Commit 6436270d authored by Austin Clements's avatar Austin Clements

cmd/compile: add fence-post implications to prove

This adds four new deductions to the prove pass, all related to adding
or subtracting one from a value. This is the first hint of actual
arithmetic relations in the prove pass.

The most effective of these is

   x-1 >= w && x > min  ⇒  x > w

This helps eliminate bounds checks in code like

  if x > 0 {
    // do something with s[x-1]
  }

Altogether, these deductions prove an additional 260 branches in std
and cmd. Furthermore, they will let us eliminate some tricky
compiler-inserted panics in the runtime that are interfering with
static analysis.

Fixes #23354.

Change-Id: I7088223e0e0cd6ff062a75c127eb4bb60e6dce02
Reviewed-on: https://go-review.googlesource.com/87480Reviewed-by: default avatarKeith Randall <khr@golang.org>
Reviewed-by: default avatarAlexandru Moșoi <alexandru@mosoi.ro>
parent 941fc129
...@@ -305,6 +305,53 @@ func (ft *factsTable) update(parent *Block, v, w *Value, d domain, r relation) { ...@@ -305,6 +305,53 @@ func (ft *factsTable) update(parent *Block, v, w *Value, d domain, r relation) {
v.Block.Func.Warnl(parent.Pos, "parent=%s, new limits %s %s %s", parent, v, w, lim.String()) v.Block.Func.Warnl(parent.Pos, "parent=%s, new limits %s %s %s", parent, v, w, lim.String())
} }
} }
// Process fence-post implications.
//
// First, make the condition > or >=.
if r == lt || r == lt|eq {
v, w = w, v
r = reverseBits[r]
}
switch r {
case gt:
if x, delta := isConstDelta(v); x != nil && delta == 1 {
// x+1 > w ⇒ x >= w
//
// This is useful for eliminating the
// growslice branch of append.
ft.update(parent, x, w, d, gt|eq)
} else if x, delta := isConstDelta(w); x != nil && delta == -1 {
// v > x-1 ⇒ v >= x
ft.update(parent, v, x, d, gt|eq)
}
case gt | eq:
if x, delta := isConstDelta(v); x != nil && delta == -1 {
// x-1 >= w && x > min ⇒ x > w
//
// Useful for i > 0; s[i-1].
lim, ok := ft.limits[x.ID]
if ok && lim.min > opMin[v.Op] {
ft.update(parent, x, w, d, gt)
}
} else if x, delta := isConstDelta(w); x != nil && delta == 1 {
// v >= x+1 && x < max ⇒ v > x
lim, ok := ft.limits[x.ID]
if ok && lim.max < opMax[w.Op] {
ft.update(parent, v, x, d, gt)
}
}
}
}
var opMin = map[Op]int64{
OpAdd64: math.MinInt64, OpSub64: math.MinInt64,
OpAdd32: math.MinInt32, OpSub32: math.MinInt32,
}
var opMax = map[Op]int64{
OpAdd64: math.MaxInt64, OpSub64: math.MaxInt64,
OpAdd32: math.MaxInt32, OpSub32: math.MaxInt32,
} }
// isNonNegative returns true if v is known to be non-negative. // isNonNegative returns true if v is known to be non-negative.
...@@ -803,3 +850,29 @@ func isNonNegative(v *Value) bool { ...@@ -803,3 +850,29 @@ func isNonNegative(v *Value) bool {
} }
return false return false
} }
// isConstDelta returns non-nil if v is equivalent to w+delta (signed).
func isConstDelta(v *Value) (w *Value, delta int64) {
cop := OpConst64
switch v.Op {
case OpAdd32, OpSub32:
cop = OpConst32
}
switch v.Op {
case OpAdd64, OpAdd32:
if v.Args[0].Op == cop {
return v.Args[1], v.Args[0].AuxInt
}
if v.Args[1].Op == cop {
return v.Args[0], v.Args[1].AuxInt
}
case OpSub64, OpSub32:
if v.Args[1].Op == cop {
aux := v.Args[1].AuxInt
if aux != -aux { // Overflow; too bad
return v.Args[0], -aux
}
}
}
return nil, 0
}
...@@ -506,6 +506,60 @@ func lim1(x, y, z int) { ...@@ -506,6 +506,60 @@ func lim1(x, y, z int) {
} }
} }
// fence1–4 correspond to the four fence-post implications.
func fence1(b []int, x, y int) {
// Test proofs that rely on fence-post implications.
if x+1 > y {
if x < y { // ERROR "Disproved Less64$"
return
}
}
if len(b) < cap(b) {
// This eliminates the growslice path.
b = append(b, 1) // ERROR "Disproved Greater64$"
}
}
func fence2(x, y int) {
if x-1 < y {
if x > y { // ERROR "Disproved Greater64$"
return
}
}
}
func fence3(b []int, x, y int64) {
if x-1 >= y {
if x <= y { // Can't prove because x may have wrapped.
return
}
}
if x != math.MinInt64 && x-1 >= y {
if x <= y { // ERROR "Disproved Leq64$"
return
}
}
if n := len(b); n > 0 {
b[n-1] = 0 // ERROR "Proved IsInBounds$"
}
}
func fence4(x, y int64) {
if x >= y+1 {
if x <= y {
return
}
}
if y != math.MaxInt64 && x >= y+1 {
if x <= y { // ERROR "Disproved Leq64$"
return
}
}
}
//go:noinline //go:noinline
func useInt(a int) { func useInt(a int) {
} }
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment