Commit 00c43088 authored by Maxime Jourdan's avatar Maxime Jourdan Committed by Mauro Carvalho Chehab

media: meson: vdec: add VP9 decoder support

This adds VP9 decoding for the Amlogic GXL, G12A & SM1 SoCs, using
the commong "HEVC" HW decoder.

For G12A & SM1, it uses the IOMMU support from the firmware.

For 10bit decoding, the firmware can only decode in the proprietary
Amlogic Framebuffer Compression format, but can output in 8bit NV12
buffer while writing the decoded frame.
Signed-off-by: default avatarMaxime Jourdan <mjourdan@baylibre.com>
Signed-off-by: default avatarNeil Armstrong <narmstrong@baylibre.com>
Tested-by: default avatarKevin Hilman <khilman@baylibre.com>
Signed-off-by: default avatarHans Verkuil <hverkuil-cisco@xs4all.nl>
Signed-off-by: default avatarMauro Carvalho Chehab <mchehab+huawei@kernel.org>
parent e9a3eb48
......@@ -3,6 +3,6 @@
meson-vdec-objs = esparser.o vdec.o vdec_helpers.o vdec_platform.o
meson-vdec-objs += vdec_1.o vdec_hevc.o
meson-vdec-objs += codec_mpeg12.o codec_h264.o codec_hevc_common.o
meson-vdec-objs += codec_mpeg12.o codec_h264.o codec_hevc_common.o codec_vp9.o
obj-$(CONFIG_VIDEO_MESON_VDEC) += meson-vdec.o
// SPDX-License-Identifier: GPL-2.0+
/*
* Copyright (C) 2018 Maxime Jourdan <mjourdan@baylibre.com>
* Copyright (C) 2015 Amlogic, Inc. All rights reserved.
*/
#include <media/v4l2-mem2mem.h>
#include <media/videobuf2-dma-contig.h>
#include "dos_regs.h"
#include "hevc_regs.h"
#include "codec_vp9.h"
#include "vdec_helpers.h"
#include "codec_hevc_common.h"
/* HEVC reg mapping */
#define VP9_DEC_STATUS_REG HEVC_ASSIST_SCRATCH_0
#define VP9_10B_DECODE_SLICE 5
#define VP9_HEAD_PARSER_DONE 0xf0
#define VP9_RPM_BUFFER HEVC_ASSIST_SCRATCH_1
#define VP9_SHORT_TERM_RPS HEVC_ASSIST_SCRATCH_2
#define VP9_ADAPT_PROB_REG HEVC_ASSIST_SCRATCH_3
#define VP9_MMU_MAP_BUFFER HEVC_ASSIST_SCRATCH_4
#define VP9_PPS_BUFFER HEVC_ASSIST_SCRATCH_5
#define VP9_SAO_UP HEVC_ASSIST_SCRATCH_6
#define VP9_STREAM_SWAP_BUFFER HEVC_ASSIST_SCRATCH_7
#define VP9_STREAM_SWAP_BUFFER2 HEVC_ASSIST_SCRATCH_8
#define VP9_PROB_SWAP_BUFFER HEVC_ASSIST_SCRATCH_9
#define VP9_COUNT_SWAP_BUFFER HEVC_ASSIST_SCRATCH_A
#define VP9_SEG_MAP_BUFFER HEVC_ASSIST_SCRATCH_B
#define VP9_SCALELUT HEVC_ASSIST_SCRATCH_D
#define VP9_WAIT_FLAG HEVC_ASSIST_SCRATCH_E
#define LMEM_DUMP_ADR HEVC_ASSIST_SCRATCH_F
#define NAL_SEARCH_CTL HEVC_ASSIST_SCRATCH_I
#define VP9_DECODE_MODE HEVC_ASSIST_SCRATCH_J
#define DECODE_MODE_SINGLE 0
#define DECODE_STOP_POS HEVC_ASSIST_SCRATCH_K
#define HEVC_DECODE_COUNT HEVC_ASSIST_SCRATCH_M
#define HEVC_DECODE_SIZE HEVC_ASSIST_SCRATCH_N
/* VP9 Constants */
#define LCU_SIZE 64
#define MAX_REF_PIC_NUM 24
#define REFS_PER_FRAME 3
#define REF_FRAMES 8
#define MV_MEM_UNIT 0x240
#define ADAPT_PROB_SIZE 0xf80
enum FRAME_TYPE {
KEY_FRAME = 0,
INTER_FRAME = 1,
FRAME_TYPES,
};
/* VP9 Workspace layout */
#define MPRED_MV_BUF_SIZE 0x120000
#define IPP_SIZE 0x4000
#define SAO_ABV_SIZE 0x30000
#define SAO_VB_SIZE 0x30000
#define SH_TM_RPS_SIZE 0x800
#define VPS_SIZE 0x800
#define SPS_SIZE 0x800
#define PPS_SIZE 0x2000
#define SAO_UP_SIZE 0x2800
#define SWAP_BUF_SIZE 0x800
#define SWAP_BUF2_SIZE 0x800
#define SCALELUT_SIZE 0x8000
#define DBLK_PARA_SIZE 0x80000
#define DBLK_DATA_SIZE 0x80000
#define SEG_MAP_SIZE 0xd800
#define PROB_SIZE 0x5000
#define COUNT_SIZE 0x3000
#define MMU_VBH_SIZE 0x5000
#define MPRED_ABV_SIZE 0x10000
#define MPRED_MV_SIZE (MPRED_MV_BUF_SIZE * MAX_REF_PIC_NUM)
#define RPM_BUF_SIZE 0x100
#define LMEM_SIZE 0x800
#define IPP_OFFSET 0x00
#define SAO_ABV_OFFSET (IPP_OFFSET + IPP_SIZE)
#define SAO_VB_OFFSET (SAO_ABV_OFFSET + SAO_ABV_SIZE)
#define SH_TM_RPS_OFFSET (SAO_VB_OFFSET + SAO_VB_SIZE)
#define VPS_OFFSET (SH_TM_RPS_OFFSET + SH_TM_RPS_SIZE)
#define SPS_OFFSET (VPS_OFFSET + VPS_SIZE)
#define PPS_OFFSET (SPS_OFFSET + SPS_SIZE)
#define SAO_UP_OFFSET (PPS_OFFSET + PPS_SIZE)
#define SWAP_BUF_OFFSET (SAO_UP_OFFSET + SAO_UP_SIZE)
#define SWAP_BUF2_OFFSET (SWAP_BUF_OFFSET + SWAP_BUF_SIZE)
#define SCALELUT_OFFSET (SWAP_BUF2_OFFSET + SWAP_BUF2_SIZE)
#define DBLK_PARA_OFFSET (SCALELUT_OFFSET + SCALELUT_SIZE)
#define DBLK_DATA_OFFSET (DBLK_PARA_OFFSET + DBLK_PARA_SIZE)
#define SEG_MAP_OFFSET (DBLK_DATA_OFFSET + DBLK_DATA_SIZE)
#define PROB_OFFSET (SEG_MAP_OFFSET + SEG_MAP_SIZE)
#define COUNT_OFFSET (PROB_OFFSET + PROB_SIZE)
#define MMU_VBH_OFFSET (COUNT_OFFSET + COUNT_SIZE)
#define MPRED_ABV_OFFSET (MMU_VBH_OFFSET + MMU_VBH_SIZE)
#define MPRED_MV_OFFSET (MPRED_ABV_OFFSET + MPRED_ABV_SIZE)
#define RPM_OFFSET (MPRED_MV_OFFSET + MPRED_MV_SIZE)
#define LMEM_OFFSET (RPM_OFFSET + RPM_BUF_SIZE)
#define SIZE_WORKSPACE ALIGN(LMEM_OFFSET + LMEM_SIZE, 64 * SZ_1K)
#define NONE -1
#define INTRA_FRAME 0
#define LAST_FRAME 1
#define GOLDEN_FRAME 2
#define ALTREF_FRAME 3
#define MAX_REF_FRAMES 4
/*
* Defines, declarations, sub-functions for vp9 de-block loop
filter Thr/Lvl table update
* - struct segmentation is for loop filter only (removed something)
* - function "vp9_loop_filter_init" and "vp9_loop_filter_frame_init" will
be instantiated in C_Entry
* - vp9_loop_filter_init run once before decoding start
* - vp9_loop_filter_frame_init run before every frame decoding start
* - set video format to VP9 is in vp9_loop_filter_init
*/
#define MAX_LOOP_FILTER 63
#define MAX_REF_LF_DELTAS 4
#define MAX_MODE_LF_DELTAS 2
#define SEGMENT_DELTADATA 0
#define SEGMENT_ABSDATA 1
#define MAX_SEGMENTS 8
/* VP9 PROB processing defines */
#define VP9_PARTITION_START 0
#define VP9_PARTITION_SIZE_STEP (3 * 4)
#define VP9_PARTITION_ONE_SIZE (4 * VP9_PARTITION_SIZE_STEP)
#define VP9_PARTITION_KEY_START 0
#define VP9_PARTITION_P_START VP9_PARTITION_ONE_SIZE
#define VP9_PARTITION_SIZE (2 * VP9_PARTITION_ONE_SIZE)
#define VP9_SKIP_START (VP9_PARTITION_START + VP9_PARTITION_SIZE)
#define VP9_SKIP_SIZE 4 /* only use 3*/
#define VP9_TX_MODE_START (VP9_SKIP_START + VP9_SKIP_SIZE)
#define VP9_TX_MODE_8_0_OFFSET 0
#define VP9_TX_MODE_8_1_OFFSET 1
#define VP9_TX_MODE_16_0_OFFSET 2
#define VP9_TX_MODE_16_1_OFFSET 4
#define VP9_TX_MODE_32_0_OFFSET 6
#define VP9_TX_MODE_32_1_OFFSET 9
#define VP9_TX_MODE_SIZE 12
#define VP9_COEF_START (VP9_TX_MODE_START + VP9_TX_MODE_SIZE)
#define VP9_COEF_BAND_0_OFFSET 0
#define VP9_COEF_BAND_1_OFFSET (VP9_COEF_BAND_0_OFFSET + 3 * 3 + 1)
#define VP9_COEF_BAND_2_OFFSET (VP9_COEF_BAND_1_OFFSET + 6 * 3)
#define VP9_COEF_BAND_3_OFFSET (VP9_COEF_BAND_2_OFFSET + 6 * 3)
#define VP9_COEF_BAND_4_OFFSET (VP9_COEF_BAND_3_OFFSET + 6 * 3)
#define VP9_COEF_BAND_5_OFFSET (VP9_COEF_BAND_4_OFFSET + 6 * 3)
#define VP9_COEF_SIZE_ONE_SET 100 /* ((3 + 5 * 6) * 3 + 1 padding)*/
#define VP9_COEF_4X4_START (VP9_COEF_START + 0 * VP9_COEF_SIZE_ONE_SET)
#define VP9_COEF_8X8_START (VP9_COEF_START + 4 * VP9_COEF_SIZE_ONE_SET)
#define VP9_COEF_16X16_START (VP9_COEF_START + 8 * VP9_COEF_SIZE_ONE_SET)
#define VP9_COEF_32X32_START (VP9_COEF_START + 12 * VP9_COEF_SIZE_ONE_SET)
#define VP9_COEF_SIZE_PLANE (2 * VP9_COEF_SIZE_ONE_SET)
#define VP9_COEF_SIZE (4 * 2 * 2 * VP9_COEF_SIZE_ONE_SET)
#define VP9_INTER_MODE_START (VP9_COEF_START + VP9_COEF_SIZE)
#define VP9_INTER_MODE_SIZE 24 /* only use 21 (# * 7)*/
#define VP9_INTERP_START (VP9_INTER_MODE_START + VP9_INTER_MODE_SIZE)
#define VP9_INTERP_SIZE 8
#define VP9_INTRA_INTER_START (VP9_INTERP_START + VP9_INTERP_SIZE)
#define VP9_INTRA_INTER_SIZE 4
#define VP9_INTERP_INTRA_INTER_START VP9_INTERP_START
#define VP9_INTERP_INTRA_INTER_SIZE (VP9_INTERP_SIZE + VP9_INTRA_INTER_SIZE)
#define VP9_COMP_INTER_START \
(VP9_INTERP_INTRA_INTER_START + VP9_INTERP_INTRA_INTER_SIZE)
#define VP9_COMP_INTER_SIZE 5
#define VP9_COMP_REF_START (VP9_COMP_INTER_START + VP9_COMP_INTER_SIZE)
#define VP9_COMP_REF_SIZE 5
#define VP9_SINGLE_REF_START (VP9_COMP_REF_START + VP9_COMP_REF_SIZE)
#define VP9_SINGLE_REF_SIZE 10
#define VP9_REF_MODE_START VP9_COMP_INTER_START
#define VP9_REF_MODE_SIZE \
(VP9_COMP_INTER_SIZE + VP9_COMP_REF_SIZE + VP9_SINGLE_REF_SIZE)
#define VP9_IF_Y_MODE_START (VP9_REF_MODE_START + VP9_REF_MODE_SIZE)
#define VP9_IF_Y_MODE_SIZE 36
#define VP9_IF_UV_MODE_START (VP9_IF_Y_MODE_START + VP9_IF_Y_MODE_SIZE)
#define VP9_IF_UV_MODE_SIZE 92 /* only use 90*/
#define VP9_MV_JOINTS_START (VP9_IF_UV_MODE_START + VP9_IF_UV_MODE_SIZE)
#define VP9_MV_JOINTS_SIZE 3
#define VP9_MV_SIGN_0_START (VP9_MV_JOINTS_START + VP9_MV_JOINTS_SIZE)
#define VP9_MV_SIGN_0_SIZE 1
#define VP9_MV_CLASSES_0_START (VP9_MV_SIGN_0_START + VP9_MV_SIGN_0_SIZE)
#define VP9_MV_CLASSES_0_SIZE 10
#define VP9_MV_CLASS0_0_START \
(VP9_MV_CLASSES_0_START + VP9_MV_CLASSES_0_SIZE)
#define VP9_MV_CLASS0_0_SIZE 1
#define VP9_MV_BITS_0_START (VP9_MV_CLASS0_0_START + VP9_MV_CLASS0_0_SIZE)
#define VP9_MV_BITS_0_SIZE 10
#define VP9_MV_SIGN_1_START (VP9_MV_BITS_0_START + VP9_MV_BITS_0_SIZE)
#define VP9_MV_SIGN_1_SIZE 1
#define VP9_MV_CLASSES_1_START \
(VP9_MV_SIGN_1_START + VP9_MV_SIGN_1_SIZE)
#define VP9_MV_CLASSES_1_SIZE 10
#define VP9_MV_CLASS0_1_START \
(VP9_MV_CLASSES_1_START + VP9_MV_CLASSES_1_SIZE)
#define VP9_MV_CLASS0_1_SIZE 1
#define VP9_MV_BITS_1_START \
(VP9_MV_CLASS0_1_START + VP9_MV_CLASS0_1_SIZE)
#define VP9_MV_BITS_1_SIZE 10
#define VP9_MV_CLASS0_FP_0_START \
(VP9_MV_BITS_1_START + VP9_MV_BITS_1_SIZE)
#define VP9_MV_CLASS0_FP_0_SIZE 9
#define VP9_MV_CLASS0_FP_1_START \
(VP9_MV_CLASS0_FP_0_START + VP9_MV_CLASS0_FP_0_SIZE)
#define VP9_MV_CLASS0_FP_1_SIZE 9
#define VP9_MV_CLASS0_HP_0_START \
(VP9_MV_CLASS0_FP_1_START + VP9_MV_CLASS0_FP_1_SIZE)
#define VP9_MV_CLASS0_HP_0_SIZE 2
#define VP9_MV_CLASS0_HP_1_START \
(VP9_MV_CLASS0_HP_0_START + VP9_MV_CLASS0_HP_0_SIZE)
#define VP9_MV_CLASS0_HP_1_SIZE 2
#define VP9_MV_START VP9_MV_JOINTS_START
#define VP9_MV_SIZE 72 /*only use 69*/
#define VP9_TOTAL_SIZE (VP9_MV_START + VP9_MV_SIZE)
/* VP9 COUNT mem processing defines */
#define VP9_COEF_COUNT_START 0
#define VP9_COEF_COUNT_BAND_0_OFFSET 0
#define VP9_COEF_COUNT_BAND_1_OFFSET \
(VP9_COEF_COUNT_BAND_0_OFFSET + 3 * 5)
#define VP9_COEF_COUNT_BAND_2_OFFSET \
(VP9_COEF_COUNT_BAND_1_OFFSET + 6 * 5)
#define VP9_COEF_COUNT_BAND_3_OFFSET \
(VP9_COEF_COUNT_BAND_2_OFFSET + 6 * 5)
#define VP9_COEF_COUNT_BAND_4_OFFSET \
(VP9_COEF_COUNT_BAND_3_OFFSET + 6 * 5)
#define VP9_COEF_COUNT_BAND_5_OFFSET \
(VP9_COEF_COUNT_BAND_4_OFFSET + 6 * 5)
#define VP9_COEF_COUNT_SIZE_ONE_SET 165 /* ((3 + 5 * 6) * 5 */
#define VP9_COEF_COUNT_4X4_START \
(VP9_COEF_COUNT_START + 0 * VP9_COEF_COUNT_SIZE_ONE_SET)
#define VP9_COEF_COUNT_8X8_START \
(VP9_COEF_COUNT_START + 4 * VP9_COEF_COUNT_SIZE_ONE_SET)
#define VP9_COEF_COUNT_16X16_START \
(VP9_COEF_COUNT_START + 8 * VP9_COEF_COUNT_SIZE_ONE_SET)
#define VP9_COEF_COUNT_32X32_START \
(VP9_COEF_COUNT_START + 12 * VP9_COEF_COUNT_SIZE_ONE_SET)
#define VP9_COEF_COUNT_SIZE_PLANE (2 * VP9_COEF_COUNT_SIZE_ONE_SET)
#define VP9_COEF_COUNT_SIZE (4 * 2 * 2 * VP9_COEF_COUNT_SIZE_ONE_SET)
#define VP9_INTRA_INTER_COUNT_START \
(VP9_COEF_COUNT_START + VP9_COEF_COUNT_SIZE)
#define VP9_INTRA_INTER_COUNT_SIZE (4 * 2)
#define VP9_COMP_INTER_COUNT_START \
(VP9_INTRA_INTER_COUNT_START + VP9_INTRA_INTER_COUNT_SIZE)
#define VP9_COMP_INTER_COUNT_SIZE (5 * 2)
#define VP9_COMP_REF_COUNT_START \
(VP9_COMP_INTER_COUNT_START + VP9_COMP_INTER_COUNT_SIZE)
#define VP9_COMP_REF_COUNT_SIZE (5 * 2)
#define VP9_SINGLE_REF_COUNT_START \
(VP9_COMP_REF_COUNT_START + VP9_COMP_REF_COUNT_SIZE)
#define VP9_SINGLE_REF_COUNT_SIZE (10 * 2)
#define VP9_TX_MODE_COUNT_START \
(VP9_SINGLE_REF_COUNT_START + VP9_SINGLE_REF_COUNT_SIZE)
#define VP9_TX_MODE_COUNT_SIZE (12 * 2)
#define VP9_SKIP_COUNT_START \
(VP9_TX_MODE_COUNT_START + VP9_TX_MODE_COUNT_SIZE)
#define VP9_SKIP_COUNT_SIZE (3 * 2)
#define VP9_MV_SIGN_0_COUNT_START \
(VP9_SKIP_COUNT_START + VP9_SKIP_COUNT_SIZE)
#define VP9_MV_SIGN_0_COUNT_SIZE (1 * 2)
#define VP9_MV_SIGN_1_COUNT_START \
(VP9_MV_SIGN_0_COUNT_START + VP9_MV_SIGN_0_COUNT_SIZE)
#define VP9_MV_SIGN_1_COUNT_SIZE (1 * 2)
#define VP9_MV_BITS_0_COUNT_START \
(VP9_MV_SIGN_1_COUNT_START + VP9_MV_SIGN_1_COUNT_SIZE)
#define VP9_MV_BITS_0_COUNT_SIZE (10 * 2)
#define VP9_MV_BITS_1_COUNT_START \
(VP9_MV_BITS_0_COUNT_START + VP9_MV_BITS_0_COUNT_SIZE)
#define VP9_MV_BITS_1_COUNT_SIZE (10 * 2)
#define VP9_MV_CLASS0_HP_0_COUNT_START \
(VP9_MV_BITS_1_COUNT_START + VP9_MV_BITS_1_COUNT_SIZE)
#define VP9_MV_CLASS0_HP_0_COUNT_SIZE (2 * 2)
#define VP9_MV_CLASS0_HP_1_COUNT_START \
(VP9_MV_CLASS0_HP_0_COUNT_START + VP9_MV_CLASS0_HP_0_COUNT_SIZE)
#define VP9_MV_CLASS0_HP_1_COUNT_SIZE (2 * 2)
/* Start merge_tree */
#define VP9_INTER_MODE_COUNT_START \
(VP9_MV_CLASS0_HP_1_COUNT_START + VP9_MV_CLASS0_HP_1_COUNT_SIZE)
#define VP9_INTER_MODE_COUNT_SIZE (7 * 4)
#define VP9_IF_Y_MODE_COUNT_START \
(VP9_INTER_MODE_COUNT_START + VP9_INTER_MODE_COUNT_SIZE)
#define VP9_IF_Y_MODE_COUNT_SIZE (10 * 4)
#define VP9_IF_UV_MODE_COUNT_START \
(VP9_IF_Y_MODE_COUNT_START + VP9_IF_Y_MODE_COUNT_SIZE)
#define VP9_IF_UV_MODE_COUNT_SIZE (10 * 10)
#define VP9_PARTITION_P_COUNT_START \
(VP9_IF_UV_MODE_COUNT_START + VP9_IF_UV_MODE_COUNT_SIZE)
#define VP9_PARTITION_P_COUNT_SIZE (4 * 4 * 4)
#define VP9_INTERP_COUNT_START \
(VP9_PARTITION_P_COUNT_START + VP9_PARTITION_P_COUNT_SIZE)
#define VP9_INTERP_COUNT_SIZE (4 * 3)
#define VP9_MV_JOINTS_COUNT_START \
(VP9_INTERP_COUNT_START + VP9_INTERP_COUNT_SIZE)
#define VP9_MV_JOINTS_COUNT_SIZE (1 * 4)
#define VP9_MV_CLASSES_0_COUNT_START \
(VP9_MV_JOINTS_COUNT_START + VP9_MV_JOINTS_COUNT_SIZE)
#define VP9_MV_CLASSES_0_COUNT_SIZE (1 * 11)
#define VP9_MV_CLASS0_0_COUNT_START \
(VP9_MV_CLASSES_0_COUNT_START + VP9_MV_CLASSES_0_COUNT_SIZE)
#define VP9_MV_CLASS0_0_COUNT_SIZE (1 * 2)
#define VP9_MV_CLASSES_1_COUNT_START \
(VP9_MV_CLASS0_0_COUNT_START + VP9_MV_CLASS0_0_COUNT_SIZE)
#define VP9_MV_CLASSES_1_COUNT_SIZE (1 * 11)
#define VP9_MV_CLASS0_1_COUNT_START \
(VP9_MV_CLASSES_1_COUNT_START + VP9_MV_CLASSES_1_COUNT_SIZE)
#define VP9_MV_CLASS0_1_COUNT_SIZE (1 * 2)
#define VP9_MV_CLASS0_FP_0_COUNT_START \
(VP9_MV_CLASS0_1_COUNT_START + VP9_MV_CLASS0_1_COUNT_SIZE)
#define VP9_MV_CLASS0_FP_0_COUNT_SIZE (3 * 4)
#define VP9_MV_CLASS0_FP_1_COUNT_START \
(VP9_MV_CLASS0_FP_0_COUNT_START + VP9_MV_CLASS0_FP_0_COUNT_SIZE)
#define VP9_MV_CLASS0_FP_1_COUNT_SIZE (3 * 4)
#define DC_PRED 0 /* Average of above and left pixels */
#define V_PRED 1 /* Vertical */
#define H_PRED 2 /* Horizontal */
#define D45_PRED 3 /* Directional 45 deg = round(arctan(1/1) * 180/pi) */
#define D135_PRED 4 /* Directional 135 deg = 180 - 45 */
#define D117_PRED 5 /* Directional 117 deg = 180 - 63 */
#define D153_PRED 6 /* Directional 153 deg = 180 - 27 */
#define D207_PRED 7 /* Directional 207 deg = 180 + 27 */
#define D63_PRED 8 /* Directional 63 deg = round(arctan(2/1) * 180/pi) */
#define TM_PRED 9 /* True-motion */
/* Use a static inline to avoid possible side effect from num being reused */
static inline int round_power_of_two(int value, int num)
{
return (value + (1 << (num - 1))) >> num;
}
#define MODE_MV_COUNT_SAT 20
static const int count_to_update_factor[MODE_MV_COUNT_SAT + 1] = {
0, 6, 12, 19, 25, 32, 38, 44, 51, 57, 64,
70, 76, 83, 89, 96, 102, 108, 115, 121, 128
};
union rpm_param {
struct {
u16 data[RPM_BUF_SIZE];
} l;
struct {
u16 profile;
u16 show_existing_frame;
u16 frame_to_show_idx;
u16 frame_type; /*1 bit*/
u16 show_frame; /*1 bit*/
u16 error_resilient_mode; /*1 bit*/
u16 intra_only; /*1 bit*/
u16 display_size_present; /*1 bit*/
u16 reset_frame_context;
u16 refresh_frame_flags;
u16 width;
u16 height;
u16 display_width;
u16 display_height;
u16 ref_info;
u16 same_frame_size;
u16 mode_ref_delta_enabled;
u16 ref_deltas[4];
u16 mode_deltas[2];
u16 filter_level;
u16 sharpness_level;
u16 bit_depth;
u16 seg_quant_info[8];
u16 seg_enabled;
u16 seg_abs_delta;
/* bit 15: feature enabled; bit 8, sign; bit[5:0], data */
u16 seg_lf_info[8];
} p;
};
enum SEG_LVL_FEATURES {
SEG_LVL_ALT_Q = 0, /* Use alternate Quantizer */
SEG_LVL_ALT_LF = 1, /* Use alternate loop filter value */
SEG_LVL_REF_FRAME = 2, /* Optional Segment reference frame */
SEG_LVL_SKIP = 3, /* Optional Segment (0,0) + skip mode */
SEG_LVL_MAX = 4 /* Number of features supported */
};
struct segmentation {
u8 enabled;
u8 update_map;
u8 update_data;
u8 abs_delta;
u8 temporal_update;
s16 feature_data[MAX_SEGMENTS][SEG_LVL_MAX];
unsigned int feature_mask[MAX_SEGMENTS];
};
struct loop_filter_thresh {
u8 mblim;
u8 lim;
u8 hev_thr;
};
struct loop_filter_info_n {
struct loop_filter_thresh lfthr[MAX_LOOP_FILTER + 1];
u8 lvl[MAX_SEGMENTS][MAX_REF_FRAMES][MAX_MODE_LF_DELTAS];
};
struct loopfilter {
int filter_level;
int sharpness_level;
int last_sharpness_level;
u8 mode_ref_delta_enabled;
u8 mode_ref_delta_update;
/*0 = Intra, Last, GF, ARF*/
signed char ref_deltas[MAX_REF_LF_DELTAS];
signed char last_ref_deltas[MAX_REF_LF_DELTAS];
/*0 = ZERO_MV, MV*/
signed char mode_deltas[MAX_MODE_LF_DELTAS];
signed char last_mode_deltas[MAX_MODE_LF_DELTAS];
};
struct vp9_frame {
struct list_head list;
struct vb2_v4l2_buffer *vbuf;
int index;
int intra_only;
int show;
int type;
int done;
unsigned int width;
unsigned int height;
};
struct codec_vp9 {
/* VP9 context lock */
struct mutex lock;
/* Common part with the HEVC decoder */
struct codec_hevc_common common;
/* Buffer for the VP9 Workspace */
void *workspace_vaddr;
dma_addr_t workspace_paddr;
/* Contains many information parsed from the bitstream */
union rpm_param rpm_param;
/* Whether we detected the bitstream as 10-bit */
int is_10bit;
/* Coded resolution reported by the hardware */
u32 width, height;
/* All ref frames used by the HW at a given time */
struct list_head ref_frames_list;
u32 frames_num;
/* In case of downsampling (decoding with FBC but outputting in NV12M),
* we need to allocate additional buffers for FBC.
*/
void *fbc_buffer_vaddr[MAX_REF_PIC_NUM];
dma_addr_t fbc_buffer_paddr[MAX_REF_PIC_NUM];
int ref_frame_map[REF_FRAMES];
int next_ref_frame_map[REF_FRAMES];
struct vp9_frame *frame_refs[REFS_PER_FRAME];
u32 lcu_total;
/* loop filter */
int default_filt_lvl;
struct loop_filter_info_n lfi;
struct loopfilter lf;
struct segmentation seg_4lf;
struct vp9_frame *cur_frame;
struct vp9_frame *prev_frame;
};
static int div_r32(s64 m, int n)
{
s64 qu = div_s64(m, n);
return (int)qu;
}
static int clip_prob(int p)
{
return clamp_val(p, 1, 255);
}
static int segfeature_active(struct segmentation *seg, int segment_id,
enum SEG_LVL_FEATURES feature_id)
{
return seg->enabled &&
(seg->feature_mask[segment_id] & (1 << feature_id));
}
static int get_segdata(struct segmentation *seg, int segment_id,
enum SEG_LVL_FEATURES feature_id)
{
return seg->feature_data[segment_id][feature_id];
}
static void vp9_update_sharpness(struct loop_filter_info_n *lfi,
int sharpness_lvl)
{
int lvl;
/* For each possible value for the loop filter fill out limits*/
for (lvl = 0; lvl <= MAX_LOOP_FILTER; lvl++) {
/* Set loop filter parameters that control sharpness.*/
int block_inside_limit = lvl >> ((sharpness_lvl > 0) +
(sharpness_lvl > 4));
if (sharpness_lvl > 0) {
if (block_inside_limit > (9 - sharpness_lvl))
block_inside_limit = (9 - sharpness_lvl);
}
if (block_inside_limit < 1)
block_inside_limit = 1;
lfi->lfthr[lvl].lim = (u8)block_inside_limit;
lfi->lfthr[lvl].mblim = (u8)(2 * (lvl + 2) +
block_inside_limit);
}
}
/* Instantiate this function once when decode is started */
static void
vp9_loop_filter_init(struct amvdec_core *core, struct codec_vp9 *vp9)
{
struct loop_filter_info_n *lfi = &vp9->lfi;
struct loopfilter *lf = &vp9->lf;
struct segmentation *seg_4lf = &vp9->seg_4lf;
int i;
memset(lfi, 0, sizeof(struct loop_filter_info_n));
memset(lf, 0, sizeof(struct loopfilter));
memset(seg_4lf, 0, sizeof(struct segmentation));
lf->sharpness_level = 0;
vp9_update_sharpness(lfi, lf->sharpness_level);
lf->last_sharpness_level = lf->sharpness_level;
for (i = 0; i < 32; i++) {
unsigned int thr;
thr = ((lfi->lfthr[i * 2 + 1].lim & 0x3f) << 8) |
(lfi->lfthr[i * 2 + 1].mblim & 0xff);
thr = (thr << 16) | ((lfi->lfthr[i * 2].lim & 0x3f) << 8) |
(lfi->lfthr[i * 2].mblim & 0xff);
amvdec_write_dos(core, HEVC_DBLK_CFG9, thr);
}
if (core->platform->revision >= VDEC_REVISION_SM1)
amvdec_write_dos(core, HEVC_DBLK_CFGB,
(0x3 << 14) | /* dw fifo thres r and b */
(0x3 << 12) | /* dw fifo thres r or b */
(0x3 << 10) | /* dw fifo thres not r/b */
BIT(0)); /* VP9 video format */
else if (core->platform->revision >= VDEC_REVISION_G12A)
/* VP9 video format */
amvdec_write_dos(core, HEVC_DBLK_CFGB, (0x54 << 8) | BIT(0));
else
amvdec_write_dos(core, HEVC_DBLK_CFGB, 0x40400001);
}
static void
vp9_loop_filter_frame_init(struct amvdec_core *core, struct segmentation *seg,
struct loop_filter_info_n *lfi,
struct loopfilter *lf, int default_filt_lvl)
{
int i;
int seg_id;
/*
* n_shift is the multiplier for lf_deltas
* the multiplier is:
* - 1 for when filter_lvl is between 0 and 31
* - 2 when filter_lvl is between 32 and 63
*/
const int scale = 1 << (default_filt_lvl >> 5);
/* update limits if sharpness has changed */
if (lf->last_sharpness_level != lf->sharpness_level) {
vp9_update_sharpness(lfi, lf->sharpness_level);
lf->last_sharpness_level = lf->sharpness_level;
/* Write to register */
for (i = 0; i < 32; i++) {
unsigned int thr;
thr = ((lfi->lfthr[i * 2 + 1].lim & 0x3f) << 8) |
(lfi->lfthr[i * 2 + 1].mblim & 0xff);
thr = (thr << 16) |
((lfi->lfthr[i * 2].lim & 0x3f) << 8) |
(lfi->lfthr[i * 2].mblim & 0xff);
amvdec_write_dos(core, HEVC_DBLK_CFG9, thr);
}
}
for (seg_id = 0; seg_id < MAX_SEGMENTS; seg_id++) {
int lvl_seg = default_filt_lvl;
if (segfeature_active(seg, seg_id, SEG_LVL_ALT_LF)) {
const int data = get_segdata(seg, seg_id,
SEG_LVL_ALT_LF);
lvl_seg = clamp_t(int,
seg->abs_delta == SEGMENT_ABSDATA ?
data : default_filt_lvl + data,
0, MAX_LOOP_FILTER);
}
if (!lf->mode_ref_delta_enabled) {
/*
* We could get rid of this if we assume that deltas
* are set to zero when not in use.
* encoder always uses deltas
*/
memset(lfi->lvl[seg_id], lvl_seg,
sizeof(lfi->lvl[seg_id]));
} else {
int ref, mode;
const int intra_lvl =
lvl_seg + lf->ref_deltas[INTRA_FRAME] * scale;
lfi->lvl[seg_id][INTRA_FRAME][0] =
clamp_val(intra_lvl, 0, MAX_LOOP_FILTER);
for (ref = LAST_FRAME; ref < MAX_REF_FRAMES; ++ref) {
for (mode = 0; mode < MAX_MODE_LF_DELTAS;
++mode) {
const int inter_lvl =
lvl_seg +
lf->ref_deltas[ref] * scale +
lf->mode_deltas[mode] * scale;
lfi->lvl[seg_id][ref][mode] =
clamp_val(inter_lvl, 0,
MAX_LOOP_FILTER);
}
}
}
}
for (i = 0; i < 16; i++) {
unsigned int level;
level = ((lfi->lvl[i >> 1][3][i & 1] & 0x3f) << 24) |
((lfi->lvl[i >> 1][2][i & 1] & 0x3f) << 16) |
((lfi->lvl[i >> 1][1][i & 1] & 0x3f) << 8) |
(lfi->lvl[i >> 1][0][i & 1] & 0x3f);
if (!default_filt_lvl)
level = 0;
amvdec_write_dos(core, HEVC_DBLK_CFGA, level);
}
}
static void codec_vp9_flush_output(struct amvdec_session *sess)
{
struct codec_vp9 *vp9 = sess->priv;
struct vp9_frame *tmp, *n;
mutex_lock(&vp9->lock);
list_for_each_entry_safe(tmp, n, &vp9->ref_frames_list, list) {
if (!tmp->done) {
if (tmp->show)
amvdec_dst_buf_done(sess, tmp->vbuf,
V4L2_FIELD_NONE);
else
v4l2_m2m_buf_queue(sess->m2m_ctx, tmp->vbuf);
vp9->frames_num--;
}
list_del(&tmp->list);
kfree(tmp);
}
mutex_unlock(&vp9->lock);
}
static u32 codec_vp9_num_pending_bufs(struct amvdec_session *sess)
{
struct codec_vp9 *vp9 = sess->priv;
if (!vp9)
return 0;
return vp9->frames_num;
}
static int codec_vp9_alloc_workspace(struct amvdec_core *core,
struct codec_vp9 *vp9)
{
/* Allocate some memory for the VP9 decoder's state */
vp9->workspace_vaddr = dma_alloc_coherent(core->dev, SIZE_WORKSPACE,
&vp9->workspace_paddr,
GFP_KERNEL);
if (!vp9->workspace_vaddr) {
dev_err(core->dev, "Failed to allocate VP9 Workspace\n");
return -ENOMEM;
}
return 0;
}
static void codec_vp9_setup_workspace(struct amvdec_session *sess,
struct codec_vp9 *vp9)
{
struct amvdec_core *core = sess->core;
u32 revision = core->platform->revision;
dma_addr_t wkaddr = vp9->workspace_paddr;
amvdec_write_dos(core, HEVCD_IPP_LINEBUFF_BASE, wkaddr + IPP_OFFSET);
amvdec_write_dos(core, VP9_RPM_BUFFER, wkaddr + RPM_OFFSET);
amvdec_write_dos(core, VP9_SHORT_TERM_RPS, wkaddr + SH_TM_RPS_OFFSET);
amvdec_write_dos(core, VP9_PPS_BUFFER, wkaddr + PPS_OFFSET);
amvdec_write_dos(core, VP9_SAO_UP, wkaddr + SAO_UP_OFFSET);
amvdec_write_dos(core, VP9_STREAM_SWAP_BUFFER,
wkaddr + SWAP_BUF_OFFSET);
amvdec_write_dos(core, VP9_STREAM_SWAP_BUFFER2,
wkaddr + SWAP_BUF2_OFFSET);
amvdec_write_dos(core, VP9_SCALELUT, wkaddr + SCALELUT_OFFSET);
if (core->platform->revision >= VDEC_REVISION_G12A)
amvdec_write_dos(core, HEVC_DBLK_CFGE,
wkaddr + DBLK_PARA_OFFSET);
amvdec_write_dos(core, HEVC_DBLK_CFG4, wkaddr + DBLK_PARA_OFFSET);
amvdec_write_dos(core, HEVC_DBLK_CFG5, wkaddr + DBLK_DATA_OFFSET);
amvdec_write_dos(core, VP9_SEG_MAP_BUFFER, wkaddr + SEG_MAP_OFFSET);
amvdec_write_dos(core, VP9_PROB_SWAP_BUFFER, wkaddr + PROB_OFFSET);
amvdec_write_dos(core, VP9_COUNT_SWAP_BUFFER, wkaddr + COUNT_OFFSET);
amvdec_write_dos(core, LMEM_DUMP_ADR, wkaddr + LMEM_OFFSET);
if (codec_hevc_use_mmu(revision, sess->pixfmt_cap, vp9->is_10bit)) {
amvdec_write_dos(core, HEVC_SAO_MMU_VH0_ADDR,
wkaddr + MMU_VBH_OFFSET);
amvdec_write_dos(core, HEVC_SAO_MMU_VH1_ADDR,
wkaddr + MMU_VBH_OFFSET + (MMU_VBH_SIZE / 2));
if (revision >= VDEC_REVISION_G12A)
amvdec_write_dos(core, HEVC_ASSIST_MMU_MAP_ADDR,
vp9->common.mmu_map_paddr);
else
amvdec_write_dos(core, VP9_MMU_MAP_BUFFER,
vp9->common.mmu_map_paddr);
}
}
static int codec_vp9_start(struct amvdec_session *sess)
{
struct amvdec_core *core = sess->core;
struct codec_vp9 *vp9;
u32 val;
int i;
int ret;
vp9 = kzalloc(sizeof(*vp9), GFP_KERNEL);
if (!vp9)
return -ENOMEM;
ret = codec_vp9_alloc_workspace(core, vp9);
if (ret)
goto free_vp9;
codec_vp9_setup_workspace(sess, vp9);
amvdec_write_dos_bits(core, HEVC_STREAM_CONTROL, BIT(0));
/* stream_fifo_hole */
if (core->platform->revision >= VDEC_REVISION_G12A)
amvdec_write_dos_bits(core, HEVC_STREAM_FIFO_CTL, BIT(29));
val = amvdec_read_dos(core, HEVC_PARSER_INT_CONTROL) & 0x7fffffff;
val |= (3 << 29) | BIT(24) | BIT(22) | BIT(7) | BIT(4) | BIT(0);
amvdec_write_dos(core, HEVC_PARSER_INT_CONTROL, val);
amvdec_write_dos_bits(core, HEVC_SHIFT_STATUS, BIT(0));
amvdec_write_dos(core, HEVC_SHIFT_CONTROL, BIT(10) | BIT(9) |
(3 << 6) | BIT(5) | BIT(2) | BIT(1) | BIT(0));
amvdec_write_dos(core, HEVC_CABAC_CONTROL, BIT(0));
amvdec_write_dos(core, HEVC_PARSER_CORE_CONTROL, BIT(0));
amvdec_write_dos(core, HEVC_SHIFT_STARTCODE, 0x00000001);
amvdec_write_dos(core, VP9_DEC_STATUS_REG, 0);
amvdec_write_dos(core, HEVC_PARSER_CMD_WRITE, BIT(16));
for (i = 0; i < ARRAY_SIZE(vdec_hevc_parser_cmd); ++i)
amvdec_write_dos(core, HEVC_PARSER_CMD_WRITE,
vdec_hevc_parser_cmd[i]);
amvdec_write_dos(core, HEVC_PARSER_CMD_SKIP_0, PARSER_CMD_SKIP_CFG_0);
amvdec_write_dos(core, HEVC_PARSER_CMD_SKIP_1, PARSER_CMD_SKIP_CFG_1);
amvdec_write_dos(core, HEVC_PARSER_CMD_SKIP_2, PARSER_CMD_SKIP_CFG_2);
amvdec_write_dos(core, HEVC_PARSER_IF_CONTROL,
BIT(5) | BIT(2) | BIT(0));
amvdec_write_dos(core, HEVCD_IPP_TOP_CNTL, BIT(0));
amvdec_write_dos(core, HEVCD_IPP_TOP_CNTL, BIT(1));
amvdec_write_dos(core, VP9_WAIT_FLAG, 1);
/* clear mailbox interrupt */
amvdec_write_dos(core, HEVC_ASSIST_MBOX1_CLR_REG, 1);
/* enable mailbox interrupt */
amvdec_write_dos(core, HEVC_ASSIST_MBOX1_MASK, 1);
/* disable PSCALE for hardware sharing */
amvdec_write_dos(core, HEVC_PSCALE_CTRL, 0);
/* Let the uCode do all the parsing */
amvdec_write_dos(core, NAL_SEARCH_CTL, 0x8);
amvdec_write_dos(core, DECODE_STOP_POS, 0);
amvdec_write_dos(core, VP9_DECODE_MODE, DECODE_MODE_SINGLE);
pr_debug("decode_count: %u; decode_size: %u\n",
amvdec_read_dos(core, HEVC_DECODE_COUNT),
amvdec_read_dos(core, HEVC_DECODE_SIZE));
vp9_loop_filter_init(core, vp9);
INIT_LIST_HEAD(&vp9->ref_frames_list);
mutex_init(&vp9->lock);
memset(&vp9->ref_frame_map, -1, sizeof(vp9->ref_frame_map));
memset(&vp9->next_ref_frame_map, -1, sizeof(vp9->next_ref_frame_map));
for (i = 0; i < REFS_PER_FRAME; ++i)
vp9->frame_refs[i] = NULL;
sess->priv = vp9;
return 0;
free_vp9:
kfree(vp9);
return ret;
}
static int codec_vp9_stop(struct amvdec_session *sess)
{
struct amvdec_core *core = sess->core;
struct codec_vp9 *vp9 = sess->priv;
mutex_lock(&vp9->lock);
if (vp9->workspace_vaddr)
dma_free_coherent(core->dev, SIZE_WORKSPACE,
vp9->workspace_vaddr,
vp9->workspace_paddr);
codec_hevc_free_fbc_buffers(sess, &vp9->common);
mutex_unlock(&vp9->lock);
return 0;
}
static void codec_vp9_set_sao(struct amvdec_session *sess,
struct vb2_buffer *vb)
{
struct amvdec_core *core = sess->core;
struct codec_vp9 *vp9 = sess->priv;
dma_addr_t buf_y_paddr;
dma_addr_t buf_u_v_paddr;
u32 val;
if (codec_hevc_use_downsample(sess->pixfmt_cap, vp9->is_10bit))
buf_y_paddr =
vp9->common.fbc_buffer_paddr[vb->index];
else
buf_y_paddr =
vb2_dma_contig_plane_dma_addr(vb, 0);
if (codec_hevc_use_fbc(sess->pixfmt_cap, vp9->is_10bit)) {
val = amvdec_read_dos(core, HEVC_SAO_CTRL5) & ~0xff0200;
amvdec_write_dos(core, HEVC_SAO_CTRL5, val);
amvdec_write_dos(core, HEVC_CM_BODY_START_ADDR, buf_y_paddr);
}
if (sess->pixfmt_cap == V4L2_PIX_FMT_NV12M) {
buf_y_paddr =
vb2_dma_contig_plane_dma_addr(vb, 0);
buf_u_v_paddr =
vb2_dma_contig_plane_dma_addr(vb, 1);
amvdec_write_dos(core, HEVC_SAO_Y_START_ADDR, buf_y_paddr);
amvdec_write_dos(core, HEVC_SAO_C_START_ADDR, buf_u_v_paddr);
amvdec_write_dos(core, HEVC_SAO_Y_WPTR, buf_y_paddr);
amvdec_write_dos(core, HEVC_SAO_C_WPTR, buf_u_v_paddr);
}
if (codec_hevc_use_mmu(core->platform->revision, sess->pixfmt_cap,
vp9->is_10bit)) {
amvdec_write_dos(core, HEVC_CM_HEADER_START_ADDR,
vp9->common.mmu_header_paddr[vb->index]);
/* use HEVC_CM_HEADER_START_ADDR */
amvdec_write_dos_bits(core, HEVC_SAO_CTRL5, BIT(10));
}
amvdec_write_dos(core, HEVC_SAO_Y_LENGTH,
amvdec_get_output_size(sess));
amvdec_write_dos(core, HEVC_SAO_C_LENGTH,
(amvdec_get_output_size(sess) / 2));
if (core->platform->revision >= VDEC_REVISION_G12A) {
amvdec_clear_dos_bits(core, HEVC_DBLK_CFGB,
BIT(4) | BIT(5) | BIT(8) | BIT(9));
/* enable first, compressed write */
if (codec_hevc_use_fbc(sess->pixfmt_cap, vp9->is_10bit))
amvdec_write_dos_bits(core, HEVC_DBLK_CFGB, BIT(8));
/* enable second, uncompressed write */
if (sess->pixfmt_cap == V4L2_PIX_FMT_NV12M)
amvdec_write_dos_bits(core, HEVC_DBLK_CFGB, BIT(9));
/* dblk pipeline mode=1 for performance */
if (sess->width >= 1280)
amvdec_write_dos_bits(core, HEVC_DBLK_CFGB, BIT(4));
pr_debug("HEVC_DBLK_CFGB: %08X\n",
amvdec_read_dos(core, HEVC_DBLK_CFGB));
}
val = amvdec_read_dos(core, HEVC_SAO_CTRL1) & ~0x3ff0;
val |= 0xff0; /* Set endianness for 2-bytes swaps (nv12) */
if (core->platform->revision < VDEC_REVISION_G12A) {
val &= ~0x3;
if (!codec_hevc_use_fbc(sess->pixfmt_cap, vp9->is_10bit))
val |= BIT(0); /* disable cm compression */
/* TOFIX: Handle Amlogic Framebuffer compression */
}
amvdec_write_dos(core, HEVC_SAO_CTRL1, val);
pr_debug("HEVC_SAO_CTRL1: %08X\n", val);
/* no downscale for NV12 */
val = amvdec_read_dos(core, HEVC_SAO_CTRL5) & ~0xff0000;
amvdec_write_dos(core, HEVC_SAO_CTRL5, val);
val = amvdec_read_dos(core, HEVCD_IPP_AXIIF_CONFIG) & ~0x30;
val |= 0xf;
val &= ~BIT(12); /* NV12 */
amvdec_write_dos(core, HEVCD_IPP_AXIIF_CONFIG, val);
}
static dma_addr_t codec_vp9_get_frame_mv_paddr(struct codec_vp9 *vp9,
struct vp9_frame *frame)
{
return vp9->workspace_paddr + MPRED_MV_OFFSET +
(frame->index * MPRED_MV_BUF_SIZE);
}
static void codec_vp9_set_mpred_mv(struct amvdec_core *core,
struct codec_vp9 *vp9)
{
int mpred_mv_rd_end_addr;
int use_prev_frame_mvs = vp9->prev_frame->width ==
vp9->cur_frame->width &&
vp9->prev_frame->height ==
vp9->cur_frame->height &&
!vp9->prev_frame->intra_only &&
vp9->prev_frame->show &&
vp9->prev_frame->type != KEY_FRAME;
amvdec_write_dos(core, HEVC_MPRED_CTRL3, 0x24122412);
amvdec_write_dos(core, HEVC_MPRED_ABV_START_ADDR,
vp9->workspace_paddr + MPRED_ABV_OFFSET);
amvdec_clear_dos_bits(core, HEVC_MPRED_CTRL4, BIT(6));
if (use_prev_frame_mvs)
amvdec_write_dos_bits(core, HEVC_MPRED_CTRL4, BIT(6));
amvdec_write_dos(core, HEVC_MPRED_MV_WR_START_ADDR,
codec_vp9_get_frame_mv_paddr(vp9, vp9->cur_frame));
amvdec_write_dos(core, HEVC_MPRED_MV_WPTR,
codec_vp9_get_frame_mv_paddr(vp9, vp9->cur_frame));
amvdec_write_dos(core, HEVC_MPRED_MV_RD_START_ADDR,
codec_vp9_get_frame_mv_paddr(vp9, vp9->prev_frame));
amvdec_write_dos(core, HEVC_MPRED_MV_RPTR,
codec_vp9_get_frame_mv_paddr(vp9, vp9->prev_frame));
mpred_mv_rd_end_addr =
codec_vp9_get_frame_mv_paddr(vp9, vp9->prev_frame) +
(vp9->lcu_total * MV_MEM_UNIT);
amvdec_write_dos(core, HEVC_MPRED_MV_RD_END_ADDR, mpred_mv_rd_end_addr);
}
static void codec_vp9_update_next_ref(struct codec_vp9 *vp9)
{
union rpm_param *param = &vp9->rpm_param;
u32 buf_idx = vp9->cur_frame->index;
int ref_index = 0;
int refresh_frame_flags;
int mask;
refresh_frame_flags = vp9->cur_frame->type == KEY_FRAME ?
0xff : param->p.refresh_frame_flags;
for (mask = refresh_frame_flags; mask; mask >>= 1) {
pr_debug("mask=%08X; ref_index=%d\n", mask, ref_index);
if (mask & 1)
vp9->next_ref_frame_map[ref_index] = buf_idx;
else
vp9->next_ref_frame_map[ref_index] =
vp9->ref_frame_map[ref_index];
++ref_index;
}
for (; ref_index < REF_FRAMES; ++ref_index)
vp9->next_ref_frame_map[ref_index] =
vp9->ref_frame_map[ref_index];
}
static void codec_vp9_save_refs(struct codec_vp9 *vp9)
{
union rpm_param *param = &vp9->rpm_param;
int i;
for (i = 0; i < REFS_PER_FRAME; ++i) {
const int ref = (param->p.ref_info >>
(((REFS_PER_FRAME - i - 1) * 4) + 1)) & 0x7;
if (vp9->ref_frame_map[ref] < 0)
continue;
pr_warn("%s: FIXME, would need to save ref %d\n",
__func__, vp9->ref_frame_map[ref]);
}
}
static void codec_vp9_update_ref(struct codec_vp9 *vp9)
{
union rpm_param *param = &vp9->rpm_param;
int ref_index = 0;
int mask;
int refresh_frame_flags;
if (!vp9->cur_frame)
return;
refresh_frame_flags = vp9->cur_frame->type == KEY_FRAME ?
0xff : param->p.refresh_frame_flags;
for (mask = refresh_frame_flags; mask; mask >>= 1) {
vp9->ref_frame_map[ref_index] =
vp9->next_ref_frame_map[ref_index];
++ref_index;
}
if (param->p.show_existing_frame)
return;
for (; ref_index < REF_FRAMES; ++ref_index)
vp9->ref_frame_map[ref_index] =
vp9->next_ref_frame_map[ref_index];
}
static struct vp9_frame *codec_vp9_get_frame_by_idx(struct codec_vp9 *vp9,
int idx)
{
struct vp9_frame *frame;
list_for_each_entry(frame, &vp9->ref_frames_list, list) {
if (frame->index == idx)
return frame;
}
return NULL;
}
static void codec_vp9_sync_ref(struct codec_vp9 *vp9)
{
union rpm_param *param = &vp9->rpm_param;
int i;
for (i = 0; i < REFS_PER_FRAME; ++i) {
const int ref = (param->p.ref_info >>
(((REFS_PER_FRAME - i - 1) * 4) + 1)) & 0x7;
const int idx = vp9->ref_frame_map[ref];
vp9->frame_refs[i] = codec_vp9_get_frame_by_idx(vp9, idx);
if (!vp9->frame_refs[i])
pr_warn("%s: couldn't find VP9 ref %d\n", __func__,
idx);
}
}
static void codec_vp9_set_refs(struct amvdec_session *sess,
struct codec_vp9 *vp9)
{
struct amvdec_core *core = sess->core;
int i;
for (i = 0; i < REFS_PER_FRAME; ++i) {
struct vp9_frame *frame = vp9->frame_refs[i];
int id_y;
int id_u_v;
if (!frame)
continue;
if (codec_hevc_use_fbc(sess->pixfmt_cap, vp9->is_10bit)) {
id_y = frame->index;
id_u_v = id_y;
} else {
id_y = frame->index * 2;
id_u_v = id_y + 1;
}
amvdec_write_dos(core, HEVCD_MPP_ANC_CANVAS_DATA_ADDR,
(id_u_v << 16) | (id_u_v << 8) | id_y);
}
}
static void codec_vp9_set_mc(struct amvdec_session *sess,
struct codec_vp9 *vp9)
{
struct amvdec_core *core = sess->core;
u32 scale = 0;
u32 sz;
int i;
amvdec_write_dos(core, HEVCD_MPP_ANC_CANVAS_ACCCONFIG_ADDR, 1);
codec_vp9_set_refs(sess, vp9);
amvdec_write_dos(core, HEVCD_MPP_ANC_CANVAS_ACCCONFIG_ADDR,
(16 << 8) | 1);
codec_vp9_set_refs(sess, vp9);
amvdec_write_dos(core, VP9D_MPP_REFINFO_TBL_ACCCONFIG, BIT(2));
for (i = 0; i < REFS_PER_FRAME; ++i) {
if (!vp9->frame_refs[i])
continue;
if (vp9->frame_refs[i]->width != vp9->width ||
vp9->frame_refs[i]->height != vp9->height)
scale = 1;
sz = amvdec_am21c_body_size(vp9->frame_refs[i]->width,
vp9->frame_refs[i]->height);
amvdec_write_dos(core, VP9D_MPP_REFINFO_DATA,
vp9->frame_refs[i]->width);
amvdec_write_dos(core, VP9D_MPP_REFINFO_DATA,
vp9->frame_refs[i]->height);
amvdec_write_dos(core, VP9D_MPP_REFINFO_DATA,
(vp9->frame_refs[i]->width << 14) /
vp9->width);
amvdec_write_dos(core, VP9D_MPP_REFINFO_DATA,
(vp9->frame_refs[i]->height << 14) /
vp9->height);
amvdec_write_dos(core, VP9D_MPP_REFINFO_DATA, sz >> 5);
}
amvdec_write_dos(core, VP9D_MPP_REF_SCALE_ENBL, scale);
}
static struct vp9_frame *codec_vp9_get_new_frame(struct amvdec_session *sess)
{
struct codec_vp9 *vp9 = sess->priv;
union rpm_param *param = &vp9->rpm_param;
struct vb2_v4l2_buffer *vbuf;
struct vp9_frame *new_frame;
new_frame = kzalloc(sizeof(*new_frame), GFP_KERNEL);
if (!new_frame)
return NULL;
vbuf = v4l2_m2m_dst_buf_remove(sess->m2m_ctx);
if (!vbuf) {
dev_err(sess->core->dev, "No dst buffer available\n");
kfree(new_frame);
return NULL;
}
while (codec_vp9_get_frame_by_idx(vp9, vbuf->vb2_buf.index)) {
struct vb2_v4l2_buffer *old_vbuf = vbuf;
vbuf = v4l2_m2m_dst_buf_remove(sess->m2m_ctx);
v4l2_m2m_buf_queue(sess->m2m_ctx, old_vbuf);
if (!vbuf) {
dev_err(sess->core->dev, "No dst buffer available\n");
kfree(new_frame);
return NULL;
}
}
new_frame->vbuf = vbuf;
new_frame->index = vbuf->vb2_buf.index;
new_frame->intra_only = param->p.intra_only;
new_frame->show = param->p.show_frame;
new_frame->type = param->p.frame_type;
new_frame->width = vp9->width;
new_frame->height = vp9->height;
list_add_tail(&new_frame->list, &vp9->ref_frames_list);
vp9->frames_num++;
return new_frame;
}
static void codec_vp9_show_existing_frame(struct codec_vp9 *vp9)
{
union rpm_param *param = &vp9->rpm_param;
if (!param->p.show_existing_frame)
return;
pr_debug("showing frame %u\n", param->p.frame_to_show_idx);
}
static void codec_vp9_rm_noshow_frame(struct amvdec_session *sess)
{
struct codec_vp9 *vp9 = sess->priv;
struct vp9_frame *tmp;
list_for_each_entry(tmp, &vp9->ref_frames_list, list) {
if (tmp->show)
continue;
pr_debug("rm noshow: %u\n", tmp->index);
v4l2_m2m_buf_queue(sess->m2m_ctx, tmp->vbuf);
list_del(&tmp->list);
kfree(tmp);
vp9->frames_num--;
return;
}
}
static void codec_vp9_process_frame(struct amvdec_session *sess)
{
struct amvdec_core *core = sess->core;
struct codec_vp9 *vp9 = sess->priv;
union rpm_param *param = &vp9->rpm_param;
int intra_only;
if (!param->p.show_frame)
codec_vp9_rm_noshow_frame(sess);
vp9->cur_frame = codec_vp9_get_new_frame(sess);
if (!vp9->cur_frame)
return;
pr_debug("frame %d: type: %08X; show_exist: %u; show: %u, intra_only: %u\n",
vp9->cur_frame->index,
param->p.frame_type, param->p.show_existing_frame,
param->p.show_frame, param->p.intra_only);
if (param->p.frame_type != KEY_FRAME)
codec_vp9_sync_ref(vp9);
codec_vp9_update_next_ref(vp9);
codec_vp9_show_existing_frame(vp9);
if (codec_hevc_use_mmu(core->platform->revision, sess->pixfmt_cap,
vp9->is_10bit))
codec_hevc_fill_mmu_map(sess, &vp9->common,
&vp9->cur_frame->vbuf->vb2_buf);
intra_only = param->p.show_frame ? 0 : param->p.intra_only;
/* clear mpred (for keyframe only) */
if (param->p.frame_type != KEY_FRAME && !intra_only) {
codec_vp9_set_mc(sess, vp9);
codec_vp9_set_mpred_mv(core, vp9);
} else {
amvdec_clear_dos_bits(core, HEVC_MPRED_CTRL4, BIT(6));
}
amvdec_write_dos(core, HEVC_PARSER_PICTURE_SIZE,
(vp9->height << 16) | vp9->width);
codec_vp9_set_sao(sess, &vp9->cur_frame->vbuf->vb2_buf);
vp9_loop_filter_frame_init(core, &vp9->seg_4lf,
&vp9->lfi, &vp9->lf,
vp9->default_filt_lvl);
/* ask uCode to start decoding */
amvdec_write_dos(core, VP9_DEC_STATUS_REG, VP9_10B_DECODE_SLICE);
}
static void codec_vp9_process_lf(struct codec_vp9 *vp9)
{
union rpm_param *param = &vp9->rpm_param;
int i;
vp9->lf.mode_ref_delta_enabled = param->p.mode_ref_delta_enabled;
vp9->lf.sharpness_level = param->p.sharpness_level;
vp9->default_filt_lvl = param->p.filter_level;
vp9->seg_4lf.enabled = param->p.seg_enabled;
vp9->seg_4lf.abs_delta = param->p.seg_abs_delta;
for (i = 0; i < 4; i++)
vp9->lf.ref_deltas[i] = param->p.ref_deltas[i];
for (i = 0; i < 2; i++)
vp9->lf.mode_deltas[i] = param->p.mode_deltas[i];
for (i = 0; i < MAX_SEGMENTS; i++)
vp9->seg_4lf.feature_mask[i] =
(param->p.seg_lf_info[i] & 0x8000) ?
(1 << SEG_LVL_ALT_LF) : 0;
for (i = 0; i < MAX_SEGMENTS; i++)
vp9->seg_4lf.feature_data[i][SEG_LVL_ALT_LF] =
(param->p.seg_lf_info[i] & 0x100) ?
-(param->p.seg_lf_info[i] & 0x3f)
: (param->p.seg_lf_info[i] & 0x3f);
}
static void codec_vp9_resume(struct amvdec_session *sess)
{
struct codec_vp9 *vp9 = sess->priv;
mutex_lock(&vp9->lock);
if (codec_hevc_setup_buffers(sess, &vp9->common, vp9->is_10bit)) {
mutex_unlock(&vp9->lock);
amvdec_abort(sess);
return;
}
codec_vp9_setup_workspace(sess, vp9);
codec_hevc_setup_decode_head(sess, vp9->is_10bit);
codec_vp9_process_lf(vp9);
codec_vp9_process_frame(sess);
mutex_unlock(&vp9->lock);
}
/*
* The RPM section within the workspace contains
* many information regarding the parsed bitstream
*/
static void codec_vp9_fetch_rpm(struct amvdec_session *sess)
{
struct codec_vp9 *vp9 = sess->priv;
u16 *rpm_vaddr = vp9->workspace_vaddr + RPM_OFFSET;
int i, j;
for (i = 0; i < RPM_BUF_SIZE; i += 4)
for (j = 0; j < 4; j++)
vp9->rpm_param.l.data[i + j] = rpm_vaddr[i + 3 - j];
}
static int codec_vp9_process_rpm(struct codec_vp9 *vp9)
{
union rpm_param *param = &vp9->rpm_param;
int src_changed = 0;
int is_10bit = 0;
int pic_width_64 = ALIGN(param->p.width, 64);
int pic_height_32 = ALIGN(param->p.height, 32);
int pic_width_lcu = (pic_width_64 % LCU_SIZE) ?
pic_width_64 / LCU_SIZE + 1
: pic_width_64 / LCU_SIZE;
int pic_height_lcu = (pic_height_32 % LCU_SIZE) ?
pic_height_32 / LCU_SIZE + 1
: pic_height_32 / LCU_SIZE;
vp9->lcu_total = pic_width_lcu * pic_height_lcu;
if (param->p.bit_depth == 10)
is_10bit = 1;
if (vp9->width != param->p.width || vp9->height != param->p.height ||
vp9->is_10bit != is_10bit)
src_changed = 1;
vp9->width = param->p.width;
vp9->height = param->p.height;
vp9->is_10bit = is_10bit;
pr_debug("width: %u; height: %u; is_10bit: %d; src_changed: %d\n",
vp9->width, vp9->height, is_10bit, src_changed);
return src_changed;
}
static bool codec_vp9_is_ref(struct codec_vp9 *vp9, struct vp9_frame *frame)
{
int i;
for (i = 0; i < REF_FRAMES; ++i)
if (vp9->ref_frame_map[i] == frame->index)
return true;
return false;
}
static void codec_vp9_show_frame(struct amvdec_session *sess)
{
struct codec_vp9 *vp9 = sess->priv;
struct vp9_frame *tmp, *n;
list_for_each_entry_safe(tmp, n, &vp9->ref_frames_list, list) {
if (!tmp->show || tmp == vp9->cur_frame)
continue;
if (!tmp->done) {
pr_debug("Doning %u\n", tmp->index);
amvdec_dst_buf_done(sess, tmp->vbuf, V4L2_FIELD_NONE);
tmp->done = 1;
vp9->frames_num--;
}
if (codec_vp9_is_ref(vp9, tmp) || tmp == vp9->prev_frame)
continue;
pr_debug("deleting %d\n", tmp->index);
list_del(&tmp->list);
kfree(tmp);
}
}
static void vp9_tree_merge_probs(unsigned int *prev_prob,
unsigned int *cur_prob,
int coef_node_start, int tree_left,
int tree_right,
int tree_i, int node)
{
int prob_32, prob_res, prob_shift;
int pre_prob, new_prob;
int den, m_count, get_prob, factor;
prob_32 = prev_prob[coef_node_start / 4 * 2];
prob_res = coef_node_start & 3;
prob_shift = prob_res * 8;
pre_prob = (prob_32 >> prob_shift) & 0xff;
den = tree_left + tree_right;
if (den == 0) {
new_prob = pre_prob;
} else {
m_count = den < MODE_MV_COUNT_SAT ? den : MODE_MV_COUNT_SAT;
get_prob =
clip_prob(div_r32(((int64_t)tree_left * 256 +
(den >> 1)),
den));
/* weighted_prob */
factor = count_to_update_factor[m_count];
new_prob = round_power_of_two(pre_prob * (256 - factor) +
get_prob * factor, 8);
}
cur_prob[coef_node_start / 4 * 2] =
(cur_prob[coef_node_start / 4 * 2] & (~(0xff << prob_shift))) |
(new_prob << prob_shift);
}
static void adapt_coef_probs_cxt(unsigned int *prev_prob,
unsigned int *cur_prob,
unsigned int *count,
int update_factor,
int cxt_num,
int coef_cxt_start,
int coef_count_cxt_start)
{
int prob_32, prob_res, prob_shift;
int pre_prob, new_prob;
int num, den, m_count, get_prob, factor;
int node, coef_node_start;
int count_sat = 24;
int cxt;
for (cxt = 0; cxt < cxt_num; cxt++) {
const int n0 = count[coef_count_cxt_start];
const int n1 = count[coef_count_cxt_start + 1];
const int n2 = count[coef_count_cxt_start + 2];
const int neob = count[coef_count_cxt_start + 3];
const int nneob = count[coef_count_cxt_start + 4];
const unsigned int branch_ct[3][2] = {
{ neob, nneob },
{ n0, n1 + n2 },
{ n1, n2 }
};
coef_node_start = coef_cxt_start;
for (node = 0 ; node < 3 ; node++) {
prob_32 = prev_prob[coef_node_start / 4 * 2];
prob_res = coef_node_start & 3;
prob_shift = prob_res * 8;
pre_prob = (prob_32 >> prob_shift) & 0xff;
/* get binary prob */
num = branch_ct[node][0];
den = branch_ct[node][0] + branch_ct[node][1];
m_count = den < count_sat ? den : count_sat;
get_prob = (den == 0) ?
128u :
clip_prob(div_r32(((int64_t)num * 256 +
(den >> 1)), den));
factor = update_factor * m_count / count_sat;
new_prob =
round_power_of_two(pre_prob * (256 - factor) +
get_prob * factor, 8);
cur_prob[coef_node_start / 4 * 2] =
(cur_prob[coef_node_start / 4 * 2] &
(~(0xff << prob_shift))) |
(new_prob << prob_shift);
coef_node_start += 1;
}
coef_cxt_start = coef_cxt_start + 3;
coef_count_cxt_start = coef_count_cxt_start + 5;
}
}
static void adapt_coef_probs(int prev_kf, int cur_kf, int pre_fc,
unsigned int *prev_prob, unsigned int *cur_prob,
unsigned int *count)
{
int tx_size, coef_tx_size_start, coef_count_tx_size_start;
int plane, coef_plane_start, coef_count_plane_start;
int type, coef_type_start, coef_count_type_start;
int band, coef_band_start, coef_count_band_start;
int cxt_num;
int coef_cxt_start, coef_count_cxt_start;
int node, coef_node_start, coef_count_node_start;
int tree_i, tree_left, tree_right;
int mvd_i;
int update_factor = cur_kf ? 112 : (prev_kf ? 128 : 112);
int prob_32;
int prob_res;
int prob_shift;
int pre_prob;
int den;
int get_prob;
int m_count;
int factor;
int new_prob;
for (tx_size = 0 ; tx_size < 4 ; tx_size++) {
coef_tx_size_start = VP9_COEF_START +
tx_size * 4 * VP9_COEF_SIZE_ONE_SET;
coef_count_tx_size_start = VP9_COEF_COUNT_START +
tx_size * 4 * VP9_COEF_COUNT_SIZE_ONE_SET;
coef_plane_start = coef_tx_size_start;
coef_count_plane_start = coef_count_tx_size_start;
for (plane = 0 ; plane < 2 ; plane++) {
coef_type_start = coef_plane_start;
coef_count_type_start = coef_count_plane_start;
for (type = 0 ; type < 2 ; type++) {
coef_band_start = coef_type_start;
coef_count_band_start = coef_count_type_start;
for (band = 0 ; band < 6 ; band++) {
if (band == 0)
cxt_num = 3;
else
cxt_num = 6;
coef_cxt_start = coef_band_start;
coef_count_cxt_start =
coef_count_band_start;
adapt_coef_probs_cxt(prev_prob,
cur_prob,
count,
update_factor,
cxt_num,
coef_cxt_start,
coef_count_cxt_start);
if (band == 0) {
coef_band_start += 10;
coef_count_band_start += 15;
} else {
coef_band_start += 18;
coef_count_band_start += 30;
}
}
coef_type_start += VP9_COEF_SIZE_ONE_SET;
coef_count_type_start +=
VP9_COEF_COUNT_SIZE_ONE_SET;
}
coef_plane_start += 2 * VP9_COEF_SIZE_ONE_SET;
coef_count_plane_start +=
2 * VP9_COEF_COUNT_SIZE_ONE_SET;
}
}
if (cur_kf == 0) {
/* mode_mv_merge_probs - merge_intra_inter_prob */
for (coef_count_node_start = VP9_INTRA_INTER_COUNT_START;
coef_count_node_start < (VP9_MV_CLASS0_HP_1_COUNT_START +
VP9_MV_CLASS0_HP_1_COUNT_SIZE);
coef_count_node_start += 2) {
if (coef_count_node_start ==
VP9_INTRA_INTER_COUNT_START)
coef_node_start = VP9_INTRA_INTER_START;
else if (coef_count_node_start ==
VP9_COMP_INTER_COUNT_START)
coef_node_start = VP9_COMP_INTER_START;
else if (coef_count_node_start ==
VP9_TX_MODE_COUNT_START)
coef_node_start = VP9_TX_MODE_START;
else if (coef_count_node_start ==
VP9_SKIP_COUNT_START)
coef_node_start = VP9_SKIP_START;
else if (coef_count_node_start ==
VP9_MV_SIGN_0_COUNT_START)
coef_node_start = VP9_MV_SIGN_0_START;
else if (coef_count_node_start ==
VP9_MV_SIGN_1_COUNT_START)
coef_node_start = VP9_MV_SIGN_1_START;
else if (coef_count_node_start ==
VP9_MV_BITS_0_COUNT_START)
coef_node_start = VP9_MV_BITS_0_START;
else if (coef_count_node_start ==
VP9_MV_BITS_1_COUNT_START)
coef_node_start = VP9_MV_BITS_1_START;
else if (coef_count_node_start ==
VP9_MV_CLASS0_HP_0_COUNT_START)
coef_node_start = VP9_MV_CLASS0_HP_0_START;
den = count[coef_count_node_start] +
count[coef_count_node_start + 1];
prob_32 = prev_prob[coef_node_start / 4 * 2];
prob_res = coef_node_start & 3;
prob_shift = prob_res * 8;
pre_prob = (prob_32 >> prob_shift) & 0xff;
if (den == 0) {
new_prob = pre_prob;
} else {
m_count = den < MODE_MV_COUNT_SAT ?
den : MODE_MV_COUNT_SAT;
get_prob =
clip_prob(div_r32(((int64_t)
count[coef_count_node_start] * 256 +
(den >> 1)),
den));
/* weighted prob */
factor = count_to_update_factor[m_count];
new_prob =
round_power_of_two(pre_prob *
(256 - factor) +
get_prob * factor,
8);
}
cur_prob[coef_node_start / 4 * 2] =
(cur_prob[coef_node_start / 4 * 2] &
(~(0xff << prob_shift))) |
(new_prob << prob_shift);
coef_node_start = coef_node_start + 1;
}
coef_node_start = VP9_INTER_MODE_START;
coef_count_node_start = VP9_INTER_MODE_COUNT_START;
for (tree_i = 0 ; tree_i < 7 ; tree_i++) {
for (node = 0 ; node < 3 ; node++) {
unsigned int start = coef_count_node_start;
switch (node) {
case 2:
tree_left = count[start + 1];
tree_right = count[start + 3];
break;
case 1:
tree_left = count[start + 0];
tree_right = count[start + 1] +
count[start + 3];
break;
default:
tree_left = count[start + 2];
tree_right = count[start + 0] +
count[start + 1] +
count[start + 3];
break;
}
vp9_tree_merge_probs(prev_prob, cur_prob,
coef_node_start,
tree_left, tree_right,
tree_i, node);
coef_node_start = coef_node_start + 1;
}
coef_count_node_start = coef_count_node_start + 4;
}
coef_node_start = VP9_IF_Y_MODE_START;
coef_count_node_start = VP9_IF_Y_MODE_COUNT_START;
for (tree_i = 0 ; tree_i < 14 ; tree_i++) {
for (node = 0 ; node < 9 ; node++) {
unsigned int start = coef_count_node_start;
switch (node) {
case 8:
tree_left =
count[start + D153_PRED];
tree_right =
count[start + D207_PRED];
break;
case 7:
tree_left =
count[start + D63_PRED];
tree_right =
count[start + D207_PRED] +
count[start + D153_PRED];
break;
case 6:
tree_left =
count[start + D45_PRED];
tree_right =
count[start + D207_PRED] +
count[start + D153_PRED] +
count[start + D63_PRED];
break;
case 5:
tree_left =
count[start + D135_PRED];
tree_right =
count[start + D117_PRED];
break;
case 4:
tree_left =
count[start + H_PRED];
tree_right =
count[start + D117_PRED] +
count[start + D135_PRED];
break;
case 3:
tree_left =
count[start + H_PRED] +
count[start + D117_PRED] +
count[start + D135_PRED];
tree_right =
count[start + D45_PRED] +
count[start + D207_PRED] +
count[start + D153_PRED] +
count[start + D63_PRED];
break;
case 2:
tree_left =
count[start + V_PRED];
tree_right =
count[start + H_PRED] +
count[start + D117_PRED] +
count[start + D135_PRED] +
count[start + D45_PRED] +
count[start + D207_PRED] +
count[start + D153_PRED] +
count[start + D63_PRED];
break;
case 1:
tree_left =
count[start + TM_PRED];
tree_right =
count[start + V_PRED] +
count[start + H_PRED] +
count[start + D117_PRED] +
count[start + D135_PRED] +
count[start + D45_PRED] +
count[start + D207_PRED] +
count[start + D153_PRED] +
count[start + D63_PRED];
break;
default:
tree_left =
count[start + DC_PRED];
tree_right =
count[start + TM_PRED] +
count[start + V_PRED] +
count[start + H_PRED] +
count[start + D117_PRED] +
count[start + D135_PRED] +
count[start + D45_PRED] +
count[start + D207_PRED] +
count[start + D153_PRED] +
count[start + D63_PRED];
break;
}
vp9_tree_merge_probs(prev_prob, cur_prob,
coef_node_start,
tree_left, tree_right,
tree_i, node);
coef_node_start = coef_node_start + 1;
}
coef_count_node_start = coef_count_node_start + 10;
}
coef_node_start = VP9_PARTITION_P_START;
coef_count_node_start = VP9_PARTITION_P_COUNT_START;
for (tree_i = 0 ; tree_i < 16 ; tree_i++) {
for (node = 0 ; node < 3 ; node++) {
unsigned int start = coef_count_node_start;
switch (node) {
case 2:
tree_left = count[start + 2];
tree_right = count[start + 3];
break;
case 1:
tree_left = count[start + 1];
tree_right = count[start + 2] +
count[start + 3];
break;
default:
tree_left = count[start + 0];
tree_right = count[start + 1] +
count[start + 2] +
count[start + 3];
break;
}
vp9_tree_merge_probs(prev_prob, cur_prob,
coef_node_start,
tree_left, tree_right,
tree_i, node);
coef_node_start = coef_node_start + 1;
}
coef_count_node_start = coef_count_node_start + 4;
}
coef_node_start = VP9_INTERP_START;
coef_count_node_start = VP9_INTERP_COUNT_START;
for (tree_i = 0 ; tree_i < 4 ; tree_i++) {
for (node = 0 ; node < 2 ; node++) {
unsigned int start = coef_count_node_start;
switch (node) {
case 1:
tree_left = count[start + 1];
tree_right = count[start + 2];
break;
default:
tree_left = count[start + 0];
tree_right = count[start + 1] +
count[start + 2];
break;
}
vp9_tree_merge_probs(prev_prob, cur_prob,
coef_node_start,
tree_left, tree_right,
tree_i, node);
coef_node_start = coef_node_start + 1;
}
coef_count_node_start = coef_count_node_start + 3;
}
coef_node_start = VP9_MV_JOINTS_START;
coef_count_node_start = VP9_MV_JOINTS_COUNT_START;
for (tree_i = 0 ; tree_i < 1 ; tree_i++) {
for (node = 0 ; node < 3 ; node++) {
unsigned int start = coef_count_node_start;
switch (node) {
case 2:
tree_left = count[start + 2];
tree_right = count[start + 3];
break;
case 1:
tree_left = count[start + 1];
tree_right = count[start + 2] +
count[start + 3];
break;
default:
tree_left = count[start + 0];
tree_right = count[start + 1] +
count[start + 2] +
count[start + 3];
break;
}
vp9_tree_merge_probs(prev_prob, cur_prob,
coef_node_start,
tree_left, tree_right,
tree_i, node);
coef_node_start = coef_node_start + 1;
}
coef_count_node_start = coef_count_node_start + 4;
}
for (mvd_i = 0 ; mvd_i < 2 ; mvd_i++) {
coef_node_start = mvd_i ? VP9_MV_CLASSES_1_START :
VP9_MV_CLASSES_0_START;
coef_count_node_start = mvd_i ?
VP9_MV_CLASSES_1_COUNT_START :
VP9_MV_CLASSES_0_COUNT_START;
tree_i = 0;
for (node = 0; node < 10; node++) {
unsigned int start = coef_count_node_start;
switch (node) {
case 9:
tree_left = count[start + 9];
tree_right = count[start + 10];
break;
case 8:
tree_left = count[start + 7];
tree_right = count[start + 8];
break;
case 7:
tree_left = count[start + 7] +
count[start + 8];
tree_right = count[start + 9] +
count[start + 10];
break;
case 6:
tree_left = count[start + 6];
tree_right = count[start + 7] +
count[start + 8] +
count[start + 9] +
count[start + 10];
break;
case 5:
tree_left = count[start + 4];
tree_right = count[start + 5];
break;
case 4:
tree_left = count[start + 4] +
count[start + 5];
tree_right = count[start + 6] +
count[start + 7] +
count[start + 8] +
count[start + 9] +
count[start + 10];
break;
case 3:
tree_left = count[start + 2];
tree_right = count[start + 3];
break;
case 2:
tree_left = count[start + 2] +
count[start + 3];
tree_right = count[start + 4] +
count[start + 5] +
count[start + 6] +
count[start + 7] +
count[start + 8] +
count[start + 9] +
count[start + 10];
break;
case 1:
tree_left = count[start + 1];
tree_right = count[start + 2] +
count[start + 3] +
count[start + 4] +
count[start + 5] +
count[start + 6] +
count[start + 7] +
count[start + 8] +
count[start + 9] +
count[start + 10];
break;
default:
tree_left = count[start + 0];
tree_right = count[start + 1] +
count[start + 2] +
count[start + 3] +
count[start + 4] +
count[start + 5] +
count[start + 6] +
count[start + 7] +
count[start + 8] +
count[start + 9] +
count[start + 10];
break;
}
vp9_tree_merge_probs(prev_prob, cur_prob,
coef_node_start,
tree_left, tree_right,
tree_i, node);
coef_node_start = coef_node_start + 1;
}
coef_node_start = mvd_i ? VP9_MV_CLASS0_1_START :
VP9_MV_CLASS0_0_START;
coef_count_node_start = mvd_i ?
VP9_MV_CLASS0_1_COUNT_START :
VP9_MV_CLASS0_0_COUNT_START;
tree_i = 0;
node = 0;
tree_left = count[coef_count_node_start + 0];
tree_right = count[coef_count_node_start + 1];
vp9_tree_merge_probs(prev_prob, cur_prob,
coef_node_start,
tree_left, tree_right,
tree_i, node);
coef_node_start = mvd_i ? VP9_MV_CLASS0_FP_1_START :
VP9_MV_CLASS0_FP_0_START;
coef_count_node_start = mvd_i ?
VP9_MV_CLASS0_FP_1_COUNT_START :
VP9_MV_CLASS0_FP_0_COUNT_START;
for (tree_i = 0; tree_i < 3; tree_i++) {
for (node = 0; node < 3; node++) {
unsigned int start =
coef_count_node_start;
switch (node) {
case 2:
tree_left = count[start + 2];
tree_right = count[start + 3];
break;
case 1:
tree_left = count[start + 1];
tree_right = count[start + 2] +
count[start + 3];
break;
default:
tree_left = count[start + 0];
tree_right = count[start + 1] +
count[start + 2] +
count[start + 3];
break;
}
vp9_tree_merge_probs(prev_prob,
cur_prob,
coef_node_start,
tree_left,
tree_right,
tree_i, node);
coef_node_start = coef_node_start + 1;
}
coef_count_node_start =
coef_count_node_start + 4;
}
}
}
}
static irqreturn_t codec_vp9_threaded_isr(struct amvdec_session *sess)
{
struct amvdec_core *core = sess->core;
struct codec_vp9 *vp9 = sess->priv;
u32 dec_status = amvdec_read_dos(core, VP9_DEC_STATUS_REG);
u32 prob_status = amvdec_read_dos(core, VP9_ADAPT_PROB_REG);
int i;
if (!vp9)
return IRQ_HANDLED;
mutex_lock(&vp9->lock);
if (dec_status != VP9_HEAD_PARSER_DONE) {
dev_err(core->dev_dec, "Unrecognized dec_status: %08X\n",
dec_status);
amvdec_abort(sess);
goto unlock;
}
pr_debug("ISR: %08X;%08X\n", dec_status, prob_status);
sess->keyframe_found = 1;
if ((prob_status & 0xff) == 0xfd && vp9->cur_frame) {
/* VP9_REQ_ADAPT_PROB */
u8 *prev_prob_b = ((u8 *)vp9->workspace_vaddr +
PROB_OFFSET) +
((prob_status >> 8) * 0x1000);
u8 *cur_prob_b = ((u8 *)vp9->workspace_vaddr +
PROB_OFFSET) + 0x4000;
u8 *count_b = (u8 *)vp9->workspace_vaddr +
COUNT_OFFSET;
int last_frame_type = vp9->prev_frame ?
vp9->prev_frame->type :
KEY_FRAME;
adapt_coef_probs(last_frame_type == KEY_FRAME,
vp9->cur_frame->type == KEY_FRAME ? 1 : 0,
prob_status >> 8,
(unsigned int *)prev_prob_b,
(unsigned int *)cur_prob_b,
(unsigned int *)count_b);
memcpy(prev_prob_b, cur_prob_b, ADAPT_PROB_SIZE);
amvdec_write_dos(core, VP9_ADAPT_PROB_REG, 0);
}
/* Invalidate first 3 refs */
for (i = 0; i < REFS_PER_FRAME ; ++i)
vp9->frame_refs[i] = NULL;
vp9->prev_frame = vp9->cur_frame;
codec_vp9_update_ref(vp9);
codec_vp9_fetch_rpm(sess);
if (codec_vp9_process_rpm(vp9)) {
amvdec_src_change(sess, vp9->width, vp9->height, 16);
/* No frame is actually processed */
vp9->cur_frame = NULL;
/* Show the remaining frame */
codec_vp9_show_frame(sess);
/* FIXME: Save refs for resized frame */
if (vp9->frames_num)
codec_vp9_save_refs(vp9);
goto unlock;
}
codec_vp9_process_lf(vp9);
codec_vp9_process_frame(sess);
codec_vp9_show_frame(sess);
unlock:
mutex_unlock(&vp9->lock);
return IRQ_HANDLED;
}
static irqreturn_t codec_vp9_isr(struct amvdec_session *sess)
{
return IRQ_WAKE_THREAD;
}
struct amvdec_codec_ops codec_vp9_ops = {
.start = codec_vp9_start,
.stop = codec_vp9_stop,
.isr = codec_vp9_isr,
.threaded_isr = codec_vp9_threaded_isr,
.num_pending_bufs = codec_vp9_num_pending_bufs,
.drain = codec_vp9_flush_output,
.resume = codec_vp9_resume,
};
/* SPDX-License-Identifier: GPL-2.0+ */
/*
* Copyright (C) 2018 Maxime Jourdan <maxi.jourdan@wanadoo.fr>
*/
#ifndef __MESON_VDEC_CODEC_VP9_H_
#define __MESON_VDEC_CODEC_VP9_H_
#include "vdec.h"
extern struct amvdec_codec_ops codec_vp9_ops;
#endif
......@@ -122,6 +122,8 @@
#define HEVC_MPRED_L0_REF00_POC 0xc880
#define HEVC_MPRED_L1_REF00_POC 0xc8c0
#define HEVC_MPRED_CTRL4 0xc930
#define HEVC_MPRED_CUR_POC 0xc980
#define HEVC_MPRED_COL_POC 0xc984
#define HEVC_MPRED_MV_RD_END_ADDR 0xc988
......@@ -140,6 +142,10 @@
#define HEVCD_IPP_LINEBUFF_BASE 0xd024
#define HEVCD_IPP_AXIIF_CONFIG 0xd02c
#define VP9D_MPP_REF_SCALE_ENBL 0xd104
#define VP9D_MPP_REFINFO_TBL_ACCCONFIG 0xd108
#define VP9D_MPP_REFINFO_DATA 0xd10c
#define HEVCD_MPP_ANC2AXI_TBL_CONF_ADDR 0xd180
#define HEVCD_MPP_ANC2AXI_TBL_CMD_ADDR 0xd184
#define HEVCD_MPP_ANC2AXI_TBL_DATA 0xd190
......@@ -164,6 +170,7 @@
#define HEVC_DBLK_CFG9 0xd424
#define HEVC_DBLK_CFGA 0xd428
#define HEVC_DBLK_STS0 0xd42c
#define HEVC_DBLK_CFGB 0xd42c
#define HEVC_DBLK_STS1 0xd430
#define HEVC_DBLK_CFGE 0xd438
......
......@@ -395,6 +395,7 @@ static void vdec_reset_bufs_recycle(struct amvdec_session *sess)
static void vdec_stop_streaming(struct vb2_queue *q)
{
struct amvdec_session *sess = vb2_get_drv_priv(q);
struct amvdec_codec_ops *codec_ops = sess->fmt_out->codec_ops;
struct amvdec_core *core = sess->core;
struct vb2_v4l2_buffer *buf;
......@@ -423,6 +424,10 @@ static void vdec_stop_streaming(struct vb2_queue *q)
sess->streamon_out = 0;
} else {
/* Drain remaining refs if was still running */
if (sess->status >= STATUS_RUNNING && codec_ops->drain)
codec_ops->drain(sess);
while ((buf = v4l2_m2m_dst_buf_remove(sess->m2m_ctx)))
v4l2_m2m_buf_done(buf, VB2_BUF_STATE_ERROR);
......
......@@ -299,6 +299,10 @@ static void dst_buf_done(struct amvdec_session *sess,
sess->sequence_cap - 1);
v4l2_event_queue_fh(&sess->fh, &ev);
vbuf->flags |= V4L2_BUF_FLAG_LAST;
} else if (sess->status == STATUS_NEEDS_RESUME) {
/* Mark LAST for drained show frames during a source change */
vbuf->flags |= V4L2_BUF_FLAG_LAST;
sess->sequence_cap = 0;
} else if (sess->should_stop)
dev_dbg(dev, "should_stop, %u bufs remain\n",
atomic_read(&sess->esparser_queued_bufs));
......
......@@ -8,8 +8,10 @@
#include "vdec.h"
#include "vdec_1.h"
#include "vdec_hevc.h"
#include "codec_mpeg12.h"
#include "codec_h264.h"
#include "codec_vp9.h"
static const struct amvdec_format vdec_formats_gxbb[] = {
{
......@@ -51,6 +53,18 @@ static const struct amvdec_format vdec_formats_gxbb[] = {
static const struct amvdec_format vdec_formats_gxl[] = {
{
.pixfmt = V4L2_PIX_FMT_VP9,
.min_buffers = 16,
.max_buffers = 24,
.max_width = 3840,
.max_height = 2160,
.vdec_ops = &vdec_hevc_ops,
.codec_ops = &codec_vp9_ops,
.firmware_path = "meson/vdec/gxl_vp9.bin",
.pixfmts_cap = { V4L2_PIX_FMT_NV12M, 0 },
.flags = V4L2_FMT_FLAG_COMPRESSED |
V4L2_FMT_FLAG_DYN_RESOLUTION,
}, {
.pixfmt = V4L2_PIX_FMT_H264,
.min_buffers = 2,
.max_buffers = 24,
......@@ -127,6 +141,18 @@ static const struct amvdec_format vdec_formats_gxm[] = {
static const struct amvdec_format vdec_formats_g12a[] = {
{
.pixfmt = V4L2_PIX_FMT_VP9,
.min_buffers = 16,
.max_buffers = 24,
.max_width = 3840,
.max_height = 2160,
.vdec_ops = &vdec_hevc_ops,
.codec_ops = &codec_vp9_ops,
.firmware_path = "meson/vdec/g12a_vp9.bin",
.pixfmts_cap = { V4L2_PIX_FMT_NV12M, 0 },
.flags = V4L2_FMT_FLAG_COMPRESSED |
V4L2_FMT_FLAG_DYN_RESOLUTION,
}, {
.pixfmt = V4L2_PIX_FMT_H264,
.min_buffers = 2,
.max_buffers = 24,
......@@ -165,6 +191,18 @@ static const struct amvdec_format vdec_formats_g12a[] = {
static const struct amvdec_format vdec_formats_sm1[] = {
{
.pixfmt = V4L2_PIX_FMT_VP9,
.min_buffers = 16,
.max_buffers = 24,
.max_width = 3840,
.max_height = 2160,
.vdec_ops = &vdec_hevc_ops,
.codec_ops = &codec_vp9_ops,
.firmware_path = "meson/vdec/sm1_vp9_mmu.bin",
.pixfmts_cap = { V4L2_PIX_FMT_NV12M, 0 },
.flags = V4L2_FMT_FLAG_COMPRESSED |
V4L2_FMT_FLAG_DYN_RESOLUTION,
}, {
.pixfmt = V4L2_PIX_FMT_H264,
.min_buffers = 2,
.max_buffers = 24,
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment