} }
// Type.commonType.ptrdata
func decodetype_ptrdata(s *LSym) int64 {
return int64(decode_inuxi(s.P[Thearch.Ptrsize:], Thearch.Ptrsize)) // 0x8 / 0x10
}
// Type.commonType.gc // Type.commonType.gc
func decodetype_gcprog(s *LSym) *LSym { func decodetype_gcprog(s *LSym) *LSym {
if s.Type == obj.SDYNIMPORT { if s.Type == obj.SDYNIMPORT {
......
...@@ -34,23 +34,23 @@ func TestGCInfo(t *testing.T) { ...@@ -34,23 +34,23 @@ func TestGCInfo(t *testing.T) {
verifyGCInfo(t, "data eface", &dataEface, infoEface) verifyGCInfo(t, "data eface", &dataEface, infoEface)
verifyGCInfo(t, "data iface", &dataIface, infoIface) verifyGCInfo(t, "data iface", &dataIface, infoIface)
verifyGCInfo(t, "stack ScalarPtr", new(ScalarPtr), nonStackInfo(infoScalarPtr)) verifyGCInfo(t, "stack ScalarPtr", new(ScalarPtr), infoScalarPtr)
verifyGCInfo(t, "stack PtrScalar", new(PtrScalar), nonStackInfo(infoPtrScalar)) verifyGCInfo(t, "stack PtrScalar", new(PtrScalar), infoPtrScalar)
verifyGCInfo(t, "stack BigStruct", new(BigStruct), nonStackInfo(infoBigStruct())) verifyGCInfo(t, "stack BigStruct", new(BigStruct), infoBigStruct())
verifyGCInfo(t, "stack string", new(string), nonStackInfo(infoString)) verifyGCInfo(t, "stack string", new(string), infoString)
verifyGCInfo(t, "stack slice", new([]string), nonStackInfo(infoSlice)) verifyGCInfo(t, "stack slice", new([]string), infoSlice)
verifyGCInfo(t, "stack eface", new(interface{}), nonStackInfo(infoEface)) verifyGCInfo(t, "stack eface", new(interface{}), infoEface)
verifyGCInfo(t, "stack iface", new(Iface), nonStackInfo(infoIface)) verifyGCInfo(t, "stack iface", new(Iface), infoIface)
for i := 0; i < 10; i++ { for i := 0; i < 10; i++ {
verifyGCInfo(t, "heap PtrSlice", escape(&make([]*byte, 10)[0]), infoPtr10) verifyGCInfo(t, "heap PtrSlice", escape(&make([]*byte, 10)[0]), trimDead(infoPtr10))
verifyGCInfo(t, "heap ScalarPtr", escape(new(ScalarPtr)), infoScalarPtr) verifyGCInfo(t, "heap ScalarPtr", escape(new(ScalarPtr)), trimDead(infoScalarPtr))
verifyGCInfo(t, "heap ScalarPtrSlice", escape(&make([]ScalarPtr, 4)[0]), infoScalarPtr4) verifyGCInfo(t, "heap ScalarPtrSlice", escape(&make([]ScalarPtr, 4)[0]), trimDead(infoScalarPtr4))
verifyGCInfo(t, "heap PtrScalar", escape(new(PtrScalar)), infoPtrScalar) verifyGCInfo(t, "heap PtrScalar", escape(new(PtrScalar)), trimDead(infoPtrScalar))
verifyGCInfo(t, "heap BigStruct", escape(new(BigStruct)), infoBigStruct()) verifyGCInfo(t, "heap BigStruct", escape(new(BigStruct)), trimDead(infoBigStruct()))
verifyGCInfo(t, "heap string", escape(new(string)), infoString) verifyGCInfo(t, "heap string", escape(new(string)), trimDead(infoString))
verifyGCInfo(t, "heap eface", escape(new(interface{})), infoEface) verifyGCInfo(t, "heap eface", escape(new(interface{})), trimDead(infoEface))
verifyGCInfo(t, "heap iface", escape(new(Iface)), infoIface) verifyGCInfo(t, "heap iface", escape(new(Iface)), trimDead(infoIface))
} }
} }
...@@ -67,16 +67,11 @@ func verifyGCInfo(t *testing.T, name string, p interface{}, mask0 []byte) { ...@@ -67,16 +67,11 @@ func verifyGCInfo(t *testing.T, name string, p interface{}, mask0 []byte) {
} }
} }
func nonStackInfo(mask []byte) []byte { func trimDead(mask []byte) []byte {
// typeDead is replaced with typeScalar everywhere except stacks. for len(mask) > 2 && mask[len(mask)-1] == typeScalar {
mask1 := make([]byte, len(mask)) mask = mask[:len(mask)-1]
for i, v := range mask {
if v == typeDead {
v = typeScalar
}
mask1[i] = v
} }
return mask1 return mask
} }
var gcinfoSink interface{} var gcinfoSink interface{}
......
...@@ -491,6 +491,8 @@ func heapBitsSweepSpan(base, size, n uintptr, f func(uintptr)) { ...@@ -491,6 +491,8 @@ func heapBitsSweepSpan(base, size, n uintptr, f func(uintptr)) {
// but if the start or end of x shares a bitmap byte with an adjacent // but if the start or end of x shares a bitmap byte with an adjacent
// object, the GC marker is racing with updates to those object's mark bits. // object, the GC marker is racing with updates to those object's mark bits.
func heapBitsSetType(x, size, dataSize uintptr, typ *_type) { func heapBitsSetType(x, size, dataSize uintptr, typ *_type) {
const doubleCheck = false // slow but helpful; enable to test modifications to this function
// From here till marked label marking the object as allocated // From here till marked label marking the object as allocated
// and storing type info in the GC bitmap. // and storing type info in the GC bitmap.
h := heapBitsForAddr(x) h := heapBitsForAddr(x)
...@@ -518,7 +520,7 @@ func heapBitsSetType(x, size, dataSize uintptr, typ *_type) { ...@@ -518,7 +520,7 @@ func heapBitsSetType(x, size, dataSize uintptr, typ *_type) {
ptrmask := (*uint8)(unsafe.Pointer(typ.gc[0])) // pointer to unrolled mask ptrmask := (*uint8)(unsafe.Pointer(typ.gc[0])) // pointer to unrolled mask
if typ.kind&kindGCProg != 0 { if typ.kind&kindGCProg != 0 {
nptr := (uintptr(typ.size) + ptrSize - 1) / ptrSize nptr := typ.ptrdata / ptrSize
masksize := (nptr + 7) / 8 masksize := (nptr + 7) / 8
masksize++ // unroll flag in the beginning masksize++ // unroll flag in the beginning
if masksize > maxGCMask && typ.gc[1] != 0 { if masksize > maxGCMask && typ.gc[1] != 0 {
...@@ -568,21 +570,56 @@ func heapBitsSetType(x, size, dataSize uintptr, typ *_type) { ...@@ -568,21 +570,56 @@ func heapBitsSetType(x, size, dataSize uintptr, typ *_type) {
// In general, one load can supply two bitmap byte writes. // In general, one load can supply two bitmap byte writes.
// This is a lot of lines of code, but it compiles into relatively few // This is a lot of lines of code, but it compiles into relatively few
// machine instructions. // machine instructions.
// Ptrmask buffer.
var ( var (
p *byte // last ptrmask byte read p *byte // last ptrmask byte read
b uintptr // ptrmask bits already loaded b uintptr // ptrmask bits already loaded
nb uint32 // number of bits in b at next read nb uintptr // number of bits in b at next read
endp *byte // final ptrmask byte to read (then repeat) endp *byte // final ptrmask byte to read (then repeat)
endnb uint32 // number of valid bits in *endp endnb uintptr // number of valid bits in *endp
pbits uintptr // alternate source of bits pbits uintptr // alternate source of bits
) )
// Note about sizes:
//
// typ.size is the number of words in the object,
// and typ.ptrdata is the number of words in the prefix
// of the object that contains pointers. That is, the final
// typ.size - typ.ptrdata words contain no pointers.
// This allows optimization of a common pattern where
// an object has a small header followed by a large scalar
// buffer. If we know the pointers are over, we don't have
// to scan the buffer's heap bitmap at all.
// The 1-bit ptrmasks are sized to contain only bits for
// the typ.ptrdata prefix, zero padded out to a full byte
// of bitmap. This code sets nw (below) so that heap bitmap
// bits are only written for the typ.ptrdata prefix; if there is
// more room in the allocated object, the next heap bitmap
// entry is a 00, indicating that there are no more pointers
// to scan. So only the ptrmask for the ptrdata bytes is needed.
//
// Replicated copies are not as nice: if there is an array of
// objects with scalar tails, all but the last tail does have to
// be initialized, because there is no way to say "skip forward".
// However, because of the possibility of a repeated type with
// size not a multiple of 4 pointers (one heap bitmap byte),
// the code already must handle the last ptrmask byte specially
// by treating it as containing only the bits for endnb pointers,
// where endnb <= 4. We represent large scalar tails that must
// be expanded in the replication by setting endnb larger than 4.
// This will have the effect of reading many bits out of b,
// but once the real bits are shifted out, b will supply as many
// zero bits as we try to read, which is exactly what we need.
p = ptrmask p = ptrmask
if typ.size < dataSize { if typ.size < dataSize {
// Filling in bits for an array of typ. // Filling in bits for an array of typ.
// Set up for repetition of ptrmask during main loop. // Set up for repetition of ptrmask during main loop.
if typ.size/ptrSize+7 <= ptrSize*8 { // Note that ptrmask describes only a prefix of
// Entire ptrmask + a leftover fragment fits in uintptr. const maxBits = ptrSize*8 - 7
if typ.ptrdata/ptrSize <= maxBits {
// Entire ptrmask fits in uintptr with room for a byte fragment.
// Load into pbits and never read from ptrmask again. // Load into pbits and never read from ptrmask again.
// This is especially important when the ptrmask has // This is especially important when the ptrmask has
// fewer than 8 bits in it; otherwise the reload in the middle // fewer than 8 bits in it; otherwise the reload in the middle
...@@ -590,26 +627,34 @@ func heapBitsSetType(x, size, dataSize uintptr, typ *_type) { ...@@ -590,26 +627,34 @@ func heapBitsSetType(x, size, dataSize uintptr, typ *_type) {
// at least 8 bits. // at least 8 bits.
// Accumulate ptrmask into b. // Accumulate ptrmask into b.
nb = uint32(typ.size / ptrSize) // ptrmask is sized to describe only typ.ptrdata, but we record
for i := uint32(0); i < nb; i += 8 { // it as describing typ.size bytes, since all the high bits are zero.
nb = typ.ptrdata / ptrSize
for i := uintptr(0); i < nb; i += 8 {
b |= uintptr(*p) << i b |= uintptr(*p) << i
p = addb(p, 1) p = addb(p, 1)
} }
nb = typ.size / ptrSize
// Replicate ptrmask to fill entire pbits uintptr. // Replicate ptrmask to fill entire pbits uintptr.
// Doubling and truncating is fewer steps than // Doubling and truncating is fewer steps than
// iterating by nb each time. (nb could be 1.) // iterating by nb each time. (nb could be 1.)
// Since we loaded typ.ptrdata/ptrSize bits
// but are pretending to have typ.size/ptrSize,
// there might be no replication necessary/possible.
pbits = b pbits = b
endnb = nb endnb = nb
for endnb <= ptrSize*8 { if nb+nb <= maxBits {
pbits |= pbits << endnb for endnb <= ptrSize*8 {
endnb += endnb pbits |= pbits << endnb
endnb += endnb
}
// Truncate to a multiple of original ptrmask.
endnb = maxBits / nb * nb
pbits &= 1<<endnb - 1
b = pbits
nb = endnb
} }
// Truncate to an multiple of original ptrmask.
endnb = (ptrSize*8 - 7) / nb * nb
pbits &= 1<<endnb - 1
b = pbits
nb = endnb
// Clear p and endp as sentinel for using pbits. // Clear p and endp as sentinel for using pbits.
// Checked during Phase 2 loop. // Checked during Phase 2 loop.
...@@ -617,11 +662,9 @@ func heapBitsSetType(x, size, dataSize uintptr, typ *_type) { ...@@ -617,11 +662,9 @@ func heapBitsSetType(x, size, dataSize uintptr, typ *_type) {
endp = nil endp = nil
} else { } else {
// Ptrmask is larger. Read it multiple times. // Ptrmask is larger. Read it multiple times.
endp = addb(ptrmask, (typ.size/ptrSize+7)/8-1) n := (typ.ptrdata/ptrSize+7)/8 - 1
endnb = uint32(typ.size/ptrSize) % 8 endp = addb(ptrmask, n)
if endnb == 0 { endnb = typ.size/ptrSize - n*8
endnb = 8
}
} }
} }
if p != nil { if p != nil {
...@@ -630,8 +673,27 @@ func heapBitsSetType(x, size, dataSize uintptr, typ *_type) { ...@@ -630,8 +673,27 @@ func heapBitsSetType(x, size, dataSize uintptr, typ *_type) {
nb = 8 nb = 8
} }
w := uintptr(0) // number of words processed var w uintptr // words processed
nw := dataSize / ptrSize // number of words to process var nw uintptr // total number of words to process
if typ.size == dataSize {
// Single entry: can stop once we reach the non-pointer data.
nw = typ.ptrdata / ptrSize
} else {
// Repeated instances of typ in an array.
// Have to process the
nw = ((dataSize/typ.size-1)*typ.size + typ.ptrdata) / ptrSize
}
if nw == 0 {
// No pointers! Caller was supposed to check.
println("runtime: invalid type ", *typ._string)
throw("heapBitsSetType: called with non-pointer type")
return
}
if nw < 2 {
// Must write at least 2 words, because the "no scan"
// encoding doesn't take effect until the third word.
nw = 2
}
hbitp := h.bitp // next heap bitmap byte to write hbitp := h.bitp // next heap bitmap byte to write
var hb uintptr // bits being preapred for *h.bitp var hb uintptr // bits being preapred for *h.bitp
...@@ -641,11 +703,11 @@ func heapBitsSetType(x, size, dataSize uintptr, typ *_type) { ...@@ -641,11 +703,11 @@ func heapBitsSetType(x, size, dataSize uintptr, typ *_type) {
// which do not have the marked bits set. // which do not have the marked bits set.
// The leading half-byte is special because it's a half a byte and must be // The leading half-byte is special because it's a half a byte and must be
// manipulated atomically. // manipulated atomically.
switch h.shift { switch {
default: default:
throw("heapBitsSetType: unexpected shift") throw("heapBitsSetType: unexpected shift")
case 0: case h.shift == 0:
// Ptrmask and heap bitmap are aligned. // Ptrmask and heap bitmap are aligned.
// Handle first byte of bitmap specially. // Handle first byte of bitmap specially.
// The first byte we write out contains the first two words of the object. // The first byte we write out contains the first two words of the object.
...@@ -662,7 +724,7 @@ func heapBitsSetType(x, size, dataSize uintptr, typ *_type) { ...@@ -662,7 +724,7 @@ func heapBitsSetType(x, size, dataSize uintptr, typ *_type) {
b >>= 4 b >>= 4
nb -= 4 nb -= 4
case 4: case ptrSize == 8 && h.shift == 4:
// Ptrmask and heap bitmap are misaligned. // Ptrmask and heap bitmap are misaligned.
// The bits for the first two words are in a byte shared with another object // The bits for the first two words are in a byte shared with another object
// and must be updated atomically. // and must be updated atomically.
...@@ -679,17 +741,13 @@ func heapBitsSetType(x, size, dataSize uintptr, typ *_type) { ...@@ -679,17 +741,13 @@ func heapBitsSetType(x, size, dataSize uintptr, typ *_type) {
// Note: no bitMarker in hb because the first two words don't get markers from us. // Note: no bitMarker in hb because the first two words don't get markers from us.
atomicor8(hbitp, uint8(hb)) atomicor8(hbitp, uint8(hb))
hbitp = subtractb(hbitp, 1) hbitp = subtractb(hbitp, 1)
if w += 2; w >= nw {
// Expand 8-bit chunks of ptrmask into pairs of heap bitmap bytes. // We know that there is more data, because we handled 2-word objects above.
// We know the object size is a multiple of 2 words but not 4, so the // This must be at least a 6-word object. If we're out of pointer words,
// object size minus the 2 words we just handled is a multiple of 4, // mark no scan in next bitmap byte and finish.
// so we can use non-atomic writes to the heap bitmap for the *hbitp = 0
// rest of this code, even for the final fragment or a trailing dead marker byte. goto Phase4
}
// Loop prepares bits for final byte but stops before writing them,
// so that in the case where we need to write only part of a byte,
// the code below the loop can truncate the bitMarked.
w += 2
} }
// Phase 2: Full bytes in bitmap, up to but not including write to last byte (full or partial) in bitmap. // Phase 2: Full bytes in bitmap, up to but not including write to last byte (full or partial) in bitmap.
...@@ -792,24 +850,27 @@ Phase3: ...@@ -792,24 +850,27 @@ Phase3:
} }
} }
const test = false // slow but helpful Phase4:
if test { // Phase 4: all done (goto target).
if doubleCheck {
// Double-check that bits to be written were written correctly. // Double-check that bits to be written were written correctly.
// Does not check that other bits were not written, unfortunately. // Does not check that other bits were not written, unfortunately.
h := heapBitsForAddr(x) h := heapBitsForAddr(x)
nptr := typ.size / ptrSize nptr := typ.ptrdata / ptrSize
ndata := typ.size / ptrSize
count := dataSize / typ.size
for i := uintptr(0); i <= dataSize/ptrSize; i++ { for i := uintptr(0); i <= dataSize/ptrSize; i++ {
j := i % nptr j := i % ndata
var have, want uint8 var have, want uint8
if i == dataSize/ptrSize { if i == dataSize/ptrSize && dataSize >= size {
if dataSize >= size { break
break }
} have = (*h.bitp >> h.shift) & 3
have = (*h.bitp >> h.shift) & 3 if i == dataSize/ptrSize || i/ndata == count-1 && j >= nptr {
want = 0 // dead bits want = 0 // dead marker
} else { } else {
have = (*h.bitp >> h.shift) & 3 if j < nptr && (*addb(ptrmask, j/8)>>(j%8))&1 != 0 {
if (*addb(ptrmask, j/8)>>(j%8))&1 != 0 {
want |= bitPointer want |= bitPointer
} }
if i >= 2 { if i >= 2 {
...@@ -820,13 +881,18 @@ Phase3: ...@@ -820,13 +881,18 @@ Phase3:
} }
if have != want { if have != want {
println("mismatch writing bits for", *typ._string, "x", dataSize/typ.size) println("mismatch writing bits for", *typ._string, "x", dataSize/typ.size)
print("typ.size=", typ.size, " dataSize=", dataSize, " size=", size, "\n") print("typ.size=", typ.size, " typ.ptrdata=", typ.ptrdata, " dataSize=", dataSize, " size=", size, "\n")
print("w=", w, " nw=", nw, " b=", hex(b), " nb=", nb, " hb=", hex(hb), "\n")
h = heapBitsForAddr(x) h = heapBitsForAddr(x)
print("initial bits h.bitp=", h.bitp, " h.shift=", h.shift, "\n") print("initial bits h.bitp=", h.bitp, " h.shift=", h.shift, "\n")
print("p=", p, " endp=", endp, " endnb=", endnb, " pbits=", hex(pbits), " b=", hex(b), " nb=", nb, "\n") print("ptrmask=", ptrmask, " p=", p, " endp=", endp, " endnb=", endnb, " pbits=", hex(pbits), " b=", hex(b), " nb=", nb, "\n")
println("at word", i, "offset", i*ptrSize, "have", have, "want", want) println("at word", i, "offset", i*ptrSize, "have", have, "want", want)
throw("bad heapBitsSetType") throw("bad heapBitsSetType")
} }
if i >= 2 && want == 0 {
// found dead marker; the rest is uninitialized
break
}
h = h.next() h = h.next()
} }
} }
...@@ -1076,7 +1142,7 @@ func getgcmask(ep interface{}) (mask []byte) { ...@@ -1076,7 +1142,7 @@ func getgcmask(ep interface{}) (mask []byte) {
mask[i/ptrSize] = 1 mask[i/ptrSize] = 1
} }
if i >= 2*ptrSize && !hbits.isMarked() { if i >= 2*ptrSize && !hbits.isMarked() {
mask[i/ptrSize] = 255 mask = mask[:i/ptrSize]
break break
} }
} }
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment