Commit e6f36f0c authored by Michael Munday's avatar Michael Munday Committed by Brad Fitzpatrick

runtime: add s390x support (new files and lfstack_64bit.go modifications)

Change-Id: I51c0a332e3cbdab348564e5dcd27583e75e4b881
Reviewed-on: https://go-review.googlesource.com/20946Reviewed-by: default avatarBrad Fitzpatrick <bradfitz@golang.org>
Run-TryBot: Brad Fitzpatrick <bradfitz@golang.org>
TryBot-Result: Gobot Gobot <gobot@golang.org>
parent 9658b7ef
// Copyright 2016 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
#include "go_asm.h"
#include "go_tls.h"
#include "funcdata.h"
#include "textflag.h"
// Indicate the status of vector facility
// -1: init value
// 0: vector not installed
// 1: vector installed and enabled
// 2: vector installed but not enabled
DATA runtime·vectorfacility+0x00(SB)/4, $-1
GLOBL runtime·vectorfacility(SB), NOPTR, $4
TEXT runtime·checkvectorfacility(SB),NOSPLIT,$32-0
MOVD $2, R0
MOVD R1, tmp-32(SP)
MOVD $x-24(SP), R1
// STFLE 0(R1)
WORD $0xB2B01000
MOVBZ z-8(SP), R1
AND $0x40, R1
BNE vectorinstalled
MOVB $0, runtime·vectorfacility(SB) //Vector not installed
MOVD tmp-32(SP), R1
MOVD $0, R0
RET
vectorinstalled:
// check if the vector instruction has been enabled
VLEIB $0, $0xF, V16
VLGVB $0, V16, R0
CMPBEQ R0, $0xF, vectorenabled
MOVB $2, runtime·vectorfacility(SB) //Vector installed but not enabled
MOVD tmp-32(SP), R1
MOVD $0, R0
RET
vectorenabled:
MOVB $1, runtime·vectorfacility(SB) //Vector installed and enabled
MOVD tmp-32(SP), R1
MOVD $0, R0
RET
TEXT runtime·rt0_go(SB),NOSPLIT,$0
// R2 = argc; R3 = argv; R11 = temp; R13 = g; R15 = stack pointer
// C TLS base pointer in AR0:AR1
// initialize essential registers
XOR R0, R0
SUB $24, R15
MOVW R2, 8(R15) // argc
MOVD R3, 16(R15) // argv
// create istack out of the given (operating system) stack.
// _cgo_init may update stackguard.
MOVD $runtime·g0(SB), g
MOVD R15, R11
SUB $(64*1024), R11
MOVD R11, g_stackguard0(g)
MOVD R11, g_stackguard1(g)
MOVD R11, (g_stack+stack_lo)(g)
MOVD R15, (g_stack+stack_hi)(g)
// if there is a _cgo_init, call it using the gcc ABI.
MOVD _cgo_init(SB), R11
CMPBEQ R11, $0, nocgo
MOVW AR0, R4 // (AR0 << 32 | AR1) is the TLS base pointer; MOVD is translated to EAR
SLD $32, R4, R4
MOVW AR1, R4 // arg 2: TLS base pointer
MOVD $setg_gcc<>(SB), R3 // arg 1: setg
MOVD g, R2 // arg 0: G
// C functions expect 160 bytes of space on caller stack frame
// and an 8-byte aligned stack pointer
MOVD R15, R9 // save current stack (R9 is preserved in the Linux ABI)
SUB $160, R15 // reserve 160 bytes
MOVD $~7, R6
AND R6, R15 // 8-byte align
BL R11 // this call clobbers volatile registers according to Linux ABI (R0-R5, R14)
MOVD R9, R15 // restore stack
XOR R0, R0 // zero R0
nocgo:
// update stackguard after _cgo_init
MOVD (g_stack+stack_lo)(g), R2
ADD $const__StackGuard, R2
MOVD R2, g_stackguard0(g)
MOVD R2, g_stackguard1(g)
// set the per-goroutine and per-mach "registers"
MOVD $runtime·m0(SB), R2
// save m->g0 = g0
MOVD g, m_g0(R2)
// save m0 to g0->m
MOVD R2, g_m(g)
BL runtime·check(SB)
// argc/argv are already prepared on stack
BL runtime·args(SB)
BL runtime·osinit(SB)
BL runtime·schedinit(SB)
// create a new goroutine to start program
MOVD $runtime·mainPC(SB), R2 // entry
SUB $24, R15
MOVD R2, 16(R15)
MOVD R0, 8(R15)
MOVD R0, 0(R15)
BL runtime·newproc(SB)
ADD $24, R15
// start this M
BL runtime·mstart(SB)
MOVD R0, 1(R0)
RET
DATA runtime·mainPC+0(SB)/8,$runtime·main(SB)
GLOBL runtime·mainPC(SB),RODATA,$8
TEXT runtime·breakpoint(SB),NOSPLIT|NOFRAME,$0-0
MOVD R0, 2(R0)
RET
TEXT runtime·asminit(SB),NOSPLIT|NOFRAME,$0-0
RET
/*
* go-routine
*/
// void gosave(Gobuf*)
// save state in Gobuf; setjmp
TEXT runtime·gosave(SB), NOSPLIT, $-8-8
MOVD buf+0(FP), R3
MOVD R15, gobuf_sp(R3)
MOVD LR, gobuf_pc(R3)
MOVD g, gobuf_g(R3)
MOVD $0, gobuf_lr(R3)
MOVD $0, gobuf_ret(R3)
MOVD $0, gobuf_ctxt(R3)
RET
// void gogo(Gobuf*)
// restore state from Gobuf; longjmp
TEXT runtime·gogo(SB), NOSPLIT, $-8-8
MOVD buf+0(FP), R5
MOVD gobuf_g(R5), g // make sure g is not nil
BL runtime·save_g(SB)
MOVD 0(g), R4
MOVD gobuf_sp(R5), R15
MOVD gobuf_lr(R5), LR
MOVD gobuf_ret(R5), R3
MOVD gobuf_ctxt(R5), R12
MOVD $0, gobuf_sp(R5)
MOVD $0, gobuf_ret(R5)
MOVD $0, gobuf_lr(R5)
MOVD $0, gobuf_ctxt(R5)
CMP R0, R0 // set condition codes for == test, needed by stack split
MOVD gobuf_pc(R5), R6
BR (R6)
// void mcall(fn func(*g))
// Switch to m->g0's stack, call fn(g).
// Fn must never return. It should gogo(&g->sched)
// to keep running g.
TEXT runtime·mcall(SB), NOSPLIT, $-8-8
// Save caller state in g->sched
MOVD R15, (g_sched+gobuf_sp)(g)
MOVD LR, (g_sched+gobuf_pc)(g)
MOVD R0, (g_sched+gobuf_lr)(g)
MOVD g, (g_sched+gobuf_g)(g)
// Switch to m->g0 & its stack, call fn.
MOVD g, R3
MOVD g_m(g), R8
MOVD m_g0(R8), g
BL runtime·save_g(SB)
CMP g, R3
BNE 2(PC)
BR runtime·badmcall(SB)
MOVD fn+0(FP), R12 // context
MOVD 0(R12), R4 // code pointer
MOVD (g_sched+gobuf_sp)(g), R15 // sp = m->g0->sched.sp
SUB $16, R15
MOVD R3, 8(R15)
MOVD $0, 0(R15)
BL (R4)
BR runtime·badmcall2(SB)
// systemstack_switch is a dummy routine that systemstack leaves at the bottom
// of the G stack. We need to distinguish the routine that
// lives at the bottom of the G stack from the one that lives
// at the top of the system stack because the one at the top of
// the system stack terminates the stack walk (see topofstack()).
TEXT runtime·systemstack_switch(SB), NOSPLIT, $0-0
UNDEF
BL (LR) // make sure this function is not leaf
RET
// func systemstack(fn func())
TEXT runtime·systemstack(SB), NOSPLIT, $0-8
MOVD fn+0(FP), R3 // R3 = fn
MOVD R3, R12 // context
MOVD g_m(g), R4 // R4 = m
MOVD m_gsignal(R4), R5 // R5 = gsignal
CMPBEQ g, R5, noswitch
MOVD m_g0(R4), R5 // R5 = g0
CMPBEQ g, R5, noswitch
MOVD m_curg(R4), R6
CMPBEQ g, R6, switch
// Bad: g is not gsignal, not g0, not curg. What is it?
// Hide call from linker nosplit analysis.
MOVD $runtime·badsystemstack(SB), R3
BL (R3)
switch:
// save our state in g->sched. Pretend to
// be systemstack_switch if the G stack is scanned.
MOVD $runtime·systemstack_switch(SB), R6
ADD $16, R6 // get past prologue
MOVD R6, (g_sched+gobuf_pc)(g)
MOVD R15, (g_sched+gobuf_sp)(g)
MOVD R0, (g_sched+gobuf_lr)(g)
MOVD g, (g_sched+gobuf_g)(g)
// switch to g0
MOVD R5, g
BL runtime·save_g(SB)
MOVD (g_sched+gobuf_sp)(g), R3
// make it look like mstart called systemstack on g0, to stop traceback
SUB $8, R3
MOVD $runtime·mstart(SB), R4
MOVD R4, 0(R3)
MOVD R3, R15
// call target function
MOVD 0(R12), R3 // code pointer
BL (R3)
// switch back to g
MOVD g_m(g), R3
MOVD m_curg(R3), g
BL runtime·save_g(SB)
MOVD (g_sched+gobuf_sp)(g), R15
MOVD $0, (g_sched+gobuf_sp)(g)
RET
noswitch:
// already on m stack, just call directly
MOVD 0(R12), R3 // code pointer
BL (R3)
RET
/*
* support for morestack
*/
// Called during function prolog when more stack is needed.
// Caller has already loaded:
// R3: framesize, R4: argsize, R5: LR
//
// The traceback routines see morestack on a g0 as being
// the top of a stack (for example, morestack calling newstack
// calling the scheduler calling newm calling gc), so we must
// record an argument size. For that purpose, it has no arguments.
TEXT runtime·morestack(SB),NOSPLIT|NOFRAME,$0-0
// Cannot grow scheduler stack (m->g0).
MOVD g_m(g), R7
MOVD m_g0(R7), R8
CMPBNE g, R8, 2(PC)
BL runtime·abort(SB)
// Cannot grow signal stack (m->gsignal).
MOVD m_gsignal(R7), R8
CMP g, R8
BNE 2(PC)
BL runtime·abort(SB)
// Called from f.
// Set g->sched to context in f.
MOVD R12, (g_sched+gobuf_ctxt)(g)
MOVD R15, (g_sched+gobuf_sp)(g)
MOVD LR, R8
MOVD R8, (g_sched+gobuf_pc)(g)
MOVD R5, (g_sched+gobuf_lr)(g)
// Called from f.
// Set m->morebuf to f's caller.
MOVD R5, (m_morebuf+gobuf_pc)(R7) // f's caller's PC
MOVD R15, (m_morebuf+gobuf_sp)(R7) // f's caller's SP
MOVD g, (m_morebuf+gobuf_g)(R7)
// Call newstack on m->g0's stack.
MOVD m_g0(R7), g
BL runtime·save_g(SB)
MOVD (g_sched+gobuf_sp)(g), R15
BL runtime·newstack(SB)
// Not reached, but make sure the return PC from the call to newstack
// is still in this function, and not the beginning of the next.
UNDEF
TEXT runtime·morestack_noctxt(SB),NOSPLIT|NOFRAME,$0-0
MOVD $0, R12
BR runtime·morestack(SB)
TEXT runtime·stackBarrier(SB),NOSPLIT,$0
// We came here via a RET to an overwritten LR.
// R3 may be live. Other registers are available.
// Get the original return PC, g.stkbar[g.stkbarPos].savedLRVal.
MOVD (g_stkbar+slice_array)(g), R4
MOVD g_stkbarPos(g), R5
MOVD $stkbar__size, R6
MULLD R5, R6
ADD R4, R6
MOVD stkbar_savedLRVal(R6), R6
// Record that this stack barrier was hit.
ADD $1, R5
MOVD R5, g_stkbarPos(g)
// Jump to the original return PC.
BR (R6)
// reflectcall: call a function with the given argument list
// func call(argtype *_type, f *FuncVal, arg *byte, argsize, retoffset uint32).
// we don't have variable-sized frames, so we use a small number
// of constant-sized-frame functions to encode a few bits of size in the pc.
// Caution: ugly multiline assembly macros in your future!
#define DISPATCH(NAME,MAXSIZE) \
MOVD $MAXSIZE, R4; \
CMP R3, R4; \
BGT 3(PC); \
MOVD $NAME(SB), R5; \
BR (R5)
// Note: can't just "BR NAME(SB)" - bad inlining results.
TEXT reflect·call(SB), NOSPLIT, $0-0
BR ·reflectcall(SB)
TEXT ·reflectcall(SB), NOSPLIT, $-8-32
MOVWZ argsize+24(FP), R3
// NOTE(rsc): No call16, because CALLFN needs four words
// of argument space to invoke callwritebarrier.
DISPATCH(runtime·call32, 32)
DISPATCH(runtime·call64, 64)
DISPATCH(runtime·call128, 128)
DISPATCH(runtime·call256, 256)
DISPATCH(runtime·call512, 512)
DISPATCH(runtime·call1024, 1024)
DISPATCH(runtime·call2048, 2048)
DISPATCH(runtime·call4096, 4096)
DISPATCH(runtime·call8192, 8192)
DISPATCH(runtime·call16384, 16384)
DISPATCH(runtime·call32768, 32768)
DISPATCH(runtime·call65536, 65536)
DISPATCH(runtime·call131072, 131072)
DISPATCH(runtime·call262144, 262144)
DISPATCH(runtime·call524288, 524288)
DISPATCH(runtime·call1048576, 1048576)
DISPATCH(runtime·call2097152, 2097152)
DISPATCH(runtime·call4194304, 4194304)
DISPATCH(runtime·call8388608, 8388608)
DISPATCH(runtime·call16777216, 16777216)
DISPATCH(runtime·call33554432, 33554432)
DISPATCH(runtime·call67108864, 67108864)
DISPATCH(runtime·call134217728, 134217728)
DISPATCH(runtime·call268435456, 268435456)
DISPATCH(runtime·call536870912, 536870912)
DISPATCH(runtime·call1073741824, 1073741824)
MOVD $runtime·badreflectcall(SB), R5
BR (R5)
#define CALLFN(NAME,MAXSIZE) \
TEXT NAME(SB), WRAPPER, $MAXSIZE-24; \
NO_LOCAL_POINTERS; \
/* copy arguments to stack */ \
MOVD arg+16(FP), R3; \
MOVWZ argsize+24(FP), R4; \
MOVD R15, R5; \
ADD $(8-1), R5; \
SUB $1, R3; \
ADD R5, R4; \
CMP R5, R4; \
BEQ 6(PC); \
ADD $1, R3; \
ADD $1, R5; \
MOVBZ 0(R3), R6; \
MOVBZ R6, 0(R5); \
BR -6(PC); \
/* call function */ \
MOVD f+8(FP), R12; \
MOVD (R12), R8; \
PCDATA $PCDATA_StackMapIndex, $0; \
BL (R8); \
/* copy return values back */ \
MOVD arg+16(FP), R3; \
MOVWZ n+24(FP), R4; \
MOVWZ retoffset+28(FP), R6; \
MOVD R15, R5; \
ADD R6, R5; \
ADD R6, R3; \
SUB R6, R4; \
ADD $(8-1), R5; \
SUB $1, R3; \
ADD R5, R4; \
loop: \
CMP R5, R4; \
BEQ end; \
ADD $1, R5; \
ADD $1, R3; \
MOVBZ 0(R5), R6; \
MOVBZ R6, 0(R3); \
BR loop; \
end: \
/* execute write barrier updates */ \
MOVD argtype+0(FP), R7; \
MOVD arg+16(FP), R3; \
MOVWZ n+24(FP), R4; \
MOVWZ retoffset+28(FP), R6; \
MOVD R7, 8(R15); \
MOVD R3, 16(R15); \
MOVD R4, 24(R15); \
MOVD R6, 32(R15); \
BL runtime·callwritebarrier(SB); \
RET
CALLFNcall32, 32)
CALLFNcall64, 64)
CALLFNcall128, 128)
CALLFNcall256, 256)
CALLFNcall512, 512)
CALLFNcall1024, 1024)
CALLFNcall2048, 2048)
CALLFNcall4096, 4096)
CALLFNcall8192, 8192)
CALLFNcall16384, 16384)
CALLFNcall32768, 32768)
CALLFNcall65536, 65536)
CALLFNcall131072, 131072)
CALLFNcall262144, 262144)
CALLFNcall524288, 524288)
CALLFNcall1048576, 1048576)
CALLFNcall2097152, 2097152)
CALLFNcall4194304, 4194304)
CALLFNcall8388608, 8388608)
CALLFNcall16777216, 16777216)
CALLFNcall33554432, 33554432)
CALLFNcall67108864, 67108864)
CALLFNcall134217728, 134217728)
CALLFNcall268435456, 268435456)
CALLFNcall536870912, 536870912)
CALLFNcall1073741824, 1073741824)
TEXT runtime·procyield(SB),NOSPLIT,$0-0
RET
// void jmpdefer(fv, sp);
// called from deferreturn.
// 1. grab stored LR for caller
// 2. sub 6 bytes to get back to BL deferreturn (size of BRASL instruction)
// 3. BR to fn
TEXT runtime·jmpdefer(SB),NOSPLIT|NOFRAME,$0-16
MOVD 0(R15), R1
SUB $6, R1, LR
MOVD fv+0(FP), R12
MOVD argp+8(FP), R15
SUB $8, R15
MOVD 0(R12), R3
BR (R3)
// Save state of caller into g->sched. Smashes R31.
TEXT gosave<>(SB),NOSPLIT|NOFRAME,$0
MOVD LR, (g_sched+gobuf_pc)(g)
MOVD R15, (g_sched+gobuf_sp)(g)
MOVD $0, (g_sched+gobuf_lr)(g)
MOVD $0, (g_sched+gobuf_ret)(g)
MOVD $0, (g_sched+gobuf_ctxt)(g)
RET
// func asmcgocall(fn, arg unsafe.Pointer) int32
// Call fn(arg) on the scheduler stack,
// aligned appropriately for the gcc ABI.
// See cgocall.go for more details.
TEXT ·asmcgocall(SB),NOSPLIT,$0-20
// R2 = argc; R3 = argv; R11 = temp; R13 = g; R15 = stack pointer
// C TLS base pointer in AR0:AR1
MOVD fn+0(FP), R3
MOVD arg+8(FP), R4
MOVD R15, R2 // save original stack pointer
MOVD g, R5
// Figure out if we need to switch to m->g0 stack.
// We get called to create new OS threads too, and those
// come in on the m->g0 stack already.
MOVD g_m(g), R6
MOVD m_g0(R6), R6
CMPBEQ R6, g, g0
BL gosave<>(SB)
MOVD R6, g
BL runtime·save_g(SB)
MOVD (g_sched+gobuf_sp)(g), R15
// Now on a scheduling stack (a pthread-created stack).
g0:
// Save room for two of our pointers, plus 160 bytes of callee
// save area that lives on the caller stack.
SUB $176, R15
MOVD $~7, R6
AND R6, R15 // 8-byte alignment for gcc ABI
MOVD R5, 168(R15) // save old g on stack
MOVD (g_stack+stack_hi)(R5), R5
SUB R2, R5
MOVD R5, 160(R15) // save depth in old g stack (can't just save SP, as stack might be copied during a callback)
MOVD R0, 0(R15) // clear back chain pointer (TODO can we give it real back trace information?)
MOVD R4, R2 // arg in R2
BL R3 // can clobber: R0-R5, R14, F0-F3, F5, F7-F15
XOR R0, R0 // set R0 back to 0.
// Restore g, stack pointer.
MOVD 168(R15), g
BL runtime·save_g(SB)
MOVD (g_stack+stack_hi)(g), R5
MOVD 160(R15), R6
SUB R6, R5
MOVD R5, R15
MOVW R2, ret+16(FP)
RET
// cgocallback(void (*fn)(void*), void *frame, uintptr framesize)
// Turn the fn into a Go func (by taking its address) and call
// cgocallback_gofunc.
TEXT runtime·cgocallback(SB),NOSPLIT,$24-24
MOVD $fn+0(FP), R3
MOVD R3, 8(R15)
MOVD frame+8(FP), R3
MOVD R3, 16(R15)
MOVD framesize+16(FP), R3
MOVD R3, 24(R15)
MOVD $runtime·cgocallback_gofunc(SB), R3
BL (R3)
RET
// cgocallback_gofunc(FuncVal*, void *frame, uintptr framesize)
// See cgocall.go for more details.
TEXT ·cgocallback_gofunc(SB),NOSPLIT,$16-24
NO_LOCAL_POINTERS
// Load m and g from thread-local storage.
MOVB runtime·iscgo(SB), R3
CMPBEQ R3, $0, nocgo
BL runtime·load_g(SB)
nocgo:
// If g is nil, Go did not create the current thread.
// Call needm to obtain one for temporary use.
// In this case, we're running on the thread stack, so there's
// lots of space, but the linker doesn't know. Hide the call from
// the linker analysis by using an indirect call.
CMPBEQ g, $0, needm
MOVD g_m(g), R8
MOVD R8, savedm-8(SP)
BR havem
needm:
MOVD g, savedm-8(SP) // g is zero, so is m.
MOVD $runtime·needm(SB), R3
BL (R3)
// Set m->sched.sp = SP, so that if a panic happens
// during the function we are about to execute, it will
// have a valid SP to run on the g0 stack.
// The next few lines (after the havem label)
// will save this SP onto the stack and then write
// the same SP back to m->sched.sp. That seems redundant,
// but if an unrecovered panic happens, unwindm will
// restore the g->sched.sp from the stack location
// and then systemstack will try to use it. If we don't set it here,
// that restored SP will be uninitialized (typically 0) and
// will not be usable.
MOVD g_m(g), R8
MOVD m_g0(R8), R3
MOVD R15, (g_sched+gobuf_sp)(R3)
havem:
// Now there's a valid m, and we're running on its m->g0.
// Save current m->g0->sched.sp on stack and then set it to SP.
// Save current sp in m->g0->sched.sp in preparation for
// switch back to m->curg stack.
// NOTE: unwindm knows that the saved g->sched.sp is at 8(R1) aka savedsp-16(SP).
MOVD m_g0(R8), R3
MOVD (g_sched+gobuf_sp)(R3), R4
MOVD R4, savedsp-16(SP)
MOVD R15, (g_sched+gobuf_sp)(R3)
// Switch to m->curg stack and call runtime.cgocallbackg.
// Because we are taking over the execution of m->curg
// but *not* resuming what had been running, we need to
// save that information (m->curg->sched) so we can restore it.
// We can restore m->curg->sched.sp easily, because calling
// runtime.cgocallbackg leaves SP unchanged upon return.
// To save m->curg->sched.pc, we push it onto the stack.
// This has the added benefit that it looks to the traceback
// routine like cgocallbackg is going to return to that
// PC (because the frame we allocate below has the same
// size as cgocallback_gofunc's frame declared above)
// so that the traceback will seamlessly trace back into
// the earlier calls.
//
// In the new goroutine, -16(SP) and -8(SP) are unused.
MOVD m_curg(R8), g
BL runtime·save_g(SB)
MOVD (g_sched+gobuf_sp)(g), R4 // prepare stack as R4
MOVD (g_sched+gobuf_pc)(g), R5
MOVD R5, -24(R4)
MOVD $-24(R4), R15
BL runtime·cgocallbackg(SB)
// Restore g->sched (== m->curg->sched) from saved values.
MOVD 0(R15), R5
MOVD R5, (g_sched+gobuf_pc)(g)
MOVD $24(R15), R4
MOVD R4, (g_sched+gobuf_sp)(g)
// Switch back to m->g0's stack and restore m->g0->sched.sp.
// (Unlike m->curg, the g0 goroutine never uses sched.pc,
// so we do not have to restore it.)
MOVD g_m(g), R8
MOVD m_g0(R8), g
BL runtime·save_g(SB)
MOVD (g_sched+gobuf_sp)(g), R15
MOVD savedsp-16(SP), R4
MOVD R4, (g_sched+gobuf_sp)(g)
// If the m on entry was nil, we called needm above to borrow an m
// for the duration of the call. Since the call is over, return it with dropm.
MOVD savedm-8(SP), R6
CMPBNE R6, $0, droppedm
MOVD $runtime·dropm(SB), R3
BL (R3)
droppedm:
// Done!
RET
// void setg(G*); set g. for use by needm.
TEXT runtime·setg(SB), NOSPLIT, $0-8
MOVD gg+0(FP), g
// This only happens if iscgo, so jump straight to save_g
BL runtime·save_g(SB)
RET
// void setg_gcc(G*); set g in C TLS.
// Must obey the gcc calling convention.
TEXT setg_gcc<>(SB),NOSPLIT|NOFRAME,$0-0
// The standard prologue clobbers LR (R14), which is callee-save in
// the C ABI, so we have to use NOFRAME and save LR ourselves.
MOVD LR, R1
// Also save g, R10, and R11 since they're callee-save in C ABI
MOVD R10, R3
MOVD g, R4
MOVD R11, R5
MOVD R2, g
BL runtime·save_g(SB)
MOVD R5, R11
MOVD R4, g
MOVD R3, R10
MOVD R1, LR
RET
TEXT runtime·getcallerpc(SB),NOSPLIT,$8-16
MOVD 16(R15), R3 // LR saved by caller
MOVD runtime·stackBarrierPC(SB), R4
CMPBNE R3, R4, nobar
// Get original return PC.
BL runtime·nextBarrierPC(SB)
MOVD 8(R15), R3
nobar:
MOVD R3, ret+8(FP)
RET
TEXT runtime·setcallerpc(SB),NOSPLIT,$8-16
MOVD pc+8(FP), R3
MOVD 16(R15), R4
MOVD runtime·stackBarrierPC(SB), R5
CMPBEQ R4, R5, setbar
MOVD R3, 16(R15) // set LR in caller
RET
setbar:
// Set the stack barrier return PC.
MOVD R3, 8(R15)
BL runtime·setNextBarrierPC(SB)
RET
TEXT runtime·getcallersp(SB),NOSPLIT,$0-16
MOVD argp+0(FP), R3
SUB $8, R3
MOVD R3, ret+8(FP)
RET
TEXT runtime·abort(SB),NOSPLIT|NOFRAME,$0-0
MOVW (R0), R0
UNDEF
// int64 runtime·cputicks(void)
TEXT runtime·cputicks(SB),NOSPLIT,$0-8
// The TOD clock on s390 counts from the year 1900 in ~250ps intervals.
// This means that since about 1972 the msb has been set, making the
// result of a call to STORE CLOCK (stck) a negative number.
// We clear the msb to make it positive.
STCK ret+0(FP) // serialises before and after call
MOVD ret+0(FP), R3 // R3 will wrap to 0 in the year 2043
SLD $1, R3
SRD $1, R3
MOVD R3, ret+0(FP)
RET
// memhash_varlen(p unsafe.Pointer, h seed) uintptr
// redirects to memhash(p, h, size) using the size
// stored in the closure.
TEXT runtime·memhash_varlen(SB),NOSPLIT,$40-24
GO_ARGS
NO_LOCAL_POINTERS
MOVD p+0(FP), R3
MOVD h+8(FP), R4
MOVD 8(R12), R5
MOVD R3, 8(R15)
MOVD R4, 16(R15)
MOVD R5, 24(R15)
BL runtime·memhash(SB)
MOVD 32(R15), R3
MOVD R3, ret+16(FP)
RET
// AES hashing not implemented for s390x
TEXT runtime·aeshash(SB),NOSPLIT|NOFRAME,$0-0
MOVW (R0), R15
TEXT runtime·aeshash32(SB),NOSPLIT|NOFRAME,$0-0
MOVW (R0), R15
TEXT runtime·aeshash64(SB),NOSPLIT|NOFRAME,$0-0
MOVW (R0), R15
TEXT runtime·aeshashstr(SB),NOSPLIT|NOFRAME,$0-0
MOVW (R0), R15
// memequal(p, q unsafe.Pointer, size uintptr) bool
TEXT runtime·memequal(SB),NOSPLIT|NOFRAME,$0-25
MOVD p+0(FP), R3
MOVD q+8(FP), R5
MOVD size+16(FP), R6
LA ret+24(FP), R7
BR runtime·memeqbody(SB)
// memequal_varlen(a, b unsafe.Pointer) bool
TEXT runtime·memequal_varlen(SB),NOSPLIT|NOFRAME,$0-17
MOVD a+0(FP), R3
MOVD b+8(FP), R5
MOVD 8(R12), R6 // compiler stores size at offset 8 in the closure
LA ret+16(FP), R7
BR runtime·memeqbody(SB)
// eqstring tests whether two strings are equal.
// The compiler guarantees that strings passed
// to eqstring have equal length.
// See runtime_test.go:eqstring_generic for
// equivalent Go code.
TEXT runtime·eqstring(SB),NOSPLIT|NOFRAME,$0-33
MOVD s1str+0(FP), R3
MOVD s1len+8(FP), R6
MOVD s2str+16(FP), R5
LA ret+32(FP), R7
BR runtime·memeqbody(SB)
TEXT bytes·Equal(SB),NOSPLIT|NOFRAME,$0-49
MOVD a_len+8(FP), R2
MOVD b_len+32(FP), R6
MOVD a+0(FP), R3
MOVD b+24(FP), R5
LA ret+48(FP), R7
CMPBNE R2, R6, notequal
BR runtime·memeqbody(SB)
notequal:
MOVB $0, ret+48(FP)
RET
// input:
// R3 = a
// R5 = b
// R6 = len
// R7 = address of output byte (stores 0 or 1 here)
// a and b have the same length
TEXT runtime·memeqbody(SB),NOSPLIT|NOFRAME,$0-0
CMPBEQ R3, R5, equal
loop:
CMPBEQ R6, $0, equal
CMPBLT R6, $32, tiny
CMP R6, $256
BLT tail
CLC $256, 0(R3), 0(R5)
BNE notequal
SUB $256, R6
LA 256(R3), R3
LA 256(R5), R5
BR loop
tail:
SUB $1, R6, R8
EXRL $runtime·memeqbodyclc(SB), R8
BEQ equal
notequal:
MOVB $0, 0(R7)
RET
equal:
MOVB $1, 0(R7)
RET
tiny:
MOVD $0, R2
CMPBLT R6, $16, lt16
MOVD 0(R3), R8
MOVD 0(R5), R9
CMPBNE R8, R9, notequal
MOVD 8(R3), R8
MOVD 8(R5), R9
CMPBNE R8, R9, notequal
LA 16(R2), R2
SUB $16, R6
lt16:
CMPBLT R6, $8, lt8
MOVD 0(R3)(R2*1), R8
MOVD 0(R5)(R2*1), R9
CMPBNE R8, R9, notequal
LA 8(R2), R2
SUB $8, R6
lt8:
CMPBLT R6, $4, lt4
MOVWZ 0(R3)(R2*1), R8
MOVWZ 0(R5)(R2*1), R9
CMPBNE R8, R9, notequal
LA 4(R2), R2
SUB $4, R6
lt4:
#define CHECK(n) \
CMPBEQ R6, $n, equal \
MOVB n(R3)(R2*1), R8 \
MOVB n(R5)(R2*1), R9 \
CMPBNE R8, R9, notequal
CHECK(0)
CHECK(1)
CHECK(2)
CHECK(3)
BR equal
TEXT runtime·memeqbodyclc(SB),NOSPLIT|NOFRAME,$0-0
CLC $1, 0(R3), 0(R5)
RET
TEXT runtime·fastrand1(SB), NOSPLIT, $0-4
MOVD g_m(g), R4
MOVWZ m_fastrand(R4), R3
ADD R3, R3
CMPW R3, $0
BGE 2(PC)
XOR $0x88888eef, R3
MOVW R3, m_fastrand(R4)
MOVW R3, ret+0(FP)
RET
TEXT bytes·IndexByte(SB),NOSPLIT,$0-40
MOVD s+0(FP), R3 // s => R3
MOVD s_len+8(FP), R4 // s_len => R4
MOVBZ c+24(FP), R5 // c => R5
MOVD $ret+32(FP), R2 // &ret => R9
BR runtime·indexbytebody(SB)
TEXT strings·IndexByte(SB),NOSPLIT,$0-32
MOVD s+0(FP), R3 // s => R3
MOVD s_len+8(FP), R4 // s_len => R4
MOVBZ c+16(FP), R5 // c => R5
MOVD $ret+24(FP), R2 // &ret => R9
BR runtime·indexbytebody(SB)
// input:
// R3: s
// R4: s_len
// R5: c -- byte sought
// R2: &ret -- address to put index into
TEXT runtime·indexbytebody(SB),NOSPLIT,$0
CMPBEQ R4, $0, notfound
MOVD R3, R6 // store base for later
ADD R3, R4, R8 // the address after the end of the string
//if the length is small, use loop; otherwise, use vector or srst search
CMPBGE R4, $16, large
residual:
CMPBEQ R3, R8, notfound
MOVBZ 0(R3), R7
LA 1(R3), R3
CMPBNE R7, R5, residual
found:
SUB R6, R3
SUB $1, R3
MOVD R3, 0(R2)
RET
notfound:
MOVD $-1, 0(R2)
RET
large:
MOVB runtime·vectorfacility(SB), R1
CMPBEQ R1, $-1, checkvector // vectorfacility = -1, vector not checked yet
vectorchecked:
CMPBEQ R1, $1, vectorimpl // vectorfacility = 1, vector supported
srstimpl: // vectorfacility != 1, not support or enable vector
MOVBZ R5, R0 // c needs to be in R0, leave until last minute as currently R0 is expected to be 0
srstloop:
WORD $0xB25E0083 // srst %r8, %r3 (search the range [R3, R8))
BVS srstloop // interrupted - continue
BGT notfoundr0
foundr0:
XOR R0, R0 // reset R0
SUB R6, R8 // remove base
MOVD R8, 0(R2)
RET
notfoundr0:
XOR R0, R0 // reset R0
MOVD $-1, 0(R2)
RET
vectorimpl:
//if the address is not 16byte aligned, use loop for the header
AND $15, R3, R8
CMPBGT R8, $0, notaligned
aligned:
ADD R6, R4, R8
AND $-16, R8, R7
// replicate c across V17
VLVGB $0, R5, V19
VREPB $0, V19, V17
vectorloop:
CMPBGE R3, R7, residual
VL 0(R3), V16 // load string to be searched into V16
ADD $16, R3
VFEEBS V16, V17, V18 // search V17 in V16 and set conditional code accordingly
BVS vectorloop
// when vector search found c in the string
VLGVB $7, V18, R7 // load 7th element of V18 containing index into R7
SUB $16, R3
SUB R6, R3
ADD R3, R7
MOVD R7, 0(R2)
RET
notaligned:
AND $-16, R3, R8
ADD $16, R8
notalignedloop:
CMPBEQ R3, R8, aligned
MOVBZ 0(R3), R7
LA 1(R3), R3
CMPBNE R7, R5, notalignedloop
BR found
checkvector:
CALL runtime·checkvectorfacility(SB)
MOVB runtime·vectorfacility(SB), R1
BR vectorchecked
TEXT runtime·return0(SB), NOSPLIT, $0
MOVW $0, R3
RET
// Called from cgo wrappers, this function returns g->m->curg.stack.hi.
// Must obey the gcc calling convention.
TEXT _cgo_topofstack(SB),NOSPLIT|NOFRAME,$0
// g (R13), R10, R11 and LR (R14) are callee-save in the C ABI, so save them
MOVD g, R1
MOVD R10, R3
MOVD LR, R4
MOVD R11, R5
BL runtime·load_g(SB) // clobbers g (R13), R10, R11
MOVD g_m(g), R2
MOVD m_curg(R2), R2
MOVD (g_stack+stack_hi)(R2), R2
MOVD R1, g
MOVD R3, R10
MOVD R4, LR
MOVD R5, R11
RET
// The top-most function running on a goroutine
// returns to goexit+PCQuantum.
TEXT runtime·goexit(SB),NOSPLIT|NOFRAME,$0-0
BYTE $0x07; BYTE $0x00; // 2-byte nop
BL runtime·goexit1(SB) // does not return
// traceback from goexit1 must hit code range of goexit
BYTE $0x07; BYTE $0x00; // 2-byte nop
TEXT runtime·prefetcht0(SB),NOSPLIT,$0-8
RET
TEXT runtime·prefetcht1(SB),NOSPLIT,$0-8
RET
TEXT runtime·prefetcht2(SB),NOSPLIT,$0-8
RET
TEXT runtime·prefetchnta(SB),NOSPLIT,$0-8
RET
TEXT runtime·sigreturn(SB),NOSPLIT,$0-8
RET
TEXT ·publicationBarrier(SB),NOSPLIT|NOFRAME,$0-0
SYNC
RET
TEXT runtime·cmpstring(SB),NOSPLIT|NOFRAME,$0-40
MOVD s1_base+0(FP), R3
MOVD s1_len+8(FP), R4
MOVD s2_base+16(FP), R5
MOVD s2_len+24(FP), R6
LA ret+32(FP), R7
BR runtime·cmpbody(SB)
TEXT bytes·Compare(SB),NOSPLIT|NOFRAME,$0-56
MOVD s1+0(FP), R3
MOVD s1+8(FP), R4
MOVD s2+24(FP), R5
MOVD s2+32(FP), R6
LA res+48(FP), R7
BR runtime·cmpbody(SB)
// input:
// R3 = a
// R4 = alen
// R5 = b
// R6 = blen
// R7 = address of output word (stores -1/0/1 here)
TEXT runtime·cmpbody(SB),NOSPLIT|NOFRAME,$0-0
CMPBEQ R3, R5, cmplengths
MOVD R4, R8
CMPBLE R4, R6, amin
MOVD R6, R8
amin:
CMPBEQ R8, $0, cmplengths
CMP R8, $256
BLE tail
loop:
CLC $256, 0(R3), 0(R5)
BGT gt
BLT lt
SUB $256, R8
CMP R8, $256
BGT loop
tail:
SUB $1, R8
EXRL $runtime·cmpbodyclc(SB), R8
BGT gt
BLT lt
cmplengths:
CMP R4, R6
BEQ eq
BLT lt
gt:
MOVD $1, 0(R7)
RET
lt:
MOVD $-1, 0(R7)
RET
eq:
MOVD $0, 0(R7)
RET
TEXT runtime·cmpbodyclc(SB),NOSPLIT|NOFRAME,$0-0
CLC $1, 0(R3), 0(R5)
RET
// This is called from .init_array and follows the platform, not Go, ABI.
// We are overly conservative. We could only save the registers we use.
// However, since this function is only called once per loaded module
// performance is unimportant.
TEXT runtime·addmoduledata(SB),NOSPLIT|NOFRAME,$0-0
// Save R6-R15, F0, F2, F4 and F6 in the
// register save area of the calling function
STMG R6, R15, 48(R15)
FMOVD F0, 128(R15)
FMOVD F2, 136(R15)
FMOVD F4, 144(R15)
FMOVD F6, 152(R15)
// append the argument (passed in R2, as per the ELF ABI) to the
// moduledata linked list.
MOVD runtime·lastmoduledatap(SB), R1
MOVD R2, moduledata_next(R1)
MOVD R2, runtime·lastmoduledatap(SB)
// Restore R6-R15, F0, F2, F4 and F6
LMG 48(R15), R6, R15
FMOVD F0, 128(R15)
FMOVD F2, 136(R15)
FMOVD F4, 144(R15)
FMOVD F6, 152(R15)
RET
TEXT ·checkASM(SB),NOSPLIT,$0-1
MOVB $1, ret+0(FP)
RET
// Copyright 2016 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package runtime
const (
_EINTR = 0x4
_EAGAIN = 0xb
_ENOMEM = 0xc
_PROT_NONE = 0x0
_PROT_READ = 0x1
_PROT_WRITE = 0x2
_PROT_EXEC = 0x4
_MAP_ANON = 0x20
_MAP_PRIVATE = 0x2
_MAP_FIXED = 0x10
_MADV_DONTNEED = 0x4
_MADV_HUGEPAGE = 0xe
_MADV_NOHUGEPAGE = 0xf
_SA_RESTART = 0x10000000
_SA_ONSTACK = 0x8000000
_SA_SIGINFO = 0x4
_SIGHUP = 0x1
_SIGINT = 0x2
_SIGQUIT = 0x3
_SIGILL = 0x4
_SIGTRAP = 0x5
_SIGABRT = 0x6
_SIGBUS = 0x7
_SIGFPE = 0x8
_SIGKILL = 0x9
_SIGUSR1 = 0xa
_SIGSEGV = 0xb
_SIGUSR2 = 0xc
_SIGPIPE = 0xd
_SIGALRM = 0xe
_SIGSTKFLT = 0x10
_SIGCHLD = 0x11
_SIGCONT = 0x12
_SIGSTOP = 0x13
_SIGTSTP = 0x14
_SIGTTIN = 0x15
_SIGTTOU = 0x16
_SIGURG = 0x17
_SIGXCPU = 0x18
_SIGXFSZ = 0x19
_SIGVTALRM = 0x1a
_SIGPROF = 0x1b
_SIGWINCH = 0x1c
_SIGIO = 0x1d
_SIGPWR = 0x1e
_SIGSYS = 0x1f
_FPE_INTDIV = 0x1
_FPE_INTOVF = 0x2
_FPE_FLTDIV = 0x3
_FPE_FLTOVF = 0x4
_FPE_FLTUND = 0x5
_FPE_FLTRES = 0x6
_FPE_FLTINV = 0x7
_FPE_FLTSUB = 0x8
_BUS_ADRALN = 0x1
_BUS_ADRERR = 0x2
_BUS_OBJERR = 0x3
_SEGV_MAPERR = 0x1
_SEGV_ACCERR = 0x2
_ITIMER_REAL = 0x0
_ITIMER_VIRTUAL = 0x1
_ITIMER_PROF = 0x2
_EPOLLIN = 0x1
_EPOLLOUT = 0x4
_EPOLLERR = 0x8
_EPOLLHUP = 0x10
_EPOLLRDHUP = 0x2000
_EPOLLET = 0x80000000
_EPOLL_CLOEXEC = 0x80000
_EPOLL_CTL_ADD = 0x1
_EPOLL_CTL_DEL = 0x2
_EPOLL_CTL_MOD = 0x3
)
type timespec struct {
tv_sec int64
tv_nsec int64
}
func (ts *timespec) set_sec(x int64) {
ts.tv_sec = x
}
func (ts *timespec) set_nsec(x int32) {
ts.tv_nsec = int64(x)
}
type timeval struct {
tv_sec int64
tv_usec int64
}
func (tv *timeval) set_usec(x int32) {
tv.tv_usec = int64(x)
}
type sigactiont struct {
sa_handler uintptr
sa_flags uint64
sa_restorer uintptr
sa_mask uint64
}
type siginfo struct {
si_signo int32
si_errno int32
si_code int32
// below here is a union; si_addr is the only field we use
si_addr uint64
}
type itimerval struct {
it_interval timeval
it_value timeval
}
type epollevent struct {
events uint32
pad_cgo_0 [4]byte
data [8]byte // unaligned uintptr
}
const (
_O_RDONLY = 0x0
_O_CLOEXEC = 0x80000
_SA_RESTORER = 0
)
type sigaltstackt struct {
ss_sp *byte
ss_flags int32
ss_size uintptr
}
type sigcontext struct {
psw_mask uint64
psw_addr uint64
gregs [16]uint64
aregs [16]uint32
fpc uint32
fpregs [16]uint64
}
type ucontext struct {
uc_flags uint64
uc_link *ucontext
uc_stack sigaltstackt
uc_mcontext sigcontext
uc_sigmask uint64
}
...@@ -2,25 +2,31 @@ ...@@ -2,25 +2,31 @@
// Use of this source code is governed by a BSD-style // Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file. // license that can be found in the LICENSE file.
// +build arm64 mips64 mips64le ppc64 ppc64le // +build arm64 mips64 mips64le ppc64 ppc64le s390x
package runtime package runtime
import "unsafe" import "unsafe"
// On ppc64, Linux limits the user address space to 46 bits (see
// TASK_SIZE_USER64 in the Linux kernel). This has grown over time,
// so here we allow 48 bit addresses.
//
// On mips64, Linux limits the user address space to 40 bits (see
// TASK_SIZE64 in the Linux kernel). This has grown over time,
// so here we allow 48 bit addresses.
//
// In addition to the 16 bits taken from the top, we can take 3 from the
// bottom, because node must be pointer-aligned, giving a total of 19 bits
// of count.
const ( const (
// addrBits is the number of bits needed to represent a virtual address.
//
// In Linux the user address space for each architecture is limited as
// follows (taken from the processor.h file for the architecture):
//
// Architecture Name Maximum Value (exclusive)
// ---------------------------------------------------------------------
// arm64 TASK_SIZE_64 Depends on configuration.
// ppc64{,le} TASK_SIZE_USER64 0x400000000000UL (46 bit addresses)
// mips64{,le} TASK_SIZE64 0x010000000000UL (40 bit addresses)
// s390x TASK_SIZE 0x020000000000UL (41 bit addresses)
//
// These values may increase over time.
addrBits = 48 addrBits = 48
// In addition to the 16 bits taken from the top, we can take 3 from the
// bottom, because node must be pointer-aligned, giving a total of 19 bits
// of count.
cntBits = 64 - addrBits + 3 cntBits = 64 - addrBits + 3
) )
......
// Copyright 2016 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
#include "textflag.h"
// void runtime·memclr(void*, uintptr)
TEXT runtime·memclr(SB),NOSPLIT|NOFRAME,$0-16
MOVD ptr+0(FP), R4
MOVD n+8(FP), R5
start:
CMPBLE R5, $3, clear0to3
CMPBLE R5, $7, clear4to7
CMPBLE R5, $11, clear8to11
CMPBLE R5, $15, clear12to15
CMP R5, $32
BGE clearmt32
MOVD R0, 0(R4)
MOVD R0, 8(R4)
ADD $16, R4
SUB $16, R5
BR start
clear0to3:
CMPBEQ R5, $0, done
CMPBNE R5, $1, clear2
MOVB R0, 0(R4)
RET
clear2:
CMPBNE R5, $2, clear3
MOVH R0, 0(R4)
RET
clear3:
MOVH R0, 0(R4)
MOVB R0, 2(R4)
RET
clear4to7:
CMPBNE R5, $4, clear5
MOVW R0, 0(R4)
RET
clear5:
CMPBNE R5, $5, clear6
MOVW R0, 0(R4)
MOVB R0, 4(R4)
RET
clear6:
CMPBNE R5, $6, clear7
MOVW R0, 0(R4)
MOVH R0, 4(R4)
RET
clear7:
MOVW R0, 0(R4)
MOVH R0, 4(R4)
MOVB R0, 6(R4)
RET
clear8to11:
CMPBNE R5, $8, clear9
MOVD R0, 0(R4)
RET
clear9:
CMPBNE R5, $9, clear10
MOVD R0, 0(R4)
MOVB R0, 8(R4)
RET
clear10:
CMPBNE R5, $10, clear11
MOVD R0, 0(R4)
MOVH R0, 8(R4)
RET
clear11:
MOVD R0, 0(R4)
MOVH R0, 8(R4)
MOVB R0, 10(R4)
RET
clear12to15:
CMPBNE R5, $12, clear13
MOVD R0, 0(R4)
MOVW R0, 8(R4)
RET
clear13:
CMPBNE R5, $13, clear14
MOVD R0, 0(R4)
MOVW R0, 8(R4)
MOVB R0, 12(R4)
RET
clear14:
CMPBNE R5, $14, clear15
MOVD R0, 0(R4)
MOVW R0, 8(R4)
MOVH R0, 12(R4)
RET
clear15:
MOVD R0, 0(R4)
MOVW R0, 8(R4)
MOVH R0, 12(R4)
MOVB R0, 14(R4)
RET
clearmt32:
CMP R5, $256
BLT clearlt256
XC $256, 0(R4), 0(R4)
ADD $256, R4
ADD $-256, R5
BR clearmt32
clearlt256:
CMPBEQ R5, $0, done
ADD $-1, R5
EXRL $runtime·memclr_s390x_exrl_xc(SB), R5
done:
RET
// DO NOT CALL - target for exrl (execute relative long) instruction.
TEXT runtime·memclr_s390x_exrl_xc(SB),NOSPLIT|NOFRAME,$0-0
XC $1, 0(R4), 0(R4)
MOVD R0, 0(R0)
RET
// Copyright 2016 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
#include "textflag.h"
// void runtime·memmove(void*, void*, uintptr)
TEXT runtime·memmove(SB),NOSPLIT|NOFRAME,$0-24
MOVD to+0(FP), R6
MOVD from+8(FP), R4
MOVD n+16(FP), R5
CMPBEQ R6, R4, done
start:
CMPBLE R5, $3, move0to3
CMPBLE R5, $7, move4to7
CMPBLE R5, $11, move8to11
CMPBLE R5, $15, move12to15
CMPBNE R5, $16, movemt16
MOVD 0(R4), R7
MOVD 8(R4), R8
MOVD R7, 0(R6)
MOVD R8, 8(R6)
RET
movemt16:
CMPBGT R4, R6, forwards
ADD R5, R4, R7
CMPBLE R7, R6, forwards
ADD R5, R6, R8
backwards:
MOVD -8(R7), R3
MOVD R3, -8(R8)
MOVD -16(R7), R3
MOVD R3, -16(R8)
ADD $-16, R5
ADD $-16, R7
ADD $-16, R8
CMP R5, $16
BGE backwards
BR start
forwards:
CMPBGT R5, $64, forwards_fast
MOVD 0(R4), R3
MOVD R3, 0(R6)
MOVD 8(R4), R3
MOVD R3, 8(R6)
ADD $16, R4
ADD $16, R6
ADD $-16, R5
CMP R5, $16
BGE forwards
BR start
forwards_fast:
CMP R5, $256
BLE forwards_small
MVC $256, 0(R4), 0(R6)
ADD $256, R4
ADD $256, R6
ADD $-256, R5
BR forwards_fast
forwards_small:
CMPBEQ R5, $0, done
ADD $-1, R5
EXRL $runtime·memmove_s390x_exrl_mvc(SB), R5
RET
move0to3:
CMPBEQ R5, $0, done
move1:
CMPBNE R5, $1, move2
MOVB 0(R4), R3
MOVB R3, 0(R6)
RET
move2:
CMPBNE R5, $2, move3
MOVH 0(R4), R3
MOVH R3, 0(R6)
RET
move3:
MOVH 0(R4), R3
MOVB 2(R4), R7
MOVH R3, 0(R6)
MOVB R7, 2(R6)
RET
move4to7:
CMPBNE R5, $4, move5
MOVW 0(R4), R3
MOVW R3, 0(R6)
RET
move5:
CMPBNE R5, $5, move6
MOVW 0(R4), R3
MOVB 4(R4), R7
MOVW R3, 0(R6)
MOVB R7, 4(R6)
RET
move6:
CMPBNE R5, $6, move7
MOVW 0(R4), R3
MOVH 4(R4), R7
MOVW R3, 0(R6)
MOVH R7, 4(R6)
RET
move7:
MOVW 0(R4), R3
MOVH 4(R4), R7
MOVB 6(R4), R8
MOVW R3, 0(R6)
MOVH R7, 4(R6)
MOVB R8, 6(R6)
RET
move8to11:
CMPBNE R5, $8, move9
MOVD 0(R4), R3
MOVD R3, 0(R6)
RET
move9:
CMPBNE R5, $9, move10
MOVD 0(R4), R3
MOVB 8(R4), R7
MOVD R3, 0(R6)
MOVB R7, 8(R6)
RET
move10:
CMPBNE R5, $10, move11
MOVD 0(R4), R3
MOVH 8(R4), R7
MOVD R3, 0(R6)
MOVH R7, 8(R6)
RET
move11:
MOVD 0(R4), R3
MOVH 8(R4), R7
MOVB 10(R4), R8
MOVD R3, 0(R6)
MOVH R7, 8(R6)
MOVB R8, 10(R6)
RET
move12to15:
CMPBNE R5, $12, move13
MOVD 0(R4), R3
MOVW 8(R4), R7
MOVD R3, 0(R6)
MOVW R7, 8(R6)
RET
move13:
CMPBNE R5, $13, move14
MOVD 0(R4), R3
MOVW 8(R4), R7
MOVB 12(R4), R8
MOVD R3, 0(R6)
MOVW R7, 8(R6)
MOVB R8, 12(R6)
RET
move14:
CMPBNE R5, $14, move15
MOVD 0(R4), R3
MOVW 8(R4), R7
MOVH 12(R4), R8
MOVD R3, 0(R6)
MOVW R7, 8(R6)
MOVH R8, 12(R6)
RET
move15:
MOVD 0(R4), R3
MOVW 8(R4), R7
MOVH 12(R4), R8
MOVB 14(R4), R10
MOVD R3, 0(R6)
MOVW R7, 8(R6)
MOVH R8, 12(R6)
MOVB R10, 14(R6)
done:
RET
// DO NOT CALL - target for exrl (execute relative long) instruction.
TEXT runtime·memmove_s390x_exrl_mvc(SB),NOSPLIT|NOFRAME,$0-0
MVC $1, 0(R4), 0(R6)
MOVD R0, 0(R0)
RET
// Copyright 2016 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package runtime
const (
_SS_DISABLE = 2
_NSIG = 65
_SI_USER = 0
_SIG_BLOCK = 0
_SIG_UNBLOCK = 1
_SIG_SETMASK = 2
_RLIMIT_AS = 9
)
type sigset uint64
type rlimit struct {
rlim_cur uintptr
rlim_max uintptr
}
var sigset_all = sigset(^uint64(0))
func sigaddset(mask *sigset, i int) {
if i > 64 {
throw("unexpected signal greater than 64")
}
*mask |= 1 << (uint(i) - 1)
}
func sigdelset(mask *sigset, i int) {
if i > 64 {
throw("unexpected signal greater than 64")
}
*mask &^= 1 << (uint(i) - 1)
}
func sigfillset(mask *uint64) {
*mask = ^uint64(0)
}
func sigcopyset(mask *sigset, m sigmask) {
*mask = sigset(uint64(m[0]) | uint64(m[1])<<32)
}
// Copyright 2016 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
#include "textflag.h"
TEXT _rt0_s390x_linux(SB),NOSPLIT|NOFRAME,$0
// In a statically linked binary, the stack contains argc,
// argv as argc string pointers followed by a NULL, envv as a
// sequence of string pointers followed by a NULL, and auxv.
// There is no TLS base pointer.
//
// TODO: Support dynamic linking entry point
MOVD 0(R15), R2 // argc
ADD $8, R15, R3 // argv
BR main(SB)
TEXT main(SB),NOSPLIT|NOFRAME,$0
MOVD $runtime·rt0_go(SB), R11
BR R11
// Copyright 2016 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package runtime
import (
"runtime/internal/sys"
"unsafe"
)
type sigctxt struct {
info *siginfo
ctxt unsafe.Pointer
}
func (c *sigctxt) regs() *sigcontext {
return (*sigcontext)(unsafe.Pointer(&(*ucontext)(c.ctxt).uc_mcontext))
}
func (c *sigctxt) r0() uint64 { return c.regs().gregs[0] }
func (c *sigctxt) r1() uint64 { return c.regs().gregs[1] }
func (c *sigctxt) r2() uint64 { return c.regs().gregs[2] }
func (c *sigctxt) r3() uint64 { return c.regs().gregs[3] }
func (c *sigctxt) r4() uint64 { return c.regs().gregs[4] }
func (c *sigctxt) r5() uint64 { return c.regs().gregs[5] }
func (c *sigctxt) r6() uint64 { return c.regs().gregs[6] }
func (c *sigctxt) r7() uint64 { return c.regs().gregs[7] }
func (c *sigctxt) r8() uint64 { return c.regs().gregs[8] }
func (c *sigctxt) r9() uint64 { return c.regs().gregs[9] }
func (c *sigctxt) r10() uint64 { return c.regs().gregs[10] }
func (c *sigctxt) r11() uint64 { return c.regs().gregs[11] }
func (c *sigctxt) r12() uint64 { return c.regs().gregs[12] }
func (c *sigctxt) r13() uint64 { return c.regs().gregs[13] }
func (c *sigctxt) r14() uint64 { return c.regs().gregs[14] }
func (c *sigctxt) r15() uint64 { return c.regs().gregs[15] }
func (c *sigctxt) link() uint64 { return c.regs().gregs[14] }
func (c *sigctxt) sp() uint64 { return c.regs().gregs[15] }
func (c *sigctxt) pc() uint64 { return c.regs().psw_addr }
func (c *sigctxt) sigcode() uint32 { return uint32(c.info.si_code) }
func (c *sigctxt) sigaddr() uint64 { return c.info.si_addr }
func (c *sigctxt) set_r0(x uint64) { c.regs().gregs[0] = x }
func (c *sigctxt) set_r13(x uint64) { c.regs().gregs[13] = x }
func (c *sigctxt) set_link(x uint64) { c.regs().gregs[14] = x }
func (c *sigctxt) set_sp(x uint64) { c.regs().gregs[15] = x }
func (c *sigctxt) set_pc(x uint64) { c.regs().psw_addr = x }
func (c *sigctxt) set_sigcode(x uint32) { c.info.si_code = int32(x) }
func (c *sigctxt) set_sigaddr(x uint64) {
*(*uintptr)(add(unsafe.Pointer(c.info), 2*sys.PtrSize)) = uintptr(x)
}
func dumpregs(c *sigctxt) {
print("r0 ", hex(c.r0()), "\t")
print("r1 ", hex(c.r1()), "\n")
print("r2 ", hex(c.r2()), "\t")
print("r3 ", hex(c.r3()), "\n")
print("r4 ", hex(c.r4()), "\t")
print("r5 ", hex(c.r5()), "\n")
print("r6 ", hex(c.r6()), "\t")
print("r7 ", hex(c.r7()), "\n")
print("r8 ", hex(c.r8()), "\t")
print("r9 ", hex(c.r9()), "\n")
print("r10 ", hex(c.r10()), "\t")
print("r11 ", hex(c.r11()), "\n")
print("r12 ", hex(c.r12()), "\t")
print("r13 ", hex(c.r13()), "\n")
print("r14 ", hex(c.r14()), "\t")
print("r15 ", hex(c.r15()), "\n")
print("pc ", hex(c.pc()), "\t")
print("link ", hex(c.link()), "\n")
}
var crashing int32
// May run during STW, so write barriers are not allowed.
//
//go:nowritebarrierrec
func sighandler(sig uint32, info *siginfo, ctxt unsafe.Pointer, gp *g) {
_g_ := getg()
c := &sigctxt{info, ctxt}
if sig == _SIGPROF {
sigprof(uintptr(c.pc()), uintptr(c.sp()), uintptr(c.link()), gp, _g_.m)
return
}
flags := int32(_SigThrow)
if sig < uint32(len(sigtable)) {
flags = sigtable[sig].flags
}
if c.sigcode() != _SI_USER && flags&_SigPanic != 0 {
// Make it look like a call to the signal func.
// Have to pass arguments out of band since
// augmenting the stack frame would break
// the unwinding code.
gp.sig = sig
gp.sigcode0 = uintptr(c.sigcode())
gp.sigcode1 = uintptr(c.sigaddr())
gp.sigpc = uintptr(c.pc())
// We arrange link, and pc to pretend the panicking
// function calls sigpanic directly.
// Always save LINK to stack so that panics in leaf
// functions are correctly handled. This smashes
// the stack frame but we're not going back there
// anyway.
sp := c.sp() - sys.MinFrameSize
c.set_sp(sp)
*(*uint64)(unsafe.Pointer(uintptr(sp))) = c.link()
pc := uintptr(gp.sigpc)
// If we don't recognize the PC as code
// but we do recognize the link register as code,
// then assume this was a call to non-code and treat like
// pc == 0, to make unwinding show the context.
if pc != 0 && findfunc(pc) == nil && findfunc(uintptr(c.link())) != nil {
pc = 0
}
// Don't bother saving PC if it's zero, which is
// probably a call to a nil func: the old link register
// is more useful in the stack trace.
if pc != 0 {
c.set_link(uint64(pc))
}
// In case we are panicking from external C code
c.set_r0(0)
c.set_r13(uint64(uintptr(unsafe.Pointer(gp))))
c.set_pc(uint64(funcPC(sigpanic)))
return
}
if c.sigcode() == _SI_USER || flags&_SigNotify != 0 {
if sigsend(sig) {
return
}
}
if c.sigcode() == _SI_USER && signal_ignored(sig) {
return
}
if flags&_SigKill != 0 {
dieFromSignal(int32(sig))
}
if flags&_SigThrow == 0 {
return
}
_g_.m.throwing = 1
_g_.m.caughtsig.set(gp)
if crashing == 0 {
startpanic()
}
if sig < uint32(len(sigtable)) {
print(sigtable[sig].name, "\n")
} else {
print("Signal ", sig, "\n")
}
print("PC=", hex(c.pc()), " m=", _g_.m.id, "\n")
if _g_.m.lockedg != nil && _g_.m.ncgo > 0 && gp == _g_.m.g0 {
print("signal arrived during cgo execution\n")
gp = _g_.m.lockedg
}
print("\n")
level, _, docrash := gotraceback()
if level > 0 {
goroutineheader(gp)
tracebacktrap(uintptr(c.pc()), uintptr(c.sp()), uintptr(c.link()), gp)
if crashing > 0 && gp != _g_.m.curg && _g_.m.curg != nil && readgstatus(_g_.m.curg)&^_Gscan == _Grunning {
// tracebackothers on original m skipped this one; trace it now.
goroutineheader(_g_.m.curg)
traceback(^uintptr(0), ^uintptr(0), 0, gp)
} else if crashing == 0 {
tracebackothers(gp)
print("\n")
}
dumpregs(c)
}
if docrash {
crashing++
if crashing < sched.mcount {
// There are other m's that need to dump their stacks.
// Relay SIGQUIT to the next m by sending it to the current process.
// All m's that have already received SIGQUIT have signal masks blocking
// receipt of any signals, so the SIGQUIT will go to an m that hasn't seen it yet.
// When the last m receives the SIGQUIT, it will fall through to the call to
// crash below. Just in case the relaying gets botched, each m involved in
// the relay sleeps for 5 seconds and then does the crash/exit itself.
// In expected operation, the last m has received the SIGQUIT and run
// crash/exit and the process is gone, all long before any of the
// 5-second sleeps have finished.
print("\n-----\n\n")
raiseproc(_SIGQUIT)
usleep(5 * 1000 * 1000)
}
crash()
}
exit(2)
}
// Copyright 2016 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// System calls and other system stuff for Linux s390x; see
// /usr/include/asm/unistd.h for the syscall number definitions.
#include "go_asm.h"
#include "go_tls.h"
#include "textflag.h"
#define SYS_exit 1
#define SYS_read 3
#define SYS_write 4
#define SYS_open 5
#define SYS_close 6
#define SYS_getpid 20
#define SYS_kill 37
#define SYS_fcntl 55
#define SYS_gettimeofday 78
#define SYS_mmap 90
#define SYS_munmap 91
#define SYS_setitimer 104
#define SYS_clone 120
#define SYS_select 142
#define SYS_sched_yield 158
#define SYS_rt_sigreturn 173
#define SYS_rt_sigaction 174
#define SYS_rt_sigprocmask 175
#define SYS_sigaltstack 186
#define SYS_ugetrlimit 191
#define SYS_madvise 219
#define SYS_mincore 218
#define SYS_gettid 236
#define SYS_tkill 237
#define SYS_futex 238
#define SYS_sched_getaffinity 240
#define SYS_exit_group 248
#define SYS_epoll_create 249
#define SYS_epoll_ctl 250
#define SYS_epoll_wait 251
#define SYS_clock_gettime 260
#define SYS_epoll_create1 327
TEXT runtime·exit(SB),NOSPLIT|NOFRAME,$0-4
MOVW code+0(FP), R2
MOVW $SYS_exit_group, R1
SYSCALL
RET
TEXT runtime·exit1(SB),NOSPLIT|NOFRAME,$0-4
MOVW code+0(FP), R2
MOVW $SYS_exit, R1
SYSCALL
RET
TEXT runtime·open(SB),NOSPLIT|NOFRAME,$0-20
MOVD name+0(FP), R2
MOVW mode+8(FP), R3
MOVW perm+12(FP), R4
MOVW $SYS_open, R1
SYSCALL
MOVD $-4095, R3
CMPUBLT R2, R3, 2(PC)
MOVW $-1, R2
MOVW R2, ret+16(FP)
RET
TEXT runtime·closefd(SB),NOSPLIT|NOFRAME,$0-12
MOVW fd+0(FP), R2
MOVW $SYS_close, R1
SYSCALL
MOVD $-4095, R3
CMPUBLT R2, R3, 2(PC)
MOVW $-1, R2
MOVW R2, ret+8(FP)
RET
TEXT runtime·write(SB),NOSPLIT|NOFRAME,$0-28
MOVD fd+0(FP), R2
MOVD p+8(FP), R3
MOVW n+16(FP), R4
MOVW $SYS_write, R1
SYSCALL
MOVD $-4095, R3
CMPUBLT R2, R3, 2(PC)
MOVW $-1, R2
MOVW R2, ret+24(FP)
RET
TEXT runtime·read(SB),NOSPLIT|NOFRAME,$0-28
MOVW fd+0(FP), R2
MOVD p+8(FP), R3
MOVW n+16(FP), R4
MOVW $SYS_read, R1
SYSCALL
MOVD $-4095, R3
CMPUBLT R2, R3, 2(PC)
MOVW $-1, R2
MOVW R2, ret+24(FP)
RET
TEXT runtime·getrlimit(SB),NOSPLIT|NOFRAME,$0-20
MOVW kind+0(FP), R2
MOVD limit+8(FP), R3
MOVW $SYS_ugetrlimit, R1
SYSCALL
MOVW R2, ret+16(FP)
RET
TEXT runtime·usleep(SB),NOSPLIT,$16-4
MOVW usec+0(FP), R2
MOVD R2, R4
MOVW $1000000, R3
DIVD R3, R2
MOVD R2, 8(R15)
MULLD R2, R3
SUB R3, R4
MOVD R4, 16(R15)
// select(0, 0, 0, 0, &tv)
MOVW $0, R2
MOVW $0, R3
MOVW $0, R4
MOVW $0, R5
ADD $8, R15, R6
MOVW $SYS_select, R1
SYSCALL
RET
TEXT runtime·gettid(SB),NOSPLIT,$0-4
MOVW $SYS_gettid, R1
SYSCALL
MOVW R2, ret+0(FP)
RET
TEXT runtime·raise(SB),NOSPLIT|NOFRAME,$0
MOVW $SYS_gettid, R1
SYSCALL
MOVW R2, R2 // arg 1 tid
MOVW sig+0(FP), R3 // arg 2
MOVW $SYS_tkill, R1
SYSCALL
RET
TEXT runtime·raiseproc(SB),NOSPLIT|NOFRAME,$0
MOVW $SYS_getpid, R1
SYSCALL
MOVW R2, R2 // arg 1 pid
MOVW sig+0(FP), R3 // arg 2
MOVW $SYS_kill, R1
SYSCALL
RET
TEXT runtime·setitimer(SB),NOSPLIT|NOFRAME,$0-24
MOVW mode+0(FP), R2
MOVD new+8(FP), R3
MOVD old+16(FP), R4
MOVW $SYS_setitimer, R1
SYSCALL
RET
TEXT runtime·mincore(SB),NOSPLIT|NOFRAME,$0-28
MOVD addr+0(FP), R2
MOVD n+8(FP), R3
MOVD dst+16(FP), R4
MOVW $SYS_mincore, R1
SYSCALL
MOVW R2, ret+24(FP)
RET
// func now() (sec int64, nsec int32)
TEXT time·now(SB),NOSPLIT,$16
MOVD $0(R15), R2
MOVD $0, R3
MOVW $SYS_gettimeofday, R1
SYSCALL
MOVD 0(R15), R2 // sec
MOVD 8(R15), R4 // usec
MOVD $1000, R3
MULLD R3, R4
MOVD R2, sec+0(FP)
MOVW R4, nsec+8(FP)
RET
TEXT runtime·nanotime(SB),NOSPLIT,$16
MOVW $1, R2 // CLOCK_MONOTONIC
MOVD $0(R15), R3
MOVW $SYS_clock_gettime, R1
SYSCALL
MOVD 0(R15), R2 // sec
MOVD 8(R15), R4 // nsec
// sec is in R2, nsec in R4
// return nsec in R2
MOVD $1000000000, R3
MULLD R3, R2
ADD R4, R2
MOVD R2, ret+0(FP)
RET
TEXT runtime·rtsigprocmask(SB),NOSPLIT|NOFRAME,$0-28
MOVW sig+0(FP), R2
MOVD new+8(FP), R3
MOVD old+16(FP), R4
MOVW size+24(FP), R5
MOVW $SYS_rt_sigprocmask, R1
SYSCALL
MOVD $-4095, R3
CMPUBLT R2, R3, 2(PC)
MOVD R0, 0(R0) // crash
RET
TEXT runtime·rt_sigaction(SB),NOSPLIT|NOFRAME,$0-36
MOVD sig+0(FP), R2
MOVD new+8(FP), R3
MOVD old+16(FP), R4
MOVD size+24(FP), R5
MOVW $SYS_rt_sigaction, R1
SYSCALL
MOVW R2, ret+32(FP)
RET
TEXT runtime·sigfwd(SB),NOSPLIT,$0-32
MOVW sig+8(FP), R2
MOVD info+16(FP), R3
MOVD ctx+24(FP), R4
MOVD fn+0(FP), R5
BL R5
RET
TEXT runtime·sigtramp(SB),NOSPLIT,$64
// initialize essential registers (just in case)
XOR R0, R0
// this might be called in external code context,
// where g is not set.
MOVB runtime·iscgo(SB), R6
CMPBEQ R6, $0, 2(PC)
BL runtime·load_g(SB)
MOVW R2, 8(R15)
MOVD R3, 16(R15)
MOVD R4, 24(R15)
MOVD $runtime·sigtrampgo(SB), R5
BL R5
RET
TEXT runtime·cgoSigtramp(SB),NOSPLIT,$0
BR runtime·sigtramp(SB)
// func mmap(addr unsafe.Pointer, n uintptr, prot, flags, fd int32, off uint32) unsafe.Pointer
TEXT runtime·mmap(SB),NOSPLIT,$48-40
MOVD addr+0(FP), R2
MOVD n+8(FP), R3
MOVW prot+16(FP), R4
MOVW flags+20(FP), R5
MOVW fd+24(FP), R6
MOVWZ off+28(FP), R7
// s390x uses old_mmap, so the arguments need to be placed into
// a struct and a pointer to the struct passed to mmap.
MOVD R2, addr-48(SP)
MOVD R3, n-40(SP)
MOVD R4, prot-32(SP)
MOVD R5, flags-24(SP)
MOVD R6, fd-16(SP)
MOVD R7, off-8(SP)
MOVD $addr-48(SP), R2
MOVW $SYS_mmap, R1
SYSCALL
MOVD $-4095, R3
CMPUBLT R2, R3, 2(PC)
NEG R2
MOVD R2, ret+32(FP)
RET
TEXT runtime·munmap(SB),NOSPLIT|NOFRAME,$0
MOVD addr+0(FP), R2
MOVD n+8(FP), R3
MOVW $SYS_munmap, R1
SYSCALL
MOVD $-4095, R3
CMPUBLT R2, R3, 2(PC)
MOVD R0, 0(R0) // crash
RET
TEXT runtime·madvise(SB),NOSPLIT|NOFRAME,$0
MOVD addr+0(FP), R2
MOVD n+8(FP), R3
MOVW flags+16(FP), R4
MOVW $SYS_madvise, R1
SYSCALL
// ignore failure - maybe pages are locked
RET
// int64 futex(int32 *uaddr, int32 op, int32 val,
// struct timespec *timeout, int32 *uaddr2, int32 val2);
TEXT runtime·futex(SB),NOSPLIT|NOFRAME,$0
MOVD addr+0(FP), R2
MOVW op+8(FP), R3
MOVW val+12(FP), R4
MOVD ts+16(FP), R5
MOVD addr2+24(FP), R6
MOVW val3+32(FP), R7
MOVW $SYS_futex, R1
SYSCALL
MOVW R2, ret+40(FP)
RET
// int32 clone(int32 flags, void *stk, M *mp, G *gp, void (*fn)(void));
TEXT runtime·clone(SB),NOSPLIT|NOFRAME,$0
MOVW flags+0(FP), R3
MOVD stk+8(FP), R2
// Copy mp, gp, fn off parent stack for use by child.
// Careful: Linux system call clobbers ???.
MOVD mm+16(FP), R7
MOVD gg+24(FP), R8
MOVD fn+32(FP), R9
MOVD R7, -8(R2)
MOVD R8, -16(R2)
MOVD R9, -24(R2)
MOVD $1234, R7
MOVD R7, -32(R2)
SYSCALL $SYS_clone
// In parent, return.
CMPBEQ R2, $0, 3(PC)
MOVW R2, ret+40(FP)
RET
// In child, on new stack.
// initialize essential registers
XOR R0, R0
MOVD -32(R15), R7
CMP R7, $1234
BEQ 2(PC)
MOVD R0, 0(R0)
// Initialize m->procid to Linux tid
SYSCALL $SYS_gettid
MOVD -24(R15), R9 // fn
MOVD -16(R15), R8 // g
MOVD -8(R15), R7 // m
CMPBEQ R7, $0, nog
CMP R8, $0
BEQ nog
MOVD R2, m_procid(R7)
// In child, set up new stack
MOVD R7, g_m(R8)
MOVD R8, g
//CALL runtime·stackcheck(SB)
nog:
// Call fn
BL R9
// It shouldn't return. If it does, exit that thread.
MOVW $111, R2
MOVW $SYS_exit, R1
SYSCALL
BR -2(PC) // keep exiting
TEXT runtime·sigaltstack(SB),NOSPLIT|NOFRAME,$0
MOVD new+0(FP), R2
MOVD old+8(FP), R3
MOVW $SYS_sigaltstack, R1
SYSCALL
MOVD $-4095, R3
CMPUBLT R2, R3, 2(PC)
MOVD R0, 0(R0) // crash
RET
TEXT runtime·osyield(SB),NOSPLIT|NOFRAME,$0
MOVW $SYS_sched_yield, R1
SYSCALL
RET
TEXT runtime·sched_getaffinity(SB),NOSPLIT|NOFRAME,$0
MOVD pid+0(FP), R2
MOVD len+8(FP), R3
MOVD buf+16(FP), R4
MOVW $SYS_sched_getaffinity, R1
SYSCALL
MOVW R2, ret+24(FP)
RET
// int32 runtime·epollcreate(int32 size);
TEXT runtime·epollcreate(SB),NOSPLIT|NOFRAME,$0
MOVW size+0(FP), R2
MOVW $SYS_epoll_create, R1
SYSCALL
MOVW R2, ret+8(FP)
RET
// int32 runtime·epollcreate1(int32 flags);
TEXT runtime·epollcreate1(SB),NOSPLIT|NOFRAME,$0
MOVW flags+0(FP), R2
MOVW $SYS_epoll_create1, R1
SYSCALL
MOVW R2, ret+8(FP)
RET
// func epollctl(epfd, op, fd int32, ev *epollEvent) int
TEXT runtime·epollctl(SB),NOSPLIT|NOFRAME,$0
MOVW epfd+0(FP), R2
MOVW op+4(FP), R3
MOVW fd+8(FP), R4
MOVD ev+16(FP), R5
MOVW $SYS_epoll_ctl, R1
SYSCALL
MOVW R2, ret+24(FP)
RET
// int32 runtime·epollwait(int32 epfd, EpollEvent *ev, int32 nev, int32 timeout);
TEXT runtime·epollwait(SB),NOSPLIT|NOFRAME,$0
MOVW epfd+0(FP), R2
MOVD ev+8(FP), R3
MOVW nev+16(FP), R4
MOVW timeout+20(FP), R5
MOVW $SYS_epoll_wait, R1
SYSCALL
MOVW R2, ret+24(FP)
RET
// void runtime·closeonexec(int32 fd);
TEXT runtime·closeonexec(SB),NOSPLIT|NOFRAME,$0
MOVW fd+0(FP), R2 // fd
MOVD $2, R3 // F_SETFD
MOVD $1, R4 // FD_CLOEXEC
MOVW $SYS_fcntl, R1
SYSCALL
RET
// Copyright 2016 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package runtime
import "unsafe"
// adjust Gobuf as if it executed a call to fn with context ctxt
// and then did an immediate Gosave.
func gostartcall(buf *gobuf, fn, ctxt unsafe.Pointer) {
if buf.lr != 0 {
throw("invalid use of gostartcall")
}
buf.lr = buf.pc
buf.pc = uintptr(fn)
buf.ctxt = ctxt
}
// Called to rewind context saved during morestack back to beginning of function.
// To help us, the linker emits a jmp back to the beginning right after the
// call to morestack. We just have to decode and apply that jump.
func rewindmorestack(buf *gobuf) {
var inst uint64
if buf.pc&1 == 0 && buf.pc != 0 {
inst = *(*uint64)(unsafe.Pointer(buf.pc))
switch inst >> 48 {
case 0xa7f4: // BRC (branch relative on condition) instruction.
inst >>= 32
inst &= 0xFFFF
offset := int64(int16(inst))
offset <<= 1
buf.pc += uintptr(offset)
return
case 0xc0f4: // BRCL (branch relative on condition long) instruction.
inst >>= 16
inst = inst & 0xFFFFFFFF
inst = (inst << 1) & 0xFFFFFFFF
buf.pc += uintptr(int32(inst))
return
}
}
print("runtime: pc=", hex(buf.pc), " ", hex(inst), "\n")
throw("runtime: misuse of rewindmorestack")
}
// Copyright 2016 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
#include "go_asm.h"
#include "go_tls.h"
#include "funcdata.h"
#include "textflag.h"
// We have to resort to TLS variable to save g (R13).
// One reason is that external code might trigger
// SIGSEGV, and our runtime.sigtramp don't even know we
// are in external code, and will continue to use R13,
// this might well result in another SIGSEGV.
// save_g saves the g register into pthread-provided
// thread-local memory, so that we can call externally compiled
// s390x code that will overwrite this register.
//
// If !iscgo, this is a no-op.
//
// NOTE: setg_gcc<> assume this clobbers only R10 and R11.
TEXT runtime·save_g(SB),NOSPLIT|NOFRAME,$0-0
MOVB runtime·iscgo(SB), R10
CMPBEQ R10, $0, nocgo
MOVW AR0, R11
SLD $32, R11
MOVW AR1, R11
MOVD runtime·tls_g(SB), R10
MOVD g, 0(R10)(R11*1)
nocgo:
RET
// load_g loads the g register from pthread-provided
// thread-local memory, for use after calling externally compiled
// s390x code that overwrote those registers.
//
// This is never called directly from C code (it doesn't have to
// follow the C ABI), but it may be called from a C context, where the
// usual Go registers aren't set up.
//
// NOTE: _cgo_topofstack assumes this only clobbers g (R13), R10 and R11.
TEXT runtime·load_g(SB),NOSPLIT|NOFRAME,$0-0
MOVW AR0, R11
SLD $32, R11
MOVW AR1, R11
MOVD runtime·tls_g(SB), R10
MOVD 0(R10)(R11*1), g
RET
GLOBL runtime·tls_g+0(SB),TLSBSS,$8
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment