Commit 0d4876f4 authored by Ivan Safonov's avatar Ivan Safonov Committed by Greg Kroah-Hartman

staging:r8188eu: Use lib80211 to encrypt (TKIP) tx frames

Put data to skb, decrypt with lib80211_crypt_tkip, and place back to tx buffer.

MIC calculation will be replaced later.
Signed-off-by: default avatarIvan Safonov <insafonov@gmail.com>
Signed-off-by: default avatarGreg Kroah-Hartman <gregkh@linuxfoundation.org>
parent 956f004a
......@@ -12,121 +12,6 @@
#include <osdep_intf.h>
#include <net/lib80211.h>
/* WEP related ===== */
#define CRC32_POLY 0x04c11db7
struct arc4context {
u32 x;
u32 y;
u8 state[256];
};
static void arcfour_init(struct arc4context *parc4ctx, u8 *key, u32 key_len)
{
u32 t, u;
u32 keyindex;
u32 stateindex;
u8 *state;
u32 counter;
state = parc4ctx->state;
parc4ctx->x = 0;
parc4ctx->y = 0;
for (counter = 0; counter < 256; counter++)
state[counter] = (u8)counter;
keyindex = 0;
stateindex = 0;
for (counter = 0; counter < 256; counter++) {
t = state[counter];
stateindex = (stateindex + key[keyindex] + t) & 0xff;
u = state[stateindex];
state[stateindex] = (u8)t;
state[counter] = (u8)u;
if (++keyindex >= key_len)
keyindex = 0;
}
}
static u32 arcfour_byte(struct arc4context *parc4ctx)
{
u32 x;
u32 y;
u32 sx, sy;
u8 *state;
state = parc4ctx->state;
x = (parc4ctx->x + 1) & 0xff;
sx = state[x];
y = (sx + parc4ctx->y) & 0xff;
sy = state[y];
parc4ctx->x = x;
parc4ctx->y = y;
state[y] = (u8)sx;
state[x] = (u8)sy;
return state[(sx + sy) & 0xff];
}
static void arcfour_encrypt(struct arc4context *parc4ctx, u8 *dest, u8 *src, u32 len)
{
u32 i;
for (i = 0; i < len; i++)
dest[i] = src[i] ^ (unsigned char)arcfour_byte(parc4ctx);
}
static int bcrc32initialized;
static u32 crc32_table[256];
static u8 crc32_reverseBit(u8 data)
{
return (u8)((data<<7)&0x80) | ((data<<5)&0x40) | ((data<<3)&0x20) |
((data<<1)&0x10) | ((data>>1)&0x08) | ((data>>3)&0x04) |
((data>>5)&0x02) | ((data>>7)&0x01);
}
static void crc32_init(void)
{
if (bcrc32initialized == 1) {
return;
} else {
int i, j;
u32 c;
u8 *p = (u8 *)&c, *p1;
u8 k;
c = 0x12340000;
for (i = 0; i < 256; ++i) {
k = crc32_reverseBit((u8)i);
for (c = ((u32)k) << 24, j = 8; j > 0; --j)
c = c & 0x80000000 ? (c << 1) ^ CRC32_POLY : (c << 1);
p1 = (u8 *)&crc32_table[i];
p1[0] = crc32_reverseBit(p[3]);
p1[1] = crc32_reverseBit(p[2]);
p1[2] = crc32_reverseBit(p[1]);
p1[3] = crc32_reverseBit(p[0]);
}
bcrc32initialized = 1;
}
}
static __le32 getcrc32(u8 *buf, int len)
{
u8 *p;
u32 crc;
if (bcrc32initialized == 0)
crc32_init();
crc = 0xffffffff; /* preload shift register, per CRC-32 spec */
for (p = buf; len > 0; ++p, --len)
crc = crc32_table[(crc ^ *p) & 0xff] ^ (crc >> 8);
return cpu_to_le32(~crc); /* transmit complement, per CRC-32 spec */
}
/*
Need to consider the fragment situation
*/
......@@ -395,202 +280,24 @@ void rtw_seccalctkipmic(u8 *key, u8 *header, u8 *data, u32 data_len, u8 *mic_cod
#define P1K_SIZE 10 /* 80-bit Phase1 key */
#define RC4_KEY_SIZE 16 /* 128-bit RC4KEY (104 bits unknown) */
/* 2-unsigned char by 2-unsigned char subset of the full AES S-box table */
static const unsigned short Sbox1[2][256] = { /* Sbox for hash (can be in ROM) */
{
0xC6A5, 0xF884, 0xEE99, 0xF68D, 0xFF0D, 0xD6BD, 0xDEB1, 0x9154,
0x6050, 0x0203, 0xCEA9, 0x567D, 0xE719, 0xB562, 0x4DE6, 0xEC9A,
0x8F45, 0x1F9D, 0x8940, 0xFA87, 0xEF15, 0xB2EB, 0x8EC9, 0xFB0B,
0x41EC, 0xB367, 0x5FFD, 0x45EA, 0x23BF, 0x53F7, 0xE496, 0x9B5B,
0x75C2, 0xE11C, 0x3DAE, 0x4C6A, 0x6C5A, 0x7E41, 0xF502, 0x834F,
0x685C, 0x51F4, 0xD134, 0xF908, 0xE293, 0xAB73, 0x6253, 0x2A3F,
0x080C, 0x9552, 0x4665, 0x9D5E, 0x3028, 0x37A1, 0x0A0F, 0x2FB5,
0x0E09, 0x2436, 0x1B9B, 0xDF3D, 0xCD26, 0x4E69, 0x7FCD, 0xEA9F,
0x121B, 0x1D9E, 0x5874, 0x342E, 0x362D, 0xDCB2, 0xB4EE, 0x5BFB,
0xA4F6, 0x764D, 0xB761, 0x7DCE, 0x527B, 0xDD3E, 0x5E71, 0x1397,
0xA6F5, 0xB968, 0x0000, 0xC12C, 0x4060, 0xE31F, 0x79C8, 0xB6ED,
0xD4BE, 0x8D46, 0x67D9, 0x724B, 0x94DE, 0x98D4, 0xB0E8, 0x854A,
0xBB6B, 0xC52A, 0x4FE5, 0xED16, 0x86C5, 0x9AD7, 0x6655, 0x1194,
0x8ACF, 0xE910, 0x0406, 0xFE81, 0xA0F0, 0x7844, 0x25BA, 0x4BE3,
0xA2F3, 0x5DFE, 0x80C0, 0x058A, 0x3FAD, 0x21BC, 0x7048, 0xF104,
0x63DF, 0x77C1, 0xAF75, 0x4263, 0x2030, 0xE51A, 0xFD0E, 0xBF6D,
0x814C, 0x1814, 0x2635, 0xC32F, 0xBEE1, 0x35A2, 0x88CC, 0x2E39,
0x9357, 0x55F2, 0xFC82, 0x7A47, 0xC8AC, 0xBAE7, 0x322B, 0xE695,
0xC0A0, 0x1998, 0x9ED1, 0xA37F, 0x4466, 0x547E, 0x3BAB, 0x0B83,
0x8CCA, 0xC729, 0x6BD3, 0x283C, 0xA779, 0xBCE2, 0x161D, 0xAD76,
0xDB3B, 0x6456, 0x744E, 0x141E, 0x92DB, 0x0C0A, 0x486C, 0xB8E4,
0x9F5D, 0xBD6E, 0x43EF, 0xC4A6, 0x39A8, 0x31A4, 0xD337, 0xF28B,
0xD532, 0x8B43, 0x6E59, 0xDAB7, 0x018C, 0xB164, 0x9CD2, 0x49E0,
0xD8B4, 0xACFA, 0xF307, 0xCF25, 0xCAAF, 0xF48E, 0x47E9, 0x1018,
0x6FD5, 0xF088, 0x4A6F, 0x5C72, 0x3824, 0x57F1, 0x73C7, 0x9751,
0xCB23, 0xA17C, 0xE89C, 0x3E21, 0x96DD, 0x61DC, 0x0D86, 0x0F85,
0xE090, 0x7C42, 0x71C4, 0xCCAA, 0x90D8, 0x0605, 0xF701, 0x1C12,
0xC2A3, 0x6A5F, 0xAEF9, 0x69D0, 0x1791, 0x9958, 0x3A27, 0x27B9,
0xD938, 0xEB13, 0x2BB3, 0x2233, 0xD2BB, 0xA970, 0x0789, 0x33A7,
0x2DB6, 0x3C22, 0x1592, 0xC920, 0x8749, 0xAAFF, 0x5078, 0xA57A,
0x038F, 0x59F8, 0x0980, 0x1A17, 0x65DA, 0xD731, 0x84C6, 0xD0B8,
0x82C3, 0x29B0, 0x5A77, 0x1E11, 0x7BCB, 0xA8FC, 0x6DD6, 0x2C3A,
},
{ /* second half of table is unsigned char-reversed version of first! */
0xA5C6, 0x84F8, 0x99EE, 0x8DF6, 0x0DFF, 0xBDD6, 0xB1DE, 0x5491,
0x5060, 0x0302, 0xA9CE, 0x7D56, 0x19E7, 0x62B5, 0xE64D, 0x9AEC,
0x458F, 0x9D1F, 0x4089, 0x87FA, 0x15EF, 0xEBB2, 0xC98E, 0x0BFB,
0xEC41, 0x67B3, 0xFD5F, 0xEA45, 0xBF23, 0xF753, 0x96E4, 0x5B9B,
0xC275, 0x1CE1, 0xAE3D, 0x6A4C, 0x5A6C, 0x417E, 0x02F5, 0x4F83,
0x5C68, 0xF451, 0x34D1, 0x08F9, 0x93E2, 0x73AB, 0x5362, 0x3F2A,
0x0C08, 0x5295, 0x6546, 0x5E9D, 0x2830, 0xA137, 0x0F0A, 0xB52F,
0x090E, 0x3624, 0x9B1B, 0x3DDF, 0x26CD, 0x694E, 0xCD7F, 0x9FEA,
0x1B12, 0x9E1D, 0x7458, 0x2E34, 0x2D36, 0xB2DC, 0xEEB4, 0xFB5B,
0xF6A4, 0x4D76, 0x61B7, 0xCE7D, 0x7B52, 0x3EDD, 0x715E, 0x9713,
0xF5A6, 0x68B9, 0x0000, 0x2CC1, 0x6040, 0x1FE3, 0xC879, 0xEDB6,
0xBED4, 0x468D, 0xD967, 0x4B72, 0xDE94, 0xD498, 0xE8B0, 0x4A85,
0x6BBB, 0x2AC5, 0xE54F, 0x16ED, 0xC586, 0xD79A, 0x5566, 0x9411,
0xCF8A, 0x10E9, 0x0604, 0x81FE, 0xF0A0, 0x4478, 0xBA25, 0xE34B,
0xF3A2, 0xFE5D, 0xC080, 0x8A05, 0xAD3F, 0xBC21, 0x4870, 0x04F1,
0xDF63, 0xC177, 0x75AF, 0x6342, 0x3020, 0x1AE5, 0x0EFD, 0x6DBF,
0x4C81, 0x1418, 0x3526, 0x2FC3, 0xE1BE, 0xA235, 0xCC88, 0x392E,
0x5793, 0xF255, 0x82FC, 0x477A, 0xACC8, 0xE7BA, 0x2B32, 0x95E6,
0xA0C0, 0x9819, 0xD19E, 0x7FA3, 0x6644, 0x7E54, 0xAB3B, 0x830B,
0xCA8C, 0x29C7, 0xD36B, 0x3C28, 0x79A7, 0xE2BC, 0x1D16, 0x76AD,
0x3BDB, 0x5664, 0x4E74, 0x1E14, 0xDB92, 0x0A0C, 0x6C48, 0xE4B8,
0x5D9F, 0x6EBD, 0xEF43, 0xA6C4, 0xA839, 0xA431, 0x37D3, 0x8BF2,
0x32D5, 0x438B, 0x596E, 0xB7DA, 0x8C01, 0x64B1, 0xD29C, 0xE049,
0xB4D8, 0xFAAC, 0x07F3, 0x25CF, 0xAFCA, 0x8EF4, 0xE947, 0x1810,
0xD56F, 0x88F0, 0x6F4A, 0x725C, 0x2438, 0xF157, 0xC773, 0x5197,
0x23CB, 0x7CA1, 0x9CE8, 0x213E, 0xDD96, 0xDC61, 0x860D, 0x850F,
0x90E0, 0x427C, 0xC471, 0xAACC, 0xD890, 0x0506, 0x01F7, 0x121C,
0xA3C2, 0x5F6A, 0xF9AE, 0xD069, 0x9117, 0x5899, 0x273A, 0xB927,
0x38D9, 0x13EB, 0xB32B, 0x3322, 0xBBD2, 0x70A9, 0x8907, 0xA733,
0xB62D, 0x223C, 0x9215, 0x20C9, 0x4987, 0xFFAA, 0x7850, 0x7AA5,
0x8F03, 0xF859, 0x8009, 0x171A, 0xDA65, 0x31D7, 0xC684, 0xB8D0,
0xC382, 0xB029, 0x775A, 0x111E, 0xCB7B, 0xFCA8, 0xD66D, 0x3A2C,
}
};
/*
**********************************************************************
* Routine: Phase 1 -- generate P1K, given TA, TK, IV32
*
* Inputs:
* tk[] = temporal key [128 bits]
* ta[] = transmitter's MAC address [ 48 bits]
* iv32 = upper 32 bits of IV [ 32 bits]
* Output:
* p1k[] = Phase 1 key [ 80 bits]
*
* Note:
* This function only needs to be called every 2**16 packets,
* although in theory it could be called every packet.
*
**********************************************************************
*/
static void phase1(u16 *p1k, const u8 *tk, const u8 *ta, u32 iv32)
{
int i;
/* Initialize the 80 bits of P1K[] from IV32 and TA[0..5] */
p1k[0] = Lo16(iv32);
p1k[1] = Hi16(iv32);
p1k[2] = Mk16(ta[1], ta[0]); /* use TA[] as little-endian */
p1k[3] = Mk16(ta[3], ta[2]);
p1k[4] = Mk16(ta[5], ta[4]);
/* Now compute an unbalanced Feistel cipher with 80-bit block */
/* size on the 80-bit block P1K[], using the 128-bit key TK[] */
for (i = 0; i < PHASE1_LOOP_CNT; i++) { /* Each add operation here is mod 2**16 */
p1k[0] += _S_(p1k[4] ^ TK16((i&1)+0));
p1k[1] += _S_(p1k[0] ^ TK16((i&1)+2));
p1k[2] += _S_(p1k[1] ^ TK16((i&1)+4));
p1k[3] += _S_(p1k[2] ^ TK16((i&1)+6));
p1k[4] += _S_(p1k[3] ^ TK16((i&1)+0));
p1k[4] += (unsigned short)i; /* avoid "slide attacks" */
}
}
/*
**********************************************************************
* Routine: Phase 2 -- generate RC4KEY, given TK, P1K, IV16
*
* Inputs:
* tk[] = Temporal key [128 bits]
* p1k[] = Phase 1 output key [ 80 bits]
* iv16 = low 16 bits of IV counter [ 16 bits]
* Output:
* rc4key[] = the key used to encrypt the packet [128 bits]
*
* Note:
* The value {TA, IV32, IV16} for Phase1/Phase2 must be unique
* across all packets using the same key TK value. Then, for a
* given value of TK[], this TKIP48 construction guarantees that
* the final RC4KEY value is unique across all packets.
*
* Suggested implementation optimization: if PPK[] is "overlaid"
* appropriately on RC4KEY[], there is no need for the final
* for loop below that copies the PPK[] result into RC4KEY[].
*
**********************************************************************
*/
static void phase2(u8 *rc4key, const u8 *tk, const u16 *p1k, u16 iv16)
{
int i;
u16 PPK[6]; /* temporary key for mixing */
/* Note: all adds in the PPK[] equations below are mod 2**16 */
for (i = 0; i < 5; i++)
PPK[i] = p1k[i]; /* first, copy P1K to PPK */
PPK[5] = p1k[4] + iv16; /* next, add in IV16 */
/* Bijective non-linear mixing of the 96 bits of PPK[0..5] */
PPK[0] += _S_(PPK[5] ^ TK16(0)); /* Mix key in each "round" */
PPK[1] += _S_(PPK[0] ^ TK16(1));
PPK[2] += _S_(PPK[1] ^ TK16(2));
PPK[3] += _S_(PPK[2] ^ TK16(3));
PPK[4] += _S_(PPK[3] ^ TK16(4));
PPK[5] += _S_(PPK[4] ^ TK16(5)); /* Total # S-box lookups == 6 */
/* Final sweep: bijective, "linear". Rotates kill LSB correlations */
PPK[0] += RotR1(PPK[5] ^ TK16(6));
PPK[1] += RotR1(PPK[0] ^ TK16(7)); /* Use all of TK[] in Phase2 */
PPK[2] += RotR1(PPK[1]);
PPK[3] += RotR1(PPK[2]);
PPK[4] += RotR1(PPK[3]);
PPK[5] += RotR1(PPK[4]);
/* Note: At this point, for a given key TK[0..15], the 96-bit output */
/* value PPK[0..5] is guaranteed to be unique, as a function */
/* of the 96-bit "input" value {TA, IV32, IV16}. That is, P1K */
/* is now a keyed permutation of {TA, IV32, IV16}. */
/* Set RC4KEY[0..3], which includes "cleartext" portion of RC4 key */
rc4key[0] = Hi8(iv16); /* RC4KEY[0..2] is the WEP IV */
rc4key[1] = (Hi8(iv16) | 0x20) & 0x7F; /* Help avoid weak (FMS) keys */
rc4key[2] = Lo8(iv16);
rc4key[3] = Lo8((PPK[5] ^ TK16(0)) >> 1);
/* Copy 96 bits of PPK[0..5] to RC4KEY[4..15] (little-endian) */
for (i = 0; i < 6; i++) {
rc4key[4+2*i] = Lo8(PPK[i]);
rc4key[5+2*i] = Hi8(PPK[i]);
}
}
/* The hlen isn't include the IV */
u32 rtw_tkip_encrypt(struct adapter *padapter, u8 *pxmitframe)
{ /* exclude ICV */
u16 pnl;
u32 pnh;
u8 rc4key[16];
u8 ttkey[16];
u8 crc[4];
{
u8 hw_hdr_offset = 0;
struct arc4context mycontext;
int curfragnum, length;
u8 *pframe, *payload, *iv, *prwskey;
union pn48 dot11txpn;
u8 *pframe;
struct sta_info *stainfo;
struct pkt_attrib *pattrib = &((struct xmit_frame *)pxmitframe)->attrib;
struct security_priv *psecuritypriv = &padapter->securitypriv;
struct xmit_priv *pxmitpriv = &padapter->xmitpriv;
u32 res = _SUCCESS;
void *crypto_private;
struct sk_buff *skb;
u8 key[32];
int key_idx;
const int key_length = 32;
struct lib80211_crypto_ops *crypto_ops;
if (((struct xmit_frame *)pxmitframe)->buf_addr == NULL)
return _FAIL;
......@@ -599,57 +306,85 @@ u32 rtw_tkip_encrypt(struct adapter *padapter, u8 *pxmitframe)
(((struct xmit_frame *)pxmitframe)->pkt_offset * PACKET_OFFSET_SZ);
pframe = ((struct xmit_frame *)pxmitframe)->buf_addr + hw_hdr_offset;
/* 4 start to encrypt each fragment */
if (pattrib->encrypt == _TKIP_) {
if (pattrib->psta)
stainfo = pattrib->psta;
else
stainfo = rtw_get_stainfo(&padapter->stapriv, &pattrib->ra[0]);
if (pattrib->encrypt != _TKIP_)
return res;
if (stainfo != NULL) {
RT_TRACE(_module_rtl871x_security_c_, _drv_err_, ("%s: stainfo!= NULL!!!\n", __func__));
if (pattrib->psta)
stainfo = pattrib->psta;
else
stainfo = rtw_get_stainfo(&padapter->stapriv, &pattrib->ra[0]);
if (IS_MCAST(pattrib->ra))
prwskey = psecuritypriv->dot118021XGrpKey[psecuritypriv->dot118021XGrpKeyid].skey;
else
prwskey = &stainfo->dot118021x_UncstKey.skey[0];
if (!stainfo) {
RT_TRACE(_module_rtl871x_security_c_, _drv_err_, ("%s: stainfo==NULL!!!\n", __func__));
return _FAIL;
}
for (curfragnum = 0; curfragnum < pattrib->nr_frags; curfragnum++) {
iv = pframe+pattrib->hdrlen;
payload = pframe+pattrib->iv_len+pattrib->hdrlen;
crypto_ops = try_then_request_module(lib80211_get_crypto_ops("TKIP"), "lib80211_crypt_tkip");
GET_TKIP_PN(iv, dot11txpn);
if (IS_MCAST(pattrib->ra)) {
key_idx = psecuritypriv->dot118021XGrpKeyid;
memcpy(key, psecuritypriv->dot118021XGrpKey[key_idx].skey, 16);
memcpy(key + 16, psecuritypriv->dot118021XGrptxmickey[key_idx].skey, 16);
} else {
key_idx = 0;
memcpy(key, stainfo->dot118021x_UncstKey.skey, 16);
memcpy(key + 16, stainfo->dot11tkiptxmickey.skey, 16);
}
pnl = (u16)(dot11txpn.val);
pnh = (u32)(dot11txpn.val>>16);
phase1((u16 *)&ttkey[0], prwskey, &pattrib->ta[0], pnh);
phase2(&rc4key[0], prwskey, (u16 *)&ttkey[0], pnl);
if (!crypto_ops) {
res = _FAIL;
goto exit;
}
if ((curfragnum+1) == pattrib->nr_frags) { /* 4 the last fragment */
length = pattrib->last_txcmdsz-pattrib->hdrlen-pattrib->iv_len-pattrib->icv_len;
RT_TRACE(_module_rtl871x_security_c_, _drv_info_,
("pattrib->iv_len=%x, pattrib->icv_len=%x\n",
pattrib->iv_len, pattrib->icv_len));
*((__le32 *)crc) = getcrc32(payload, length);/* modified by Amy*/
arcfour_init(&mycontext, rc4key, 16);
arcfour_encrypt(&mycontext, payload, payload, length);
arcfour_encrypt(&mycontext, payload+length, crc, 4);
} else {
length = pxmitpriv->frag_len-pattrib->hdrlen-pattrib->iv_len-pattrib->icv_len;
*((__le32 *)crc) = getcrc32(payload, length);/* modified by Amy*/
arcfour_init(&mycontext, rc4key, 16);
arcfour_encrypt(&mycontext, payload, payload, length);
arcfour_encrypt(&mycontext, payload+length, crc, 4);
crypto_private = crypto_ops->init(key_idx);
if (!crypto_private) {
res = _FAIL;
goto exit;
}
pframe += pxmitpriv->frag_len;
pframe = (u8 *)round_up((size_t)(pframe), 4);
}
}
} else {
RT_TRACE(_module_rtl871x_security_c_, _drv_err_, ("%s: stainfo==NULL!!!\n", __func__));
if (crypto_ops->set_key(key, key_length, NULL, crypto_private) < 0) {
res = _FAIL;
goto exit_crypto_ops_deinit;
}
RT_TRACE(_module_rtl871x_security_c_, _drv_err_, ("%s: stainfo!= NULL!!!\n", __func__));
for (curfragnum = 0; curfragnum < pattrib->nr_frags; curfragnum++) {
if ((curfragnum+1) == pattrib->nr_frags)
length = pattrib->last_txcmdsz;
else
length = pxmitpriv->frag_len;
skb = dev_alloc_skb(length);
if (!skb) {
res = _FAIL;
goto exit_crypto_ops_deinit;
}
skb_put_data(skb, pframe, length);
memmove(skb->data + pattrib->iv_len, skb->data, pattrib->hdrlen);
skb_pull(skb, pattrib->iv_len);
skb_trim(skb, skb->len - pattrib->icv_len);
if (crypto_ops->encrypt_mpdu(skb, pattrib->hdrlen, crypto_private)) {
kfree_skb(skb);
res = _FAIL;
goto exit_crypto_ops_deinit;
}
memcpy(pframe, skb->data, skb->len);
pframe += skb->len;
pframe = (u8 *)round_up((size_t)(pframe), 4);
kfree_skb(skb);
}
exit_crypto_ops_deinit:
crypto_ops->deinit(crypto_private);
exit:
return res;
}
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment