Commit 9ee21f90 authored by Russ Cox's avatar Russ Cox

math/big: add (*Int).Sqrt

This is needed for some of the more complex primality tests
(to filter out exact squares), and while the code is simple the
boundary conditions are not obvious, so it seems worth having
in the library.

Change-Id: Ica994a6b6c1e412a6f6d9c3cf823f9b653c6bcbd
Reviewed-on: https://go-review.googlesource.com/30706
Run-TryBot: Russ Cox <rsc@golang.org>
Reviewed-by: default avatarRobert Griesemer <gri@golang.org>
parent 2190f771
...@@ -924,3 +924,14 @@ func (z *Int) Not(x *Int) *Int { ...@@ -924,3 +924,14 @@ func (z *Int) Not(x *Int) *Int {
z.neg = true // z cannot be zero if x is positive z.neg = true // z cannot be zero if x is positive
return z return z
} }
// Sqrt sets z to ⌊√x⌋, the largest integer such that z² ≤ x, and returns z.
// It panics if x is negative.
func (z *Int) Sqrt(x *Int) *Int {
if x.neg {
panic("square root of negative number")
}
z.neg = false
z.abs = z.abs.sqrt(x.abs)
return z
}
...@@ -9,6 +9,7 @@ import ( ...@@ -9,6 +9,7 @@ import (
"encoding/hex" "encoding/hex"
"fmt" "fmt"
"math/rand" "math/rand"
"strings"
"testing" "testing"
"testing/quick" "testing/quick"
) )
...@@ -1453,3 +1454,44 @@ func TestIssue2607(t *testing.T) { ...@@ -1453,3 +1454,44 @@ func TestIssue2607(t *testing.T) {
n := NewInt(10) n := NewInt(10)
n.Rand(rand.New(rand.NewSource(9)), n) n.Rand(rand.New(rand.NewSource(9)), n)
} }
func TestSqrt(t *testing.T) {
root := 0
r := new(Int)
for i := 0; i < 10000; i++ {
if (root+1)*(root+1) <= i {
root++
}
n := NewInt(int64(i))
r.SetInt64(-2)
r.Sqrt(n)
if r.Cmp(NewInt(int64(root))) != 0 {
t.Errorf("Sqrt(%v) = %v, want %v", n, r, root)
}
}
for i := 0; i < 1000; i += 10 {
n, _ := new(Int).SetString("1"+strings.Repeat("0", i), 10)
r := new(Int).Sqrt(n)
root, _ := new(Int).SetString("1"+strings.Repeat("0", i/2), 10)
if r.Cmp(root) != 0 {
t.Errorf("Sqrt(1e%d) = %v, want 1e%d", i, r, i/2)
}
}
// Test aliasing.
r.SetInt64(100)
r.Sqrt(r)
if r.Int64() != 10 {
t.Errorf("Sqrt(100) = %v, want 10 (aliased output)", r.Int64())
}
}
func BenchmarkSqrt(b *testing.B) {
n, _ := new(Int).SetString("1"+strings.Repeat("0", 1001), 10)
b.ResetTimer()
t := new(Int)
for i := 0; i < b.N; i++ {
t.Sqrt(n)
}
}
...@@ -1223,3 +1223,37 @@ func (z nat) setBytes(buf []byte) nat { ...@@ -1223,3 +1223,37 @@ func (z nat) setBytes(buf []byte) nat {
return z.norm() return z.norm()
} }
// sqrt sets z = ⌊√x⌋
func (z nat) sqrt(x nat) nat {
if x.cmp(natOne) <= 0 {
return z.set(x)
}
if alias(z, x) {
z = nil
}
// Start with value known to be too large and repeat "z = ⌊(z + ⌊x/z⌋)/2⌋" until it stops getting smaller.
// See Brent and Zimmermann, Modern Computer Arithmetic, Algorithm 1.13 (SqrtInt).
// https://members.loria.fr/PZimmermann/mca/pub226.html
// If x is one less than a perfect square, the sequence oscillates between the correct z and z+1;
// otherwise it converges to the correct z and stays there.
var z1, z2 nat
z1 = z
z1 = z1.setUint64(1)
z1 = z1.shl(z1, uint(x.bitLen()/2+1)) // must be ≥ √x
for n := 0; ; n++ {
z2, _ = z2.div(nil, x, z1)
z2 = z2.add(z2, z1)
z2 = z2.shr(z2, 1)
if z2.cmp(z1) >= 0 {
// z1 is answer.
// Figure out whether z1 or z2 is currently aliased to z by looking at loop count.
if n&1 == 0 {
return z1
}
return z.set(z1)
}
z1, z2 = z2, z1
}
}
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment