Commit 011d8261 authored by Borislav Petkov's avatar Borislav Petkov Committed by Ingo Molnar

RAS: Add a Corrected Errors Collector

Introduce a simple data structure for collecting correctable errors
along with accessors. More detailed description in the code itself.

The error decoding is done with the decoding chain now and
mce_first_notifier() gets to see the error first and the CEC decides
whether to log it and then the rest of the chain doesn't hear about it -
basically the main reason for the CE collector - or to continue running
the notifiers.

When the CEC hits the action threshold, it will try to soft-offine the
page containing the ECC and then the whole decoding chain gets to see
the error.
Signed-off-by: default avatarBorislav Petkov <bp@suse.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-edac <linux-edac@vger.kernel.org>
Link: http://lkml.kernel.org/r/20170327093304.10683-5-bp@alien8.deSigned-off-by: default avatarIngo Molnar <mingo@kernel.org>
parent e64edfcc
...@@ -3172,6 +3172,12 @@ ...@@ -3172,6 +3172,12 @@
ramdisk_size= [RAM] Sizes of RAM disks in kilobytes ramdisk_size= [RAM] Sizes of RAM disks in kilobytes
See Documentation/blockdev/ramdisk.txt. See Documentation/blockdev/ramdisk.txt.
ras=option[,option,...] [KNL] RAS-specific options
cec_disable [X86]
Disable the Correctable Errors Collector,
see CONFIG_RAS_CEC help text.
rcu_nocbs= [KNL] rcu_nocbs= [KNL]
The argument is a cpu list, as described above. The argument is a cpu list, as described above.
......
...@@ -191,10 +191,11 @@ extern struct mca_config mca_cfg; ...@@ -191,10 +191,11 @@ extern struct mca_config mca_cfg;
extern struct mca_msr_regs msr_ops; extern struct mca_msr_regs msr_ops;
enum mce_notifier_prios { enum mce_notifier_prios {
MCE_PRIO_SRAO = INT_MAX, MCE_PRIO_FIRST = INT_MAX,
MCE_PRIO_EXTLOG = INT_MAX - 1, MCE_PRIO_SRAO = INT_MAX - 1,
MCE_PRIO_NFIT = INT_MAX - 2, MCE_PRIO_EXTLOG = INT_MAX - 2,
MCE_PRIO_EDAC = INT_MAX - 3, MCE_PRIO_NFIT = INT_MAX - 3,
MCE_PRIO_EDAC = INT_MAX - 4,
MCE_PRIO_LOWEST = 0, MCE_PRIO_LOWEST = 0,
}; };
......
...@@ -35,6 +35,7 @@ ...@@ -35,6 +35,7 @@
#include <linux/poll.h> #include <linux/poll.h>
#include <linux/nmi.h> #include <linux/nmi.h>
#include <linux/cpu.h> #include <linux/cpu.h>
#include <linux/ras.h>
#include <linux/smp.h> #include <linux/smp.h>
#include <linux/fs.h> #include <linux/fs.h>
#include <linux/mm.h> #include <linux/mm.h>
...@@ -160,47 +161,8 @@ static struct mce_log_buffer mcelog_buf = { ...@@ -160,47 +161,8 @@ static struct mce_log_buffer mcelog_buf = {
void mce_log(struct mce *m) void mce_log(struct mce *m)
{ {
unsigned next, entry;
/* Emit the trace record: */
trace_mce_record(m);
if (!mce_gen_pool_add(m)) if (!mce_gen_pool_add(m))
irq_work_queue(&mce_irq_work); irq_work_queue(&mce_irq_work);
wmb();
for (;;) {
entry = mce_log_get_idx_check(mcelog_buf.next);
for (;;) {
/*
* When the buffer fills up discard new entries.
* Assume that the earlier errors are the more
* interesting ones:
*/
if (entry >= MCE_LOG_LEN) {
set_bit(MCE_OVERFLOW,
(unsigned long *)&mcelog_buf.flags);
return;
}
/* Old left over entry. Skip: */
if (mcelog_buf.entry[entry].finished) {
entry++;
continue;
}
break;
}
smp_rmb();
next = entry + 1;
if (cmpxchg(&mcelog_buf.next, entry, next) == entry)
break;
}
memcpy(mcelog_buf.entry + entry, m, sizeof(struct mce));
wmb();
mcelog_buf.entry[entry].finished = 1;
wmb();
set_bit(0, &mce_need_notify);
} }
void mce_inject_log(struct mce *m) void mce_inject_log(struct mce *m)
...@@ -213,6 +175,12 @@ EXPORT_SYMBOL_GPL(mce_inject_log); ...@@ -213,6 +175,12 @@ EXPORT_SYMBOL_GPL(mce_inject_log);
static struct notifier_block mce_srao_nb; static struct notifier_block mce_srao_nb;
/*
* We run the default notifier if we have only the SRAO, the first and the
* default notifier registered. I.e., the mandatory NUM_DEFAULT_NOTIFIERS
* notifiers registered on the chain.
*/
#define NUM_DEFAULT_NOTIFIERS 3
static atomic_t num_notifiers; static atomic_t num_notifiers;
void mce_register_decode_chain(struct notifier_block *nb) void mce_register_decode_chain(struct notifier_block *nb)
...@@ -522,7 +490,6 @@ static void mce_schedule_work(void) ...@@ -522,7 +490,6 @@ static void mce_schedule_work(void)
static void mce_irq_work_cb(struct irq_work *entry) static void mce_irq_work_cb(struct irq_work *entry)
{ {
mce_notify_irq();
mce_schedule_work(); mce_schedule_work();
} }
...@@ -565,6 +532,111 @@ static int mce_usable_address(struct mce *m) ...@@ -565,6 +532,111 @@ static int mce_usable_address(struct mce *m)
return 1; return 1;
} }
static bool memory_error(struct mce *m)
{
struct cpuinfo_x86 *c = &boot_cpu_data;
if (c->x86_vendor == X86_VENDOR_AMD) {
/* ErrCodeExt[20:16] */
u8 xec = (m->status >> 16) & 0x1f;
return (xec == 0x0 || xec == 0x8);
} else if (c->x86_vendor == X86_VENDOR_INTEL) {
/*
* Intel SDM Volume 3B - 15.9.2 Compound Error Codes
*
* Bit 7 of the MCACOD field of IA32_MCi_STATUS is used for
* indicating a memory error. Bit 8 is used for indicating a
* cache hierarchy error. The combination of bit 2 and bit 3
* is used for indicating a `generic' cache hierarchy error
* But we can't just blindly check the above bits, because if
* bit 11 is set, then it is a bus/interconnect error - and
* either way the above bits just gives more detail on what
* bus/interconnect error happened. Note that bit 12 can be
* ignored, as it's the "filter" bit.
*/
return (m->status & 0xef80) == BIT(7) ||
(m->status & 0xef00) == BIT(8) ||
(m->status & 0xeffc) == 0xc;
}
return false;
}
static bool cec_add_mce(struct mce *m)
{
if (!m)
return false;
/* We eat only correctable DRAM errors with usable addresses. */
if (memory_error(m) &&
!(m->status & MCI_STATUS_UC) &&
mce_usable_address(m))
if (!cec_add_elem(m->addr >> PAGE_SHIFT))
return true;
return false;
}
static int mce_first_notifier(struct notifier_block *nb, unsigned long val,
void *data)
{
struct mce *m = (struct mce *)data;
unsigned int next, entry;
if (!m)
return NOTIFY_DONE;
if (cec_add_mce(m))
return NOTIFY_STOP;
/* Emit the trace record: */
trace_mce_record(m);
wmb();
for (;;) {
entry = mce_log_get_idx_check(mcelog_buf.next);
for (;;) {
/*
* When the buffer fills up discard new entries.
* Assume that the earlier errors are the more
* interesting ones:
*/
if (entry >= MCE_LOG_LEN) {
set_bit(MCE_OVERFLOW,
(unsigned long *)&mcelog_buf.flags);
return NOTIFY_DONE;
}
/* Old left over entry. Skip: */
if (mcelog_buf.entry[entry].finished) {
entry++;
continue;
}
break;
}
smp_rmb();
next = entry + 1;
if (cmpxchg(&mcelog_buf.next, entry, next) == entry)
break;
}
memcpy(mcelog_buf.entry + entry, m, sizeof(struct mce));
wmb();
mcelog_buf.entry[entry].finished = 1;
wmb();
set_bit(0, &mce_need_notify);
mce_notify_irq();
return NOTIFY_DONE;
}
static struct notifier_block first_nb = {
.notifier_call = mce_first_notifier,
.priority = MCE_PRIO_FIRST,
};
static int srao_decode_notifier(struct notifier_block *nb, unsigned long val, static int srao_decode_notifier(struct notifier_block *nb, unsigned long val,
void *data) void *data)
{ {
...@@ -594,11 +666,7 @@ static int mce_default_notifier(struct notifier_block *nb, unsigned long val, ...@@ -594,11 +666,7 @@ static int mce_default_notifier(struct notifier_block *nb, unsigned long val,
if (!m) if (!m)
return NOTIFY_DONE; return NOTIFY_DONE;
/* if (atomic_read(&num_notifiers) > NUM_DEFAULT_NOTIFIERS)
* Run the default notifier if we have only the SRAO
* notifier and us registered.
*/
if (atomic_read(&num_notifiers) > 2)
return NOTIFY_DONE; return NOTIFY_DONE;
/* Don't print when mcelog is running */ /* Don't print when mcelog is running */
...@@ -655,37 +723,6 @@ static void mce_read_aux(struct mce *m, int i) ...@@ -655,37 +723,6 @@ static void mce_read_aux(struct mce *m, int i)
} }
} }
static bool memory_error(struct mce *m)
{
struct cpuinfo_x86 *c = &boot_cpu_data;
if (c->x86_vendor == X86_VENDOR_AMD) {
/* ErrCodeExt[20:16] */
u8 xec = (m->status >> 16) & 0x1f;
return (xec == 0x0 || xec == 0x8);
} else if (c->x86_vendor == X86_VENDOR_INTEL) {
/*
* Intel SDM Volume 3B - 15.9.2 Compound Error Codes
*
* Bit 7 of the MCACOD field of IA32_MCi_STATUS is used for
* indicating a memory error. Bit 8 is used for indicating a
* cache hierarchy error. The combination of bit 2 and bit 3
* is used for indicating a `generic' cache hierarchy error
* But we can't just blindly check the above bits, because if
* bit 11 is set, then it is a bus/interconnect error - and
* either way the above bits just gives more detail on what
* bus/interconnect error happened. Note that bit 12 can be
* ignored, as it's the "filter" bit.
*/
return (m->status & 0xef80) == BIT(7) ||
(m->status & 0xef00) == BIT(8) ||
(m->status & 0xeffc) == 0xc;
}
return false;
}
DEFINE_PER_CPU(unsigned, mce_poll_count); DEFINE_PER_CPU(unsigned, mce_poll_count);
/* /*
...@@ -2167,6 +2204,7 @@ __setup("mce", mcheck_enable); ...@@ -2167,6 +2204,7 @@ __setup("mce", mcheck_enable);
int __init mcheck_init(void) int __init mcheck_init(void)
{ {
mcheck_intel_therm_init(); mcheck_intel_therm_init();
mce_register_decode_chain(&first_nb);
mce_register_decode_chain(&mce_srao_nb); mce_register_decode_chain(&mce_srao_nb);
mce_register_decode_chain(&mce_default_nb); mce_register_decode_chain(&mce_default_nb);
mcheck_vendor_init_severity(); mcheck_vendor_init_severity();
...@@ -2716,6 +2754,7 @@ static int __init mcheck_late_init(void) ...@@ -2716,6 +2754,7 @@ static int __init mcheck_late_init(void)
static_branch_inc(&mcsafe_key); static_branch_inc(&mcsafe_key);
mcheck_debugfs_init(); mcheck_debugfs_init();
cec_init();
/* /*
* Flush out everything that has been logged during early boot, now that * Flush out everything that has been logged during early boot, now that
......
...@@ -7,3 +7,17 @@ config MCE_AMD_INJ ...@@ -7,3 +7,17 @@ config MCE_AMD_INJ
aspects of the MCE handling code. aspects of the MCE handling code.
WARNING: Do not even assume this interface is staying stable! WARNING: Do not even assume this interface is staying stable!
config RAS_CEC
bool "Correctable Errors Collector"
depends on X86_MCE && MEMORY_FAILURE && DEBUG_FS
---help---
This is a small cache which collects correctable memory errors per 4K
page PFN and counts their repeated occurrence. Once the counter for a
PFN overflows, we try to soft-offline that page as we take it to mean
that it has reached a relatively high error count and would probably
be best if we don't use it anymore.
Bear in mind that this is absolutely useless if your platform doesn't
have ECC DIMMs and doesn't have DRAM ECC checking enabled in the BIOS.
obj-$(CONFIG_RAS) += ras.o debugfs.o obj-$(CONFIG_RAS) += ras.o debugfs.o
obj-$(CONFIG_RAS_CEC) += cec.o
#include <linux/mm.h>
#include <linux/gfp.h>
#include <linux/kernel.h>
#include <asm/mce.h>
#include "debugfs.h"
/*
* RAS Correctable Errors Collector
*
* This is a simple gadget which collects correctable errors and counts their
* occurrence per physical page address.
*
* We've opted for possibly the simplest data structure to collect those - an
* array of the size of a memory page. It stores 512 u64's with the following
* structure:
*
* [63 ... PFN ... 12 | 11 ... generation ... 10 | 9 ... count ... 0]
*
* The generation in the two highest order bits is two bits which are set to 11b
* on every insertion. During the course of each entry's existence, the
* generation field gets decremented during spring cleaning to 10b, then 01b and
* then 00b.
*
* This way we're employing the natural numeric ordering to make sure that newly
* inserted/touched elements have higher 12-bit counts (which we've manufactured)
* and thus iterating over the array initially won't kick out those elements
* which were inserted last.
*
* Spring cleaning is what we do when we reach a certain number CLEAN_ELEMS of
* elements entered into the array, during which, we're decaying all elements.
* If, after decay, an element gets inserted again, its generation is set to 11b
* to make sure it has higher numerical count than other, older elements and
* thus emulate an an LRU-like behavior when deleting elements to free up space
* in the page.
*
* When an element reaches it's max count of count_threshold, we try to poison
* it by assuming that errors triggered count_threshold times in a single page
* are excessive and that page shouldn't be used anymore. count_threshold is
* initialized to COUNT_MASK which is the maximum.
*
* That error event entry causes cec_add_elem() to return !0 value and thus
* signal to its callers to log the error.
*
* To the question why we've chosen a page and moving elements around with
* memmove(), it is because it is a very simple structure to handle and max data
* movement is 4K which on highly optimized modern CPUs is almost unnoticeable.
* We wanted to avoid the pointer traversal of more complex structures like a
* linked list or some sort of a balancing search tree.
*
* Deleting an element takes O(n) but since it is only a single page, it should
* be fast enough and it shouldn't happen all too often depending on error
* patterns.
*/
#undef pr_fmt
#define pr_fmt(fmt) "RAS: " fmt
/*
* We use DECAY_BITS bits of PAGE_SHIFT bits for counting decay, i.e., how long
* elements have stayed in the array without having been accessed again.
*/
#define DECAY_BITS 2
#define DECAY_MASK ((1ULL << DECAY_BITS) - 1)
#define MAX_ELEMS (PAGE_SIZE / sizeof(u64))
/*
* Threshold amount of inserted elements after which we start spring
* cleaning.
*/
#define CLEAN_ELEMS (MAX_ELEMS >> DECAY_BITS)
/* Bits which count the number of errors happened in this 4K page. */
#define COUNT_BITS (PAGE_SHIFT - DECAY_BITS)
#define COUNT_MASK ((1ULL << COUNT_BITS) - 1)
#define FULL_COUNT_MASK (PAGE_SIZE - 1)
/*
* u64: [ 63 ... 12 | DECAY_BITS | COUNT_BITS ]
*/
#define PFN(e) ((e) >> PAGE_SHIFT)
#define DECAY(e) (((e) >> COUNT_BITS) & DECAY_MASK)
#define COUNT(e) ((unsigned int)(e) & COUNT_MASK)
#define FULL_COUNT(e) ((e) & (PAGE_SIZE - 1))
static struct ce_array {
u64 *array; /* container page */
unsigned int n; /* number of elements in the array */
unsigned int decay_count; /*
* number of element insertions/increments
* since the last spring cleaning.
*/
u64 pfns_poisoned; /*
* number of PFNs which got poisoned.
*/
u64 ces_entered; /*
* The number of correctable errors
* entered into the collector.
*/
u64 decays_done; /*
* Times we did spring cleaning.
*/
union {
struct {
__u32 disabled : 1, /* cmdline disabled */
__resv : 31;
};
__u32 flags;
};
} ce_arr;
static DEFINE_MUTEX(ce_mutex);
static u64 dfs_pfn;
/* Amount of errors after which we offline */
static unsigned int count_threshold = COUNT_MASK;
/*
* The timer "decays" element count each timer_interval which is 24hrs by
* default.
*/
#define CEC_TIMER_DEFAULT_INTERVAL 24 * 60 * 60 /* 24 hrs */
#define CEC_TIMER_MIN_INTERVAL 1 * 60 * 60 /* 1h */
#define CEC_TIMER_MAX_INTERVAL 30 * 24 * 60 * 60 /* one month */
static struct timer_list cec_timer;
static u64 timer_interval = CEC_TIMER_DEFAULT_INTERVAL;
/*
* Decrement decay value. We're using DECAY_BITS bits to denote decay of an
* element in the array. On insertion and any access, it gets reset to max.
*/
static void do_spring_cleaning(struct ce_array *ca)
{
int i;
for (i = 0; i < ca->n; i++) {
u8 decay = DECAY(ca->array[i]);
if (!decay)
continue;
decay--;
ca->array[i] &= ~(DECAY_MASK << COUNT_BITS);
ca->array[i] |= (decay << COUNT_BITS);
}
ca->decay_count = 0;
ca->decays_done++;
}
/*
* @interval in seconds
*/
static void cec_mod_timer(struct timer_list *t, unsigned long interval)
{
unsigned long iv;
iv = interval * HZ + jiffies;
mod_timer(t, round_jiffies(iv));
}
static void cec_timer_fn(unsigned long data)
{
struct ce_array *ca = (struct ce_array *)data;
do_spring_cleaning(ca);
cec_mod_timer(&cec_timer, timer_interval);
}
/*
* @to: index of the smallest element which is >= then @pfn.
*
* Return the index of the pfn if found, otherwise negative value.
*/
static int __find_elem(struct ce_array *ca, u64 pfn, unsigned int *to)
{
u64 this_pfn;
int min = 0, max = ca->n;
while (min < max) {
int tmp = (max + min) >> 1;
this_pfn = PFN(ca->array[tmp]);
if (this_pfn < pfn)
min = tmp + 1;
else if (this_pfn > pfn)
max = tmp;
else {
min = tmp;
break;
}
}
if (to)
*to = min;
this_pfn = PFN(ca->array[min]);
if (this_pfn == pfn)
return min;
return -ENOKEY;
}
static int find_elem(struct ce_array *ca, u64 pfn, unsigned int *to)
{
WARN_ON(!to);
if (!ca->n) {
*to = 0;
return -ENOKEY;
}
return __find_elem(ca, pfn, to);
}
static void del_elem(struct ce_array *ca, int idx)
{
/* Save us a function call when deleting the last element. */
if (ca->n - (idx + 1))
memmove((void *)&ca->array[idx],
(void *)&ca->array[idx + 1],
(ca->n - (idx + 1)) * sizeof(u64));
ca->n--;
}
static u64 del_lru_elem_unlocked(struct ce_array *ca)
{
unsigned int min = FULL_COUNT_MASK;
int i, min_idx = 0;
for (i = 0; i < ca->n; i++) {
unsigned int this = FULL_COUNT(ca->array[i]);
if (min > this) {
min = this;
min_idx = i;
}
}
del_elem(ca, min_idx);
return PFN(ca->array[min_idx]);
}
/*
* We return the 0th pfn in the error case under the assumption that it cannot
* be poisoned and excessive CEs in there are a serious deal anyway.
*/
static u64 __maybe_unused del_lru_elem(void)
{
struct ce_array *ca = &ce_arr;
u64 pfn;
if (!ca->n)
return 0;
mutex_lock(&ce_mutex);
pfn = del_lru_elem_unlocked(ca);
mutex_unlock(&ce_mutex);
return pfn;
}
int cec_add_elem(u64 pfn)
{
struct ce_array *ca = &ce_arr;
unsigned int to;
int count, ret = 0;
/*
* We can be called very early on the identify_cpu() path where we are
* not initialized yet. We ignore the error for simplicity.
*/
if (!ce_arr.array || ce_arr.disabled)
return -ENODEV;
ca->ces_entered++;
mutex_lock(&ce_mutex);
if (ca->n == MAX_ELEMS)
WARN_ON(!del_lru_elem_unlocked(ca));
ret = find_elem(ca, pfn, &to);
if (ret < 0) {
/*
* Shift range [to-end] to make room for one more element.
*/
memmove((void *)&ca->array[to + 1],
(void *)&ca->array[to],
(ca->n - to) * sizeof(u64));
ca->array[to] = (pfn << PAGE_SHIFT) |
(DECAY_MASK << COUNT_BITS) | 1;
ca->n++;
ret = 0;
goto decay;
}
count = COUNT(ca->array[to]);
if (count < count_threshold) {
ca->array[to] |= (DECAY_MASK << COUNT_BITS);
ca->array[to]++;
ret = 0;
} else {
u64 pfn = ca->array[to] >> PAGE_SHIFT;
if (!pfn_valid(pfn)) {
pr_warn("CEC: Invalid pfn: 0x%llx\n", pfn);
} else {
/* We have reached max count for this page, soft-offline it. */
pr_err("Soft-offlining pfn: 0x%llx\n", pfn);
memory_failure_queue(pfn, 0, MF_SOFT_OFFLINE);
ca->pfns_poisoned++;
}
del_elem(ca, to);
/*
* Return a >0 value to denote that we've reached the offlining
* threshold.
*/
ret = 1;
goto unlock;
}
decay:
ca->decay_count++;
if (ca->decay_count >= CLEAN_ELEMS)
do_spring_cleaning(ca);
unlock:
mutex_unlock(&ce_mutex);
return ret;
}
static int u64_get(void *data, u64 *val)
{
*val = *(u64 *)data;
return 0;
}
static int pfn_set(void *data, u64 val)
{
*(u64 *)data = val;
return cec_add_elem(val);
}
DEFINE_DEBUGFS_ATTRIBUTE(pfn_ops, u64_get, pfn_set, "0x%llx\n");
static int decay_interval_set(void *data, u64 val)
{
*(u64 *)data = val;
if (val < CEC_TIMER_MIN_INTERVAL)
return -EINVAL;
if (val > CEC_TIMER_MAX_INTERVAL)
return -EINVAL;
timer_interval = val;
cec_mod_timer(&cec_timer, timer_interval);
return 0;
}
DEFINE_DEBUGFS_ATTRIBUTE(decay_interval_ops, u64_get, decay_interval_set, "%lld\n");
static int count_threshold_set(void *data, u64 val)
{
*(u64 *)data = val;
if (val > COUNT_MASK)
val = COUNT_MASK;
count_threshold = val;
return 0;
}
DEFINE_DEBUGFS_ATTRIBUTE(count_threshold_ops, u64_get, count_threshold_set, "%lld\n");
static int array_dump(struct seq_file *m, void *v)
{
struct ce_array *ca = &ce_arr;
u64 prev = 0;
int i;
mutex_lock(&ce_mutex);
seq_printf(m, "{ n: %d\n", ca->n);
for (i = 0; i < ca->n; i++) {
u64 this = PFN(ca->array[i]);
seq_printf(m, " %03d: [%016llx|%03llx]\n", i, this, FULL_COUNT(ca->array[i]));
WARN_ON(prev > this);
prev = this;
}
seq_printf(m, "}\n");
seq_printf(m, "Stats:\nCEs: %llu\nofflined pages: %llu\n",
ca->ces_entered, ca->pfns_poisoned);
seq_printf(m, "Flags: 0x%x\n", ca->flags);
seq_printf(m, "Timer interval: %lld seconds\n", timer_interval);
seq_printf(m, "Decays: %lld\n", ca->decays_done);
seq_printf(m, "Action threshold: %d\n", count_threshold);
mutex_unlock(&ce_mutex);
return 0;
}
static int array_open(struct inode *inode, struct file *filp)
{
return single_open(filp, array_dump, NULL);
}
static const struct file_operations array_ops = {
.owner = THIS_MODULE,
.open = array_open,
.read = seq_read,
.llseek = seq_lseek,
.release = single_release,
};
static int __init create_debugfs_nodes(void)
{
struct dentry *d, *pfn, *decay, *count, *array;
d = debugfs_create_dir("cec", ras_debugfs_dir);
if (!d) {
pr_warn("Error creating cec debugfs node!\n");
return -1;
}
pfn = debugfs_create_file("pfn", S_IRUSR | S_IWUSR, d, &dfs_pfn, &pfn_ops);
if (!pfn) {
pr_warn("Error creating pfn debugfs node!\n");
goto err;
}
array = debugfs_create_file("array", S_IRUSR, d, NULL, &array_ops);
if (!array) {
pr_warn("Error creating array debugfs node!\n");
goto err;
}
decay = debugfs_create_file("decay_interval", S_IRUSR | S_IWUSR, d,
&timer_interval, &decay_interval_ops);
if (!decay) {
pr_warn("Error creating decay_interval debugfs node!\n");
goto err;
}
count = debugfs_create_file("count_threshold", S_IRUSR | S_IWUSR, d,
&count_threshold, &count_threshold_ops);
if (!decay) {
pr_warn("Error creating count_threshold debugfs node!\n");
goto err;
}
return 0;
err:
debugfs_remove_recursive(d);
return 1;
}
void __init cec_init(void)
{
if (ce_arr.disabled)
return;
ce_arr.array = (void *)get_zeroed_page(GFP_KERNEL);
if (!ce_arr.array) {
pr_err("Error allocating CE array page!\n");
return;
}
if (create_debugfs_nodes())
return;
setup_timer(&cec_timer, cec_timer_fn, (unsigned long)&ce_arr);
cec_mod_timer(&cec_timer, CEC_TIMER_DEFAULT_INTERVAL);
pr_info("Correctable Errors collector initialized.\n");
}
int __init parse_cec_param(char *str)
{
if (!str)
return 0;
if (*str == '=')
str++;
if (!strncmp(str, "cec_disable", 7))
ce_arr.disabled = 1;
else
return 0;
return 1;
}
#include <linux/debugfs.h> #include <linux/debugfs.h>
static struct dentry *ras_debugfs_dir; struct dentry *ras_debugfs_dir;
static atomic_t trace_count = ATOMIC_INIT(0); static atomic_t trace_count = ATOMIC_INIT(0);
......
#ifndef __RAS_DEBUGFS_H__
#define __RAS_DEBUGFS_H__
#include <linux/debugfs.h>
extern struct dentry *ras_debugfs_dir;
#endif /* __RAS_DEBUGFS_H__ */
...@@ -27,3 +27,14 @@ subsys_initcall(ras_init); ...@@ -27,3 +27,14 @@ subsys_initcall(ras_init);
EXPORT_TRACEPOINT_SYMBOL_GPL(extlog_mem_event); EXPORT_TRACEPOINT_SYMBOL_GPL(extlog_mem_event);
#endif #endif
EXPORT_TRACEPOINT_SYMBOL_GPL(mc_event); EXPORT_TRACEPOINT_SYMBOL_GPL(mc_event);
int __init parse_ras_param(char *str)
{
#ifdef CONFIG_RAS_CEC
parse_cec_param(str);
#endif
return 1;
}
__setup("ras", parse_ras_param);
#ifndef __RAS_H__ #ifndef __RAS_H__
#define __RAS_H__ #define __RAS_H__
#include <asm/errno.h>
#ifdef CONFIG_DEBUG_FS #ifdef CONFIG_DEBUG_FS
int ras_userspace_consumers(void); int ras_userspace_consumers(void);
void ras_debugfs_init(void); void ras_debugfs_init(void);
int ras_add_daemon_trace(void); int ras_add_daemon_trace(void);
#else #else
static inline int ras_userspace_consumers(void) { return 0; } static inline int ras_userspace_consumers(void) { return 0; }
static inline void ras_debugfs_init(void) { return; } static inline void ras_debugfs_init(void) { }
static inline int ras_add_daemon_trace(void) { return 0; } static inline int ras_add_daemon_trace(void) { return 0; }
#endif #endif
#ifdef CONFIG_RAS_CEC
void __init cec_init(void);
int __init parse_cec_param(char *str);
int cec_add_elem(u64 pfn);
#else
static inline void __init cec_init(void) { }
static inline int cec_add_elem(u64 pfn) { return -ENODEV; }
#endif #endif
#endif /* __RAS_H__ */
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment