Commit 12edfdfc authored by David S. Miller's avatar David S. Miller

Merge branch 'hns3-error-handling'

Salil Mehta says:

====================
net: hns3: Additions/optimizations related to HNS3 H/W err handling

This patch set primarily does following addtions and optimizations
related to error handling in HNS3 Ethernet driver:

 1. Name changes for enable and process functions and minor loop
    optimizations. [PATCH 1-6]
 2. Modify query and clearing of RAS errors using new set of commands
    because modules specific commands for clearing RCB PPP PF, SSU are
    obselete. [PATCH 7]
 3. Deletes logging 1-bit errors for RAS in HNS3 driver as these never
    get reported to the driver. [PATCH 8]
 4. Add handling of NIC hw errors reported through MSIx rather than
    PCIe AER channel. [PATCH 9]
 5. Add handling for the HW RAS and MSIx errors in the modules MAC, PPP
    PF, MSIx SRAM, RCB and SSU. [PATCH 10-13]
 6. Add handling of RoCEE RAS errors. [PATCH 14]
====================
Signed-off-by: default avatarDavid S. Miller <davem@davemloft.net>
parents 9f4c2cff 630ba007
......@@ -136,6 +136,7 @@ enum hnae3_reset_type {
HNAE3_CORE_RESET,
HNAE3_GLOBAL_RESET,
HNAE3_IMP_RESET,
HNAE3_UNKNOWN_RESET,
HNAE3_NONE_RESET,
};
......@@ -454,7 +455,7 @@ struct hnae3_ae_ops {
int (*restore_fd_rules)(struct hnae3_handle *handle);
void (*enable_fd)(struct hnae3_handle *handle, bool enable);
int (*dbg_run_cmd)(struct hnae3_handle *handle, char *cmd_buf);
pci_ers_result_t (*process_hw_error)(struct hnae3_ae_dev *ae_dev);
pci_ers_result_t (*handle_hw_ras_error)(struct hnae3_ae_dev *ae_dev);
bool (*get_hw_reset_stat)(struct hnae3_handle *handle);
bool (*ae_dev_resetting)(struct hnae3_handle *handle);
unsigned long (*ae_dev_reset_cnt)(struct hnae3_handle *handle);
......
......@@ -1828,8 +1828,8 @@ static pci_ers_result_t hns3_error_detected(struct pci_dev *pdev,
return PCI_ERS_RESULT_NONE;
}
if (ae_dev->ops->process_hw_error)
ret = ae_dev->ops->process_hw_error(ae_dev);
if (ae_dev->ops->handle_hw_ras_error)
ret = ae_dev->ops->handle_hw_ras_error(ae_dev);
else
return PCI_ERS_RESULT_NONE;
......
......@@ -215,26 +215,29 @@ enum hclge_opcode_type {
HCLGE_OPC_SFP_GET_SPEED = 0x7104,
/* Error INT commands */
HCLGE_MAC_COMMON_INT_EN = 0x030E,
HCLGE_TM_SCH_ECC_INT_EN = 0x0829,
HCLGE_TM_SCH_ECC_ERR_RINT_CMD = 0x082d,
HCLGE_TM_SCH_ECC_ERR_RINT_CE = 0x082f,
HCLGE_TM_SCH_ECC_ERR_RINT_NFE = 0x0830,
HCLGE_TM_SCH_ECC_ERR_RINT_FE = 0x0831,
HCLGE_TM_SCH_MBIT_ECC_INFO_CMD = 0x0833,
HCLGE_SSU_ECC_INT_CMD = 0x0989,
HCLGE_SSU_COMMON_INT_CMD = 0x098C,
HCLGE_PPU_MPF_ECC_INT_CMD = 0x0B40,
HCLGE_PPU_MPF_OTHER_INT_CMD = 0x0B41,
HCLGE_PPU_PF_OTHER_INT_CMD = 0x0B42,
HCLGE_COMMON_ECC_INT_CFG = 0x1505,
HCLGE_IGU_EGU_TNL_INT_QUERY = 0x1802,
HCLGE_QUERY_RAS_INT_STS_BD_NUM = 0x1510,
HCLGE_QUERY_CLEAR_MPF_RAS_INT = 0x1511,
HCLGE_QUERY_CLEAR_PF_RAS_INT = 0x1512,
HCLGE_QUERY_MSIX_INT_STS_BD_NUM = 0x1513,
HCLGE_QUERY_CLEAR_ALL_MPF_MSIX_INT = 0x1514,
HCLGE_QUERY_CLEAR_ALL_PF_MSIX_INT = 0x1515,
HCLGE_CONFIG_ROCEE_RAS_INT_EN = 0x1580,
HCLGE_QUERY_CLEAR_ROCEE_RAS_INT = 0x1581,
HCLGE_ROCEE_PF_RAS_INT_CMD = 0x1584,
HCLGE_IGU_EGU_TNL_INT_EN = 0x1803,
HCLGE_IGU_EGU_TNL_INT_CLR = 0x1804,
HCLGE_IGU_COMMON_INT_QUERY = 0x1805,
HCLGE_IGU_COMMON_INT_EN = 0x1806,
HCLGE_IGU_COMMON_INT_CLR = 0x1807,
HCLGE_TM_QCN_MEM_INT_CFG = 0x1A14,
HCLGE_TM_QCN_MEM_INT_INFO_CMD = 0x1A17,
HCLGE_PPP_CMD0_INT_CMD = 0x2100,
HCLGE_PPP_CMD1_INT_CMD = 0x2101,
HCLGE_NCSI_INT_QUERY = 0x2400,
HCLGE_NCSI_INT_EN = 0x2401,
HCLGE_NCSI_INT_CLR = 0x2402,
};
#define HCLGE_TQP_REG_OFFSET 0x80000
......
......@@ -4,78 +4,39 @@
#include "hclge_err.h"
static const struct hclge_hw_error hclge_imp_tcm_ecc_int[] = {
{ .int_msk = BIT(0), .msg = "imp_itcm0_ecc_1bit_err" },
{ .int_msk = BIT(1), .msg = "imp_itcm0_ecc_mbit_err" },
{ .int_msk = BIT(2), .msg = "imp_itcm1_ecc_1bit_err" },
{ .int_msk = BIT(3), .msg = "imp_itcm1_ecc_mbit_err" },
{ .int_msk = BIT(4), .msg = "imp_itcm2_ecc_1bit_err" },
{ .int_msk = BIT(5), .msg = "imp_itcm2_ecc_mbit_err" },
{ .int_msk = BIT(6), .msg = "imp_itcm3_ecc_1bit_err" },
{ .int_msk = BIT(7), .msg = "imp_itcm3_ecc_mbit_err" },
{ .int_msk = BIT(8), .msg = "imp_dtcm0_mem0_ecc_1bit_err" },
{ .int_msk = BIT(9), .msg = "imp_dtcm0_mem0_ecc_mbit_err" },
{ .int_msk = BIT(10), .msg = "imp_dtcm0_mem1_ecc_1bit_err" },
{ .int_msk = BIT(11), .msg = "imp_dtcm0_mem1_ecc_mbit_err" },
{ .int_msk = BIT(12), .msg = "imp_dtcm1_mem0_ecc_1bit_err" },
{ .int_msk = BIT(13), .msg = "imp_dtcm1_mem0_ecc_mbit_err" },
{ .int_msk = BIT(14), .msg = "imp_dtcm1_mem1_ecc_1bit_err" },
{ .int_msk = BIT(15), .msg = "imp_dtcm1_mem1_ecc_mbit_err" },
{ /* sentinel */ }
};
static const struct hclge_hw_error hclge_imp_itcm4_ecc_int[] = {
{ .int_msk = BIT(0), .msg = "imp_itcm4_ecc_1bit_err" },
{ .int_msk = BIT(1), .msg = "imp_itcm4_ecc_mbit_err" },
{ .int_msk = BIT(17), .msg = "imp_itcm4_ecc_mbit_err" },
{ /* sentinel */ }
};
static const struct hclge_hw_error hclge_cmdq_nic_mem_ecc_int[] = {
{ .int_msk = BIT(0), .msg = "cmdq_nic_rx_depth_ecc_1bit_err" },
{ .int_msk = BIT(1), .msg = "cmdq_nic_rx_depth_ecc_mbit_err" },
{ .int_msk = BIT(2), .msg = "cmdq_nic_tx_depth_ecc_1bit_err" },
{ .int_msk = BIT(3), .msg = "cmdq_nic_tx_depth_ecc_mbit_err" },
{ .int_msk = BIT(4), .msg = "cmdq_nic_rx_tail_ecc_1bit_err" },
{ .int_msk = BIT(5), .msg = "cmdq_nic_rx_tail_ecc_mbit_err" },
{ .int_msk = BIT(6), .msg = "cmdq_nic_tx_tail_ecc_1bit_err" },
{ .int_msk = BIT(7), .msg = "cmdq_nic_tx_tail_ecc_mbit_err" },
{ .int_msk = BIT(8), .msg = "cmdq_nic_rx_head_ecc_1bit_err" },
{ .int_msk = BIT(9), .msg = "cmdq_nic_rx_head_ecc_mbit_err" },
{ .int_msk = BIT(10), .msg = "cmdq_nic_tx_head_ecc_1bit_err" },
{ .int_msk = BIT(11), .msg = "cmdq_nic_tx_head_ecc_mbit_err" },
{ .int_msk = BIT(12), .msg = "cmdq_nic_rx_addr_ecc_1bit_err" },
{ .int_msk = BIT(13), .msg = "cmdq_nic_rx_addr_ecc_mbit_err" },
{ .int_msk = BIT(14), .msg = "cmdq_nic_tx_addr_ecc_1bit_err" },
{ .int_msk = BIT(15), .msg = "cmdq_nic_tx_addr_ecc_mbit_err" },
{ /* sentinel */ }
};
static const struct hclge_hw_error hclge_cmdq_rocee_mem_ecc_int[] = {
{ .int_msk = BIT(0), .msg = "cmdq_rocee_rx_depth_ecc_1bit_err" },
{ .int_msk = BIT(1), .msg = "cmdq_rocee_rx_depth_ecc_mbit_err" },
{ .int_msk = BIT(2), .msg = "cmdq_rocee_tx_depth_ecc_1bit_err" },
{ .int_msk = BIT(3), .msg = "cmdq_rocee_tx_depth_ecc_mbit_err" },
{ .int_msk = BIT(4), .msg = "cmdq_rocee_rx_tail_ecc_1bit_err" },
{ .int_msk = BIT(5), .msg = "cmdq_rocee_rx_tail_ecc_mbit_err" },
{ .int_msk = BIT(6), .msg = "cmdq_rocee_tx_tail_ecc_1bit_err" },
{ .int_msk = BIT(7), .msg = "cmdq_rocee_tx_tail_ecc_mbit_err" },
{ .int_msk = BIT(8), .msg = "cmdq_rocee_rx_head_ecc_1bit_err" },
{ .int_msk = BIT(9), .msg = "cmdq_rocee_rx_head_ecc_mbit_err" },
{ .int_msk = BIT(10), .msg = "cmdq_rocee_tx_head_ecc_1bit_err" },
{ .int_msk = BIT(11), .msg = "cmdq_rocee_tx_head_ecc_mbit_err" },
{ .int_msk = BIT(12), .msg = "cmdq_rocee_rx_addr_ecc_1bit_err" },
{ .int_msk = BIT(13), .msg = "cmdq_rocee_rx_addr_ecc_mbit_err" },
{ .int_msk = BIT(14), .msg = "cmdq_rocee_tx_addr_ecc_1bit_err" },
{ .int_msk = BIT(15), .msg = "cmdq_rocee_tx_addr_ecc_mbit_err" },
{ .int_msk = BIT(17), .msg = "cmdq_rocee_rx_depth_ecc_mbit_err" },
{ .int_msk = BIT(19), .msg = "cmdq_rocee_tx_depth_ecc_mbit_err" },
{ .int_msk = BIT(21), .msg = "cmdq_rocee_rx_tail_ecc_mbit_err" },
{ .int_msk = BIT(23), .msg = "cmdq_rocee_tx_tail_ecc_mbit_err" },
{ .int_msk = BIT(25), .msg = "cmdq_rocee_rx_head_ecc_mbit_err" },
{ .int_msk = BIT(27), .msg = "cmdq_rocee_tx_head_ecc_mbit_err" },
{ .int_msk = BIT(29), .msg = "cmdq_rocee_rx_addr_ecc_mbit_err" },
{ .int_msk = BIT(31), .msg = "cmdq_rocee_tx_addr_ecc_mbit_err" },
{ /* sentinel */ }
};
static const struct hclge_hw_error hclge_tqp_int_ecc_int[] = {
{ .int_msk = BIT(0), .msg = "tqp_int_cfg_even_ecc_1bit_err" },
{ .int_msk = BIT(1), .msg = "tqp_int_cfg_odd_ecc_1bit_err" },
{ .int_msk = BIT(2), .msg = "tqp_int_ctrl_even_ecc_1bit_err" },
{ .int_msk = BIT(3), .msg = "tqp_int_ctrl_odd_ecc_1bit_err" },
{ .int_msk = BIT(4), .msg = "tx_que_scan_int_ecc_1bit_err" },
{ .int_msk = BIT(5), .msg = "rx_que_scan_int_ecc_1bit_err" },
{ .int_msk = BIT(6), .msg = "tqp_int_cfg_even_ecc_mbit_err" },
{ .int_msk = BIT(7), .msg = "tqp_int_cfg_odd_ecc_mbit_err" },
{ .int_msk = BIT(8), .msg = "tqp_int_ctrl_even_ecc_mbit_err" },
......@@ -85,15 +46,19 @@ static const struct hclge_hw_error hclge_tqp_int_ecc_int[] = {
{ /* sentinel */ }
};
static const struct hclge_hw_error hclge_igu_com_err_int[] = {
static const struct hclge_hw_error hclge_msix_sram_ecc_int[] = {
{ .int_msk = BIT(1), .msg = "msix_nic_ecc_mbit_err" },
{ .int_msk = BIT(3), .msg = "msix_rocee_ecc_mbit_err" },
{ /* sentinel */ }
};
static const struct hclge_hw_error hclge_igu_int[] = {
{ .int_msk = BIT(0), .msg = "igu_rx_buf0_ecc_mbit_err" },
{ .int_msk = BIT(1), .msg = "igu_rx_buf0_ecc_1bit_err" },
{ .int_msk = BIT(2), .msg = "igu_rx_buf1_ecc_mbit_err" },
{ .int_msk = BIT(3), .msg = "igu_rx_buf1_ecc_1bit_err" },
{ /* sentinel */ }
};
static const struct hclge_hw_error hclge_igu_egu_tnl_err_int[] = {
static const struct hclge_hw_error hclge_igu_egu_tnl_int[] = {
{ .int_msk = BIT(0), .msg = "rx_buf_overflow" },
{ .int_msk = BIT(1), .msg = "rx_stp_fifo_overflow" },
{ .int_msk = BIT(2), .msg = "rx_stp_fifo_undeflow" },
......@@ -104,51 +69,11 @@ static const struct hclge_hw_error hclge_igu_egu_tnl_err_int[] = {
};
static const struct hclge_hw_error hclge_ncsi_err_int[] = {
{ .int_msk = BIT(0), .msg = "ncsi_tx_ecc_1bit_err" },
{ .int_msk = BIT(1), .msg = "ncsi_tx_ecc_mbit_err" },
{ /* sentinel */ }
};
static const struct hclge_hw_error hclge_ppp_mpf_int0[] = {
{ .int_msk = BIT(0), .msg = "vf_vlan_ad_mem_ecc_1bit_err" },
{ .int_msk = BIT(1), .msg = "umv_mcast_group_mem_ecc_1bit_err" },
{ .int_msk = BIT(2), .msg = "umv_key_mem0_ecc_1bit_err" },
{ .int_msk = BIT(3), .msg = "umv_key_mem1_ecc_1bit_err" },
{ .int_msk = BIT(4), .msg = "umv_key_mem2_ecc_1bit_err" },
{ .int_msk = BIT(5), .msg = "umv_key_mem3_ecc_1bit_err" },
{ .int_msk = BIT(6), .msg = "umv_ad_mem_ecc_1bit_err" },
{ .int_msk = BIT(7), .msg = "rss_tc_mode_mem_ecc_1bit_err" },
{ .int_msk = BIT(8), .msg = "rss_idt_mem0_ecc_1bit_err" },
{ .int_msk = BIT(9), .msg = "rss_idt_mem1_ecc_1bit_err" },
{ .int_msk = BIT(10), .msg = "rss_idt_mem2_ecc_1bit_err" },
{ .int_msk = BIT(11), .msg = "rss_idt_mem3_ecc_1bit_err" },
{ .int_msk = BIT(12), .msg = "rss_idt_mem4_ecc_1bit_err" },
{ .int_msk = BIT(13), .msg = "rss_idt_mem5_ecc_1bit_err" },
{ .int_msk = BIT(14), .msg = "rss_idt_mem6_ecc_1bit_err" },
{ .int_msk = BIT(15), .msg = "rss_idt_mem7_ecc_1bit_err" },
{ .int_msk = BIT(16), .msg = "rss_idt_mem8_ecc_1bit_err" },
{ .int_msk = BIT(17), .msg = "rss_idt_mem9_ecc_1bit_err" },
{ .int_msk = BIT(18), .msg = "rss_idt_mem10_ecc_1bit_err" },
{ .int_msk = BIT(19), .msg = "rss_idt_mem11_ecc_1bit_err" },
{ .int_msk = BIT(20), .msg = "rss_idt_mem12_ecc_1bit_err" },
{ .int_msk = BIT(21), .msg = "rss_idt_mem13_ecc_1bit_err" },
{ .int_msk = BIT(22), .msg = "rss_idt_mem14_ecc_1bit_err" },
{ .int_msk = BIT(23), .msg = "rss_idt_mem15_ecc_1bit_err" },
{ .int_msk = BIT(24), .msg = "port_vlan_mem_ecc_1bit_err" },
{ .int_msk = BIT(25), .msg = "mcast_linear_table_mem_ecc_1bit_err" },
{ .int_msk = BIT(26), .msg = "mcast_result_mem_ecc_1bit_err" },
{ .int_msk = BIT(27),
.msg = "flow_director_ad_mem0_ecc_1bit_err" },
{ .int_msk = BIT(28),
.msg = "flow_director_ad_mem1_ecc_1bit_err" },
{ .int_msk = BIT(29),
.msg = "rx_vlan_tag_memory_ecc_1bit_err" },
{ .int_msk = BIT(30),
.msg = "Tx_UP_mapping_config_mem_ecc_1bit_err" },
{ /* sentinel */ }
};
static const struct hclge_hw_error hclge_ppp_mpf_int1[] = {
static const struct hclge_hw_error hclge_ppp_mpf_abnormal_int_st1[] = {
{ .int_msk = BIT(0), .msg = "vf_vlan_ad_mem_ecc_mbit_err" },
{ .int_msk = BIT(1), .msg = "umv_mcast_group_mem_ecc_mbit_err" },
{ .int_msk = BIT(2), .msg = "umv_key_mem0_ecc_mbit_err" },
......@@ -187,23 +112,13 @@ static const struct hclge_hw_error hclge_ppp_mpf_int1[] = {
{ /* sentinel */ }
};
static const struct hclge_hw_error hclge_ppp_pf_int[] = {
{ .int_msk = BIT(0), .msg = "Tx_vlan_tag_err" },
static const struct hclge_hw_error hclge_ppp_pf_abnormal_int[] = {
{ .int_msk = BIT(0), .msg = "tx_vlan_tag_err" },
{ .int_msk = BIT(1), .msg = "rss_list_tc_unassigned_queue_err" },
{ /* sentinel */ }
};
static const struct hclge_hw_error hclge_ppp_mpf_int2[] = {
{ .int_msk = BIT(0), .msg = "hfs_fifo_mem_ecc_1bit_err" },
{ .int_msk = BIT(1), .msg = "rslt_descr_fifo_mem_ecc_1bit_err" },
{ .int_msk = BIT(2), .msg = "tx_vlan_tag_mem_ecc_1bit_err" },
{ .int_msk = BIT(3), .msg = "FD_CN0_memory_ecc_1bit_err" },
{ .int_msk = BIT(4), .msg = "FD_CN1_memory_ecc_1bit_err" },
{ .int_msk = BIT(5), .msg = "GRO_AD_memory_ecc_1bit_err" },
{ /* sentinel */ }
};
static const struct hclge_hw_error hclge_ppp_mpf_int3[] = {
static const struct hclge_hw_error hclge_ppp_mpf_abnormal_int_st3[] = {
{ .int_msk = BIT(0), .msg = "hfs_fifo_mem_ecc_mbit_err" },
{ .int_msk = BIT(1), .msg = "rslt_descr_fifo_mem_ecc_mbit_err" },
{ .int_msk = BIT(2), .msg = "tx_vlan_tag_mem_ecc_mbit_err" },
......@@ -213,145 +128,248 @@ static const struct hclge_hw_error hclge_ppp_mpf_int3[] = {
{ /* sentinel */ }
};
struct hclge_tm_sch_ecc_info {
const char *name;
};
static const struct hclge_tm_sch_ecc_info hclge_tm_sch_ecc_err[7][15] = {
{
{ .name = "QSET_QUEUE_CTRL:PRI_LEN TAB" },
{ .name = "QSET_QUEUE_CTRL:SPA_LEN TAB" },
{ .name = "QSET_QUEUE_CTRL:SPB_LEN TAB" },
{ .name = "QSET_QUEUE_CTRL:WRRA_LEN TAB" },
{ .name = "QSET_QUEUE_CTRL:WRRB_LEN TAB" },
{ .name = "QSET_QUEUE_CTRL:SPA_HPTR TAB" },
{ .name = "QSET_QUEUE_CTRL:SPB_HPTR TAB" },
{ .name = "QSET_QUEUE_CTRL:WRRA_HPTR TAB" },
{ .name = "QSET_QUEUE_CTRL:WRRB_HPTR TAB" },
{ .name = "QSET_QUEUE_CTRL:QS_LINKLIST TAB" },
{ .name = "QSET_QUEUE_CTRL:SPA_TPTR TAB" },
{ .name = "QSET_QUEUE_CTRL:SPB_TPTR TAB" },
{ .name = "QSET_QUEUE_CTRL:WRRA_TPTR TAB" },
{ .name = "QSET_QUEUE_CTRL:WRRB_TPTR TAB" },
{ .name = "QSET_QUEUE_CTRL:QS_DEFICITCNT TAB" },
},
{
{ .name = "ROCE_QUEUE_CTRL:QS_LEN TAB" },
{ .name = "ROCE_QUEUE_CTRL:QS_TPTR TAB" },
{ .name = "ROCE_QUEUE_CTRL:QS_HPTR TAB" },
{ .name = "ROCE_QUEUE_CTRL:QLINKLIST TAB" },
{ .name = "ROCE_QUEUE_CTRL:QCLEN TAB" },
},
{
{ .name = "NIC_QUEUE_CTRL:QS_LEN TAB" },
{ .name = "NIC_QUEUE_CTRL:QS_TPTR TAB" },
{ .name = "NIC_QUEUE_CTRL:QS_HPTR TAB" },
{ .name = "NIC_QUEUE_CTRL:QLINKLIST TAB" },
{ .name = "NIC_QUEUE_CTRL:QCLEN TAB" },
},
{
{ .name = "RAM_CFG_CTRL:CSHAP TAB" },
{ .name = "RAM_CFG_CTRL:PSHAP TAB" },
},
{
{ .name = "SHAPER_CTRL:PSHAP TAB" },
},
{
{ .name = "MSCH_CTRL" },
},
{
{ .name = "TOP_CTRL" },
},
};
static const struct hclge_hw_error hclge_tm_sch_err_int[] = {
{ .int_msk = BIT(0), .msg = "tm_sch_ecc_1bit_err" },
static const struct hclge_hw_error hclge_tm_sch_rint[] = {
{ .int_msk = BIT(1), .msg = "tm_sch_ecc_mbit_err" },
{ .int_msk = BIT(2), .msg = "tm_sch_port_shap_sub_fifo_wr_full_err" },
{ .int_msk = BIT(3), .msg = "tm_sch_port_shap_sub_fifo_rd_empty_err" },
{ .int_msk = BIT(4), .msg = "tm_sch_pg_pshap_sub_fifo_wr_full_err" },
{ .int_msk = BIT(5), .msg = "tm_sch_pg_pshap_sub_fifo_rd_empty_err" },
{ .int_msk = BIT(6), .msg = "tm_sch_pg_cshap_sub_fifo_wr_full_err" },
{ .int_msk = BIT(7), .msg = "tm_sch_pg_cshap_sub_fifo_rd_empty_err" },
{ .int_msk = BIT(8), .msg = "tm_sch_pri_pshap_sub_fifo_wr_full_err" },
{ .int_msk = BIT(9), .msg = "tm_sch_pri_pshap_sub_fifo_rd_empty_err" },
{ .int_msk = BIT(10), .msg = "tm_sch_pri_cshap_sub_fifo_wr_full_err" },
{ .int_msk = BIT(11), .msg = "tm_sch_pri_cshap_sub_fifo_rd_empty_err" },
{ .int_msk = BIT(2), .msg = "tm_sch_port_shap_sub_fifo_wr_err" },
{ .int_msk = BIT(3), .msg = "tm_sch_port_shap_sub_fifo_rd_err" },
{ .int_msk = BIT(4), .msg = "tm_sch_pg_pshap_sub_fifo_wr_err" },
{ .int_msk = BIT(5), .msg = "tm_sch_pg_pshap_sub_fifo_rd_err" },
{ .int_msk = BIT(6), .msg = "tm_sch_pg_cshap_sub_fifo_wr_err" },
{ .int_msk = BIT(7), .msg = "tm_sch_pg_cshap_sub_fifo_rd_err" },
{ .int_msk = BIT(8), .msg = "tm_sch_pri_pshap_sub_fifo_wr_err" },
{ .int_msk = BIT(9), .msg = "tm_sch_pri_pshap_sub_fifo_rd_err" },
{ .int_msk = BIT(10), .msg = "tm_sch_pri_cshap_sub_fifo_wr_err" },
{ .int_msk = BIT(11), .msg = "tm_sch_pri_cshap_sub_fifo_rd_err" },
{ .int_msk = BIT(12),
.msg = "tm_sch_port_shap_offset_fifo_wr_full_err" },
.msg = "tm_sch_port_shap_offset_fifo_wr_err" },
{ .int_msk = BIT(13),
.msg = "tm_sch_port_shap_offset_fifo_rd_empty_err" },
.msg = "tm_sch_port_shap_offset_fifo_rd_err" },
{ .int_msk = BIT(14),
.msg = "tm_sch_pg_pshap_offset_fifo_wr_full_err" },
.msg = "tm_sch_pg_pshap_offset_fifo_wr_err" },
{ .int_msk = BIT(15),
.msg = "tm_sch_pg_pshap_offset_fifo_rd_empty_err" },
.msg = "tm_sch_pg_pshap_offset_fifo_rd_err" },
{ .int_msk = BIT(16),
.msg = "tm_sch_pg_cshap_offset_fifo_wr_full_err" },
.msg = "tm_sch_pg_cshap_offset_fifo_wr_err" },
{ .int_msk = BIT(17),
.msg = "tm_sch_pg_cshap_offset_fifo_rd_empty_err" },
.msg = "tm_sch_pg_cshap_offset_fifo_rd_err" },
{ .int_msk = BIT(18),
.msg = "tm_sch_pri_pshap_offset_fifo_wr_full_err" },
.msg = "tm_sch_pri_pshap_offset_fifo_wr_err" },
{ .int_msk = BIT(19),
.msg = "tm_sch_pri_pshap_offset_fifo_rd_empty_err" },
.msg = "tm_sch_pri_pshap_offset_fifo_rd_err" },
{ .int_msk = BIT(20),
.msg = "tm_sch_pri_cshap_offset_fifo_wr_full_err" },
.msg = "tm_sch_pri_cshap_offset_fifo_wr_err" },
{ .int_msk = BIT(21),
.msg = "tm_sch_pri_cshap_offset_fifo_rd_empty_err" },
{ .int_msk = BIT(22), .msg = "tm_sch_rq_fifo_wr_full_err" },
{ .int_msk = BIT(23), .msg = "tm_sch_rq_fifo_rd_empty_err" },
{ .int_msk = BIT(24), .msg = "tm_sch_nq_fifo_wr_full_err" },
{ .int_msk = BIT(25), .msg = "tm_sch_nq_fifo_rd_empty_err" },
{ .int_msk = BIT(26), .msg = "tm_sch_roce_up_fifo_wr_full_err" },
{ .int_msk = BIT(27), .msg = "tm_sch_roce_up_fifo_rd_empty_err" },
{ .int_msk = BIT(28), .msg = "tm_sch_rcb_byte_fifo_wr_full_err" },
{ .int_msk = BIT(29), .msg = "tm_sch_rcb_byte_fifo_rd_empty_err" },
{ .int_msk = BIT(30), .msg = "tm_sch_ssu_byte_fifo_wr_full_err" },
{ .int_msk = BIT(31), .msg = "tm_sch_ssu_byte_fifo_rd_empty_err" },
.msg = "tm_sch_pri_cshap_offset_fifo_rd_err" },
{ .int_msk = BIT(22), .msg = "tm_sch_rq_fifo_wr_err" },
{ .int_msk = BIT(23), .msg = "tm_sch_rq_fifo_rd_err" },
{ .int_msk = BIT(24), .msg = "tm_sch_nq_fifo_wr_err" },
{ .int_msk = BIT(25), .msg = "tm_sch_nq_fifo_rd_err" },
{ .int_msk = BIT(26), .msg = "tm_sch_roce_up_fifo_wr_err" },
{ .int_msk = BIT(27), .msg = "tm_sch_roce_up_fifo_rd_err" },
{ .int_msk = BIT(28), .msg = "tm_sch_rcb_byte_fifo_wr_err" },
{ .int_msk = BIT(29), .msg = "tm_sch_rcb_byte_fifo_rd_err" },
{ .int_msk = BIT(30), .msg = "tm_sch_ssu_byte_fifo_wr_err" },
{ .int_msk = BIT(31), .msg = "tm_sch_ssu_byte_fifo_rd_err" },
{ /* sentinel */ }
};
static const struct hclge_hw_error hclge_qcn_fifo_rint[] = {
{ .int_msk = BIT(0), .msg = "qcn_shap_gp0_sch_fifo_rd_err" },
{ .int_msk = BIT(1), .msg = "qcn_shap_gp0_sch_fifo_wr_err" },
{ .int_msk = BIT(2), .msg = "qcn_shap_gp1_sch_fifo_rd_err" },
{ .int_msk = BIT(3), .msg = "qcn_shap_gp1_sch_fifo_wr_err" },
{ .int_msk = BIT(4), .msg = "qcn_shap_gp2_sch_fifo_rd_err" },
{ .int_msk = BIT(5), .msg = "qcn_shap_gp2_sch_fifo_wr_err" },
{ .int_msk = BIT(6), .msg = "qcn_shap_gp3_sch_fifo_rd_err" },
{ .int_msk = BIT(7), .msg = "qcn_shap_gp3_sch_fifo_wr_err" },
{ .int_msk = BIT(8), .msg = "qcn_shap_gp0_offset_fifo_rd_err" },
{ .int_msk = BIT(9), .msg = "qcn_shap_gp0_offser_fifo_wr_err" },
{ .int_msk = BIT(10), .msg = "qcn_shap_gp1_offset_fifo_rd_err" },
{ .int_msk = BIT(11), .msg = "qcn_shap_gp1_offset_fifo_wr_err" },
{ .int_msk = BIT(12), .msg = "qcn_shap_gp2_offset_fifo_rd_err" },
{ .int_msk = BIT(13), .msg = "qcn_shap_gp2_offset_fifo_wr_err" },
{ .int_msk = BIT(14), .msg = "qcn_shap_gp3_offset_fifo_rd_err" },
{ .int_msk = BIT(15), .msg = "qcn_shap_gp3_offset_fifo_wr_err" },
{ .int_msk = BIT(16), .msg = "qcn_byte_info_fifo_rd_err" },
{ .int_msk = BIT(17), .msg = "qcn_byte_info_fifo_wr_err" },
{ /* sentinel */ }
};
static const struct hclge_hw_error hclge_qcn_ecc_err_int[] = {
{ .int_msk = BIT(0), .msg = "qcn_byte_mem_ecc_1bit_err" },
static const struct hclge_hw_error hclge_qcn_ecc_rint[] = {
{ .int_msk = BIT(1), .msg = "qcn_byte_mem_ecc_mbit_err" },
{ .int_msk = BIT(2), .msg = "qcn_time_mem_ecc_1bit_err" },
{ .int_msk = BIT(3), .msg = "qcn_time_mem_ecc_mbit_err" },
{ .int_msk = BIT(4), .msg = "qcn_fb_mem_ecc_1bit_err" },
{ .int_msk = BIT(5), .msg = "qcn_fb_mem_ecc_mbit_err" },
{ .int_msk = BIT(6), .msg = "qcn_link_mem_ecc_1bit_err" },
{ .int_msk = BIT(7), .msg = "qcn_link_mem_ecc_mbit_err" },
{ .int_msk = BIT(8), .msg = "qcn_rate_mem_ecc_1bit_err" },
{ .int_msk = BIT(9), .msg = "qcn_rate_mem_ecc_mbit_err" },
{ .int_msk = BIT(10), .msg = "qcn_tmplt_mem_ecc_1bit_err" },
{ .int_msk = BIT(11), .msg = "qcn_tmplt_mem_ecc_mbit_err" },
{ .int_msk = BIT(12), .msg = "qcn_shap_cfg_mem_ecc_1bit_err" },
{ .int_msk = BIT(13), .msg = "qcn_shap_cfg_mem_ecc_mbit_err" },
{ .int_msk = BIT(14), .msg = "qcn_gp0_barrel_mem_ecc_1bit_err" },
{ .int_msk = BIT(15), .msg = "qcn_gp0_barrel_mem_ecc_mbit_err" },
{ .int_msk = BIT(16), .msg = "qcn_gp1_barrel_mem_ecc_1bit_err" },
{ .int_msk = BIT(17), .msg = "qcn_gp1_barrel_mem_ecc_mbit_err" },
{ .int_msk = BIT(18), .msg = "qcn_gp2_barrel_mem_ecc_1bit_err" },
{ .int_msk = BIT(19), .msg = "qcn_gp2_barrel_mem_ecc_mbit_err" },
{ .int_msk = BIT(20), .msg = "qcn_gp3_barral_mem_ecc_1bit_err" },
{ .int_msk = BIT(21), .msg = "qcn_gp3_barral_mem_ecc_mbit_err" },
{ /* sentinel */ }
};
static void hclge_log_error(struct device *dev,
const struct hclge_hw_error *err_list,
static const struct hclge_hw_error hclge_mac_afifo_tnl_int[] = {
{ .int_msk = BIT(0), .msg = "egu_cge_afifo_ecc_1bit_err" },
{ .int_msk = BIT(1), .msg = "egu_cge_afifo_ecc_mbit_err" },
{ .int_msk = BIT(2), .msg = "egu_lge_afifo_ecc_1bit_err" },
{ .int_msk = BIT(3), .msg = "egu_lge_afifo_ecc_mbit_err" },
{ .int_msk = BIT(4), .msg = "cge_igu_afifo_ecc_1bit_err" },
{ .int_msk = BIT(5), .msg = "cge_igu_afifo_ecc_mbit_err" },
{ .int_msk = BIT(6), .msg = "lge_igu_afifo_ecc_1bit_err" },
{ .int_msk = BIT(7), .msg = "lge_igu_afifo_ecc_mbit_err" },
{ /* sentinel */ }
};
static const struct hclge_hw_error hclge_ppu_mpf_abnormal_int_st2[] = {
{ .int_msk = BIT(13), .msg = "rpu_rx_pkt_bit32_ecc_mbit_err" },
{ .int_msk = BIT(14), .msg = "rpu_rx_pkt_bit33_ecc_mbit_err" },
{ .int_msk = BIT(15), .msg = "rpu_rx_pkt_bit34_ecc_mbit_err" },
{ .int_msk = BIT(16), .msg = "rpu_rx_pkt_bit35_ecc_mbit_err" },
{ .int_msk = BIT(17), .msg = "rcb_tx_ring_ecc_mbit_err" },
{ .int_msk = BIT(18), .msg = "rcb_rx_ring_ecc_mbit_err" },
{ .int_msk = BIT(19), .msg = "rcb_tx_fbd_ecc_mbit_err" },
{ .int_msk = BIT(20), .msg = "rcb_rx_ebd_ecc_mbit_err" },
{ .int_msk = BIT(21), .msg = "rcb_tso_info_ecc_mbit_err" },
{ .int_msk = BIT(22), .msg = "rcb_tx_int_info_ecc_mbit_err" },
{ .int_msk = BIT(23), .msg = "rcb_rx_int_info_ecc_mbit_err" },
{ .int_msk = BIT(24), .msg = "tpu_tx_pkt_0_ecc_mbit_err" },
{ .int_msk = BIT(25), .msg = "tpu_tx_pkt_1_ecc_mbit_err" },
{ .int_msk = BIT(26), .msg = "rd_bus_err" },
{ .int_msk = BIT(27), .msg = "wr_bus_err" },
{ .int_msk = BIT(28), .msg = "reg_search_miss" },
{ .int_msk = BIT(29), .msg = "rx_q_search_miss" },
{ .int_msk = BIT(30), .msg = "ooo_ecc_err_detect" },
{ .int_msk = BIT(31), .msg = "ooo_ecc_err_multpl" },
{ /* sentinel */ }
};
static const struct hclge_hw_error hclge_ppu_mpf_abnormal_int_st3[] = {
{ .int_msk = BIT(4), .msg = "gro_bd_ecc_mbit_err" },
{ .int_msk = BIT(5), .msg = "gro_context_ecc_mbit_err" },
{ .int_msk = BIT(6), .msg = "rx_stash_cfg_ecc_mbit_err" },
{ .int_msk = BIT(7), .msg = "axi_rd_fbd_ecc_mbit_err" },
{ /* sentinel */ }
};
static const struct hclge_hw_error hclge_ppu_pf_abnormal_int[] = {
{ .int_msk = BIT(0), .msg = "over_8bd_no_fe" },
{ .int_msk = BIT(1), .msg = "tso_mss_cmp_min_err" },
{ .int_msk = BIT(2), .msg = "tso_mss_cmp_max_err" },
{ .int_msk = BIT(3), .msg = "tx_rd_fbd_poison" },
{ .int_msk = BIT(4), .msg = "rx_rd_ebd_poison" },
{ .int_msk = BIT(5), .msg = "buf_wait_timeout" },
{ /* sentinel */ }
};
static const struct hclge_hw_error hclge_ssu_com_err_int[] = {
{ .int_msk = BIT(0), .msg = "buf_sum_err" },
{ .int_msk = BIT(1), .msg = "ppp_mb_num_err" },
{ .int_msk = BIT(2), .msg = "ppp_mbid_err" },
{ .int_msk = BIT(3), .msg = "ppp_rlt_mac_err" },
{ .int_msk = BIT(4), .msg = "ppp_rlt_host_err" },
{ .int_msk = BIT(5), .msg = "cks_edit_position_err" },
{ .int_msk = BIT(6), .msg = "cks_edit_condition_err" },
{ .int_msk = BIT(7), .msg = "vlan_edit_condition_err" },
{ .int_msk = BIT(8), .msg = "vlan_num_ot_err" },
{ .int_msk = BIT(9), .msg = "vlan_num_in_err" },
{ /* sentinel */ }
};
static const struct hclge_hw_error hclge_ssu_port_based_err_int[] = {
{ .int_msk = BIT(0), .msg = "roc_pkt_without_key_port" },
{ .int_msk = BIT(1), .msg = "tpu_pkt_without_key_port" },
{ .int_msk = BIT(2), .msg = "igu_pkt_without_key_port" },
{ .int_msk = BIT(3), .msg = "roc_eof_mis_match_port" },
{ .int_msk = BIT(4), .msg = "tpu_eof_mis_match_port" },
{ .int_msk = BIT(5), .msg = "igu_eof_mis_match_port" },
{ .int_msk = BIT(6), .msg = "roc_sof_mis_match_port" },
{ .int_msk = BIT(7), .msg = "tpu_sof_mis_match_port" },
{ .int_msk = BIT(8), .msg = "igu_sof_mis_match_port" },
{ .int_msk = BIT(11), .msg = "ets_rd_int_rx_port" },
{ .int_msk = BIT(12), .msg = "ets_wr_int_rx_port" },
{ .int_msk = BIT(13), .msg = "ets_rd_int_tx_port" },
{ .int_msk = BIT(14), .msg = "ets_wr_int_tx_port" },
{ /* sentinel */ }
};
static const struct hclge_hw_error hclge_ssu_fifo_overflow_int[] = {
{ .int_msk = BIT(0), .msg = "ig_mac_inf_int" },
{ .int_msk = BIT(1), .msg = "ig_host_inf_int" },
{ .int_msk = BIT(2), .msg = "ig_roc_buf_int" },
{ .int_msk = BIT(3), .msg = "ig_host_data_fifo_int" },
{ .int_msk = BIT(4), .msg = "ig_host_key_fifo_int" },
{ .int_msk = BIT(5), .msg = "tx_qcn_fifo_int" },
{ .int_msk = BIT(6), .msg = "rx_qcn_fifo_int" },
{ .int_msk = BIT(7), .msg = "tx_pf_rd_fifo_int" },
{ .int_msk = BIT(8), .msg = "rx_pf_rd_fifo_int" },
{ .int_msk = BIT(9), .msg = "qm_eof_fifo_int" },
{ .int_msk = BIT(10), .msg = "mb_rlt_fifo_int" },
{ .int_msk = BIT(11), .msg = "dup_uncopy_fifo_int" },
{ .int_msk = BIT(12), .msg = "dup_cnt_rd_fifo_int" },
{ .int_msk = BIT(13), .msg = "dup_cnt_drop_fifo_int" },
{ .int_msk = BIT(14), .msg = "dup_cnt_wrb_fifo_int" },
{ .int_msk = BIT(15), .msg = "host_cmd_fifo_int" },
{ .int_msk = BIT(16), .msg = "mac_cmd_fifo_int" },
{ .int_msk = BIT(17), .msg = "host_cmd_bitmap_empty_int" },
{ .int_msk = BIT(18), .msg = "mac_cmd_bitmap_empty_int" },
{ .int_msk = BIT(19), .msg = "dup_bitmap_empty_int" },
{ .int_msk = BIT(20), .msg = "out_queue_bitmap_empty_int" },
{ .int_msk = BIT(21), .msg = "bank2_bitmap_empty_int" },
{ .int_msk = BIT(22), .msg = "bank1_bitmap_empty_int" },
{ .int_msk = BIT(23), .msg = "bank0_bitmap_empty_int" },
{ /* sentinel */ }
};
static const struct hclge_hw_error hclge_ssu_ets_tcg_int[] = {
{ .int_msk = BIT(0), .msg = "ets_rd_int_rx_tcg" },
{ .int_msk = BIT(1), .msg = "ets_wr_int_rx_tcg" },
{ .int_msk = BIT(2), .msg = "ets_rd_int_tx_tcg" },
{ .int_msk = BIT(3), .msg = "ets_wr_int_tx_tcg" },
{ /* sentinel */ }
};
static const struct hclge_hw_error hclge_ssu_port_based_pf_int[] = {
{ .int_msk = BIT(0), .msg = "roc_pkt_without_key_port" },
{ .int_msk = BIT(9), .msg = "low_water_line_err_port" },
{ .int_msk = BIT(10), .msg = "hi_water_line_err_port" },
{ /* sentinel */ }
};
static const struct hclge_hw_error hclge_rocee_qmm_ovf_err_int[] = {
{ .int_msk = 0, .msg = "rocee qmm ovf: sgid invalid err" },
{ .int_msk = 0x4, .msg = "rocee qmm ovf: sgid ovf err" },
{ .int_msk = 0x8, .msg = "rocee qmm ovf: smac invalid err" },
{ .int_msk = 0xC, .msg = "rocee qmm ovf: smac ovf err" },
{ .int_msk = 0x10, .msg = "rocee qmm ovf: cqc invalid err" },
{ .int_msk = 0x11, .msg = "rocee qmm ovf: cqc ovf err" },
{ .int_msk = 0x12, .msg = "rocee qmm ovf: cqc hopnum err" },
{ .int_msk = 0x13, .msg = "rocee qmm ovf: cqc ba0 err" },
{ .int_msk = 0x14, .msg = "rocee qmm ovf: srqc invalid err" },
{ .int_msk = 0x15, .msg = "rocee qmm ovf: srqc ovf err" },
{ .int_msk = 0x16, .msg = "rocee qmm ovf: srqc hopnum err" },
{ .int_msk = 0x17, .msg = "rocee qmm ovf: srqc ba0 err" },
{ .int_msk = 0x18, .msg = "rocee qmm ovf: mpt invalid err" },
{ .int_msk = 0x19, .msg = "rocee qmm ovf: mpt ovf err" },
{ .int_msk = 0x1A, .msg = "rocee qmm ovf: mpt hopnum err" },
{ .int_msk = 0x1B, .msg = "rocee qmm ovf: mpt ba0 err" },
{ .int_msk = 0x1C, .msg = "rocee qmm ovf: qpc invalid err" },
{ .int_msk = 0x1D, .msg = "rocee qmm ovf: qpc ovf err" },
{ .int_msk = 0x1E, .msg = "rocee qmm ovf: qpc hopnum err" },
{ .int_msk = 0x1F, .msg = "rocee qmm ovf: qpc ba0 err" },
{ /* sentinel */ }
};
static void hclge_log_error(struct device *dev, char *reg,
const struct hclge_hw_error *err,
u32 err_sts)
{
const struct hclge_hw_error *err;
int i = 0;
while (err_list[i].msg) {
err = &err_list[i];
if (!(err->int_msk & err_sts)) {
i++;
continue;
}
dev_warn(dev, "%s [error status=0x%x] found\n",
err->msg, err_sts);
i++;
while (err->msg) {
if (err->int_msk & err_sts)
dev_warn(dev, "%s %s found [error status=0x%x]\n",
reg, err->msg, err_sts);
err++;
}
}
......@@ -391,96 +409,44 @@ static int hclge_cmd_query_error(struct hclge_dev *hdev,
return ret;
}
/* hclge_cmd_clear_error: clear the error status
* @hdev: pointer to struct hclge_dev
* @desc: descriptor for describing the command
* @desc_src: prefilled descriptor from the previous command for reusing
* @cmd: command opcode
* @flag: flag for extended command structure
*
* This function clear the error status in the hw register/s using command
*/
static int hclge_cmd_clear_error(struct hclge_dev *hdev,
struct hclge_desc *desc,
struct hclge_desc *desc_src,
u32 cmd, u16 flag)
{
struct device *dev = &hdev->pdev->dev;
int num = 1;
int ret, i;
if (cmd) {
hclge_cmd_setup_basic_desc(&desc[0], cmd, false);
if (flag) {
desc[0].flag |= cpu_to_le16(flag);
hclge_cmd_setup_basic_desc(&desc[1], cmd, false);
num = 2;
}
if (desc_src) {
for (i = 0; i < 6; i++) {
desc[0].data[i] = desc_src[0].data[i];
if (flag)
desc[1].data[i] = desc_src[1].data[i];
}
}
} else {
hclge_cmd_reuse_desc(&desc[0], false);
if (flag) {
desc[0].flag |= cpu_to_le16(flag);
hclge_cmd_reuse_desc(&desc[1], false);
num = 2;
}
}
ret = hclge_cmd_send(&hdev->hw, &desc[0], num);
if (ret)
dev_err(dev, "clear error cmd failed (%d)\n", ret);
return ret;
}
static int hclge_enable_common_error(struct hclge_dev *hdev, bool en)
static int hclge_config_common_hw_err_int(struct hclge_dev *hdev, bool en)
{
struct device *dev = &hdev->pdev->dev;
struct hclge_desc desc[2];
int ret;
/* configure common error interrupts */
hclge_cmd_setup_basic_desc(&desc[0], HCLGE_COMMON_ECC_INT_CFG, false);
desc[0].flag |= cpu_to_le16(HCLGE_CMD_FLAG_NEXT);
hclge_cmd_setup_basic_desc(&desc[1], HCLGE_COMMON_ECC_INT_CFG, false);
if (en) {
/* enable COMMON error interrupts */
desc[0].data[0] = cpu_to_le32(HCLGE_IMP_TCM_ECC_ERR_INT_EN);
desc[0].data[2] = cpu_to_le32(HCLGE_CMDQ_NIC_ECC_ERR_INT_EN |
HCLGE_CMDQ_ROCEE_ECC_ERR_INT_EN);
desc[0].data[3] = cpu_to_le32(HCLGE_IMP_RD_POISON_ERR_INT_EN);
desc[0].data[4] = cpu_to_le32(HCLGE_TQP_ECC_ERR_INT_EN);
desc[0].data[4] = cpu_to_le32(HCLGE_TQP_ECC_ERR_INT_EN |
HCLGE_MSIX_SRAM_ECC_ERR_INT_EN);
desc[0].data[5] = cpu_to_le32(HCLGE_IMP_ITCM4_ECC_ERR_INT_EN);
} else {
/* disable COMMON error interrupts */
desc[0].data[0] = 0;
desc[0].data[2] = 0;
desc[0].data[3] = 0;
desc[0].data[4] = 0;
desc[0].data[5] = 0;
}
desc[1].data[0] = cpu_to_le32(HCLGE_IMP_TCM_ECC_ERR_INT_EN_MASK);
desc[1].data[2] = cpu_to_le32(HCLGE_CMDQ_NIC_ECC_ERR_INT_EN_MASK |
HCLGE_CMDQ_ROCEE_ECC_ERR_INT_EN_MASK);
desc[1].data[3] = cpu_to_le32(HCLGE_IMP_RD_POISON_ERR_INT_EN_MASK);
desc[1].data[4] = cpu_to_le32(HCLGE_TQP_ECC_ERR_INT_EN_MASK);
desc[1].data[4] = cpu_to_le32(HCLGE_TQP_ECC_ERR_INT_EN_MASK |
HCLGE_MSIX_SRAM_ECC_ERR_INT_EN_MASK);
desc[1].data[5] = cpu_to_le32(HCLGE_IMP_ITCM4_ECC_ERR_INT_EN_MASK);
ret = hclge_cmd_send(&hdev->hw, &desc[0], 2);
if (ret)
dev_err(dev,
"failed(%d) to enable/disable COMMON err interrupts\n",
ret);
"fail(%d) to configure common err interrupts\n", ret);
return ret;
}
static int hclge_enable_ncsi_error(struct hclge_dev *hdev, bool en)
static int hclge_config_ncsi_hw_err_int(struct hclge_dev *hdev, bool en)
{
struct device *dev = &hdev->pdev->dev;
struct hclge_desc desc;
......@@ -489,74 +455,65 @@ static int hclge_enable_ncsi_error(struct hclge_dev *hdev, bool en)
if (hdev->pdev->revision < 0x21)
return 0;
/* enable/disable NCSI error interrupts */
/* configure NCSI error interrupts */
hclge_cmd_setup_basic_desc(&desc, HCLGE_NCSI_INT_EN, false);
if (en)
desc.data[0] = cpu_to_le32(HCLGE_NCSI_ERR_INT_EN);
else
desc.data[0] = 0;
ret = hclge_cmd_send(&hdev->hw, &desc, 1);
if (ret)
dev_err(dev,
"failed(%d) to enable/disable NCSI error interrupts\n",
ret);
"fail(%d) to configure NCSI error interrupts\n", ret);
return ret;
}
static int hclge_enable_igu_egu_error(struct hclge_dev *hdev, bool en)
static int hclge_config_igu_egu_hw_err_int(struct hclge_dev *hdev, bool en)
{
struct device *dev = &hdev->pdev->dev;
struct hclge_desc desc;
int ret;
/* enable/disable error interrupts */
/* configure IGU,EGU error interrupts */
hclge_cmd_setup_basic_desc(&desc, HCLGE_IGU_COMMON_INT_EN, false);
if (en)
desc.data[0] = cpu_to_le32(HCLGE_IGU_ERR_INT_EN);
else
desc.data[0] = 0;
desc.data[1] = cpu_to_le32(HCLGE_IGU_ERR_INT_EN_MASK);
ret = hclge_cmd_send(&hdev->hw, &desc, 1);
if (ret) {
dev_err(dev,
"failed(%d) to enable/disable IGU common interrupts\n",
ret);
"fail(%d) to configure IGU common interrupts\n", ret);
return ret;
}
hclge_cmd_setup_basic_desc(&desc, HCLGE_IGU_EGU_TNL_INT_EN, false);
if (en)
desc.data[0] = cpu_to_le32(HCLGE_IGU_TNL_ERR_INT_EN);
else
desc.data[0] = 0;
desc.data[1] = cpu_to_le32(HCLGE_IGU_TNL_ERR_INT_EN_MASK);
ret = hclge_cmd_send(&hdev->hw, &desc, 1);
if (ret) {
dev_err(dev,
"failed(%d) to enable/disable IGU-EGU TNL interrupts\n",
ret);
"fail(%d) to configure IGU-EGU TNL interrupts\n", ret);
return ret;
}
ret = hclge_enable_ncsi_error(hdev, en);
if (ret)
dev_err(dev, "fail(%d) to en/disable err int\n", ret);
ret = hclge_config_ncsi_hw_err_int(hdev, en);
return ret;
}
static int hclge_enable_ppp_error_interrupt(struct hclge_dev *hdev, u32 cmd,
static int hclge_config_ppp_error_interrupt(struct hclge_dev *hdev, u32 cmd,
bool en)
{
struct device *dev = &hdev->pdev->dev;
struct hclge_desc desc[2];
int ret;
/* enable/disable PPP error interrupts */
/* configure PPP error interrupts */
hclge_cmd_setup_basic_desc(&desc[0], cmd, false);
desc[0].flag |= cpu_to_le16(HCLGE_CMD_FLAG_NEXT);
hclge_cmd_setup_basic_desc(&desc[1], cmd, false);
......@@ -567,24 +524,24 @@ static int hclge_enable_ppp_error_interrupt(struct hclge_dev *hdev, u32 cmd,
cpu_to_le32(HCLGE_PPP_MPF_ECC_ERR_INT0_EN);
desc[0].data[1] =
cpu_to_le32(HCLGE_PPP_MPF_ECC_ERR_INT1_EN);
} else {
desc[0].data[0] = 0;
desc[0].data[1] = 0;
desc[0].data[4] = cpu_to_le32(HCLGE_PPP_PF_ERR_INT_EN);
}
desc[1].data[0] =
cpu_to_le32(HCLGE_PPP_MPF_ECC_ERR_INT0_EN_MASK);
desc[1].data[1] =
cpu_to_le32(HCLGE_PPP_MPF_ECC_ERR_INT1_EN_MASK);
if (hdev->pdev->revision >= 0x21)
desc[1].data[2] =
cpu_to_le32(HCLGE_PPP_PF_ERR_INT_EN_MASK);
} else if (cmd == HCLGE_PPP_CMD1_INT_CMD) {
if (en) {
desc[0].data[0] =
cpu_to_le32(HCLGE_PPP_MPF_ECC_ERR_INT2_EN);
desc[0].data[1] =
cpu_to_le32(HCLGE_PPP_MPF_ECC_ERR_INT3_EN);
} else {
desc[0].data[0] = 0;
desc[0].data[1] = 0;
}
desc[1].data[0] =
cpu_to_le32(HCLGE_PPP_MPF_ECC_ERR_INT2_EN_MASK);
desc[1].data[1] =
......@@ -593,491 +550,863 @@ static int hclge_enable_ppp_error_interrupt(struct hclge_dev *hdev, u32 cmd,
ret = hclge_cmd_send(&hdev->hw, &desc[0], 2);
if (ret)
dev_err(dev,
"failed(%d) to enable/disable PPP error interrupts\n",
ret);
dev_err(dev, "fail(%d) to configure PPP error intr\n", ret);
return ret;
}
static int hclge_enable_ppp_error(struct hclge_dev *hdev, bool en)
static int hclge_config_ppp_hw_err_int(struct hclge_dev *hdev, bool en)
{
struct device *dev = &hdev->pdev->dev;
int ret;
ret = hclge_enable_ppp_error_interrupt(hdev, HCLGE_PPP_CMD0_INT_CMD,
ret = hclge_config_ppp_error_interrupt(hdev, HCLGE_PPP_CMD0_INT_CMD,
en);
if (ret) {
dev_err(dev,
"failed(%d) to enable/disable PPP error intr 0,1\n",
ret);
if (ret)
return ret;
}
ret = hclge_enable_ppp_error_interrupt(hdev, HCLGE_PPP_CMD1_INT_CMD,
ret = hclge_config_ppp_error_interrupt(hdev, HCLGE_PPP_CMD1_INT_CMD,
en);
if (ret)
dev_err(dev,
"failed(%d) to enable/disable PPP error intr 2,3\n",
ret);
return ret;
}
int hclge_enable_tm_hw_error(struct hclge_dev *hdev, bool en)
static int hclge_config_tm_hw_err_int(struct hclge_dev *hdev, bool en)
{
struct device *dev = &hdev->pdev->dev;
struct hclge_desc desc;
int ret;
/* enable TM SCH hw errors */
/* configure TM SCH hw errors */
hclge_cmd_setup_basic_desc(&desc, HCLGE_TM_SCH_ECC_INT_EN, false);
if (en)
desc.data[0] = cpu_to_le32(HCLGE_TM_SCH_ECC_ERR_INT_EN);
else
desc.data[0] = 0;
ret = hclge_cmd_send(&hdev->hw, &desc, 1);
if (ret) {
dev_err(dev, "failed(%d) to configure TM SCH errors\n", ret);
dev_err(dev, "fail(%d) to configure TM SCH errors\n", ret);
return ret;
}
/* enable TM QCN hw errors */
/* configure TM QCN hw errors */
ret = hclge_cmd_query_error(hdev, &desc, HCLGE_TM_QCN_MEM_INT_CFG,
0, 0, 0);
if (ret) {
dev_err(dev, "failed(%d) to read TM QCN CFG status\n", ret);
dev_err(dev, "fail(%d) to read TM QCN CFG status\n", ret);
return ret;
}
hclge_cmd_reuse_desc(&desc, false);
if (en)
desc.data[1] = cpu_to_le32(HCLGE_TM_QCN_MEM_ERR_INT_EN);
else
desc.data[1] = 0;
ret = hclge_cmd_send(&hdev->hw, &desc, 1);
if (ret)
dev_err(dev,
"failed(%d) to configure TM QCN mem errors\n", ret);
"fail(%d) to configure TM QCN mem errors\n", ret);
return ret;
}
static void hclge_process_common_error(struct hclge_dev *hdev,
enum hclge_err_int_type type)
static int hclge_config_mac_err_int(struct hclge_dev *hdev, bool en)
{
struct device *dev = &hdev->pdev->dev;
struct hclge_desc desc[2];
u32 err_sts;
struct hclge_desc desc;
int ret;
/* read err sts */
ret = hclge_cmd_query_error(hdev, &desc[0],
HCLGE_COMMON_ECC_INT_CFG,
HCLGE_CMD_FLAG_NEXT, 0, 0);
if (ret) {
/* configure MAC common error interrupts */
hclge_cmd_setup_basic_desc(&desc, HCLGE_MAC_COMMON_INT_EN, false);
if (en)
desc.data[0] = cpu_to_le32(HCLGE_MAC_COMMON_ERR_INT_EN);
desc.data[1] = cpu_to_le32(HCLGE_MAC_COMMON_ERR_INT_EN_MASK);
ret = hclge_cmd_send(&hdev->hw, &desc, 1);
if (ret)
dev_err(dev,
"failed(=%d) to query COMMON error interrupt status\n",
ret);
return;
}
"fail(%d) to configure MAC COMMON error intr\n", ret);
/* log err */
err_sts = (le32_to_cpu(desc[0].data[0])) & HCLGE_IMP_TCM_ECC_INT_MASK;
hclge_log_error(dev, &hclge_imp_tcm_ecc_int[0], err_sts);
return ret;
}
err_sts = (le32_to_cpu(desc[0].data[1])) & HCLGE_CMDQ_ECC_INT_MASK;
hclge_log_error(dev, &hclge_cmdq_nic_mem_ecc_int[0], err_sts);
static int hclge_config_ppu_error_interrupts(struct hclge_dev *hdev, u32 cmd,
bool en)
{
struct device *dev = &hdev->pdev->dev;
struct hclge_desc desc[2];
int num = 1;
int ret;
err_sts = (le32_to_cpu(desc[0].data[1]) >> HCLGE_CMDQ_ROC_ECC_INT_SHIFT)
& HCLGE_CMDQ_ECC_INT_MASK;
hclge_log_error(dev, &hclge_cmdq_rocee_mem_ecc_int[0], err_sts);
/* configure PPU error interrupts */
if (cmd == HCLGE_PPU_MPF_ECC_INT_CMD) {
hclge_cmd_setup_basic_desc(&desc[0], cmd, false);
desc[0].flag |= HCLGE_CMD_FLAG_NEXT;
hclge_cmd_setup_basic_desc(&desc[1], cmd, false);
if (en) {
desc[0].data[0] = HCLGE_PPU_MPF_ABNORMAL_INT0_EN;
desc[0].data[1] = HCLGE_PPU_MPF_ABNORMAL_INT1_EN;
desc[1].data[3] = HCLGE_PPU_MPF_ABNORMAL_INT3_EN;
desc[1].data[4] = HCLGE_PPU_MPF_ABNORMAL_INT2_EN;
}
if ((le32_to_cpu(desc[0].data[3])) & BIT(0))
dev_warn(dev, "imp_rd_data_poison_err found\n");
desc[1].data[0] = HCLGE_PPU_MPF_ABNORMAL_INT0_EN_MASK;
desc[1].data[1] = HCLGE_PPU_MPF_ABNORMAL_INT1_EN_MASK;
desc[1].data[2] = HCLGE_PPU_MPF_ABNORMAL_INT2_EN_MASK;
desc[1].data[3] |= HCLGE_PPU_MPF_ABNORMAL_INT3_EN_MASK;
num = 2;
} else if (cmd == HCLGE_PPU_MPF_OTHER_INT_CMD) {
hclge_cmd_setup_basic_desc(&desc[0], cmd, false);
if (en)
desc[0].data[0] = HCLGE_PPU_MPF_ABNORMAL_INT2_EN2;
err_sts = (le32_to_cpu(desc[0].data[3]) >> HCLGE_TQP_ECC_INT_SHIFT) &
HCLGE_TQP_ECC_INT_MASK;
hclge_log_error(dev, &hclge_tqp_int_ecc_int[0], err_sts);
desc[0].data[2] = HCLGE_PPU_MPF_ABNORMAL_INT2_EN2_MASK;
} else if (cmd == HCLGE_PPU_PF_OTHER_INT_CMD) {
hclge_cmd_setup_basic_desc(&desc[0], cmd, false);
if (en)
desc[0].data[0] = HCLGE_PPU_PF_ABNORMAL_INT_EN;
err_sts = (le32_to_cpu(desc[0].data[5])) &
HCLGE_IMP_ITCM4_ECC_INT_MASK;
hclge_log_error(dev, &hclge_imp_itcm4_ecc_int[0], err_sts);
desc[0].data[2] = HCLGE_PPU_PF_ABNORMAL_INT_EN_MASK;
} else {
dev_err(dev, "Invalid cmd to configure PPU error interrupts\n");
return -EINVAL;
}
/* clear error interrupts */
desc[1].data[0] = cpu_to_le32(HCLGE_IMP_TCM_ECC_CLR_MASK);
desc[1].data[1] = cpu_to_le32(HCLGE_CMDQ_NIC_ECC_CLR_MASK |
HCLGE_CMDQ_ROCEE_ECC_CLR_MASK);
desc[1].data[3] = cpu_to_le32(HCLGE_TQP_IMP_ERR_CLR_MASK);
desc[1].data[5] = cpu_to_le32(HCLGE_IMP_ITCM4_ECC_CLR_MASK);
ret = hclge_cmd_send(&hdev->hw, &desc[0], num);
ret = hclge_cmd_clear_error(hdev, &desc[0], NULL, 0,
HCLGE_CMD_FLAG_NEXT);
if (ret)
dev_err(dev,
"failed(%d) to clear COMMON error interrupt status\n",
ret);
return ret;
}
static void hclge_process_ncsi_error(struct hclge_dev *hdev,
enum hclge_err_int_type type)
static int hclge_config_ppu_hw_err_int(struct hclge_dev *hdev, bool en)
{
struct device *dev = &hdev->pdev->dev;
struct hclge_desc desc_rd;
struct hclge_desc desc_wr;
u32 err_sts;
int ret;
if (hdev->pdev->revision < 0x21)
return;
/* read NCSI error status */
ret = hclge_cmd_query_error(hdev, &desc_rd, HCLGE_NCSI_INT_QUERY,
0, 1, HCLGE_NCSI_ERR_INT_TYPE);
ret = hclge_config_ppu_error_interrupts(hdev, HCLGE_PPU_MPF_ECC_INT_CMD,
en);
if (ret) {
dev_err(dev,
"failed(=%d) to query NCSI error interrupt status\n",
dev_err(dev, "fail(%d) to configure PPU MPF ECC error intr\n",
ret);
return;
return ret;
}
/* log err */
err_sts = le32_to_cpu(desc_rd.data[0]);
hclge_log_error(dev, &hclge_ncsi_err_int[0], err_sts);
ret = hclge_config_ppu_error_interrupts(hdev,
HCLGE_PPU_MPF_OTHER_INT_CMD,
en);
if (ret) {
dev_err(dev, "fail(%d) to configure PPU MPF other intr\n", ret);
return ret;
}
/* clear err int */
ret = hclge_cmd_clear_error(hdev, &desc_wr, &desc_rd,
HCLGE_NCSI_INT_CLR, 0);
ret = hclge_config_ppu_error_interrupts(hdev,
HCLGE_PPU_PF_OTHER_INT_CMD, en);
if (ret)
dev_err(dev, "failed(=%d) to clear NCSI interrupt status\n",
dev_err(dev, "fail(%d) to configure PPU PF error interrupts\n",
ret);
return ret;
}
static void hclge_process_igu_egu_error(struct hclge_dev *hdev,
enum hclge_err_int_type int_type)
static int hclge_config_ssu_hw_err_int(struct hclge_dev *hdev, bool en)
{
struct device *dev = &hdev->pdev->dev;
struct hclge_desc desc_rd;
struct hclge_desc desc_wr;
u32 err_sts;
struct hclge_desc desc[2];
int ret;
/* read IGU common err sts */
ret = hclge_cmd_query_error(hdev, &desc_rd,
HCLGE_IGU_COMMON_INT_QUERY,
0, 1, int_type);
if (ret) {
dev_err(dev, "failed(=%d) to query IGU common int status\n",
ret);
return;
/* configure SSU ecc error interrupts */
hclge_cmd_setup_basic_desc(&desc[0], HCLGE_SSU_ECC_INT_CMD, false);
desc[0].flag |= cpu_to_le16(HCLGE_CMD_FLAG_NEXT);
hclge_cmd_setup_basic_desc(&desc[1], HCLGE_SSU_ECC_INT_CMD, false);
if (en) {
desc[0].data[0] = cpu_to_le32(HCLGE_SSU_1BIT_ECC_ERR_INT_EN);
desc[0].data[1] =
cpu_to_le32(HCLGE_SSU_MULTI_BIT_ECC_ERR_INT_EN);
desc[0].data[4] = cpu_to_le32(HCLGE_SSU_BIT32_ECC_ERR_INT_EN);
}
/* log err */
err_sts = le32_to_cpu(desc_rd.data[0]) &
HCLGE_IGU_COM_INT_MASK;
hclge_log_error(dev, &hclge_igu_com_err_int[0], err_sts);
desc[1].data[0] = cpu_to_le32(HCLGE_SSU_1BIT_ECC_ERR_INT_EN_MASK);
desc[1].data[1] = cpu_to_le32(HCLGE_SSU_MULTI_BIT_ECC_ERR_INT_EN_MASK);
desc[1].data[2] = cpu_to_le32(HCLGE_SSU_BIT32_ECC_ERR_INT_EN_MASK);
/* clear err int */
ret = hclge_cmd_clear_error(hdev, &desc_wr, &desc_rd,
HCLGE_IGU_COMMON_INT_CLR, 0);
ret = hclge_cmd_send(&hdev->hw, &desc[0], 2);
if (ret) {
dev_err(dev, "failed(=%d) to clear IGU common int status\n",
ret);
return;
dev_err(dev,
"fail(%d) to configure SSU ECC error interrupt\n", ret);
return ret;
}
/* read IGU-EGU TNL err sts */
ret = hclge_cmd_query_error(hdev, &desc_rd,
HCLGE_IGU_EGU_TNL_INT_QUERY,
0, 1, int_type);
if (ret) {
dev_err(dev, "failed(=%d) to query IGU-EGU TNL int status\n",
ret);
return;
/* configure SSU common error interrupts */
hclge_cmd_setup_basic_desc(&desc[0], HCLGE_SSU_COMMON_INT_CMD, false);
desc[0].flag |= cpu_to_le16(HCLGE_CMD_FLAG_NEXT);
hclge_cmd_setup_basic_desc(&desc[1], HCLGE_SSU_COMMON_INT_CMD, false);
if (en) {
if (hdev->pdev->revision >= 0x21)
desc[0].data[0] =
cpu_to_le32(HCLGE_SSU_COMMON_INT_EN);
else
desc[0].data[0] =
cpu_to_le32(HCLGE_SSU_COMMON_INT_EN & ~BIT(5));
desc[0].data[1] = cpu_to_le32(HCLGE_SSU_PORT_BASED_ERR_INT_EN);
desc[0].data[2] =
cpu_to_le32(HCLGE_SSU_FIFO_OVERFLOW_ERR_INT_EN);
}
/* log err */
err_sts = le32_to_cpu(desc_rd.data[0]) &
HCLGE_IGU_EGU_TNL_INT_MASK;
hclge_log_error(dev, &hclge_igu_egu_tnl_err_int[0], err_sts);
desc[1].data[0] = cpu_to_le32(HCLGE_SSU_COMMON_INT_EN_MASK |
HCLGE_SSU_PORT_BASED_ERR_INT_EN_MASK);
desc[1].data[1] = cpu_to_le32(HCLGE_SSU_FIFO_OVERFLOW_ERR_INT_EN_MASK);
/* clear err int */
ret = hclge_cmd_clear_error(hdev, &desc_wr, &desc_rd,
HCLGE_IGU_EGU_TNL_INT_CLR, 0);
if (ret) {
dev_err(dev, "failed(=%d) to clear IGU-EGU TNL int status\n",
ret);
return;
}
ret = hclge_cmd_send(&hdev->hw, &desc[0], 2);
if (ret)
dev_err(dev,
"fail(%d) to configure SSU COMMON error intr\n", ret);
hclge_process_ncsi_error(hdev, HCLGE_ERR_INT_RAS_NFE);
return ret;
}
static int hclge_log_and_clear_ppp_error(struct hclge_dev *hdev, u32 cmd,
enum hclge_err_int_type int_type)
#define HCLGE_SET_DEFAULT_RESET_REQUEST(reset_type) \
do { \
if (ae_dev->ops->set_default_reset_request) \
ae_dev->ops->set_default_reset_request(ae_dev, \
reset_type); \
} while (0)
/* hclge_handle_mpf_ras_error: handle all main PF RAS errors
* @hdev: pointer to struct hclge_dev
* @desc: descriptor for describing the command
* @num: number of extended command structures
*
* This function handles all the main PF RAS errors in the
* hw register/s using command.
*/
static int hclge_handle_mpf_ras_error(struct hclge_dev *hdev,
struct hclge_desc *desc,
int num)
{
struct hnae3_ae_dev *ae_dev = hdev->ae_dev;
struct device *dev = &hdev->pdev->dev;
const struct hclge_hw_error *hw_err_lst1, *hw_err_lst2, *hw_err_lst3;
struct hclge_desc desc[2];
u32 err_sts;
__le32 *desc_data;
u32 status;
int ret;
/* read PPP INT sts */
ret = hclge_cmd_query_error(hdev, &desc[0], cmd,
HCLGE_CMD_FLAG_NEXT, 5, int_type);
/* query all main PF RAS errors */
hclge_cmd_setup_basic_desc(&desc[0], HCLGE_QUERY_CLEAR_MPF_RAS_INT,
true);
desc[0].flag |= cpu_to_le16(HCLGE_CMD_FLAG_NEXT);
ret = hclge_cmd_send(&hdev->hw, &desc[0], num);
if (ret) {
dev_err(dev, "failed(=%d) to query PPP interrupt status\n",
ret);
return -EIO;
dev_err(dev, "query all mpf ras int cmd failed (%d)\n", ret);
return ret;
}
/* log error */
if (cmd == HCLGE_PPP_CMD0_INT_CMD) {
hw_err_lst1 = &hclge_ppp_mpf_int0[0];
hw_err_lst2 = &hclge_ppp_mpf_int1[0];
hw_err_lst3 = &hclge_ppp_pf_int[0];
} else if (cmd == HCLGE_PPP_CMD1_INT_CMD) {
hw_err_lst1 = &hclge_ppp_mpf_int2[0];
hw_err_lst2 = &hclge_ppp_mpf_int3[0];
} else {
dev_err(dev, "invalid command(=%d)\n", cmd);
return -EINVAL;
/* log HNS common errors */
status = le32_to_cpu(desc[0].data[0]);
if (status) {
hclge_log_error(dev, "IMP_TCM_ECC_INT_STS",
&hclge_imp_tcm_ecc_int[0], status);
HCLGE_SET_DEFAULT_RESET_REQUEST(HNAE3_GLOBAL_RESET);
}
err_sts = le32_to_cpu(desc[0].data[2]);
if (err_sts)
hclge_log_error(dev, hw_err_lst1, err_sts);
status = le32_to_cpu(desc[0].data[1]);
if (status) {
hclge_log_error(dev, "CMDQ_MEM_ECC_INT_STS",
&hclge_cmdq_nic_mem_ecc_int[0], status);
HCLGE_SET_DEFAULT_RESET_REQUEST(HNAE3_GLOBAL_RESET);
}
err_sts = le32_to_cpu(desc[0].data[3]);
if (err_sts)
hclge_log_error(dev, hw_err_lst2, err_sts);
if ((le32_to_cpu(desc[0].data[2])) & BIT(0)) {
dev_warn(dev, "imp_rd_data_poison_err found\n");
HCLGE_SET_DEFAULT_RESET_REQUEST(HNAE3_GLOBAL_RESET);
}
if (cmd == HCLGE_PPP_CMD0_INT_CMD) {
err_sts = (le32_to_cpu(desc[0].data[4]) >> 8) & 0x3;
if (err_sts)
hclge_log_error(dev, hw_err_lst3, err_sts);
status = le32_to_cpu(desc[0].data[3]);
if (status) {
hclge_log_error(dev, "TQP_INT_ECC_INT_STS",
&hclge_tqp_int_ecc_int[0], status);
HCLGE_SET_DEFAULT_RESET_REQUEST(HNAE3_CORE_RESET);
}
/* clear PPP INT */
ret = hclge_cmd_clear_error(hdev, &desc[0], NULL, 0,
HCLGE_CMD_FLAG_NEXT);
if (ret) {
dev_err(dev, "failed(=%d) to clear PPP interrupt status\n",
ret);
return -EIO;
status = le32_to_cpu(desc[0].data[4]);
if (status) {
hclge_log_error(dev, "MSIX_ECC_INT_STS",
&hclge_msix_sram_ecc_int[0], status);
HCLGE_SET_DEFAULT_RESET_REQUEST(HNAE3_CORE_RESET);
}
return 0;
/* log SSU(Storage Switch Unit) errors */
desc_data = (__le32 *)&desc[2];
status = le32_to_cpu(*(desc_data + 2));
if (status) {
dev_warn(dev, "SSU_ECC_MULTI_BIT_INT_0 ssu_ecc_mbit_int[31:0]\n");
HCLGE_SET_DEFAULT_RESET_REQUEST(HNAE3_CORE_RESET);
}
status = le32_to_cpu(*(desc_data + 3)) & BIT(0);
if (status) {
dev_warn(dev, "SSU_ECC_MULTI_BIT_INT_1 ssu_ecc_mbit_int[32]\n");
HCLGE_SET_DEFAULT_RESET_REQUEST(HNAE3_CORE_RESET);
}
status = le32_to_cpu(*(desc_data + 4)) & HCLGE_SSU_COMMON_ERR_INT_MASK;
if (status) {
hclge_log_error(dev, "SSU_COMMON_ERR_INT",
&hclge_ssu_com_err_int[0], status);
HCLGE_SET_DEFAULT_RESET_REQUEST(HNAE3_GLOBAL_RESET);
}
/* log IGU(Ingress Unit) errors */
desc_data = (__le32 *)&desc[3];
status = le32_to_cpu(*desc_data) & HCLGE_IGU_INT_MASK;
if (status)
hclge_log_error(dev, "IGU_INT_STS",
&hclge_igu_int[0], status);
/* log PPP(Programmable Packet Process) errors */
desc_data = (__le32 *)&desc[4];
status = le32_to_cpu(*(desc_data + 1));
if (status)
hclge_log_error(dev, "PPP_MPF_ABNORMAL_INT_ST1",
&hclge_ppp_mpf_abnormal_int_st1[0], status);
status = le32_to_cpu(*(desc_data + 3)) & HCLGE_PPP_MPF_INT_ST3_MASK;
if (status)
hclge_log_error(dev, "PPP_MPF_ABNORMAL_INT_ST3",
&hclge_ppp_mpf_abnormal_int_st3[0], status);
/* log PPU(RCB) errors */
desc_data = (__le32 *)&desc[5];
status = le32_to_cpu(*(desc_data + 1));
if (status) {
dev_warn(dev, "PPU_MPF_ABNORMAL_INT_ST1 %s found\n",
"rpu_rx_pkt_ecc_mbit_err");
HCLGE_SET_DEFAULT_RESET_REQUEST(HNAE3_CORE_RESET);
}
status = le32_to_cpu(*(desc_data + 2));
if (status) {
hclge_log_error(dev, "PPU_MPF_ABNORMAL_INT_ST2",
&hclge_ppu_mpf_abnormal_int_st2[0], status);
HCLGE_SET_DEFAULT_RESET_REQUEST(HNAE3_CORE_RESET);
}
status = le32_to_cpu(*(desc_data + 3)) & HCLGE_PPU_MPF_INT_ST3_MASK;
if (status) {
hclge_log_error(dev, "PPU_MPF_ABNORMAL_INT_ST3",
&hclge_ppu_mpf_abnormal_int_st3[0], status);
HCLGE_SET_DEFAULT_RESET_REQUEST(HNAE3_CORE_RESET);
}
/* log TM(Traffic Manager) errors */
desc_data = (__le32 *)&desc[6];
status = le32_to_cpu(*desc_data);
if (status) {
hclge_log_error(dev, "TM_SCH_RINT",
&hclge_tm_sch_rint[0], status);
HCLGE_SET_DEFAULT_RESET_REQUEST(HNAE3_CORE_RESET);
}
/* log QCN(Quantized Congestion Control) errors */
desc_data = (__le32 *)&desc[7];
status = le32_to_cpu(*desc_data) & HCLGE_QCN_FIFO_INT_MASK;
if (status) {
hclge_log_error(dev, "QCN_FIFO_RINT",
&hclge_qcn_fifo_rint[0], status);
HCLGE_SET_DEFAULT_RESET_REQUEST(HNAE3_CORE_RESET);
}
status = le32_to_cpu(*(desc_data + 1)) & HCLGE_QCN_ECC_INT_MASK;
if (status) {
hclge_log_error(dev, "QCN_ECC_RINT",
&hclge_qcn_ecc_rint[0], status);
HCLGE_SET_DEFAULT_RESET_REQUEST(HNAE3_CORE_RESET);
}
/* log NCSI errors */
desc_data = (__le32 *)&desc[9];
status = le32_to_cpu(*desc_data) & HCLGE_NCSI_ECC_INT_MASK;
if (status) {
hclge_log_error(dev, "NCSI_ECC_INT_RPT",
&hclge_ncsi_err_int[0], status);
HCLGE_SET_DEFAULT_RESET_REQUEST(HNAE3_CORE_RESET);
}
/* clear all main PF RAS errors */
hclge_cmd_reuse_desc(&desc[0], false);
desc[0].flag |= cpu_to_le16(HCLGE_CMD_FLAG_NEXT);
ret = hclge_cmd_send(&hdev->hw, &desc[0], num);
if (ret)
dev_err(dev, "clear all mpf ras int cmd failed (%d)\n", ret);
return ret;
}
static void hclge_process_ppp_error(struct hclge_dev *hdev,
enum hclge_err_int_type int_type)
/* hclge_handle_pf_ras_error: handle all PF RAS errors
* @hdev: pointer to struct hclge_dev
* @desc: descriptor for describing the command
* @num: number of extended command structures
*
* This function handles all the PF RAS errors in the
* hw register/s using command.
*/
static int hclge_handle_pf_ras_error(struct hclge_dev *hdev,
struct hclge_desc *desc,
int num)
{
struct hnae3_ae_dev *ae_dev = hdev->ae_dev;
struct device *dev = &hdev->pdev->dev;
__le32 *desc_data;
u32 status;
int ret;
/* read PPP INT0,1 sts */
ret = hclge_log_and_clear_ppp_error(hdev, HCLGE_PPP_CMD0_INT_CMD,
int_type);
if (ret < 0) {
dev_err(dev, "failed(=%d) to clear PPP interrupt 0,1 status\n",
ret);
return;
/* query all PF RAS errors */
hclge_cmd_setup_basic_desc(&desc[0], HCLGE_QUERY_CLEAR_PF_RAS_INT,
true);
desc[0].flag |= cpu_to_le16(HCLGE_CMD_FLAG_NEXT);
ret = hclge_cmd_send(&hdev->hw, &desc[0], num);
if (ret) {
dev_err(dev, "query all pf ras int cmd failed (%d)\n", ret);
return ret;
}
/* read err PPP INT2,3 sts */
ret = hclge_log_and_clear_ppp_error(hdev, HCLGE_PPP_CMD1_INT_CMD,
int_type);
if (ret < 0)
dev_err(dev, "failed(=%d) to clear PPP interrupt 2,3 status\n",
ret);
/* log SSU(Storage Switch Unit) errors */
status = le32_to_cpu(desc[0].data[0]);
if (status) {
hclge_log_error(dev, "SSU_PORT_BASED_ERR_INT",
&hclge_ssu_port_based_err_int[0], status);
HCLGE_SET_DEFAULT_RESET_REQUEST(HNAE3_GLOBAL_RESET);
}
status = le32_to_cpu(desc[0].data[1]);
if (status) {
hclge_log_error(dev, "SSU_FIFO_OVERFLOW_INT",
&hclge_ssu_fifo_overflow_int[0], status);
HCLGE_SET_DEFAULT_RESET_REQUEST(HNAE3_GLOBAL_RESET);
}
status = le32_to_cpu(desc[0].data[2]);
if (status) {
hclge_log_error(dev, "SSU_ETS_TCG_INT",
&hclge_ssu_ets_tcg_int[0], status);
HCLGE_SET_DEFAULT_RESET_REQUEST(HNAE3_GLOBAL_RESET);
}
/* log IGU(Ingress Unit) EGU(Egress Unit) TNL errors */
desc_data = (__le32 *)&desc[1];
status = le32_to_cpu(*desc_data) & HCLGE_IGU_EGU_TNL_INT_MASK;
if (status)
hclge_log_error(dev, "IGU_EGU_TNL_INT_STS",
&hclge_igu_egu_tnl_int[0], status);
/* clear all PF RAS errors */
hclge_cmd_reuse_desc(&desc[0], false);
desc[0].flag |= cpu_to_le16(HCLGE_CMD_FLAG_NEXT);
ret = hclge_cmd_send(&hdev->hw, &desc[0], num);
if (ret)
dev_err(dev, "clear all pf ras int cmd failed (%d)\n", ret);
return ret;
}
static void hclge_process_tm_sch_error(struct hclge_dev *hdev)
static int hclge_handle_all_ras_errors(struct hclge_dev *hdev)
{
struct device *dev = &hdev->pdev->dev;
const struct hclge_tm_sch_ecc_info *tm_sch_ecc_info;
struct hclge_desc desc;
u32 ecc_info;
u8 module_no;
u8 ram_no;
u32 mpf_bd_num, pf_bd_num, bd_num;
struct hclge_desc desc_bd;
struct hclge_desc *desc;
int ret;
/* read TM scheduler errors */
ret = hclge_cmd_query_error(hdev, &desc,
HCLGE_TM_SCH_MBIT_ECC_INFO_CMD, 0, 0, 0);
/* query the number of registers in the RAS int status */
hclge_cmd_setup_basic_desc(&desc_bd, HCLGE_QUERY_RAS_INT_STS_BD_NUM,
true);
ret = hclge_cmd_send(&hdev->hw, &desc_bd, 1);
if (ret) {
dev_err(dev, "failed(%d) to read SCH mbit ECC err info\n", ret);
return;
dev_err(dev, "fail(%d) to query ras int status bd num\n", ret);
return ret;
}
mpf_bd_num = le32_to_cpu(desc_bd.data[0]);
pf_bd_num = le32_to_cpu(desc_bd.data[1]);
bd_num = max_t(u32, mpf_bd_num, pf_bd_num);
desc = kcalloc(bd_num, sizeof(struct hclge_desc), GFP_KERNEL);
if (!desc)
return -ENOMEM;
/* handle all main PF RAS errors */
ret = hclge_handle_mpf_ras_error(hdev, desc, mpf_bd_num);
if (ret) {
kfree(desc);
return ret;
}
ecc_info = le32_to_cpu(desc.data[0]);
memset(desc, 0, bd_num * sizeof(struct hclge_desc));
/* handle all PF RAS errors */
ret = hclge_handle_pf_ras_error(hdev, desc, pf_bd_num);
kfree(desc);
return ret;
}
static int hclge_log_rocee_ovf_error(struct hclge_dev *hdev)
{
struct device *dev = &hdev->pdev->dev;
struct hclge_desc desc[2];
int ret;
ret = hclge_cmd_query_error(hdev, &desc,
HCLGE_TM_SCH_ECC_ERR_RINT_CMD, 0, 0, 0);
/* read overflow error status */
ret = hclge_cmd_query_error(hdev, &desc[0],
HCLGE_ROCEE_PF_RAS_INT_CMD,
0, 0, 0);
if (ret) {
dev_err(dev, "failed(%d) to read SCH ECC err status\n", ret);
return;
dev_err(dev, "failed(%d) to query ROCEE OVF error sts\n", ret);
return ret;
}
/* log TM scheduler errors */
if (le32_to_cpu(desc.data[0])) {
hclge_log_error(dev, &hclge_tm_sch_err_int[0],
le32_to_cpu(desc.data[0]));
if (le32_to_cpu(desc.data[0]) & 0x2) {
module_no = (ecc_info >> 20) & 0xF;
ram_no = (ecc_info >> 16) & 0xF;
tm_sch_ecc_info =
&hclge_tm_sch_ecc_err[module_no][ram_no];
dev_warn(dev, "ecc err module:ram=%s\n",
tm_sch_ecc_info->name);
dev_warn(dev, "ecc memory address = 0x%x\n",
ecc_info & 0xFFFF);
/* log overflow error */
if (le32_to_cpu(desc[0].data[0]) & HCLGE_ROCEE_OVF_ERR_INT_MASK) {
const struct hclge_hw_error *err;
u32 err_sts;
err = &hclge_rocee_qmm_ovf_err_int[0];
err_sts = HCLGE_ROCEE_OVF_ERR_TYPE_MASK &
le32_to_cpu(desc[0].data[0]);
while (err->msg) {
if (err->int_msk == err_sts) {
dev_warn(dev, "%s [error status=0x%x] found\n",
err->msg,
le32_to_cpu(desc[0].data[0]));
break;
}
err++;
}
}
/* clear TM scheduler errors */
ret = hclge_cmd_clear_error(hdev, &desc, NULL, 0, 0);
if (ret) {
dev_err(dev, "failed(%d) to clear TM SCH error status\n", ret);
return;
if (le32_to_cpu(desc[0].data[1]) & HCLGE_ROCEE_OVF_ERR_INT_MASK) {
dev_warn(dev, "ROCEE TSP OVF [error status=0x%x] found\n",
le32_to_cpu(desc[0].data[1]));
}
ret = hclge_cmd_query_error(hdev, &desc,
HCLGE_TM_SCH_ECC_ERR_RINT_CE, 0, 0, 0);
if (ret) {
dev_err(dev, "failed(%d) to read SCH CE status\n", ret);
return;
if (le32_to_cpu(desc[0].data[2]) & HCLGE_ROCEE_OVF_ERR_INT_MASK) {
dev_warn(dev, "ROCEE SCC OVF [error status=0x%x] found\n",
le32_to_cpu(desc[0].data[2]));
}
ret = hclge_cmd_clear_error(hdev, &desc, NULL, 0, 0);
return 0;
}
static int hclge_log_and_clear_rocee_ras_error(struct hclge_dev *hdev)
{
enum hnae3_reset_type reset_type = HNAE3_FUNC_RESET;
struct hnae3_ae_dev *ae_dev = hdev->ae_dev;
struct device *dev = &hdev->pdev->dev;
struct hclge_desc desc[2];
unsigned int status;
int ret;
/* read RAS error interrupt status */
ret = hclge_cmd_query_error(hdev, &desc[0],
HCLGE_QUERY_CLEAR_ROCEE_RAS_INT,
0, 0, 0);
if (ret) {
dev_err(dev, "failed(%d) to clear TM SCH CE status\n", ret);
return;
dev_err(dev, "failed(%d) to query ROCEE RAS INT SRC\n", ret);
/* reset everything for now */
HCLGE_SET_DEFAULT_RESET_REQUEST(HNAE3_GLOBAL_RESET);
return ret;
}
ret = hclge_cmd_query_error(hdev, &desc,
HCLGE_TM_SCH_ECC_ERR_RINT_NFE, 0, 0, 0);
if (ret) {
dev_err(dev, "failed(%d) to read SCH NFE status\n", ret);
return;
status = le32_to_cpu(desc[0].data[0]);
if (status & HCLGE_ROCEE_RERR_INT_MASK)
dev_warn(dev, "ROCEE RAS AXI rresp error\n");
if (status & HCLGE_ROCEE_BERR_INT_MASK)
dev_warn(dev, "ROCEE RAS AXI bresp error\n");
if (status & HCLGE_ROCEE_ECC_INT_MASK) {
dev_warn(dev, "ROCEE RAS 2bit ECC error\n");
reset_type = HNAE3_GLOBAL_RESET;
}
ret = hclge_cmd_clear_error(hdev, &desc, NULL, 0, 0);
if (status & HCLGE_ROCEE_OVF_INT_MASK) {
ret = hclge_log_rocee_ovf_error(hdev);
if (ret) {
dev_err(dev, "failed(%d) to clear TM SCH NFE status\n", ret);
return;
dev_err(dev, "failed(%d) to process ovf error\n", ret);
/* reset everything for now */
HCLGE_SET_DEFAULT_RESET_REQUEST(HNAE3_GLOBAL_RESET);
return ret;
}
}
ret = hclge_cmd_query_error(hdev, &desc,
HCLGE_TM_SCH_ECC_ERR_RINT_FE, 0, 0, 0);
/* clear error status */
hclge_cmd_reuse_desc(&desc[0], false);
ret = hclge_cmd_send(&hdev->hw, &desc[0], 1);
if (ret) {
dev_err(dev, "failed(%d) to read SCH FE status\n", ret);
return;
dev_err(dev, "failed(%d) to clear ROCEE RAS error\n", ret);
/* reset everything for now */
reset_type = HNAE3_GLOBAL_RESET;
}
ret = hclge_cmd_clear_error(hdev, &desc, NULL, 0, 0);
if (ret)
dev_err(dev, "failed(%d) to clear TM SCH FE status\n", ret);
HCLGE_SET_DEFAULT_RESET_REQUEST(reset_type);
return ret;
}
static void hclge_process_tm_qcn_error(struct hclge_dev *hdev)
static int hclge_config_rocee_ras_interrupt(struct hclge_dev *hdev, bool en)
{
struct device *dev = &hdev->pdev->dev;
struct hclge_desc desc;
int ret;
/* read QCN errors */
ret = hclge_cmd_query_error(hdev, &desc,
HCLGE_TM_QCN_MEM_INT_INFO_CMD, 0, 0, 0);
if (ret) {
dev_err(dev, "failed(%d) to read QCN ECC err status\n", ret);
return;
}
if (hdev->pdev->revision < 0x21 || !hnae3_dev_roce_supported(hdev))
return 0;
/* log QCN errors */
if (le32_to_cpu(desc.data[0]))
hclge_log_error(dev, &hclge_qcn_ecc_err_int[0],
le32_to_cpu(desc.data[0]));
hclge_cmd_setup_basic_desc(&desc, HCLGE_CONFIG_ROCEE_RAS_INT_EN, false);
if (en) {
/* enable ROCEE hw error interrupts */
desc.data[0] = cpu_to_le32(HCLGE_ROCEE_RAS_NFE_INT_EN);
desc.data[1] = cpu_to_le32(HCLGE_ROCEE_RAS_CE_INT_EN);
hclge_log_and_clear_rocee_ras_error(hdev);
}
desc.data[2] = cpu_to_le32(HCLGE_ROCEE_RAS_NFE_INT_EN_MASK);
desc.data[3] = cpu_to_le32(HCLGE_ROCEE_RAS_CE_INT_EN_MASK);
/* clear QCN errors */
ret = hclge_cmd_clear_error(hdev, &desc, NULL, 0, 0);
ret = hclge_cmd_send(&hdev->hw, &desc, 1);
if (ret)
dev_err(dev, "failed(%d) to clear QCN error status\n", ret);
dev_err(dev, "failed(%d) to config ROCEE RAS interrupt\n", ret);
return ret;
}
static void hclge_process_tm_error(struct hclge_dev *hdev,
enum hclge_err_int_type type)
static int hclge_handle_rocee_ras_error(struct hnae3_ae_dev *ae_dev)
{
hclge_process_tm_sch_error(hdev);
hclge_process_tm_qcn_error(hdev);
struct hclge_dev *hdev = ae_dev->priv;
if (test_bit(HCLGE_STATE_RST_HANDLING, &hdev->state) ||
hdev->pdev->revision < 0x21)
return HNAE3_NONE_RESET;
return hclge_log_and_clear_rocee_ras_error(hdev);
}
static const struct hclge_hw_blk hw_blk[] = {
{ .msk = BIT(0), .name = "IGU_EGU",
.enable_error = hclge_enable_igu_egu_error,
.process_error = hclge_process_igu_egu_error, },
{ .msk = BIT(5), .name = "COMMON",
.enable_error = hclge_enable_common_error,
.process_error = hclge_process_common_error, },
{ .msk = BIT(4), .name = "TM",
.enable_error = hclge_enable_tm_hw_error,
.process_error = hclge_process_tm_error, },
{ .msk = BIT(1), .name = "PPP",
.enable_error = hclge_enable_ppp_error,
.process_error = hclge_process_ppp_error, },
{
.msk = BIT(0), .name = "IGU_EGU",
.config_err_int = hclge_config_igu_egu_hw_err_int,
},
{
.msk = BIT(1), .name = "PPP",
.config_err_int = hclge_config_ppp_hw_err_int,
},
{
.msk = BIT(2), .name = "SSU",
.config_err_int = hclge_config_ssu_hw_err_int,
},
{
.msk = BIT(3), .name = "PPU",
.config_err_int = hclge_config_ppu_hw_err_int,
},
{
.msk = BIT(4), .name = "TM",
.config_err_int = hclge_config_tm_hw_err_int,
},
{
.msk = BIT(5), .name = "COMMON",
.config_err_int = hclge_config_common_hw_err_int,
},
{
.msk = BIT(8), .name = "MAC",
.config_err_int = hclge_config_mac_err_int,
},
{ /* sentinel */ }
};
int hclge_hw_error_set_state(struct hclge_dev *hdev, bool state)
{
const struct hclge_hw_blk *module = hw_blk;
struct device *dev = &hdev->pdev->dev;
int ret = 0;
int i = 0;
while (hw_blk[i].name) {
if (!hw_blk[i].enable_error) {
i++;
continue;
}
ret = hw_blk[i].enable_error(hdev, state);
if (ret) {
dev_err(dev, "fail(%d) to en/disable err int\n", ret);
while (module->name) {
if (module->config_err_int) {
ret = module->config_err_int(hdev, state);
if (ret)
return ret;
}
i++;
module++;
}
ret = hclge_config_rocee_ras_interrupt(hdev, state);
if (ret)
dev_err(dev, "fail(%d) to configure ROCEE err int\n", ret);
return ret;
}
pci_ers_result_t hclge_process_ras_hw_error(struct hnae3_ae_dev *ae_dev)
pci_ers_result_t hclge_handle_hw_ras_error(struct hnae3_ae_dev *ae_dev)
{
struct hclge_dev *hdev = ae_dev->priv;
struct device *dev = &hdev->pdev->dev;
u32 sts, val;
int i = 0;
sts = hclge_read_dev(&hdev->hw, HCLGE_RAS_PF_OTHER_INT_STS_REG);
/* Processing Non-fatal errors */
if (sts & HCLGE_RAS_REG_NFE_MASK) {
val = (sts >> HCLGE_RAS_REG_NFE_SHIFT) & 0xFF;
i = 0;
while (hw_blk[i].name) {
if (!(hw_blk[i].msk & val)) {
i++;
continue;
}
dev_warn(dev, "%s ras non-fatal error identified\n",
hw_blk[i].name);
if (hw_blk[i].process_error)
hw_blk[i].process_error(hdev,
HCLGE_ERR_INT_RAS_NFE);
i++;
u32 status;
status = hclge_read_dev(&hdev->hw, HCLGE_RAS_PF_OTHER_INT_STS_REG);
/* Handling Non-fatal HNS RAS errors */
if (status & HCLGE_RAS_REG_NFE_MASK) {
dev_warn(dev,
"HNS Non-Fatal RAS error(status=0x%x) identified\n",
status);
hclge_handle_all_ras_errors(hdev);
} else {
if (test_bit(HCLGE_STATE_RST_HANDLING, &hdev->state) ||
hdev->pdev->revision < 0x21)
return PCI_ERS_RESULT_RECOVERED;
}
if (status & HCLGE_RAS_REG_ROCEE_ERR_MASK) {
dev_warn(dev, "ROCEE uncorrected RAS error identified\n");
hclge_handle_rocee_ras_error(ae_dev);
}
if (status & HCLGE_RAS_REG_NFE_MASK ||
status & HCLGE_RAS_REG_ROCEE_ERR_MASK)
return PCI_ERS_RESULT_NEED_RESET;
return PCI_ERS_RESULT_RECOVERED;
}
int hclge_handle_hw_msix_error(struct hclge_dev *hdev,
unsigned long *reset_requests)
{
struct device *dev = &hdev->pdev->dev;
u32 mpf_bd_num, pf_bd_num, bd_num;
struct hclge_desc desc_bd;
struct hclge_desc *desc;
__le32 *desc_data;
int ret = 0;
u32 status;
/* set default handling */
set_bit(HNAE3_FUNC_RESET, reset_requests);
/* query the number of bds for the MSIx int status */
hclge_cmd_setup_basic_desc(&desc_bd, HCLGE_QUERY_MSIX_INT_STS_BD_NUM,
true);
ret = hclge_cmd_send(&hdev->hw, &desc_bd, 1);
if (ret) {
dev_err(dev, "fail(%d) to query msix int status bd num\n",
ret);
/* reset everything for now */
set_bit(HNAE3_GLOBAL_RESET, reset_requests);
return ret;
}
mpf_bd_num = le32_to_cpu(desc_bd.data[0]);
pf_bd_num = le32_to_cpu(desc_bd.data[1]);
bd_num = max_t(u32, mpf_bd_num, pf_bd_num);
desc = kcalloc(bd_num, sizeof(struct hclge_desc), GFP_KERNEL);
if (!desc)
goto out;
/* query all main PF MSIx errors */
hclge_cmd_setup_basic_desc(&desc[0], HCLGE_QUERY_CLEAR_ALL_MPF_MSIX_INT,
true);
desc[0].flag |= cpu_to_le16(HCLGE_CMD_FLAG_NEXT);
ret = hclge_cmd_send(&hdev->hw, &desc[0], mpf_bd_num);
if (ret) {
dev_err(dev, "query all mpf msix int cmd failed (%d)\n",
ret);
/* reset everything for now */
set_bit(HNAE3_GLOBAL_RESET, reset_requests);
goto msi_error;
}
/* log MAC errors */
desc_data = (__le32 *)&desc[1];
status = le32_to_cpu(*desc_data);
if (status) {
hclge_log_error(dev, "MAC_AFIFO_TNL_INT_R",
&hclge_mac_afifo_tnl_int[0], status);
set_bit(HNAE3_GLOBAL_RESET, reset_requests);
}
/* log PPU(RCB) errors */
desc_data = (__le32 *)&desc[5];
status = le32_to_cpu(*(desc_data + 2)) &
HCLGE_PPU_MPF_INT_ST2_MSIX_MASK;
if (status) {
dev_warn(dev,
"PPU_MPF_ABNORMAL_INT_ST2[28:29], err_status(0x%x)\n",
status);
set_bit(HNAE3_CORE_RESET, reset_requests);
}
/* clear all main PF MSIx errors */
hclge_cmd_reuse_desc(&desc[0], false);
desc[0].flag |= cpu_to_le16(HCLGE_CMD_FLAG_NEXT);
ret = hclge_cmd_send(&hdev->hw, &desc[0], mpf_bd_num);
if (ret) {
dev_err(dev, "clear all mpf msix int cmd failed (%d)\n",
ret);
/* reset everything for now */
set_bit(HNAE3_GLOBAL_RESET, reset_requests);
goto msi_error;
}
/* query all PF MSIx errors */
memset(desc, 0, bd_num * sizeof(struct hclge_desc));
hclge_cmd_setup_basic_desc(&desc[0], HCLGE_QUERY_CLEAR_ALL_PF_MSIX_INT,
true);
desc[0].flag |= cpu_to_le16(HCLGE_CMD_FLAG_NEXT);
ret = hclge_cmd_send(&hdev->hw, &desc[0], pf_bd_num);
if (ret) {
dev_err(dev, "query all pf msix int cmd failed (%d)\n",
ret);
/* reset everything for now */
set_bit(HNAE3_GLOBAL_RESET, reset_requests);
goto msi_error;
}
/* log SSU PF errors */
status = le32_to_cpu(desc[0].data[0]) & HCLGE_SSU_PORT_INT_MSIX_MASK;
if (status) {
hclge_log_error(dev, "SSU_PORT_BASED_ERR_INT",
&hclge_ssu_port_based_pf_int[0], status);
set_bit(HNAE3_GLOBAL_RESET, reset_requests);
}
/* read and log PPP PF errors */
desc_data = (__le32 *)&desc[2];
status = le32_to_cpu(*desc_data);
if (status)
hclge_log_error(dev, "PPP_PF_ABNORMAL_INT_ST0",
&hclge_ppp_pf_abnormal_int[0], status);
/* PPU(RCB) PF errors */
desc_data = (__le32 *)&desc[3];
status = le32_to_cpu(*desc_data) & HCLGE_PPU_PF_INT_MSIX_MASK;
if (status)
hclge_log_error(dev, "PPU_PF_ABNORMAL_INT_ST",
&hclge_ppu_pf_abnormal_int[0], status);
/* clear all PF MSIx errors */
hclge_cmd_reuse_desc(&desc[0], false);
desc[0].flag |= cpu_to_le16(HCLGE_CMD_FLAG_NEXT);
ret = hclge_cmd_send(&hdev->hw, &desc[0], pf_bd_num);
if (ret) {
dev_err(dev, "clear all pf msix int cmd failed (%d)\n",
ret);
/* reset everything for now */
set_bit(HNAE3_GLOBAL_RESET, reset_requests);
}
msi_error:
kfree(desc);
out:
return ret;
}
......@@ -7,9 +7,11 @@
#include "hclge_main.h"
#define HCLGE_RAS_PF_OTHER_INT_STS_REG 0x20B00
#define HCLGE_RAS_REG_FE_MASK 0xFF
#define HCLGE_RAS_REG_NFE_MASK 0xFF00
#define HCLGE_RAS_REG_NFE_SHIFT 8
#define HCLGE_RAS_REG_ROCEE_ERR_MASK 0x3000000
#define HCLGE_VECTOR0_PF_OTHER_INT_STS_REG 0x20800
#define HCLGE_VECTOR0_REG_MSIX_MASK 0x1FF00
#define HCLGE_IMP_TCM_ECC_ERR_INT_EN 0xFFFF0000
#define HCLGE_IMP_TCM_ECC_ERR_INT_EN_MASK 0xFFFF0000
......@@ -23,6 +25,8 @@
#define HCLGE_IMP_RD_POISON_ERR_INT_EN_MASK 0x0100
#define HCLGE_TQP_ECC_ERR_INT_EN 0x0FFF
#define HCLGE_TQP_ECC_ERR_INT_EN_MASK 0x0FFF
#define HCLGE_MSIX_SRAM_ECC_ERR_INT_EN_MASK 0x0F000000
#define HCLGE_MSIX_SRAM_ECC_ERR_INT_EN 0x0F000000
#define HCLGE_IGU_ERR_INT_EN 0x0000066F
#define HCLGE_IGU_ERR_INT_EN_MASK 0x000F
#define HCLGE_IGU_TNL_ERR_INT_EN 0x0002AABF
......@@ -41,21 +45,55 @@
#define HCLGE_TM_QCN_MEM_ERR_INT_EN 0xFFFFFF
#define HCLGE_NCSI_ERR_INT_EN 0x3
#define HCLGE_NCSI_ERR_INT_TYPE 0x9
#define HCLGE_MAC_COMMON_ERR_INT_EN GENMASK(7, 0)
#define HCLGE_MAC_COMMON_ERR_INT_EN_MASK GENMASK(7, 0)
#define HCLGE_PPU_MPF_ABNORMAL_INT0_EN GENMASK(31, 0)
#define HCLGE_PPU_MPF_ABNORMAL_INT0_EN_MASK GENMASK(31, 0)
#define HCLGE_PPU_MPF_ABNORMAL_INT1_EN GENMASK(31, 0)
#define HCLGE_PPU_MPF_ABNORMAL_INT1_EN_MASK GENMASK(31, 0)
#define HCLGE_PPU_MPF_ABNORMAL_INT2_EN 0x3FFF3FFF
#define HCLGE_PPU_MPF_ABNORMAL_INT2_EN_MASK 0x3FFF3FFF
#define HCLGE_PPU_MPF_ABNORMAL_INT2_EN2 0xB
#define HCLGE_PPU_MPF_ABNORMAL_INT2_EN2_MASK 0xB
#define HCLGE_PPU_MPF_ABNORMAL_INT3_EN GENMASK(7, 0)
#define HCLGE_PPU_MPF_ABNORMAL_INT3_EN_MASK GENMASK(23, 16)
#define HCLGE_PPU_PF_ABNORMAL_INT_EN GENMASK(5, 0)
#define HCLGE_PPU_PF_ABNORMAL_INT_EN_MASK GENMASK(5, 0)
#define HCLGE_SSU_1BIT_ECC_ERR_INT_EN GENMASK(31, 0)
#define HCLGE_SSU_1BIT_ECC_ERR_INT_EN_MASK GENMASK(31, 0)
#define HCLGE_SSU_MULTI_BIT_ECC_ERR_INT_EN GENMASK(31, 0)
#define HCLGE_SSU_MULTI_BIT_ECC_ERR_INT_EN_MASK GENMASK(31, 0)
#define HCLGE_SSU_BIT32_ECC_ERR_INT_EN 0x0101
#define HCLGE_SSU_BIT32_ECC_ERR_INT_EN_MASK 0x0101
#define HCLGE_SSU_COMMON_INT_EN GENMASK(9, 0)
#define HCLGE_SSU_COMMON_INT_EN_MASK GENMASK(9, 0)
#define HCLGE_SSU_PORT_BASED_ERR_INT_EN 0x0BFF
#define HCLGE_SSU_PORT_BASED_ERR_INT_EN_MASK 0x0BFF0000
#define HCLGE_SSU_FIFO_OVERFLOW_ERR_INT_EN GENMASK(23, 0)
#define HCLGE_SSU_FIFO_OVERFLOW_ERR_INT_EN_MASK GENMASK(23, 0)
#define HCLGE_SSU_COMMON_ERR_INT_MASK GENMASK(9, 0)
#define HCLGE_SSU_PORT_INT_MSIX_MASK 0x7BFF
#define HCLGE_IGU_INT_MASK GENMASK(3, 0)
#define HCLGE_IGU_EGU_TNL_INT_MASK GENMASK(5, 0)
#define HCLGE_PPP_MPF_INT_ST3_MASK GENMASK(5, 0)
#define HCLGE_PPU_MPF_INT_ST3_MASK GENMASK(7, 0)
#define HCLGE_PPU_MPF_INT_ST2_MSIX_MASK GENMASK(29, 28)
#define HCLGE_PPU_PF_INT_MSIX_MASK 0x27
#define HCLGE_QCN_FIFO_INT_MASK GENMASK(17, 0)
#define HCLGE_QCN_ECC_INT_MASK GENMASK(21, 0)
#define HCLGE_NCSI_ECC_INT_MASK GENMASK(1, 0)
#define HCLGE_IMP_TCM_ECC_INT_MASK 0xFFFF
#define HCLGE_IMP_ITCM4_ECC_INT_MASK 0x3
#define HCLGE_CMDQ_ECC_INT_MASK 0xFFFF
#define HCLGE_CMDQ_ROC_ECC_INT_SHIFT 16
#define HCLGE_TQP_ECC_INT_MASK 0xFFF
#define HCLGE_TQP_ECC_INT_SHIFT 16
#define HCLGE_IMP_TCM_ECC_CLR_MASK 0xFFFF
#define HCLGE_IMP_ITCM4_ECC_CLR_MASK 0x3
#define HCLGE_CMDQ_NIC_ECC_CLR_MASK 0xFFFF
#define HCLGE_CMDQ_ROCEE_ECC_CLR_MASK 0xFFFF0000
#define HCLGE_TQP_IMP_ERR_CLR_MASK 0x0FFF0001
#define HCLGE_IGU_COM_INT_MASK 0xF
#define HCLGE_IGU_EGU_TNL_INT_MASK 0x3F
#define HCLGE_PPP_PF_INT_MASK 0x100
#define HCLGE_ROCEE_RAS_NFE_INT_EN 0xF
#define HCLGE_ROCEE_RAS_CE_INT_EN 0x1
#define HCLGE_ROCEE_RAS_NFE_INT_EN_MASK 0xF
#define HCLGE_ROCEE_RAS_CE_INT_EN_MASK 0x1
#define HCLGE_ROCEE_RERR_INT_MASK BIT(0)
#define HCLGE_ROCEE_BERR_INT_MASK BIT(1)
#define HCLGE_ROCEE_ECC_INT_MASK BIT(2)
#define HCLGE_ROCEE_OVF_INT_MASK BIT(3)
#define HCLGE_ROCEE_OVF_ERR_INT_MASK 0x10000
#define HCLGE_ROCEE_OVF_ERR_TYPE_MASK 0x3F
enum hclge_err_int_type {
HCLGE_ERR_INT_MSIX = 0,
......@@ -67,9 +105,7 @@ enum hclge_err_int_type {
struct hclge_hw_blk {
u32 msk;
const char *name;
int (*enable_error)(struct hclge_dev *hdev, bool en);
void (*process_error)(struct hclge_dev *hdev,
enum hclge_err_int_type type);
int (*config_err_int)(struct hclge_dev *hdev, bool en);
};
struct hclge_hw_error {
......@@ -78,6 +114,7 @@ struct hclge_hw_error {
};
int hclge_hw_error_set_state(struct hclge_dev *hdev, bool state);
int hclge_enable_tm_hw_error(struct hclge_dev *hdev, bool en);
pci_ers_result_t hclge_process_ras_hw_error(struct hnae3_ae_dev *ae_dev);
pci_ers_result_t hclge_handle_hw_ras_error(struct hnae3_ae_dev *ae_dev);
int hclge_handle_hw_msix_error(struct hclge_dev *hdev,
unsigned long *reset_requests);
#endif
......@@ -2200,12 +2200,13 @@ static void hclge_service_complete(struct hclge_dev *hdev)
static u32 hclge_check_event_cause(struct hclge_dev *hdev, u32 *clearval)
{
u32 rst_src_reg;
u32 cmdq_src_reg;
u32 rst_src_reg, cmdq_src_reg, msix_src_reg;
/* fetch the events from their corresponding regs */
rst_src_reg = hclge_read_dev(&hdev->hw, HCLGE_MISC_VECTOR_INT_STS);
cmdq_src_reg = hclge_read_dev(&hdev->hw, HCLGE_VECTOR0_CMDQ_SRC_REG);
msix_src_reg = hclge_read_dev(&hdev->hw,
HCLGE_VECTOR0_PF_OTHER_INT_STS_REG);
/* Assumption: If by any chance reset and mailbox events are reported
* together then we will only process reset event in this go and will
......@@ -2239,6 +2240,10 @@ static u32 hclge_check_event_cause(struct hclge_dev *hdev, u32 *clearval)
return HCLGE_VECTOR0_EVENT_RST;
}
/* check for vector0 msix event source */
if (msix_src_reg & HCLGE_VECTOR0_REG_MSIX_MASK)
return HCLGE_VECTOR0_EVENT_ERR;
/* check for vector0 mailbox(=CMDQ RX) event source */
if (BIT(HCLGE_VECTOR0_RX_CMDQ_INT_B) & cmdq_src_reg) {
cmdq_src_reg &= ~BIT(HCLGE_VECTOR0_RX_CMDQ_INT_B);
......@@ -2289,6 +2294,19 @@ static irqreturn_t hclge_misc_irq_handle(int irq, void *data)
/* vector 0 interrupt is shared with reset and mailbox source events.*/
switch (event_cause) {
case HCLGE_VECTOR0_EVENT_ERR:
/* we do not know what type of reset is required now. This could
* only be decided after we fetch the type of errors which
* caused this event. Therefore, we will do below for now:
* 1. Assert HNAE3_UNKNOWN_RESET type of reset. This means we
* have defered type of reset to be used.
* 2. Schedule the reset serivce task.
* 3. When service task receives HNAE3_UNKNOWN_RESET type it
* will fetch the correct type of reset. This would be done
* by first decoding the types of errors.
*/
set_bit(HNAE3_UNKNOWN_RESET, &hdev->reset_request);
/* fall through */
case HCLGE_VECTOR0_EVENT_RST:
hclge_reset_task_schedule(hdev);
break;
......@@ -2593,6 +2611,23 @@ static enum hnae3_reset_type hclge_get_reset_level(struct hclge_dev *hdev,
{
enum hnae3_reset_type rst_level = HNAE3_NONE_RESET;
/* first, resolve any unknown reset type to the known type(s) */
if (test_bit(HNAE3_UNKNOWN_RESET, addr)) {
/* we will intentionally ignore any errors from this function
* as we will end up in *some* reset request in any case
*/
hclge_handle_hw_msix_error(hdev, addr);
clear_bit(HNAE3_UNKNOWN_RESET, addr);
/* We defered the clearing of the error event which caused
* interrupt since it was not posssible to do that in
* interrupt context (and this is the reason we introduced
* new UNKNOWN reset type). Now, the errors have been
* handled and cleared in hardware we can safely enable
* interrupts. This is an exception to the norm.
*/
hclge_enable_vector(&hdev->misc_vector, true);
}
/* return the highest priority reset level amongst all */
if (test_bit(HNAE3_IMP_RESET, addr)) {
rst_level = HNAE3_IMP_RESET;
......@@ -7269,7 +7304,7 @@ static int hclge_init_ae_dev(struct hnae3_ae_dev *ae_dev)
ret = hclge_hw_error_set_state(hdev, true);
if (ret) {
dev_err(&pdev->dev,
"hw error interrupts enable failed, ret =%d\n", ret);
"fail(%d) to enable hw error interrupts\n", ret);
goto err_mdiobus_unreg;
}
......@@ -7405,11 +7440,15 @@ static int hclge_reset_ae_dev(struct hnae3_ae_dev *ae_dev)
return ret;
}
/* Re-enable the TM hw error interrupts because
* they get disabled on core/global reset.
/* Re-enable the hw error interrupts because
* the interrupts get disabled on core/global reset.
*/
if (hclge_enable_tm_hw_error(hdev, true))
dev_err(&pdev->dev, "failed to enable TM hw error interrupts\n");
ret = hclge_hw_error_set_state(hdev, true);
if (ret) {
dev_err(&pdev->dev,
"fail(%d) to re-enable HNS hw error interrupts\n", ret);
return ret;
}
hclge_reset_vport_state(hdev);
......@@ -7931,7 +7970,7 @@ static const struct hnae3_ae_ops hclge_ops = {
.restore_fd_rules = hclge_restore_fd_entries,
.enable_fd = hclge_enable_fd,
.dbg_run_cmd = hclge_dbg_run_cmd,
.process_hw_error = hclge_process_ras_hw_error,
.handle_hw_ras_error = hclge_handle_hw_ras_error,
.get_hw_reset_stat = hclge_get_hw_reset_stat,
.ae_dev_resetting = hclge_ae_dev_resetting,
.ae_dev_reset_cnt = hclge_ae_dev_reset_cnt,
......
......@@ -205,6 +205,7 @@ enum HCLGE_DEV_STATE {
enum hclge_evt_cause {
HCLGE_VECTOR0_EVENT_RST,
HCLGE_VECTOR0_EVENT_MBX,
HCLGE_VECTOR0_EVENT_ERR,
HCLGE_VECTOR0_EVENT_OTHER,
};
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment