Commit c8683ff7 authored by Robert Griesemer's avatar Robert Griesemer Committed by Matthew Dempsky

cmd/compile/internal/syntax: fast Go syntax trees, initial commit.

Syntax tree nodes, scanner, parser, basic printers.

Builds syntax trees for entire Go std lib at a rate of ~1.8M lines/s
in warmed up state (MacMini, 2.3 GHz Intel Core i7, 8GB RAM):

$ go test -run StdLib -fast
parsed 1074617 lines (2832 files) in 579.66364ms (1853863 lines/s)
allocated 282.212Mb (486.854Mb/s)
PASS

Change-Id: Ie26d9a7bf4e5ff07457aedfcc9b89f0eba72ae3f
Reviewed-on: https://go-review.googlesource.com/27195
Run-TryBot: Matthew Dempsky <mdempsky@google.com>
Reviewed-by: default avatarRobert Griesemer <gri@golang.org>
parent 3b967be4
......@@ -18,6 +18,10 @@ go src=..
asm
testdata
+
compile
internal
syntax
parser.go
doc
main.go
pkg.go
......
// Copyright 2016 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// This file implements printing of syntax tree structures.
package syntax
import (
"fmt"
"io"
"reflect"
"unicode"
"unicode/utf8"
)
// Fdump dumps the structure of the syntax tree rooted at n to w.
// It is intended for debugging purposes; no specific output format
// is guaranteed.
func Fdump(w io.Writer, n Node) (err error) {
p := dumper{
output: w,
ptrmap: make(map[Node]int),
last: '\n', // force printing of line number on first line
}
defer func() {
if e := recover(); e != nil {
err = e.(localError).err // re-panics if it's not a localError
}
}()
if n == nil {
p.printf("nil\n")
return
}
p.dump(reflect.ValueOf(n), n)
p.printf("\n")
return
}
type dumper struct {
output io.Writer
ptrmap map[Node]int // node -> dump line number
indent int // current indentation level
last byte // last byte processed by Write
line int // current line number
}
var indentBytes = []byte(". ")
func (p *dumper) Write(data []byte) (n int, err error) {
var m int
for i, b := range data {
// invariant: data[0:n] has been written
if b == '\n' {
m, err = p.output.Write(data[n : i+1])
n += m
if err != nil {
return
}
} else if p.last == '\n' {
p.line++
_, err = fmt.Fprintf(p.output, "%6d ", p.line)
if err != nil {
return
}
for j := p.indent; j > 0; j-- {
_, err = p.output.Write(indentBytes)
if err != nil {
return
}
}
}
p.last = b
}
if len(data) > n {
m, err = p.output.Write(data[n:])
n += m
}
return
}
// localError wraps locally caught errors so we can distinguish
// them from genuine panics which we don't want to return as errors.
type localError struct {
err error
}
// printf is a convenience wrapper that takes care of print errors.
func (p *dumper) printf(format string, args ...interface{}) {
if _, err := fmt.Fprintf(p, format, args...); err != nil {
panic(localError{err})
}
}
// dump prints the contents of x.
// If x is the reflect.Value of a struct s, where &s
// implements Node, then &s should be passed for n -
// this permits printing of the unexported span and
// comments fields of the embedded isNode field by
// calling the Span() and Comment() instead of using
// reflection.
func (p *dumper) dump(x reflect.Value, n Node) {
switch x.Kind() {
case reflect.Interface:
if x.IsNil() {
p.printf("nil")
return
}
p.dump(x.Elem(), nil)
case reflect.Ptr:
if x.IsNil() {
p.printf("nil")
return
}
// special cases for identifiers w/o attached comments (common case)
if x, ok := x.Interface().(*Name); ok {
p.printf(x.Value)
return
}
p.printf("*")
// Fields may share type expressions, and declarations
// may share the same group - use ptrmap to keep track
// of nodes that have been printed already.
if ptr, ok := x.Interface().(Node); ok {
if line, exists := p.ptrmap[ptr]; exists {
p.printf("(Node @ %d)", line)
return
}
p.ptrmap[ptr] = p.line
n = ptr
}
p.dump(x.Elem(), n)
case reflect.Slice:
if x.IsNil() {
p.printf("nil")
return
}
p.printf("%s (%d entries) {", x.Type(), x.Len())
if x.Len() > 0 {
p.indent++
p.printf("\n")
for i, n := 0, x.Len(); i < n; i++ {
p.printf("%d: ", i)
p.dump(x.Index(i), nil)
p.printf("\n")
}
p.indent--
}
p.printf("}")
case reflect.Struct:
typ := x.Type()
// if span, ok := x.Interface().(lexical.Span); ok {
// p.printf("%s", &span)
// return
// }
p.printf("%s {", typ)
p.indent++
first := true
if n != nil {
p.printf("\n")
first = false
// p.printf("Span: %s\n", n.Span())
// if c := *n.Comments(); c != nil {
// p.printf("Comments: ")
// p.dump(reflect.ValueOf(c), nil) // a Comment is not a Node
// p.printf("\n")
// }
}
for i, n := 0, typ.NumField(); i < n; i++ {
// Exclude non-exported fields because their
// values cannot be accessed via reflection.
if name := typ.Field(i).Name; isExported(name) {
if first {
p.printf("\n")
first = false
}
p.printf("%s: ", name)
p.dump(x.Field(i), nil)
p.printf("\n")
}
}
p.indent--
p.printf("}")
default:
switch x := x.Interface().(type) {
case string:
// print strings in quotes
p.printf("%q", x)
default:
p.printf("%v", x)
}
}
}
func isExported(name string) bool {
ch, _ := utf8.DecodeRuneInString(name)
return unicode.IsUpper(ch)
}
// Copyright 2016 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package syntax
import (
"os"
"testing"
)
func TestDump(t *testing.T) {
if testing.Short() {
t.Skip("skipping test in short mode")
}
ast, err := ReadFile(*src, nil, 0)
if err != nil {
t.Fatal(err)
}
Fdump(os.Stdout, ast)
}
// Copyright 2016 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package syntax
// ----------------------------------------------------------------------------
// Nodes
type Node interface {
aNode()
}
type node struct {
doc *Comment // nil means no comment(s) attached
pos uint32
line uint32
}
func (*node) aNode() {}
func (n *node) init(p *parser) {
n.pos = uint32(p.pos)
n.line = uint32(p.line)
}
// ----------------------------------------------------------------------------
// Files
type File struct {
PkgName *Name
DeclList []Decl
Pragmas []Pragma
Lines int
node
}
type Pragma struct {
Line int
Text string
}
// ----------------------------------------------------------------------------
// Declarations
type (
Decl interface {
Node
aDecl()
}
ImportDecl struct {
LocalPkgName *Name // including "."; nil means no rename present
Path *BasicLit
Group *Group // nil means not part of a group
decl
}
ConstDecl struct {
NameList []*Name
Type Expr // nil means no type
Values Expr // nil means no values
Group *Group // nil means not part of a group
decl
}
TypeDecl struct {
Name *Name
Type Expr
Group *Group // nil means not part of a group
decl
}
VarDecl struct {
NameList []*Name
Type Expr // nil means no type
Values Expr // nil means no values
Group *Group // nil means not part of a group
decl
}
FuncDecl struct {
Attr map[string]bool // go:attr map
Recv *Field // nil means regular function
Name *Name
Type *FuncType
Body []Stmt // nil means no body (forward declaration)
decl
}
)
type decl struct{ node }
func (*decl) aDecl() {}
// All declarations belonging to the same group point to the same Group node.
type Group struct {
dummy int // not empty so we are guaranteed different Group instances
}
// ----------------------------------------------------------------------------
// Expressions
type (
Expr interface {
Node
aExpr()
}
// Value
Name struct {
Value string
expr
}
// Value
BasicLit struct {
Value string
Kind LitKind
expr
}
// Type { ElemList[0], ElemList[1], ... }
CompositeLit struct {
Type Expr // nil means no literal type
ElemList []Expr
NKeys int // number of elements with keys
expr
}
// Key: Value
KeyValueExpr struct {
Key, Value Expr
expr
}
// func Type { Body }
FuncLit struct {
Type *FuncType
Body []Stmt
expr
}
// (X)
ParenExpr struct {
X Expr
expr
}
// X.Sel
SelectorExpr struct {
X Expr
Sel *Name
expr
}
// X[Index]
IndexExpr struct {
X Expr
Index Expr
expr
}
// X[Index[0] : Index[1] : Index[2]]
SliceExpr struct {
X Expr
Index [3]Expr
expr
}
// X.(Type)
AssertExpr struct {
X Expr
// TODO(gri) consider using Name{"..."} instead of nil (permits attaching of comments)
Type Expr
expr
}
Operation struct {
Op Operator
X, Y Expr // Y == nil means unary expression
expr
}
// Fun(ArgList[0], ArgList[1], ...)
CallExpr struct {
Fun Expr
ArgList []Expr
HasDots bool // last argument is followed by ...
expr
}
// ElemList[0], ElemList[1], ...
ListExpr struct {
ElemList []Expr
expr
}
// [Len]Elem
ArrayType struct {
// TODO(gri) consider using Name{"..."} instead of nil (permits attaching of comments)
Len Expr // nil means Len is ...
Elem Expr
expr
}
// []Elem
SliceType struct {
Elem Expr
expr
}
// ...Elem
DotsType struct {
Elem Expr
expr
}
// struct { FieldList[0] TagList[0]; FieldList[1] TagList[1]; ... }
StructType struct {
FieldList []*Field
TagList []*BasicLit // i >= len(TagList) || TagList[i] == nil means no tag for field i
expr
}
// Name Type
// Type
Field struct {
Name *Name // nil means anonymous field/parameter (structs/parameters), or embedded interface (interfaces)
Type Expr // field names declared in a list share the same Type (identical pointers)
node
}
// interface { MethodList[0]; MethodList[1]; ... }
InterfaceType struct {
MethodList []*Field
expr
}
FuncType struct {
ParamList []*Field
ResultList []*Field
expr
}
// map[Key]Value
MapType struct {
Key Expr
Value Expr
expr
}
// chan Elem
// <-chan Elem
// chan<- Elem
ChanType struct {
Dir ChanDir // 0 means no direction
Elem Expr
expr
}
)
type expr struct{ node }
func (*expr) aExpr() {}
type ChanDir uint
const (
_ ChanDir = iota
SendOnly
RecvOnly
)
// ----------------------------------------------------------------------------
// Statements
type (
Stmt interface {
Node
aStmt()
}
SimpleStmt interface {
Stmt
aSimpleStmt()
}
EmptyStmt struct {
simpleStmt
}
LabeledStmt struct {
Label *Name
Stmt Stmt
stmt
}
BlockStmt struct {
Body []Stmt
stmt
}
ExprStmt struct {
X Expr
simpleStmt
}
SendStmt struct {
Chan, Value Expr // Chan <- Value
simpleStmt
}
DeclStmt struct {
DeclList []Decl
stmt
}
AssignStmt struct {
Op Operator // 0 means no operation
Lhs, Rhs Expr // Rhs == ImplicitOne means Lhs++ (Op == Add) or Lhs-- (Op == Sub)
simpleStmt
}
BranchStmt struct {
Tok token // Break, Continue, Fallthrough, or Goto
Label *Name
stmt
}
CallStmt struct {
Tok token // Go or Defer
Call *CallExpr
stmt
}
ReturnStmt struct {
Results Expr // nil means no explicit return values
stmt
}
IfStmt struct {
Init SimpleStmt
Cond Expr
Then []Stmt
Else Stmt // either *IfStmt or *BlockStmt
stmt
}
ForStmt struct {
Init SimpleStmt // incl. *RangeClause
Cond Expr
Post SimpleStmt
Body []Stmt
stmt
}
SwitchStmt struct {
Init SimpleStmt
Tag Expr
Body []*CaseClause
stmt
}
SelectStmt struct {
Body []*CommClause
stmt
}
)
type (
RangeClause struct {
Lhs Expr // nil means no Lhs = or Lhs :=
Def bool // means :=
X Expr // range X
simpleStmt
}
TypeSwitchGuard struct {
// TODO(gri) consider using Name{"..."} instead of nil (permits attaching of comments)
Lhs *Name // nil means no Lhs :=
X Expr // X.(type)
expr
}
CaseClause struct {
Cases Expr // nil means default clause
Body []Stmt
node
}
CommClause struct {
Comm SimpleStmt // send or receive stmt; nil means default clause
Body []Stmt
node
}
)
type stmt struct{ node }
func (stmt) aStmt() {}
type simpleStmt struct {
stmt
}
func (simpleStmt) aSimpleStmt() {}
// ----------------------------------------------------------------------------
// Comments
type CommentKind uint
const (
Above CommentKind = iota
Below
Left
Right
)
type Comment struct {
Kind CommentKind
Text string
Next *Comment
}
// Copyright 2016 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package syntax
import (
"fmt"
"io"
"strings"
)
const debug = false
const trace = false
type parser struct {
scanner
fnest int // function nesting level (for error handling)
xnest int // expression nesting level (for complit ambiguity resolution)
indent []byte // tracing support
nerrors int // error count
}
func (p *parser) init(src io.Reader, errh ErrorHandler) {
p.scanner.init(src, func(pos, line int, msg string) {
p.nerrors++
if !debug && errh != nil {
errh(pos, line, msg)
return
}
panic(fmt.Sprintf("%d: %s\n", line, msg))
})
p.fnest = 0
p.xnest = 0
p.indent = nil
p.nerrors = 0
}
func (p *parser) got(tok token) bool {
if p.tok == tok {
p.next()
return true
}
return false
}
func (p *parser) want(tok token) {
if !p.got(tok) {
p.syntax_error("expecting " + tok.String())
p.advance()
}
}
// ----------------------------------------------------------------------------
// Error handling
// syntax_error reports a syntax error at the current line.
func (p *parser) syntax_error(msg string) {
if trace {
defer p.trace("syntax_error (" + msg + ")")()
}
if p.tok == _EOF && p.nerrors > 0 {
return // avoid meaningless follow-up errors
}
// add punctuation etc. as needed to msg
switch {
case msg == "":
// nothing to do
case strings.HasPrefix(msg, "in"), strings.HasPrefix(msg, "at"), strings.HasPrefix(msg, "after"):
msg = " " + msg
case strings.HasPrefix(msg, "expecting"):
msg = ", " + msg
default:
// plain error - we don't care about current token
p.error("syntax error: " + msg)
return
}
// determine token string
var tok string
switch p.tok {
case _Name, _Literal:
tok = p.lit
case _Operator:
tok = p.op.String()
case _AssignOp:
tok = p.op.String() + "="
case _IncOp:
tok = p.op.String()
tok += tok
default:
tok = tokstring(p.tok)
}
p.error("syntax error: unexpected " + tok + msg)
}
// Like syntax_error, but reports error at given line rather than current lexer line.
func (p *parser) syntax_error_at(lineno uint32, msg string) {
// TODO(gri) fix this
// defer func(lineno int32) {
// lexlineno = lineno
// }(lexlineno)
// lexlineno = lineno
p.syntax_error(msg)
}
// The stopset contains keywords that start a statement.
// They are good synchronization points in case of syntax
// errors and (usually) shouldn't be skipped over.
const stopset uint64 = 1<<_Break |
1<<_Const |
1<<_Continue |
1<<_Defer |
1<<_Fallthrough |
1<<_For |
1<<_Func |
1<<_Go |
1<<_Goto |
1<<_If |
1<<_Return |
1<<_Select |
1<<_Switch |
1<<_Type |
1<<_Var
// Advance consumes tokens until it finds a token of the stopset or followlist.
// The stopset is only considered if we are inside a function (p.fnest > 0).
// The followlist is the list of valid tokens that can follow a production;
// if it is empty, exactly one token is consumed to ensure progress.
func (p *parser) advance(followlist ...token) {
if len(followlist) == 0 {
p.next()
return
}
// compute follow set
// TODO(gri) the args are constants - do as constant expressions?
var followset uint64 = 1 << _EOF // never skip over EOF
for _, tok := range followlist {
followset |= 1 << tok
}
for !(contains(followset, p.tok) || p.fnest > 0 && contains(stopset, p.tok)) {
p.next()
}
}
func tokstring(tok token) string {
switch tok {
case _EOF:
return "EOF"
case _Comma:
return "comma"
case _Semi:
return "semicolon or newline"
}
return tok.String()
}
// usage: defer p.trace(msg)()
func (p *parser) trace(msg string) func() {
fmt.Printf("%5d: %s%s (\n", p.line, p.indent, msg)
const tab = ". "
p.indent = append(p.indent, tab...)
return func() {
p.indent = p.indent[:len(p.indent)-len(tab)]
if x := recover(); x != nil {
panic(x) // skip print_trace
}
fmt.Printf("%5d: %s)\n", p.line, p.indent)
}
}
// ----------------------------------------------------------------------------
// Package files
//
// Parse methods are annotated with matching Go productions as appropriate.
// The annotations are intended as guidelines only since a single Go grammar
// rule may be covered by multiple parse methods and vice versa.
// SourceFile = PackageClause ";" { ImportDecl ";" } { TopLevelDecl ";" } .
func (p *parser) file() *File {
if trace {
defer p.trace("file")()
}
f := new(File)
f.init(p)
// PackageClause
p.want(_Package)
f.PkgName = p.name()
p.want(_Semi)
// don't bother continuing if package clause has errors
if p.nerrors > 0 {
return nil
}
// { ImportDecl ";" }
for p.got(_Import) {
f.DeclList = p.appendGroup(f.DeclList, p.importDecl)
p.want(_Semi)
}
// { TopLevelDecl ";" }
for p.tok != _EOF {
switch p.tok {
case _Const:
p.next()
f.DeclList = p.appendGroup(f.DeclList, p.constDecl)
case _Type:
p.next()
f.DeclList = p.appendGroup(f.DeclList, p.typeDecl)
case _Var:
p.next()
f.DeclList = p.appendGroup(f.DeclList, p.varDecl)
case _Func:
p.next()
f.DeclList = append(f.DeclList, p.funcDecl())
default:
if p.tok == _Lbrace && len(f.DeclList) > 0 && emptyFuncDecl(f.DeclList[len(f.DeclList)-1]) {
// opening { of function declaration on next line
p.syntax_error("unexpected semicolon or newline before {")
} else {
p.syntax_error("non-declaration statement outside function body")
}
p.advance(_Const, _Type, _Var, _Func)
continue
}
if p.tok != _EOF && !p.got(_Semi) {
p.syntax_error("after top level declaration")
p.advance(_Const, _Type, _Var, _Func)
}
}
// p.tok == _EOF
f.Lines = p.source.line
f.Pragmas = p.pragmas
return f
}
func emptyFuncDecl(dcl Decl) bool {
f, ok := dcl.(*FuncDecl)
return ok && f.Body == nil
}
// ----------------------------------------------------------------------------
// Declarations
// appendGroup(f) = f | "(" { f ";" } ")" .
func (p *parser) appendGroup(list []Decl, f func(*Group) Decl) []Decl {
if p.got(_Lparen) {
g := new(Group)
for p.tok != _EOF && p.tok != _Rparen {
list = append(list, f(g))
if !p.osemi(_Rparen) {
break
}
}
p.want(_Rparen)
return list
}
return append(list, f(nil))
}
func (p *parser) importDecl(group *Group) Decl {
if trace {
defer p.trace("importDecl")()
}
d := new(ImportDecl)
d.init(p)
switch p.tok {
case _Name:
d.LocalPkgName = p.name()
case _Dot:
n := new(Name)
n.init(p)
n.Value = "."
d.LocalPkgName = n
p.next()
}
if p.tok == _Literal && p.kind == StringLit {
d.Path = p.oliteral()
} else {
p.syntax_error("missing import path; require quoted string")
p.advance(_Semi, _Rparen)
}
d.Group = group
return d
}
// ConstSpec = IdentifierList [ [ Type ] "=" ExpressionList ] .
func (p *parser) constDecl(group *Group) Decl {
if trace {
defer p.trace("constDecl")()
}
d := new(ConstDecl)
d.init(p)
d.NameList = p.nameList(p.name())
if p.tok != _EOF && p.tok != _Semi && p.tok != _Rparen {
d.Type = p.tryType()
if p.got(_Assign) {
d.Values = p.exprList()
}
}
d.Group = group
return d
}
// TypeSpec = identifier Type .
func (p *parser) typeDecl(group *Group) Decl {
if trace {
defer p.trace("typeDecl")()
}
d := new(TypeDecl)
d.init(p)
d.Name = p.name()
d.Type = p.tryType()
if d.Type == nil {
p.syntax_error("in type declaration")
p.advance(_Semi, _Rparen)
}
d.Group = group
return d
}
// VarSpec = IdentifierList ( Type [ "=" ExpressionList ] | "=" ExpressionList ) .
func (p *parser) varDecl(group *Group) Decl {
if trace {
defer p.trace("varDecl")()
}
d := new(VarDecl)
d.init(p)
d.NameList = p.nameList(p.name())
if p.got(_Assign) {
d.Values = p.exprList()
} else {
d.Type = p.type_()
if p.got(_Assign) {
d.Values = p.exprList()
}
}
d.Group = group
return d
}
// FunctionDecl = "func" FunctionName ( Function | Signature ) .
// FunctionName = identifier .
// Function = Signature FunctionBody .
// MethodDecl = "func" Receiver MethodName ( Function | Signature ) .
// Receiver = Parameters .
func (p *parser) funcDecl() *FuncDecl {
if trace {
defer p.trace("funcDecl")()
}
f := new(FuncDecl)
f.init(p)
if p.tok == _Lparen {
rcvr := p.paramList()
switch len(rcvr) {
case 0:
p.error("method has no receiver")
return nil // TODO(gri) better solution
case 1:
f.Recv = rcvr[0]
default:
p.error("method has multiple receivers")
return nil // TODO(gri) better solution
}
}
if p.tok != _Name {
p.syntax_error("expecting name or (")
p.advance(_Lbrace, _Semi)
return nil
}
// TODO(gri) check for regular functions only
// if name.Sym.Name == "init" {
// name = renameinit()
// if params != nil || result != nil {
// p.error("func init must have no arguments and no return values")
// }
// }
// if localpkg.Name == "main" && name.Name == "main" {
// if params != nil || result != nil {
// p.error("func main must have no arguments and no return values")
// }
// }
f.Name = p.name()
f.Type = p.funcType()
f.Body = p.funcBody()
// TODO(gri) deal with function properties
// if noescape && body != nil {
// p.error("can only use //go:noescape with external func implementations")
// }
return f
}
// ----------------------------------------------------------------------------
// Expressions
func (p *parser) expr() Expr {
if trace {
defer p.trace("expr")()
}
return p.binaryExpr(0)
}
// Expression = UnaryExpr | Expression binary_op Expression .
func (p *parser) binaryExpr(prec int) Expr {
// don't trace binaryExpr - only leads to overly nested trace output
x := p.unaryExpr()
for (p.tok == _Operator || p.tok == _Star) && p.prec > prec {
t := new(Operation)
t.init(p)
t.Op = p.op
t.X = x
tprec := p.prec
p.next()
t.Y = p.binaryExpr(tprec)
x = t
}
return x
}
// UnaryExpr = PrimaryExpr | unary_op UnaryExpr .
func (p *parser) unaryExpr() Expr {
if trace {
defer p.trace("unaryExpr")()
}
switch p.tok {
case _Operator, _Star:
switch p.op {
case Mul, Add, Sub, Not, Xor:
x := new(Operation)
x.init(p)
x.Op = p.op
p.next()
x.X = p.unaryExpr()
return x
case And:
p.next()
x := new(Operation)
x.init(p)
x.Op = And
// unaryExpr may have returned a parenthesized composite literal
// (see comment in operand) - remove parentheses if any
x.X = unparen(p.unaryExpr())
return x
}
case _Arrow:
// receive op (<-x) or receive-only channel (<-chan E)
p.next()
// If the next token is _Chan we still don't know if it is
// a channel (<-chan int) or a receive op (<-chan int(ch)).
// We only know once we have found the end of the unaryExpr.
x := p.unaryExpr()
// There are two cases:
//
// <-chan... => <-x is a channel type
// <-x => <-x is a receive operation
//
// In the first case, <- must be re-associated with
// the channel type parsed already:
//
// <-(chan E) => (<-chan E)
// <-(chan<-E) => (<-chan (<-E))
if x, ok := x.(*ChanType); ok {
// x is a channel type => re-associate <-
dir := SendOnly
t := x
for ok && dir == SendOnly {
dir = t.Dir
if dir == RecvOnly {
// t is type <-chan E but <-<-chan E is not permitted
// (report same error as for "type _ <-<-chan E")
p.syntax_error("unexpected <-, expecting chan")
// already progressed, no need to advance
}
t.Dir = RecvOnly
t, ok = t.Elem.(*ChanType)
}
if dir == SendOnly {
// channel dir is <- but channel element E is not a channel
// (report same error as for "type _ <-chan<-E")
p.syntax_error(fmt.Sprintf("unexpected %v, expecting chan", t))
// already progressed, no need to advance
}
return x
}
// x is not a channel type => we have a receive op
return &Operation{Op: Recv, X: x}
}
return p.pexpr(false)
}
// callStmt parses call-like statements that can be preceded by 'defer' and 'go'.
func (p *parser) callStmt() *CallStmt {
if trace {
defer p.trace("callStmt")()
}
s := new(CallStmt)
s.init(p)
s.Tok = p.tok
p.next()
x := p.pexpr(p.tok == _Lparen) // keep_parens so we can report error below
switch x := x.(type) {
case *CallExpr:
s.Call = x
case *ParenExpr:
p.error(fmt.Sprintf("expression in %s must not be parenthesized", s.Tok))
// already progressed, no need to advance
default:
p.error(fmt.Sprintf("expression in %s must be function call", s.Tok))
// already progressed, no need to advance
}
return s // TODO(gri) should we return nil in case of failure?
}
// Operand = Literal | OperandName | MethodExpr | "(" Expression ")" .
// Literal = BasicLit | CompositeLit | FunctionLit .
// BasicLit = int_lit | float_lit | imaginary_lit | rune_lit | string_lit .
// OperandName = identifier | QualifiedIdent.
func (p *parser) operand(keep_parens bool) Expr {
if trace {
defer p.trace("operand " + p.tok.String())()
}
switch p.tok {
case _Name:
return p.name()
case _Literal:
return p.oliteral()
case _Lparen:
p.next()
p.xnest++
x := p.expr() // expr_or_type
p.xnest--
p.want(_Rparen)
// Optimization: Record presence of ()'s only where needed
// for error reporting. Don't bother in other cases; it is
// just a waste of memory and time.
// Parentheses are not permitted on lhs of := .
// switch x.Op {
// case ONAME, ONONAME, OPACK, OTYPE, OLITERAL, OTYPESW:
// keep_parens = true
// }
// Parentheses are not permitted around T in a composite
// literal T{}. If the next token is a {, assume x is a
// composite literal type T (it may not be, { could be
// the opening brace of a block, but we don't know yet).
if p.tok == _Lbrace {
keep_parens = true
}
// Parentheses are also not permitted around the expression
// in a go/defer statement. In that case, operand is called
// with keep_parens set.
if keep_parens {
x = &ParenExpr{X: x}
}
return x
case _Func:
p.next()
t := p.funcType()
if p.tok == _Lbrace {
p.fnest++
p.xnest++
f := new(FuncLit)
f.init(p)
f.Type = t
f.Body = p.funcBody()
p.xnest--
p.fnest--
return f
}
return t
case _Lbrack, _Chan, _Map, _Struct, _Interface:
return p.type_() // othertype
case _Lbrace:
// common case: p.header is missing simpleStmt before { in if, for, switch
p.syntax_error("missing operand")
// '{' will be consumed in pexpr - no need to consume it here
return nil
default:
p.syntax_error("expecting expression")
p.advance()
return nil
}
// Syntactically, composite literals are operands. Because a complit
// type may be a qualified identifier which is handled by pexpr
// (together with selector expressions), complits are parsed there
// as well (operand is only called from pexpr).
}
// PrimaryExpr =
// Operand |
// Conversion |
// PrimaryExpr Selector |
// PrimaryExpr Index |
// PrimaryExpr Slice |
// PrimaryExpr TypeAssertion |
// PrimaryExpr Arguments .
//
// Selector = "." identifier .
// Index = "[" Expression "]" .
// Slice = "[" ( [ Expression ] ":" [ Expression ] ) |
// ( [ Expression ] ":" Expression ":" Expression )
// "]" .
// TypeAssertion = "." "(" Type ")" .
// Arguments = "(" [ ( ExpressionList | Type [ "," ExpressionList ] ) [ "..." ] [ "," ] ] ")" .
func (p *parser) pexpr(keep_parens bool) Expr {
if trace {
defer p.trace("pexpr")()
}
x := p.operand(keep_parens)
loop:
for {
switch p.tok {
case _Dot:
p.next()
switch p.tok {
case _Name:
// pexpr '.' sym
t := new(SelectorExpr)
t.init(p)
t.X = x
t.Sel = p.name()
x = t
case _Lparen:
p.next()
if p.got(_Type) {
t := new(TypeSwitchGuard)
t.init(p)
t.X = x
x = t
} else {
t := new(AssertExpr)
t.init(p)
t.X = x
t.Type = p.expr()
x = t
}
p.want(_Rparen)
default:
p.syntax_error("expecting name or (")
p.advance(_Semi, _Rparen)
}
case _Lbrack:
p.next()
p.xnest++
var i Expr
if p.tok != _Colon {
i = p.expr()
if p.got(_Rbrack) {
// x[i]
t := new(IndexExpr)
t.init(p)
t.X = x
t.Index = i
x = t
p.xnest--
break
}
}
// x[i:...
t := new(SliceExpr)
t.init(p)
t.X = x
t.Index[0] = i
p.want(_Colon)
if p.tok != _Colon && p.tok != _Rbrack {
// x[i:j...
t.Index[1] = p.expr()
}
if p.got(_Colon) {
// x[i:j:...]
if t.Index[1] == nil {
p.error("middle index required in 3-index slice")
}
if p.tok != _Rbrack {
// x[i:j:k...
t.Index[2] = p.expr()
} else {
p.error("final index required in 3-index slice")
}
}
p.want(_Rbrack)
x = t
p.xnest--
case _Lparen:
// call or conversion
// convtype '(' expr ocomma ')'
c := new(CallExpr)
c.init(p)
c.Fun = x
c.ArgList, c.HasDots = p.argList()
x = c
case _Lbrace:
// operand may have returned a parenthesized complit
// type; accept it but complain if we have a complit
t := unparen(x)
// determine if '{' belongs to a complit or a compound_stmt
complit_ok := false
switch t.(type) {
case *Name, *SelectorExpr:
if p.xnest >= 0 {
// x is considered a comptype
complit_ok = true
}
case *ArrayType, *SliceType, *StructType, *MapType:
// x is a comptype
complit_ok = true
}
if !complit_ok {
break loop
}
if t != x {
p.syntax_error("cannot parenthesize type in composite literal")
// already progressed, no need to advance
}
n := p.complitexpr()
n.Type = x
x = n
default:
break loop
}
}
return x
}
// Element = Expression | LiteralValue .
func (p *parser) bare_complitexpr() Expr {
if trace {
defer p.trace("bare_complitexpr")()
}
if p.tok == _Lbrace {
// '{' start_complit braced_keyval_list '}'
return p.complitexpr()
}
return p.expr()
}
// LiteralValue = "{" [ ElementList [ "," ] ] "}" .
func (p *parser) complitexpr() *CompositeLit {
if trace {
defer p.trace("complitexpr")()
}
x := new(CompositeLit)
x.init(p)
p.want(_Lbrace)
p.xnest++
for p.tok != _EOF && p.tok != _Rbrace {
// value
e := p.bare_complitexpr()
if p.got(_Colon) {
// key ':' value
l := new(KeyValueExpr)
l.init(p)
l.Key = e
l.Value = p.bare_complitexpr()
e = l
x.NKeys++
}
x.ElemList = append(x.ElemList, e)
if !p.ocomma(_Rbrace) {
break
}
}
p.xnest--
p.want(_Rbrace)
return x
}
// ----------------------------------------------------------------------------
// Types
func (p *parser) type_() Expr {
if trace {
defer p.trace("type_")()
}
if typ := p.tryType(); typ != nil {
return typ
}
p.syntax_error("")
p.advance()
return nil
}
func indirect(typ Expr) Expr {
return &Operation{Op: Mul, X: typ}
}
// tryType is like type_ but it returns nil if there was no type
// instead of reporting an error.
//
// Type = TypeName | TypeLit | "(" Type ")" .
// TypeName = identifier | QualifiedIdent .
// TypeLit = ArrayType | StructType | PointerType | FunctionType | InterfaceType |
// SliceType | MapType | Channel_Type .
func (p *parser) tryType() Expr {
if trace {
defer p.trace("tryType")()
}
switch p.tok {
case _Star:
// ptrtype
p.next()
return indirect(p.type_())
case _Arrow:
// recvchantype
p.next()
p.want(_Chan)
t := new(ChanType)
t.init(p)
t.Dir = RecvOnly
t.Elem = p.chanElem()
return t
case _Func:
// fntype
p.next()
return p.funcType()
case _Lbrack:
// '[' oexpr ']' ntype
// '[' _DotDotDot ']' ntype
p.next()
p.xnest++
if p.got(_Rbrack) {
// []T
p.xnest--
t := new(SliceType)
t.init(p)
t.Elem = p.type_()
return t
}
// [n]T
t := new(ArrayType)
t.init(p)
if !p.got(_DotDotDot) {
t.Len = p.expr()
}
p.want(_Rbrack)
p.xnest--
t.Elem = p.type_()
return t
case _Chan:
// _Chan non_recvchantype
// _Chan _Comm ntype
p.next()
t := new(ChanType)
t.init(p)
if p.got(_Arrow) {
t.Dir = SendOnly
}
t.Elem = p.chanElem()
return t
case _Map:
// _Map '[' ntype ']' ntype
p.next()
p.want(_Lbrack)
t := new(MapType)
t.init(p)
t.Key = p.type_()
p.want(_Rbrack)
t.Value = p.type_()
return t
case _Struct:
return p.structType()
case _Interface:
return p.interfaceType()
case _Name:
return p.dotname(p.name())
case _Lparen:
p.next()
t := p.type_()
p.want(_Rparen)
return t
}
return nil
}
func (p *parser) funcType() *FuncType {
if trace {
defer p.trace("funcType")()
}
typ := new(FuncType)
typ.init(p)
typ.ParamList = p.paramList()
typ.ResultList = p.funcResult()
return typ
}
func (p *parser) chanElem() Expr {
if trace {
defer p.trace("chanElem")()
}
if typ := p.tryType(); typ != nil {
return typ
}
p.syntax_error("missing channel element type")
// assume element type is simply absent - don't advance
return nil
}
func (p *parser) dotname(name *Name) Expr {
if trace {
defer p.trace("dotname")()
}
if p.got(_Dot) {
s := new(SelectorExpr)
s.init(p)
s.X = name
s.Sel = p.name()
return s
}
return name
}
// StructType = "struct" "{" { FieldDecl ";" } "}" .
func (p *parser) structType() *StructType {
if trace {
defer p.trace("structType")()
}
typ := new(StructType)
typ.init(p)
p.want(_Struct)
p.want(_Lbrace)
for p.tok != _EOF && p.tok != _Rbrace {
p.fieldDecl(typ)
if !p.osemi(_Rbrace) {
break
}
}
p.want(_Rbrace)
return typ
}
// InterfaceType = "interface" "{" { MethodSpec ";" } "}" .
func (p *parser) interfaceType() *InterfaceType {
if trace {
defer p.trace("interfaceType")()
}
typ := new(InterfaceType)
typ.init(p)
p.want(_Interface)
p.want(_Lbrace)
for p.tok != _EOF && p.tok != _Rbrace {
if m := p.methodDecl(); m != nil {
typ.MethodList = append(typ.MethodList, m)
}
if !p.osemi(_Rbrace) {
break
}
}
p.want(_Rbrace)
return typ
}
// FunctionBody = Block .
func (p *parser) funcBody() []Stmt {
if trace {
defer p.trace("funcBody")()
}
if p.got(_Lbrace) {
p.fnest++
body := p.stmtList()
p.fnest--
p.want(_Rbrace)
if body == nil {
body = []Stmt{new(EmptyStmt)}
}
return body
}
return nil
}
// Result = Parameters | Type .
func (p *parser) funcResult() []*Field {
if trace {
defer p.trace("funcResult")()
}
if p.tok == _Lparen {
return p.paramList()
}
if result := p.tryType(); result != nil {
f := new(Field)
f.init(p)
f.Type = result
return []*Field{f}
}
return nil
}
func (p *parser) addField(styp *StructType, name *Name, typ Expr, tag *BasicLit) {
if tag != nil {
for i := len(styp.FieldList) - len(styp.TagList); i > 0; i-- {
styp.TagList = append(styp.TagList, nil)
}
styp.TagList = append(styp.TagList, tag)
}
f := new(Field)
f.init(p)
f.Name = name
f.Type = typ
styp.FieldList = append(styp.FieldList, f)
if debug && tag != nil && len(styp.FieldList) != len(styp.TagList) {
panic("inconsistent struct field list")
}
}
// FieldDecl = (IdentifierList Type | AnonymousField) [ Tag ] .
// AnonymousField = [ "*" ] TypeName .
// Tag = string_lit .
func (p *parser) fieldDecl(styp *StructType) {
if trace {
defer p.trace("fieldDecl")()
}
var name *Name
switch p.tok {
case _Name:
name = p.name()
if p.tok == _Dot || p.tok == _Literal || p.tok == _Semi || p.tok == _Rbrace {
// embed oliteral
typ := p.qualifiedName(name)
tag := p.oliteral()
p.addField(styp, nil, typ, tag)
return
}
// new_name_list ntype oliteral
names := p.nameList(name)
typ := p.type_()
tag := p.oliteral()
for _, name := range names {
p.addField(styp, name, typ, tag)
}
case _Lparen:
p.next()
if p.tok == _Star {
// '(' '*' embed ')' oliteral
p.next()
typ := indirect(p.qualifiedName(nil))
p.want(_Rparen)
tag := p.oliteral()
p.addField(styp, nil, typ, tag)
p.error("cannot parenthesize embedded type")
} else {
// '(' embed ')' oliteral
typ := p.qualifiedName(nil)
p.want(_Rparen)
tag := p.oliteral()
p.addField(styp, nil, typ, tag)
p.error("cannot parenthesize embedded type")
}
case _Star:
p.next()
if p.got(_Lparen) {
// '*' '(' embed ')' oliteral
typ := indirect(p.qualifiedName(nil))
p.want(_Rparen)
tag := p.oliteral()
p.addField(styp, nil, typ, tag)
p.error("cannot parenthesize embedded type")
} else {
// '*' embed oliteral
typ := indirect(p.qualifiedName(nil))
tag := p.oliteral()
p.addField(styp, nil, typ, tag)
}
default:
p.syntax_error("expecting field name or embedded type")
p.advance(_Semi, _Rbrace)
}
}
func (p *parser) oliteral() *BasicLit {
if p.tok == _Literal {
b := new(BasicLit)
b.init(p)
b.Value = p.lit
b.Kind = p.kind
p.next()
return b
}
return nil
}
// MethodSpec = MethodName Signature | InterfaceTypeName .
// MethodName = identifier .
// InterfaceTypeName = TypeName .
func (p *parser) methodDecl() *Field {
if trace {
defer p.trace("methodDecl")()
}
switch p.tok {
case _Name:
name := p.name()
// accept potential name list but complain
hasNameList := false
for p.got(_Comma) {
p.name()
hasNameList = true
}
if hasNameList {
p.syntax_error("name list not allowed in interface type")
// already progressed, no need to advance
}
f := new(Field)
f.init(p)
if p.tok != _Lparen {
// packname
f.Type = p.qualifiedName(name)
return f
}
f.Name = name
f.Type = p.funcType()
return f
case _Lparen:
p.next()
f := new(Field)
f.init(p)
f.Type = p.qualifiedName(nil)
p.want(_Rparen)
p.error("cannot parenthesize embedded type")
return f
default:
p.syntax_error("")
p.advance(_Semi, _Rbrace)
return nil
}
}
// ParameterDecl = [ IdentifierList ] [ "..." ] Type .
func (p *parser) paramDecl() *Field {
if trace {
defer p.trace("paramDecl")()
}
f := new(Field)
f.init(p)
switch p.tok {
case _Name:
f.Name = p.name()
switch p.tok {
case _Name, _Star, _Arrow, _Func, _Lbrack, _Chan, _Map, _Struct, _Interface, _Lparen:
// sym name_or_type
f.Type = p.type_()
case _DotDotDot:
// sym dotdotdot
f.Type = p.dotsType()
case _Dot:
// name_or_type
// from dotname
f.Type = p.dotname(f.Name)
f.Name = nil
}
case _Arrow, _Star, _Func, _Lbrack, _Chan, _Map, _Struct, _Interface, _Lparen:
// name_or_type
f.Type = p.type_()
case _DotDotDot:
// dotdotdot
f.Type = p.dotsType()
default:
p.syntax_error("expecting )")
p.advance(_Comma, _Rparen)
return nil
}
return f
}
// ...Type
func (p *parser) dotsType() *DotsType {
if trace {
defer p.trace("dotsType")()
}
t := new(DotsType)
t.init(p)
p.want(_DotDotDot)
t.Elem = p.tryType()
if t.Elem == nil {
p.error("final argument in variadic function missing type")
}
return t
}
// Parameters = "(" [ ParameterList [ "," ] ] ")" .
// ParameterList = ParameterDecl { "," ParameterDecl } .
func (p *parser) paramList() (list []*Field) {
if trace {
defer p.trace("paramList")()
}
p.want(_Lparen)
var named int // number of parameters that have an explicit name and type
for p.tok != _EOF && p.tok != _Rparen {
if par := p.paramDecl(); par != nil {
if debug && par.Name == nil && par.Type == nil {
panic("parameter without name or type")
}
if par.Name != nil && par.Type != nil {
named++
}
list = append(list, par)
}
if !p.ocomma(_Rparen) {
break
}
}
// distribute parameter types
if named == 0 {
// all unnamed => found names are named types
for _, par := range list {
if typ := par.Name; typ != nil {
par.Type = typ
par.Name = nil
}
}
} else if named != len(list) {
// some named => all must be named
var typ Expr
for i := len(list) - 1; i >= 0; i-- {
if par := list[i]; par.Type != nil {
typ = par.Type
if par.Name == nil {
typ = nil // error
}
} else {
par.Type = typ
}
if typ == nil {
p.syntax_error("mixed named and unnamed function parameters")
break
}
}
}
p.want(_Rparen)
return
}
// ----------------------------------------------------------------------------
// Statements
// We represent x++, x-- as assignments x += ImplicitOne, x -= ImplicitOne.
// ImplicitOne should not be used elsewhere.
var ImplicitOne = &BasicLit{Value: "1"}
// SimpleStmt = EmptyStmt | ExpressionStmt | SendStmt | IncDecStmt | Assignment | ShortVarDecl .
//
// simpleStmt may return missing_stmt if labelOk is set.
func (p *parser) simpleStmt(lhs Expr, rangeOk bool) SimpleStmt {
if trace {
defer p.trace("simpleStmt")()
}
if rangeOk && p.got(_Range) {
// _Range expr
if debug && lhs != nil {
panic("invalid call of simpleStmt")
}
return p.rangeClause(nil, false)
}
if lhs == nil {
lhs = p.exprList()
}
if _, ok := lhs.(*ListExpr); !ok && p.tok != _Assign && p.tok != _Define {
// expr
switch p.tok {
case _AssignOp:
// lhs op= rhs
op := p.op
p.next()
return p.newAssignStmt(op, lhs, p.expr())
case _IncOp:
// lhs++ or lhs--
op := p.op
p.next()
return p.newAssignStmt(op, lhs, ImplicitOne)
case _Arrow:
// lhs <- rhs
p.next()
s := new(SendStmt)
s.init(p)
s.Chan = lhs
s.Value = p.expr()
return s
default:
// expr
return &ExprStmt{X: lhs}
}
}
// expr_list
switch p.tok {
case _Assign:
p.next()
if rangeOk && p.got(_Range) {
// expr_list '=' _Range expr
return p.rangeClause(lhs, false)
}
// expr_list '=' expr_list
return p.newAssignStmt(0, lhs, p.exprList())
case _Define:
//lno := lineno
p.next()
if rangeOk && p.got(_Range) {
// expr_list ':=' range expr
return p.rangeClause(lhs, true)
}
// expr_list ':=' expr_list
rhs := p.exprList()
if x, ok := rhs.(*TypeSwitchGuard); ok {
switch lhs := lhs.(type) {
case *Name:
x.Lhs = lhs
case *ListExpr:
p.error(fmt.Sprintf("argument count mismatch: %d = %d", len(lhs.ElemList), 1))
default:
// TODO(mdempsky): Have Expr types implement Stringer?
p.error(fmt.Sprintf("invalid variable name %s in type switch", lhs))
}
return &ExprStmt{X: x}
}
return p.newAssignStmt(Def, lhs, rhs)
default:
p.syntax_error("expecting := or = or comma")
p.advance(_Semi, _Rbrace)
return nil
}
}
func (p *parser) rangeClause(lhs Expr, def bool) *RangeClause {
r := new(RangeClause)
r.init(p)
r.Lhs = lhs
r.Def = def
r.X = p.expr()
return r
}
func (p *parser) newAssignStmt(op Operator, lhs, rhs Expr) *AssignStmt {
a := new(AssignStmt)
a.init(p)
a.Op = op
a.Lhs = lhs
a.Rhs = rhs
return a
}
func (p *parser) labeledStmt(label *Name) Stmt {
if trace {
defer p.trace("labeledStmt")()
}
var ls Stmt // labeled statement
if p.tok != _Rbrace && p.tok != _EOF {
ls = p.stmt()
if ls == missing_stmt {
// report error at line of ':' token
p.syntax_error_at(label.line, "missing statement after label")
// we are already at the end of the labeled statement - no need to advance
return missing_stmt
}
}
s := new(LabeledStmt)
s.init(p)
s.Label = label
s.Stmt = ls
return s
}
func (p *parser) blockStmt() *BlockStmt {
if trace {
defer p.trace("blockStmt")()
}
s := new(BlockStmt)
s.init(p)
p.want(_Lbrace)
s.Body = p.stmtList()
p.want(_Rbrace)
return s
}
func (p *parser) declStmt(f func(*Group) Decl) *DeclStmt {
if trace {
defer p.trace("declStmt")()
}
s := new(DeclStmt)
s.init(p)
p.next() // _Const, _Type, or _Var
s.DeclList = p.appendGroup(nil, f)
return s
}
func (p *parser) forStmt() Stmt {
if trace {
defer p.trace("forStmt")()
}
s := new(ForStmt)
s.init(p)
p.want(_For)
s.Init, s.Cond, s.Post = p.header(true)
s.Body = p.stmtBody("for clause")
return s
}
// stmtBody parses if and for statement bodies.
func (p *parser) stmtBody(context string) []Stmt {
if trace {
defer p.trace("stmtBody")()
}
if !p.got(_Lbrace) {
p.syntax_error("missing { after " + context)
p.advance(_Name, _Rbrace)
}
body := p.stmtList()
p.want(_Rbrace)
return body
}
func (p *parser) header(forStmt bool) (init SimpleStmt, cond Expr, post SimpleStmt) {
if p.tok == _Lbrace {
return
}
outer := p.xnest
p.xnest = -1
if p.tok != _Semi {
// accept potential varDecl but complain
if p.got(_Var) {
p.error("var declaration not allowed in initializer")
}
init = p.simpleStmt(nil, forStmt)
// If we have a range clause, we are done.
if _, ok := init.(*RangeClause); ok {
p.xnest = outer
return
}
}
var condStmt SimpleStmt
if p.got(_Semi) {
if forStmt {
if p.tok != _Semi {
condStmt = p.simpleStmt(nil, false)
}
p.want(_Semi)
if p.tok != _Lbrace {
post = p.simpleStmt(nil, false)
}
} else if p.tok != _Lbrace {
condStmt = p.simpleStmt(nil, false)
}
} else {
condStmt = init
init = nil
}
// unpack condStmt
switch s := condStmt.(type) {
case nil:
// nothing to do
case *ExprStmt:
cond = s.X
default:
p.error("invalid condition, tag, or type switch guard")
}
p.xnest = outer
return
}
func (p *parser) ifStmt() *IfStmt {
if trace {
defer p.trace("ifStmt")()
}
s := new(IfStmt)
s.init(p)
p.want(_If)
s.Init, s.Cond, _ = p.header(false)
if s.Cond == nil {
p.error("missing condition in if statement")
}
s.Then = p.stmtBody("if clause")
if p.got(_Else) {
if p.tok == _If {
s.Else = p.ifStmt()
} else {
s.Else = p.blockStmt()
}
}
return s
}
func (p *parser) switchStmt() *SwitchStmt {
if trace {
defer p.trace("switchStmt")()
}
p.want(_Switch)
s := new(SwitchStmt)
s.init(p)
s.Init, s.Tag, _ = p.header(false)
if !p.got(_Lbrace) {
p.syntax_error("missing { after switch clause")
p.advance(_Case, _Default, _Rbrace)
}
for p.tok != _EOF && p.tok != _Rbrace {
s.Body = append(s.Body, p.caseClause())
}
p.want(_Rbrace)
return s
}
func (p *parser) selectStmt() *SelectStmt {
if trace {
defer p.trace("selectStmt")()
}
p.want(_Select)
s := new(SelectStmt)
s.init(p)
if !p.got(_Lbrace) {
p.syntax_error("missing { after select clause")
p.advance(_Case, _Default, _Rbrace)
}
for p.tok != _EOF && p.tok != _Rbrace {
s.Body = append(s.Body, p.commClause())
}
p.want(_Rbrace)
return s
}
func (p *parser) caseClause() *CaseClause {
if trace {
defer p.trace("caseClause")()
}
c := new(CaseClause)
c.init(p)
switch p.tok {
case _Case:
p.next()
c.Cases = p.exprList()
case _Default:
p.next()
default:
p.syntax_error("expecting case or default or }")
p.advance(_Case, _Default, _Rbrace)
}
p.want(_Colon)
c.Body = p.stmtList()
return c
}
func (p *parser) commClause() *CommClause {
if trace {
defer p.trace("commClause")()
}
c := new(CommClause)
c.init(p)
switch p.tok {
case _Case:
p.next()
lhs := p.exprList()
if _, ok := lhs.(*ListExpr); !ok && p.tok == _Arrow {
// lhs <- x
} else {
// lhs
// lhs = <-x
// lhs := <-x
if p.tok == _Assign || p.tok == _Define {
// TODO(gri) check that lhs has at most 2 entries
} else if p.tok == _Colon {
// TODO(gri) check that lhs has at most 1 entry
} else {
panic("unimplemented")
}
}
c.Comm = p.simpleStmt(lhs, false)
case _Default:
p.next()
default:
p.syntax_error("expecting case or default or }")
p.advance(_Case, _Default, _Rbrace)
}
p.want(_Colon)
c.Body = p.stmtList()
return c
}
// TODO(gri) find a better solution
var missing_stmt Stmt = new(EmptyStmt) // = Nod(OXXX, nil, nil)
// Statement =
// Declaration | LabeledStmt | SimpleStmt |
// GoStmt | ReturnStmt | BreakStmt | ContinueStmt | GotoStmt |
// FallthroughStmt | Block | IfStmt | SwitchStmt | SelectStmt | ForStmt |
// DeferStmt .
//
// stmt may return missing_stmt.
func (p *parser) stmt() Stmt {
if trace {
defer p.trace("stmt " + p.tok.String())()
}
// Most statements (assignments) start with an identifier;
// look for it first before doing anything more expensive.
if p.tok == _Name {
lhs := p.exprList()
if label, ok := lhs.(*Name); ok && p.got(_Colon) {
return p.labeledStmt(label)
}
return p.simpleStmt(lhs, false)
}
switch p.tok {
case _Lbrace:
return p.blockStmt()
case _Var:
return p.declStmt(p.varDecl)
case _Const:
return p.declStmt(p.constDecl)
case _Type:
return p.declStmt(p.typeDecl)
case _Operator, _Star:
switch p.op {
case Add, Sub, Mul, And, Xor, Not:
return p.simpleStmt(nil, false) // unary operators
}
case _Literal, _Func, _Lparen, // operands
_Lbrack, _Struct, _Map, _Chan, _Interface, // composite types
_Arrow: // receive operator
return p.simpleStmt(nil, false)
case _For:
return p.forStmt()
case _Switch:
return p.switchStmt()
case _Select:
return p.selectStmt()
case _If:
return p.ifStmt()
case _Fallthrough:
p.next()
s := new(BranchStmt)
s.init(p)
s.Tok = _Fallthrough
return s
// // will be converted to OFALL
// stmt := Nod(OXFALL, nil, nil)
// stmt.Xoffset = int64(block)
// return stmt
case _Break, _Continue:
tok := p.tok
p.next()
s := new(BranchStmt)
s.init(p)
s.Tok = tok
if p.tok == _Name {
s.Label = p.name()
}
return s
case _Go, _Defer:
return p.callStmt()
case _Goto:
p.next()
s := new(BranchStmt)
s.init(p)
s.Tok = _Goto
s.Label = p.name()
return s
// stmt := Nod(OGOTO, p.new_name(p.name()), nil)
// stmt.Sym = dclstack // context, for goto restrictions
// return stmt
case _Return:
p.next()
s := new(ReturnStmt)
s.init(p)
if p.tok != _Semi && p.tok != _Rbrace {
s.Results = p.exprList()
}
return s
case _Semi:
s := new(EmptyStmt)
s.init(p)
return s
}
return missing_stmt
}
// StatementList = { Statement ";" } .
func (p *parser) stmtList() (l []Stmt) {
if trace {
defer p.trace("stmtList")()
}
for p.tok != _EOF && p.tok != _Rbrace && p.tok != _Case && p.tok != _Default {
s := p.stmt()
if s == missing_stmt {
break
}
l = append(l, s)
// customized version of osemi:
// ';' is optional before a closing ')' or '}'
if p.tok == _Rparen || p.tok == _Rbrace {
continue
}
if !p.got(_Semi) {
p.syntax_error("at end of statement")
p.advance(_Semi, _Rbrace)
}
}
return
}
// Arguments = "(" [ ( ExpressionList | Type [ "," ExpressionList ] ) [ "..." ] [ "," ] ] ")" .
func (p *parser) argList() (list []Expr, hasDots bool) {
if trace {
defer p.trace("argList")()
}
p.want(_Lparen)
p.xnest++
for p.tok != _EOF && p.tok != _Rparen {
list = append(list, p.expr()) // expr_or_type
hasDots = p.got(_DotDotDot)
if !p.ocomma(_Rparen) || hasDots {
break
}
}
p.xnest--
p.want(_Rparen)
return
}
// ----------------------------------------------------------------------------
// Common productions
func (p *parser) name() *Name {
// no tracing to avoid overly verbose output
n := new(Name)
n.init(p)
if p.tok == _Name {
n.Value = p.lit
p.next()
} else {
n.Value = "_"
p.syntax_error("expecting name")
p.advance()
}
return n
}
// IdentifierList = identifier { "," identifier } .
// The first name must be provided.
func (p *parser) nameList(first *Name) []*Name {
if trace {
defer p.trace("nameList")()
}
if debug && first == nil {
panic("first name not provided")
}
l := []*Name{first}
for p.got(_Comma) {
l = append(l, p.name())
}
return l
}
// The first name may be provided, or nil.
func (p *parser) qualifiedName(name *Name) Expr {
if trace {
defer p.trace("qualifiedName")()
}
switch {
case name != nil:
// name is provided
case p.tok == _Name:
name = p.name()
default:
name = new(Name)
name.init(p)
p.syntax_error("expecting name")
p.advance(_Dot, _Semi, _Rbrace)
}
return p.dotname(name)
}
// ExpressionList = Expression { "," Expression } .
func (p *parser) exprList() Expr {
if trace {
defer p.trace("exprList")()
}
x := p.expr()
if p.got(_Comma) {
list := []Expr{x, p.expr()}
for p.got(_Comma) {
list = append(list, p.expr())
}
t := new(ListExpr)
t.init(p) // TODO(gri) what is the correct thing here?
t.ElemList = list
x = t
}
return x
}
// osemi parses an optional semicolon.
func (p *parser) osemi(follow token) bool {
switch p.tok {
case _Semi:
p.next()
return true
case _Rparen, _Rbrace:
// semicolon is optional before ) or }
return true
}
p.syntax_error("expecting semicolon, newline, or " + tokstring(follow))
p.advance(follow)
return false
}
// ocomma parses an optional comma.
func (p *parser) ocomma(follow token) bool {
switch p.tok {
case _Comma:
p.next()
return true
case _Rparen, _Rbrace:
// comma is optional before ) or }
return true
}
p.syntax_error("expecting comma or " + tokstring(follow))
p.advance(follow)
return false
}
// unparen removes all parentheses around an expression.
func unparen(x Expr) Expr {
for {
p, ok := x.(*ParenExpr)
if !ok {
break
}
x = p.X
}
return x
}
// Copyright 2016 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package syntax
import (
"bytes"
"flag"
"fmt"
"io/ioutil"
"path/filepath"
"runtime"
"strings"
"sync"
"testing"
"time"
)
var fast = flag.Bool("fast", false, "parse package files in parallel")
var src = flag.String("src", "parser.go", "source file to parse")
var verify = flag.Bool("verify", false, "verify idempotent printing")
func TestParse(t *testing.T) {
_, err := ReadFile(*src, nil, 0)
if err != nil {
t.Fatal(err)
}
}
func TestStdLib(t *testing.T) {
if testing.Short() {
t.Skip("skipping test in short mode")
}
var m1 runtime.MemStats
runtime.ReadMemStats(&m1)
start := time.Now()
type parseResult struct {
filename string
lines int
}
results := make(chan parseResult)
go func() {
for _, dir := range []string{
runtime.GOROOT(),
//"/Users/gri/src",
} {
walkDirs(t, dir, func(filename string) {
if debug {
fmt.Printf("parsing %s\n", filename)
}
ast, err := ReadFile(filename, nil, 0)
if err != nil {
t.Fatal(err)
}
if *verify {
verifyPrint(filename, ast)
}
results <- parseResult{filename, ast.Lines}
})
}
close(results)
}()
var count, lines int
for res := range results {
count++
lines += res.lines
if testing.Verbose() {
fmt.Printf("%5d %s (%d lines)\n", count, res.filename, res.lines)
}
}
dt := time.Since(start)
var m2 runtime.MemStats
runtime.ReadMemStats(&m2)
dm := float64(m2.TotalAlloc-m1.TotalAlloc) / 1e6
fmt.Printf("parsed %d lines (%d files) in %v (%d lines/s)\n", lines, count, dt, int64(float64(lines)/dt.Seconds()))
fmt.Printf("allocated %.3fMb (%.3fMb/s)\n", dm, dm/dt.Seconds())
}
func walkDirs(t *testing.T, dir string, action func(string)) {
fis, err := ioutil.ReadDir(dir)
if err != nil {
t.Error(err)
return
}
var files, dirs []string
for _, fi := range fis {
if fi.Mode().IsRegular() {
if strings.HasSuffix(fi.Name(), ".go") {
path := filepath.Join(dir, fi.Name())
files = append(files, path)
}
} else if fi.IsDir() && fi.Name() != "testdata" {
path := filepath.Join(dir, fi.Name())
if !strings.Contains(path, "go/test") {
dirs = append(dirs, path)
}
}
}
if *fast {
var wg sync.WaitGroup
wg.Add(len(files))
for _, filename := range files {
go func(filename string) {
defer wg.Done()
action(filename)
}(filename)
}
wg.Wait()
} else {
for _, filename := range files {
action(filename)
}
}
for _, dir := range dirs {
walkDirs(t, dir, action)
}
}
func verifyPrint(filename string, ast1 *File) {
var buf1 bytes.Buffer
_, err := Fprint(&buf1, ast1, true)
if err != nil {
panic(err)
}
ast2, err := ReadBytes(buf1.Bytes(), nil, 0)
if err != nil {
panic(err)
}
var buf2 bytes.Buffer
_, err = Fprint(&buf2, ast2, true)
if err != nil {
panic(err)
}
if bytes.Compare(buf1.Bytes(), buf2.Bytes()) != 0 {
fmt.Printf("--- %s ---\n", filename)
fmt.Printf("%s\n", buf1.Bytes())
fmt.Println()
fmt.Printf("--- %s ---\n", filename)
fmt.Printf("%s\n", buf2.Bytes())
fmt.Println()
panic("not equal")
}
}
// Copyright 2016 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// This file implements printing of syntax trees in source format.
package syntax
import (
"bytes"
"fmt"
"io"
"strings"
)
// TODO(gri) Consider removing the linebreaks flag from this signature.
// Its likely rarely used in common cases.
func Fprint(w io.Writer, x Node, linebreaks bool) (n int, err error) {
p := printer{
output: w,
linebreaks: linebreaks,
}
defer func() {
n = p.written
if e := recover(); e != nil {
err = e.(localError).err // re-panics if it's not a localError
}
}()
p.print(x)
p.flush(_EOF)
return
}
func String(n Node) string {
var buf bytes.Buffer
_, err := Fprint(&buf, n, false)
if err != nil {
panic(err) // TODO(gri) print something sensible into buf instead
}
return buf.String()
}
type ctrlSymbol int
const (
none ctrlSymbol = iota
semi
blank
newline
indent
outdent
// comment
// eolComment
)
type whitespace struct {
last token
kind ctrlSymbol
//text string // comment text (possibly ""); valid if kind == comment
}
type printer struct {
output io.Writer
written int // number of bytes written
linebreaks bool // print linebreaks instead of semis
indent int // current indentation level
nlcount int // number of consecutive newlines
pending []whitespace // pending whitespace
lastTok token // last token (after any pending semi) processed by print
}
// write is a thin wrapper around p.output.Write
// that takes care of accounting and error handling.
func (p *printer) write(data []byte) {
n, err := p.output.Write(data)
p.written += n
if err != nil {
panic(localError{err})
}
}
var (
tabBytes = []byte("\t\t\t\t\t\t\t\t")
newlineByte = []byte("\n")
blankByte = []byte(" ")
)
func (p *printer) writeBytes(data []byte) {
if len(data) == 0 {
panic("expected non-empty []byte")
}
if p.nlcount > 0 && p.indent > 0 {
// write indentation
n := p.indent
for n > len(tabBytes) {
p.write(tabBytes)
n -= len(tabBytes)
}
p.write(tabBytes[:n])
}
p.write(data)
p.nlcount = 0
}
func (p *printer) writeString(s string) {
p.writeBytes([]byte(s))
}
// If impliesSemi returns true for a non-blank line's final token tok,
// a semicolon is automatically inserted. Vice versa, a semicolon may
// be omitted in those cases.
func impliesSemi(tok token) bool {
switch tok {
case _Name,
_Break, _Continue, _Fallthrough, _Return,
/*_Inc, _Dec,*/ _Rparen, _Rbrack, _Rbrace: // TODO(gri) fix this
return true
}
return false
}
// TODO(gri) provide table of []byte values for all tokens to avoid repeated string conversion
func lineComment(text string) bool {
return strings.HasPrefix(text, "//")
}
func (p *printer) addWhitespace(kind ctrlSymbol, text string) {
p.pending = append(p.pending, whitespace{p.lastTok, kind /*text*/})
switch kind {
case semi:
p.lastTok = _Semi
case newline:
p.lastTok = 0
// TODO(gri) do we need to handle /*-style comments containing newlines here?
}
}
func (p *printer) flush(next token) {
// eliminate semis and redundant whitespace
sawNewline := next == _EOF
sawParen := next == _Rparen || next == _Rbrace
for i := len(p.pending) - 1; i >= 0; i-- {
switch p.pending[i].kind {
case semi:
k := semi
if sawParen {
sawParen = false
k = none // eliminate semi
} else if sawNewline && impliesSemi(p.pending[i].last) {
sawNewline = false
k = none // eliminate semi
}
p.pending[i].kind = k
case newline:
sawNewline = true
case blank, indent, outdent:
// nothing to do
// case comment:
// // A multi-line comment acts like a newline; and a ""
// // comment implies by definition at least one newline.
// if text := p.pending[i].text; strings.HasPrefix(text, "/*") && strings.ContainsRune(text, '\n') {
// sawNewline = true
// }
// case eolComment:
// // TODO(gri) act depending on sawNewline
default:
panic("unreachable")
}
}
// print pending
prev := none
for i := range p.pending {
switch p.pending[i].kind {
case none:
// nothing to do
case semi:
p.writeString(";")
p.nlcount = 0
prev = semi
case blank:
if prev != blank {
// at most one blank
p.writeBytes(blankByte)
p.nlcount = 0
prev = blank
}
case newline:
const maxEmptyLines = 1
if p.nlcount <= maxEmptyLines {
p.write(newlineByte)
p.nlcount++
prev = newline
}
case indent:
p.indent++
case outdent:
p.indent--
if p.indent < 0 {
panic("negative indentation")
}
// case comment:
// if text := p.pending[i].text; text != "" {
// p.writeString(text)
// p.nlcount = 0
// prev = comment
// }
// // TODO(gri) should check that line comments are always followed by newline
default:
panic("unreachable")
}
}
p.pending = p.pending[:0] // re-use underlying array
}
func mayCombine(prev token, next byte) (b bool) {
return // for now
// switch prev {
// case lexical.Int:
// b = next == '.' // 1.
// case lexical.Add:
// b = next == '+' // ++
// case lexical.Sub:
// b = next == '-' // --
// case lexical.Quo:
// b = next == '*' // /*
// case lexical.Lss:
// b = next == '-' || next == '<' // <- or <<
// case lexical.And:
// b = next == '&' || next == '^' // && or &^
// }
// return
}
func (p *printer) print(args ...interface{}) {
for i := 0; i < len(args); i++ {
switch x := args[i].(type) {
case nil:
// we should not reach here but don't crash
case Node:
p.printNode(x)
case token:
// _Name implies an immediately following string
// argument which is the actual value to print.
var s string
if x == _Name {
i++
if i >= len(args) {
panic("missing string argument after _Name")
}
s = args[i].(string)
} else {
s = x.String()
}
// TODO(gri) This check seems at the wrong place since it doesn't
// take into account pending white space.
if mayCombine(p.lastTok, s[0]) {
panic("adjacent tokens combine without whitespace")
}
if x == _Semi {
// delay printing of semi
p.addWhitespace(semi, "")
} else {
p.flush(x)
p.writeString(s)
p.nlcount = 0
p.lastTok = x
}
case Operator:
if x != 0 {
p.flush(_Operator)
p.writeString(x.String())
}
case ctrlSymbol:
switch x {
case none, semi /*, comment*/ :
panic("unreachable")
case newline:
// TODO(gri) need to handle mandatory newlines after a //-style comment
if !p.linebreaks {
x = blank
}
}
p.addWhitespace(x, "")
// case *Comment: // comments are not Nodes
// p.addWhitespace(comment, x.Text)
default:
panic(fmt.Sprintf("unexpected argument %v (%T)", x, x))
}
}
}
func (p *printer) printNode(n Node) {
// ncom := *n.Comments()
// if ncom != nil {
// // TODO(gri) in general we cannot make assumptions about whether
// // a comment is a /*- or a //-style comment since the syntax
// // tree may have been manipulated. Need to make sure the correct
// // whitespace is emitted.
// for _, c := range ncom.Alone {
// p.print(c, newline)
// }
// for _, c := range ncom.Before {
// if c.Text == "" || lineComment(c.Text) {
// panic("unexpected empty line or //-style 'before' comment")
// }
// p.print(c, blank)
// }
// }
p.printRawNode(n)
// if ncom != nil && len(ncom.After) > 0 {
// for i, c := range ncom.After {
// if i+1 < len(ncom.After) {
// if c.Text == "" || lineComment(c.Text) {
// panic("unexpected empty line or //-style non-final 'after' comment")
// }
// }
// p.print(blank, c)
// }
// //p.print(newline)
// }
}
func (p *printer) printRawNode(n Node) {
switch n := n.(type) {
// expressions and types
case *Name:
p.print(_Name, n.Value) // _Name requires actual value following immediately
case *BasicLit:
p.print(_Name, n.Value) // _Name requires actual value following immediately
case *FuncLit:
p.print(n.Type, blank)
p.printBody(n.Body)
case *CompositeLit:
if n.Type != nil {
p.print(n.Type)
}
p.print(_Lbrace)
if n.NKeys > 0 && n.NKeys == len(n.ElemList) {
p.printExprLines(n.ElemList)
} else {
p.printExprList(n.ElemList)
}
p.print(_Rbrace)
case *ParenExpr:
p.print(_Lparen, n.X, _Rparen)
case *SelectorExpr:
p.print(n.X, _Dot, n.Sel)
case *IndexExpr:
p.print(n.X, _Lbrack, n.Index, _Rbrack)
case *SliceExpr:
p.print(n.X, _Lbrack)
if i := n.Index[0]; i != nil {
p.printNode(i)
}
p.print(_Colon)
if j := n.Index[1]; j != nil {
p.printNode(j)
}
if k := n.Index[2]; k != nil {
p.print(_Colon, k)
}
p.print(_Rbrack)
case *AssertExpr:
p.print(n.X, _Dot, _Lparen)
if n.Type != nil {
p.printNode(n.Type)
} else {
p.print(_Type)
}
p.print(_Rparen)
case *CallExpr:
p.print(n.Fun, _Lparen)
p.printExprList(n.ArgList)
if n.HasDots {
p.print(_DotDotDot)
}
p.print(_Rparen)
case *Operation:
if n.Y == nil {
// unary expr
p.print(n.Op)
// if n.Op == lexical.Range {
// p.print(blank)
// }
p.print(n.X)
} else {
// binary expr
// TODO(gri) eventually take precedence into account
// to control possibly missing parentheses
p.print(n.X, blank, n.Op, blank, n.Y)
}
case *KeyValueExpr:
p.print(n.Key, _Colon, blank, n.Value)
case *ListExpr:
p.printExprList(n.ElemList)
case *ArrayType:
var len interface{} = _DotDotDot
if n.Len != nil {
len = n.Len
}
p.print(_Lbrack, len, _Rbrack, n.Elem)
case *SliceType:
p.print(_Lbrack, _Rbrack, n.Elem)
case *DotsType:
p.print(_DotDotDot, n.Elem)
case *StructType:
p.print(_Struct)
if len(n.FieldList) > 0 && p.linebreaks {
p.print(blank)
}
p.print(_Lbrace)
if len(n.FieldList) > 0 {
p.print(newline, indent)
p.printFieldList(n.FieldList, n.TagList)
p.print(outdent, newline)
}
p.print(_Rbrace)
case *FuncType:
p.print(_Func)
p.printSignature(n)
case *InterfaceType:
p.print(_Interface)
if len(n.MethodList) > 0 && p.linebreaks {
p.print(blank)
}
p.print(_Lbrace)
if len(n.MethodList) > 0 {
p.print(newline, indent)
p.printMethodList(n.MethodList)
p.print(outdent, newline)
}
p.print(_Rbrace)
case *MapType:
p.print(_Map, _Lbrack, n.Key, _Rbrack, n.Value)
case *ChanType:
if n.Dir == RecvOnly {
p.print(_Arrow)
}
p.print(_Chan)
if n.Dir == SendOnly {
p.print(_Arrow)
}
p.print(blank, n.Elem)
// statements
case *DeclStmt:
p.printDecl(n.DeclList)
case *EmptyStmt:
// nothing to print
case *LabeledStmt:
p.print(outdent, n.Label, _Colon, indent, newline, n.Stmt)
case *ExprStmt:
p.print(n.X)
case *SendStmt:
p.print(n.Chan, blank, _Arrow, blank, n.Value)
case *AssignStmt:
p.print(n.Lhs)
if n.Rhs == ImplicitOne {
// TODO(gri) This is going to break the mayCombine
// check once we enable that again.
p.print(n.Op, n.Op) // ++ or --
} else {
p.print(blank, n.Op, _Assign, blank)
p.print(n.Rhs)
}
case *CallStmt:
p.print(n.Tok, blank, n.Call)
case *ReturnStmt:
p.print(_Return)
if n.Results != nil {
p.print(blank, n.Results)
}
case *BranchStmt:
p.print(n.Tok)
if n.Label != nil {
p.print(blank, n.Label)
}
case *BlockStmt:
p.printBody(n.Body)
case *IfStmt:
p.print(_If, blank)
if n.Init != nil {
p.print(n.Init, _Semi, blank)
}
p.print(n.Cond, blank)
p.printBody(n.Then)
if n.Else != nil {
p.print(blank, _Else, blank, n.Else)
}
case *SwitchStmt:
p.print(_Switch, blank)
if n.Init != nil {
p.print(n.Init, _Semi, blank)
}
if n.Tag != nil {
p.print(n.Tag, blank)
}
p.printSwitchBody(n.Body)
case *TypeSwitchGuard:
if n.Lhs != nil {
p.print(n.Lhs, blank, _Define, blank)
}
p.print(n.X, _Dot, _Lparen, _Type, _Rparen)
case *SelectStmt:
p.print(_Select, blank) // for now
p.printSelectBody(n.Body)
case *RangeClause:
if n.Lhs != nil {
tok := _Assign
if n.Def {
tok = _Define
}
p.print(n.Lhs, blank, tok, blank)
}
p.print(_Range, blank, n.X)
case *ForStmt:
p.print(_For, blank)
if n.Init == nil && n.Post == nil {
if n.Cond != nil {
p.print(n.Cond, blank)
}
} else {
if n.Init != nil {
p.print(n.Init)
// TODO(gri) clean this up
if _, ok := n.Init.(*RangeClause); ok {
p.print(blank)
p.printBody(n.Body)
break
}
}
p.print(_Semi, blank)
if n.Cond != nil {
p.print(n.Cond)
}
p.print(_Semi, blank)
if n.Post != nil {
p.print(n.Post, blank)
}
}
p.printBody(n.Body)
case *ImportDecl:
if n.Group == nil {
p.print(_Import, blank)
}
if n.LocalPkgName != nil {
p.print(n.LocalPkgName, blank)
}
p.print(n.Path)
case *ConstDecl:
if n.Group == nil {
p.print(_Const, blank)
}
p.printNameList(n.NameList)
if n.Type != nil {
p.print(blank, n.Type)
}
if n.Values != nil {
p.print(blank, _Assign, blank, n.Values)
}
case *TypeDecl:
if n.Group == nil {
p.print(_Type, blank)
}
p.print(n.Name, blank, n.Type)
case *VarDecl:
if n.Group == nil {
p.print(_Var, blank)
}
p.printNameList(n.NameList)
if n.Type != nil {
p.print(blank, n.Type)
}
if n.Values != nil {
p.print(blank, _Assign, blank, n.Values)
}
case *FuncDecl:
p.print(_Func, blank)
if r := n.Recv; r != nil {
p.print(_Lparen)
if r.Name != nil {
p.print(r.Name, blank)
}
p.printNode(r.Type)
p.print(_Rparen, blank)
}
p.print(n.Name)
p.printSignature(n.Type)
if n.Body != nil {
p.print(blank)
p.printBody(n.Body)
}
case *printGroup:
p.print(n.Tok, blank, _Lparen)
if len(n.Decls) > 0 {
p.print(newline, indent)
for _, d := range n.Decls {
p.printNode(d)
p.print(_Semi, newline)
}
p.print(outdent)
}
p.print(_Rparen)
// files
case *File:
p.print(_Package, blank, n.PkgName)
if len(n.DeclList) > 0 {
p.print(_Semi, newline, newline)
p.printDeclList(n.DeclList)
}
default:
panic(fmt.Sprintf("syntax.Iterate: unexpected node type %T", n))
}
}
func (p *printer) printFields(fields []*Field, tags []*BasicLit, i, j int) {
if i+1 == j && fields[i].Name == nil {
// anonymous field
p.printNode(fields[i].Type)
} else {
for k, f := range fields[i:j] {
if k > 0 {
p.print(_Comma, blank)
}
p.printNode(f.Name)
}
p.print(blank)
p.printNode(fields[i].Type)
}
if i < len(tags) && tags[i] != nil {
p.print(blank)
p.printNode(tags[i])
}
}
func (p *printer) printFieldList(fields []*Field, tags []*BasicLit) {
i0 := 0
var typ Expr
for i, f := range fields {
if f.Name == nil || f.Type != typ {
if i0 < i {
p.printFields(fields, tags, i0, i)
p.print(_Semi, newline)
i0 = i
}
typ = f.Type
}
}
p.printFields(fields, tags, i0, len(fields))
}
func (p *printer) printMethodList(methods []*Field) {
for i, m := range methods {
if i > 0 {
p.print(_Semi, newline)
}
if m.Name != nil {
p.printNode(m.Name)
p.printSignature(m.Type.(*FuncType))
} else {
p.printNode(m.Type)
}
}
}
func (p *printer) printNameList(list []*Name) {
for i, x := range list {
if i > 0 {
p.print(_Comma, blank)
}
p.printNode(x)
}
}
func (p *printer) printExprList(list []Expr) {
for i, x := range list {
if i > 0 {
p.print(_Comma, blank)
}
p.printNode(x)
}
}
func (p *printer) printExprLines(list []Expr) {
if len(list) > 0 {
p.print(newline, indent)
for _, x := range list {
p.print(x, _Comma, newline)
}
p.print(outdent)
}
}
func groupFor(d Decl) (token, *Group) {
switch d := d.(type) {
case *ImportDecl:
return _Import, d.Group
case *ConstDecl:
return _Const, d.Group
case *TypeDecl:
return _Type, d.Group
case *VarDecl:
return _Var, d.Group
case *FuncDecl:
return _Func, nil
default:
panic("unreachable")
}
}
type printGroup struct {
node
Tok token
Decls []Decl
}
func (p *printer) printDecl(list []Decl) {
tok, group := groupFor(list[0])
if group == nil {
if len(list) != 1 {
panic("unreachable")
}
p.printNode(list[0])
return
}
// if _, ok := list[0].(*EmptyDecl); ok {
// if len(list) != 1 {
// panic("unreachable")
// }
// // TODO(gri) if there are comments inside the empty
// // group, we may need to keep the list non-nil
// list = nil
// }
// printGroup is here for consistent comment handling
// (this is not yet used)
var pg printGroup
// *pg.Comments() = *group.Comments()
pg.Tok = tok
pg.Decls = list
p.printNode(&pg)
}
func (p *printer) printDeclList(list []Decl) {
i0 := 0
var tok token
var group *Group
for i, x := range list {
if s, g := groupFor(x); g == nil || g != group {
if i0 < i {
p.printDecl(list[i0:i])
p.print(_Semi, newline)
// print empty line between different declaration groups,
// different kinds of declarations, or between functions
if g != group || s != tok || s == _Func {
p.print(newline)
}
i0 = i
}
tok, group = s, g
}
}
p.printDecl(list[i0:])
}
func (p *printer) printSignature(sig *FuncType) {
p.printParameterList(sig.ParamList)
if list := sig.ResultList; list != nil {
p.print(blank)
if len(list) == 1 && list[0].Name == nil {
p.printNode(list[0].Type)
} else {
p.printParameterList(list)
}
}
}
func (p *printer) printParameterList(list []*Field) {
p.print(_Lparen)
if len(list) > 0 {
for i, f := range list {
if i > 0 {
p.print(_Comma, blank)
}
if f.Name != nil {
p.printNode(f.Name)
if i+1 < len(list) {
f1 := list[i+1]
if f1.Name != nil && f1.Type == f.Type {
continue // no need to print type
}
}
p.print(blank)
}
p.printNode(f.Type)
}
}
p.print(_Rparen)
}
func (p *printer) printStmtList(list []Stmt, braces bool) {
for i, x := range list {
p.print(x, _Semi)
if i+1 < len(list) {
p.print(newline)
} else if braces {
// Print an extra semicolon if the last statement is
// an empty statement and we are in a braced block
// because one semicolon is automatically removed.
if _, ok := x.(*EmptyStmt); ok {
p.print(x, _Semi)
}
}
}
}
func (p *printer) printBody(list []Stmt) {
p.print(_Lbrace)
if len(list) > 0 {
p.print(newline, indent)
p.printStmtList(list, true)
p.print(outdent, newline)
}
p.print(_Rbrace)
}
func (p *printer) printSwitchBody(list []*CaseClause) {
p.print(_Lbrace)
if len(list) > 0 {
p.print(newline)
for i, c := range list {
p.printCaseClause(c, i+1 == len(list))
p.print(newline)
}
}
p.print(_Rbrace)
}
func (p *printer) printSelectBody(list []*CommClause) {
p.print(_Lbrace)
if len(list) > 0 {
p.print(newline)
for i, c := range list {
p.printCommClause(c, i+1 == len(list))
p.print(newline)
}
}
p.print(_Rbrace)
}
func (p *printer) printCaseClause(c *CaseClause, braces bool) {
if c.Cases != nil {
p.print(_Case, blank, c.Cases)
} else {
p.print(_Default)
}
p.print(_Colon)
if len(c.Body) > 0 {
p.print(newline, indent)
p.printStmtList(c.Body, braces)
p.print(outdent)
}
}
func (p *printer) printCommClause(c *CommClause, braces bool) {
if c.Comm != nil {
p.print(_Case, blank)
p.print(c.Comm)
} else {
p.print(_Default)
}
p.print(_Colon)
if len(c.Body) > 0 {
p.print(newline, indent)
p.printStmtList(c.Body, braces)
p.print(outdent)
}
}
// Copyright 2016 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package syntax
import (
"fmt"
"os"
"testing"
)
func TestPrint(t *testing.T) {
if testing.Short() {
t.Skip("skipping test in short mode")
}
ast, err := ReadFile(*src, nil, 0)
if err != nil {
t.Fatal(err)
}
Fprint(os.Stdout, ast, true)
fmt.Println()
}
// Copyright 2016 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package syntax
import (
"fmt"
"io"
"strings"
"unicode"
"unicode/utf8"
)
type scanner struct {
source
nlsemi bool // if set '\n' and EOF translate to ';'
// current token, valid after calling next()
pos, line int
tok token
lit string // valid if tok is _Name or _Literal
kind LitKind // valid if tok is _Literal
op Operator // valid if tok is _Operator, _AssignOp, or _IncOp
prec int // valid if tok is _Operator, _AssignOp, or _IncOp
pragmas []Pragma
}
func (s *scanner) init(src io.Reader, errh ErrorHandler) {
s.source.init(src, errh)
s.nlsemi = false
}
func (s *scanner) next() {
nlsemi := s.nlsemi
s.nlsemi = false
redo:
// skip white space
c := s.getr()
for c == ' ' || c == '\t' || c == '\n' && !nlsemi || c == '\r' {
c = s.getr()
}
// token start
s.pos, s.line = s.source.pos0(), s.source.line0
if isLetter(c) || c >= utf8.RuneSelf && unicode.IsLetter(c) {
s.ident()
return
}
switch c {
case -1:
if nlsemi {
s.tok = _Semi
break
}
s.tok = _EOF
case '\n':
s.tok = _Semi
case '0', '1', '2', '3', '4', '5', '6', '7', '8', '9':
s.number(c)
case '"':
s.stdString()
case '`':
s.rawString()
case '\'':
s.rune()
case '(':
s.tok = _Lparen
case '[':
s.tok = _Lbrack
case '{':
s.tok = _Lbrace
case ',':
s.tok = _Comma
case ';':
s.tok = _Semi
case ')':
s.nlsemi = true
s.tok = _Rparen
case ']':
s.nlsemi = true
s.tok = _Rbrack
case '}':
s.nlsemi = true
s.tok = _Rbrace
case ':':
if s.getr() == '=' {
s.tok = _Define
break
}
s.ungetr()
s.tok = _Colon
case '.':
c = s.getr()
if isDigit(c) {
s.ungetr()
s.source.r0-- // make sure '.' is part of literal (line cannot have changed)
s.number('.')
break
}
if c == '.' {
c = s.getr()
if c == '.' {
s.tok = _DotDotDot
break
}
s.ungetr()
s.source.r0-- // make next ungetr work (line cannot have changed)
}
s.ungetr()
s.tok = _Dot
case '+':
s.op, s.prec = Add, precAdd
c = s.getr()
if c != '+' {
goto assignop
}
s.nlsemi = true
s.tok = _IncOp
case '-':
s.op, s.prec = Sub, precAdd
c = s.getr()
if c != '-' {
goto assignop
}
s.nlsemi = true
s.tok = _IncOp
case '*':
s.op, s.prec = Mul, precMul
// don't goto assignop - want _Star token
if s.getr() == '=' {
s.tok = _AssignOp
break
}
s.ungetr()
s.tok = _Star
case '/':
c = s.getr()
if c == '/' {
s.lineComment()
goto redo
}
if c == '*' {
s.fullComment()
if s.source.line > s.line && nlsemi {
// A multi-line comment acts like a newline;
// it translates to a ';' if nlsemi is set.
s.tok = _Semi
break
}
goto redo
}
s.op, s.prec = Div, precMul
goto assignop
case '%':
s.op, s.prec = Rem, precMul
c = s.getr()
goto assignop
case '&':
c = s.getr()
if c == '&' {
s.op, s.prec = AndAnd, precAndAnd
s.tok = _Operator
break
}
s.op, s.prec = And, precMul
if c == '^' {
s.op = AndNot
c = s.getr()
}
goto assignop
case '|':
c = s.getr()
if c == '|' {
s.op, s.prec = OrOr, precOrOr
s.tok = _Operator
break
}
s.op, s.prec = Or, precAdd
goto assignop
case '~':
s.error("bitwise complement operator is ^")
fallthrough
case '^':
s.op, s.prec = Xor, precAdd
c = s.getr()
goto assignop
case '<':
c = s.getr()
if c == '=' {
s.op, s.prec = Leq, precCmp
s.tok = _Operator
break
}
if c == '<' {
s.op, s.prec = Shl, precMul
c = s.getr()
goto assignop
}
if c == '-' {
s.tok = _Arrow
break
}
s.ungetr()
s.op, s.prec = Lss, precCmp
s.tok = _Operator
case '>':
c = s.getr()
if c == '=' {
s.op, s.prec = Geq, precCmp
s.tok = _Operator
break
}
if c == '>' {
s.op, s.prec = Shr, precMul
c = s.getr()
goto assignop
}
s.ungetr()
s.op, s.prec = Gtr, precCmp
s.tok = _Operator
case '=':
if s.getr() == '=' {
s.op, s.prec = Eql, precCmp
s.tok = _Operator
break
}
s.ungetr()
s.tok = _Assign
case '!':
if s.getr() == '=' {
s.op, s.prec = Neq, precCmp
s.tok = _Operator
break
}
s.ungetr()
s.op, s.prec = Not, 0
s.tok = _Operator
default:
s.tok = 0
s.error(fmt.Sprintf("invalid rune %q", c))
goto redo
}
return
assignop:
if c == '=' {
s.tok = _AssignOp
return
}
s.ungetr()
s.tok = _Operator
}
func isLetter(c rune) bool {
return 'a' <= c && c <= 'z' || 'A' <= c && c <= 'Z' || c == '_'
}
func isDigit(c rune) bool {
return '0' <= c && c <= '9'
}
func (s *scanner) ident() {
s.startLit()
// accelerate common case (7bit ASCII)
c := s.getr()
for isLetter(c) || isDigit(c) {
c = s.getr()
}
// general case
if c >= utf8.RuneSelf {
for unicode.IsLetter(c) || c == '_' || unicode.IsDigit(c) {
c = s.getr()
}
}
s.ungetr()
lit := s.stopLit()
// possibly a keyword
if len(lit) >= 2 {
if tok := keywordMap[hash(lit)]; tok != 0 && strbyteseql(tokstrings[tok], lit) {
s.nlsemi = contains(1<<_Break|1<<_Continue|1<<_Fallthrough|1<<_Return, tok)
s.tok = tok
return
}
}
s.nlsemi = true
s.lit = string(lit)
s.tok = _Name
}
// hash is a perfect hash function for keywords.
// It assumes that s has at least length 2.
func hash(s []byte) uint {
return (uint(s[0])<<4 ^ uint(s[1]) + uint(len(s))) & uint(len(keywordMap)-1)
}
func strbyteseql(s string, b []byte) bool {
if len(s) == len(b) {
for i, b := range b {
if s[i] != b {
return false
}
}
return true
}
return false
}
var keywordMap [1 << 6]token // size must be power of two
func init() {
// populate keywordMap
for tok := _Break; tok <= _Var; tok++ {
h := hash([]byte(tokstrings[tok]))
if keywordMap[h] != 0 {
panic("imperfect hash")
}
keywordMap[h] = tok
}
}
func (s *scanner) number(c rune) {
s.startLit()
if c != '.' {
s.kind = IntLit // until proven otherwise
if c == '0' {
c = s.getr()
if c == 'x' || c == 'X' {
// hex
c = s.getr()
hasDigit := false
for isDigit(c) || 'a' <= c && c <= 'f' || 'A' <= c && c <= 'F' {
c = s.getr()
hasDigit = true
}
if !hasDigit {
s.error("malformed hex constant")
}
goto done
}
// decimal 0, octal, or float
has8or9 := false
for isDigit(c) {
if c > '7' {
has8or9 = true
}
c = s.getr()
}
if c != '.' && c != 'e' && c != 'E' && c != 'i' {
// octal
if has8or9 {
s.error("malformed octal constant")
}
goto done
}
} else {
// decimal or float
for isDigit(c) {
c = s.getr()
}
}
}
// float
if c == '.' {
s.kind = FloatLit
c = s.getr()
for isDigit(c) {
c = s.getr()
}
}
// exponent
if c == 'e' || c == 'E' {
s.kind = FloatLit
c = s.getr()
if c == '-' || c == '+' {
c = s.getr()
}
if !isDigit(c) {
s.error("malformed floating-point constant exponent")
}
for isDigit(c) {
c = s.getr()
}
}
// complex
if c == 'i' {
s.kind = ImagLit
s.getr()
}
done:
s.ungetr()
s.nlsemi = true
s.lit = string(s.stopLit())
s.tok = _Literal
}
func (s *scanner) stdString() {
s.startLit()
for {
r := s.getr()
if r == '"' {
break
}
if r == '\\' {
s.escape('"')
continue
}
if r == '\n' {
s.ungetr() // assume newline is not part of literal
s.error("newline in string")
break
}
if r < 0 {
s.error_at(s.pos, s.line, "string not terminated")
break
}
}
s.nlsemi = true
s.lit = string(s.stopLit())
s.kind = StringLit
s.tok = _Literal
}
func (s *scanner) rawString() {
s.startLit()
for {
r := s.getr()
if r == '`' {
break
}
if r < 0 {
s.error_at(s.pos, s.line, "string not terminated")
break
}
}
// We leave CRs in the string since they are part of the
// literal (even though they are not part of the literal
// value).
s.nlsemi = true
s.lit = string(s.stopLit())
s.kind = StringLit
s.tok = _Literal
}
func (s *scanner) rune() {
s.startLit()
r := s.getr()
if r == '\'' {
s.error("empty character literal")
} else if r == '\n' {
s.ungetr() // assume newline is not part of literal
s.error("newline in character literal")
} else {
ok := true
if r == '\\' {
ok = s.escape('\'')
}
r = s.getr()
if r != '\'' {
// only report error if we're ok so far
if ok {
s.error("missing '")
}
s.ungetr()
}
}
s.nlsemi = true
s.lit = string(s.stopLit())
s.kind = RuneLit
s.tok = _Literal
}
func (s *scanner) lineComment() {
// recognize pragmas
var prefix string
r := s.getr()
switch r {
case 'g':
prefix = "go:"
case 'l':
prefix = "line "
default:
goto skip
}
s.startLit()
for _, m := range prefix {
if r != m {
s.stopLit()
goto skip
}
r = s.getr()
}
for r >= 0 {
if r == '\n' {
s.ungetr()
break
}
r = s.getr()
}
s.pragmas = append(s.pragmas, Pragma{
Line: s.line,
Text: strings.TrimSuffix(string(s.stopLit()), "\r"),
})
return
skip:
// consume line
for r != '\n' && r >= 0 {
r = s.getr()
}
s.ungetr() // don't consume '\n' - needed for nlsemi logic
}
func (s *scanner) fullComment() {
for {
r := s.getr()
for r == '*' {
r = s.getr()
if r == '/' {
return
}
}
if r < 0 {
s.error_at(s.pos, s.line, "comment not terminated")
return
}
}
}
func (s *scanner) escape(quote rune) bool {
var n int
var base, max uint32
c := s.getr()
switch c {
case 'a', 'b', 'f', 'n', 'r', 't', 'v', '\\', quote:
return true
case '0', '1', '2', '3', '4', '5', '6', '7':
n, base, max = 3, 8, 255
case 'x':
c = s.getr()
n, base, max = 2, 16, 255
case 'u':
c = s.getr()
n, base, max = 4, 16, unicode.MaxRune
case 'U':
c = s.getr()
n, base, max = 8, 16, unicode.MaxRune
default:
if c < 0 {
return true // complain in caller about EOF
}
s.error("unknown escape sequence")
return false
}
var x uint32
for i := n; i > 0; i-- {
d := base
switch {
case isDigit(c):
d = uint32(c) - '0'
case 'a' <= c && c <= 'f':
d = uint32(c) - ('a' - 10)
case 'A' <= c && c <= 'F':
d = uint32(c) - ('A' - 10)
}
if d >= base {
if c < 0 {
return true // complain in caller about EOF
}
if c != quote {
s.error(fmt.Sprintf("illegal character %#U in escape sequence", c))
} else {
s.error("escape sequence incomplete")
}
s.ungetr()
return false
}
// d < base
x = x*base + d
c = s.getr()
}
s.ungetr()
if x > max && n == 3 {
s.error(fmt.Sprintf("octal escape value > 255: %d", x))
return false
}
if x > max || 0xD800 <= x && x < 0xE000 /* surrogate range */ {
s.error("escape sequence is invalid Unicode code point")
return false
}
return true
}
// Copyright 2016 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package syntax
import (
"fmt"
"os"
"testing"
)
func TestScanner(t *testing.T) {
if testing.Short() {
t.Skip("skipping test in short mode")
}
src, err := os.Open("parser.go")
if err != nil {
t.Fatal(err)
}
defer src.Close()
var s scanner
s.init(src, nil)
for {
s.next()
if s.tok == _EOF {
break
}
switch s.tok {
case _Name:
fmt.Println(s.line, s.tok, "=>", s.lit)
case _Operator:
fmt.Println(s.line, s.tok, "=>", s.op, s.prec)
default:
fmt.Println(s.line, s.tok)
}
}
}
func TestTokens(t *testing.T) {
// make source
var buf []byte
for i, s := range sampleTokens {
buf = append(buf, "\t\t\t\t"[:i&3]...) // leading indentation
buf = append(buf, s.src...) // token
buf = append(buf, " "[:i&7]...) // trailing spaces
buf = append(buf, "/* foo */ // bar\n"...) // comments
}
// scan source
var got scanner
got.init(&bytesReader{buf}, nil)
got.next()
for i, want := range sampleTokens {
nlsemi := false
if got.line != i+1 {
t.Errorf("got line %d; want %d", got.line, i+1)
}
if got.tok != want.tok {
t.Errorf("got tok = %s; want %s", got.tok, want.tok)
continue
}
switch want.tok {
case _Name, _Literal:
if got.lit != want.src {
t.Errorf("got lit = %q; want %q", got.lit, want.src)
continue
}
nlsemi = true
case _Operator, _AssignOp, _IncOp:
if got.op != want.op {
t.Errorf("got op = %s; want %s", got.op, want.op)
continue
}
if got.prec != want.prec {
t.Errorf("got prec = %s; want %s", got.prec, want.prec)
continue
}
nlsemi = want.tok == _IncOp
case _Rparen, _Rbrack, _Rbrace, _Break, _Continue, _Fallthrough, _Return:
nlsemi = true
}
if nlsemi {
got.next()
if got.tok != _Semi {
t.Errorf("got tok = %s; want ;", got.tok)
continue
}
}
got.next()
}
if got.tok != _EOF {
t.Errorf("got %q; want _EOF", got.tok)
}
}
var sampleTokens = [...]struct {
tok token
src string
op Operator
prec int
}{
// name samples
{_Name, "x", 0, 0},
{_Name, "X123", 0, 0},
{_Name, "foo", 0, 0},
{_Name, "Foo123", 0, 0},
{_Name, "foo_bar", 0, 0},
{_Name, "_", 0, 0},
{_Name, "_foobar", 0, 0},
{_Name, "a۰۱۸", 0, 0},
{_Name, "foo६४", 0, 0},
{_Name, "bar9876", 0, 0},
{_Name, "ŝ", 0, 0},
{_Name, "ŝfoo", 0, 0},
// literal samples
{_Literal, "0", 0, 0},
{_Literal, "1", 0, 0},
{_Literal, "12345", 0, 0},
{_Literal, "123456789012345678890123456789012345678890", 0, 0},
{_Literal, "01234567", 0, 0},
{_Literal, "0x0", 0, 0},
{_Literal, "0xcafebabe", 0, 0},
{_Literal, "0.", 0, 0},
{_Literal, "0.e0", 0, 0},
{_Literal, "0.e-1", 0, 0},
{_Literal, "0.e+123", 0, 0},
{_Literal, ".0", 0, 0},
{_Literal, ".0E00", 0, 0},
{_Literal, ".0E-0123", 0, 0},
{_Literal, ".0E+12345678901234567890", 0, 0},
{_Literal, ".45e1", 0, 0},
{_Literal, "3.14159265", 0, 0},
{_Literal, "1e0", 0, 0},
{_Literal, "1e+100", 0, 0},
{_Literal, "1e-100", 0, 0},
{_Literal, "2.71828e-1000", 0, 0},
{_Literal, "0i", 0, 0},
{_Literal, "1i", 0, 0},
{_Literal, "012345678901234567889i", 0, 0},
{_Literal, "123456789012345678890i", 0, 0},
{_Literal, "0.i", 0, 0},
{_Literal, ".0i", 0, 0},
{_Literal, "3.14159265i", 0, 0},
{_Literal, "1e0i", 0, 0},
{_Literal, "1e+100i", 0, 0},
{_Literal, "1e-100i", 0, 0},
{_Literal, "2.71828e-1000i", 0, 0},
{_Literal, "'a'", 0, 0},
{_Literal, "'\\000'", 0, 0},
{_Literal, "'\\xFF'", 0, 0},
{_Literal, "'\\uff16'", 0, 0},
{_Literal, "'\\U0000ff16'", 0, 0},
{_Literal, "`foobar`", 0, 0},
{_Literal, "`foo\tbar`", 0, 0},
{_Literal, "`\r`", 0, 0},
// operators
{_Operator, "||", OrOr, precOrOr},
{_Operator, "&&", AndAnd, precAndAnd},
{_Operator, "==", Eql, precCmp},
{_Operator, "!=", Neq, precCmp},
{_Operator, "<", Lss, precCmp},
{_Operator, "<=", Leq, precCmp},
{_Operator, ">", Gtr, precCmp},
{_Operator, ">=", Geq, precCmp},
{_Operator, "+", Add, precAdd},
{_Operator, "-", Sub, precAdd},
{_Operator, "|", Or, precAdd},
{_Operator, "^", Xor, precAdd},
{_Star, "*", Mul, precMul},
{_Operator, "/", Div, precMul},
{_Operator, "%", Rem, precMul},
{_Operator, "&", And, precMul},
{_Operator, "&^", AndNot, precMul},
{_Operator, "<<", Shl, precMul},
{_Operator, ">>", Shr, precMul},
// assignment operations
{_AssignOp, "+=", Add, precAdd},
{_AssignOp, "-=", Sub, precAdd},
{_AssignOp, "|=", Or, precAdd},
{_AssignOp, "^=", Xor, precAdd},
{_AssignOp, "*=", Mul, precMul},
{_AssignOp, "/=", Div, precMul},
{_AssignOp, "%=", Rem, precMul},
{_AssignOp, "&=", And, precMul},
{_AssignOp, "&^=", AndNot, precMul},
{_AssignOp, "<<=", Shl, precMul},
{_AssignOp, ">>=", Shr, precMul},
// other operations
{_IncOp, "++", Add, precAdd},
{_IncOp, "--", Sub, precAdd},
{_Assign, "=", 0, 0},
{_Define, ":=", 0, 0},
{_Arrow, "<-", 0, 0},
// delimiters
{_Lparen, "(", 0, 0},
{_Lbrack, "[", 0, 0},
{_Lbrace, "{", 0, 0},
{_Rparen, ")", 0, 0},
{_Rbrack, "]", 0, 0},
{_Rbrace, "}", 0, 0},
{_Comma, ",", 0, 0},
{_Semi, ";", 0, 0},
{_Colon, ":", 0, 0},
{_Dot, ".", 0, 0},
{_DotDotDot, "...", 0, 0},
// keywords
{_Break, "break", 0, 0},
{_Case, "case", 0, 0},
{_Chan, "chan", 0, 0},
{_Const, "const", 0, 0},
{_Continue, "continue", 0, 0},
{_Default, "default", 0, 0},
{_Defer, "defer", 0, 0},
{_Else, "else", 0, 0},
{_Fallthrough, "fallthrough", 0, 0},
{_For, "for", 0, 0},
{_Func, "func", 0, 0},
{_Go, "go", 0, 0},
{_Goto, "goto", 0, 0},
{_If, "if", 0, 0},
{_Import, "import", 0, 0},
{_Interface, "interface", 0, 0},
{_Map, "map", 0, 0},
{_Package, "package", 0, 0},
{_Range, "range", 0, 0},
{_Return, "return", 0, 0},
{_Select, "select", 0, 0},
{_Struct, "struct", 0, 0},
{_Switch, "switch", 0, 0},
{_Type, "type", 0, 0},
{_Var, "var", 0, 0},
}
func TestScanErrors(t *testing.T) {
for _, test := range []struct {
src, msg string
pos, line int
}{
// Note: Positions for lexical errors are the earliest position
// where the error is apparent, not the beginning of the respective
// token.
// rune-level errors
{"fo\x00o", "invalid NUL character", 2, 1},
{"foo\n\ufeff bar", "invalid BOM in the middle of the file", 4, 2},
{"foo\n\n\xff ", "invalid UTF-8 encoding", 5, 3},
// token-level errors
{"x + ~y", "bitwise complement operator is ^", 4, 1},
{"foo$bar = 0", "invalid rune '$'", 3, 1},
{"const x = 0xyz", "malformed hex constant", 12, 1},
{"0123456789", "malformed octal constant", 10, 1},
{"0123456789. /* foobar", "comment not terminated", 12, 1}, // valid float constant
{"0123456789e0 /*\nfoobar", "comment not terminated", 13, 1}, // valid float constant
{"var a, b = 08, 07\n", "malformed octal constant", 13, 1},
{"(x + 1.0e+x)", "malformed floating-point constant exponent", 10, 1},
{`''`, "empty character literal", 1, 1},
{"'\n", "newline in character literal", 1, 1},
{`'\`, "missing '", 2, 1},
{`'\'`, "missing '", 3, 1},
{`'\x`, "missing '", 3, 1},
{`'\x'`, "escape sequence incomplete", 3, 1},
{`'\y'`, "unknown escape sequence", 2, 1},
{`'\x0'`, "escape sequence incomplete", 4, 1},
{`'\00'`, "escape sequence incomplete", 4, 1},
{`'\377' /*`, "comment not terminated", 7, 1}, // valid octal escape
{`'\378`, "illegal character U+0038 '8' in escape sequence", 4, 1},
{`'\400'`, "octal escape value > 255: 256", 5, 1},
{`'xx`, "missing '", 2, 1},
{"\"\n", "newline in string", 1, 1},
{`"`, "string not terminated", 0, 1},
{`"foo`, "string not terminated", 0, 1},
{"`", "string not terminated", 0, 1},
{"`foo", "string not terminated", 0, 1},
{"/*/", "comment not terminated", 0, 1},
{"/*\n\nfoo", "comment not terminated", 0, 1},
{"/*\n\nfoo", "comment not terminated", 0, 1},
{`"\`, "string not terminated", 0, 1},
{`"\"`, "string not terminated", 0, 1},
{`"\x`, "string not terminated", 0, 1},
{`"\x"`, "escape sequence incomplete", 3, 1},
{`"\y"`, "unknown escape sequence", 2, 1},
{`"\x0"`, "escape sequence incomplete", 4, 1},
{`"\00"`, "escape sequence incomplete", 4, 1},
{`"\377" /*`, "comment not terminated", 7, 1}, // valid octal escape
{`"\378"`, "illegal character U+0038 '8' in escape sequence", 4, 1},
{`"\400"`, "octal escape value > 255: 256", 5, 1},
{`s := "foo\z"`, "unknown escape sequence", 10, 1},
{`s := "foo\z00\nbar"`, "unknown escape sequence", 10, 1},
{`"\x`, "string not terminated", 0, 1},
{`"\x"`, "escape sequence incomplete", 3, 1},
{`var s string = "\x"`, "escape sequence incomplete", 18, 1},
{`return "\Uffffffff"`, "escape sequence is invalid Unicode code point", 18, 1},
// former problem cases
{"package p\n\n\xef", "invalid UTF-8 encoding", 11, 3},
} {
var s scanner
nerrors := 0
s.init(&bytesReader{[]byte(test.src)}, func(pos, line int, msg string) {
nerrors++
// only check the first error
if nerrors == 1 {
if msg != test.msg {
t.Errorf("%q: got msg = %q; want %q", test.src, msg, test.msg)
}
if pos != test.pos {
t.Errorf("%q: got pos = %d; want %d", test.src, pos, test.pos)
}
if line != test.line {
t.Errorf("%q: got line = %d; want %d", test.src, line, test.line)
}
} else if nerrors > 1 {
t.Errorf("%q: got unexpected %q at pos = %d, line = %d", test.src, msg, pos, line)
}
})
for {
s.next()
if s.tok == _EOF {
break
}
}
if nerrors == 0 {
t.Errorf("%q: got no error; want %q", test.src, test.msg)
}
}
}
// Copyright 2016 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package syntax
import (
"fmt"
"io"
"unicode/utf8"
)
// buf [...read...|...|...unread...|s|...free...]
// ^ ^ ^ ^
// | | | |
// suf r0 r w
type source struct {
src io.Reader
errh ErrorHandler
// source buffer
buf [4 << 10]byte
offs int // source offset of buf
r0, r, w int // previous/current read and write buf positions, excluding sentinel
line0, line int // previous/current line
err error // pending io error
// literal buffer
lit []byte // literal prefix
suf int // literal suffix; suf >= 0 means we are scanning a literal
}
func (s *source) init(src io.Reader, errh ErrorHandler) {
s.src = src
s.errh = errh
s.buf[0] = utf8.RuneSelf // terminate with sentinel
s.offs = 0
s.r0, s.r, s.w = 0, 0, 0
s.line0, s.line = 1, 1
s.err = nil
s.lit = s.lit[:0]
s.suf = -1
}
func (s *source) error(msg string) {
s.error_at(s.pos0(), s.line0, msg)
}
func (s *source) error_at(pos, line int, msg string) {
if s.errh != nil {
s.errh(pos, line, msg)
return
}
panic(fmt.Sprintf("%d: %s", line, msg))
}
// pos0 returns the byte position of the last character read.
func (s *source) pos0() int {
return s.offs + s.r0
}
func (s *source) ungetr() {
s.r, s.line = s.r0, s.line0
}
func (s *source) getr() rune {
redo:
s.r0, s.line0 = s.r, s.line
// We could avoid at least one test that is always taken in the
// for loop below by duplicating the common case code (ASCII)
// here since we always have at least the sentinel (utf8.RuneSelf)
// in the buffer. Measure and optimize if necessary.
// make sure we have at least one rune in buffer, or we are at EOF
for s.r+utf8.UTFMax > s.w && !utf8.FullRune(s.buf[s.r:s.w]) && s.err == nil && s.w-s.r < len(s.buf) {
s.fill() // s.w-s.r < len(s.buf) => buffer is not full
}
// common case: ASCII and enough bytes
// (invariant: s.buf[s.w] == utf8.RuneSelf)
if b := s.buf[s.r]; b < utf8.RuneSelf {
s.r++
if b == 0 {
s.error("invalid NUL character")
goto redo
}
if b == '\n' {
s.line++
}
return rune(b)
}
// EOF
if s.r == s.w {
if s.err != io.EOF {
s.error(s.err.Error())
}
return -1
}
// uncommon case: not ASCII
r, w := utf8.DecodeRune(s.buf[s.r:s.w])
s.r += w
if r == utf8.RuneError && w == 1 {
s.error("invalid UTF-8 encoding")
goto redo
}
// BOM's are only allowed as the first character in a file
const BOM = 0xfeff
if r == BOM {
if s.r0 > 0 { // s.r0 is always > 0 after 1st character (fill will set it to 1)
s.error("invalid BOM in the middle of the file")
}
goto redo
}
return r
}
func (s *source) fill() {
// Slide unread bytes to beginning but preserve last read char
// (for one ungetr call) plus one extra byte (for a 2nd ungetr
// call, only for ".." character sequence and float literals
// starting with ".").
if s.r0 > 1 {
// save literal prefix, if any
// (We see at most one ungetr call while reading
// a literal, so make sure s.r0 remains in buf.)
if s.suf >= 0 {
s.lit = append(s.lit, s.buf[s.suf:s.r0]...)
s.suf = 1 // == s.r0 after slide below
}
s.offs += s.r0 - 1
r := s.r - s.r0 + 1 // last read char plus one byte
s.w = r + copy(s.buf[r:], s.buf[s.r:s.w])
s.r = r
s.r0 = 1
}
// read more data: try a limited number of times
for i := 100; i > 0; i-- {
n, err := s.src.Read(s.buf[s.w : len(s.buf)-1]) // -1 to leave space for sentinel
if n < 0 {
panic("negative read") // incorrect underlying io.Reader implementation
}
s.w += n
if n > 0 || err != nil {
s.buf[s.w] = utf8.RuneSelf // sentinel
if err != nil {
s.err = err
}
return
}
}
s.err = io.ErrNoProgress
}
func (s *source) startLit() {
s.suf = s.r0
s.lit = s.lit[:0] // reuse lit
}
func (s *source) stopLit() []byte {
lit := s.buf[s.suf:s.r]
if len(s.lit) > 0 {
lit = append(s.lit, lit...)
}
s.suf = -1 // no pending literal
return lit
}
// Copyright 2016 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package syntax
import (
"fmt"
"io"
"os"
)
type Mode uint
type ErrorHandler func(pos, line int, msg string)
// TODO(gri) These need a lot more work.
func ReadFile(filename string, errh ErrorHandler, mode Mode) (*File, error) {
src, err := os.Open(filename)
if err != nil {
return nil, err
}
defer src.Close()
return Read(src, errh, mode)
}
type bytesReader struct {
data []byte
}
func (r *bytesReader) Read(p []byte) (int, error) {
if len(r.data) > 0 {
n := copy(p, r.data)
r.data = r.data[n:]
return n, nil
}
return 0, io.EOF
}
func ReadBytes(src []byte, errh ErrorHandler, mode Mode) (*File, error) {
return Read(&bytesReader{src}, errh, mode)
}
func Read(src io.Reader, errh ErrorHandler, mode Mode) (*File, error) {
var p parser
p.init(src, errh)
p.next()
ast := p.file()
if errh == nil && p.nerrors > 0 {
return nil, fmt.Errorf("%d syntax errors", p.nerrors)
}
return ast, nil
}
func Write(w io.Writer, n *File) error {
panic("unimplemented")
}
// Copyright 2016 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package syntax
import "fmt"
type token uint
const (
_ token = iota
_EOF
// names and literals
_Name
_Literal
// operators and operations
_Operator // excluding '*' (_Star)
_AssignOp
_IncOp
_Assign
_Define
_Arrow
_Star
// delimitors
_Lparen
_Lbrack
_Lbrace
_Rparen
_Rbrack
_Rbrace
_Comma
_Semi
_Colon
_Dot
_DotDotDot
// keywords
_Break
_Case
_Chan
_Const
_Continue
_Default
_Defer
_Else
_Fallthrough
_For
_Func
_Go
_Goto
_If
_Import
_Interface
_Map
_Package
_Range
_Return
_Select
_Struct
_Switch
_Type
_Var
tokenCount
)
const (
// for BranchStmt
Break = _Break
Continue = _Continue
Fallthrough = _Fallthrough
Goto = _Goto
// for CallStmt
Go = _Go
Defer = _Defer
)
var tokstrings = [...]string{
// source control
_EOF: "EOF",
// names and literals
_Name: "name",
_Literal: "literal",
// operators and operations
_Operator: "op",
_AssignOp: "op=",
_IncOp: "opop",
_Assign: "=",
_Define: ":=",
_Arrow: "<-",
_Star: "*",
// delimitors
_Lparen: "(",
_Lbrack: "[",
_Lbrace: "{",
_Rparen: ")",
_Rbrack: "]",
_Rbrace: "}",
_Comma: ",",
_Semi: ";",
_Colon: ":",
_Dot: ".",
_DotDotDot: "...",
// keywords
_Break: "break",
_Case: "case",
_Chan: "chan",
_Const: "const",
_Continue: "continue",
_Default: "default",
_Defer: "defer",
_Else: "else",
_Fallthrough: "fallthrough",
_For: "for",
_Func: "func",
_Go: "go",
_Goto: "goto",
_If: "if",
_Import: "import",
_Interface: "interface",
_Map: "map",
_Package: "package",
_Range: "range",
_Return: "return",
_Select: "select",
_Struct: "struct",
_Switch: "switch",
_Type: "type",
_Var: "var",
}
func (tok token) String() string {
var s string
if 0 <= tok && int(tok) < len(tokstrings) {
s = tokstrings[tok]
}
if s == "" {
s = fmt.Sprintf("<tok-%d>", tok)
}
return s
}
// Make sure we have at most 64 tokens so we can use them in a set.
const _ uint64 = 1 << (tokenCount - 1)
// contains reports whether tok is in tokset.
func contains(tokset uint64, tok token) bool {
return tokset&(1<<tok) != 0
}
type LitKind uint
const (
IntLit LitKind = iota
FloatLit
ImagLit
RuneLit
StringLit
)
type Operator uint
const (
_ Operator = iota
Def // :=
Not // !
Recv // <-
// precOrOr
OrOr // ||
// precAndAnd
AndAnd // &&
// precCmp
Eql // ==
Neq // !=
Lss // <
Leq // <=
Gtr // >
Geq // >=
// precAdd
Add // +
Sub // -
Or // |
Xor // ^
// precMul
Mul // *
Div // /
Rem // %
And // &
AndNot // &^
Shl // <<
Shr // >>
)
var opstrings = [...]string{
// prec == 0
Def: ":", // : in :=
Not: "!",
Recv: "<-",
// precOrOr
OrOr: "||",
// precAndAnd
AndAnd: "&&",
// precCmp
Eql: "==",
Neq: "!=",
Lss: "<",
Leq: "<=",
Gtr: ">",
Geq: ">=",
// precAdd
Add: "+",
Sub: "-",
Or: "|",
Xor: "^",
// precMul
Mul: "*",
Div: "/",
Rem: "%",
And: "&",
AndNot: "&^",
Shl: "<<",
Shr: ">>",
}
func (op Operator) String() string {
var s string
if 0 <= op && int(op) < len(opstrings) {
s = opstrings[op]
}
if s == "" {
s = fmt.Sprintf("<op-%d>", op)
}
return s
}
// Operator precedences
const (
_ = iota
precOrOr
precAndAnd
precCmp
precAdd
precMul
)
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment