Commit 123f42f0 authored by Oliver Upton's avatar Oliver Upton

Merge branch kvm-arm64/pmu_pmcr_n into kvmarm/next

* kvm-arm64/pmu_pmcr_n:
  : User-defined PMC limit, courtesy Raghavendra Rao Ananta
  :
  : Certain VMMs may want to reserve some PMCs for host use while running a
  : KVM guest. This was a bit difficult before, as KVM advertised all
  : supported counters to the guest. Userspace can now limit the number of
  : advertised PMCs by writing to PMCR_EL0.N, as KVM's sysreg and PMU
  : emulation enforce the specified limit for handling guest accesses.
  KVM: selftests: aarch64: vPMU test for validating user accesses
  KVM: selftests: aarch64: vPMU register test for unimplemented counters
  KVM: selftests: aarch64: vPMU register test for implemented counters
  KVM: selftests: aarch64: Introduce vpmu_counter_access test
  tools: Import arm_pmuv3.h
  KVM: arm64: PMU: Allow userspace to limit PMCR_EL0.N for the guest
  KVM: arm64: Sanitize PM{C,I}NTEN{SET,CLR}, PMOVS{SET,CLR} before first run
  KVM: arm64: Add {get,set}_user for PM{C,I}NTEN{SET,CLR}, PMOVS{SET,CLR}
  KVM: arm64: PMU: Set PMCR_EL0.N for vCPU based on the associated PMU
  KVM: arm64: PMU: Add a helper to read a vCPU's PMCR_EL0
  KVM: arm64: Select default PMU in KVM_ARM_VCPU_INIT handler
  KVM: arm64: PMU: Introduce helpers to set the guest's PMU
Signed-off-by: default avatarOliver Upton <oliver.upton@linux.dev>
parents 53ce49ea 62708be3
...@@ -290,6 +290,9 @@ struct kvm_arch { ...@@ -290,6 +290,9 @@ struct kvm_arch {
cpumask_var_t supported_cpus; cpumask_var_t supported_cpus;
/* PMCR_EL0.N value for the guest */
u8 pmcr_n;
/* Hypercall features firmware registers' descriptor */ /* Hypercall features firmware registers' descriptor */
struct kvm_smccc_features smccc_feat; struct kvm_smccc_features smccc_feat;
struct maple_tree smccc_filter; struct maple_tree smccc_filter;
......
...@@ -857,8 +857,7 @@ static int check_vcpu_requests(struct kvm_vcpu *vcpu) ...@@ -857,8 +857,7 @@ static int check_vcpu_requests(struct kvm_vcpu *vcpu)
} }
if (kvm_check_request(KVM_REQ_RELOAD_PMU, vcpu)) if (kvm_check_request(KVM_REQ_RELOAD_PMU, vcpu))
kvm_pmu_handle_pmcr(vcpu, kvm_vcpu_reload_pmu(vcpu);
__vcpu_sys_reg(vcpu, PMCR_EL0));
if (kvm_check_request(KVM_REQ_RESYNC_PMU_EL0, vcpu)) if (kvm_check_request(KVM_REQ_RESYNC_PMU_EL0, vcpu))
kvm_vcpu_pmu_restore_guest(vcpu); kvm_vcpu_pmu_restore_guest(vcpu);
...@@ -1319,6 +1318,21 @@ static bool kvm_vcpu_init_changed(struct kvm_vcpu *vcpu, ...@@ -1319,6 +1318,21 @@ static bool kvm_vcpu_init_changed(struct kvm_vcpu *vcpu,
KVM_VCPU_MAX_FEATURES); KVM_VCPU_MAX_FEATURES);
} }
static int kvm_setup_vcpu(struct kvm_vcpu *vcpu)
{
struct kvm *kvm = vcpu->kvm;
int ret = 0;
/*
* When the vCPU has a PMU, but no PMU is set for the guest
* yet, set the default one.
*/
if (kvm_vcpu_has_pmu(vcpu) && !kvm->arch.arm_pmu)
ret = kvm_arm_set_default_pmu(kvm);
return ret;
}
static int __kvm_vcpu_set_target(struct kvm_vcpu *vcpu, static int __kvm_vcpu_set_target(struct kvm_vcpu *vcpu,
const struct kvm_vcpu_init *init) const struct kvm_vcpu_init *init)
{ {
...@@ -1334,6 +1348,10 @@ static int __kvm_vcpu_set_target(struct kvm_vcpu *vcpu, ...@@ -1334,6 +1348,10 @@ static int __kvm_vcpu_set_target(struct kvm_vcpu *vcpu,
bitmap_copy(kvm->arch.vcpu_features, &features, KVM_VCPU_MAX_FEATURES); bitmap_copy(kvm->arch.vcpu_features, &features, KVM_VCPU_MAX_FEATURES);
ret = kvm_setup_vcpu(vcpu);
if (ret)
goto out_unlock;
/* Now we know what it is, we can reset it. */ /* Now we know what it is, we can reset it. */
kvm_reset_vcpu(vcpu); kvm_reset_vcpu(vcpu);
......
...@@ -89,7 +89,7 @@ static bool kvm_pmc_is_64bit(struct kvm_pmc *pmc) ...@@ -89,7 +89,7 @@ static bool kvm_pmc_is_64bit(struct kvm_pmc *pmc)
static bool kvm_pmc_has_64bit_overflow(struct kvm_pmc *pmc) static bool kvm_pmc_has_64bit_overflow(struct kvm_pmc *pmc)
{ {
u64 val = __vcpu_sys_reg(kvm_pmc_to_vcpu(pmc), PMCR_EL0); u64 val = kvm_vcpu_read_pmcr(kvm_pmc_to_vcpu(pmc));
return (pmc->idx < ARMV8_PMU_CYCLE_IDX && (val & ARMV8_PMU_PMCR_LP)) || return (pmc->idx < ARMV8_PMU_CYCLE_IDX && (val & ARMV8_PMU_PMCR_LP)) ||
(pmc->idx == ARMV8_PMU_CYCLE_IDX && (val & ARMV8_PMU_PMCR_LC)); (pmc->idx == ARMV8_PMU_CYCLE_IDX && (val & ARMV8_PMU_PMCR_LC));
...@@ -267,7 +267,7 @@ void kvm_pmu_vcpu_destroy(struct kvm_vcpu *vcpu) ...@@ -267,7 +267,7 @@ void kvm_pmu_vcpu_destroy(struct kvm_vcpu *vcpu)
u64 kvm_pmu_valid_counter_mask(struct kvm_vcpu *vcpu) u64 kvm_pmu_valid_counter_mask(struct kvm_vcpu *vcpu)
{ {
u64 val = __vcpu_sys_reg(vcpu, PMCR_EL0) >> ARMV8_PMU_PMCR_N_SHIFT; u64 val = kvm_vcpu_read_pmcr(vcpu) >> ARMV8_PMU_PMCR_N_SHIFT;
val &= ARMV8_PMU_PMCR_N_MASK; val &= ARMV8_PMU_PMCR_N_MASK;
if (val == 0) if (val == 0)
...@@ -289,7 +289,7 @@ void kvm_pmu_enable_counter_mask(struct kvm_vcpu *vcpu, u64 val) ...@@ -289,7 +289,7 @@ void kvm_pmu_enable_counter_mask(struct kvm_vcpu *vcpu, u64 val)
if (!kvm_vcpu_has_pmu(vcpu)) if (!kvm_vcpu_has_pmu(vcpu))
return; return;
if (!(__vcpu_sys_reg(vcpu, PMCR_EL0) & ARMV8_PMU_PMCR_E) || !val) if (!(kvm_vcpu_read_pmcr(vcpu) & ARMV8_PMU_PMCR_E) || !val)
return; return;
for (i = 0; i < ARMV8_PMU_MAX_COUNTERS; i++) { for (i = 0; i < ARMV8_PMU_MAX_COUNTERS; i++) {
...@@ -341,7 +341,7 @@ static u64 kvm_pmu_overflow_status(struct kvm_vcpu *vcpu) ...@@ -341,7 +341,7 @@ static u64 kvm_pmu_overflow_status(struct kvm_vcpu *vcpu)
{ {
u64 reg = 0; u64 reg = 0;
if ((__vcpu_sys_reg(vcpu, PMCR_EL0) & ARMV8_PMU_PMCR_E)) { if ((kvm_vcpu_read_pmcr(vcpu) & ARMV8_PMU_PMCR_E)) {
reg = __vcpu_sys_reg(vcpu, PMOVSSET_EL0); reg = __vcpu_sys_reg(vcpu, PMOVSSET_EL0);
reg &= __vcpu_sys_reg(vcpu, PMCNTENSET_EL0); reg &= __vcpu_sys_reg(vcpu, PMCNTENSET_EL0);
reg &= __vcpu_sys_reg(vcpu, PMINTENSET_EL1); reg &= __vcpu_sys_reg(vcpu, PMINTENSET_EL1);
...@@ -443,7 +443,7 @@ static void kvm_pmu_counter_increment(struct kvm_vcpu *vcpu, ...@@ -443,7 +443,7 @@ static void kvm_pmu_counter_increment(struct kvm_vcpu *vcpu,
{ {
int i; int i;
if (!(__vcpu_sys_reg(vcpu, PMCR_EL0) & ARMV8_PMU_PMCR_E)) if (!(kvm_vcpu_read_pmcr(vcpu) & ARMV8_PMU_PMCR_E))
return; return;
/* Weed out disabled counters */ /* Weed out disabled counters */
...@@ -586,7 +586,7 @@ void kvm_pmu_handle_pmcr(struct kvm_vcpu *vcpu, u64 val) ...@@ -586,7 +586,7 @@ void kvm_pmu_handle_pmcr(struct kvm_vcpu *vcpu, u64 val)
static bool kvm_pmu_counter_is_enabled(struct kvm_pmc *pmc) static bool kvm_pmu_counter_is_enabled(struct kvm_pmc *pmc)
{ {
struct kvm_vcpu *vcpu = kvm_pmc_to_vcpu(pmc); struct kvm_vcpu *vcpu = kvm_pmc_to_vcpu(pmc);
return (__vcpu_sys_reg(vcpu, PMCR_EL0) & ARMV8_PMU_PMCR_E) && return (kvm_vcpu_read_pmcr(vcpu) & ARMV8_PMU_PMCR_E) &&
(__vcpu_sys_reg(vcpu, PMCNTENSET_EL0) & BIT(pmc->idx)); (__vcpu_sys_reg(vcpu, PMCNTENSET_EL0) & BIT(pmc->idx));
} }
...@@ -735,10 +735,9 @@ static struct arm_pmu *kvm_pmu_probe_armpmu(void) ...@@ -735,10 +735,9 @@ static struct arm_pmu *kvm_pmu_probe_armpmu(void)
* It is still necessary to get a valid cpu, though, to probe for the * It is still necessary to get a valid cpu, though, to probe for the
* default PMU instance as userspace is not required to specify a PMU * default PMU instance as userspace is not required to specify a PMU
* type. In order to uphold the preexisting behavior KVM selects the * type. In order to uphold the preexisting behavior KVM selects the
* PMU instance for the core where the first call to the * PMU instance for the core during vcpu init. A dependent use
* KVM_ARM_VCPU_PMU_V3_CTRL attribute group occurs. A dependent use case * case would be a user with disdain of all things big.LITTLE that
* would be a user with disdain of all things big.LITTLE that affines * affines the VMM to a particular cluster of cores.
* the VMM to a particular cluster of cores.
* *
* In any case, userspace should just do the sane thing and use the UAPI * In any case, userspace should just do the sane thing and use the UAPI
* to select a PMU type directly. But, be wary of the baggage being * to select a PMU type directly. But, be wary of the baggage being
...@@ -804,6 +803,17 @@ u64 kvm_pmu_get_pmceid(struct kvm_vcpu *vcpu, bool pmceid1) ...@@ -804,6 +803,17 @@ u64 kvm_pmu_get_pmceid(struct kvm_vcpu *vcpu, bool pmceid1)
return val & mask; return val & mask;
} }
void kvm_vcpu_reload_pmu(struct kvm_vcpu *vcpu)
{
u64 mask = kvm_pmu_valid_counter_mask(vcpu);
kvm_pmu_handle_pmcr(vcpu, kvm_vcpu_read_pmcr(vcpu));
__vcpu_sys_reg(vcpu, PMOVSSET_EL0) &= mask;
__vcpu_sys_reg(vcpu, PMINTENSET_EL1) &= mask;
__vcpu_sys_reg(vcpu, PMCNTENSET_EL0) &= mask;
}
int kvm_arm_pmu_v3_enable(struct kvm_vcpu *vcpu) int kvm_arm_pmu_v3_enable(struct kvm_vcpu *vcpu)
{ {
if (!kvm_vcpu_has_pmu(vcpu)) if (!kvm_vcpu_has_pmu(vcpu))
...@@ -892,6 +902,52 @@ static bool pmu_irq_is_valid(struct kvm *kvm, int irq) ...@@ -892,6 +902,52 @@ static bool pmu_irq_is_valid(struct kvm *kvm, int irq)
return true; return true;
} }
/**
* kvm_arm_pmu_get_max_counters - Return the max number of PMU counters.
* @kvm: The kvm pointer
*/
u8 kvm_arm_pmu_get_max_counters(struct kvm *kvm)
{
struct arm_pmu *arm_pmu = kvm->arch.arm_pmu;
/*
* The arm_pmu->num_events considers the cycle counter as well.
* Ignore that and return only the general-purpose counters.
*/
return arm_pmu->num_events - 1;
}
static void kvm_arm_set_pmu(struct kvm *kvm, struct arm_pmu *arm_pmu)
{
lockdep_assert_held(&kvm->arch.config_lock);
kvm->arch.arm_pmu = arm_pmu;
kvm->arch.pmcr_n = kvm_arm_pmu_get_max_counters(kvm);
}
/**
* kvm_arm_set_default_pmu - No PMU set, get the default one.
* @kvm: The kvm pointer
*
* The observant among you will notice that the supported_cpus
* mask does not get updated for the default PMU even though it
* is quite possible the selected instance supports only a
* subset of cores in the system. This is intentional, and
* upholds the preexisting behavior on heterogeneous systems
* where vCPUs can be scheduled on any core but the guest
* counters could stop working.
*/
int kvm_arm_set_default_pmu(struct kvm *kvm)
{
struct arm_pmu *arm_pmu = kvm_pmu_probe_armpmu();
if (!arm_pmu)
return -ENODEV;
kvm_arm_set_pmu(kvm, arm_pmu);
return 0;
}
static int kvm_arm_pmu_v3_set_pmu(struct kvm_vcpu *vcpu, int pmu_id) static int kvm_arm_pmu_v3_set_pmu(struct kvm_vcpu *vcpu, int pmu_id)
{ {
struct kvm *kvm = vcpu->kvm; struct kvm *kvm = vcpu->kvm;
...@@ -911,7 +967,7 @@ static int kvm_arm_pmu_v3_set_pmu(struct kvm_vcpu *vcpu, int pmu_id) ...@@ -911,7 +967,7 @@ static int kvm_arm_pmu_v3_set_pmu(struct kvm_vcpu *vcpu, int pmu_id)
break; break;
} }
kvm->arch.arm_pmu = arm_pmu; kvm_arm_set_pmu(kvm, arm_pmu);
cpumask_copy(kvm->arch.supported_cpus, &arm_pmu->supported_cpus); cpumask_copy(kvm->arch.supported_cpus, &arm_pmu->supported_cpus);
ret = 0; ret = 0;
break; break;
...@@ -934,23 +990,6 @@ int kvm_arm_pmu_v3_set_attr(struct kvm_vcpu *vcpu, struct kvm_device_attr *attr) ...@@ -934,23 +990,6 @@ int kvm_arm_pmu_v3_set_attr(struct kvm_vcpu *vcpu, struct kvm_device_attr *attr)
if (vcpu->arch.pmu.created) if (vcpu->arch.pmu.created)
return -EBUSY; return -EBUSY;
if (!kvm->arch.arm_pmu) {
/*
* No PMU set, get the default one.
*
* The observant among you will notice that the supported_cpus
* mask does not get updated for the default PMU even though it
* is quite possible the selected instance supports only a
* subset of cores in the system. This is intentional, and
* upholds the preexisting behavior on heterogeneous systems
* where vCPUs can be scheduled on any core but the guest
* counters could stop working.
*/
kvm->arch.arm_pmu = kvm_pmu_probe_armpmu();
if (!kvm->arch.arm_pmu)
return -ENODEV;
}
switch (attr->attr) { switch (attr->attr) {
case KVM_ARM_VCPU_PMU_V3_IRQ: { case KVM_ARM_VCPU_PMU_V3_IRQ: {
int __user *uaddr = (int __user *)(long)attr->addr; int __user *uaddr = (int __user *)(long)attr->addr;
...@@ -1090,3 +1129,15 @@ u8 kvm_arm_pmu_get_pmuver_limit(void) ...@@ -1090,3 +1129,15 @@ u8 kvm_arm_pmu_get_pmuver_limit(void)
ID_AA64DFR0_EL1_PMUVer_V3P5); ID_AA64DFR0_EL1_PMUVer_V3P5);
return FIELD_GET(ARM64_FEATURE_MASK(ID_AA64DFR0_EL1_PMUVer), tmp); return FIELD_GET(ARM64_FEATURE_MASK(ID_AA64DFR0_EL1_PMUVer), tmp);
} }
/**
* kvm_vcpu_read_pmcr - Read PMCR_EL0 register for the vCPU
* @vcpu: The vcpu pointer
*/
u64 kvm_vcpu_read_pmcr(struct kvm_vcpu *vcpu)
{
u64 pmcr = __vcpu_sys_reg(vcpu, PMCR_EL0) &
~(ARMV8_PMU_PMCR_N_MASK << ARMV8_PMU_PMCR_N_SHIFT);
return pmcr | ((u64)vcpu->kvm->arch.pmcr_n << ARMV8_PMU_PMCR_N_SHIFT);
}
...@@ -719,14 +719,9 @@ static unsigned int pmu_visibility(const struct kvm_vcpu *vcpu, ...@@ -719,14 +719,9 @@ static unsigned int pmu_visibility(const struct kvm_vcpu *vcpu,
static u64 reset_pmu_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r) static u64 reset_pmu_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
{ {
u64 n, mask = BIT(ARMV8_PMU_CYCLE_IDX); u64 mask = BIT(ARMV8_PMU_CYCLE_IDX);
u8 n = vcpu->kvm->arch.pmcr_n;
/* No PMU available, any PMU reg may UNDEF... */
if (!kvm_arm_support_pmu_v3())
return 0;
n = read_sysreg(pmcr_el0) >> ARMV8_PMU_PMCR_N_SHIFT;
n &= ARMV8_PMU_PMCR_N_MASK;
if (n) if (n)
mask |= GENMASK(n - 1, 0); mask |= GENMASK(n - 1, 0);
...@@ -766,17 +761,15 @@ static u64 reset_pmselr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r) ...@@ -766,17 +761,15 @@ static u64 reset_pmselr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
static u64 reset_pmcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r) static u64 reset_pmcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
{ {
u64 pmcr; u64 pmcr = 0;
/* No PMU available, PMCR_EL0 may UNDEF... */
if (!kvm_arm_support_pmu_v3())
return 0;
/* Only preserve PMCR_EL0.N, and reset the rest to 0 */
pmcr = read_sysreg(pmcr_el0) & (ARMV8_PMU_PMCR_N_MASK << ARMV8_PMU_PMCR_N_SHIFT);
if (!kvm_supports_32bit_el0()) if (!kvm_supports_32bit_el0())
pmcr |= ARMV8_PMU_PMCR_LC; pmcr |= ARMV8_PMU_PMCR_LC;
/*
* The value of PMCR.N field is included when the
* vCPU register is read via kvm_vcpu_read_pmcr().
*/
__vcpu_sys_reg(vcpu, r->reg) = pmcr; __vcpu_sys_reg(vcpu, r->reg) = pmcr;
return __vcpu_sys_reg(vcpu, r->reg); return __vcpu_sys_reg(vcpu, r->reg);
...@@ -826,7 +819,7 @@ static bool access_pmcr(struct kvm_vcpu *vcpu, struct sys_reg_params *p, ...@@ -826,7 +819,7 @@ static bool access_pmcr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
* Only update writeable bits of PMCR (continuing into * Only update writeable bits of PMCR (continuing into
* kvm_pmu_handle_pmcr() as well) * kvm_pmu_handle_pmcr() as well)
*/ */
val = __vcpu_sys_reg(vcpu, PMCR_EL0); val = kvm_vcpu_read_pmcr(vcpu);
val &= ~ARMV8_PMU_PMCR_MASK; val &= ~ARMV8_PMU_PMCR_MASK;
val |= p->regval & ARMV8_PMU_PMCR_MASK; val |= p->regval & ARMV8_PMU_PMCR_MASK;
if (!kvm_supports_32bit_el0()) if (!kvm_supports_32bit_el0())
...@@ -834,7 +827,7 @@ static bool access_pmcr(struct kvm_vcpu *vcpu, struct sys_reg_params *p, ...@@ -834,7 +827,7 @@ static bool access_pmcr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
kvm_pmu_handle_pmcr(vcpu, val); kvm_pmu_handle_pmcr(vcpu, val);
} else { } else {
/* PMCR.P & PMCR.C are RAZ */ /* PMCR.P & PMCR.C are RAZ */
val = __vcpu_sys_reg(vcpu, PMCR_EL0) val = kvm_vcpu_read_pmcr(vcpu)
& ~(ARMV8_PMU_PMCR_P | ARMV8_PMU_PMCR_C); & ~(ARMV8_PMU_PMCR_P | ARMV8_PMU_PMCR_C);
p->regval = val; p->regval = val;
} }
...@@ -883,7 +876,7 @@ static bool pmu_counter_idx_valid(struct kvm_vcpu *vcpu, u64 idx) ...@@ -883,7 +876,7 @@ static bool pmu_counter_idx_valid(struct kvm_vcpu *vcpu, u64 idx)
{ {
u64 pmcr, val; u64 pmcr, val;
pmcr = __vcpu_sys_reg(vcpu, PMCR_EL0); pmcr = kvm_vcpu_read_pmcr(vcpu);
val = (pmcr >> ARMV8_PMU_PMCR_N_SHIFT) & ARMV8_PMU_PMCR_N_MASK; val = (pmcr >> ARMV8_PMU_PMCR_N_SHIFT) & ARMV8_PMU_PMCR_N_MASK;
if (idx >= val && idx != ARMV8_PMU_CYCLE_IDX) { if (idx >= val && idx != ARMV8_PMU_CYCLE_IDX) {
kvm_inject_undefined(vcpu); kvm_inject_undefined(vcpu);
...@@ -998,6 +991,39 @@ static bool access_pmu_evtyper(struct kvm_vcpu *vcpu, struct sys_reg_params *p, ...@@ -998,6 +991,39 @@ static bool access_pmu_evtyper(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
return true; return true;
} }
static int set_pmreg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r, u64 val)
{
bool set;
val &= kvm_pmu_valid_counter_mask(vcpu);
switch (r->reg) {
case PMOVSSET_EL0:
/* CRm[1] being set indicates a SET register, and CLR otherwise */
set = r->CRm & 2;
break;
default:
/* Op2[0] being set indicates a SET register, and CLR otherwise */
set = r->Op2 & 1;
break;
}
if (set)
__vcpu_sys_reg(vcpu, r->reg) |= val;
else
__vcpu_sys_reg(vcpu, r->reg) &= ~val;
return 0;
}
static int get_pmreg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r, u64 *val)
{
u64 mask = kvm_pmu_valid_counter_mask(vcpu);
*val = __vcpu_sys_reg(vcpu, r->reg) & mask;
return 0;
}
static bool access_pmcnten(struct kvm_vcpu *vcpu, struct sys_reg_params *p, static bool access_pmcnten(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
const struct sys_reg_desc *r) const struct sys_reg_desc *r)
{ {
...@@ -1107,6 +1133,51 @@ static bool access_pmuserenr(struct kvm_vcpu *vcpu, struct sys_reg_params *p, ...@@ -1107,6 +1133,51 @@ static bool access_pmuserenr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
return true; return true;
} }
static int get_pmcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r,
u64 *val)
{
*val = kvm_vcpu_read_pmcr(vcpu);
return 0;
}
static int set_pmcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r,
u64 val)
{
u8 new_n = (val >> ARMV8_PMU_PMCR_N_SHIFT) & ARMV8_PMU_PMCR_N_MASK;
struct kvm *kvm = vcpu->kvm;
mutex_lock(&kvm->arch.config_lock);
/*
* The vCPU can't have more counters than the PMU hardware
* implements. Ignore this error to maintain compatibility
* with the existing KVM behavior.
*/
if (!kvm_vm_has_ran_once(kvm) &&
new_n <= kvm_arm_pmu_get_max_counters(kvm))
kvm->arch.pmcr_n = new_n;
mutex_unlock(&kvm->arch.config_lock);
/*
* Ignore writes to RES0 bits, read only bits that are cleared on
* vCPU reset, and writable bits that KVM doesn't support yet.
* (i.e. only PMCR.N and bits [7:0] are mutable from userspace)
* The LP bit is RES0 when FEAT_PMUv3p5 is not supported on the vCPU.
* But, we leave the bit as it is here, as the vCPU's PMUver might
* be changed later (NOTE: the bit will be cleared on first vCPU run
* if necessary).
*/
val &= ARMV8_PMU_PMCR_MASK;
/* The LC bit is RES1 when AArch32 is not supported */
if (!kvm_supports_32bit_el0())
val |= ARMV8_PMU_PMCR_LC;
__vcpu_sys_reg(vcpu, r->reg) = val;
return 0;
}
/* Silly macro to expand the DBG{BCR,BVR,WVR,WCR}n_EL1 registers in one go */ /* Silly macro to expand the DBG{BCR,BVR,WVR,WCR}n_EL1 registers in one go */
#define DBG_BCR_BVR_WCR_WVR_EL1(n) \ #define DBG_BCR_BVR_WCR_WVR_EL1(n) \
{ SYS_DESC(SYS_DBGBVRn_EL1(n)), \ { SYS_DESC(SYS_DBGBVRn_EL1(n)), \
...@@ -2188,9 +2259,11 @@ static const struct sys_reg_desc sys_reg_descs[] = { ...@@ -2188,9 +2259,11 @@ static const struct sys_reg_desc sys_reg_descs[] = {
/* PMBIDR_EL1 is not trapped */ /* PMBIDR_EL1 is not trapped */
{ PMU_SYS_REG(PMINTENSET_EL1), { PMU_SYS_REG(PMINTENSET_EL1),
.access = access_pminten, .reg = PMINTENSET_EL1 }, .access = access_pminten, .reg = PMINTENSET_EL1,
.get_user = get_pmreg, .set_user = set_pmreg },
{ PMU_SYS_REG(PMINTENCLR_EL1), { PMU_SYS_REG(PMINTENCLR_EL1),
.access = access_pminten, .reg = PMINTENSET_EL1 }, .access = access_pminten, .reg = PMINTENSET_EL1,
.get_user = get_pmreg, .set_user = set_pmreg },
{ SYS_DESC(SYS_PMMIR_EL1), trap_raz_wi }, { SYS_DESC(SYS_PMMIR_EL1), trap_raz_wi },
{ SYS_DESC(SYS_MAIR_EL1), access_vm_reg, reset_unknown, MAIR_EL1 }, { SYS_DESC(SYS_MAIR_EL1), access_vm_reg, reset_unknown, MAIR_EL1 },
...@@ -2238,14 +2311,17 @@ static const struct sys_reg_desc sys_reg_descs[] = { ...@@ -2238,14 +2311,17 @@ static const struct sys_reg_desc sys_reg_descs[] = {
{ SYS_DESC(SYS_CTR_EL0), access_ctr }, { SYS_DESC(SYS_CTR_EL0), access_ctr },
{ SYS_DESC(SYS_SVCR), undef_access }, { SYS_DESC(SYS_SVCR), undef_access },
{ PMU_SYS_REG(PMCR_EL0), .access = access_pmcr, { PMU_SYS_REG(PMCR_EL0), .access = access_pmcr, .reset = reset_pmcr,
.reset = reset_pmcr, .reg = PMCR_EL0 }, .reg = PMCR_EL0, .get_user = get_pmcr, .set_user = set_pmcr },
{ PMU_SYS_REG(PMCNTENSET_EL0), { PMU_SYS_REG(PMCNTENSET_EL0),
.access = access_pmcnten, .reg = PMCNTENSET_EL0 }, .access = access_pmcnten, .reg = PMCNTENSET_EL0,
.get_user = get_pmreg, .set_user = set_pmreg },
{ PMU_SYS_REG(PMCNTENCLR_EL0), { PMU_SYS_REG(PMCNTENCLR_EL0),
.access = access_pmcnten, .reg = PMCNTENSET_EL0 }, .access = access_pmcnten, .reg = PMCNTENSET_EL0,
.get_user = get_pmreg, .set_user = set_pmreg },
{ PMU_SYS_REG(PMOVSCLR_EL0), { PMU_SYS_REG(PMOVSCLR_EL0),
.access = access_pmovs, .reg = PMOVSSET_EL0 }, .access = access_pmovs, .reg = PMOVSSET_EL0,
.get_user = get_pmreg, .set_user = set_pmreg },
/* /*
* PM_SWINC_EL0 is exposed to userspace as RAZ/WI, as it was * PM_SWINC_EL0 is exposed to userspace as RAZ/WI, as it was
* previously (and pointlessly) advertised in the past... * previously (and pointlessly) advertised in the past...
...@@ -2273,7 +2349,8 @@ static const struct sys_reg_desc sys_reg_descs[] = { ...@@ -2273,7 +2349,8 @@ static const struct sys_reg_desc sys_reg_descs[] = {
{ PMU_SYS_REG(PMUSERENR_EL0), .access = access_pmuserenr, { PMU_SYS_REG(PMUSERENR_EL0), .access = access_pmuserenr,
.reset = reset_val, .reg = PMUSERENR_EL0, .val = 0 }, .reset = reset_val, .reg = PMUSERENR_EL0, .val = 0 },
{ PMU_SYS_REG(PMOVSSET_EL0), { PMU_SYS_REG(PMOVSSET_EL0),
.access = access_pmovs, .reg = PMOVSSET_EL0 }, .access = access_pmovs, .reg = PMOVSSET_EL0,
.get_user = get_pmreg, .set_user = set_pmreg },
{ SYS_DESC(SYS_TPIDR_EL0), NULL, reset_unknown, TPIDR_EL0 }, { SYS_DESC(SYS_TPIDR_EL0), NULL, reset_unknown, TPIDR_EL0 },
{ SYS_DESC(SYS_TPIDRRO_EL0), NULL, reset_unknown, TPIDRRO_EL0 }, { SYS_DESC(SYS_TPIDRRO_EL0), NULL, reset_unknown, TPIDRRO_EL0 },
......
...@@ -13,7 +13,6 @@ ...@@ -13,7 +13,6 @@
#define ARMV8_PMU_CYCLE_IDX (ARMV8_PMU_MAX_COUNTERS - 1) #define ARMV8_PMU_CYCLE_IDX (ARMV8_PMU_MAX_COUNTERS - 1)
#if IS_ENABLED(CONFIG_HW_PERF_EVENTS) && IS_ENABLED(CONFIG_KVM) #if IS_ENABLED(CONFIG_HW_PERF_EVENTS) && IS_ENABLED(CONFIG_KVM)
struct kvm_pmc { struct kvm_pmc {
u8 idx; /* index into the pmu->pmc array */ u8 idx; /* index into the pmu->pmc array */
struct perf_event *perf_event; struct perf_event *perf_event;
...@@ -63,6 +62,7 @@ void kvm_pmu_software_increment(struct kvm_vcpu *vcpu, u64 val); ...@@ -63,6 +62,7 @@ void kvm_pmu_software_increment(struct kvm_vcpu *vcpu, u64 val);
void kvm_pmu_handle_pmcr(struct kvm_vcpu *vcpu, u64 val); void kvm_pmu_handle_pmcr(struct kvm_vcpu *vcpu, u64 val);
void kvm_pmu_set_counter_event_type(struct kvm_vcpu *vcpu, u64 data, void kvm_pmu_set_counter_event_type(struct kvm_vcpu *vcpu, u64 data,
u64 select_idx); u64 select_idx);
void kvm_vcpu_reload_pmu(struct kvm_vcpu *vcpu);
int kvm_arm_pmu_v3_set_attr(struct kvm_vcpu *vcpu, int kvm_arm_pmu_v3_set_attr(struct kvm_vcpu *vcpu,
struct kvm_device_attr *attr); struct kvm_device_attr *attr);
int kvm_arm_pmu_v3_get_attr(struct kvm_vcpu *vcpu, int kvm_arm_pmu_v3_get_attr(struct kvm_vcpu *vcpu,
...@@ -102,7 +102,10 @@ void kvm_vcpu_pmu_resync_el0(void); ...@@ -102,7 +102,10 @@ void kvm_vcpu_pmu_resync_el0(void);
u8 kvm_arm_pmu_get_pmuver_limit(void); u8 kvm_arm_pmu_get_pmuver_limit(void);
u64 kvm_pmu_evtyper_mask(struct kvm *kvm); u64 kvm_pmu_evtyper_mask(struct kvm *kvm);
int kvm_arm_set_default_pmu(struct kvm *kvm);
u8 kvm_arm_pmu_get_max_counters(struct kvm *kvm);
u64 kvm_vcpu_read_pmcr(struct kvm_vcpu *vcpu);
#else #else
struct kvm_pmu { struct kvm_pmu {
}; };
...@@ -169,6 +172,7 @@ static inline u64 kvm_pmu_get_pmceid(struct kvm_vcpu *vcpu, bool pmceid1) ...@@ -169,6 +172,7 @@ static inline u64 kvm_pmu_get_pmceid(struct kvm_vcpu *vcpu, bool pmceid1)
static inline void kvm_pmu_update_vcpu_events(struct kvm_vcpu *vcpu) {} static inline void kvm_pmu_update_vcpu_events(struct kvm_vcpu *vcpu) {}
static inline void kvm_vcpu_pmu_restore_guest(struct kvm_vcpu *vcpu) {} static inline void kvm_vcpu_pmu_restore_guest(struct kvm_vcpu *vcpu) {}
static inline void kvm_vcpu_pmu_restore_host(struct kvm_vcpu *vcpu) {} static inline void kvm_vcpu_pmu_restore_host(struct kvm_vcpu *vcpu) {}
static inline void kvm_vcpu_reload_pmu(struct kvm_vcpu *vcpu) {}
static inline u8 kvm_arm_pmu_get_pmuver_limit(void) static inline u8 kvm_arm_pmu_get_pmuver_limit(void)
{ {
return 0; return 0;
...@@ -179,6 +183,21 @@ static inline u64 kvm_pmu_evtyper_mask(struct kvm *kvm) ...@@ -179,6 +183,21 @@ static inline u64 kvm_pmu_evtyper_mask(struct kvm *kvm)
} }
static inline void kvm_vcpu_pmu_resync_el0(void) {} static inline void kvm_vcpu_pmu_resync_el0(void) {}
static inline int kvm_arm_set_default_pmu(struct kvm *kvm)
{
return -ENODEV;
}
static inline u8 kvm_arm_pmu_get_max_counters(struct kvm *kvm)
{
return 0;
}
static inline u64 kvm_vcpu_read_pmcr(struct kvm_vcpu *vcpu)
{
return 0;
}
#endif #endif
#endif #endif
/* SPDX-License-Identifier: GPL-2.0 */
/*
* Copyright (C) 2012 ARM Ltd.
*/
#ifndef __PERF_ARM_PMUV3_H
#define __PERF_ARM_PMUV3_H
#include <assert.h>
#include <asm/bug.h>
#define ARMV8_PMU_MAX_COUNTERS 32
#define ARMV8_PMU_COUNTER_MASK (ARMV8_PMU_MAX_COUNTERS - 1)
/*
* Common architectural and microarchitectural event numbers.
*/
#define ARMV8_PMUV3_PERFCTR_SW_INCR 0x0000
#define ARMV8_PMUV3_PERFCTR_L1I_CACHE_REFILL 0x0001
#define ARMV8_PMUV3_PERFCTR_L1I_TLB_REFILL 0x0002
#define ARMV8_PMUV3_PERFCTR_L1D_CACHE_REFILL 0x0003
#define ARMV8_PMUV3_PERFCTR_L1D_CACHE 0x0004
#define ARMV8_PMUV3_PERFCTR_L1D_TLB_REFILL 0x0005
#define ARMV8_PMUV3_PERFCTR_LD_RETIRED 0x0006
#define ARMV8_PMUV3_PERFCTR_ST_RETIRED 0x0007
#define ARMV8_PMUV3_PERFCTR_INST_RETIRED 0x0008
#define ARMV8_PMUV3_PERFCTR_EXC_TAKEN 0x0009
#define ARMV8_PMUV3_PERFCTR_EXC_RETURN 0x000A
#define ARMV8_PMUV3_PERFCTR_CID_WRITE_RETIRED 0x000B
#define ARMV8_PMUV3_PERFCTR_PC_WRITE_RETIRED 0x000C
#define ARMV8_PMUV3_PERFCTR_BR_IMMED_RETIRED 0x000D
#define ARMV8_PMUV3_PERFCTR_BR_RETURN_RETIRED 0x000E
#define ARMV8_PMUV3_PERFCTR_UNALIGNED_LDST_RETIRED 0x000F
#define ARMV8_PMUV3_PERFCTR_BR_MIS_PRED 0x0010
#define ARMV8_PMUV3_PERFCTR_CPU_CYCLES 0x0011
#define ARMV8_PMUV3_PERFCTR_BR_PRED 0x0012
#define ARMV8_PMUV3_PERFCTR_MEM_ACCESS 0x0013
#define ARMV8_PMUV3_PERFCTR_L1I_CACHE 0x0014
#define ARMV8_PMUV3_PERFCTR_L1D_CACHE_WB 0x0015
#define ARMV8_PMUV3_PERFCTR_L2D_CACHE 0x0016
#define ARMV8_PMUV3_PERFCTR_L2D_CACHE_REFILL 0x0017
#define ARMV8_PMUV3_PERFCTR_L2D_CACHE_WB 0x0018
#define ARMV8_PMUV3_PERFCTR_BUS_ACCESS 0x0019
#define ARMV8_PMUV3_PERFCTR_MEMORY_ERROR 0x001A
#define ARMV8_PMUV3_PERFCTR_INST_SPEC 0x001B
#define ARMV8_PMUV3_PERFCTR_TTBR_WRITE_RETIRED 0x001C
#define ARMV8_PMUV3_PERFCTR_BUS_CYCLES 0x001D
#define ARMV8_PMUV3_PERFCTR_CHAIN 0x001E
#define ARMV8_PMUV3_PERFCTR_L1D_CACHE_ALLOCATE 0x001F
#define ARMV8_PMUV3_PERFCTR_L2D_CACHE_ALLOCATE 0x0020
#define ARMV8_PMUV3_PERFCTR_BR_RETIRED 0x0021
#define ARMV8_PMUV3_PERFCTR_BR_MIS_PRED_RETIRED 0x0022
#define ARMV8_PMUV3_PERFCTR_STALL_FRONTEND 0x0023
#define ARMV8_PMUV3_PERFCTR_STALL_BACKEND 0x0024
#define ARMV8_PMUV3_PERFCTR_L1D_TLB 0x0025
#define ARMV8_PMUV3_PERFCTR_L1I_TLB 0x0026
#define ARMV8_PMUV3_PERFCTR_L2I_CACHE 0x0027
#define ARMV8_PMUV3_PERFCTR_L2I_CACHE_REFILL 0x0028
#define ARMV8_PMUV3_PERFCTR_L3D_CACHE_ALLOCATE 0x0029
#define ARMV8_PMUV3_PERFCTR_L3D_CACHE_REFILL 0x002A
#define ARMV8_PMUV3_PERFCTR_L3D_CACHE 0x002B
#define ARMV8_PMUV3_PERFCTR_L3D_CACHE_WB 0x002C
#define ARMV8_PMUV3_PERFCTR_L2D_TLB_REFILL 0x002D
#define ARMV8_PMUV3_PERFCTR_L2I_TLB_REFILL 0x002E
#define ARMV8_PMUV3_PERFCTR_L2D_TLB 0x002F
#define ARMV8_PMUV3_PERFCTR_L2I_TLB 0x0030
#define ARMV8_PMUV3_PERFCTR_REMOTE_ACCESS 0x0031
#define ARMV8_PMUV3_PERFCTR_LL_CACHE 0x0032
#define ARMV8_PMUV3_PERFCTR_LL_CACHE_MISS 0x0033
#define ARMV8_PMUV3_PERFCTR_DTLB_WALK 0x0034
#define ARMV8_PMUV3_PERFCTR_ITLB_WALK 0x0035
#define ARMV8_PMUV3_PERFCTR_LL_CACHE_RD 0x0036
#define ARMV8_PMUV3_PERFCTR_LL_CACHE_MISS_RD 0x0037
#define ARMV8_PMUV3_PERFCTR_REMOTE_ACCESS_RD 0x0038
#define ARMV8_PMUV3_PERFCTR_L1D_CACHE_LMISS_RD 0x0039
#define ARMV8_PMUV3_PERFCTR_OP_RETIRED 0x003A
#define ARMV8_PMUV3_PERFCTR_OP_SPEC 0x003B
#define ARMV8_PMUV3_PERFCTR_STALL 0x003C
#define ARMV8_PMUV3_PERFCTR_STALL_SLOT_BACKEND 0x003D
#define ARMV8_PMUV3_PERFCTR_STALL_SLOT_FRONTEND 0x003E
#define ARMV8_PMUV3_PERFCTR_STALL_SLOT 0x003F
/* Statistical profiling extension microarchitectural events */
#define ARMV8_SPE_PERFCTR_SAMPLE_POP 0x4000
#define ARMV8_SPE_PERFCTR_SAMPLE_FEED 0x4001
#define ARMV8_SPE_PERFCTR_SAMPLE_FILTRATE 0x4002
#define ARMV8_SPE_PERFCTR_SAMPLE_COLLISION 0x4003
/* AMUv1 architecture events */
#define ARMV8_AMU_PERFCTR_CNT_CYCLES 0x4004
#define ARMV8_AMU_PERFCTR_STALL_BACKEND_MEM 0x4005
/* long-latency read miss events */
#define ARMV8_PMUV3_PERFCTR_L1I_CACHE_LMISS 0x4006
#define ARMV8_PMUV3_PERFCTR_L2D_CACHE_LMISS_RD 0x4009
#define ARMV8_PMUV3_PERFCTR_L2I_CACHE_LMISS 0x400A
#define ARMV8_PMUV3_PERFCTR_L3D_CACHE_LMISS_RD 0x400B
/* Trace buffer events */
#define ARMV8_PMUV3_PERFCTR_TRB_WRAP 0x400C
#define ARMV8_PMUV3_PERFCTR_TRB_TRIG 0x400E
/* Trace unit events */
#define ARMV8_PMUV3_PERFCTR_TRCEXTOUT0 0x4010
#define ARMV8_PMUV3_PERFCTR_TRCEXTOUT1 0x4011
#define ARMV8_PMUV3_PERFCTR_TRCEXTOUT2 0x4012
#define ARMV8_PMUV3_PERFCTR_TRCEXTOUT3 0x4013
#define ARMV8_PMUV3_PERFCTR_CTI_TRIGOUT4 0x4018
#define ARMV8_PMUV3_PERFCTR_CTI_TRIGOUT5 0x4019
#define ARMV8_PMUV3_PERFCTR_CTI_TRIGOUT6 0x401A
#define ARMV8_PMUV3_PERFCTR_CTI_TRIGOUT7 0x401B
/* additional latency from alignment events */
#define ARMV8_PMUV3_PERFCTR_LDST_ALIGN_LAT 0x4020
#define ARMV8_PMUV3_PERFCTR_LD_ALIGN_LAT 0x4021
#define ARMV8_PMUV3_PERFCTR_ST_ALIGN_LAT 0x4022
/* Armv8.5 Memory Tagging Extension events */
#define ARMV8_MTE_PERFCTR_MEM_ACCESS_CHECKED 0x4024
#define ARMV8_MTE_PERFCTR_MEM_ACCESS_CHECKED_RD 0x4025
#define ARMV8_MTE_PERFCTR_MEM_ACCESS_CHECKED_WR 0x4026
/* ARMv8 recommended implementation defined event types */
#define ARMV8_IMPDEF_PERFCTR_L1D_CACHE_RD 0x0040
#define ARMV8_IMPDEF_PERFCTR_L1D_CACHE_WR 0x0041
#define ARMV8_IMPDEF_PERFCTR_L1D_CACHE_REFILL_RD 0x0042
#define ARMV8_IMPDEF_PERFCTR_L1D_CACHE_REFILL_WR 0x0043
#define ARMV8_IMPDEF_PERFCTR_L1D_CACHE_REFILL_INNER 0x0044
#define ARMV8_IMPDEF_PERFCTR_L1D_CACHE_REFILL_OUTER 0x0045
#define ARMV8_IMPDEF_PERFCTR_L1D_CACHE_WB_VICTIM 0x0046
#define ARMV8_IMPDEF_PERFCTR_L1D_CACHE_WB_CLEAN 0x0047
#define ARMV8_IMPDEF_PERFCTR_L1D_CACHE_INVAL 0x0048
#define ARMV8_IMPDEF_PERFCTR_L1D_TLB_REFILL_RD 0x004C
#define ARMV8_IMPDEF_PERFCTR_L1D_TLB_REFILL_WR 0x004D
#define ARMV8_IMPDEF_PERFCTR_L1D_TLB_RD 0x004E
#define ARMV8_IMPDEF_PERFCTR_L1D_TLB_WR 0x004F
#define ARMV8_IMPDEF_PERFCTR_L2D_CACHE_RD 0x0050
#define ARMV8_IMPDEF_PERFCTR_L2D_CACHE_WR 0x0051
#define ARMV8_IMPDEF_PERFCTR_L2D_CACHE_REFILL_RD 0x0052
#define ARMV8_IMPDEF_PERFCTR_L2D_CACHE_REFILL_WR 0x0053
#define ARMV8_IMPDEF_PERFCTR_L2D_CACHE_WB_VICTIM 0x0056
#define ARMV8_IMPDEF_PERFCTR_L2D_CACHE_WB_CLEAN 0x0057
#define ARMV8_IMPDEF_PERFCTR_L2D_CACHE_INVAL 0x0058
#define ARMV8_IMPDEF_PERFCTR_L2D_TLB_REFILL_RD 0x005C
#define ARMV8_IMPDEF_PERFCTR_L2D_TLB_REFILL_WR 0x005D
#define ARMV8_IMPDEF_PERFCTR_L2D_TLB_RD 0x005E
#define ARMV8_IMPDEF_PERFCTR_L2D_TLB_WR 0x005F
#define ARMV8_IMPDEF_PERFCTR_BUS_ACCESS_RD 0x0060
#define ARMV8_IMPDEF_PERFCTR_BUS_ACCESS_WR 0x0061
#define ARMV8_IMPDEF_PERFCTR_BUS_ACCESS_SHARED 0x0062
#define ARMV8_IMPDEF_PERFCTR_BUS_ACCESS_NOT_SHARED 0x0063
#define ARMV8_IMPDEF_PERFCTR_BUS_ACCESS_NORMAL 0x0064
#define ARMV8_IMPDEF_PERFCTR_BUS_ACCESS_PERIPH 0x0065
#define ARMV8_IMPDEF_PERFCTR_MEM_ACCESS_RD 0x0066
#define ARMV8_IMPDEF_PERFCTR_MEM_ACCESS_WR 0x0067
#define ARMV8_IMPDEF_PERFCTR_UNALIGNED_LD_SPEC 0x0068
#define ARMV8_IMPDEF_PERFCTR_UNALIGNED_ST_SPEC 0x0069
#define ARMV8_IMPDEF_PERFCTR_UNALIGNED_LDST_SPEC 0x006A
#define ARMV8_IMPDEF_PERFCTR_LDREX_SPEC 0x006C
#define ARMV8_IMPDEF_PERFCTR_STREX_PASS_SPEC 0x006D
#define ARMV8_IMPDEF_PERFCTR_STREX_FAIL_SPEC 0x006E
#define ARMV8_IMPDEF_PERFCTR_STREX_SPEC 0x006F
#define ARMV8_IMPDEF_PERFCTR_LD_SPEC 0x0070
#define ARMV8_IMPDEF_PERFCTR_ST_SPEC 0x0071
#define ARMV8_IMPDEF_PERFCTR_LDST_SPEC 0x0072
#define ARMV8_IMPDEF_PERFCTR_DP_SPEC 0x0073
#define ARMV8_IMPDEF_PERFCTR_ASE_SPEC 0x0074
#define ARMV8_IMPDEF_PERFCTR_VFP_SPEC 0x0075
#define ARMV8_IMPDEF_PERFCTR_PC_WRITE_SPEC 0x0076
#define ARMV8_IMPDEF_PERFCTR_CRYPTO_SPEC 0x0077
#define ARMV8_IMPDEF_PERFCTR_BR_IMMED_SPEC 0x0078
#define ARMV8_IMPDEF_PERFCTR_BR_RETURN_SPEC 0x0079
#define ARMV8_IMPDEF_PERFCTR_BR_INDIRECT_SPEC 0x007A
#define ARMV8_IMPDEF_PERFCTR_ISB_SPEC 0x007C
#define ARMV8_IMPDEF_PERFCTR_DSB_SPEC 0x007D
#define ARMV8_IMPDEF_PERFCTR_DMB_SPEC 0x007E
#define ARMV8_IMPDEF_PERFCTR_EXC_UNDEF 0x0081
#define ARMV8_IMPDEF_PERFCTR_EXC_SVC 0x0082
#define ARMV8_IMPDEF_PERFCTR_EXC_PABORT 0x0083
#define ARMV8_IMPDEF_PERFCTR_EXC_DABORT 0x0084
#define ARMV8_IMPDEF_PERFCTR_EXC_IRQ 0x0086
#define ARMV8_IMPDEF_PERFCTR_EXC_FIQ 0x0087
#define ARMV8_IMPDEF_PERFCTR_EXC_SMC 0x0088
#define ARMV8_IMPDEF_PERFCTR_EXC_HVC 0x008A
#define ARMV8_IMPDEF_PERFCTR_EXC_TRAP_PABORT 0x008B
#define ARMV8_IMPDEF_PERFCTR_EXC_TRAP_DABORT 0x008C
#define ARMV8_IMPDEF_PERFCTR_EXC_TRAP_OTHER 0x008D
#define ARMV8_IMPDEF_PERFCTR_EXC_TRAP_IRQ 0x008E
#define ARMV8_IMPDEF_PERFCTR_EXC_TRAP_FIQ 0x008F
#define ARMV8_IMPDEF_PERFCTR_RC_LD_SPEC 0x0090
#define ARMV8_IMPDEF_PERFCTR_RC_ST_SPEC 0x0091
#define ARMV8_IMPDEF_PERFCTR_L3D_CACHE_RD 0x00A0
#define ARMV8_IMPDEF_PERFCTR_L3D_CACHE_WR 0x00A1
#define ARMV8_IMPDEF_PERFCTR_L3D_CACHE_REFILL_RD 0x00A2
#define ARMV8_IMPDEF_PERFCTR_L3D_CACHE_REFILL_WR 0x00A3
#define ARMV8_IMPDEF_PERFCTR_L3D_CACHE_WB_VICTIM 0x00A6
#define ARMV8_IMPDEF_PERFCTR_L3D_CACHE_WB_CLEAN 0x00A7
#define ARMV8_IMPDEF_PERFCTR_L3D_CACHE_INVAL 0x00A8
/*
* Per-CPU PMCR: config reg
*/
#define ARMV8_PMU_PMCR_E (1 << 0) /* Enable all counters */
#define ARMV8_PMU_PMCR_P (1 << 1) /* Reset all counters */
#define ARMV8_PMU_PMCR_C (1 << 2) /* Cycle counter reset */
#define ARMV8_PMU_PMCR_D (1 << 3) /* CCNT counts every 64th cpu cycle */
#define ARMV8_PMU_PMCR_X (1 << 4) /* Export to ETM */
#define ARMV8_PMU_PMCR_DP (1 << 5) /* Disable CCNT if non-invasive debug*/
#define ARMV8_PMU_PMCR_LC (1 << 6) /* Overflow on 64 bit cycle counter */
#define ARMV8_PMU_PMCR_LP (1 << 7) /* Long event counter enable */
#define ARMV8_PMU_PMCR_N_SHIFT 11 /* Number of counters supported */
#define ARMV8_PMU_PMCR_N_MASK 0x1f
#define ARMV8_PMU_PMCR_MASK 0xff /* Mask for writable bits */
/*
* PMOVSR: counters overflow flag status reg
*/
#define ARMV8_PMU_OVSR_MASK 0xffffffff /* Mask for writable bits */
#define ARMV8_PMU_OVERFLOWED_MASK ARMV8_PMU_OVSR_MASK
/*
* PMXEVTYPER: Event selection reg
*/
#define ARMV8_PMU_EVTYPE_MASK 0xc800ffff /* Mask for writable bits */
#define ARMV8_PMU_EVTYPE_EVENT 0xffff /* Mask for EVENT bits */
/*
* Event filters for PMUv3
*/
#define ARMV8_PMU_EXCLUDE_EL1 (1U << 31)
#define ARMV8_PMU_EXCLUDE_EL0 (1U << 30)
#define ARMV8_PMU_INCLUDE_EL2 (1U << 27)
/*
* PMUSERENR: user enable reg
*/
#define ARMV8_PMU_USERENR_MASK 0xf /* Mask for writable bits */
#define ARMV8_PMU_USERENR_EN (1 << 0) /* PMU regs can be accessed at EL0 */
#define ARMV8_PMU_USERENR_SW (1 << 1) /* PMSWINC can be written at EL0 */
#define ARMV8_PMU_USERENR_CR (1 << 2) /* Cycle counter can be read at EL0 */
#define ARMV8_PMU_USERENR_ER (1 << 3) /* Event counter can be read at EL0 */
/* PMMIR_EL1.SLOTS mask */
#define ARMV8_PMU_SLOTS_MASK 0xff
#define ARMV8_PMU_BUS_SLOTS_SHIFT 8
#define ARMV8_PMU_BUS_SLOTS_MASK 0xff
#define ARMV8_PMU_BUS_WIDTH_SHIFT 16
#define ARMV8_PMU_BUS_WIDTH_MASK 0xf
/*
* This code is really good
*/
#define PMEVN_CASE(n, case_macro) \
case n: case_macro(n); break
#define PMEVN_SWITCH(x, case_macro) \
do { \
switch (x) { \
PMEVN_CASE(0, case_macro); \
PMEVN_CASE(1, case_macro); \
PMEVN_CASE(2, case_macro); \
PMEVN_CASE(3, case_macro); \
PMEVN_CASE(4, case_macro); \
PMEVN_CASE(5, case_macro); \
PMEVN_CASE(6, case_macro); \
PMEVN_CASE(7, case_macro); \
PMEVN_CASE(8, case_macro); \
PMEVN_CASE(9, case_macro); \
PMEVN_CASE(10, case_macro); \
PMEVN_CASE(11, case_macro); \
PMEVN_CASE(12, case_macro); \
PMEVN_CASE(13, case_macro); \
PMEVN_CASE(14, case_macro); \
PMEVN_CASE(15, case_macro); \
PMEVN_CASE(16, case_macro); \
PMEVN_CASE(17, case_macro); \
PMEVN_CASE(18, case_macro); \
PMEVN_CASE(19, case_macro); \
PMEVN_CASE(20, case_macro); \
PMEVN_CASE(21, case_macro); \
PMEVN_CASE(22, case_macro); \
PMEVN_CASE(23, case_macro); \
PMEVN_CASE(24, case_macro); \
PMEVN_CASE(25, case_macro); \
PMEVN_CASE(26, case_macro); \
PMEVN_CASE(27, case_macro); \
PMEVN_CASE(28, case_macro); \
PMEVN_CASE(29, case_macro); \
PMEVN_CASE(30, case_macro); \
default: \
WARN(1, "Invalid PMEV* index\n"); \
assert(0); \
} \
} while (0)
#endif
...@@ -159,6 +159,7 @@ TEST_GEN_PROGS_aarch64 += aarch64/smccc_filter ...@@ -159,6 +159,7 @@ TEST_GEN_PROGS_aarch64 += aarch64/smccc_filter
TEST_GEN_PROGS_aarch64 += aarch64/vcpu_width_config TEST_GEN_PROGS_aarch64 += aarch64/vcpu_width_config
TEST_GEN_PROGS_aarch64 += aarch64/vgic_init TEST_GEN_PROGS_aarch64 += aarch64/vgic_init
TEST_GEN_PROGS_aarch64 += aarch64/vgic_irq TEST_GEN_PROGS_aarch64 += aarch64/vgic_irq
TEST_GEN_PROGS_aarch64 += aarch64/vpmu_counter_access
TEST_GEN_PROGS_aarch64 += access_tracking_perf_test TEST_GEN_PROGS_aarch64 += access_tracking_perf_test
TEST_GEN_PROGS_aarch64 += demand_paging_test TEST_GEN_PROGS_aarch64 += demand_paging_test
TEST_GEN_PROGS_aarch64 += dirty_log_test TEST_GEN_PROGS_aarch64 += dirty_log_test
......
// SPDX-License-Identifier: GPL-2.0-only
/*
* vpmu_counter_access - Test vPMU event counter access
*
* Copyright (c) 2023 Google LLC.
*
* This test checks if the guest can see the same number of the PMU event
* counters (PMCR_EL0.N) that userspace sets, if the guest can access
* those counters, and if the guest is prevented from accessing any
* other counters.
* It also checks if the userspace accesses to the PMU regsisters honor the
* PMCR.N value that's set for the guest.
* This test runs only when KVM_CAP_ARM_PMU_V3 is supported on the host.
*/
#include <kvm_util.h>
#include <processor.h>
#include <test_util.h>
#include <vgic.h>
#include <perf/arm_pmuv3.h>
#include <linux/bitfield.h>
/* The max number of the PMU event counters (excluding the cycle counter) */
#define ARMV8_PMU_MAX_GENERAL_COUNTERS (ARMV8_PMU_MAX_COUNTERS - 1)
/* The cycle counter bit position that's common among the PMU registers */
#define ARMV8_PMU_CYCLE_IDX 31
struct vpmu_vm {
struct kvm_vm *vm;
struct kvm_vcpu *vcpu;
int gic_fd;
};
static struct vpmu_vm vpmu_vm;
struct pmreg_sets {
uint64_t set_reg_id;
uint64_t clr_reg_id;
};
#define PMREG_SET(set, clr) {.set_reg_id = set, .clr_reg_id = clr}
static uint64_t get_pmcr_n(uint64_t pmcr)
{
return (pmcr >> ARMV8_PMU_PMCR_N_SHIFT) & ARMV8_PMU_PMCR_N_MASK;
}
static void set_pmcr_n(uint64_t *pmcr, uint64_t pmcr_n)
{
*pmcr = *pmcr & ~(ARMV8_PMU_PMCR_N_MASK << ARMV8_PMU_PMCR_N_SHIFT);
*pmcr |= (pmcr_n << ARMV8_PMU_PMCR_N_SHIFT);
}
static uint64_t get_counters_mask(uint64_t n)
{
uint64_t mask = BIT(ARMV8_PMU_CYCLE_IDX);
if (n)
mask |= GENMASK(n - 1, 0);
return mask;
}
/* Read PMEVTCNTR<n>_EL0 through PMXEVCNTR_EL0 */
static inline unsigned long read_sel_evcntr(int sel)
{
write_sysreg(sel, pmselr_el0);
isb();
return read_sysreg(pmxevcntr_el0);
}
/* Write PMEVTCNTR<n>_EL0 through PMXEVCNTR_EL0 */
static inline void write_sel_evcntr(int sel, unsigned long val)
{
write_sysreg(sel, pmselr_el0);
isb();
write_sysreg(val, pmxevcntr_el0);
isb();
}
/* Read PMEVTYPER<n>_EL0 through PMXEVTYPER_EL0 */
static inline unsigned long read_sel_evtyper(int sel)
{
write_sysreg(sel, pmselr_el0);
isb();
return read_sysreg(pmxevtyper_el0);
}
/* Write PMEVTYPER<n>_EL0 through PMXEVTYPER_EL0 */
static inline void write_sel_evtyper(int sel, unsigned long val)
{
write_sysreg(sel, pmselr_el0);
isb();
write_sysreg(val, pmxevtyper_el0);
isb();
}
static inline void enable_counter(int idx)
{
uint64_t v = read_sysreg(pmcntenset_el0);
write_sysreg(BIT(idx) | v, pmcntenset_el0);
isb();
}
static inline void disable_counter(int idx)
{
uint64_t v = read_sysreg(pmcntenset_el0);
write_sysreg(BIT(idx) | v, pmcntenclr_el0);
isb();
}
static void pmu_disable_reset(void)
{
uint64_t pmcr = read_sysreg(pmcr_el0);
/* Reset all counters, disabling them */
pmcr &= ~ARMV8_PMU_PMCR_E;
write_sysreg(pmcr | ARMV8_PMU_PMCR_P, pmcr_el0);
isb();
}
#define RETURN_READ_PMEVCNTRN(n) \
return read_sysreg(pmevcntr##n##_el0)
static unsigned long read_pmevcntrn(int n)
{
PMEVN_SWITCH(n, RETURN_READ_PMEVCNTRN);
return 0;
}
#define WRITE_PMEVCNTRN(n) \
write_sysreg(val, pmevcntr##n##_el0)
static void write_pmevcntrn(int n, unsigned long val)
{
PMEVN_SWITCH(n, WRITE_PMEVCNTRN);
isb();
}
#define READ_PMEVTYPERN(n) \
return read_sysreg(pmevtyper##n##_el0)
static unsigned long read_pmevtypern(int n)
{
PMEVN_SWITCH(n, READ_PMEVTYPERN);
return 0;
}
#define WRITE_PMEVTYPERN(n) \
write_sysreg(val, pmevtyper##n##_el0)
static void write_pmevtypern(int n, unsigned long val)
{
PMEVN_SWITCH(n, WRITE_PMEVTYPERN);
isb();
}
/*
* The pmc_accessor structure has pointers to PMEV{CNTR,TYPER}<n>_EL0
* accessors that test cases will use. Each of the accessors will
* either directly reads/writes PMEV{CNTR,TYPER}<n>_EL0
* (i.e. {read,write}_pmev{cnt,type}rn()), or reads/writes them through
* PMXEV{CNTR,TYPER}_EL0 (i.e. {read,write}_sel_ev{cnt,type}r()).
*
* This is used to test that combinations of those accessors provide
* the consistent behavior.
*/
struct pmc_accessor {
/* A function to be used to read PMEVTCNTR<n>_EL0 */
unsigned long (*read_cntr)(int idx);
/* A function to be used to write PMEVTCNTR<n>_EL0 */
void (*write_cntr)(int idx, unsigned long val);
/* A function to be used to read PMEVTYPER<n>_EL0 */
unsigned long (*read_typer)(int idx);
/* A function to be used to write PMEVTYPER<n>_EL0 */
void (*write_typer)(int idx, unsigned long val);
};
struct pmc_accessor pmc_accessors[] = {
/* test with all direct accesses */
{ read_pmevcntrn, write_pmevcntrn, read_pmevtypern, write_pmevtypern },
/* test with all indirect accesses */
{ read_sel_evcntr, write_sel_evcntr, read_sel_evtyper, write_sel_evtyper },
/* read with direct accesses, and write with indirect accesses */
{ read_pmevcntrn, write_sel_evcntr, read_pmevtypern, write_sel_evtyper },
/* read with indirect accesses, and write with direct accesses */
{ read_sel_evcntr, write_pmevcntrn, read_sel_evtyper, write_pmevtypern },
};
/*
* Convert a pointer of pmc_accessor to an index in pmc_accessors[],
* assuming that the pointer is one of the entries in pmc_accessors[].
*/
#define PMC_ACC_TO_IDX(acc) (acc - &pmc_accessors[0])
#define GUEST_ASSERT_BITMAP_REG(regname, mask, set_expected) \
{ \
uint64_t _tval = read_sysreg(regname); \
\
if (set_expected) \
__GUEST_ASSERT((_tval & mask), \
"tval: 0x%lx; mask: 0x%lx; set_expected: 0x%lx", \
_tval, mask, set_expected); \
else \
__GUEST_ASSERT(!(_tval & mask), \
"tval: 0x%lx; mask: 0x%lx; set_expected: 0x%lx", \
_tval, mask, set_expected); \
}
/*
* Check if @mask bits in {PMCNTEN,PMINTEN,PMOVS}{SET,CLR} registers
* are set or cleared as specified in @set_expected.
*/
static void check_bitmap_pmu_regs(uint64_t mask, bool set_expected)
{
GUEST_ASSERT_BITMAP_REG(pmcntenset_el0, mask, set_expected);
GUEST_ASSERT_BITMAP_REG(pmcntenclr_el0, mask, set_expected);
GUEST_ASSERT_BITMAP_REG(pmintenset_el1, mask, set_expected);
GUEST_ASSERT_BITMAP_REG(pmintenclr_el1, mask, set_expected);
GUEST_ASSERT_BITMAP_REG(pmovsset_el0, mask, set_expected);
GUEST_ASSERT_BITMAP_REG(pmovsclr_el0, mask, set_expected);
}
/*
* Check if the bit in {PMCNTEN,PMINTEN,PMOVS}{SET,CLR} registers corresponding
* to the specified counter (@pmc_idx) can be read/written as expected.
* When @set_op is true, it tries to set the bit for the counter in
* those registers by writing the SET registers (the bit won't be set
* if the counter is not implemented though).
* Otherwise, it tries to clear the bits in the registers by writing
* the CLR registers.
* Then, it checks if the values indicated in the registers are as expected.
*/
static void test_bitmap_pmu_regs(int pmc_idx, bool set_op)
{
uint64_t pmcr_n, test_bit = BIT(pmc_idx);
bool set_expected = false;
if (set_op) {
write_sysreg(test_bit, pmcntenset_el0);
write_sysreg(test_bit, pmintenset_el1);
write_sysreg(test_bit, pmovsset_el0);
/* The bit will be set only if the counter is implemented */
pmcr_n = get_pmcr_n(read_sysreg(pmcr_el0));
set_expected = (pmc_idx < pmcr_n) ? true : false;
} else {
write_sysreg(test_bit, pmcntenclr_el0);
write_sysreg(test_bit, pmintenclr_el1);
write_sysreg(test_bit, pmovsclr_el0);
}
check_bitmap_pmu_regs(test_bit, set_expected);
}
/*
* Tests for reading/writing registers for the (implemented) event counter
* specified by @pmc_idx.
*/
static void test_access_pmc_regs(struct pmc_accessor *acc, int pmc_idx)
{
uint64_t write_data, read_data;
/* Disable all PMCs and reset all PMCs to zero. */
pmu_disable_reset();
/*
* Tests for reading/writing {PMCNTEN,PMINTEN,PMOVS}{SET,CLR}_EL1.
*/
/* Make sure that the bit in those registers are set to 0 */
test_bitmap_pmu_regs(pmc_idx, false);
/* Test if setting the bit in those registers works */
test_bitmap_pmu_regs(pmc_idx, true);
/* Test if clearing the bit in those registers works */
test_bitmap_pmu_regs(pmc_idx, false);
/*
* Tests for reading/writing the event type register.
*/
/*
* Set the event type register to an arbitrary value just for testing
* of reading/writing the register.
* Arm ARM says that for the event from 0x0000 to 0x003F,
* the value indicated in the PMEVTYPER<n>_EL0.evtCount field is
* the value written to the field even when the specified event
* is not supported.
*/
write_data = (ARMV8_PMU_EXCLUDE_EL1 | ARMV8_PMUV3_PERFCTR_INST_RETIRED);
acc->write_typer(pmc_idx, write_data);
read_data = acc->read_typer(pmc_idx);
__GUEST_ASSERT(read_data == write_data,
"pmc_idx: 0x%lx; acc_idx: 0x%lx; read_data: 0x%lx; write_data: 0x%lx",
pmc_idx, PMC_ACC_TO_IDX(acc), read_data, write_data);
/*
* Tests for reading/writing the event count register.
*/
read_data = acc->read_cntr(pmc_idx);
/* The count value must be 0, as it is disabled and reset */
__GUEST_ASSERT(read_data == 0,
"pmc_idx: 0x%lx; acc_idx: 0x%lx; read_data: 0x%lx",
pmc_idx, PMC_ACC_TO_IDX(acc), read_data);
write_data = read_data + pmc_idx + 0x12345;
acc->write_cntr(pmc_idx, write_data);
read_data = acc->read_cntr(pmc_idx);
__GUEST_ASSERT(read_data == write_data,
"pmc_idx: 0x%lx; acc_idx: 0x%lx; read_data: 0x%lx; write_data: 0x%lx",
pmc_idx, PMC_ACC_TO_IDX(acc), read_data, write_data);
}
#define INVALID_EC (-1ul)
uint64_t expected_ec = INVALID_EC;
static void guest_sync_handler(struct ex_regs *regs)
{
uint64_t esr, ec;
esr = read_sysreg(esr_el1);
ec = (esr >> ESR_EC_SHIFT) & ESR_EC_MASK;
__GUEST_ASSERT(expected_ec == ec,
"PC: 0x%lx; ESR: 0x%lx; EC: 0x%lx; EC expected: 0x%lx",
regs->pc, esr, ec, expected_ec);
/* skip the trapping instruction */
regs->pc += 4;
/* Use INVALID_EC to indicate an exception occurred */
expected_ec = INVALID_EC;
}
/*
* Run the given operation that should trigger an exception with the
* given exception class. The exception handler (guest_sync_handler)
* will reset op_end_addr to 0, expected_ec to INVALID_EC, and skip
* the instruction that trapped.
*/
#define TEST_EXCEPTION(ec, ops) \
({ \
GUEST_ASSERT(ec != INVALID_EC); \
WRITE_ONCE(expected_ec, ec); \
dsb(ish); \
ops; \
GUEST_ASSERT(expected_ec == INVALID_EC); \
})
/*
* Tests for reading/writing registers for the unimplemented event counter
* specified by @pmc_idx (>= PMCR_EL0.N).
*/
static void test_access_invalid_pmc_regs(struct pmc_accessor *acc, int pmc_idx)
{
/*
* Reading/writing the event count/type registers should cause
* an UNDEFINED exception.
*/
TEST_EXCEPTION(ESR_EC_UNKNOWN, acc->read_cntr(pmc_idx));
TEST_EXCEPTION(ESR_EC_UNKNOWN, acc->write_cntr(pmc_idx, 0));
TEST_EXCEPTION(ESR_EC_UNKNOWN, acc->read_typer(pmc_idx));
TEST_EXCEPTION(ESR_EC_UNKNOWN, acc->write_typer(pmc_idx, 0));
/*
* The bit corresponding to the (unimplemented) counter in
* {PMCNTEN,PMINTEN,PMOVS}{SET,CLR} registers should be RAZ.
*/
test_bitmap_pmu_regs(pmc_idx, 1);
test_bitmap_pmu_regs(pmc_idx, 0);
}
/*
* The guest is configured with PMUv3 with @expected_pmcr_n number of
* event counters.
* Check if @expected_pmcr_n is consistent with PMCR_EL0.N, and
* if reading/writing PMU registers for implemented or unimplemented
* counters works as expected.
*/
static void guest_code(uint64_t expected_pmcr_n)
{
uint64_t pmcr, pmcr_n, unimp_mask;
int i, pmc;
__GUEST_ASSERT(expected_pmcr_n <= ARMV8_PMU_MAX_GENERAL_COUNTERS,
"Expected PMCR.N: 0x%lx; ARMv8 general counters: 0x%lx",
expected_pmcr_n, ARMV8_PMU_MAX_GENERAL_COUNTERS);
pmcr = read_sysreg(pmcr_el0);
pmcr_n = get_pmcr_n(pmcr);
/* Make sure that PMCR_EL0.N indicates the value userspace set */
__GUEST_ASSERT(pmcr_n == expected_pmcr_n,
"Expected PMCR.N: 0x%lx, PMCR.N: 0x%lx",
expected_pmcr_n, pmcr_n);
/*
* Make sure that (RAZ) bits corresponding to unimplemented event
* counters in {PMCNTEN,PMINTEN,PMOVS}{SET,CLR} registers are reset
* to zero.
* (NOTE: bits for implemented event counters are reset to UNKNOWN)
*/
unimp_mask = GENMASK_ULL(ARMV8_PMU_MAX_GENERAL_COUNTERS - 1, pmcr_n);
check_bitmap_pmu_regs(unimp_mask, false);
/*
* Tests for reading/writing PMU registers for implemented counters.
* Use each combination of PMEV{CNTR,TYPER}<n>_EL0 accessor functions.
*/
for (i = 0; i < ARRAY_SIZE(pmc_accessors); i++) {
for (pmc = 0; pmc < pmcr_n; pmc++)
test_access_pmc_regs(&pmc_accessors[i], pmc);
}
/*
* Tests for reading/writing PMU registers for unimplemented counters.
* Use each combination of PMEV{CNTR,TYPER}<n>_EL0 accessor functions.
*/
for (i = 0; i < ARRAY_SIZE(pmc_accessors); i++) {
for (pmc = pmcr_n; pmc < ARMV8_PMU_MAX_GENERAL_COUNTERS; pmc++)
test_access_invalid_pmc_regs(&pmc_accessors[i], pmc);
}
GUEST_DONE();
}
#define GICD_BASE_GPA 0x8000000ULL
#define GICR_BASE_GPA 0x80A0000ULL
/* Create a VM that has one vCPU with PMUv3 configured. */
static void create_vpmu_vm(void *guest_code)
{
struct kvm_vcpu_init init;
uint8_t pmuver, ec;
uint64_t dfr0, irq = 23;
struct kvm_device_attr irq_attr = {
.group = KVM_ARM_VCPU_PMU_V3_CTRL,
.attr = KVM_ARM_VCPU_PMU_V3_IRQ,
.addr = (uint64_t)&irq,
};
struct kvm_device_attr init_attr = {
.group = KVM_ARM_VCPU_PMU_V3_CTRL,
.attr = KVM_ARM_VCPU_PMU_V3_INIT,
};
/* The test creates the vpmu_vm multiple times. Ensure a clean state */
memset(&vpmu_vm, 0, sizeof(vpmu_vm));
vpmu_vm.vm = vm_create(1);
vm_init_descriptor_tables(vpmu_vm.vm);
for (ec = 0; ec < ESR_EC_NUM; ec++) {
vm_install_sync_handler(vpmu_vm.vm, VECTOR_SYNC_CURRENT, ec,
guest_sync_handler);
}
/* Create vCPU with PMUv3 */
vm_ioctl(vpmu_vm.vm, KVM_ARM_PREFERRED_TARGET, &init);
init.features[0] |= (1 << KVM_ARM_VCPU_PMU_V3);
vpmu_vm.vcpu = aarch64_vcpu_add(vpmu_vm.vm, 0, &init, guest_code);
vcpu_init_descriptor_tables(vpmu_vm.vcpu);
vpmu_vm.gic_fd = vgic_v3_setup(vpmu_vm.vm, 1, 64,
GICD_BASE_GPA, GICR_BASE_GPA);
__TEST_REQUIRE(vpmu_vm.gic_fd >= 0,
"Failed to create vgic-v3, skipping");
/* Make sure that PMUv3 support is indicated in the ID register */
vcpu_get_reg(vpmu_vm.vcpu,
KVM_ARM64_SYS_REG(SYS_ID_AA64DFR0_EL1), &dfr0);
pmuver = FIELD_GET(ARM64_FEATURE_MASK(ID_AA64DFR0_EL1_PMUVer), dfr0);
TEST_ASSERT(pmuver != ID_AA64DFR0_EL1_PMUVer_IMP_DEF &&
pmuver >= ID_AA64DFR0_EL1_PMUVer_IMP,
"Unexpected PMUVER (0x%x) on the vCPU with PMUv3", pmuver);
/* Initialize vPMU */
vcpu_ioctl(vpmu_vm.vcpu, KVM_SET_DEVICE_ATTR, &irq_attr);
vcpu_ioctl(vpmu_vm.vcpu, KVM_SET_DEVICE_ATTR, &init_attr);
}
static void destroy_vpmu_vm(void)
{
close(vpmu_vm.gic_fd);
kvm_vm_free(vpmu_vm.vm);
}
static void run_vcpu(struct kvm_vcpu *vcpu, uint64_t pmcr_n)
{
struct ucall uc;
vcpu_args_set(vcpu, 1, pmcr_n);
vcpu_run(vcpu);
switch (get_ucall(vcpu, &uc)) {
case UCALL_ABORT:
REPORT_GUEST_ASSERT(uc);
break;
case UCALL_DONE:
break;
default:
TEST_FAIL("Unknown ucall %lu", uc.cmd);
break;
}
}
static void test_create_vpmu_vm_with_pmcr_n(uint64_t pmcr_n, bool expect_fail)
{
struct kvm_vcpu *vcpu;
uint64_t pmcr, pmcr_orig;
create_vpmu_vm(guest_code);
vcpu = vpmu_vm.vcpu;
vcpu_get_reg(vcpu, KVM_ARM64_SYS_REG(SYS_PMCR_EL0), &pmcr_orig);
pmcr = pmcr_orig;
/*
* Setting a larger value of PMCR.N should not modify the field, and
* return a success.
*/
set_pmcr_n(&pmcr, pmcr_n);
vcpu_set_reg(vcpu, KVM_ARM64_SYS_REG(SYS_PMCR_EL0), pmcr);
vcpu_get_reg(vcpu, KVM_ARM64_SYS_REG(SYS_PMCR_EL0), &pmcr);
if (expect_fail)
TEST_ASSERT(pmcr_orig == pmcr,
"PMCR.N modified by KVM to a larger value (PMCR: 0x%lx) for pmcr_n: 0x%lx\n",
pmcr, pmcr_n);
else
TEST_ASSERT(pmcr_n == get_pmcr_n(pmcr),
"Failed to update PMCR.N to %lu (received: %lu)\n",
pmcr_n, get_pmcr_n(pmcr));
}
/*
* Create a guest with one vCPU, set the PMCR_EL0.N for the vCPU to @pmcr_n,
* and run the test.
*/
static void run_access_test(uint64_t pmcr_n)
{
uint64_t sp;
struct kvm_vcpu *vcpu;
struct kvm_vcpu_init init;
pr_debug("Test with pmcr_n %lu\n", pmcr_n);
test_create_vpmu_vm_with_pmcr_n(pmcr_n, false);
vcpu = vpmu_vm.vcpu;
/* Save the initial sp to restore them later to run the guest again */
vcpu_get_reg(vcpu, ARM64_CORE_REG(sp_el1), &sp);
run_vcpu(vcpu, pmcr_n);
/*
* Reset and re-initialize the vCPU, and run the guest code again to
* check if PMCR_EL0.N is preserved.
*/
vm_ioctl(vpmu_vm.vm, KVM_ARM_PREFERRED_TARGET, &init);
init.features[0] |= (1 << KVM_ARM_VCPU_PMU_V3);
aarch64_vcpu_setup(vcpu, &init);
vcpu_init_descriptor_tables(vcpu);
vcpu_set_reg(vcpu, ARM64_CORE_REG(sp_el1), sp);
vcpu_set_reg(vcpu, ARM64_CORE_REG(regs.pc), (uint64_t)guest_code);
run_vcpu(vcpu, pmcr_n);
destroy_vpmu_vm();
}
static struct pmreg_sets validity_check_reg_sets[] = {
PMREG_SET(SYS_PMCNTENSET_EL0, SYS_PMCNTENCLR_EL0),
PMREG_SET(SYS_PMINTENSET_EL1, SYS_PMINTENCLR_EL1),
PMREG_SET(SYS_PMOVSSET_EL0, SYS_PMOVSCLR_EL0),
};
/*
* Create a VM, and check if KVM handles the userspace accesses of
* the PMU register sets in @validity_check_reg_sets[] correctly.
*/
static void run_pmregs_validity_test(uint64_t pmcr_n)
{
int i;
struct kvm_vcpu *vcpu;
uint64_t set_reg_id, clr_reg_id, reg_val;
uint64_t valid_counters_mask, max_counters_mask;
test_create_vpmu_vm_with_pmcr_n(pmcr_n, false);
vcpu = vpmu_vm.vcpu;
valid_counters_mask = get_counters_mask(pmcr_n);
max_counters_mask = get_counters_mask(ARMV8_PMU_MAX_COUNTERS);
for (i = 0; i < ARRAY_SIZE(validity_check_reg_sets); i++) {
set_reg_id = validity_check_reg_sets[i].set_reg_id;
clr_reg_id = validity_check_reg_sets[i].clr_reg_id;
/*
* Test if the 'set' and 'clr' variants of the registers
* are initialized based on the number of valid counters.
*/
vcpu_get_reg(vcpu, KVM_ARM64_SYS_REG(set_reg_id), &reg_val);
TEST_ASSERT((reg_val & (~valid_counters_mask)) == 0,
"Initial read of set_reg: 0x%llx has unimplemented counters enabled: 0x%lx\n",
KVM_ARM64_SYS_REG(set_reg_id), reg_val);
vcpu_get_reg(vcpu, KVM_ARM64_SYS_REG(clr_reg_id), &reg_val);
TEST_ASSERT((reg_val & (~valid_counters_mask)) == 0,
"Initial read of clr_reg: 0x%llx has unimplemented counters enabled: 0x%lx\n",
KVM_ARM64_SYS_REG(clr_reg_id), reg_val);
/*
* Using the 'set' variant, force-set the register to the
* max number of possible counters and test if KVM discards
* the bits for unimplemented counters as it should.
*/
vcpu_set_reg(vcpu, KVM_ARM64_SYS_REG(set_reg_id), max_counters_mask);
vcpu_get_reg(vcpu, KVM_ARM64_SYS_REG(set_reg_id), &reg_val);
TEST_ASSERT((reg_val & (~valid_counters_mask)) == 0,
"Read of set_reg: 0x%llx has unimplemented counters enabled: 0x%lx\n",
KVM_ARM64_SYS_REG(set_reg_id), reg_val);
vcpu_get_reg(vcpu, KVM_ARM64_SYS_REG(clr_reg_id), &reg_val);
TEST_ASSERT((reg_val & (~valid_counters_mask)) == 0,
"Read of clr_reg: 0x%llx has unimplemented counters enabled: 0x%lx\n",
KVM_ARM64_SYS_REG(clr_reg_id), reg_val);
}
destroy_vpmu_vm();
}
/*
* Create a guest with one vCPU, and attempt to set the PMCR_EL0.N for
* the vCPU to @pmcr_n, which is larger than the host value.
* The attempt should fail as @pmcr_n is too big to set for the vCPU.
*/
static void run_error_test(uint64_t pmcr_n)
{
pr_debug("Error test with pmcr_n %lu (larger than the host)\n", pmcr_n);
test_create_vpmu_vm_with_pmcr_n(pmcr_n, true);
destroy_vpmu_vm();
}
/*
* Return the default number of implemented PMU event counters excluding
* the cycle counter (i.e. PMCR_EL0.N value) for the guest.
*/
static uint64_t get_pmcr_n_limit(void)
{
uint64_t pmcr;
create_vpmu_vm(guest_code);
vcpu_get_reg(vpmu_vm.vcpu, KVM_ARM64_SYS_REG(SYS_PMCR_EL0), &pmcr);
destroy_vpmu_vm();
return get_pmcr_n(pmcr);
}
int main(void)
{
uint64_t i, pmcr_n;
TEST_REQUIRE(kvm_has_cap(KVM_CAP_ARM_PMU_V3));
pmcr_n = get_pmcr_n_limit();
for (i = 0; i <= pmcr_n; i++) {
run_access_test(i);
run_pmregs_validity_test(i);
}
for (i = pmcr_n + 1; i < ARMV8_PMU_MAX_COUNTERS; i++)
run_error_test(i);
return 0;
}
...@@ -104,6 +104,7 @@ enum { ...@@ -104,6 +104,7 @@ enum {
#define ESR_EC_SHIFT 26 #define ESR_EC_SHIFT 26
#define ESR_EC_MASK (ESR_EC_NUM - 1) #define ESR_EC_MASK (ESR_EC_NUM - 1)
#define ESR_EC_UNKNOWN 0x0
#define ESR_EC_SVC64 0x15 #define ESR_EC_SVC64 0x15
#define ESR_EC_IABT 0x21 #define ESR_EC_IABT 0x21
#define ESR_EC_DABT 0x25 #define ESR_EC_DABT 0x25
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment