Commit 77527a31 authored by Austin Clements's avatar Austin Clements

cmd/compile: add go:notinheap type pragma

This adds a //go:notinheap pragma for declarations of types that must
not be heap allocated. We ensure these rules by disallowing new(T),
make([]T), append([]T), or implicit allocation of T, by disallowing
conversions to notinheap types, and by propagating notinheap to any
struct or array that contains notinheap elements.

The utility of this pragma is that we can eliminate write barriers for
writes to pointers to go:notinheap types, since the write barrier is
guaranteed to be a no-op. This will let us mark several scheduler and
memory allocator structures as go:notinheap, which will let us
disallow write barriers in the scheduler and memory allocator much
more thoroughly and also eliminate some problematic hybrid write
barriers.

This also makes go:nowritebarrierrec and go:yeswritebarrierrec much
more powerful. Currently we use go:nowritebarrier all over the place,
but it's almost never what you actually want: when write barriers are
illegal, they're typically illegal for a whole dynamic scope. Partly
this is because go:nowritebarrier has been around longer, but it's
also because go:nowritebarrierrec couldn't be used in situations that
had no-op write barriers or where some nested scope did allow write
barriers. go:notinheap eliminates many no-op write barriers and
go:yeswritebarrierrec makes it possible to opt back in to write
barriers, so these two changes will let us use go:nowritebarrierrec
far more liberally.

This updates #13386, which is about controlling pointers from non-GC'd
memory to GC'd memory. That would require some additional pragma (or
pragmas), but could build on this pragma.

Change-Id: I6314f8f4181535dd166887c9ec239977b54940bd
Reviewed-on: https://go-review.googlesource.com/30939Reviewed-by: default avatarKeith Randall <khr@golang.org>
Reviewed-by: default avatarMatthew Dempsky <mdempsky@google.com>
parent a9e6cebd
......@@ -64,6 +64,7 @@ func plan9quote(s string) string {
type Pragma syntax.Pragma
const (
// Func pragmas.
Nointerface Pragma = 1 << iota
Noescape // func parameters don't escape
Norace // func must not have race detector annotations
......@@ -72,13 +73,15 @@ const (
CgoUnsafeArgs // treat a pointer to one arg as a pointer to them all
UintptrEscapes // pointers converted to uintptr escape
// Runtime-only pragmas.
// Runtime-only func pragmas.
// See ../../../../runtime/README.md for detailed descriptions.
Systemstack // func must run on system stack
Nowritebarrier // emit compiler error instead of write barrier
Nowritebarrierrec // error on write barrier in this or recursive callees
Yeswritebarrierrec // cancels Nowritebarrierrec in this function and callees
// Runtime-only type pragmas
NotInHeap // values of this type must not be heap allocated
)
func pragmaValue(verb string) Pragma {
......@@ -130,6 +133,8 @@ func pragmaValue(verb string) Pragma {
// in the argument list.
// Used in syscall/dll_windows.go.
return UintptrEscapes
case "go:notinheap":
return NotInHeap
}
return 0
}
......
......@@ -188,6 +188,7 @@ func (p *noder) constDecl(decl *syntax.ConstDecl) []*Node {
func (p *noder) typeDecl(decl *syntax.TypeDecl) *Node {
name := typedcl0(p.name(decl.Name))
name.Name.Param.Pragma = Pragma(decl.Pragma)
var typ *Node
if decl.Type != nil {
......
......@@ -479,6 +479,7 @@ func (p *parser) typedcl() []*Node {
}
name := typedcl0(p.sym())
name.Name.Param.Pragma = p.pragma
typ := p.try_ntype()
// handle case where type is missing
......
......@@ -863,6 +863,16 @@ func convertop(src *Type, dst *Type, why *string) Op {
return 0
}
// Conversions from regular to go:notinheap are not allowed
// (unless it's unsafe.Pointer). This is a runtime-specific
// rule.
if src.IsPtr() && dst.IsPtr() && dst.Elem().NotInHeap && !src.Elem().NotInHeap {
if why != nil {
*why = fmt.Sprintf(":\n\t%v is go:notinheap, but %v is not", dst.Elem(), src.Elem())
}
return 0
}
// 1. src can be assigned to dst.
op := assignop(src, dst, why)
if op != 0 {
......
......@@ -266,6 +266,11 @@ type Param struct {
// and x.Innermost/Outer means x.Name.Param.Innermost/Outer.
Innermost *Node
Outer *Node
// OTYPE pragmas
//
// TODO: Should Func pragmas also be stored on the Name?
Pragma Pragma
}
// Func holds Node fields used only with function-like nodes.
......
......@@ -160,6 +160,7 @@ type Type struct {
Deferwidth bool
Broke bool // broken type definition.
Align uint8 // the required alignment of this type, in bytes
NotInHeap bool // type cannot be heap allocated
}
// MapType contains Type fields specific to maps.
......@@ -414,6 +415,7 @@ func typArray(elem *Type, bound int64) *Type {
}
t := typ(TARRAY)
t.Extra = &ArrayType{Elem: elem, Bound: bound}
t.NotInHeap = elem.NotInHeap
return t
}
......@@ -436,6 +438,7 @@ func typSlice(elem *Type) *Type {
func typDDDArray(elem *Type) *Type {
t := typ(TARRAY)
t.Extra = &ArrayType{Elem: elem, Bound: -1}
t.NotInHeap = elem.NotInHeap
return t
}
......@@ -822,6 +825,17 @@ func (t *Type) FieldSlice() []*Field {
// SetFields sets struct/interface type t's fields/methods to fields.
func (t *Type) SetFields(fields []*Field) {
for _, f := range fields {
// If type T contains a field F with a go:notinheap
// type, then T must also be go:notinheap. Otherwise,
// you could heap allocate T and then get a pointer F,
// which would be a heap pointer to a go:notinheap
// type.
if f.Type != nil && f.Type.NotInHeap {
t.NotInHeap = true
break
}
}
t.Fields().Set(fields)
}
......
......@@ -403,6 +403,12 @@ OpSwitch:
n.Type = nil
return n
}
if l.Type.NotInHeap {
yyerror("go:notinheap map key not allowed")
}
if r.Type.NotInHeap {
yyerror("go:notinheap map value not allowed")
}
n.Op = OTYPE
n.Type = typMap(l.Type, r.Type)
......@@ -428,6 +434,9 @@ OpSwitch:
n.Type = nil
return n
}
if l.Type.NotInHeap {
yyerror("chan of go:notinheap type not allowed")
}
t := typChan(l.Type, ChanDir(n.Etype)) // TODO(marvin): Fix Node.EType type union.
n.Op = OTYPE
n.Type = t
......@@ -2087,6 +2096,12 @@ OpSwitch:
ok |= Etop
n.Left = typecheck(n.Left, Etype)
checkwidth(n.Left.Type)
if n.Left.Type != nil && n.Left.Type.NotInHeap && n.Left.Name.Param.Pragma&NotInHeap == 0 {
// The type contains go:notinheap types, so it
// must be marked as such (alternatively, we
// could silently propagate go:notinheap).
yyerror("type %v must be go:notinheap", n.Left.Type)
}
break OpSwitch
}
......@@ -3516,6 +3531,11 @@ func copytype(n *Node, t *Type) {
t.ptrTo = ptrTo
t.sliceOf = sliceOf
// Propagate go:notinheap pragma from the Name to the Type.
if n.Name != nil && n.Name.Param != nil && n.Name.Param.Pragma&NotInHeap != 0 {
t.NotInHeap = true
}
// Update nodes waiting on this type.
for _, n := range l {
copytype(n, t)
......
......@@ -773,6 +773,9 @@ opswitch:
case OAPPEND:
// x = append(...)
r := n.Right
if r.Type.Elem().NotInHeap {
yyerror("%v is go:notinheap; heap allocation disallowed", r.Type.Elem())
}
if r.Isddd {
r = appendslice(r, init) // also works for append(slice, string).
} else {
......@@ -1546,6 +1549,10 @@ opswitch:
// When len and cap can fit into int, use makeslice instead of
// makeslice64, which is faster and shorter on 32 bit platforms.
if t.Elem().NotInHeap {
yyerror("%v is go:notinheap; heap allocation disallowed", t.Elem())
}
len, cap := l, r
fnname := "makeslice64"
......@@ -2146,6 +2153,9 @@ func walkprint(nn *Node, init *Nodes) *Node {
}
func callnew(t *Type) *Node {
if t.NotInHeap {
yyerror("%v is go:notinheap; heap allocation disallowed", t)
}
dowidth(t)
fn := syslook("newobject")
fn = substArgTypes(fn, t)
......@@ -2217,6 +2227,12 @@ func needwritebarrier(l *Node, r *Node) bool {
return false
}
// No write barrier if this is a pointer to a go:notinheap
// type, since the write barrier's inheap(ptr) check will fail.
if l.Type.IsPtr() && l.Type.Elem().NotInHeap {
return false
}
// Ignore no-op conversions when making decision.
// Ensures that xp = unsafe.Pointer(&x) is treated
// the same as xp = &x.
......
......@@ -91,6 +91,7 @@ type (
Type Expr
Alias bool
Group *Group // nil means not part of a group
Pragma Pragma
decl
}
......
......@@ -381,6 +381,7 @@ func (p *parser) typeDecl(group *Group) Decl {
p.advance(_Semi, _Rparen)
}
d.Group = group
d.Pragma = p.pragma
return d
}
......
......@@ -12,8 +12,8 @@ import (
type Mode uint
// A Pragma value is a set of flags that augment a function
// declaration. Callers may assign meaning to the flags as
// A Pragma value is a set of flags that augment a function or
// type declaration. Callers may assign meaning to the flags as
// appropriate.
type Pragma uint16
......
......@@ -47,3 +47,36 @@ functions that release the P or may run without a P and
`go:yeswritebarrierrec` is used when code re-acquires an active P.
Since these are function-level annotations, code that releases or
acquires a P may need to be split across two functions.
go:notinheap
------------
`go:notinheap` applies to type declarations. It indicates that a type
must never be heap allocated. Specifically, pointers to this type must
always fail the `runtime.inheap` check. The type may be used for
global variables, for stack variables, or for objects in unmanaged
memory (e.g., allocated with `sysAlloc`, `persistentalloc`, or
`fixalloc`). Specifically:
1. `new(T)`, `make([]T)`, `append([]T, ...)` and implicit heap
allocation of T are disallowed. (Though implicit allocations are
disallowed in the runtime anyway.)
2. A pointer to a regular type (other than `unsafe.Pointer`) cannot be
converted to a pointer to a `go:notinheap` type, even if they have
the same underlying type.
3. Any type that contains a `go:notinheap` type is itself
`go:notinheap`. Structs and arrays are `go:notinheap` if their
elements are. Maps and channels of `go:notinheap` types are
disallowed. To keep things explicit, any type declaration where the
type is implicitly `go:notinheap` must be explicitly marked
`go:notinheap` as well.
4. Write barriers on pointers to `go:notinheap` types can be omitted.
The last point is the real benefit of `go:notinheap`. The runtime uses
it for low-level internal structures to avoid memory barriers in the
scheduler and the memory allocator where they are illegal or simply
inefficient. This mechanism is reasonably safe and does not compromise
the readability of the runtime.
// errorcheck -+
// Copyright 2016 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Test type-checking errors for go:notinheap.
package p
//go:notinheap
type nih struct{}
// Types embedding notinheap types must be notinheap.
type embed1 struct {
x nih
} // ERROR "must be go:notinheap"
type embed2 [1]nih // ERROR "must be go:notinheap"
type embed3 struct {
x [1]nih
} // ERROR "must be go:notinheap"
type embed4 map[nih]int // ERROR "go:notinheap map key not allowed"
type embed5 map[int]nih // ERROR "go:notinheap map value not allowed"
type emebd6 chan nih // ERROR "chan of go:notinheap type not allowed"
type okay1 *nih
type okay2 []nih
type okay3 func(x nih) nih
type okay4 interface {
f(x nih) nih
}
// Type conversions don't let you sneak past notinheap.
type t1 struct{ x int }
//go:notinheap
type t2 t1
var sink interface{}
func i() {
sink = new(t1) // no error
sink = (*t2)(new(t1)) // ERROR "cannot convert(.|\n)*t2 is go:notinheap"
sink = (*t2)(new(struct{ x int })) // ERROR "cannot convert(.|\n)*t2 is go:notinheap"
}
// errorcheck -+
// Copyright 2016 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Test walk errors for go:notinheap.
package p
//go:notinheap
type nih struct {
next *nih
}
// Globals and stack variables are okay.
var x nih
func f() {
var y nih
x = y
}
// Heap allocation is not okay.
var y *nih
var z []nih
func g() {
y = new(nih) // ERROR "heap allocation disallowed"
z = make([]nih, 1) // ERROR "heap allocation disallowed"
z = append(z, x) // ERROR "heap allocation disallowed"
}
// Writes don't produce write barriers.
var p *nih
//go:nowritebarrier
func h() {
y.next = p.next
}
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment