Commit 14864a52 authored by Linus Torvalds's avatar Linus Torvalds

Merge tag 'sound-fix-3.14-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/tiwai/sound

Pull sound fixes from Takashi Iwai:
 "The big chunks here are the updates for oxygen driver for Xonar DG
  devices, which were slipped from the previous pull request.  They are
  device-specific and thus not too dangerous.

  Other than that, all patches are small bug fixes, mainly for Samsung
  build fixes, a few HD-audio enhancements, and other misc ASoC fixes.
  (And this time ASoC merge is less than Octopus, lucky seven :)"

* tag 'sound-fix-3.14-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/tiwai/sound: (42 commits)
  ALSA: hda/hdmi - allow PIN_OUT to be dynamically enabled
  ALSA: hda - add headset mic detect quirks for another Dell laptop
  ALSA: oxygen: Xonar DG(X): cleanup and minor changes
  ALSA: oxygen: Xonar DG(X): modify high-pass filter control
  ALSA: oxygen: Xonar DG(X): modify input select functions
  ALSA: oxygen: Xonar DG(X): modify capture volume functions
  ALSA: oxygen: Xonar DG(X): use headphone volume control
  ALSA: oxygen: Xonar DG(X): modify playback output select
  ALSA: oxygen: Xonar DG(X): capture from I2S channel 1, not 2
  ALSA: oxygen: Xonar DG(X): move the mixer code into another file
  ALSA: oxygen: modify CS4245 register dumping function
  ALSA: oxygen: modify adjust_dg_dac_routing function
  ALSA: oxygen: Xonar DG(X): modify DAC/ADC parameters function
  ALSA: oxygen: Xonar DG(X): modify initialization functions
  ALSA: oxygen: Xonar DG(X): add new CS4245 SPI functions
  ALSA: oxygen: additional definitions for the Xonar DG/DGX card
  ALSA: oxygen: change description of the xonar_dg.c file
  ALSA: oxygen: export oxygen_update_dac_routing symbol
  ALSA: oxygen: add mute mask for the OXYGEN_PLAY_ROUTING register
  ALSA: oxygen: modify the SPI writing function
  ...
parents 4e13c5d0 75fae117
...@@ -43,7 +43,7 @@ Example: ...@@ -43,7 +43,7 @@ Example:
sound { sound {
compatible = "simple-audio-card"; compatible = "simple-audio-card";
simple-audio-card,format = "left_j"; simple-audio-card,format = "left_j";
simple-audio-routing = simple-audio-card,routing =
"MIC_IN", "Mic Jack", "MIC_IN", "Mic Jack",
"Headphone Jack", "HP_OUT", "Headphone Jack", "HP_OUT",
"Ext Spk", "LINE_OUT"; "Ext Spk", "LINE_OUT";
......
...@@ -131,6 +131,31 @@ static inline int init_info_for_card(struct snd_card *card) ...@@ -131,6 +131,31 @@ static inline int init_info_for_card(struct snd_card *card)
#define init_info_for_card(card) #define init_info_for_card(card)
#endif #endif
static int check_empty_slot(struct module *module, int slot)
{
return !slots[slot] || !*slots[slot];
}
/* return an empty slot number (>= 0) found in the given bitmask @mask.
* @mask == -1 == 0xffffffff means: take any free slot up to 32
* when no slot is available, return the original @mask as is.
*/
static int get_slot_from_bitmask(int mask, int (*check)(struct module *, int),
struct module *module)
{
int slot;
for (slot = 0; slot < SNDRV_CARDS; slot++) {
if (slot < 32 && !(mask & (1U << slot)))
continue;
if (!test_bit(slot, snd_cards_lock)) {
if (check(module, slot))
return slot; /* found */
}
}
return mask; /* unchanged */
}
/** /**
* snd_card_create - create and initialize a soundcard structure * snd_card_create - create and initialize a soundcard structure
* @idx: card index (address) [0 ... (SNDRV_CARDS-1)] * @idx: card index (address) [0 ... (SNDRV_CARDS-1)]
...@@ -152,7 +177,7 @@ int snd_card_create(int idx, const char *xid, ...@@ -152,7 +177,7 @@ int snd_card_create(int idx, const char *xid,
struct snd_card **card_ret) struct snd_card **card_ret)
{ {
struct snd_card *card; struct snd_card *card;
int err, idx2; int err;
if (snd_BUG_ON(!card_ret)) if (snd_BUG_ON(!card_ret))
return -EINVAL; return -EINVAL;
...@@ -167,32 +192,10 @@ int snd_card_create(int idx, const char *xid, ...@@ -167,32 +192,10 @@ int snd_card_create(int idx, const char *xid,
strlcpy(card->id, xid, sizeof(card->id)); strlcpy(card->id, xid, sizeof(card->id));
err = 0; err = 0;
mutex_lock(&snd_card_mutex); mutex_lock(&snd_card_mutex);
if (idx < 0) { if (idx < 0) /* first check the matching module-name slot */
for (idx2 = 0; idx2 < SNDRV_CARDS; idx2++) { idx = get_slot_from_bitmask(idx, module_slot_match, module);
/* idx == -1 == 0xffff means: take any free slot */ if (idx < 0) /* if not matched, assign an empty slot */
if (idx2 < sizeof(int) && !(idx & (1U << idx2))) idx = get_slot_from_bitmask(idx, check_empty_slot, module);
continue;
if (!test_bit(idx2, snd_cards_lock)) {
if (module_slot_match(module, idx2)) {
idx = idx2;
break;
}
}
}
}
if (idx < 0) {
for (idx2 = 0; idx2 < SNDRV_CARDS; idx2++) {
/* idx == -1 == 0xffff means: take any free slot */
if (idx2 < sizeof(int) && !(idx & (1U << idx2)))
continue;
if (!test_bit(idx2, snd_cards_lock)) {
if (!slots[idx2] || !*slots[idx2]) {
idx = idx2;
break;
}
}
}
}
if (idx < 0) if (idx < 0)
err = -ENODEV; err = -ENODEV;
else if (idx < snd_ecards_limit) { else if (idx < snd_ecards_limit) {
......
...@@ -369,6 +369,7 @@ static void free_module_desc(struct dsp_module_desc *module) ...@@ -369,6 +369,7 @@ static void free_module_desc(struct dsp_module_desc *module)
kfree(module->segments[i].data); kfree(module->segments[i].data);
kfree(module->segments); kfree(module->segments);
} }
kfree(module);
} }
/* firmware binary format: /* firmware binary format:
......
...@@ -361,6 +361,7 @@ struct hda_codec { ...@@ -361,6 +361,7 @@ struct hda_codec {
unsigned int epss:1; /* supporting EPSS? */ unsigned int epss:1; /* supporting EPSS? */
unsigned int cached_write:1; /* write only to caches */ unsigned int cached_write:1; /* write only to caches */
unsigned int dp_mst:1; /* support DP1.2 Multi-stream transport */ unsigned int dp_mst:1; /* support DP1.2 Multi-stream transport */
unsigned int dump_coef:1; /* dump processing coefs in codec proc file */
#ifdef CONFIG_PM #ifdef CONFIG_PM
unsigned int power_on :1; /* current (global) power-state */ unsigned int power_on :1; /* current (global) power-state */
unsigned int d3_stop_clk:1; /* support D3 operation without BCLK */ unsigned int d3_stop_clk:1; /* support D3 operation without BCLK */
......
...@@ -24,9 +24,14 @@ ...@@ -24,9 +24,14 @@
#include <linux/init.h> #include <linux/init.h>
#include <linux/slab.h> #include <linux/slab.h>
#include <sound/core.h> #include <sound/core.h>
#include <linux/module.h>
#include "hda_codec.h" #include "hda_codec.h"
#include "hda_local.h" #include "hda_local.h"
static int dump_coef = -1;
module_param(dump_coef, int, 0644);
MODULE_PARM_DESC(dump_coef, "Dump processing coefficients in codec proc file (-1=auto, 0=disable, 1=enable)");
static char *bits_names(unsigned int bits, char *names[], int size) static char *bits_names(unsigned int bits, char *names[], int size)
{ {
int i, n; int i, n;
...@@ -488,14 +493,39 @@ static void print_unsol_cap(struct snd_info_buffer *buffer, ...@@ -488,14 +493,39 @@ static void print_unsol_cap(struct snd_info_buffer *buffer,
(unsol & AC_UNSOL_ENABLED) ? 1 : 0); (unsol & AC_UNSOL_ENABLED) ? 1 : 0);
} }
static inline bool can_dump_coef(struct hda_codec *codec)
{
switch (dump_coef) {
case 0: return false;
case 1: return true;
default: return codec->dump_coef;
}
}
static void print_proc_caps(struct snd_info_buffer *buffer, static void print_proc_caps(struct snd_info_buffer *buffer,
struct hda_codec *codec, hda_nid_t nid) struct hda_codec *codec, hda_nid_t nid)
{ {
unsigned int i, ncoeff, oldindex;
unsigned int proc_caps = snd_hda_param_read(codec, nid, unsigned int proc_caps = snd_hda_param_read(codec, nid,
AC_PAR_PROC_CAP); AC_PAR_PROC_CAP);
ncoeff = (proc_caps & AC_PCAP_NUM_COEF) >> AC_PCAP_NUM_COEF_SHIFT;
snd_iprintf(buffer, " Processing caps: benign=%d, ncoeff=%d\n", snd_iprintf(buffer, " Processing caps: benign=%d, ncoeff=%d\n",
proc_caps & AC_PCAP_BENIGN, proc_caps & AC_PCAP_BENIGN, ncoeff);
(proc_caps & AC_PCAP_NUM_COEF) >> AC_PCAP_NUM_COEF_SHIFT);
if (!can_dump_coef(codec))
return;
/* Note: This is racy - another process could run in parallel and change
the coef index too. */
oldindex = snd_hda_codec_read(codec, nid, 0, AC_VERB_GET_COEF_INDEX, 0);
for (i = 0; i < ncoeff; i++) {
unsigned int val;
snd_hda_codec_write(codec, nid, 0, AC_VERB_SET_COEF_INDEX, i);
val = snd_hda_codec_read(codec, nid, 0, AC_VERB_GET_PROC_COEF,
0);
snd_iprintf(buffer, " Coeff 0x%02x: 0x%04x\n", i, val);
}
snd_hda_codec_write(codec, nid, 0, AC_VERB_SET_COEF_INDEX, oldindex);
} }
static void print_conn_list(struct snd_info_buffer *buffer, static void print_conn_list(struct snd_info_buffer *buffer,
......
...@@ -132,6 +132,9 @@ struct hdmi_spec { ...@@ -132,6 +132,9 @@ struct hdmi_spec {
struct hdmi_eld temp_eld; struct hdmi_eld temp_eld;
struct hdmi_ops ops; struct hdmi_ops ops;
bool dyn_pin_out;
/* /*
* Non-generic VIA/NVIDIA specific * Non-generic VIA/NVIDIA specific
*/ */
...@@ -500,15 +503,25 @@ static void hdmi_write_dip_byte(struct hda_codec *codec, hda_nid_t pin_nid, ...@@ -500,15 +503,25 @@ static void hdmi_write_dip_byte(struct hda_codec *codec, hda_nid_t pin_nid,
static void hdmi_init_pin(struct hda_codec *codec, hda_nid_t pin_nid) static void hdmi_init_pin(struct hda_codec *codec, hda_nid_t pin_nid)
{ {
struct hdmi_spec *spec = codec->spec;
int pin_out;
/* Unmute */ /* Unmute */
if (get_wcaps(codec, pin_nid) & AC_WCAP_OUT_AMP) if (get_wcaps(codec, pin_nid) & AC_WCAP_OUT_AMP)
snd_hda_codec_write(codec, pin_nid, 0, snd_hda_codec_write(codec, pin_nid, 0,
AC_VERB_SET_AMP_GAIN_MUTE, AMP_OUT_UNMUTE); AC_VERB_SET_AMP_GAIN_MUTE, AMP_OUT_UNMUTE);
/* Enable pin out: some machines with GM965 gets broken output when
* the pin is disabled or changed while using with HDMI if (spec->dyn_pin_out)
*/ /* Disable pin out until stream is active */
pin_out = 0;
else
/* Enable pin out: some machines with GM965 gets broken output
* when the pin is disabled or changed while using with HDMI
*/
pin_out = PIN_OUT;
snd_hda_codec_write(codec, pin_nid, 0, snd_hda_codec_write(codec, pin_nid, 0,
AC_VERB_SET_PIN_WIDGET_CONTROL, PIN_OUT); AC_VERB_SET_PIN_WIDGET_CONTROL, pin_out);
} }
static int hdmi_get_channel_count(struct hda_codec *codec, hda_nid_t cvt_nid) static int hdmi_get_channel_count(struct hda_codec *codec, hda_nid_t cvt_nid)
...@@ -1735,6 +1748,7 @@ static int generic_hdmi_playback_pcm_prepare(struct hda_pcm_stream *hinfo, ...@@ -1735,6 +1748,7 @@ static int generic_hdmi_playback_pcm_prepare(struct hda_pcm_stream *hinfo,
struct hdmi_spec_per_pin *per_pin = get_pin(spec, pin_idx); struct hdmi_spec_per_pin *per_pin = get_pin(spec, pin_idx);
hda_nid_t pin_nid = per_pin->pin_nid; hda_nid_t pin_nid = per_pin->pin_nid;
bool non_pcm; bool non_pcm;
int pinctl;
non_pcm = check_non_pcm_per_cvt(codec, cvt_nid); non_pcm = check_non_pcm_per_cvt(codec, cvt_nid);
mutex_lock(&per_pin->lock); mutex_lock(&per_pin->lock);
...@@ -1744,6 +1758,14 @@ static int generic_hdmi_playback_pcm_prepare(struct hda_pcm_stream *hinfo, ...@@ -1744,6 +1758,14 @@ static int generic_hdmi_playback_pcm_prepare(struct hda_pcm_stream *hinfo,
hdmi_setup_audio_infoframe(codec, per_pin, non_pcm); hdmi_setup_audio_infoframe(codec, per_pin, non_pcm);
mutex_unlock(&per_pin->lock); mutex_unlock(&per_pin->lock);
if (spec->dyn_pin_out) {
pinctl = snd_hda_codec_read(codec, pin_nid, 0,
AC_VERB_GET_PIN_WIDGET_CONTROL, 0);
snd_hda_codec_write(codec, pin_nid, 0,
AC_VERB_SET_PIN_WIDGET_CONTROL,
pinctl | PIN_OUT);
}
return spec->ops.setup_stream(codec, cvt_nid, pin_nid, stream_tag, format); return spec->ops.setup_stream(codec, cvt_nid, pin_nid, stream_tag, format);
} }
...@@ -1763,6 +1785,7 @@ static int hdmi_pcm_close(struct hda_pcm_stream *hinfo, ...@@ -1763,6 +1785,7 @@ static int hdmi_pcm_close(struct hda_pcm_stream *hinfo,
int cvt_idx, pin_idx; int cvt_idx, pin_idx;
struct hdmi_spec_per_cvt *per_cvt; struct hdmi_spec_per_cvt *per_cvt;
struct hdmi_spec_per_pin *per_pin; struct hdmi_spec_per_pin *per_pin;
int pinctl;
if (hinfo->nid) { if (hinfo->nid) {
cvt_idx = cvt_nid_to_cvt_index(spec, hinfo->nid); cvt_idx = cvt_nid_to_cvt_index(spec, hinfo->nid);
...@@ -1779,6 +1802,14 @@ static int hdmi_pcm_close(struct hda_pcm_stream *hinfo, ...@@ -1779,6 +1802,14 @@ static int hdmi_pcm_close(struct hda_pcm_stream *hinfo,
return -EINVAL; return -EINVAL;
per_pin = get_pin(spec, pin_idx); per_pin = get_pin(spec, pin_idx);
if (spec->dyn_pin_out) {
pinctl = snd_hda_codec_read(codec, per_pin->pin_nid, 0,
AC_VERB_GET_PIN_WIDGET_CONTROL, 0);
snd_hda_codec_write(codec, per_pin->pin_nid, 0,
AC_VERB_SET_PIN_WIDGET_CONTROL,
pinctl & ~PIN_OUT);
}
snd_hda_spdif_ctls_unassign(codec, pin_idx); snd_hda_spdif_ctls_unassign(codec, pin_idx);
mutex_lock(&per_pin->lock); mutex_lock(&per_pin->lock);
...@@ -2840,6 +2871,7 @@ static int patch_nvhdmi(struct hda_codec *codec) ...@@ -2840,6 +2871,7 @@ static int patch_nvhdmi(struct hda_codec *codec)
return err; return err;
spec = codec->spec; spec = codec->spec;
spec->dyn_pin_out = true;
spec->ops.chmap_cea_alloc_validate_get_type = spec->ops.chmap_cea_alloc_validate_get_type =
nvhdmi_chmap_cea_alloc_validate_get_type; nvhdmi_chmap_cea_alloc_validate_get_type;
......
...@@ -1819,6 +1819,7 @@ enum { ...@@ -1819,6 +1819,7 @@ enum {
ALC889_FIXUP_DAC_ROUTE, ALC889_FIXUP_DAC_ROUTE,
ALC889_FIXUP_MBP_VREF, ALC889_FIXUP_MBP_VREF,
ALC889_FIXUP_IMAC91_VREF, ALC889_FIXUP_IMAC91_VREF,
ALC889_FIXUP_MBA11_VREF,
ALC889_FIXUP_MBA21_VREF, ALC889_FIXUP_MBA21_VREF,
ALC882_FIXUP_INV_DMIC, ALC882_FIXUP_INV_DMIC,
ALC882_FIXUP_NO_PRIMARY_HP, ALC882_FIXUP_NO_PRIMARY_HP,
...@@ -1949,6 +1950,16 @@ static void alc889_fixup_imac91_vref(struct hda_codec *codec, ...@@ -1949,6 +1950,16 @@ static void alc889_fixup_imac91_vref(struct hda_codec *codec,
alc889_fixup_mac_pins(codec, nids, ARRAY_SIZE(nids)); alc889_fixup_mac_pins(codec, nids, ARRAY_SIZE(nids));
} }
/* Set VREF on speaker pins on mba11 */
static void alc889_fixup_mba11_vref(struct hda_codec *codec,
const struct hda_fixup *fix, int action)
{
static hda_nid_t nids[1] = { 0x18 };
if (action == HDA_FIXUP_ACT_INIT)
alc889_fixup_mac_pins(codec, nids, ARRAY_SIZE(nids));
}
/* Set VREF on speaker pins on mba21 */ /* Set VREF on speaker pins on mba21 */
static void alc889_fixup_mba21_vref(struct hda_codec *codec, static void alc889_fixup_mba21_vref(struct hda_codec *codec,
const struct hda_fixup *fix, int action) const struct hda_fixup *fix, int action)
...@@ -2167,6 +2178,12 @@ static const struct hda_fixup alc882_fixups[] = { ...@@ -2167,6 +2178,12 @@ static const struct hda_fixup alc882_fixups[] = {
.chained = true, .chained = true,
.chain_id = ALC882_FIXUP_GPIO1, .chain_id = ALC882_FIXUP_GPIO1,
}, },
[ALC889_FIXUP_MBA11_VREF] = {
.type = HDA_FIXUP_FUNC,
.v.func = alc889_fixup_mba11_vref,
.chained = true,
.chain_id = ALC889_FIXUP_MBP_VREF,
},
[ALC889_FIXUP_MBA21_VREF] = { [ALC889_FIXUP_MBA21_VREF] = {
.type = HDA_FIXUP_FUNC, .type = HDA_FIXUP_FUNC,
.v.func = alc889_fixup_mba21_vref, .v.func = alc889_fixup_mba21_vref,
...@@ -2242,7 +2259,7 @@ static const struct snd_pci_quirk alc882_fixup_tbl[] = { ...@@ -2242,7 +2259,7 @@ static const struct snd_pci_quirk alc882_fixup_tbl[] = {
SND_PCI_QUIRK(0x106b, 0x2c00, "MacbookPro rev3", ALC889_FIXUP_MBP_VREF), SND_PCI_QUIRK(0x106b, 0x2c00, "MacbookPro rev3", ALC889_FIXUP_MBP_VREF),
SND_PCI_QUIRK(0x106b, 0x3000, "iMac", ALC889_FIXUP_MBP_VREF), SND_PCI_QUIRK(0x106b, 0x3000, "iMac", ALC889_FIXUP_MBP_VREF),
SND_PCI_QUIRK(0x106b, 0x3200, "iMac 7,1 Aluminum", ALC882_FIXUP_EAPD), SND_PCI_QUIRK(0x106b, 0x3200, "iMac 7,1 Aluminum", ALC882_FIXUP_EAPD),
SND_PCI_QUIRK(0x106b, 0x3400, "MacBookAir 1,1", ALC889_FIXUP_MBP_VREF), SND_PCI_QUIRK(0x106b, 0x3400, "MacBookAir 1,1", ALC889_FIXUP_MBA11_VREF),
SND_PCI_QUIRK(0x106b, 0x3500, "MacBookAir 2,1", ALC889_FIXUP_MBA21_VREF), SND_PCI_QUIRK(0x106b, 0x3500, "MacBookAir 2,1", ALC889_FIXUP_MBA21_VREF),
SND_PCI_QUIRK(0x106b, 0x3600, "Macbook 3,1", ALC889_FIXUP_MBP_VREF), SND_PCI_QUIRK(0x106b, 0x3600, "Macbook 3,1", ALC889_FIXUP_MBP_VREF),
SND_PCI_QUIRK(0x106b, 0x3800, "MacbookPro 4,1", ALC889_FIXUP_MBP_VREF), SND_PCI_QUIRK(0x106b, 0x3800, "MacbookPro 4,1", ALC889_FIXUP_MBP_VREF),
...@@ -3833,6 +3850,7 @@ enum { ...@@ -3833,6 +3850,7 @@ enum {
ALC269_FIXUP_ACER_AC700, ALC269_FIXUP_ACER_AC700,
ALC269_FIXUP_LIMIT_INT_MIC_BOOST, ALC269_FIXUP_LIMIT_INT_MIC_BOOST,
ALC269VB_FIXUP_ASUS_ZENBOOK, ALC269VB_FIXUP_ASUS_ZENBOOK,
ALC269VB_FIXUP_ASUS_ZENBOOK_UX31A,
ALC269_FIXUP_LIMIT_INT_MIC_BOOST_MUTE_LED, ALC269_FIXUP_LIMIT_INT_MIC_BOOST_MUTE_LED,
ALC269VB_FIXUP_ORDISSIMO_EVE2, ALC269VB_FIXUP_ORDISSIMO_EVE2,
ALC283_FIXUP_CHROME_BOOK, ALC283_FIXUP_CHROME_BOOK,
...@@ -4126,6 +4144,17 @@ static const struct hda_fixup alc269_fixups[] = { ...@@ -4126,6 +4144,17 @@ static const struct hda_fixup alc269_fixups[] = {
.chained = true, .chained = true,
.chain_id = ALC269VB_FIXUP_DMIC, .chain_id = ALC269VB_FIXUP_DMIC,
}, },
[ALC269VB_FIXUP_ASUS_ZENBOOK_UX31A] = {
.type = HDA_FIXUP_VERBS,
.v.verbs = (const struct hda_verb[]) {
/* class-D output amp +5dB */
{ 0x20, AC_VERB_SET_COEF_INDEX, 0x12 },
{ 0x20, AC_VERB_SET_PROC_COEF, 0x2800 },
{}
},
.chained = true,
.chain_id = ALC269VB_FIXUP_ASUS_ZENBOOK,
},
[ALC269_FIXUP_LIMIT_INT_MIC_BOOST_MUTE_LED] = { [ALC269_FIXUP_LIMIT_INT_MIC_BOOST_MUTE_LED] = {
.type = HDA_FIXUP_FUNC, .type = HDA_FIXUP_FUNC,
.v.func = alc269_fixup_limit_int_mic_boost, .v.func = alc269_fixup_limit_int_mic_boost,
...@@ -4265,6 +4294,7 @@ static const struct snd_pci_quirk alc269_fixup_tbl[] = { ...@@ -4265,6 +4294,7 @@ static const struct snd_pci_quirk alc269_fixup_tbl[] = {
SND_PCI_QUIRK(0x1028, 0x063e, "Dell", ALC269_FIXUP_DELL1_MIC_NO_PRESENCE), SND_PCI_QUIRK(0x1028, 0x063e, "Dell", ALC269_FIXUP_DELL1_MIC_NO_PRESENCE),
SND_PCI_QUIRK(0x1028, 0x063f, "Dell", ALC255_FIXUP_DELL1_MIC_NO_PRESENCE), SND_PCI_QUIRK(0x1028, 0x063f, "Dell", ALC255_FIXUP_DELL1_MIC_NO_PRESENCE),
SND_PCI_QUIRK(0x1028, 0x0640, "Dell", ALC255_FIXUP_DELL1_MIC_NO_PRESENCE), SND_PCI_QUIRK(0x1028, 0x0640, "Dell", ALC255_FIXUP_DELL1_MIC_NO_PRESENCE),
SND_PCI_QUIRK(0x1028, 0x064d, "Dell", ALC255_FIXUP_DELL1_MIC_NO_PRESENCE),
SND_PCI_QUIRK(0x1028, 0x0651, "Dell", ALC255_FIXUP_DELL1_MIC_NO_PRESENCE), SND_PCI_QUIRK(0x1028, 0x0651, "Dell", ALC255_FIXUP_DELL1_MIC_NO_PRESENCE),
SND_PCI_QUIRK(0x1028, 0x0652, "Dell", ALC255_FIXUP_DELL1_MIC_NO_PRESENCE), SND_PCI_QUIRK(0x1028, 0x0652, "Dell", ALC255_FIXUP_DELL1_MIC_NO_PRESENCE),
SND_PCI_QUIRK(0x1028, 0x0653, "Dell", ALC255_FIXUP_DELL1_MIC_NO_PRESENCE), SND_PCI_QUIRK(0x1028, 0x0653, "Dell", ALC255_FIXUP_DELL1_MIC_NO_PRESENCE),
...@@ -4282,7 +4312,7 @@ static const struct snd_pci_quirk alc269_fixup_tbl[] = { ...@@ -4282,7 +4312,7 @@ static const struct snd_pci_quirk alc269_fixup_tbl[] = {
SND_PCI_QUIRK(0x1043, 0x106d, "Asus K53BE", ALC269_FIXUP_LIMIT_INT_MIC_BOOST), SND_PCI_QUIRK(0x1043, 0x106d, "Asus K53BE", ALC269_FIXUP_LIMIT_INT_MIC_BOOST),
SND_PCI_QUIRK(0x1043, 0x115d, "Asus 1015E", ALC269_FIXUP_LIMIT_INT_MIC_BOOST), SND_PCI_QUIRK(0x1043, 0x115d, "Asus 1015E", ALC269_FIXUP_LIMIT_INT_MIC_BOOST),
SND_PCI_QUIRK(0x1043, 0x1427, "Asus Zenbook UX31E", ALC269VB_FIXUP_ASUS_ZENBOOK), SND_PCI_QUIRK(0x1043, 0x1427, "Asus Zenbook UX31E", ALC269VB_FIXUP_ASUS_ZENBOOK),
SND_PCI_QUIRK(0x1043, 0x1517, "Asus Zenbook UX31A", ALC269VB_FIXUP_ASUS_ZENBOOK), SND_PCI_QUIRK(0x1043, 0x1517, "Asus Zenbook UX31A", ALC269VB_FIXUP_ASUS_ZENBOOK_UX31A),
SND_PCI_QUIRK(0x1043, 0x16e3, "ASUS UX50", ALC269_FIXUP_STEREO_DMIC), SND_PCI_QUIRK(0x1043, 0x16e3, "ASUS UX50", ALC269_FIXUP_STEREO_DMIC),
SND_PCI_QUIRK(0x1043, 0x1a13, "Asus G73Jw", ALC269_FIXUP_ASUS_G73JW), SND_PCI_QUIRK(0x1043, 0x1a13, "Asus G73Jw", ALC269_FIXUP_ASUS_G73JW),
SND_PCI_QUIRK(0x1043, 0x1b13, "Asus U41SV", ALC269_FIXUP_INV_DMIC), SND_PCI_QUIRK(0x1043, 0x1b13, "Asus U41SV", ALC269_FIXUP_INV_DMIC),
......
snd-oxygen-lib-objs := oxygen_io.o oxygen_lib.o oxygen_mixer.o oxygen_pcm.o snd-oxygen-lib-objs := oxygen_io.o oxygen_lib.o oxygen_mixer.o oxygen_pcm.o
snd-oxygen-objs := oxygen.o xonar_dg.o snd-oxygen-objs := oxygen.o xonar_dg_mixer.o xonar_dg.o
snd-virtuoso-objs := virtuoso.o xonar_lib.o \ snd-virtuoso-objs := virtuoso.o xonar_lib.o \
xonar_pcm179x.o xonar_cs43xx.o xonar_wm87x6.o xonar_hdmi.o xonar_pcm179x.o xonar_cs43xx.o xonar_wm87x6.o xonar_hdmi.o
......
...@@ -102,6 +102,9 @@ ...@@ -102,6 +102,9 @@
#define CS4245_ADC_OVFL 0x02 #define CS4245_ADC_OVFL 0x02
#define CS4245_ADC_UNDRFL 0x01 #define CS4245_ADC_UNDRFL 0x01
#define CS4245_SPI_ADDRESS_S (0x9e << 16)
#define CS4245_SPI_WRITE_S (0 << 16)
#define CS4245_SPI_ADDRESS (0x9e << 16) #define CS4245_SPI_ADDRESS 0x9e
#define CS4245_SPI_WRITE (0 << 16) #define CS4245_SPI_WRITE 0
#define CS4245_SPI_READ 1
...@@ -198,7 +198,7 @@ void oxygen_write_ac97(struct oxygen *chip, unsigned int codec, ...@@ -198,7 +198,7 @@ void oxygen_write_ac97(struct oxygen *chip, unsigned int codec,
void oxygen_write_ac97_masked(struct oxygen *chip, unsigned int codec, void oxygen_write_ac97_masked(struct oxygen *chip, unsigned int codec,
unsigned int index, u16 data, u16 mask); unsigned int index, u16 data, u16 mask);
void oxygen_write_spi(struct oxygen *chip, u8 control, unsigned int data); int oxygen_write_spi(struct oxygen *chip, u8 control, unsigned int data);
void oxygen_write_i2c(struct oxygen *chip, u8 device, u8 map, u8 data); void oxygen_write_i2c(struct oxygen *chip, u8 device, u8 map, u8 data);
void oxygen_reset_uart(struct oxygen *chip); void oxygen_reset_uart(struct oxygen *chip);
......
...@@ -194,23 +194,36 @@ void oxygen_write_ac97_masked(struct oxygen *chip, unsigned int codec, ...@@ -194,23 +194,36 @@ void oxygen_write_ac97_masked(struct oxygen *chip, unsigned int codec,
} }
EXPORT_SYMBOL(oxygen_write_ac97_masked); EXPORT_SYMBOL(oxygen_write_ac97_masked);
void oxygen_write_spi(struct oxygen *chip, u8 control, unsigned int data) static int oxygen_wait_spi(struct oxygen *chip)
{ {
unsigned int count; unsigned int count;
/* should not need more than 30.72 us (24 * 1.28 us) */ /*
count = 10; * Higher timeout to be sure: 200 us;
while ((oxygen_read8(chip, OXYGEN_SPI_CONTROL) & OXYGEN_SPI_BUSY) * actual transaction should not need more than 40 us.
&& count > 0) { */
for (count = 50; count > 0; count--) {
udelay(4); udelay(4);
--count; if ((oxygen_read8(chip, OXYGEN_SPI_CONTROL) &
OXYGEN_SPI_BUSY) == 0)
return 0;
} }
snd_printk(KERN_ERR "oxygen: SPI wait timeout\n");
return -EIO;
}
int oxygen_write_spi(struct oxygen *chip, u8 control, unsigned int data)
{
/*
* We need to wait AFTER initiating the SPI transaction,
* otherwise read operations will not work.
*/
oxygen_write8(chip, OXYGEN_SPI_DATA1, data); oxygen_write8(chip, OXYGEN_SPI_DATA1, data);
oxygen_write8(chip, OXYGEN_SPI_DATA2, data >> 8); oxygen_write8(chip, OXYGEN_SPI_DATA2, data >> 8);
if (control & OXYGEN_SPI_DATA_LENGTH_3) if (control & OXYGEN_SPI_DATA_LENGTH_3)
oxygen_write8(chip, OXYGEN_SPI_DATA3, data >> 16); oxygen_write8(chip, OXYGEN_SPI_DATA3, data >> 16);
oxygen_write8(chip, OXYGEN_SPI_CONTROL, control); oxygen_write8(chip, OXYGEN_SPI_CONTROL, control);
return oxygen_wait_spi(chip);
} }
EXPORT_SYMBOL(oxygen_write_spi); EXPORT_SYMBOL(oxygen_write_spi);
......
...@@ -190,6 +190,7 @@ void oxygen_update_dac_routing(struct oxygen *chip) ...@@ -190,6 +190,7 @@ void oxygen_update_dac_routing(struct oxygen *chip)
if (chip->model.update_center_lfe_mix) if (chip->model.update_center_lfe_mix)
chip->model.update_center_lfe_mix(chip, chip->dac_routing > 2); chip->model.update_center_lfe_mix(chip, chip->dac_routing > 2);
} }
EXPORT_SYMBOL(oxygen_update_dac_routing);
static int upmix_put(struct snd_kcontrol *ctl, struct snd_ctl_elem_value *value) static int upmix_put(struct snd_kcontrol *ctl, struct snd_ctl_elem_value *value)
{ {
......
...@@ -318,6 +318,7 @@ ...@@ -318,6 +318,7 @@
#define OXYGEN_PLAY_MUTE23 0x0002 #define OXYGEN_PLAY_MUTE23 0x0002
#define OXYGEN_PLAY_MUTE45 0x0004 #define OXYGEN_PLAY_MUTE45 0x0004
#define OXYGEN_PLAY_MUTE67 0x0008 #define OXYGEN_PLAY_MUTE67 0x0008
#define OXYGEN_PLAY_MUTE_MASK 0x000f
#define OXYGEN_PLAY_MULTICH_MASK 0x0010 #define OXYGEN_PLAY_MULTICH_MASK 0x0010
#define OXYGEN_PLAY_MULTICH_I2S_DAC 0x0000 #define OXYGEN_PLAY_MULTICH_I2S_DAC 0x0000
#define OXYGEN_PLAY_MULTICH_AC97 0x0010 #define OXYGEN_PLAY_MULTICH_AC97 0x0010
......
...@@ -2,7 +2,7 @@ ...@@ -2,7 +2,7 @@
* card driver for the Xonar DG/DGX * card driver for the Xonar DG/DGX
* *
* Copyright (c) Clemens Ladisch <clemens@ladisch.de> * Copyright (c) Clemens Ladisch <clemens@ladisch.de>
* * Copyright (c) Roman Volkov <v1ron@mail.ru>
* *
* This driver is free software; you can redistribute it and/or modify * This driver is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License, version 2. * it under the terms of the GNU General Public License, version 2.
...@@ -20,27 +20,35 @@ ...@@ -20,27 +20,35 @@
* Xonar DG/DGX * Xonar DG/DGX
* ------------ * ------------
* *
* CS4245 and CS4361 both will mute all outputs if any clock ratio
* is invalid.
*
* CMI8788: * CMI8788:
* *
* SPI 0 -> CS4245 * SPI 0 -> CS4245
* *
* Playback:
* I²S 1 -> CS4245 * I²S 1 -> CS4245
* I²S 2 -> CS4361 (center/LFE) * I²S 2 -> CS4361 (center/LFE)
* I²S 3 -> CS4361 (surround) * I²S 3 -> CS4361 (surround)
* I²S 4 -> CS4361 (front) * I²S 4 -> CS4361 (front)
* Capture:
* I²S ADC 1 <- CS4245
* *
* GPIO 3 <- ? * GPIO 3 <- ?
* GPIO 4 <- headphone detect * GPIO 4 <- headphone detect
* GPIO 5 -> route input jack to line-in (0) or mic-in (1) * GPIO 5 -> enable ADC analog circuit for the left channel
* GPIO 6 -> route input jack to line-in (0) or mic-in (1) * GPIO 6 -> enable ADC analog circuit for the right channel
* GPIO 7 -> enable rear headphone amp * GPIO 7 -> switch green rear output jack between CS4245 and and the first
* channel of CS4361 (mechanical relay)
* GPIO 8 -> enable output to speakers * GPIO 8 -> enable output to speakers
* *
* CS4245: * CS4245:
* *
* input 0 <- mic
* input 1 <- aux * input 1 <- aux
* input 2 <- front mic * input 2 <- front mic
* input 4 <- line/mic * input 4 <- line
* DAC out -> headphones * DAC out -> headphones
* aux out -> front panel headphones * aux out -> front panel headphones
*/ */
...@@ -56,553 +64,214 @@ ...@@ -56,553 +64,214 @@
#include "xonar_dg.h" #include "xonar_dg.h"
#include "cs4245.h" #include "cs4245.h"
#define GPIO_MAGIC 0x0008 int cs4245_write_spi(struct oxygen *chip, u8 reg)
#define GPIO_HP_DETECT 0x0010
#define GPIO_INPUT_ROUTE 0x0060
#define GPIO_HP_REAR 0x0080
#define GPIO_OUTPUT_ENABLE 0x0100
struct dg {
unsigned int output_sel;
s8 input_vol[4][2];
unsigned int input_sel;
u8 hp_vol_att;
u8 cs4245_regs[0x11];
};
static void cs4245_write(struct oxygen *chip, unsigned int reg, u8 value)
{ {
struct dg *data = chip->model_data; struct dg *data = chip->model_data;
unsigned int packet;
oxygen_write_spi(chip, OXYGEN_SPI_TRIGGER | packet = reg << 8;
OXYGEN_SPI_DATA_LENGTH_3 | packet |= (CS4245_SPI_ADDRESS | CS4245_SPI_WRITE) << 16;
OXYGEN_SPI_CLOCK_1280 | packet |= data->cs4245_shadow[reg];
(0 << OXYGEN_SPI_CODEC_SHIFT) |
OXYGEN_SPI_CEN_LATCH_CLOCK_HI, return oxygen_write_spi(chip, OXYGEN_SPI_TRIGGER |
CS4245_SPI_ADDRESS | OXYGEN_SPI_DATA_LENGTH_3 |
CS4245_SPI_WRITE | OXYGEN_SPI_CLOCK_1280 |
(reg << 8) | value); (0 << OXYGEN_SPI_CODEC_SHIFT) |
data->cs4245_regs[reg] = value; OXYGEN_SPI_CEN_LATCH_CLOCK_HI,
packet);
} }
static void cs4245_write_cached(struct oxygen *chip, unsigned int reg, u8 value) int cs4245_read_spi(struct oxygen *chip, u8 addr)
{ {
struct dg *data = chip->model_data; struct dg *data = chip->model_data;
int ret;
ret = oxygen_write_spi(chip, OXYGEN_SPI_TRIGGER |
OXYGEN_SPI_DATA_LENGTH_2 |
OXYGEN_SPI_CEN_LATCH_CLOCK_HI |
OXYGEN_SPI_CLOCK_1280 | (0 << OXYGEN_SPI_CODEC_SHIFT),
((CS4245_SPI_ADDRESS | CS4245_SPI_WRITE) << 8) | addr);
if (ret < 0)
return ret;
ret = oxygen_write_spi(chip, OXYGEN_SPI_TRIGGER |
OXYGEN_SPI_DATA_LENGTH_2 |
OXYGEN_SPI_CEN_LATCH_CLOCK_HI |
OXYGEN_SPI_CLOCK_1280 | (0 << OXYGEN_SPI_CODEC_SHIFT),
(CS4245_SPI_ADDRESS | CS4245_SPI_READ) << 8);
if (ret < 0)
return ret;
data->cs4245_shadow[addr] = oxygen_read8(chip, OXYGEN_SPI_DATA1);
if (value != data->cs4245_regs[reg]) return 0;
cs4245_write(chip, reg, value);
} }
static void cs4245_registers_init(struct oxygen *chip) int cs4245_shadow_control(struct oxygen *chip, enum cs4245_shadow_operation op)
{ {
struct dg *data = chip->model_data; struct dg *data = chip->model_data;
unsigned char addr;
cs4245_write(chip, CS4245_POWER_CTRL, CS4245_PDN); int ret;
cs4245_write(chip, CS4245_DAC_CTRL_1,
data->cs4245_regs[CS4245_DAC_CTRL_1]); for (addr = 1; addr < ARRAY_SIZE(data->cs4245_shadow); addr++) {
cs4245_write(chip, CS4245_ADC_CTRL, ret = (op == CS4245_SAVE_TO_SHADOW ?
data->cs4245_regs[CS4245_ADC_CTRL]); cs4245_read_spi(chip, addr) :
cs4245_write(chip, CS4245_SIGNAL_SEL, cs4245_write_spi(chip, addr));
data->cs4245_regs[CS4245_SIGNAL_SEL]); if (ret < 0)
cs4245_write(chip, CS4245_PGA_B_CTRL, return ret;
data->cs4245_regs[CS4245_PGA_B_CTRL]); }
cs4245_write(chip, CS4245_PGA_A_CTRL, return 0;
data->cs4245_regs[CS4245_PGA_A_CTRL]);
cs4245_write(chip, CS4245_ANALOG_IN,
data->cs4245_regs[CS4245_ANALOG_IN]);
cs4245_write(chip, CS4245_DAC_A_CTRL,
data->cs4245_regs[CS4245_DAC_A_CTRL]);
cs4245_write(chip, CS4245_DAC_B_CTRL,
data->cs4245_regs[CS4245_DAC_B_CTRL]);
cs4245_write(chip, CS4245_DAC_CTRL_2,
CS4245_DAC_SOFT | CS4245_DAC_ZERO | CS4245_INVERT_DAC);
cs4245_write(chip, CS4245_INT_MASK, 0);
cs4245_write(chip, CS4245_POWER_CTRL, 0);
} }
static void cs4245_init(struct oxygen *chip) static void cs4245_init(struct oxygen *chip)
{ {
struct dg *data = chip->model_data; struct dg *data = chip->model_data;
data->cs4245_regs[CS4245_DAC_CTRL_1] = /* save the initial state: codec version, registers */
cs4245_shadow_control(chip, CS4245_SAVE_TO_SHADOW);
/*
* Power up the CODEC internals, enable soft ramp & zero cross, work in
* async. mode, enable aux output from DAC. Invert DAC output as in the
* Windows driver.
*/
data->cs4245_shadow[CS4245_POWER_CTRL] = 0;
data->cs4245_shadow[CS4245_SIGNAL_SEL] =
CS4245_A_OUT_SEL_DAC | CS4245_ASYNCH;
data->cs4245_shadow[CS4245_DAC_CTRL_1] =
CS4245_DAC_FM_SINGLE | CS4245_DAC_DIF_LJUST; CS4245_DAC_FM_SINGLE | CS4245_DAC_DIF_LJUST;
data->cs4245_regs[CS4245_ADC_CTRL] = data->cs4245_shadow[CS4245_DAC_CTRL_2] =
CS4245_DAC_SOFT | CS4245_DAC_ZERO | CS4245_INVERT_DAC;
data->cs4245_shadow[CS4245_ADC_CTRL] =
CS4245_ADC_FM_SINGLE | CS4245_ADC_DIF_LJUST; CS4245_ADC_FM_SINGLE | CS4245_ADC_DIF_LJUST;
data->cs4245_regs[CS4245_SIGNAL_SEL] = data->cs4245_shadow[CS4245_ANALOG_IN] =
CS4245_A_OUT_SEL_HIZ | CS4245_ASYNCH; CS4245_PGA_SOFT | CS4245_PGA_ZERO;
data->cs4245_regs[CS4245_PGA_B_CTRL] = 0; data->cs4245_shadow[CS4245_PGA_B_CTRL] = 0;
data->cs4245_regs[CS4245_PGA_A_CTRL] = 0; data->cs4245_shadow[CS4245_PGA_A_CTRL] = 0;
data->cs4245_regs[CS4245_ANALOG_IN] = data->cs4245_shadow[CS4245_DAC_A_CTRL] = 8;
CS4245_PGA_SOFT | CS4245_PGA_ZERO | CS4245_SEL_INPUT_4; data->cs4245_shadow[CS4245_DAC_B_CTRL] = 8;
data->cs4245_regs[CS4245_DAC_A_CTRL] = 0;
data->cs4245_regs[CS4245_DAC_B_CTRL] = 0; cs4245_shadow_control(chip, CS4245_LOAD_FROM_SHADOW);
cs4245_registers_init(chip);
snd_component_add(chip->card, "CS4245"); snd_component_add(chip->card, "CS4245");
} }
static void dg_output_enable(struct oxygen *chip) void dg_init(struct oxygen *chip)
{
msleep(2500);
oxygen_set_bits16(chip, OXYGEN_GPIO_DATA, GPIO_OUTPUT_ENABLE);
}
static void dg_init(struct oxygen *chip)
{ {
struct dg *data = chip->model_data; struct dg *data = chip->model_data;
data->output_sel = 0; data->output_sel = PLAYBACK_DST_HP_FP;
data->input_sel = 3; data->input_sel = CAPTURE_SRC_MIC;
data->hp_vol_att = 2 * 16;
cs4245_init(chip); cs4245_init(chip);
oxygen_write16(chip, OXYGEN_GPIO_CONTROL,
oxygen_clear_bits16(chip, OXYGEN_GPIO_CONTROL, GPIO_OUTPUT_ENABLE | GPIO_HP_REAR | GPIO_INPUT_ROUTE);
GPIO_MAGIC | GPIO_HP_DETECT); /* anti-pop delay, wait some time before enabling the output */
oxygen_set_bits16(chip, OXYGEN_GPIO_CONTROL, msleep(2500);
GPIO_INPUT_ROUTE | GPIO_HP_REAR | GPIO_OUTPUT_ENABLE); oxygen_write16(chip, OXYGEN_GPIO_DATA,
oxygen_clear_bits16(chip, OXYGEN_GPIO_DATA, GPIO_OUTPUT_ENABLE | GPIO_INPUT_ROUTE);
GPIO_INPUT_ROUTE | GPIO_HP_REAR);
dg_output_enable(chip);
} }
static void dg_cleanup(struct oxygen *chip) void dg_cleanup(struct oxygen *chip)
{ {
oxygen_clear_bits16(chip, OXYGEN_GPIO_DATA, GPIO_OUTPUT_ENABLE); oxygen_clear_bits16(chip, OXYGEN_GPIO_DATA, GPIO_OUTPUT_ENABLE);
} }
static void dg_suspend(struct oxygen *chip) void dg_suspend(struct oxygen *chip)
{ {
dg_cleanup(chip); dg_cleanup(chip);
} }
static void dg_resume(struct oxygen *chip) void dg_resume(struct oxygen *chip)
{ {
cs4245_registers_init(chip); cs4245_shadow_control(chip, CS4245_LOAD_FROM_SHADOW);
dg_output_enable(chip); msleep(2500);
} oxygen_set_bits16(chip, OXYGEN_GPIO_DATA, GPIO_OUTPUT_ENABLE);
static void set_cs4245_dac_params(struct oxygen *chip,
struct snd_pcm_hw_params *params)
{
struct dg *data = chip->model_data;
u8 value;
value = data->cs4245_regs[CS4245_DAC_CTRL_1] & ~CS4245_DAC_FM_MASK;
if (params_rate(params) <= 50000)
value |= CS4245_DAC_FM_SINGLE;
else if (params_rate(params) <= 100000)
value |= CS4245_DAC_FM_DOUBLE;
else
value |= CS4245_DAC_FM_QUAD;
cs4245_write_cached(chip, CS4245_DAC_CTRL_1, value);
} }
static void set_cs4245_adc_params(struct oxygen *chip, void set_cs4245_dac_params(struct oxygen *chip,
struct snd_pcm_hw_params *params) struct snd_pcm_hw_params *params)
{ {
struct dg *data = chip->model_data; struct dg *data = chip->model_data;
u8 value; unsigned char dac_ctrl;
unsigned char mclk_freq;
value = data->cs4245_regs[CS4245_ADC_CTRL] & ~CS4245_ADC_FM_MASK;
if (params_rate(params) <= 50000) dac_ctrl = data->cs4245_shadow[CS4245_DAC_CTRL_1] & ~CS4245_DAC_FM_MASK;
value |= CS4245_ADC_FM_SINGLE; mclk_freq = data->cs4245_shadow[CS4245_MCLK_FREQ] & ~CS4245_MCLK1_MASK;
else if (params_rate(params) <= 100000) if (params_rate(params) <= 50000) {
value |= CS4245_ADC_FM_DOUBLE; dac_ctrl |= CS4245_DAC_FM_SINGLE;
else mclk_freq |= CS4245_MCLK_1 << CS4245_MCLK1_SHIFT;
value |= CS4245_ADC_FM_QUAD; } else if (params_rate(params) <= 100000) {
cs4245_write_cached(chip, CS4245_ADC_CTRL, value); dac_ctrl |= CS4245_DAC_FM_DOUBLE;
} mclk_freq |= CS4245_MCLK_1 << CS4245_MCLK1_SHIFT;
} else {
static inline unsigned int shift_bits(unsigned int value, dac_ctrl |= CS4245_DAC_FM_QUAD;
unsigned int shift_from, mclk_freq |= CS4245_MCLK_2 << CS4245_MCLK1_SHIFT;
unsigned int shift_to,
unsigned int mask)
{
if (shift_from < shift_to)
return (value << (shift_to - shift_from)) & mask;
else
return (value >> (shift_from - shift_to)) & mask;
}
static unsigned int adjust_dg_dac_routing(struct oxygen *chip,
unsigned int play_routing)
{
return (play_routing & OXYGEN_PLAY_DAC0_SOURCE_MASK) |
shift_bits(play_routing,
OXYGEN_PLAY_DAC2_SOURCE_SHIFT,
OXYGEN_PLAY_DAC1_SOURCE_SHIFT,
OXYGEN_PLAY_DAC1_SOURCE_MASK) |
shift_bits(play_routing,
OXYGEN_PLAY_DAC1_SOURCE_SHIFT,
OXYGEN_PLAY_DAC2_SOURCE_SHIFT,
OXYGEN_PLAY_DAC2_SOURCE_MASK) |
shift_bits(play_routing,
OXYGEN_PLAY_DAC0_SOURCE_SHIFT,
OXYGEN_PLAY_DAC3_SOURCE_SHIFT,
OXYGEN_PLAY_DAC3_SOURCE_MASK);
}
static int output_switch_info(struct snd_kcontrol *ctl,
struct snd_ctl_elem_info *info)
{
static const char *const names[3] = {
"Speakers", "Headphones", "FP Headphones"
};
return snd_ctl_enum_info(info, 1, 3, names);
}
static int output_switch_get(struct snd_kcontrol *ctl,
struct snd_ctl_elem_value *value)
{
struct oxygen *chip = ctl->private_data;
struct dg *data = chip->model_data;
mutex_lock(&chip->mutex);
value->value.enumerated.item[0] = data->output_sel;
mutex_unlock(&chip->mutex);
return 0;
}
static int output_switch_put(struct snd_kcontrol *ctl,
struct snd_ctl_elem_value *value)
{
struct oxygen *chip = ctl->private_data;
struct dg *data = chip->model_data;
u8 reg;
int changed;
if (value->value.enumerated.item[0] > 2)
return -EINVAL;
mutex_lock(&chip->mutex);
changed = value->value.enumerated.item[0] != data->output_sel;
if (changed) {
data->output_sel = value->value.enumerated.item[0];
reg = data->cs4245_regs[CS4245_SIGNAL_SEL] &
~CS4245_A_OUT_SEL_MASK;
reg |= data->output_sel == 2 ?
CS4245_A_OUT_SEL_DAC : CS4245_A_OUT_SEL_HIZ;
cs4245_write_cached(chip, CS4245_SIGNAL_SEL, reg);
cs4245_write_cached(chip, CS4245_DAC_A_CTRL,
data->output_sel ? data->hp_vol_att : 0);
cs4245_write_cached(chip, CS4245_DAC_B_CTRL,
data->output_sel ? data->hp_vol_att : 0);
oxygen_write16_masked(chip, OXYGEN_GPIO_DATA,
data->output_sel == 1 ? GPIO_HP_REAR : 0,
GPIO_HP_REAR);
}
mutex_unlock(&chip->mutex);
return changed;
}
static int hp_volume_offset_info(struct snd_kcontrol *ctl,
struct snd_ctl_elem_info *info)
{
static const char *const names[3] = {
"< 64 ohms", "64-150 ohms", "150-300 ohms"
};
return snd_ctl_enum_info(info, 1, 3, names);
}
static int hp_volume_offset_get(struct snd_kcontrol *ctl,
struct snd_ctl_elem_value *value)
{
struct oxygen *chip = ctl->private_data;
struct dg *data = chip->model_data;
mutex_lock(&chip->mutex);
if (data->hp_vol_att > 2 * 7)
value->value.enumerated.item[0] = 0;
else if (data->hp_vol_att > 0)
value->value.enumerated.item[0] = 1;
else
value->value.enumerated.item[0] = 2;
mutex_unlock(&chip->mutex);
return 0;
}
static int hp_volume_offset_put(struct snd_kcontrol *ctl,
struct snd_ctl_elem_value *value)
{
static const s8 atts[3] = { 2 * 16, 2 * 7, 0 };
struct oxygen *chip = ctl->private_data;
struct dg *data = chip->model_data;
s8 att;
int changed;
if (value->value.enumerated.item[0] > 2)
return -EINVAL;
att = atts[value->value.enumerated.item[0]];
mutex_lock(&chip->mutex);
changed = att != data->hp_vol_att;
if (changed) {
data->hp_vol_att = att;
if (data->output_sel) {
cs4245_write_cached(chip, CS4245_DAC_A_CTRL, att);
cs4245_write_cached(chip, CS4245_DAC_B_CTRL, att);
}
} }
mutex_unlock(&chip->mutex); data->cs4245_shadow[CS4245_DAC_CTRL_1] = dac_ctrl;
return changed; data->cs4245_shadow[CS4245_MCLK_FREQ] = mclk_freq;
} cs4245_write_spi(chip, CS4245_DAC_CTRL_1);
cs4245_write_spi(chip, CS4245_MCLK_FREQ);
static int input_vol_info(struct snd_kcontrol *ctl,
struct snd_ctl_elem_info *info)
{
info->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
info->count = 2;
info->value.integer.min = 2 * -12;
info->value.integer.max = 2 * 12;
return 0;
}
static int input_vol_get(struct snd_kcontrol *ctl,
struct snd_ctl_elem_value *value)
{
struct oxygen *chip = ctl->private_data;
struct dg *data = chip->model_data;
unsigned int idx = ctl->private_value;
mutex_lock(&chip->mutex);
value->value.integer.value[0] = data->input_vol[idx][0];
value->value.integer.value[1] = data->input_vol[idx][1];
mutex_unlock(&chip->mutex);
return 0;
}
static int input_vol_put(struct snd_kcontrol *ctl,
struct snd_ctl_elem_value *value)
{
struct oxygen *chip = ctl->private_data;
struct dg *data = chip->model_data;
unsigned int idx = ctl->private_value;
int changed = 0;
if (value->value.integer.value[0] < 2 * -12 ||
value->value.integer.value[0] > 2 * 12 ||
value->value.integer.value[1] < 2 * -12 ||
value->value.integer.value[1] > 2 * 12)
return -EINVAL;
mutex_lock(&chip->mutex);
changed = data->input_vol[idx][0] != value->value.integer.value[0] ||
data->input_vol[idx][1] != value->value.integer.value[1];
if (changed) {
data->input_vol[idx][0] = value->value.integer.value[0];
data->input_vol[idx][1] = value->value.integer.value[1];
if (idx == data->input_sel) {
cs4245_write_cached(chip, CS4245_PGA_A_CTRL,
data->input_vol[idx][0]);
cs4245_write_cached(chip, CS4245_PGA_B_CTRL,
data->input_vol[idx][1]);
}
}
mutex_unlock(&chip->mutex);
return changed;
}
static DECLARE_TLV_DB_SCALE(cs4245_pga_db_scale, -1200, 50, 0);
static int input_sel_info(struct snd_kcontrol *ctl,
struct snd_ctl_elem_info *info)
{
static const char *const names[4] = {
"Mic", "Aux", "Front Mic", "Line"
};
return snd_ctl_enum_info(info, 1, 4, names);
}
static int input_sel_get(struct snd_kcontrol *ctl,
struct snd_ctl_elem_value *value)
{
struct oxygen *chip = ctl->private_data;
struct dg *data = chip->model_data;
mutex_lock(&chip->mutex);
value->value.enumerated.item[0] = data->input_sel;
mutex_unlock(&chip->mutex);
return 0;
} }
static int input_sel_put(struct snd_kcontrol *ctl, void set_cs4245_adc_params(struct oxygen *chip,
struct snd_ctl_elem_value *value) struct snd_pcm_hw_params *params)
{ {
static const u8 sel_values[4] = {
CS4245_SEL_MIC,
CS4245_SEL_INPUT_1,
CS4245_SEL_INPUT_2,
CS4245_SEL_INPUT_4
};
struct oxygen *chip = ctl->private_data;
struct dg *data = chip->model_data; struct dg *data = chip->model_data;
int changed; unsigned char adc_ctrl;
unsigned char mclk_freq;
if (value->value.enumerated.item[0] > 3)
return -EINVAL; adc_ctrl = data->cs4245_shadow[CS4245_ADC_CTRL] & ~CS4245_ADC_FM_MASK;
mclk_freq = data->cs4245_shadow[CS4245_MCLK_FREQ] & ~CS4245_MCLK2_MASK;
mutex_lock(&chip->mutex); if (params_rate(params) <= 50000) {
changed = value->value.enumerated.item[0] != data->input_sel; adc_ctrl |= CS4245_ADC_FM_SINGLE;
if (changed) { mclk_freq |= CS4245_MCLK_1 << CS4245_MCLK2_SHIFT;
data->input_sel = value->value.enumerated.item[0]; } else if (params_rate(params) <= 100000) {
adc_ctrl |= CS4245_ADC_FM_DOUBLE;
cs4245_write(chip, CS4245_ANALOG_IN, mclk_freq |= CS4245_MCLK_1 << CS4245_MCLK2_SHIFT;
(data->cs4245_regs[CS4245_ANALOG_IN] & } else {
~CS4245_SEL_MASK) | adc_ctrl |= CS4245_ADC_FM_QUAD;
sel_values[data->input_sel]); mclk_freq |= CS4245_MCLK_2 << CS4245_MCLK2_SHIFT;
cs4245_write_cached(chip, CS4245_PGA_A_CTRL,
data->input_vol[data->input_sel][0]);
cs4245_write_cached(chip, CS4245_PGA_B_CTRL,
data->input_vol[data->input_sel][1]);
oxygen_write16_masked(chip, OXYGEN_GPIO_DATA,
data->input_sel ? 0 : GPIO_INPUT_ROUTE,
GPIO_INPUT_ROUTE);
} }
mutex_unlock(&chip->mutex); data->cs4245_shadow[CS4245_ADC_CTRL] = adc_ctrl;
return changed; data->cs4245_shadow[CS4245_MCLK_FREQ] = mclk_freq;
} cs4245_write_spi(chip, CS4245_ADC_CTRL);
cs4245_write_spi(chip, CS4245_MCLK_FREQ);
static int hpf_info(struct snd_kcontrol *ctl, struct snd_ctl_elem_info *info)
{
static const char *const names[2] = { "Active", "Frozen" };
return snd_ctl_enum_info(info, 1, 2, names);
} }
static int hpf_get(struct snd_kcontrol *ctl, struct snd_ctl_elem_value *value) unsigned int adjust_dg_dac_routing(struct oxygen *chip,
{ unsigned int play_routing)
struct oxygen *chip = ctl->private_data;
struct dg *data = chip->model_data;
value->value.enumerated.item[0] =
!!(data->cs4245_regs[CS4245_ADC_CTRL] & CS4245_HPF_FREEZE);
return 0;
}
static int hpf_put(struct snd_kcontrol *ctl, struct snd_ctl_elem_value *value)
{ {
struct oxygen *chip = ctl->private_data;
struct dg *data = chip->model_data; struct dg *data = chip->model_data;
u8 reg; unsigned int routing = 0;
int changed;
switch (data->output_sel) {
mutex_lock(&chip->mutex); case PLAYBACK_DST_HP:
reg = data->cs4245_regs[CS4245_ADC_CTRL] & ~CS4245_HPF_FREEZE; case PLAYBACK_DST_HP_FP:
if (value->value.enumerated.item[0]) oxygen_write8_masked(chip, OXYGEN_PLAY_ROUTING,
reg |= CS4245_HPF_FREEZE; OXYGEN_PLAY_MUTE23 | OXYGEN_PLAY_MUTE45 |
changed = reg != data->cs4245_regs[CS4245_ADC_CTRL]; OXYGEN_PLAY_MUTE67, OXYGEN_PLAY_MUTE_MASK);
if (changed) break;
cs4245_write(chip, CS4245_ADC_CTRL, reg); case PLAYBACK_DST_MULTICH:
mutex_unlock(&chip->mutex); routing = (0 << OXYGEN_PLAY_DAC0_SOURCE_SHIFT) |
return changed; (2 << OXYGEN_PLAY_DAC1_SOURCE_SHIFT) |
} (1 << OXYGEN_PLAY_DAC2_SOURCE_SHIFT) |
(0 << OXYGEN_PLAY_DAC3_SOURCE_SHIFT);
#define INPUT_VOLUME(xname, index) { \ oxygen_write8_masked(chip, OXYGEN_PLAY_ROUTING,
.iface = SNDRV_CTL_ELEM_IFACE_MIXER, \ OXYGEN_PLAY_MUTE01, OXYGEN_PLAY_MUTE_MASK);
.name = xname, \ break;
.info = input_vol_info, \
.get = input_vol_get, \
.put = input_vol_put, \
.tlv = { .p = cs4245_pga_db_scale }, \
.private_value = index, \
}
static const struct snd_kcontrol_new dg_controls[] = {
{
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
.name = "Analog Output Playback Enum",
.info = output_switch_info,
.get = output_switch_get,
.put = output_switch_put,
},
{
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
.name = "Headphones Impedance Playback Enum",
.info = hp_volume_offset_info,
.get = hp_volume_offset_get,
.put = hp_volume_offset_put,
},
INPUT_VOLUME("Mic Capture Volume", 0),
INPUT_VOLUME("Aux Capture Volume", 1),
INPUT_VOLUME("Front Mic Capture Volume", 2),
INPUT_VOLUME("Line Capture Volume", 3),
{
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
.name = "Capture Source",
.info = input_sel_info,
.get = input_sel_get,
.put = input_sel_put,
},
{
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
.name = "ADC High-pass Filter Capture Enum",
.info = hpf_info,
.get = hpf_get,
.put = hpf_put,
},
};
static int dg_control_filter(struct snd_kcontrol_new *template)
{
if (!strncmp(template->name, "Master Playback ", 16))
return 1;
return 0;
}
static int dg_mixer_init(struct oxygen *chip)
{
unsigned int i;
int err;
for (i = 0; i < ARRAY_SIZE(dg_controls); ++i) {
err = snd_ctl_add(chip->card,
snd_ctl_new1(&dg_controls[i], chip));
if (err < 0)
return err;
} }
return 0; return routing;
} }
static void dump_cs4245_registers(struct oxygen *chip, void dump_cs4245_registers(struct oxygen *chip,
struct snd_info_buffer *buffer) struct snd_info_buffer *buffer)
{ {
struct dg *data = chip->model_data; struct dg *data = chip->model_data;
unsigned int i; unsigned int addr;
snd_iprintf(buffer, "\nCS4245:"); snd_iprintf(buffer, "\nCS4245:");
for (i = 1; i <= 0x10; ++i) cs4245_read_spi(chip, CS4245_INT_STATUS);
snd_iprintf(buffer, " %02x", data->cs4245_regs[i]); for (addr = 1; addr < ARRAY_SIZE(data->cs4245_shadow); addr++)
snd_iprintf(buffer, " %02x", data->cs4245_shadow[addr]);
snd_iprintf(buffer, "\n"); snd_iprintf(buffer, "\n");
} }
struct oxygen_model model_xonar_dg = {
.longname = "C-Media Oxygen HD Audio",
.chip = "CMI8786",
.init = dg_init,
.control_filter = dg_control_filter,
.mixer_init = dg_mixer_init,
.cleanup = dg_cleanup,
.suspend = dg_suspend,
.resume = dg_resume,
.set_dac_params = set_cs4245_dac_params,
.set_adc_params = set_cs4245_adc_params,
.adjust_dac_routing = adjust_dg_dac_routing,
.dump_registers = dump_cs4245_registers,
.model_data_size = sizeof(struct dg),
.device_config = PLAYBACK_0_TO_I2S |
PLAYBACK_1_TO_SPDIF |
CAPTURE_0_FROM_I2S_2 |
CAPTURE_1_FROM_SPDIF,
.dac_channels_pcm = 6,
.dac_channels_mixer = 0,
.function_flags = OXYGEN_FUNCTION_SPI,
.dac_mclks = OXYGEN_MCLKS(256, 128, 128),
.adc_mclks = OXYGEN_MCLKS(256, 128, 128),
.dac_i2s_format = OXYGEN_I2S_FORMAT_LJUST,
.adc_i2s_format = OXYGEN_I2S_FORMAT_LJUST,
};
...@@ -3,6 +3,54 @@ ...@@ -3,6 +3,54 @@
#include "oxygen.h" #include "oxygen.h"
#define GPIO_MAGIC 0x0008
#define GPIO_HP_DETECT 0x0010
#define GPIO_INPUT_ROUTE 0x0060
#define GPIO_HP_REAR 0x0080
#define GPIO_OUTPUT_ENABLE 0x0100
#define CAPTURE_SRC_MIC 0
#define CAPTURE_SRC_FP_MIC 1
#define CAPTURE_SRC_LINE 2
#define CAPTURE_SRC_AUX 3
#define PLAYBACK_DST_HP 0
#define PLAYBACK_DST_HP_FP 1
#define PLAYBACK_DST_MULTICH 2
enum cs4245_shadow_operation {
CS4245_SAVE_TO_SHADOW,
CS4245_LOAD_FROM_SHADOW
};
struct dg {
/* shadow copy of the CS4245 register space */
unsigned char cs4245_shadow[17];
/* output select: headphone/speakers */
unsigned char output_sel;
/* volumes for all capture sources */
char input_vol[4][2];
/* input select: mic/fp mic/line/aux */
unsigned char input_sel;
};
/* Xonar DG control routines */
int cs4245_write_spi(struct oxygen *chip, u8 reg);
int cs4245_read_spi(struct oxygen *chip, u8 reg);
int cs4245_shadow_control(struct oxygen *chip, enum cs4245_shadow_operation op);
void dg_init(struct oxygen *chip);
void set_cs4245_dac_params(struct oxygen *chip,
struct snd_pcm_hw_params *params);
void set_cs4245_adc_params(struct oxygen *chip,
struct snd_pcm_hw_params *params);
unsigned int adjust_dg_dac_routing(struct oxygen *chip,
unsigned int play_routing);
void dump_cs4245_registers(struct oxygen *chip,
struct snd_info_buffer *buffer);
void dg_suspend(struct oxygen *chip);
void dg_resume(struct oxygen *chip);
void dg_cleanup(struct oxygen *chip);
extern struct oxygen_model model_xonar_dg; extern struct oxygen_model model_xonar_dg;
#endif #endif
/*
* Mixer controls for the Xonar DG/DGX
*
* Copyright (c) Clemens Ladisch <clemens@ladisch.de>
* Copyright (c) Roman Volkov <v1ron@mail.ru>
*
* This driver is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License, version 2.
*
* This driver is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this driver; if not, see <http://www.gnu.org/licenses/>.
*/
#include <linux/pci.h>
#include <linux/delay.h>
#include <sound/control.h>
#include <sound/core.h>
#include <sound/info.h>
#include <sound/pcm.h>
#include <sound/tlv.h>
#include "oxygen.h"
#include "xonar_dg.h"
#include "cs4245.h"
/* analog output select */
static int output_select_apply(struct oxygen *chip)
{
struct dg *data = chip->model_data;
data->cs4245_shadow[CS4245_SIGNAL_SEL] &= ~CS4245_A_OUT_SEL_MASK;
if (data->output_sel == PLAYBACK_DST_HP) {
/* mute FP (aux output) amplifier, switch rear jack to CS4245 */
oxygen_set_bits8(chip, OXYGEN_GPIO_DATA, GPIO_HP_REAR);
} else if (data->output_sel == PLAYBACK_DST_HP_FP) {
/*
* Unmute FP amplifier, switch rear jack to CS4361;
* I2S channels 2,3,4 should be inactive.
*/
oxygen_clear_bits8(chip, OXYGEN_GPIO_DATA, GPIO_HP_REAR);
data->cs4245_shadow[CS4245_SIGNAL_SEL] |= CS4245_A_OUT_SEL_DAC;
} else {
/*
* 2.0, 4.0, 5.1: switch to CS4361, mute FP amp.,
* and change playback routing.
*/
oxygen_clear_bits8(chip, OXYGEN_GPIO_DATA, GPIO_HP_REAR);
}
return cs4245_write_spi(chip, CS4245_SIGNAL_SEL);
}
static int output_select_info(struct snd_kcontrol *ctl,
struct snd_ctl_elem_info *info)
{
static const char *const names[3] = {
"Stereo Headphones",
"Stereo Headphones FP",
"Multichannel",
};
return snd_ctl_enum_info(info, 1, 3, names);
}
static int output_select_get(struct snd_kcontrol *ctl,
struct snd_ctl_elem_value *value)
{
struct oxygen *chip = ctl->private_data;
struct dg *data = chip->model_data;
mutex_lock(&chip->mutex);
value->value.enumerated.item[0] = data->output_sel;
mutex_unlock(&chip->mutex);
return 0;
}
static int output_select_put(struct snd_kcontrol *ctl,
struct snd_ctl_elem_value *value)
{
struct oxygen *chip = ctl->private_data;
struct dg *data = chip->model_data;
unsigned int new = value->value.enumerated.item[0];
int changed = 0;
int ret;
mutex_lock(&chip->mutex);
if (data->output_sel != new) {
data->output_sel = new;
ret = output_select_apply(chip);
changed = ret >= 0 ? 1 : ret;
oxygen_update_dac_routing(chip);
}
mutex_unlock(&chip->mutex);
return changed;
}
/* CS4245 Headphone Channels A&B Volume Control */
static int hp_stereo_volume_info(struct snd_kcontrol *ctl,
struct snd_ctl_elem_info *info)
{
info->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
info->count = 2;
info->value.integer.min = 0;
info->value.integer.max = 255;
return 0;
}
static int hp_stereo_volume_get(struct snd_kcontrol *ctl,
struct snd_ctl_elem_value *val)
{
struct oxygen *chip = ctl->private_data;
struct dg *data = chip->model_data;
unsigned int tmp;
mutex_lock(&chip->mutex);
tmp = (~data->cs4245_shadow[CS4245_DAC_A_CTRL]) & 255;
val->value.integer.value[0] = tmp;
tmp = (~data->cs4245_shadow[CS4245_DAC_B_CTRL]) & 255;
val->value.integer.value[1] = tmp;
mutex_unlock(&chip->mutex);
return 0;
}
static int hp_stereo_volume_put(struct snd_kcontrol *ctl,
struct snd_ctl_elem_value *val)
{
struct oxygen *chip = ctl->private_data;
struct dg *data = chip->model_data;
int ret;
int changed = 0;
long new1 = val->value.integer.value[0];
long new2 = val->value.integer.value[1];
if ((new1 > 255) || (new1 < 0) || (new2 > 255) || (new2 < 0))
return -EINVAL;
mutex_lock(&chip->mutex);
if ((data->cs4245_shadow[CS4245_DAC_A_CTRL] != ~new1) ||
(data->cs4245_shadow[CS4245_DAC_B_CTRL] != ~new2)) {
data->cs4245_shadow[CS4245_DAC_A_CTRL] = ~new1;
data->cs4245_shadow[CS4245_DAC_B_CTRL] = ~new2;
ret = cs4245_write_spi(chip, CS4245_DAC_A_CTRL);
if (ret >= 0)
ret = cs4245_write_spi(chip, CS4245_DAC_B_CTRL);
changed = ret >= 0 ? 1 : ret;
}
mutex_unlock(&chip->mutex);
return changed;
}
/* Headphone Mute */
static int hp_mute_get(struct snd_kcontrol *ctl,
struct snd_ctl_elem_value *val)
{
struct oxygen *chip = ctl->private_data;
struct dg *data = chip->model_data;
mutex_lock(&chip->mutex);
val->value.integer.value[0] =
!(data->cs4245_shadow[CS4245_DAC_CTRL_1] & CS4245_MUTE_DAC);
mutex_unlock(&chip->mutex);
return 0;
}
static int hp_mute_put(struct snd_kcontrol *ctl,
struct snd_ctl_elem_value *val)
{
struct oxygen *chip = ctl->private_data;
struct dg *data = chip->model_data;
int ret;
int changed;
if (val->value.integer.value[0] > 1)
return -EINVAL;
mutex_lock(&chip->mutex);
data->cs4245_shadow[CS4245_DAC_CTRL_1] &= ~CS4245_MUTE_DAC;
data->cs4245_shadow[CS4245_DAC_CTRL_1] |=
(~val->value.integer.value[0] << 2) & CS4245_MUTE_DAC;
ret = cs4245_write_spi(chip, CS4245_DAC_CTRL_1);
changed = ret >= 0 ? 1 : ret;
mutex_unlock(&chip->mutex);
return changed;
}
/* capture volume for all sources */
static int input_volume_apply(struct oxygen *chip, char left, char right)
{
struct dg *data = chip->model_data;
int ret;
data->cs4245_shadow[CS4245_PGA_A_CTRL] = left;
data->cs4245_shadow[CS4245_PGA_B_CTRL] = right;
ret = cs4245_write_spi(chip, CS4245_PGA_A_CTRL);
if (ret < 0)
return ret;
return cs4245_write_spi(chip, CS4245_PGA_B_CTRL);
}
static int input_vol_info(struct snd_kcontrol *ctl,
struct snd_ctl_elem_info *info)
{
info->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
info->count = 2;
info->value.integer.min = 2 * -12;
info->value.integer.max = 2 * 12;
return 0;
}
static int input_vol_get(struct snd_kcontrol *ctl,
struct snd_ctl_elem_value *value)
{
struct oxygen *chip = ctl->private_data;
struct dg *data = chip->model_data;
unsigned int idx = ctl->private_value;
mutex_lock(&chip->mutex);
value->value.integer.value[0] = data->input_vol[idx][0];
value->value.integer.value[1] = data->input_vol[idx][1];
mutex_unlock(&chip->mutex);
return 0;
}
static int input_vol_put(struct snd_kcontrol *ctl,
struct snd_ctl_elem_value *value)
{
struct oxygen *chip = ctl->private_data;
struct dg *data = chip->model_data;
unsigned int idx = ctl->private_value;
int changed = 0;
int ret = 0;
if (value->value.integer.value[0] < 2 * -12 ||
value->value.integer.value[0] > 2 * 12 ||
value->value.integer.value[1] < 2 * -12 ||
value->value.integer.value[1] > 2 * 12)
return -EINVAL;
mutex_lock(&chip->mutex);
changed = data->input_vol[idx][0] != value->value.integer.value[0] ||
data->input_vol[idx][1] != value->value.integer.value[1];
if (changed) {
data->input_vol[idx][0] = value->value.integer.value[0];
data->input_vol[idx][1] = value->value.integer.value[1];
if (idx == data->input_sel) {
ret = input_volume_apply(chip,
data->input_vol[idx][0],
data->input_vol[idx][1]);
}
changed = ret >= 0 ? 1 : ret;
}
mutex_unlock(&chip->mutex);
return changed;
}
/* Capture Source */
static int input_source_apply(struct oxygen *chip)
{
struct dg *data = chip->model_data;
data->cs4245_shadow[CS4245_ANALOG_IN] &= ~CS4245_SEL_MASK;
if (data->input_sel == CAPTURE_SRC_FP_MIC)
data->cs4245_shadow[CS4245_ANALOG_IN] |= CS4245_SEL_INPUT_2;
else if (data->input_sel == CAPTURE_SRC_LINE)
data->cs4245_shadow[CS4245_ANALOG_IN] |= CS4245_SEL_INPUT_4;
else if (data->input_sel != CAPTURE_SRC_MIC)
data->cs4245_shadow[CS4245_ANALOG_IN] |= CS4245_SEL_INPUT_1;
return cs4245_write_spi(chip, CS4245_ANALOG_IN);
}
static int input_sel_info(struct snd_kcontrol *ctl,
struct snd_ctl_elem_info *info)
{
static const char *const names[4] = {
"Mic", "Front Mic", "Line", "Aux"
};
return snd_ctl_enum_info(info, 1, 4, names);
}
static int input_sel_get(struct snd_kcontrol *ctl,
struct snd_ctl_elem_value *value)
{
struct oxygen *chip = ctl->private_data;
struct dg *data = chip->model_data;
mutex_lock(&chip->mutex);
value->value.enumerated.item[0] = data->input_sel;
mutex_unlock(&chip->mutex);
return 0;
}
static int input_sel_put(struct snd_kcontrol *ctl,
struct snd_ctl_elem_value *value)
{
struct oxygen *chip = ctl->private_data;
struct dg *data = chip->model_data;
int changed;
int ret;
if (value->value.enumerated.item[0] > 3)
return -EINVAL;
mutex_lock(&chip->mutex);
changed = value->value.enumerated.item[0] != data->input_sel;
if (changed) {
data->input_sel = value->value.enumerated.item[0];
ret = input_source_apply(chip);
if (ret >= 0)
ret = input_volume_apply(chip,
data->input_vol[data->input_sel][0],
data->input_vol[data->input_sel][1]);
changed = ret >= 0 ? 1 : ret;
}
mutex_unlock(&chip->mutex);
return changed;
}
/* ADC high-pass filter */
static int hpf_info(struct snd_kcontrol *ctl, struct snd_ctl_elem_info *info)
{
static const char *const names[2] = { "Active", "Frozen" };
return snd_ctl_enum_info(info, 1, 2, names);
}
static int hpf_get(struct snd_kcontrol *ctl, struct snd_ctl_elem_value *value)
{
struct oxygen *chip = ctl->private_data;
struct dg *data = chip->model_data;
value->value.enumerated.item[0] =
!!(data->cs4245_shadow[CS4245_ADC_CTRL] & CS4245_HPF_FREEZE);
return 0;
}
static int hpf_put(struct snd_kcontrol *ctl, struct snd_ctl_elem_value *value)
{
struct oxygen *chip = ctl->private_data;
struct dg *data = chip->model_data;
u8 reg;
int changed;
mutex_lock(&chip->mutex);
reg = data->cs4245_shadow[CS4245_ADC_CTRL] & ~CS4245_HPF_FREEZE;
if (value->value.enumerated.item[0])
reg |= CS4245_HPF_FREEZE;
changed = reg != data->cs4245_shadow[CS4245_ADC_CTRL];
if (changed) {
data->cs4245_shadow[CS4245_ADC_CTRL] = reg;
cs4245_write_spi(chip, CS4245_ADC_CTRL);
}
mutex_unlock(&chip->mutex);
return changed;
}
#define INPUT_VOLUME(xname, index) { \
.iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
.name = xname, \
.access = SNDRV_CTL_ELEM_ACCESS_READWRITE | \
SNDRV_CTL_ELEM_ACCESS_TLV_READ, \
.info = input_vol_info, \
.get = input_vol_get, \
.put = input_vol_put, \
.tlv = { .p = pga_db_scale }, \
.private_value = index, \
}
static const DECLARE_TLV_DB_MINMAX(hp_db_scale, -12550, 0);
static const DECLARE_TLV_DB_MINMAX(pga_db_scale, -1200, 1200);
static const struct snd_kcontrol_new dg_controls[] = {
{
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
.name = "Analog Output Playback Enum",
.info = output_select_info,
.get = output_select_get,
.put = output_select_put,
},
{
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
.name = "Headphone Playback Volume",
.access = SNDRV_CTL_ELEM_ACCESS_READWRITE |
SNDRV_CTL_ELEM_ACCESS_TLV_READ,
.info = hp_stereo_volume_info,
.get = hp_stereo_volume_get,
.put = hp_stereo_volume_put,
.tlv = { .p = hp_db_scale, },
},
{
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
.name = "Headphone Playback Switch",
.access = SNDRV_CTL_ELEM_ACCESS_READWRITE,
.info = snd_ctl_boolean_mono_info,
.get = hp_mute_get,
.put = hp_mute_put,
},
INPUT_VOLUME("Mic Capture Volume", CAPTURE_SRC_MIC),
INPUT_VOLUME("Front Mic Capture Volume", CAPTURE_SRC_FP_MIC),
INPUT_VOLUME("Line Capture Volume", CAPTURE_SRC_LINE),
INPUT_VOLUME("Aux Capture Volume", CAPTURE_SRC_AUX),
{
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
.name = "Capture Source",
.info = input_sel_info,
.get = input_sel_get,
.put = input_sel_put,
},
{
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
.name = "ADC High-pass Filter Capture Enum",
.info = hpf_info,
.get = hpf_get,
.put = hpf_put,
},
};
static int dg_control_filter(struct snd_kcontrol_new *template)
{
if (!strncmp(template->name, "Master Playback ", 16))
return 1;
return 0;
}
static int dg_mixer_init(struct oxygen *chip)
{
unsigned int i;
int err;
output_select_apply(chip);
input_source_apply(chip);
oxygen_update_dac_routing(chip);
for (i = 0; i < ARRAY_SIZE(dg_controls); ++i) {
err = snd_ctl_add(chip->card,
snd_ctl_new1(&dg_controls[i], chip));
if (err < 0)
return err;
}
return 0;
}
struct oxygen_model model_xonar_dg = {
.longname = "C-Media Oxygen HD Audio",
.chip = "CMI8786",
.init = dg_init,
.control_filter = dg_control_filter,
.mixer_init = dg_mixer_init,
.cleanup = dg_cleanup,
.suspend = dg_suspend,
.resume = dg_resume,
.set_dac_params = set_cs4245_dac_params,
.set_adc_params = set_cs4245_adc_params,
.adjust_dac_routing = adjust_dg_dac_routing,
.dump_registers = dump_cs4245_registers,
.model_data_size = sizeof(struct dg),
.device_config = PLAYBACK_0_TO_I2S |
PLAYBACK_1_TO_SPDIF |
CAPTURE_0_FROM_I2S_1 |
CAPTURE_1_FROM_SPDIF,
.dac_channels_pcm = 6,
.dac_channels_mixer = 0,
.function_flags = OXYGEN_FUNCTION_SPI,
.dac_mclks = OXYGEN_MCLKS(256, 128, 128),
.adc_mclks = OXYGEN_MCLKS(256, 128, 128),
.dac_i2s_format = OXYGEN_I2S_FORMAT_LJUST,
.adc_i2s_format = OXYGEN_I2S_FORMAT_LJUST,
};
...@@ -450,6 +450,17 @@ static int aic32x4_hw_params(struct snd_pcm_substream *substream, ...@@ -450,6 +450,17 @@ static int aic32x4_hw_params(struct snd_pcm_substream *substream,
} }
snd_soc_write(codec, AIC32X4_IFACE1, data); snd_soc_write(codec, AIC32X4_IFACE1, data);
if (params_channels(params) == 1) {
data = AIC32X4_RDAC2LCHN | AIC32X4_LDAC2LCHN;
} else {
if (aic32x4->swapdacs)
data = AIC32X4_RDAC2LCHN | AIC32X4_LDAC2RCHN;
else
data = AIC32X4_LDAC2LCHN | AIC32X4_RDAC2RCHN;
}
snd_soc_update_bits(codec, AIC32X4_DACSETUP, AIC32X4_DAC_CHAN_MASK,
data);
return 0; return 0;
} }
...@@ -606,20 +617,15 @@ static int aic32x4_probe(struct snd_soc_codec *codec) ...@@ -606,20 +617,15 @@ static int aic32x4_probe(struct snd_soc_codec *codec)
} }
snd_soc_write(codec, AIC32X4_CMMODE, tmp_reg); snd_soc_write(codec, AIC32X4_CMMODE, tmp_reg);
/* Do DACs need to be swapped? */
if (aic32x4->swapdacs) {
snd_soc_write(codec, AIC32X4_DACSETUP, AIC32X4_LDAC2RCHN | AIC32X4_RDAC2LCHN);
} else {
snd_soc_write(codec, AIC32X4_DACSETUP, AIC32X4_LDAC2LCHN | AIC32X4_RDAC2RCHN);
}
/* Mic PGA routing */ /* Mic PGA routing */
if (aic32x4->micpga_routing & AIC32X4_MICPGA_ROUTE_LMIC_IN2R_10K) { if (aic32x4->micpga_routing & AIC32X4_MICPGA_ROUTE_LMIC_IN2R_10K)
snd_soc_write(codec, AIC32X4_LMICPGANIN, AIC32X4_LMICPGANIN_IN2R_10K); snd_soc_write(codec, AIC32X4_LMICPGANIN, AIC32X4_LMICPGANIN_IN2R_10K);
} else
if (aic32x4->micpga_routing & AIC32X4_MICPGA_ROUTE_RMIC_IN1L_10K) { snd_soc_write(codec, AIC32X4_LMICPGANIN, AIC32X4_LMICPGANIN_CM1L_10K);
if (aic32x4->micpga_routing & AIC32X4_MICPGA_ROUTE_RMIC_IN1L_10K)
snd_soc_write(codec, AIC32X4_RMICPGANIN, AIC32X4_RMICPGANIN_IN1L_10K); snd_soc_write(codec, AIC32X4_RMICPGANIN, AIC32X4_RMICPGANIN_IN1L_10K);
} else
snd_soc_write(codec, AIC32X4_RMICPGANIN, AIC32X4_RMICPGANIN_CM1R_10K);
aic32x4_set_bias_level(codec, SND_SOC_BIAS_STANDBY); aic32x4_set_bias_level(codec, SND_SOC_BIAS_STANDBY);
......
...@@ -120,7 +120,9 @@ ...@@ -120,7 +120,9 @@
#define AIC32X4_MICBIAS_2075V 0x60 #define AIC32X4_MICBIAS_2075V 0x60
#define AIC32X4_LMICPGANIN_IN2R_10K 0x10 #define AIC32X4_LMICPGANIN_IN2R_10K 0x10
#define AIC32X4_LMICPGANIN_CM1L_10K 0x40
#define AIC32X4_RMICPGANIN_IN1L_10K 0x10 #define AIC32X4_RMICPGANIN_IN1L_10K 0x10
#define AIC32X4_RMICPGANIN_CM1R_10K 0x40
#define AIC32X4_LMICPGAVOL_NOGAIN 0x80 #define AIC32X4_LMICPGAVOL_NOGAIN 0x80
#define AIC32X4_RMICPGAVOL_NOGAIN 0x80 #define AIC32X4_RMICPGAVOL_NOGAIN 0x80
...@@ -138,6 +140,7 @@ ...@@ -138,6 +140,7 @@
#define AIC32X4_LDAC2RCHN (0x02 << 4) #define AIC32X4_LDAC2RCHN (0x02 << 4)
#define AIC32X4_LDAC2LCHN (0x01 << 4) #define AIC32X4_LDAC2LCHN (0x01 << 4)
#define AIC32X4_RDAC2RCHN (0x01 << 2) #define AIC32X4_RDAC2RCHN (0x01 << 2)
#define AIC32X4_DAC_CHAN_MASK 0x3c
#define AIC32X4_SSTEP2WCLK 0x01 #define AIC32X4_SSTEP2WCLK 0x01
#define AIC32X4_MUTEON 0x0C #define AIC32X4_MUTEON 0x0C
......
...@@ -14,6 +14,7 @@ ...@@ -14,6 +14,7 @@
#include <linux/moduleparam.h> #include <linux/moduleparam.h>
#include <linux/init.h> #include <linux/init.h>
#include <linux/delay.h> #include <linux/delay.h>
#include <linux/export.h>
#include <linux/pm.h> #include <linux/pm.h>
#include <linux/gcd.h> #include <linux/gcd.h>
#include <linux/gpio.h> #include <linux/gpio.h>
...@@ -2141,6 +2142,7 @@ int wm5100_detect(struct snd_soc_codec *codec, struct snd_soc_jack *jack) ...@@ -2141,6 +2142,7 @@ int wm5100_detect(struct snd_soc_codec *codec, struct snd_soc_jack *jack)
return 0; return 0;
} }
EXPORT_SYMBOL_GPL(wm5100_detect);
static irqreturn_t wm5100_irq(int irq, void *data) static irqreturn_t wm5100_irq(int irq, void *data)
{ {
......
...@@ -81,6 +81,54 @@ static const struct reg_default wm5110_sysclk_revd_patch[] = { ...@@ -81,6 +81,54 @@ static const struct reg_default wm5110_sysclk_revd_patch[] = {
{ 0x3133, 0x1201 }, { 0x3133, 0x1201 },
{ 0x3183, 0x1501 }, { 0x3183, 0x1501 },
{ 0x31D3, 0x1401 }, { 0x31D3, 0x1401 },
{ 0x0049, 0x01ea },
{ 0x004a, 0x01f2 },
{ 0x0057, 0x01e7 },
{ 0x0058, 0x01fb },
{ 0x33ce, 0xc4f5 },
{ 0x33cf, 0x1361 },
{ 0x33d0, 0x0402 },
{ 0x33d1, 0x4700 },
{ 0x33d2, 0x026d },
{ 0x33d3, 0xff00 },
{ 0x33d4, 0x026d },
{ 0x33d5, 0x0101 },
{ 0x33d6, 0xc4f5 },
{ 0x33d7, 0x0361 },
{ 0x33d8, 0x0402 },
{ 0x33d9, 0x6701 },
{ 0x33da, 0xc4f5 },
{ 0x33db, 0x136f },
{ 0x33dc, 0xc4f5 },
{ 0x33dd, 0x134f },
{ 0x33de, 0xc4f5 },
{ 0x33df, 0x131f },
{ 0x33e0, 0x026d },
{ 0x33e1, 0x4f01 },
{ 0x33e2, 0x026d },
{ 0x33e3, 0xf100 },
{ 0x33e4, 0x026d },
{ 0x33e5, 0x0001 },
{ 0x33e6, 0xc4f5 },
{ 0x33e7, 0x0361 },
{ 0x33e8, 0x0402 },
{ 0x33e9, 0x6601 },
{ 0x33ea, 0xc4f5 },
{ 0x33eb, 0x136f },
{ 0x33ec, 0xc4f5 },
{ 0x33ed, 0x134f },
{ 0x33ee, 0xc4f5 },
{ 0x33ef, 0x131f },
{ 0x33f0, 0x026d },
{ 0x33f1, 0x4e01 },
{ 0x33f2, 0x026d },
{ 0x33f3, 0xf000 },
{ 0x33f6, 0xc4f5 },
{ 0x33f7, 0x1361 },
{ 0x33f8, 0x0402 },
{ 0x33f9, 0x4600 },
{ 0x33fa, 0x026d },
{ 0x33fb, 0xfe00 },
}; };
static int wm5110_sysclk_ev(struct snd_soc_dapm_widget *w, static int wm5110_sysclk_ev(struct snd_soc_dapm_widget *w,
......
...@@ -1278,18 +1278,13 @@ static int fsl_ssi_probe(struct platform_device *pdev) ...@@ -1278,18 +1278,13 @@ static int fsl_ssi_probe(struct platform_device *pdev)
return -EINVAL; return -EINVAL;
hw_type = (enum fsl_ssi_type) of_id->data; hw_type = (enum fsl_ssi_type) of_id->data;
/* We only support the SSI in "I2S Slave" mode */
sprop = of_get_property(np, "fsl,mode", NULL); sprop = of_get_property(np, "fsl,mode", NULL);
if (!sprop) { if (!sprop) {
dev_err(&pdev->dev, "fsl,mode property is necessary\n"); dev_err(&pdev->dev, "fsl,mode property is necessary\n");
return -EINVAL; return -EINVAL;
} }
if (!strcmp(sprop, "ac97-slave")) { if (!strcmp(sprop, "ac97-slave"))
ac97 = true; ac97 = true;
} else if (strcmp(sprop, "i2s-slave")) {
dev_notice(&pdev->dev, "mode %s is unsupported\n", sprop);
return -ENODEV;
}
/* The DAI name is the last part of the full name of the node. */ /* The DAI name is the last part of the full name of the node. */
p = strrchr(np->full_name, '/') + 1; p = strrchr(np->full_name, '/') + 1;
...@@ -1407,7 +1402,7 @@ static int fsl_ssi_probe(struct platform_device *pdev) ...@@ -1407,7 +1402,7 @@ static int fsl_ssi_probe(struct platform_device *pdev)
*/ */
ssi_private->baudclk = devm_clk_get(&pdev->dev, "baud"); ssi_private->baudclk = devm_clk_get(&pdev->dev, "baud");
if (IS_ERR(ssi_private->baudclk)) if (IS_ERR(ssi_private->baudclk))
dev_warn(&pdev->dev, "could not get baud clock: %ld\n", dev_dbg(&pdev->dev, "could not get baud clock: %ld\n",
PTR_ERR(ssi_private->baudclk)); PTR_ERR(ssi_private->baudclk));
else else
clk_prepare_enable(ssi_private->baudclk); clk_prepare_enable(ssi_private->baudclk);
......
...@@ -30,6 +30,7 @@ config SND_OMAP_SOC_RX51 ...@@ -30,6 +30,7 @@ config SND_OMAP_SOC_RX51
select SND_OMAP_SOC_MCBSP select SND_OMAP_SOC_MCBSP
select SND_SOC_TLV320AIC3X select SND_SOC_TLV320AIC3X
select SND_SOC_TPA6130A2 select SND_SOC_TPA6130A2
depends on GPIOLIB
help help
Say Y if you want to add support for SoC audio on Nokia RX-51 Say Y if you want to add support for SoC audio on Nokia RX-51
hardware. This is also known as Nokia N900 product. hardware. This is also known as Nokia N900 product.
......
...@@ -19,7 +19,7 @@ config SND_S3C_DMA_LEGACY ...@@ -19,7 +19,7 @@ config SND_S3C_DMA_LEGACY
config SND_S3C24XX_I2S config SND_S3C24XX_I2S
tristate tristate
select S3C2410_DMA select S3C24XX_DMA
config SND_S3C_I2SV2_SOC config SND_S3C_I2SV2_SOC
tristate tristate
...@@ -210,7 +210,7 @@ config SND_SOC_TOBERMORY ...@@ -210,7 +210,7 @@ config SND_SOC_TOBERMORY
config SND_SOC_BELLS config SND_SOC_BELLS
tristate "Audio support for Wolfson Bells" tristate "Audio support for Wolfson Bells"
depends on SND_SOC_SAMSUNG && MACH_WLF_CRAGG_6410 depends on SND_SOC_SAMSUNG && MACH_WLF_CRAGG_6410 && MFD_ARIZONA
select SND_SAMSUNG_I2S select SND_SAMSUNG_I2S
select SND_SOC_WM5102 select SND_SOC_WM5102
select SND_SOC_WM5110 select SND_SOC_WM5110
......
...@@ -23,6 +23,7 @@ ...@@ -23,6 +23,7 @@
#include "regs-iis.h" #include "regs-iis.h"
#include <asm/mach-types.h> #include <asm/mach-types.h>
#include <mach/gpio-samsung.h>
#include "s3c24xx-i2s.h" #include "s3c24xx-i2s.h"
static unsigned int rates[] = { static unsigned int rates[] = {
......
...@@ -22,8 +22,6 @@ ...@@ -22,8 +22,6 @@
#include <sound/soc.h> #include <sound/soc.h>
#include <sound/pcm_params.h> #include <sound/pcm_params.h>
#include <mach/dma.h>
#include <linux/platform_data/asoc-s3c.h> #include <linux/platform_data/asoc-s3c.h>
#include "dma.h" #include "dma.h"
...@@ -1268,7 +1266,8 @@ static int samsung_i2s_probe(struct platform_device *pdev) ...@@ -1268,7 +1266,8 @@ static int samsung_i2s_probe(struct platform_device *pdev)
return 0; return 0;
err: err:
release_mem_region(regs_base, resource_size(res)); if (res)
release_mem_region(regs_base, resource_size(res));
return ret; return ret;
} }
......
...@@ -20,6 +20,7 @@ ...@@ -20,6 +20,7 @@
#include <sound/soc.h> #include <sound/soc.h>
#include <mach/gpio-samsung.h>
#include <asm/mach-types.h> #include <asm/mach-types.h>
#include "regs-iis.h" #include "regs-iis.h"
......
...@@ -24,6 +24,7 @@ ...@@ -24,6 +24,7 @@
#include <sound/soc.h> #include <sound/soc.h>
#include <sound/jack.h> #include <sound/jack.h>
#include <mach/gpio-samsung.h>
#include "regs-iis.h" #include "regs-iis.h"
#include <asm/mach-types.h> #include <asm/mach-types.h>
......
...@@ -729,7 +729,7 @@ int s3c_i2sv2_register_component(struct device *dev, int id, ...@@ -729,7 +729,7 @@ int s3c_i2sv2_register_component(struct device *dev, int id,
struct snd_soc_component_driver *cmp_drv, struct snd_soc_component_driver *cmp_drv,
struct snd_soc_dai_driver *dai_drv) struct snd_soc_dai_driver *dai_drv)
{ {
struct snd_soc_dai_ops *ops = drv->ops; struct snd_soc_dai_ops *ops = dai_drv->ops;
ops->trigger = s3c2412_i2s_trigger; ops->trigger = s3c2412_i2s_trigger;
if (!ops->hw_params) if (!ops->hw_params)
...@@ -742,8 +742,8 @@ int s3c_i2sv2_register_component(struct device *dev, int id, ...@@ -742,8 +742,8 @@ int s3c_i2sv2_register_component(struct device *dev, int id,
if (!ops->delay) if (!ops->delay)
ops->delay = s3c2412_i2s_delay; ops->delay = s3c2412_i2s_delay;
drv->suspend = s3c2412_i2s_suspend; dai_drv->suspend = s3c2412_i2s_suspend;
drv->resume = s3c2412_i2s_resume; dai_drv->resume = s3c2412_i2s_resume;
return snd_soc_register_component(dev, cmp_drv, dai_drv, 1); return snd_soc_register_component(dev, cmp_drv, dai_drv, 1);
} }
......
...@@ -26,6 +26,8 @@ ...@@ -26,6 +26,8 @@
#include <sound/pcm_params.h> #include <sound/pcm_params.h>
#include <mach/dma.h> #include <mach/dma.h>
#include <mach/gpio-samsung.h>
#include <plat/gpio-cfg.h>
#include "dma.h" #include "dma.h"
#include "regs-i2s-v2.h" #include "regs-i2s-v2.h"
......
...@@ -24,6 +24,8 @@ ...@@ -24,6 +24,8 @@
#include <sound/pcm_params.h> #include <sound/pcm_params.h>
#include <mach/dma.h> #include <mach/dma.h>
#include <mach/gpio-samsung.h>
#include <plat/gpio-cfg.h>
#include "regs-iis.h" #include "regs-iis.h"
#include "dma.h" #include "dma.h"
......
...@@ -19,6 +19,7 @@ ...@@ -19,6 +19,7 @@
#include <sound/soc.h> #include <sound/soc.h>
#include <sound/jack.h> #include <sound/jack.h>
#include <mach/gpio-samsung.h>
#include <asm/mach-types.h> #include <asm/mach-types.h>
#include "i2s.h" #include "i2s.h"
......
...@@ -152,13 +152,11 @@ static struct snd_soc_card smdk = { ...@@ -152,13 +152,11 @@ static struct snd_soc_card smdk = {
.num_links = ARRAY_SIZE(smdk_dai), .num_links = ARRAY_SIZE(smdk_dai),
}; };
#ifdef CONFIG_OF
static const struct of_device_id samsung_wm8994_of_match[] = { static const struct of_device_id samsung_wm8994_of_match[] = {
{ .compatible = "samsung,smdk-wm8994", .data = &smdk_board_data }, { .compatible = "samsung,smdk-wm8994", .data = &smdk_board_data },
{}, {},
}; };
MODULE_DEVICE_TABLE(of, samsung_wm8994_of_match); MODULE_DEVICE_TABLE(of, samsung_wm8994_of_match);
#endif /* CONFIG_OF */
static int smdk_audio_probe(struct platform_device *pdev) static int smdk_audio_probe(struct platform_device *pdev)
{ {
...@@ -188,7 +186,7 @@ static int smdk_audio_probe(struct platform_device *pdev) ...@@ -188,7 +186,7 @@ static int smdk_audio_probe(struct platform_device *pdev)
smdk_dai[0].platform_of_node = smdk_dai[0].cpu_of_node; smdk_dai[0].platform_of_node = smdk_dai[0].cpu_of_node;
} }
id = of_match_device(samsung_wm8994_of_match, &pdev->dev); id = of_match_device(of_match_ptr(samsung_wm8994_of_match), &pdev->dev);
if (id) if (id)
*board = *((struct smdk_wm8994_data *)id->data); *board = *((struct smdk_wm8994_data *)id->data);
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment