Commit e410a527 authored by Keith Randall's avatar Keith Randall

runtime: simplify chan ops, take 2

This change is the same as CL #9345 which was reverted,
except for a small bug fix.

The only change is to the body of sendDirect and its callsite.
Also added a test.

The problem was during a channel send operation.  The target
of the send was a sleeping goroutine waiting to receive.  We
basically do:
1) Read the destination pointer out of the sudog structure
2) Copy the value we're sending to that destination pointer
Unfortunately, the previous change had a goroutine suspend
point between 1 & 2 (the call to sendDirect).  At that point
the destination goroutine's stack could be copied (shrunk).
The pointer we read in step 1 is no longer valid for step 2.

Fixed by not allowing any suspension points between 1 & 2.
I suspect the old code worked correctly basically by accident.

Fixes #13169

The original 9345:

This change removes the retry mechanism we use for buffered channels.
Instead, any sender waking up a receiver or vice versa completes the
full protocol with its counterpart.  This means the counterpart does
not need to relock the channel when it wakes up.  (Currently
buffered channels need to relock on wakeup.)

For sends on a channel with waiting receivers, this change replaces
two copies (sender->queue, queue->receiver) with one (sender->receiver).
For receives on channels with a waiting sender, two copies are still required.

This change unifies to a large degree the algorithm for buffered
and unbuffered channels, simplifying the overall implementation.

Fixes #11506

Change-Id: I57dfa3fc219cffa4d48301ee15fe5479299efa09
Reviewed-on: https://go-review.googlesource.com/16740Reviewed-by: default avatarIan Lance Taylor <iant@golang.org>
parent 1b4d28f8
...@@ -6,6 +6,11 @@ package runtime ...@@ -6,6 +6,11 @@ package runtime
// This file contains the implementation of Go channels. // This file contains the implementation of Go channels.
// Invariants:
// At least one of c.sendq and c.recvq is empty.
// For buffered channels, also:
// c.qcount > 0 implies that c.recvq is empty.
// c.qcount < c.dataqsiz implies that c.sendq is empty.
import "unsafe" import "unsafe"
const ( const (
...@@ -153,28 +158,33 @@ func chansend(t *chantype, c *hchan, ep unsafe.Pointer, block bool, callerpc uin ...@@ -153,28 +158,33 @@ func chansend(t *chantype, c *hchan, ep unsafe.Pointer, block bool, callerpc uin
} }
lock(&c.lock) lock(&c.lock)
if c.closed != 0 { if c.closed != 0 {
unlock(&c.lock) unlock(&c.lock)
panic("send on closed channel") panic("send on closed channel")
} }
if c.dataqsiz == 0 { // synchronous channel if sg := c.recvq.dequeue(); sg != nil {
sg := c.recvq.dequeue() // Found a waiting receiver. We pass the value we want to send
if sg != nil { // found a waiting receiver // directly to the receiver, bypassing the channel buffer (if any).
if raceenabled { send(c, sg, ep, func() { unlock(&c.lock) })
racesync(c, sg) return true
} }
unlock(&c.lock)
recvg := sg.g if c.qcount < c.dataqsiz {
if sg.elem != nil { // Space is available in the channel buffer. Enqueue the element to send.
syncsend(c, sg, ep) qp := chanbuf(c, c.sendx)
if raceenabled {
raceacquire(qp)
racerelease(qp)
} }
recvg.param = unsafe.Pointer(sg) typedmemmove(c.elemtype, qp, ep)
if sg.releasetime != 0 { c.sendx++
sg.releasetime = cputicks() if c.sendx == c.dataqsiz {
c.sendx = 0
} }
goready(recvg, 3) c.qcount++
unlock(&c.lock)
return true return true
} }
...@@ -183,7 +193,7 @@ func chansend(t *chantype, c *hchan, ep unsafe.Pointer, block bool, callerpc uin ...@@ -183,7 +193,7 @@ func chansend(t *chantype, c *hchan, ep unsafe.Pointer, block bool, callerpc uin
return false return false
} }
// no receiver available: block on this channel. // Block on the channel. Some receiver will complete our operation for us.
gp := getg() gp := getg()
mysg := acquireSudog() mysg := acquireSudog()
mysg.releasetime = 0 mysg.releasetime = 0
...@@ -192,16 +202,16 @@ func chansend(t *chantype, c *hchan, ep unsafe.Pointer, block bool, callerpc uin ...@@ -192,16 +202,16 @@ func chansend(t *chantype, c *hchan, ep unsafe.Pointer, block bool, callerpc uin
} }
mysg.elem = ep mysg.elem = ep
mysg.waitlink = nil mysg.waitlink = nil
gp.waiting = mysg
mysg.g = gp mysg.g = gp
mysg.selectdone = nil mysg.selectdone = nil
gp.waiting = mysg
gp.param = nil gp.param = nil
c.sendq.enqueue(mysg) c.sendq.enqueue(mysg)
goparkunlock(&c.lock, "chan send", traceEvGoBlockSend, 3) goparkunlock(&c.lock, "chan send", traceEvGoBlockSend, 3)
// someone woke us up. // someone woke us up.
if mysg != gp.waiting { if mysg != gp.waiting {
throw("G waiting list is corrupted!") throw("G waiting list is corrupted")
} }
gp.waiting = nil gp.waiting = nil
if gp.param == nil { if gp.param == nil {
...@@ -216,72 +226,49 @@ func chansend(t *chantype, c *hchan, ep unsafe.Pointer, block bool, callerpc uin ...@@ -216,72 +226,49 @@ func chansend(t *chantype, c *hchan, ep unsafe.Pointer, block bool, callerpc uin
} }
releaseSudog(mysg) releaseSudog(mysg)
return true return true
} }
// asynchronous channel
// wait for some space to write our data
var t1 int64
for futile := byte(0); c.qcount >= c.dataqsiz; futile = traceFutileWakeup {
if !block {
unlock(&c.lock)
return false
}
gp := getg()
mysg := acquireSudog()
mysg.releasetime = 0
if t0 != 0 {
mysg.releasetime = -1
}
mysg.g = gp
mysg.elem = nil
mysg.selectdone = nil
c.sendq.enqueue(mysg)
goparkunlock(&c.lock, "chan send", traceEvGoBlockSend|futile, 3)
// someone woke us up - try again // send processes a send operation on an empty channel c.
if mysg.releasetime > 0 { // The value ep sent by the sender is copied to the receiver sg.
t1 = mysg.releasetime // The receiver is then woken up to go on its merry way.
} // Channel c must be empty and locked. send unlocks c with unlockf.
releaseSudog(mysg) // sg must already be dequeued from c.
lock(&c.lock) // ep must be non-nil and point to the heap or the caller's stack.
if c.closed != 0 { func send(c *hchan, sg *sudog, ep unsafe.Pointer, unlockf func()) {
unlock(&c.lock) if raceenabled {
panic("send on closed channel") if c.dataqsiz == 0 {
racesync(c, sg)
} else {
// Pretend we go through the buffer, even though
// we copy directly. Note that we need to increment
// the head/tail locations only when raceenabled.
qp := chanbuf(c, c.recvx)
raceacquire(qp)
racerelease(qp)
raceacquireg(sg.g, qp)
racereleaseg(sg.g, qp)
c.recvx++
if c.recvx == c.dataqsiz {
c.recvx = 0
} }
c.sendx = c.recvx // c.sendx = (c.sendx+1) % c.dataqsiz
} }
// write our data into the channel buffer
if raceenabled {
raceacquire(chanbuf(c, c.sendx))
racerelease(chanbuf(c, c.sendx))
} }
typedmemmove(c.elemtype, chanbuf(c, c.sendx), ep) unlockf()
c.sendx++ if sg.elem != nil {
if c.sendx == c.dataqsiz { sendDirect(c.elemtype, sg, ep)
c.sendx = 0 sg.elem = nil
} }
c.qcount++ gp := sg.g
gp.param = unsafe.Pointer(sg)
// wake up a waiting receiver
sg := c.recvq.dequeue()
if sg != nil {
recvg := sg.g
unlock(&c.lock)
if sg.releasetime != 0 { if sg.releasetime != 0 {
sg.releasetime = cputicks() sg.releasetime = cputicks()
} }
goready(recvg, 3) goready(gp, 4)
} else {
unlock(&c.lock)
}
if t1 > 0 {
blockevent(t1-t0, 2)
}
return true
} }
func syncsend(c *hchan, sg *sudog, elem unsafe.Pointer) { func sendDirect(t *_type, sg *sudog, src unsafe.Pointer) {
// Send on unbuffered channel is the only operation // Send on an unbuffered or empty-buffered channel is the only operation
// in the entire runtime where one goroutine // in the entire runtime where one goroutine
// writes to the stack of another goroutine. The GC assumes that // writes to the stack of another goroutine. The GC assumes that
// stack writes only happen when the goroutine is running and are // stack writes only happen when the goroutine is running and are
...@@ -290,9 +277,13 @@ func syncsend(c *hchan, sg *sudog, elem unsafe.Pointer) { ...@@ -290,9 +277,13 @@ func syncsend(c *hchan, sg *sudog, elem unsafe.Pointer) {
// typedmemmove will call heapBitsBulkBarrier, but the target bytes // typedmemmove will call heapBitsBulkBarrier, but the target bytes
// are not in the heap, so that will not help. We arrange to call // are not in the heap, so that will not help. We arrange to call
// memmove and typeBitsBulkBarrier instead. // memmove and typeBitsBulkBarrier instead.
memmove(sg.elem, elem, c.elemtype.size)
typeBitsBulkBarrier(c.elemtype, uintptr(sg.elem), c.elemtype.size) // Once we read sg.elem out of sg, it will no longer
sg.elem = nil // be updated if the destination's stack gets copied (shrunk).
// So make sure that no preemption points can happen between read & use.
dst := sg.elem
memmove(dst, src, t.size)
typeBitsBulkBarrier(t, uintptr(dst), t.size)
} }
func closechan(c *hchan) { func closechan(c *hchan) {
...@@ -320,27 +311,36 @@ func closechan(c *hchan) { ...@@ -320,27 +311,36 @@ func closechan(c *hchan) {
if sg == nil { if sg == nil {
break break
} }
gp := sg.g if sg.elem != nil {
memclr(sg.elem, uintptr(c.elemsize))
sg.elem = nil sg.elem = nil
gp.param = nil }
if sg.releasetime != 0 { if sg.releasetime != 0 {
sg.releasetime = cputicks() sg.releasetime = cputicks()
} }
gp := sg.g
gp.param = nil
if raceenabled {
raceacquireg(gp, unsafe.Pointer(c))
}
goready(gp, 3) goready(gp, 3)
} }
// release all writers // release all writers (they will panic)
for { for {
sg := c.sendq.dequeue() sg := c.sendq.dequeue()
if sg == nil { if sg == nil {
break break
} }
gp := sg.g
sg.elem = nil sg.elem = nil
gp.param = nil
if sg.releasetime != 0 { if sg.releasetime != 0 {
sg.releasetime = cputicks() sg.releasetime = cputicks()
} }
gp := sg.g
gp.param = nil
if raceenabled {
raceacquireg(gp, unsafe.Pointer(c))
}
goready(gp, 3) goready(gp, 3)
} }
unlock(&c.lock) unlock(&c.lock)
...@@ -363,8 +363,10 @@ func chanrecv2(t *chantype, c *hchan, elem unsafe.Pointer) (received bool) { ...@@ -363,8 +363,10 @@ func chanrecv2(t *chantype, c *hchan, elem unsafe.Pointer) (received bool) {
// If block == false and no elements are available, returns (false, false). // If block == false and no elements are available, returns (false, false).
// Otherwise, if c is closed, zeros *ep and returns (true, false). // Otherwise, if c is closed, zeros *ep and returns (true, false).
// Otherwise, fills in *ep with an element and returns (true, true). // Otherwise, fills in *ep with an element and returns (true, true).
// A non-nil ep must point to the heap or the caller's stack.
func chanrecv(t *chantype, c *hchan, ep unsafe.Pointer, block bool) (selected, received bool) { func chanrecv(t *chantype, c *hchan, ep unsafe.Pointer, block bool) (selected, received bool) {
// raceenabled: don't need to check ep, as it is always on the stack. // raceenabled: don't need to check ep, as it is always on the stack
// or is new memory allocated by reflect.
if debugChan { if debugChan {
print("chanrecv: chan=", c, "\n") print("chanrecv: chan=", c, "\n")
...@@ -402,36 +404,50 @@ func chanrecv(t *chantype, c *hchan, ep unsafe.Pointer, block bool) (selected, r ...@@ -402,36 +404,50 @@ func chanrecv(t *chantype, c *hchan, ep unsafe.Pointer, block bool) (selected, r
} }
lock(&c.lock) lock(&c.lock)
if c.dataqsiz == 0 { // synchronous channel
if c.closed != 0 {
return recvclosed(c, ep)
}
sg := c.sendq.dequeue() if c.closed != 0 && c.qcount == 0 {
if sg != nil {
if raceenabled { if raceenabled {
racesync(c, sg) raceacquire(unsafe.Pointer(c))
} }
unlock(&c.lock) unlock(&c.lock)
if ep != nil {
memclr(ep, uintptr(c.elemsize))
}
return true, false
}
if sg := c.sendq.dequeue(); sg != nil {
// Found a waiting sender. If buffer is size 0, receive value
// directly from sender. Otherwise, recieve from head of queue
// and add sender's value to the tail of the queue (both map to
// the same buffer slot because the queue is full).
recv(c, sg, ep, func() { unlock(&c.lock) })
return true, true
}
if c.qcount > 0 {
// Receive directly from queue
qp := chanbuf(c, c.recvx)
if raceenabled {
raceacquire(qp)
racerelease(qp)
}
if ep != nil { if ep != nil {
typedmemmove(c.elemtype, ep, sg.elem) typedmemmove(c.elemtype, ep, qp)
} }
sg.elem = nil memclr(qp, uintptr(c.elemsize))
gp := sg.g c.recvx++
gp.param = unsafe.Pointer(sg) if c.recvx == c.dataqsiz {
if sg.releasetime != 0 { c.recvx = 0
sg.releasetime = cputicks()
} }
goready(gp, 3) c.qcount--
selected = true unlock(&c.lock)
received = true return true, true
return
} }
if !block { if !block {
unlock(&c.lock) unlock(&c.lock)
return return false, false
} }
// no sender available: block on this channel. // no sender available: block on this channel.
...@@ -452,117 +468,75 @@ func chanrecv(t *chantype, c *hchan, ep unsafe.Pointer, block bool) (selected, r ...@@ -452,117 +468,75 @@ func chanrecv(t *chantype, c *hchan, ep unsafe.Pointer, block bool) (selected, r
// someone woke us up // someone woke us up
if mysg != gp.waiting { if mysg != gp.waiting {
throw("G waiting list is corrupted!") throw("G waiting list is corrupted")
} }
gp.waiting = nil gp.waiting = nil
if mysg.releasetime > 0 { if mysg.releasetime > 0 {
blockevent(mysg.releasetime-t0, 2) blockevent(mysg.releasetime-t0, 2)
} }
haveData := gp.param != nil closed := gp.param == nil
gp.param = nil gp.param = nil
releaseSudog(mysg) releaseSudog(mysg)
return true, !closed
}
if haveData { // recv processes a receive operation on a full channel c.
// a sender sent us some data. It already wrote to ep. // There are 2 parts:
selected = true // 1) The value sent by the sender sg is put into the channel
received = true // and the sender is woken up to go on its merry way.
return // 2) The value received by the receiver (the current G) is
} // written to ep.
// For synchronous channels, both values are the same.
lock(&c.lock) // For asynchronous channels, the receiver gets its data from
if c.closed == 0 { // the channel buffer and the sender's data is put in the
throw("chanrecv: spurious wakeup") // channel buffer.
} // Channel c must be full and locked. recv unlocks c with unlockf.
return recvclosed(c, ep) // sg must already be dequeued from c.
} // A non-nil ep must point to the heap or the caller's stack.
func recv(c *hchan, sg *sudog, ep unsafe.Pointer, unlockf func()) {
// asynchronous channel if c.dataqsiz == 0 {
// wait for some data to appear if raceenabled {
var t1 int64 racesync(c, sg)
for futile := byte(0); c.qcount <= 0; futile = traceFutileWakeup {
if c.closed != 0 {
selected, received = recvclosed(c, ep)
if t1 > 0 {
blockevent(t1-t0, 2)
}
return
}
if !block {
unlock(&c.lock)
return
}
// wait for someone to send an element
gp := getg()
mysg := acquireSudog()
mysg.releasetime = 0
if t0 != 0 {
mysg.releasetime = -1
}
mysg.elem = nil
mysg.g = gp
mysg.selectdone = nil
c.recvq.enqueue(mysg)
goparkunlock(&c.lock, "chan receive", traceEvGoBlockRecv|futile, 3)
// someone woke us up - try again
if mysg.releasetime > 0 {
t1 = mysg.releasetime
} }
releaseSudog(mysg) unlockf()
lock(&c.lock) if ep != nil {
// copy data from sender
// ep points to our own stack or heap, so nothing
// special (ala sendDirect) needed here.
typedmemmove(c.elemtype, ep, sg.elem)
} }
} else {
// Queue is full. Take the item at the
// head of the queue. Make the sender enqueue
// its item at the tail of the queue. Since the
// queue is full, those are both the same slot.
qp := chanbuf(c, c.recvx)
if raceenabled { if raceenabled {
raceacquire(chanbuf(c, c.recvx)) raceacquire(qp)
racerelease(chanbuf(c, c.recvx)) racerelease(qp)
raceacquireg(sg.g, qp)
racereleaseg(sg.g, qp)
} }
// copy data from queue to receiver
if ep != nil { if ep != nil {
typedmemmove(c.elemtype, ep, chanbuf(c, c.recvx)) typedmemmove(c.elemtype, ep, qp)
} }
memclr(chanbuf(c, c.recvx), uintptr(c.elemsize)) // copy data from sender to queue
typedmemmove(c.elemtype, qp, sg.elem)
c.recvx++ c.recvx++
if c.recvx == c.dataqsiz { if c.recvx == c.dataqsiz {
c.recvx = 0 c.recvx = 0
} }
c.qcount-- c.sendx = c.recvx // c.sendx = (c.sendx+1) % c.dataqsiz
unlockf()
// ping a sender now that there is space }
sg := c.sendq.dequeue() sg.elem = nil
if sg != nil {
gp := sg.g gp := sg.g
unlock(&c.lock) gp.param = unsafe.Pointer(sg)
if sg.releasetime != 0 { if sg.releasetime != 0 {
sg.releasetime = cputicks() sg.releasetime = cputicks()
} }
goready(gp, 3) goready(gp, 4)
} else {
unlock(&c.lock)
}
if t1 > 0 {
blockevent(t1-t0, 2)
}
selected = true
received = true
return
}
// recvclosed is a helper function for chanrecv. Handles cleanup
// when the receiver encounters a closed channel.
// Caller must hold c.lock, recvclosed will release the lock.
func recvclosed(c *hchan, ep unsafe.Pointer) (selected, recevied bool) {
if raceenabled {
raceacquire(unsafe.Pointer(c))
}
unlock(&c.lock)
if ep != nil {
memclr(ep, uintptr(c.elemsize))
}
return true, false
} }
// compiler implements // compiler implements
......
...@@ -304,7 +304,7 @@ func selectgoImpl(sel *hselect) (uintptr, uint16) { ...@@ -304,7 +304,7 @@ func selectgoImpl(sel *hselect) (uintptr, uint16) {
k *scase k *scase
sglist *sudog sglist *sudog
sgnext *sudog sgnext *sudog
futile byte qp unsafe.Pointer
) )
loop: loop:
...@@ -317,15 +317,12 @@ loop: ...@@ -317,15 +317,12 @@ loop:
switch cas.kind { switch cas.kind {
case caseRecv: case caseRecv:
if c.dataqsiz > 0 {
if c.qcount > 0 {
goto asyncrecv
}
} else {
sg = c.sendq.dequeue() sg = c.sendq.dequeue()
if sg != nil { if sg != nil {
goto syncrecv goto recv
} }
if c.qcount > 0 {
goto bufrecv
} }
if c.closed != 0 { if c.closed != 0 {
goto rclose goto rclose
...@@ -338,15 +335,12 @@ loop: ...@@ -338,15 +335,12 @@ loop:
if c.closed != 0 { if c.closed != 0 {
goto sclose goto sclose
} }
if c.dataqsiz > 0 {
if c.qcount < c.dataqsiz {
goto asyncsend
}
} else {
sg = c.recvq.dequeue() sg = c.recvq.dequeue()
if sg != nil { if sg != nil {
goto syncsend goto send
} }
if c.qcount < c.dataqsiz {
goto bufsend
} }
case caseDefault: case caseDefault:
...@@ -363,6 +357,9 @@ loop: ...@@ -363,6 +357,9 @@ loop:
// pass 2 - enqueue on all chans // pass 2 - enqueue on all chans
gp = getg() gp = getg()
done = 0 done = 0
if gp.waiting != nil {
throw("gp.waiting != nil")
}
for i := 0; i < int(sel.ncase); i++ { for i := 0; i < int(sel.ncase); i++ {
cas = &scases[pollorder[i]] cas = &scases[pollorder[i]]
c = cas.c c = cas.c
...@@ -389,7 +386,7 @@ loop: ...@@ -389,7 +386,7 @@ loop:
// wait for someone to wake us up // wait for someone to wake us up
gp.param = nil gp.param = nil
gopark(selparkcommit, unsafe.Pointer(sel), "select", traceEvGoBlockSelect|futile, 2) gopark(selparkcommit, unsafe.Pointer(sel), "select", traceEvGoBlockSelect, 2)
// someone woke us up // someone woke us up
sellock(sel) sellock(sel)
...@@ -432,16 +429,13 @@ loop: ...@@ -432,16 +429,13 @@ loop:
} }
if cas == nil { if cas == nil {
futile = traceFutileWakeup // This can happen if we were woken up by a close().
// TODO: figure that out explicitly so we don't need this loop.
goto loop goto loop
} }
c = cas.c c = cas.c
if c.dataqsiz > 0 {
throw("selectgo: shouldn't happen")
}
if debugSelect { if debugSelect {
print("wait-return: sel=", sel, " c=", c, " cas=", cas, " kind=", cas.kind, "\n") print("wait-return: sel=", sel, " c=", c, " cas=", cas, " kind=", cas.kind, "\n")
} }
...@@ -470,7 +464,7 @@ loop: ...@@ -470,7 +464,7 @@ loop:
selunlock(sel) selunlock(sel)
goto retc goto retc
asyncrecv: bufrecv:
// can receive from buffer // can receive from buffer
if raceenabled { if raceenabled {
if cas.elem != nil { if cas.elem != nil {
...@@ -485,29 +479,20 @@ asyncrecv: ...@@ -485,29 +479,20 @@ asyncrecv:
if cas.receivedp != nil { if cas.receivedp != nil {
*cas.receivedp = true *cas.receivedp = true
} }
qp = chanbuf(c, c.recvx)
if cas.elem != nil { if cas.elem != nil {
typedmemmove(c.elemtype, cas.elem, chanbuf(c, c.recvx)) typedmemmove(c.elemtype, cas.elem, qp)
} }
memclr(chanbuf(c, c.recvx), uintptr(c.elemsize)) memclr(qp, uintptr(c.elemsize))
c.recvx++ c.recvx++
if c.recvx == c.dataqsiz { if c.recvx == c.dataqsiz {
c.recvx = 0 c.recvx = 0
} }
c.qcount-- c.qcount--
sg = c.sendq.dequeue()
if sg != nil {
gp = sg.g
selunlock(sel)
if sg.releasetime != 0 {
sg.releasetime = cputicks()
}
goready(gp, 3)
} else {
selunlock(sel) selunlock(sel)
}
goto retc goto retc
asyncsend: bufsend:
// can send to buffer // can send to buffer
if raceenabled { if raceenabled {
raceacquire(chanbuf(c, c.sendx)) raceacquire(chanbuf(c, c.sendx))
...@@ -523,47 +508,18 @@ asyncsend: ...@@ -523,47 +508,18 @@ asyncsend:
c.sendx = 0 c.sendx = 0
} }
c.qcount++ c.qcount++
sg = c.recvq.dequeue()
if sg != nil {
gp = sg.g
selunlock(sel) selunlock(sel)
if sg.releasetime != 0 {
sg.releasetime = cputicks()
}
goready(gp, 3)
} else {
selunlock(sel)
}
goto retc goto retc
syncrecv: recv:
// can receive from sleeping sender (sg) // can receive from sleeping sender (sg)
if raceenabled { recv(c, sg, cas.elem, func() { selunlock(sel) })
if cas.elem != nil {
raceWriteObjectPC(c.elemtype, cas.elem, cas.pc, chanrecvpc)
}
racesync(c, sg)
}
if msanenabled && cas.elem != nil {
msanwrite(cas.elem, c.elemtype.size)
}
selunlock(sel)
if debugSelect { if debugSelect {
print("syncrecv: sel=", sel, " c=", c, "\n") print("syncrecv: sel=", sel, " c=", c, "\n")
} }
if cas.receivedp != nil { if cas.receivedp != nil {
*cas.receivedp = true *cas.receivedp = true
} }
if cas.elem != nil {
typedmemmove(c.elemtype, cas.elem, sg.elem)
}
sg.elem = nil
gp = sg.g
gp.param = unsafe.Pointer(sg)
if sg.releasetime != 0 {
sg.releasetime = cputicks()
}
goready(gp, 3)
goto retc goto retc
rclose: rclose:
...@@ -580,29 +536,19 @@ rclose: ...@@ -580,29 +536,19 @@ rclose:
} }
goto retc goto retc
syncsend: send:
// can send to sleeping receiver (sg) // can send to a sleeping receiver (sg)
if raceenabled { if raceenabled {
raceReadObjectPC(c.elemtype, cas.elem, cas.pc, chansendpc) raceReadObjectPC(c.elemtype, cas.elem, cas.pc, chansendpc)
racesync(c, sg)
} }
if msanenabled { if msanenabled {
msanread(cas.elem, c.elemtype.size) msanread(cas.elem, c.elemtype.size)
} }
selunlock(sel) send(c, sg, cas.elem, func() { selunlock(sel) })
if debugSelect { if debugSelect {
print("syncsend: sel=", sel, " c=", c, "\n") print("syncsend: sel=", sel, " c=", c, "\n")
} }
if sg.elem != nil { goto retc
syncsend(c, sg, cas.elem)
}
sg.elem = nil
gp = sg.g
gp.param = unsafe.Pointer(sg)
if sg.releasetime != 0 {
sg.releasetime = cputicks()
}
goready(gp, 3)
retc: retc:
if cas.releasetime > 0 { if cas.releasetime > 0 {
......
// run
// Copyright 2015 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package main
type T struct {
a, b, c int
}
func usestack() {
usestack1(32)
}
func usestack1(d int) byte {
if d == 0 {
return 0
}
var b [1024]byte
usestack1(d - 1)
return b[3]
}
const n = 100000
func main() {
c := make(chan interface{})
done := make(chan bool)
for i := 0; i < 10; i++ {
go func() {
for j := 0; j < n; j++ {
c <- new(T)
}
done <- true
}()
go func() {
for j := 0; j < n; j++ {
_ = (<-c).(*T)
usestack()
}
done <- true
}()
}
for i := 0; i < 20; i++ {
<-done
}
}
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment