Commit 9d7b2b7b authored by Matthew Dempsky's avatar Matthew Dempsky

cmd/compile: move universe block code into new universe.go

Move lexinit, typeinit, lexinit1, and lexfini into new universe.go
file, and give them a more idiomatic and descriptive API. No code
changes.

Change-Id: I0e9b25dcc86ad10f4b990dc02bd33477b488cc85
Reviewed-on: https://go-review.googlesource.com/20604Reviewed-by: default avatarRobert Griesemer <gri@golang.org>
parent 76461c93
...@@ -390,230 +390,6 @@ func resumecheckwidth() { ...@@ -390,230 +390,6 @@ func resumecheckwidth() {
defercalc = 0 defercalc = 0
} }
var itable *Type // distinguished *byte
func typeinit() {
if Widthptr == 0 {
Fatalf("typeinit before betypeinit")
}
for et := EType(0); et < NTYPE; et++ {
Simtype[et] = et
}
Types[TPTR32] = typ(TPTR32)
dowidth(Types[TPTR32])
Types[TPTR64] = typ(TPTR64)
dowidth(Types[TPTR64])
t := typ(TUNSAFEPTR)
Types[TUNSAFEPTR] = t
t.Sym = Pkglookup("Pointer", unsafepkg)
t.Sym.Def = typenod(t)
t.Sym.Def.Name = new(Name)
dowidth(Types[TUNSAFEPTR])
Tptr = TPTR32
if Widthptr == 8 {
Tptr = TPTR64
}
for et := TINT8; et <= TUINT64; et++ {
Isint[et] = true
}
Isint[TINT] = true
Isint[TUINT] = true
Isint[TUINTPTR] = true
Isfloat[TFLOAT32] = true
Isfloat[TFLOAT64] = true
Iscomplex[TCOMPLEX64] = true
Iscomplex[TCOMPLEX128] = true
Isptr[TPTR32] = true
Isptr[TPTR64] = true
isforw[TFORW] = true
Issigned[TINT] = true
Issigned[TINT8] = true
Issigned[TINT16] = true
Issigned[TINT32] = true
Issigned[TINT64] = true
// initialize okfor
for et := EType(0); et < NTYPE; et++ {
if Isint[et] || et == TIDEAL {
okforeq[et] = true
okforcmp[et] = true
okforarith[et] = true
okforadd[et] = true
okforand[et] = true
okforconst[et] = true
issimple[et] = true
Minintval[et] = new(Mpint)
Maxintval[et] = new(Mpint)
}
if Isfloat[et] {
okforeq[et] = true
okforcmp[et] = true
okforadd[et] = true
okforarith[et] = true
okforconst[et] = true
issimple[et] = true
minfltval[et] = newMpflt()
maxfltval[et] = newMpflt()
}
if Iscomplex[et] {
okforeq[et] = true
okforadd[et] = true
okforarith[et] = true
okforconst[et] = true
issimple[et] = true
}
}
issimple[TBOOL] = true
okforadd[TSTRING] = true
okforbool[TBOOL] = true
okforcap[TARRAY] = true
okforcap[TCHAN] = true
okforconst[TBOOL] = true
okforconst[TSTRING] = true
okforlen[TARRAY] = true
okforlen[TCHAN] = true
okforlen[TMAP] = true
okforlen[TSTRING] = true
okforeq[TPTR32] = true
okforeq[TPTR64] = true
okforeq[TUNSAFEPTR] = true
okforeq[TINTER] = true
okforeq[TCHAN] = true
okforeq[TSTRING] = true
okforeq[TBOOL] = true
okforeq[TMAP] = true // nil only; refined in typecheck
okforeq[TFUNC] = true // nil only; refined in typecheck
okforeq[TARRAY] = true // nil slice only; refined in typecheck
okforeq[TSTRUCT] = true // it's complicated; refined in typecheck
okforcmp[TSTRING] = true
var i int
for i = 0; i < len(okfor); i++ {
okfor[i] = okfornone[:]
}
// binary
okfor[OADD] = okforadd[:]
okfor[OAND] = okforand[:]
okfor[OANDAND] = okforbool[:]
okfor[OANDNOT] = okforand[:]
okfor[ODIV] = okforarith[:]
okfor[OEQ] = okforeq[:]
okfor[OGE] = okforcmp[:]
okfor[OGT] = okforcmp[:]
okfor[OLE] = okforcmp[:]
okfor[OLT] = okforcmp[:]
okfor[OMOD] = okforand[:]
okfor[OHMUL] = okforarith[:]
okfor[OMUL] = okforarith[:]
okfor[ONE] = okforeq[:]
okfor[OOR] = okforand[:]
okfor[OOROR] = okforbool[:]
okfor[OSUB] = okforarith[:]
okfor[OXOR] = okforand[:]
okfor[OLSH] = okforand[:]
okfor[ORSH] = okforand[:]
// unary
okfor[OCOM] = okforand[:]
okfor[OMINUS] = okforarith[:]
okfor[ONOT] = okforbool[:]
okfor[OPLUS] = okforarith[:]
// special
okfor[OCAP] = okforcap[:]
okfor[OLEN] = okforlen[:]
// comparison
iscmp[OLT] = true
iscmp[OGT] = true
iscmp[OGE] = true
iscmp[OLE] = true
iscmp[OEQ] = true
iscmp[ONE] = true
mpatofix(Maxintval[TINT8], "0x7f")
mpatofix(Minintval[TINT8], "-0x80")
mpatofix(Maxintval[TINT16], "0x7fff")
mpatofix(Minintval[TINT16], "-0x8000")
mpatofix(Maxintval[TINT32], "0x7fffffff")
mpatofix(Minintval[TINT32], "-0x80000000")
mpatofix(Maxintval[TINT64], "0x7fffffffffffffff")
mpatofix(Minintval[TINT64], "-0x8000000000000000")
mpatofix(Maxintval[TUINT8], "0xff")
mpatofix(Maxintval[TUINT16], "0xffff")
mpatofix(Maxintval[TUINT32], "0xffffffff")
mpatofix(Maxintval[TUINT64], "0xffffffffffffffff")
// f is valid float if min < f < max. (min and max are not themselves valid.)
mpatoflt(maxfltval[TFLOAT32], "33554431p103") // 2^24-1 p (127-23) + 1/2 ulp
mpatoflt(minfltval[TFLOAT32], "-33554431p103")
mpatoflt(maxfltval[TFLOAT64], "18014398509481983p970") // 2^53-1 p (1023-52) + 1/2 ulp
mpatoflt(minfltval[TFLOAT64], "-18014398509481983p970")
maxfltval[TCOMPLEX64] = maxfltval[TFLOAT32]
minfltval[TCOMPLEX64] = minfltval[TFLOAT32]
maxfltval[TCOMPLEX128] = maxfltval[TFLOAT64]
minfltval[TCOMPLEX128] = minfltval[TFLOAT64]
// for walk to use in error messages
Types[TFUNC] = functype(nil, nil, nil)
// types used in front end
// types[TNIL] got set early in lexinit
Types[TIDEAL] = typ(TIDEAL)
Types[TINTER] = typ(TINTER)
// simple aliases
Simtype[TMAP] = Tptr
Simtype[TCHAN] = Tptr
Simtype[TFUNC] = Tptr
Simtype[TUNSAFEPTR] = Tptr
Array_array = int(Rnd(0, int64(Widthptr)))
Array_nel = int(Rnd(int64(Array_array)+int64(Widthptr), int64(Widthint)))
Array_cap = int(Rnd(int64(Array_nel)+int64(Widthint), int64(Widthint)))
sizeof_Array = int(Rnd(int64(Array_cap)+int64(Widthint), int64(Widthptr)))
// string is same as slice wo the cap
sizeof_String = int(Rnd(int64(Array_nel)+int64(Widthint), int64(Widthptr)))
dowidth(Types[TSTRING])
dowidth(idealstring)
itable = typ(Tptr)
itable.Type = Types[TUINT8]
}
// compute total size of f's in/out arguments. // compute total size of f's in/out arguments.
func Argsize(t *Type) int { func Argsize(t *Type) int {
var w int64 var w int64
......
...@@ -250,8 +250,6 @@ var importpkg *Pkg // package being imported ...@@ -250,8 +250,6 @@ var importpkg *Pkg // package being imported
var structpkg *Pkg // package that declared struct, during import var structpkg *Pkg // package that declared struct, during import
var builtinpkg *Pkg // fake package for builtins
var gostringpkg *Pkg // fake pkg for Go strings var gostringpkg *Pkg // fake pkg for Go strings
var itabpkg *Pkg // fake pkg for itab cache var itabpkg *Pkg // fake pkg for itab cache
......
...@@ -310,9 +310,7 @@ func Main() { ...@@ -310,9 +310,7 @@ func Main() {
Fatalf("betypeinit failed") Fatalf("betypeinit failed")
} }
lexinit() initUniverse()
typeinit()
lexinit1()
blockgen = 1 blockgen = 1
dclcontext = PEXTERN dclcontext = PEXTERN
...@@ -361,7 +359,7 @@ func Main() { ...@@ -361,7 +359,7 @@ func Main() {
testdclstack() testdclstack()
mkpackage(localpkg.Name) // final import not used checks mkpackage(localpkg.Name) // final import not used checks
lexfini() finishUniverse()
typecheckok = true typecheckok = true
if Debug['f'] != 0 { if Debug['f'] != 0 {
...@@ -837,226 +835,6 @@ func importfile(f *Val, indent []byte) { ...@@ -837,226 +835,6 @@ func importfile(f *Val, indent []byte) {
} }
} }
var basicTypes = [...]struct {
name string
etype EType
}{
{"int8", TINT8},
{"int16", TINT16},
{"int32", TINT32},
{"int64", TINT64},
{"uint8", TUINT8},
{"uint16", TUINT16},
{"uint32", TUINT32},
{"uint64", TUINT64},
{"float32", TFLOAT32},
{"float64", TFLOAT64},
{"complex64", TCOMPLEX64},
{"complex128", TCOMPLEX128},
{"bool", TBOOL},
{"string", TSTRING},
{"any", TANY},
}
var typedefs = [...]struct {
name string
etype EType
width *int
sameas32 EType
sameas64 EType
}{
{"int", TINT, &Widthint, TINT32, TINT64},
{"uint", TUINT, &Widthint, TUINT32, TUINT64},
{"uintptr", TUINTPTR, &Widthptr, TUINT32, TUINT64},
}
var builtinFuncs = [...]struct {
name string
op Op
}{
{"append", OAPPEND},
{"cap", OCAP},
{"close", OCLOSE},
{"complex", OCOMPLEX},
{"copy", OCOPY},
{"delete", ODELETE},
{"imag", OIMAG},
{"len", OLEN},
{"make", OMAKE},
{"new", ONEW},
{"panic", OPANIC},
{"print", OPRINT},
{"println", OPRINTN},
{"real", OREAL},
{"recover", ORECOVER},
}
// lexinit initializes known symbols and the basic types.
func lexinit() {
for _, s := range basicTypes {
etype := s.etype
if int(etype) >= len(Types) {
Fatalf("lexinit: %s bad etype", s.name)
}
s2 := Pkglookup(s.name, builtinpkg)
t := Types[etype]
if t == nil {
t = typ(etype)
t.Sym = s2
if etype != TANY && etype != TSTRING {
dowidth(t)
}
Types[etype] = t
}
s2.Def = typenod(t)
s2.Def.Name = new(Name)
}
for _, s := range builtinFuncs {
// TODO(marvin): Fix Node.EType type union.
s2 := Pkglookup(s.name, builtinpkg)
s2.Def = Nod(ONAME, nil, nil)
s2.Def.Sym = s2
s2.Def.Etype = EType(s.op)
}
idealstring = typ(TSTRING)
idealbool = typ(TBOOL)
s := Pkglookup("true", builtinpkg)
s.Def = Nodbool(true)
s.Def.Sym = Lookup("true")
s.Def.Name = new(Name)
s.Def.Type = idealbool
s = Pkglookup("false", builtinpkg)
s.Def = Nodbool(false)
s.Def.Sym = Lookup("false")
s.Def.Name = new(Name)
s.Def.Type = idealbool
s = Lookup("_")
s.Block = -100
s.Def = Nod(ONAME, nil, nil)
s.Def.Sym = s
Types[TBLANK] = typ(TBLANK)
s.Def.Type = Types[TBLANK]
nblank = s.Def
s = Pkglookup("_", builtinpkg)
s.Block = -100
s.Def = Nod(ONAME, nil, nil)
s.Def.Sym = s
Types[TBLANK] = typ(TBLANK)
s.Def.Type = Types[TBLANK]
Types[TNIL] = typ(TNIL)
s = Pkglookup("nil", builtinpkg)
var v Val
v.U = new(NilVal)
s.Def = nodlit(v)
s.Def.Sym = s
s.Def.Name = new(Name)
s = Pkglookup("iota", builtinpkg)
s.Def = Nod(OIOTA, nil, nil)
s.Def.Sym = s
s.Def.Name = new(Name)
}
func lexinit1() {
// t = interface { Error() string }
rcvr := typ(TSTRUCT)
rcvr.Type = typ(TFIELD)
rcvr.Type.Type = Ptrto(typ(TSTRUCT))
rcvr.Funarg = true
in := typ(TSTRUCT)
in.Funarg = true
out := typ(TSTRUCT)
out.Type = typ(TFIELD)
out.Type.Type = Types[TSTRING]
out.Funarg = true
f := typ(TFUNC)
*f.RecvsP() = rcvr
*f.ResultsP() = out
*f.ParamsP() = in
f.Thistuple = 1
f.Intuple = 0
f.Outnamed = false
f.Outtuple = 1
t := typ(TINTER)
t.Type = typ(TFIELD)
t.Type.Sym = Lookup("Error")
t.Type.Type = f
// error type
s := Pkglookup("error", builtinpkg)
errortype = t
errortype.Sym = s
s.Def = typenod(errortype)
// byte alias
s = Pkglookup("byte", builtinpkg)
bytetype = typ(TUINT8)
bytetype.Sym = s
s.Def = typenod(bytetype)
s.Def.Name = new(Name)
// rune alias
s = Pkglookup("rune", builtinpkg)
runetype = typ(TINT32)
runetype.Sym = s
s.Def = typenod(runetype)
s.Def.Name = new(Name)
// backend-dependent builtin types (e.g. int).
for _, s := range typedefs {
s1 := Pkglookup(s.name, builtinpkg)
sameas := s.sameas32
if *s.width == 8 {
sameas = s.sameas64
}
Simtype[s.etype] = sameas
minfltval[s.etype] = minfltval[sameas]
maxfltval[s.etype] = maxfltval[sameas]
Minintval[s.etype] = Minintval[sameas]
Maxintval[s.etype] = Maxintval[sameas]
t := typ(s.etype)
t.Sym = s1
Types[s.etype] = t
s1.Def = typenod(t)
s1.Def.Name = new(Name)
s1.Origpkg = builtinpkg
dowidth(t)
}
}
func lexfini() {
for _, s := range builtinpkg.Syms {
if s.Def == nil || (s.Name == "any" && Debug['A'] == 0) {
continue
}
s1 := Lookup(s.Name)
if s1.Def != nil {
continue
}
s1.Def = s.Def
s1.Block = s.Block
}
nodfp = Nod(ONAME, nil, nil)
nodfp.Type = Types[TINT32]
nodfp.Xoffset = 0
nodfp.Class = PPARAM
nodfp.Sym = Lookup(".fp")
}
func pkgnotused(lineno int32, path string, name string) { func pkgnotused(lineno int32, path string, name string) {
// If the package was imported with a name other than the final // If the package was imported with a name other than the final
// import path element, show it explicitly in the error message. // import path element, show it explicitly in the error message.
......
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package gc
// builtinpkg is a fake package that declares the universe block.
var builtinpkg *Pkg
var itable *Type // distinguished *byte
var basicTypes = [...]struct {
name string
etype EType
}{
{"int8", TINT8},
{"int16", TINT16},
{"int32", TINT32},
{"int64", TINT64},
{"uint8", TUINT8},
{"uint16", TUINT16},
{"uint32", TUINT32},
{"uint64", TUINT64},
{"float32", TFLOAT32},
{"float64", TFLOAT64},
{"complex64", TCOMPLEX64},
{"complex128", TCOMPLEX128},
{"bool", TBOOL},
{"string", TSTRING},
{"any", TANY},
}
var typedefs = [...]struct {
name string
etype EType
width *int
sameas32 EType
sameas64 EType
}{
{"int", TINT, &Widthint, TINT32, TINT64},
{"uint", TUINT, &Widthint, TUINT32, TUINT64},
{"uintptr", TUINTPTR, &Widthptr, TUINT32, TUINT64},
}
var builtinFuncs = [...]struct {
name string
op Op
}{
{"append", OAPPEND},
{"cap", OCAP},
{"close", OCLOSE},
{"complex", OCOMPLEX},
{"copy", OCOPY},
{"delete", ODELETE},
{"imag", OIMAG},
{"len", OLEN},
{"make", OMAKE},
{"new", ONEW},
{"panic", OPANIC},
{"print", OPRINT},
{"println", OPRINTN},
{"real", OREAL},
{"recover", ORECOVER},
}
// initUniverse initializes the universe block.
func initUniverse() {
lexinit()
typeinit()
lexinit1()
}
// lexinit initializes known symbols and the basic types.
func lexinit() {
for _, s := range basicTypes {
etype := s.etype
if int(etype) >= len(Types) {
Fatalf("lexinit: %s bad etype", s.name)
}
s2 := Pkglookup(s.name, builtinpkg)
t := Types[etype]
if t == nil {
t = typ(etype)
t.Sym = s2
if etype != TANY && etype != TSTRING {
dowidth(t)
}
Types[etype] = t
}
s2.Def = typenod(t)
s2.Def.Name = new(Name)
}
for _, s := range builtinFuncs {
// TODO(marvin): Fix Node.EType type union.
s2 := Pkglookup(s.name, builtinpkg)
s2.Def = Nod(ONAME, nil, nil)
s2.Def.Sym = s2
s2.Def.Etype = EType(s.op)
}
idealstring = typ(TSTRING)
idealbool = typ(TBOOL)
s := Pkglookup("true", builtinpkg)
s.Def = Nodbool(true)
s.Def.Sym = Lookup("true")
s.Def.Name = new(Name)
s.Def.Type = idealbool
s = Pkglookup("false", builtinpkg)
s.Def = Nodbool(false)
s.Def.Sym = Lookup("false")
s.Def.Name = new(Name)
s.Def.Type = idealbool
s = Lookup("_")
s.Block = -100
s.Def = Nod(ONAME, nil, nil)
s.Def.Sym = s
Types[TBLANK] = typ(TBLANK)
s.Def.Type = Types[TBLANK]
nblank = s.Def
s = Pkglookup("_", builtinpkg)
s.Block = -100
s.Def = Nod(ONAME, nil, nil)
s.Def.Sym = s
Types[TBLANK] = typ(TBLANK)
s.Def.Type = Types[TBLANK]
Types[TNIL] = typ(TNIL)
s = Pkglookup("nil", builtinpkg)
var v Val
v.U = new(NilVal)
s.Def = nodlit(v)
s.Def.Sym = s
s.Def.Name = new(Name)
s = Pkglookup("iota", builtinpkg)
s.Def = Nod(OIOTA, nil, nil)
s.Def.Sym = s
s.Def.Name = new(Name)
}
func typeinit() {
if Widthptr == 0 {
Fatalf("typeinit before betypeinit")
}
for et := EType(0); et < NTYPE; et++ {
Simtype[et] = et
}
Types[TPTR32] = typ(TPTR32)
dowidth(Types[TPTR32])
Types[TPTR64] = typ(TPTR64)
dowidth(Types[TPTR64])
t := typ(TUNSAFEPTR)
Types[TUNSAFEPTR] = t
t.Sym = Pkglookup("Pointer", unsafepkg)
t.Sym.Def = typenod(t)
t.Sym.Def.Name = new(Name)
dowidth(Types[TUNSAFEPTR])
Tptr = TPTR32
if Widthptr == 8 {
Tptr = TPTR64
}
for et := TINT8; et <= TUINT64; et++ {
Isint[et] = true
}
Isint[TINT] = true
Isint[TUINT] = true
Isint[TUINTPTR] = true
Isfloat[TFLOAT32] = true
Isfloat[TFLOAT64] = true
Iscomplex[TCOMPLEX64] = true
Iscomplex[TCOMPLEX128] = true
Isptr[TPTR32] = true
Isptr[TPTR64] = true
isforw[TFORW] = true
Issigned[TINT] = true
Issigned[TINT8] = true
Issigned[TINT16] = true
Issigned[TINT32] = true
Issigned[TINT64] = true
// initialize okfor
for et := EType(0); et < NTYPE; et++ {
if Isint[et] || et == TIDEAL {
okforeq[et] = true
okforcmp[et] = true
okforarith[et] = true
okforadd[et] = true
okforand[et] = true
okforconst[et] = true
issimple[et] = true
Minintval[et] = new(Mpint)
Maxintval[et] = new(Mpint)
}
if Isfloat[et] {
okforeq[et] = true
okforcmp[et] = true
okforadd[et] = true
okforarith[et] = true
okforconst[et] = true
issimple[et] = true
minfltval[et] = newMpflt()
maxfltval[et] = newMpflt()
}
if Iscomplex[et] {
okforeq[et] = true
okforadd[et] = true
okforarith[et] = true
okforconst[et] = true
issimple[et] = true
}
}
issimple[TBOOL] = true
okforadd[TSTRING] = true
okforbool[TBOOL] = true
okforcap[TARRAY] = true
okforcap[TCHAN] = true
okforconst[TBOOL] = true
okforconst[TSTRING] = true
okforlen[TARRAY] = true
okforlen[TCHAN] = true
okforlen[TMAP] = true
okforlen[TSTRING] = true
okforeq[TPTR32] = true
okforeq[TPTR64] = true
okforeq[TUNSAFEPTR] = true
okforeq[TINTER] = true
okforeq[TCHAN] = true
okforeq[TSTRING] = true
okforeq[TBOOL] = true
okforeq[TMAP] = true // nil only; refined in typecheck
okforeq[TFUNC] = true // nil only; refined in typecheck
okforeq[TARRAY] = true // nil slice only; refined in typecheck
okforeq[TSTRUCT] = true // it's complicated; refined in typecheck
okforcmp[TSTRING] = true
var i int
for i = 0; i < len(okfor); i++ {
okfor[i] = okfornone[:]
}
// binary
okfor[OADD] = okforadd[:]
okfor[OAND] = okforand[:]
okfor[OANDAND] = okforbool[:]
okfor[OANDNOT] = okforand[:]
okfor[ODIV] = okforarith[:]
okfor[OEQ] = okforeq[:]
okfor[OGE] = okforcmp[:]
okfor[OGT] = okforcmp[:]
okfor[OLE] = okforcmp[:]
okfor[OLT] = okforcmp[:]
okfor[OMOD] = okforand[:]
okfor[OHMUL] = okforarith[:]
okfor[OMUL] = okforarith[:]
okfor[ONE] = okforeq[:]
okfor[OOR] = okforand[:]
okfor[OOROR] = okforbool[:]
okfor[OSUB] = okforarith[:]
okfor[OXOR] = okforand[:]
okfor[OLSH] = okforand[:]
okfor[ORSH] = okforand[:]
// unary
okfor[OCOM] = okforand[:]
okfor[OMINUS] = okforarith[:]
okfor[ONOT] = okforbool[:]
okfor[OPLUS] = okforarith[:]
// special
okfor[OCAP] = okforcap[:]
okfor[OLEN] = okforlen[:]
// comparison
iscmp[OLT] = true
iscmp[OGT] = true
iscmp[OGE] = true
iscmp[OLE] = true
iscmp[OEQ] = true
iscmp[ONE] = true
mpatofix(Maxintval[TINT8], "0x7f")
mpatofix(Minintval[TINT8], "-0x80")
mpatofix(Maxintval[TINT16], "0x7fff")
mpatofix(Minintval[TINT16], "-0x8000")
mpatofix(Maxintval[TINT32], "0x7fffffff")
mpatofix(Minintval[TINT32], "-0x80000000")
mpatofix(Maxintval[TINT64], "0x7fffffffffffffff")
mpatofix(Minintval[TINT64], "-0x8000000000000000")
mpatofix(Maxintval[TUINT8], "0xff")
mpatofix(Maxintval[TUINT16], "0xffff")
mpatofix(Maxintval[TUINT32], "0xffffffff")
mpatofix(Maxintval[TUINT64], "0xffffffffffffffff")
// f is valid float if min < f < max. (min and max are not themselves valid.)
mpatoflt(maxfltval[TFLOAT32], "33554431p103") // 2^24-1 p (127-23) + 1/2 ulp
mpatoflt(minfltval[TFLOAT32], "-33554431p103")
mpatoflt(maxfltval[TFLOAT64], "18014398509481983p970") // 2^53-1 p (1023-52) + 1/2 ulp
mpatoflt(minfltval[TFLOAT64], "-18014398509481983p970")
maxfltval[TCOMPLEX64] = maxfltval[TFLOAT32]
minfltval[TCOMPLEX64] = minfltval[TFLOAT32]
maxfltval[TCOMPLEX128] = maxfltval[TFLOAT64]
minfltval[TCOMPLEX128] = minfltval[TFLOAT64]
// for walk to use in error messages
Types[TFUNC] = functype(nil, nil, nil)
// types used in front end
// types[TNIL] got set early in lexinit
Types[TIDEAL] = typ(TIDEAL)
Types[TINTER] = typ(TINTER)
// simple aliases
Simtype[TMAP] = Tptr
Simtype[TCHAN] = Tptr
Simtype[TFUNC] = Tptr
Simtype[TUNSAFEPTR] = Tptr
Array_array = int(Rnd(0, int64(Widthptr)))
Array_nel = int(Rnd(int64(Array_array)+int64(Widthptr), int64(Widthint)))
Array_cap = int(Rnd(int64(Array_nel)+int64(Widthint), int64(Widthint)))
sizeof_Array = int(Rnd(int64(Array_cap)+int64(Widthint), int64(Widthptr)))
// string is same as slice wo the cap
sizeof_String = int(Rnd(int64(Array_nel)+int64(Widthint), int64(Widthptr)))
dowidth(Types[TSTRING])
dowidth(idealstring)
itable = typ(Tptr)
itable.Type = Types[TUINT8]
}
func lexinit1() {
// t = interface { Error() string }
rcvr := typ(TSTRUCT)
rcvr.Type = typ(TFIELD)
rcvr.Type.Type = Ptrto(typ(TSTRUCT))
rcvr.Funarg = true
in := typ(TSTRUCT)
in.Funarg = true
out := typ(TSTRUCT)
out.Type = typ(TFIELD)
out.Type.Type = Types[TSTRING]
out.Funarg = true
f := typ(TFUNC)
*f.RecvsP() = rcvr
*f.ResultsP() = out
*f.ParamsP() = in
f.Thistuple = 1
f.Intuple = 0
f.Outnamed = false
f.Outtuple = 1
t := typ(TINTER)
t.Type = typ(TFIELD)
t.Type.Sym = Lookup("Error")
t.Type.Type = f
// error type
s := Pkglookup("error", builtinpkg)
errortype = t
errortype.Sym = s
s.Def = typenod(errortype)
// byte alias
s = Pkglookup("byte", builtinpkg)
bytetype = typ(TUINT8)
bytetype.Sym = s
s.Def = typenod(bytetype)
s.Def.Name = new(Name)
// rune alias
s = Pkglookup("rune", builtinpkg)
runetype = typ(TINT32)
runetype.Sym = s
s.Def = typenod(runetype)
s.Def.Name = new(Name)
// backend-dependent builtin types (e.g. int).
for _, s := range typedefs {
s1 := Pkglookup(s.name, builtinpkg)
sameas := s.sameas32
if *s.width == 8 {
sameas = s.sameas64
}
Simtype[s.etype] = sameas
minfltval[s.etype] = minfltval[sameas]
maxfltval[s.etype] = maxfltval[sameas]
Minintval[s.etype] = Minintval[sameas]
Maxintval[s.etype] = Maxintval[sameas]
t := typ(s.etype)
t.Sym = s1
Types[s.etype] = t
s1.Def = typenod(t)
s1.Def.Name = new(Name)
s1.Origpkg = builtinpkg
dowidth(t)
}
}
// finishUniverse makes the universe block visible within the current package.
func finishUniverse() {
// Operationally, this is similar to a dot import of builtinpkg, except
// that we silently skip symbols that are already declared in the
// package block rather than emitting a redeclared symbol error.
for _, s := range builtinpkg.Syms {
if s.Def == nil || (s.Name == "any" && Debug['A'] == 0) {
continue
}
s1 := Lookup(s.Name)
if s1.Def != nil {
continue
}
s1.Def = s.Def
s1.Block = s.Block
}
nodfp = Nod(ONAME, nil, nil)
nodfp.Type = Types[TINT32]
nodfp.Xoffset = 0
nodfp.Class = PPARAM
nodfp.Sym = Lookup(".fp")
}
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment