Commit d7507e9d authored by Denis Nagorny's avatar Denis Nagorny

runtime: improve memmove for amd64

    Use AVX if available on 4th generation of Intel(TM) Core(TM) processors.

    (collected on E5 2609v3 @1.9GHz)
    name                        old speed      new speed       delta
    Memmove/1-6                  158MB/s ± 0%    172MB/s ± 0%    +9.09% (p=0.000 n=16+16)
    Memmove/2-6                  316MB/s ± 0%    345MB/s ± 0%    +9.09% (p=0.000 n=18+16)
    Memmove/3-6                  517MB/s ± 0%    517MB/s ± 0%      ~ (p=0.445 n=16+16)
    Memmove/4-6                  687MB/s ± 1%    690MB/s ± 0%    +0.35% (p=0.000 n=20+17)
    Memmove/5-6                  729MB/s ± 0%    729MB/s ± 0%    +0.01% (p=0.000 n=16+18)
    Memmove/6-6                  875MB/s ± 0%    875MB/s ± 0%    +0.01% (p=0.000 n=18+18)
    Memmove/7-6                 1.02GB/s ± 0%   1.02GB/s ± 1%      ~ (p=0.139 n=19+20)
    Memmove/8-6                 1.26GB/s ± 0%   1.26GB/s ± 0%    +0.00% (p=0.000 n=18+18)
    Memmove/9-6                 1.42GB/s ± 0%   1.42GB/s ± 0%    +0.00% (p=0.000 n=17+18)
    Memmove/10-6                1.58GB/s ± 0%   1.58GB/s ± 0%    +0.00% (p=0.000 n=19+19)
    Memmove/11-6                1.74GB/s ± 0%   1.74GB/s ± 0%    +0.00% (p=0.001 n=18+17)
    Memmove/12-6                1.90GB/s ± 0%   1.90GB/s ± 0%    +0.00% (p=0.000 n=19+19)
    Memmove/13-6                2.05GB/s ± 0%   2.05GB/s ± 0%    +0.00% (p=0.000 n=18+19)
    Memmove/14-6                2.21GB/s ± 0%   2.21GB/s ± 0%    +0.00% (p=0.000 n=16+20)
    Memmove/15-6                2.37GB/s ± 0%   2.37GB/s ± 0%    +0.00% (p=0.004 n=19+20)
    Memmove/16-6                2.53GB/s ± 0%   2.53GB/s ± 0%    +0.00% (p=0.000 n=16+16)
    Memmove/32-6                4.67GB/s ± 0%   4.67GB/s ± 0%    +0.00% (p=0.000 n=17+17)
    Memmove/64-6                8.67GB/s ± 0%   8.64GB/s ± 0%    -0.33% (p=0.000 n=18+17)
    Memmove/128-6               12.6GB/s ± 0%   11.6GB/s ± 0%    -8.05% (p=0.000 n=16+19)
    Memmove/256-6               16.3GB/s ± 0%   16.6GB/s ± 0%    +1.66% (p=0.000 n=20+18)
    Memmove/512-6               21.5GB/s ± 0%   24.4GB/s ± 0%   +13.35% (p=0.000 n=18+17)
    Memmove/1024-6              24.7GB/s ± 0%   33.7GB/s ± 0%   +36.12% (p=0.000 n=18+18)
    Memmove/2048-6              27.3GB/s ± 0%   43.3GB/s ± 0%   +58.77% (p=0.000 n=19+17)
    Memmove/4096-6              37.5GB/s ± 0%   50.5GB/s ± 0%   +34.56% (p=0.000 n=19+19)
    MemmoveUnalignedDst/1-6      135MB/s ± 0%    146MB/s ± 0%    +7.69% (p=0.000 n=16+14)
    MemmoveUnalignedDst/2-6      271MB/s ± 0%    292MB/s ± 0%    +7.69% (p=0.000 n=18+18)
    MemmoveUnalignedDst/3-6      438MB/s ± 0%    438MB/s ± 0%      ~ (p=0.352 n=16+19)
    MemmoveUnalignedDst/4-6      584MB/s ± 0%    584MB/s ± 0%      ~ (p=0.876 n=17+17)
    MemmoveUnalignedDst/5-6      631MB/s ± 1%    632MB/s ± 0%    +0.25% (p=0.000 n=20+17)
    MemmoveUnalignedDst/6-6      759MB/s ± 0%    759MB/s ± 0%    +0.00% (p=0.000 n=19+16)
    MemmoveUnalignedDst/7-6      885MB/s ± 0%    883MB/s ± 1%      ~ (p=0.647 n=18+20)
    MemmoveUnalignedDst/8-6     1.08GB/s ± 0%   1.08GB/s ± 0%    +0.00% (p=0.035 n=19+18)
    MemmoveUnalignedDst/9-6     1.22GB/s ± 0%   1.22GB/s ± 0%      ~ (p=0.251 n=18+17)
    MemmoveUnalignedDst/10-6    1.35GB/s ± 0%   1.35GB/s ± 0%      ~ (p=0.327 n=17+18)
    MemmoveUnalignedDst/11-6    1.49GB/s ± 0%   1.49GB/s ± 0%      ~ (p=0.531 n=18+19)
    MemmoveUnalignedDst/12-6    1.63GB/s ± 0%   1.63GB/s ± 0%      ~ (p=0.886 n=19+18)
    MemmoveUnalignedDst/13-6    1.76GB/s ± 0%   1.76GB/s ± 1%    -0.24% (p=0.006 n=18+20)
    MemmoveUnalignedDst/14-6    1.90GB/s ± 0%   1.90GB/s ± 0%      ~ (p=0.818 n=20+19)
    MemmoveUnalignedDst/15-6    2.03GB/s ± 0%   2.03GB/s ± 0%      ~ (p=0.294 n=17+16)
    MemmoveUnalignedDst/16-6    2.17GB/s ± 0%   2.17GB/s ± 0%      ~ (p=0.602 n=16+18)
    MemmoveUnalignedDst/32-6    4.05GB/s ± 0%   4.05GB/s ± 0%    +0.00% (p=0.010 n=18+17)
    MemmoveUnalignedDst/64-6    7.59GB/s ± 0%   7.59GB/s ± 0%    +0.00% (p=0.022 n=18+16)
    MemmoveUnalignedDst/128-6   11.1GB/s ± 0%   11.4GB/s ± 0%    +2.79% (p=0.000 n=18+17)
    MemmoveUnalignedDst/256-6   16.4GB/s ± 0%   16.7GB/s ± 0%    +1.59% (p=0.000 n=20+17)
    MemmoveUnalignedDst/512-6   15.7GB/s ± 0%   21.3GB/s ± 0%   +35.87% (p=0.000 n=18+20)
    MemmoveUnalignedDst/1024-6  16.0GB/s ±20%   31.5GB/s ± 0%   +96.93% (p=0.000 n=20+14)
    MemmoveUnalignedDst/2048-6  19.6GB/s ± 0%   42.1GB/s ± 0%  +115.16% (p=0.000 n=17+18)
    MemmoveUnalignedDst/4096-6  6.41GB/s ± 0%  33.18GB/s ± 0%  +417.56% (p=0.000 n=17+18)
    MemmoveUnalignedSrc/1-6      171MB/s ± 0%    166MB/s ± 0%    -3.33% (p=0.000 n=19+16)
    MemmoveUnalignedSrc/2-6      343MB/s ± 0%    342MB/s ± 1%    -0.41% (p=0.000 n=17+20)
    MemmoveUnalignedSrc/3-6      508MB/s ± 0%    493MB/s ± 1%    -2.90% (p=0.000 n=17+17)
    MemmoveUnalignedSrc/4-6      677MB/s ± 0%    660MB/s ± 2%    -2.55% (p=0.000 n=17+20)
    MemmoveUnalignedSrc/5-6      790MB/s ± 0%    790MB/s ± 0%      ~ (p=0.139 n=17+17)
    MemmoveUnalignedSrc/6-6      948MB/s ± 0%    946MB/s ± 1%      ~ (p=0.330 n=17+19)
    MemmoveUnalignedSrc/7-6     1.11GB/s ± 0%   1.11GB/s ± 0%    -0.05% (p=0.026 n=17+17)
    MemmoveUnalignedSrc/8-6     1.38GB/s ± 0%   1.38GB/s ± 0%      ~ (p=0.091 n=18+16)
    MemmoveUnalignedSrc/9-6     1.42GB/s ± 0%   1.40GB/s ± 1%    -1.04% (p=0.000 n=19+20)
    MemmoveUnalignedSrc/10-6    1.58GB/s ± 0%   1.56GB/s ± 1%    -1.15% (p=0.000 n=18+19)
    MemmoveUnalignedSrc/11-6    1.73GB/s ± 0%   1.71GB/s ± 1%    -1.30% (p=0.000 n=20+20)
    MemmoveUnalignedSrc/12-6    1.89GB/s ± 0%   1.87GB/s ± 1%    -1.18% (p=0.000 n=17+20)
    MemmoveUnalignedSrc/13-6    2.05GB/s ± 0%   2.02GB/s ± 1%    -1.18% (p=0.000 n=17+20)
    MemmoveUnalignedSrc/14-6    2.21GB/s ± 0%   2.18GB/s ± 1%    -1.14% (p=0.000 n=17+20)
    MemmoveUnalignedSrc/15-6    2.36GB/s ± 0%   2.34GB/s ± 1%    -1.04% (p=0.000 n=17+20)
    MemmoveUnalignedSrc/16-6    2.52GB/s ± 0%   2.49GB/s ± 1%    -1.26% (p=0.000 n=19+20)
    MemmoveUnalignedSrc/32-6    4.82GB/s ± 0%   4.61GB/s ± 0%    -4.40% (p=0.000 n=19+20)
    MemmoveUnalignedSrc/64-6    5.03GB/s ± 4%   7.97GB/s ± 0%   +58.55% (p=0.000 n=20+16)
    MemmoveUnalignedSrc/128-6   11.1GB/s ± 0%   11.2GB/s ± 0%    +0.52% (p=0.000 n=17+18)
    MemmoveUnalignedSrc/256-6   16.5GB/s ± 0%   16.4GB/s ± 0%    -0.10% (p=0.000 n=20+18)
    MemmoveUnalignedSrc/512-6   21.0GB/s ± 0%   22.1GB/s ± 0%    +5.48% (p=0.000 n=14+17)
    MemmoveUnalignedSrc/1024-6  24.9GB/s ± 0%   31.9GB/s ± 0%   +28.20% (p=0.000 n=19+20)
    MemmoveUnalignedSrc/2048-6  23.3GB/s ± 0%   33.8GB/s ± 0%   +45.22% (p=0.000 n=17+19)
    MemmoveUnalignedSrc/4096-6  37.3GB/s ± 0%   42.7GB/s ± 0%   +14.30% (p=0.000 n=17+17)

Change-Id: Id66aa3e499ccfb117cb99d623ef326b50d057b64
Reviewed-on: https://go-review.googlesource.com/29590
Run-TryBot: Denis Nagorny <denis.nagorny@intel.com>
TryBot-Result: Gobot Gobot <gobot@golang.org>
Reviewed-by: default avatarKeith Randall <khr@golang.org>
parent dd1dcf94
// Copyright 2015 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package runtime
var vendorStringBytes [12]byte
var maxInputValue uint32
var featureFlags uint32
var processorVersionInfo uint32
var useRepMovs = true
func hasFeature(feature uint32) bool {
return (featureFlags & feature) != 0
}
func cpuid_low(arg1, arg2 uint32) (eax, ebx, ecx, edx uint32) // implemented in cpuidlow_amd64.s
func xgetbv_low(arg1 uint32) (eax, edx uint32) // implemented in cpuidlow_amd64.s
func init() {
const cfOSXSAVE uint32 = 1 << 27
const cfAVX uint32 = 1 << 28
leaf0()
leaf1()
enabledAVX := false
// Let's check if OS has set CR4.OSXSAVE[bit 18]
// to enable XGETBV instruction.
if hasFeature(cfOSXSAVE) {
eax, _ := xgetbv_low(0)
// Let's check that XCR0[2:1] = ‘11b’
// i.e. XMM state and YMM state are enabled by OS.
enabledAVX = (eax & 0x6) == 0x6
}
isIntelBridgeFamily := (processorVersionInfo == 0x206A0 ||
processorVersionInfo == 0x206D0 ||
processorVersionInfo == 0x306A0 ||
processorVersionInfo == 0x306E0) &&
isIntel()
useRepMovs = !(hasFeature(cfAVX) && enabledAVX) || isIntelBridgeFamily
}
func leaf0() {
eax, ebx, ecx, edx := cpuid_low(0, 0)
maxInputValue = eax
int32ToBytes(ebx, vendorStringBytes[0:4])
int32ToBytes(edx, vendorStringBytes[4:8])
int32ToBytes(ecx, vendorStringBytes[8:12])
}
func leaf1() {
if maxInputValue < 1 {
return
}
eax, _, ecx, _ := cpuid_low(1, 0)
// Let's remove stepping and reserved fields
processorVersionInfo = eax & 0x0FFF3FF0
featureFlags = ecx
}
func int32ToBytes(arg uint32, buffer []byte) {
buffer[3] = byte(arg >> 24)
buffer[2] = byte(arg >> 16)
buffer[1] = byte(arg >> 8)
buffer[0] = byte(arg)
}
func isIntel() bool {
intelSignature := [12]byte{'G', 'e', 'n', 'u', 'i', 'n', 'e', 'I', 'n', 't', 'e', 'l'}
return vendorStringBytes == intelSignature
}
// Copyright 2015 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// func cpuid_low(arg1, arg2 uint32) (eax, ebx, ecx, edx uint32)
TEXT ·cpuid_low(SB), 4, $0-24
MOVL arg1+0(FP), AX
MOVL arg2+4(FP), CX
CPUID
MOVL AX, eax+8(FP)
MOVL BX, ebx+12(FP)
MOVL CX, ecx+16(FP)
MOVL DX, edx+20(FP)
RET
// func xgetbv_low(arg1 uint32) (eax, edx uint32)
TEXT ·xgetbv_low(SB), 4, $0-16
MOVL arg1+0(FP), CX
// XGETBV
BYTE $0x0F; BYTE $0x01; BYTE $0xD0
MOVL AX,eax+8(FP)
MOVL DX,edx+12(FP)
RET
......@@ -64,6 +64,9 @@ tail:
JBE move_129through256
// TODO: use branch table and BSR to make this just a single dispatch
TESTB $1, runtime·useRepMovs(SB)
JZ avxUnaligned
/*
* check and set for backwards
*/
......@@ -108,7 +111,6 @@ back:
ADDQ BX, CX
CMPQ CX, DI
JLS forward
/*
* whole thing backwards has
* adjusted addresses
......@@ -273,3 +275,242 @@ move_256through2048:
LEAQ 256(DI), DI
JGE move_256through2048
JMP tail
avxUnaligned:
// There are two implementations of move algorithm.
// The first one for non-ovelapped memory regions. It uses forward copying.
// The second one for overlapped regions. It uses backward copying
MOVQ DI, CX
SUBQ SI, CX
// Now CX contains distance between SRC and DEST
CMPQ CX, BX
// If the distance lesser than region length it means that regions are overlapped
JC copy_backward
// Non-temporal copy would be better for big sizes.
CMPQ BX, $0x100000
JAE gobble_big_data_fwd
// Memory layout on the source side
// SI CX
// |<---------BX before correction--------->|
// | |<--BX corrected-->| |
// | | |<--- AX --->|
// |<-R11->| |<-128 bytes->|
// +----------------------------------------+
// | Head | Body | Tail |
// +-------+------------------+-------------+
// ^ ^ ^
// | | |
// Save head into Y4 Save tail into X5..X12
// |
// SI+R11, where R11 = ((DI & -32) + 32) - DI
// Algorithm:
// 1. Unaligned save of the tail's 128 bytes
// 2. Unaligned save of the head's 32 bytes
// 3. Destination-aligned copying of body (128 bytes per iteration)
// 4. Put head on the new place
// 5. Put the tail on the new place
// It can be important to satisfy processor's pipeline requirements for
// small sizes as the cost of unaligned memory region copying is
// comparable with the cost of main loop. So code is slightly messed there.
// There is more clean implementation of that algorithm for bigger sizes
// where the cost of unaligned part copying is negligible.
// You can see it after gobble_big_data_fwd label.
LEAQ (SI)(BX*1), CX
MOVQ DI, R10
// CX points to the end of buffer so we need go back slightly. We will use negative offsets there.
MOVOU -0x80(CX), X5
MOVOU -0x70(CX), X6
MOVQ $0x80, AX
// Align destination address
ANDQ $-32, DI
ADDQ $32, DI
// Continue tail saving.
MOVOU -0x60(CX), X7
MOVOU -0x50(CX), X8
// Make R11 delta between aligned and unaligned destination addresses.
MOVQ DI, R11
SUBQ R10, R11
// Continue tail saving.
MOVOU -0x40(CX), X9
MOVOU -0x30(CX), X10
// Let's make bytes-to-copy value adjusted as we've prepared unaligned part for copying.
SUBQ R11, BX
// Continue tail saving.
MOVOU -0x20(CX), X11
MOVOU -0x10(CX), X12
// The tail will be put on it's place after main body copying.
// It's time for the unaligned heading part.
VMOVDQU (SI), Y4
// Adjust source address to point past head.
ADDQ R11, SI
SUBQ AX, BX
// Aligned memory copying there
gobble_128_loop:
VMOVDQU (SI), Y0
VMOVDQU 0x20(SI), Y1
VMOVDQU 0x40(SI), Y2
VMOVDQU 0x60(SI), Y3
ADDQ AX, SI
VMOVDQA Y0, (DI)
VMOVDQA Y1, 0x20(DI)
VMOVDQA Y2, 0x40(DI)
VMOVDQA Y3, 0x60(DI)
ADDQ AX, DI
SUBQ AX, BX
JA gobble_128_loop
// Now we can store unaligned parts.
ADDQ AX, BX
ADDQ DI, BX
VMOVDQU Y4, (R10)
VZEROUPPER
MOVOU X5, -0x80(BX)
MOVOU X6, -0x70(BX)
MOVOU X7, -0x60(BX)
MOVOU X8, -0x50(BX)
MOVOU X9, -0x40(BX)
MOVOU X10, -0x30(BX)
MOVOU X11, -0x20(BX)
MOVOU X12, -0x10(BX)
RET
gobble_big_data_fwd:
// There is forward copying for big regions.
// It uses non-temporal mov instructions.
// Details of this algorithm are commented previously for small sizes.
LEAQ (SI)(BX*1), CX
MOVOU -0x80(SI)(BX*1), X5
MOVOU -0x70(CX), X6
MOVOU -0x60(CX), X7
MOVOU -0x50(CX), X8
MOVOU -0x40(CX), X9
MOVOU -0x30(CX), X10
MOVOU -0x20(CX), X11
MOVOU -0x10(CX), X12
VMOVDQU (SI), Y4
MOVQ DI, R8
ANDQ $-32, DI
ADDQ $32, DI
MOVQ DI, R10
SUBQ R8, R10
SUBQ R10, BX
ADDQ R10, SI
LEAQ (DI)(BX*1), CX
SUBQ $0x80, BX
gobble_mem_fwd_loop:
PREFETCHNTA 0x1C0(SI)
PREFETCHNTA 0x280(SI)
// Prefetch values were choosen empirically.
// Approach for prefetch usage as in 7.6.6 of [1]
// [1] 64-ia-32-architectures-optimization-manual.pdf
// http://www.intel.ru/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-optimization-manual.pdf
VMOVDQU (SI), Y0
VMOVDQU 0x20(SI), Y1
VMOVDQU 0x40(SI), Y2
VMOVDQU 0x60(SI), Y3
ADDQ $0x80, SI
VMOVNTDQ Y0, (DI)
VMOVNTDQ Y1, 0x20(DI)
VMOVNTDQ Y2, 0x40(DI)
VMOVNTDQ Y3, 0x60(DI)
ADDQ $0x80, DI
SUBQ $0x80, BX
JA gobble_mem_fwd_loop
// NT instructions don't follow the normal cache-coherency rules.
// We need SFENCE there to make copied data available timely.
SFENCE
VMOVDQU Y4, (R8)
VZEROUPPER
MOVOU X5, -0x80(CX)
MOVOU X6, -0x70(CX)
MOVOU X7, -0x60(CX)
MOVOU X8, -0x50(CX)
MOVOU X9, -0x40(CX)
MOVOU X10, -0x30(CX)
MOVOU X11, -0x20(CX)
MOVOU X12, -0x10(CX)
RET
copy_backward:
MOVQ DI, AX
// Backward copying is about the same as the forward one.
// Firstly we load unaligned tail in the beginning of region.
MOVOU (SI), X5
MOVOU 0x10(SI), X6
ADDQ BX, DI
MOVOU 0x20(SI), X7
MOVOU 0x30(SI), X8
LEAQ -0x20(DI), R10
MOVQ DI, R11
MOVOU 0x40(SI), X9
MOVOU 0x50(SI), X10
ANDQ $0x1F, R11
MOVOU 0x60(SI), X11
MOVOU 0x70(SI), X12
XORQ R11, DI
// Let's point SI to the end of region
ADDQ BX, SI
// and load unaligned head into X4.
VMOVDQU -0x20(SI), Y4
SUBQ R11, SI
SUBQ R11, BX
// If there is enough data for non-temporal moves go to special loop
CMPQ BX, $0x100000
JA gobble_big_data_bwd
SUBQ $0x80, BX
gobble_mem_bwd_loop:
VMOVDQU -0x20(SI), Y0
VMOVDQU -0x40(SI), Y1
VMOVDQU -0x60(SI), Y2
VMOVDQU -0x80(SI), Y3
SUBQ $0x80, SI
VMOVDQA Y0, -0x20(DI)
VMOVDQA Y1, -0x40(DI)
VMOVDQA Y2, -0x60(DI)
VMOVDQA Y3, -0x80(DI)
SUBQ $0x80, DI
SUBQ $0x80, BX
JA gobble_mem_bwd_loop
// Let's store unaligned data
VMOVDQU Y4, (R10)
VZEROUPPER
MOVOU X5, (AX)
MOVOU X6, 0x10(AX)
MOVOU X7, 0x20(AX)
MOVOU X8, 0x30(AX)
MOVOU X9, 0x40(AX)
MOVOU X10, 0x50(AX)
MOVOU X11, 0x60(AX)
MOVOU X12, 0x70(AX)
RET
gobble_big_data_bwd:
SUBQ $0x80, BX
gobble_big_mem_bwd_loop:
PREFETCHNTA -0x1C0(SI)
PREFETCHNTA -0x280(SI)
VMOVDQU -0x20(SI), Y0
VMOVDQU -0x40(SI), Y1
VMOVDQU -0x60(SI), Y2
VMOVDQU -0x80(SI), Y3
SUBQ $0x80, SI
VMOVNTDQ Y0, -0x20(DI)
VMOVNTDQ Y1, -0x40(DI)
VMOVNTDQ Y2, -0x60(DI)
VMOVNTDQ Y3, -0x80(DI)
SUBQ $0x80, DI
SUBQ $0x80, BX
JA gobble_big_mem_bwd_loop
SFENCE
VMOVDQU Y4, (R10)
VZEROUPPER
MOVOU X5, (AX)
MOVOU X6, 0x10(AX)
MOVOU X7, 0x20(AX)
MOVOU X8, 0x30(AX)
MOVOU X9, 0x40(AX)
MOVOU X10, 0x50(AX)
MOVOU X11, 0x60(AX)
MOVOU X12, 0x70(AX)
RET
......@@ -5,7 +5,9 @@
package runtime_test
import (
"crypto/rand"
"fmt"
"internal/race"
. "runtime"
"testing"
)
......@@ -82,6 +84,108 @@ func TestMemmoveAlias(t *testing.T) {
}
}
func TestMemmoveLarge0x180000(t *testing.T) {
if race.Enabled {
t.Skip("skipping large memmove test under race detector")
}
testSize(t, 0x180000)
}
func TestMemmoveOverlapLarge0x120000(t *testing.T) {
if race.Enabled {
t.Skip("skipping large memmove test under race detector")
}
testOverlap(t, 0x120000)
}
func testSize(t *testing.T, size int) {
src := make([]byte, size)
dst := make([]byte, size)
_, _ = rand.Read(src)
_, _ = rand.Read(dst)
ref := make([]byte, size)
copyref(ref, dst)
for n := size - 50; n > 1; n >>= 1 {
for x := 0; x <= size-n; x = x*7 + 1 { // offset in src
for y := 0; y <= size-n; y = y*9 + 1 { // offset in dst
copy(dst[y:y+n], src[x:x+n])
copyref(ref[y:y+n], src[x:x+n])
p := cmpb(dst, ref)
if p >= 0 {
t.Fatalf("Copy failed, copying from src[%d:%d] to dst[%d:%d].\nOffset %d is different, %v != %v", x, x+n, y, y+n, p, dst[p], ref[p])
}
}
}
}
}
func testOverlap(t *testing.T, size int) {
src := make([]byte, size)
test := make([]byte, size)
ref := make([]byte, size)
_, _ = rand.Read(src)
for n := size - 50; n > 1; n >>= 1 {
for x := 0; x <= size-n; x = x*7 + 1 { // offset in src
for y := 0; y <= size-n; y = y*9 + 1 { // offset in dst
// Reset input
copyref(test, src)
copyref(ref, src)
copy(test[y:y+n], test[x:x+n])
if y <= x {
copyref(ref[y:y+n], ref[x:x+n])
} else {
copybw(ref[y:y+n], ref[x:x+n])
}
p := cmpb(test, ref)
if p >= 0 {
t.Fatalf("Copy failed, copying from src[%d:%d] to dst[%d:%d].\nOffset %d is different, %v != %v", x, x+n, y, y+n, p, test[p], ref[p])
}
}
}
}
}
// Forward copy.
func copyref(dst, src []byte) {
for i, v := range src {
dst[i] = v
}
}
// Backwards copy
func copybw(dst, src []byte) {
if len(src) == 0 {
return
}
for i := len(src) - 1; i >= 0; i-- {
dst[i] = src[i]
}
}
// Returns offset of difference
func matchLen(a, b []byte, max int) int {
a = a[:max]
b = b[:max]
for i, av := range a {
if b[i] != av {
return i
}
}
return max
}
func cmpb(a, b []byte) int {
l := matchLen(a, b, len(a))
if l == len(a) {
return -1
}
return l
}
func benchmarkSizes(b *testing.B, sizes []int, fn func(b *testing.B, n int)) {
for _, n := range sizes {
b.Run(fmt.Sprint(n), func(b *testing.B) {
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment