Commit 16753322 authored by Joerg Roedel's avatar Joerg Roedel

Merge branch 'for-joerg/arm-smmu/updates' of...

Merge branch 'for-joerg/arm-smmu/updates' of git://git.kernel.org/pub/scm/linux/kernel/git/will/linux into arm/smmu
parents 26bc420b 859a732e
...@@ -1582,6 +1582,7 @@ M: Will Deacon <will.deacon@arm.com> ...@@ -1582,6 +1582,7 @@ M: Will Deacon <will.deacon@arm.com>
L: linux-arm-kernel@lists.infradead.org (moderated for non-subscribers) L: linux-arm-kernel@lists.infradead.org (moderated for non-subscribers)
S: Maintained S: Maintained
F: drivers/iommu/arm-smmu.c F: drivers/iommu/arm-smmu.c
F: drivers/iommu/io-pgtable-arm.c
ARM64 PORT (AARCH64 ARCHITECTURE) ARM64 PORT (AARCH64 ARCHITECTURE)
M: Catalin Marinas <catalin.marinas@arm.com> M: Catalin Marinas <catalin.marinas@arm.com>
......
...@@ -349,7 +349,6 @@ config ARM64_VA_BITS_42 ...@@ -349,7 +349,6 @@ config ARM64_VA_BITS_42
config ARM64_VA_BITS_48 config ARM64_VA_BITS_48
bool "48-bit" bool "48-bit"
depends on !ARM_SMMU
endchoice endchoice
......
...@@ -13,6 +13,32 @@ menuconfig IOMMU_SUPPORT ...@@ -13,6 +13,32 @@ menuconfig IOMMU_SUPPORT
if IOMMU_SUPPORT if IOMMU_SUPPORT
menu "Generic IOMMU Pagetable Support"
# Selected by the actual pagetable implementations
config IOMMU_IO_PGTABLE
bool
config IOMMU_IO_PGTABLE_LPAE
bool "ARMv7/v8 Long Descriptor Format"
select IOMMU_IO_PGTABLE
help
Enable support for the ARM long descriptor pagetable format.
This allocator supports 4K/2M/1G, 16K/32M and 64K/512M page
sizes at both stage-1 and stage-2, as well as address spaces
up to 48-bits in size.
config IOMMU_IO_PGTABLE_LPAE_SELFTEST
bool "LPAE selftests"
depends on IOMMU_IO_PGTABLE_LPAE
help
Enable self-tests for LPAE page table allocator. This performs
a series of page-table consistency checks during boot.
If unsure, say N here.
endmenu
config OF_IOMMU config OF_IOMMU
def_bool y def_bool y
depends on OF && IOMMU_API depends on OF && IOMMU_API
...@@ -304,13 +330,13 @@ config SPAPR_TCE_IOMMU ...@@ -304,13 +330,13 @@ config SPAPR_TCE_IOMMU
config ARM_SMMU config ARM_SMMU
bool "ARM Ltd. System MMU (SMMU) Support" bool "ARM Ltd. System MMU (SMMU) Support"
depends on ARM64 || (ARM_LPAE && OF) depends on ARM64 || ARM
select IOMMU_API select IOMMU_API
select IOMMU_IO_PGTABLE_LPAE
select ARM_DMA_USE_IOMMU if ARM select ARM_DMA_USE_IOMMU if ARM
help help
Support for implementations of the ARM System MMU architecture Support for implementations of the ARM System MMU architecture
versions 1 and 2. The driver supports both v7l and v8l table versions 1 and 2.
formats with 4k and 64k page sizes.
Say Y here if your SoC includes an IOMMU device implementing Say Y here if your SoC includes an IOMMU device implementing
the ARM SMMU architecture. the ARM SMMU architecture.
......
obj-$(CONFIG_IOMMU_API) += iommu.o obj-$(CONFIG_IOMMU_API) += iommu.o
obj-$(CONFIG_IOMMU_API) += iommu-traces.o obj-$(CONFIG_IOMMU_API) += iommu-traces.o
obj-$(CONFIG_IOMMU_API) += iommu-sysfs.o obj-$(CONFIG_IOMMU_API) += iommu-sysfs.o
obj-$(CONFIG_IOMMU_IO_PGTABLE) += io-pgtable.o
obj-$(CONFIG_IOMMU_IO_PGTABLE_LPAE) += io-pgtable-arm.o
obj-$(CONFIG_OF_IOMMU) += of_iommu.o obj-$(CONFIG_OF_IOMMU) += of_iommu.o
obj-$(CONFIG_MSM_IOMMU) += msm_iommu.o msm_iommu_dev.o obj-$(CONFIG_MSM_IOMMU) += msm_iommu.o msm_iommu_dev.o
obj-$(CONFIG_AMD_IOMMU) += amd_iommu.o amd_iommu_init.o obj-$(CONFIG_AMD_IOMMU) += amd_iommu.o amd_iommu_init.o
......
...@@ -23,8 +23,6 @@ ...@@ -23,8 +23,6 @@
* - Stream-matching and stream-indexing * - Stream-matching and stream-indexing
* - v7/v8 long-descriptor format * - v7/v8 long-descriptor format
* - Non-secure access to the SMMU * - Non-secure access to the SMMU
* - 4k and 64k pages, with contiguous pte hints.
* - Up to 48-bit addressing (dependent on VA_BITS)
* - Context fault reporting * - Context fault reporting
*/ */
...@@ -36,7 +34,7 @@ ...@@ -36,7 +34,7 @@
#include <linux/interrupt.h> #include <linux/interrupt.h>
#include <linux/io.h> #include <linux/io.h>
#include <linux/iommu.h> #include <linux/iommu.h>
#include <linux/mm.h> #include <linux/iopoll.h>
#include <linux/module.h> #include <linux/module.h>
#include <linux/of.h> #include <linux/of.h>
#include <linux/pci.h> #include <linux/pci.h>
...@@ -46,7 +44,7 @@ ...@@ -46,7 +44,7 @@
#include <linux/amba/bus.h> #include <linux/amba/bus.h>
#include <asm/pgalloc.h> #include "io-pgtable.h"
/* Maximum number of stream IDs assigned to a single device */ /* Maximum number of stream IDs assigned to a single device */
#define MAX_MASTER_STREAMIDS MAX_PHANDLE_ARGS #define MAX_MASTER_STREAMIDS MAX_PHANDLE_ARGS
...@@ -71,40 +69,6 @@ ...@@ -71,40 +69,6 @@
((smmu->options & ARM_SMMU_OPT_SECURE_CFG_ACCESS) \ ((smmu->options & ARM_SMMU_OPT_SECURE_CFG_ACCESS) \
? 0x400 : 0)) ? 0x400 : 0))
/* Page table bits */
#define ARM_SMMU_PTE_XN (((pteval_t)3) << 53)
#define ARM_SMMU_PTE_CONT (((pteval_t)1) << 52)
#define ARM_SMMU_PTE_AF (((pteval_t)1) << 10)
#define ARM_SMMU_PTE_SH_NS (((pteval_t)0) << 8)
#define ARM_SMMU_PTE_SH_OS (((pteval_t)2) << 8)
#define ARM_SMMU_PTE_SH_IS (((pteval_t)3) << 8)
#define ARM_SMMU_PTE_PAGE (((pteval_t)3) << 0)
#if PAGE_SIZE == SZ_4K
#define ARM_SMMU_PTE_CONT_ENTRIES 16
#elif PAGE_SIZE == SZ_64K
#define ARM_SMMU_PTE_CONT_ENTRIES 32
#else
#define ARM_SMMU_PTE_CONT_ENTRIES 1
#endif
#define ARM_SMMU_PTE_CONT_SIZE (PAGE_SIZE * ARM_SMMU_PTE_CONT_ENTRIES)
#define ARM_SMMU_PTE_CONT_MASK (~(ARM_SMMU_PTE_CONT_SIZE - 1))
/* Stage-1 PTE */
#define ARM_SMMU_PTE_AP_UNPRIV (((pteval_t)1) << 6)
#define ARM_SMMU_PTE_AP_RDONLY (((pteval_t)2) << 6)
#define ARM_SMMU_PTE_ATTRINDX_SHIFT 2
#define ARM_SMMU_PTE_nG (((pteval_t)1) << 11)
/* Stage-2 PTE */
#define ARM_SMMU_PTE_HAP_FAULT (((pteval_t)0) << 6)
#define ARM_SMMU_PTE_HAP_READ (((pteval_t)1) << 6)
#define ARM_SMMU_PTE_HAP_WRITE (((pteval_t)2) << 6)
#define ARM_SMMU_PTE_MEMATTR_OIWB (((pteval_t)0xf) << 2)
#define ARM_SMMU_PTE_MEMATTR_NC (((pteval_t)0x5) << 2)
#define ARM_SMMU_PTE_MEMATTR_DEV (((pteval_t)0x1) << 2)
/* Configuration registers */ /* Configuration registers */
#define ARM_SMMU_GR0_sCR0 0x0 #define ARM_SMMU_GR0_sCR0 0x0
#define sCR0_CLIENTPD (1 << 0) #define sCR0_CLIENTPD (1 << 0)
...@@ -132,17 +96,12 @@ ...@@ -132,17 +96,12 @@
#define ARM_SMMU_GR0_sGFSYNR0 0x50 #define ARM_SMMU_GR0_sGFSYNR0 0x50
#define ARM_SMMU_GR0_sGFSYNR1 0x54 #define ARM_SMMU_GR0_sGFSYNR1 0x54
#define ARM_SMMU_GR0_sGFSYNR2 0x58 #define ARM_SMMU_GR0_sGFSYNR2 0x58
#define ARM_SMMU_GR0_PIDR0 0xfe0
#define ARM_SMMU_GR0_PIDR1 0xfe4
#define ARM_SMMU_GR0_PIDR2 0xfe8
#define ID0_S1TS (1 << 30) #define ID0_S1TS (1 << 30)
#define ID0_S2TS (1 << 29) #define ID0_S2TS (1 << 29)
#define ID0_NTS (1 << 28) #define ID0_NTS (1 << 28)
#define ID0_SMS (1 << 27) #define ID0_SMS (1 << 27)
#define ID0_PTFS_SHIFT 24 #define ID0_ATOSNS (1 << 26)
#define ID0_PTFS_MASK 0x2
#define ID0_PTFS_V8_ONLY 0x2
#define ID0_CTTW (1 << 14) #define ID0_CTTW (1 << 14)
#define ID0_NUMIRPT_SHIFT 16 #define ID0_NUMIRPT_SHIFT 16
#define ID0_NUMIRPT_MASK 0xff #define ID0_NUMIRPT_MASK 0xff
...@@ -169,11 +128,7 @@ ...@@ -169,11 +128,7 @@
#define ID2_PTFS_16K (1 << 13) #define ID2_PTFS_16K (1 << 13)
#define ID2_PTFS_64K (1 << 14) #define ID2_PTFS_64K (1 << 14)
#define PIDR2_ARCH_SHIFT 4
#define PIDR2_ARCH_MASK 0xf
/* Global TLB invalidation */ /* Global TLB invalidation */
#define ARM_SMMU_GR0_STLBIALL 0x60
#define ARM_SMMU_GR0_TLBIVMID 0x64 #define ARM_SMMU_GR0_TLBIVMID 0x64
#define ARM_SMMU_GR0_TLBIALLNSNH 0x68 #define ARM_SMMU_GR0_TLBIALLNSNH 0x68
#define ARM_SMMU_GR0_TLBIALLH 0x6c #define ARM_SMMU_GR0_TLBIALLH 0x6c
...@@ -231,13 +186,25 @@ ...@@ -231,13 +186,25 @@
#define ARM_SMMU_CB_TTBCR2 0x10 #define ARM_SMMU_CB_TTBCR2 0x10
#define ARM_SMMU_CB_TTBR0_LO 0x20 #define ARM_SMMU_CB_TTBR0_LO 0x20
#define ARM_SMMU_CB_TTBR0_HI 0x24 #define ARM_SMMU_CB_TTBR0_HI 0x24
#define ARM_SMMU_CB_TTBR1_LO 0x28
#define ARM_SMMU_CB_TTBR1_HI 0x2c
#define ARM_SMMU_CB_TTBCR 0x30 #define ARM_SMMU_CB_TTBCR 0x30
#define ARM_SMMU_CB_S1_MAIR0 0x38 #define ARM_SMMU_CB_S1_MAIR0 0x38
#define ARM_SMMU_CB_S1_MAIR1 0x3c
#define ARM_SMMU_CB_PAR_LO 0x50
#define ARM_SMMU_CB_PAR_HI 0x54
#define ARM_SMMU_CB_FSR 0x58 #define ARM_SMMU_CB_FSR 0x58
#define ARM_SMMU_CB_FAR_LO 0x60 #define ARM_SMMU_CB_FAR_LO 0x60
#define ARM_SMMU_CB_FAR_HI 0x64 #define ARM_SMMU_CB_FAR_HI 0x64
#define ARM_SMMU_CB_FSYNR0 0x68 #define ARM_SMMU_CB_FSYNR0 0x68
#define ARM_SMMU_CB_S1_TLBIVA 0x600
#define ARM_SMMU_CB_S1_TLBIASID 0x610 #define ARM_SMMU_CB_S1_TLBIASID 0x610
#define ARM_SMMU_CB_S1_TLBIVAL 0x620
#define ARM_SMMU_CB_S2_TLBIIPAS2 0x630
#define ARM_SMMU_CB_S2_TLBIIPAS2L 0x638
#define ARM_SMMU_CB_ATS1PR_LO 0x800
#define ARM_SMMU_CB_ATS1PR_HI 0x804
#define ARM_SMMU_CB_ATSR 0x8f0
#define SCTLR_S1_ASIDPNE (1 << 12) #define SCTLR_S1_ASIDPNE (1 << 12)
#define SCTLR_CFCFG (1 << 7) #define SCTLR_CFCFG (1 << 7)
...@@ -249,47 +216,16 @@ ...@@ -249,47 +216,16 @@
#define SCTLR_M (1 << 0) #define SCTLR_M (1 << 0)
#define SCTLR_EAE_SBOP (SCTLR_AFE | SCTLR_TRE) #define SCTLR_EAE_SBOP (SCTLR_AFE | SCTLR_TRE)
#define RESUME_RETRY (0 << 0) #define CB_PAR_F (1 << 0)
#define RESUME_TERMINATE (1 << 0)
#define TTBCR_EAE (1 << 31)
#define TTBCR_PASIZE_SHIFT 16
#define TTBCR_PASIZE_MASK 0x7
#define TTBCR_TG0_4K (0 << 14) #define ATSR_ACTIVE (1 << 0)
#define TTBCR_TG0_64K (1 << 14)
#define TTBCR_SH0_SHIFT 12 #define RESUME_RETRY (0 << 0)
#define TTBCR_SH0_MASK 0x3 #define RESUME_TERMINATE (1 << 0)
#define TTBCR_SH_NS 0
#define TTBCR_SH_OS 2
#define TTBCR_SH_IS 3
#define TTBCR_ORGN0_SHIFT 10
#define TTBCR_IRGN0_SHIFT 8
#define TTBCR_RGN_MASK 0x3
#define TTBCR_RGN_NC 0
#define TTBCR_RGN_WBWA 1
#define TTBCR_RGN_WT 2
#define TTBCR_RGN_WB 3
#define TTBCR_SL0_SHIFT 6
#define TTBCR_SL0_MASK 0x3
#define TTBCR_SL0_LVL_2 0
#define TTBCR_SL0_LVL_1 1
#define TTBCR_T1SZ_SHIFT 16
#define TTBCR_T0SZ_SHIFT 0
#define TTBCR_SZ_MASK 0xf
#define TTBCR2_SEP_SHIFT 15 #define TTBCR2_SEP_SHIFT 15
#define TTBCR2_SEP_MASK 0x7 #define TTBCR2_SEP_MASK 0x7
#define TTBCR2_PASIZE_SHIFT 0
#define TTBCR2_PASIZE_MASK 0x7
/* Common definitions for PASize and SEP fields */
#define TTBCR2_ADDR_32 0 #define TTBCR2_ADDR_32 0
#define TTBCR2_ADDR_36 1 #define TTBCR2_ADDR_36 1
#define TTBCR2_ADDR_40 2 #define TTBCR2_ADDR_40 2
...@@ -299,15 +235,6 @@ ...@@ -299,15 +235,6 @@
#define TTBRn_HI_ASID_SHIFT 16 #define TTBRn_HI_ASID_SHIFT 16
#define MAIR_ATTR_SHIFT(n) ((n) << 3)
#define MAIR_ATTR_MASK 0xff
#define MAIR_ATTR_DEVICE 0x04
#define MAIR_ATTR_NC 0x44
#define MAIR_ATTR_WBRWA 0xff
#define MAIR_ATTR_IDX_NC 0
#define MAIR_ATTR_IDX_CACHE 1
#define MAIR_ATTR_IDX_DEV 2
#define FSR_MULTI (1 << 31) #define FSR_MULTI (1 << 31)
#define FSR_SS (1 << 30) #define FSR_SS (1 << 30)
#define FSR_UUT (1 << 8) #define FSR_UUT (1 << 8)
...@@ -366,6 +293,7 @@ struct arm_smmu_device { ...@@ -366,6 +293,7 @@ struct arm_smmu_device {
#define ARM_SMMU_FEAT_TRANS_S1 (1 << 2) #define ARM_SMMU_FEAT_TRANS_S1 (1 << 2)
#define ARM_SMMU_FEAT_TRANS_S2 (1 << 3) #define ARM_SMMU_FEAT_TRANS_S2 (1 << 3)
#define ARM_SMMU_FEAT_TRANS_NESTED (1 << 4) #define ARM_SMMU_FEAT_TRANS_NESTED (1 << 4)
#define ARM_SMMU_FEAT_TRANS_OPS (1 << 5)
u32 features; u32 features;
#define ARM_SMMU_OPT_SECURE_CFG_ACCESS (1 << 0) #define ARM_SMMU_OPT_SECURE_CFG_ACCESS (1 << 0)
...@@ -380,10 +308,9 @@ struct arm_smmu_device { ...@@ -380,10 +308,9 @@ struct arm_smmu_device {
u32 num_mapping_groups; u32 num_mapping_groups;
DECLARE_BITMAP(smr_map, ARM_SMMU_MAX_SMRS); DECLARE_BITMAP(smr_map, ARM_SMMU_MAX_SMRS);
unsigned long s1_input_size; unsigned long va_size;
unsigned long s1_output_size; unsigned long ipa_size;
unsigned long s2_input_size; unsigned long pa_size;
unsigned long s2_output_size;
u32 num_global_irqs; u32 num_global_irqs;
u32 num_context_irqs; u32 num_context_irqs;
...@@ -397,7 +324,6 @@ struct arm_smmu_cfg { ...@@ -397,7 +324,6 @@ struct arm_smmu_cfg {
u8 cbndx; u8 cbndx;
u8 irptndx; u8 irptndx;
u32 cbar; u32 cbar;
pgd_t *pgd;
}; };
#define INVALID_IRPTNDX 0xff #define INVALID_IRPTNDX 0xff
...@@ -412,11 +338,15 @@ enum arm_smmu_domain_stage { ...@@ -412,11 +338,15 @@ enum arm_smmu_domain_stage {
struct arm_smmu_domain { struct arm_smmu_domain {
struct arm_smmu_device *smmu; struct arm_smmu_device *smmu;
struct io_pgtable_ops *pgtbl_ops;
spinlock_t pgtbl_lock;
struct arm_smmu_cfg cfg; struct arm_smmu_cfg cfg;
enum arm_smmu_domain_stage stage; enum arm_smmu_domain_stage stage;
spinlock_t lock; struct mutex init_mutex; /* Protects smmu pointer */
}; };
static struct iommu_ops arm_smmu_ops;
static DEFINE_SPINLOCK(arm_smmu_devices_lock); static DEFINE_SPINLOCK(arm_smmu_devices_lock);
static LIST_HEAD(arm_smmu_devices); static LIST_HEAD(arm_smmu_devices);
...@@ -597,7 +527,7 @@ static void __arm_smmu_free_bitmap(unsigned long *map, int idx) ...@@ -597,7 +527,7 @@ static void __arm_smmu_free_bitmap(unsigned long *map, int idx)
} }
/* Wait for any pending TLB invalidations to complete */ /* Wait for any pending TLB invalidations to complete */
static void arm_smmu_tlb_sync(struct arm_smmu_device *smmu) static void __arm_smmu_tlb_sync(struct arm_smmu_device *smmu)
{ {
int count = 0; int count = 0;
void __iomem *gr0_base = ARM_SMMU_GR0(smmu); void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
...@@ -615,12 +545,19 @@ static void arm_smmu_tlb_sync(struct arm_smmu_device *smmu) ...@@ -615,12 +545,19 @@ static void arm_smmu_tlb_sync(struct arm_smmu_device *smmu)
} }
} }
static void arm_smmu_tlb_inv_context(struct arm_smmu_domain *smmu_domain) static void arm_smmu_tlb_sync(void *cookie)
{
struct arm_smmu_domain *smmu_domain = cookie;
__arm_smmu_tlb_sync(smmu_domain->smmu);
}
static void arm_smmu_tlb_inv_context(void *cookie)
{ {
struct arm_smmu_domain *smmu_domain = cookie;
struct arm_smmu_cfg *cfg = &smmu_domain->cfg; struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
struct arm_smmu_device *smmu = smmu_domain->smmu; struct arm_smmu_device *smmu = smmu_domain->smmu;
void __iomem *base = ARM_SMMU_GR0(smmu);
bool stage1 = cfg->cbar != CBAR_TYPE_S2_TRANS; bool stage1 = cfg->cbar != CBAR_TYPE_S2_TRANS;
void __iomem *base;
if (stage1) { if (stage1) {
base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx); base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);
...@@ -632,9 +569,76 @@ static void arm_smmu_tlb_inv_context(struct arm_smmu_domain *smmu_domain) ...@@ -632,9 +569,76 @@ static void arm_smmu_tlb_inv_context(struct arm_smmu_domain *smmu_domain)
base + ARM_SMMU_GR0_TLBIVMID); base + ARM_SMMU_GR0_TLBIVMID);
} }
arm_smmu_tlb_sync(smmu); __arm_smmu_tlb_sync(smmu);
} }
static void arm_smmu_tlb_inv_range_nosync(unsigned long iova, size_t size,
bool leaf, void *cookie)
{
struct arm_smmu_domain *smmu_domain = cookie;
struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
struct arm_smmu_device *smmu = smmu_domain->smmu;
bool stage1 = cfg->cbar != CBAR_TYPE_S2_TRANS;
void __iomem *reg;
if (stage1) {
reg = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);
reg += leaf ? ARM_SMMU_CB_S1_TLBIVAL : ARM_SMMU_CB_S1_TLBIVA;
if (!IS_ENABLED(CONFIG_64BIT) || smmu->version == ARM_SMMU_V1) {
iova &= ~12UL;
iova |= ARM_SMMU_CB_ASID(cfg);
writel_relaxed(iova, reg);
#ifdef CONFIG_64BIT
} else {
iova >>= 12;
iova |= (u64)ARM_SMMU_CB_ASID(cfg) << 48;
writeq_relaxed(iova, reg);
#endif
}
#ifdef CONFIG_64BIT
} else if (smmu->version == ARM_SMMU_V2) {
reg = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);
reg += leaf ? ARM_SMMU_CB_S2_TLBIIPAS2L :
ARM_SMMU_CB_S2_TLBIIPAS2;
writeq_relaxed(iova >> 12, reg);
#endif
} else {
reg = ARM_SMMU_GR0(smmu) + ARM_SMMU_GR0_TLBIVMID;
writel_relaxed(ARM_SMMU_CB_VMID(cfg), reg);
}
}
static void arm_smmu_flush_pgtable(void *addr, size_t size, void *cookie)
{
struct arm_smmu_domain *smmu_domain = cookie;
struct arm_smmu_device *smmu = smmu_domain->smmu;
unsigned long offset = (unsigned long)addr & ~PAGE_MASK;
/* Ensure new page tables are visible to the hardware walker */
if (smmu->features & ARM_SMMU_FEAT_COHERENT_WALK) {
dsb(ishst);
} else {
/*
* If the SMMU can't walk tables in the CPU caches, treat them
* like non-coherent DMA since we need to flush the new entries
* all the way out to memory. There's no possibility of
* recursion here as the SMMU table walker will not be wired
* through another SMMU.
*/
dma_map_page(smmu->dev, virt_to_page(addr), offset, size,
DMA_TO_DEVICE);
}
}
static struct iommu_gather_ops arm_smmu_gather_ops = {
.tlb_flush_all = arm_smmu_tlb_inv_context,
.tlb_add_flush = arm_smmu_tlb_inv_range_nosync,
.tlb_sync = arm_smmu_tlb_sync,
.flush_pgtable = arm_smmu_flush_pgtable,
};
static irqreturn_t arm_smmu_context_fault(int irq, void *dev) static irqreturn_t arm_smmu_context_fault(int irq, void *dev)
{ {
int flags, ret; int flags, ret;
...@@ -712,29 +716,8 @@ static irqreturn_t arm_smmu_global_fault(int irq, void *dev) ...@@ -712,29 +716,8 @@ static irqreturn_t arm_smmu_global_fault(int irq, void *dev)
return IRQ_HANDLED; return IRQ_HANDLED;
} }
static void arm_smmu_flush_pgtable(struct arm_smmu_device *smmu, void *addr, static void arm_smmu_init_context_bank(struct arm_smmu_domain *smmu_domain,
size_t size) struct io_pgtable_cfg *pgtbl_cfg)
{
unsigned long offset = (unsigned long)addr & ~PAGE_MASK;
/* Ensure new page tables are visible to the hardware walker */
if (smmu->features & ARM_SMMU_FEAT_COHERENT_WALK) {
dsb(ishst);
} else {
/*
* If the SMMU can't walk tables in the CPU caches, treat them
* like non-coherent DMA since we need to flush the new entries
* all the way out to memory. There's no possibility of
* recursion here as the SMMU table walker will not be wired
* through another SMMU.
*/
dma_map_page(smmu->dev, virt_to_page(addr), offset, size,
DMA_TO_DEVICE);
}
}
static void arm_smmu_init_context_bank(struct arm_smmu_domain *smmu_domain)
{ {
u32 reg; u32 reg;
bool stage1; bool stage1;
...@@ -771,124 +754,68 @@ static void arm_smmu_init_context_bank(struct arm_smmu_domain *smmu_domain) ...@@ -771,124 +754,68 @@ static void arm_smmu_init_context_bank(struct arm_smmu_domain *smmu_domain)
#else #else
reg = CBA2R_RW64_32BIT; reg = CBA2R_RW64_32BIT;
#endif #endif
writel_relaxed(reg, writel_relaxed(reg, gr1_base + ARM_SMMU_GR1_CBA2R(cfg->cbndx));
gr1_base + ARM_SMMU_GR1_CBA2R(cfg->cbndx));
/* TTBCR2 */
switch (smmu->s1_input_size) {
case 32:
reg = (TTBCR2_ADDR_32 << TTBCR2_SEP_SHIFT);
break;
case 36:
reg = (TTBCR2_ADDR_36 << TTBCR2_SEP_SHIFT);
break;
case 39:
case 40:
reg = (TTBCR2_ADDR_40 << TTBCR2_SEP_SHIFT);
break;
case 42:
reg = (TTBCR2_ADDR_42 << TTBCR2_SEP_SHIFT);
break;
case 44:
reg = (TTBCR2_ADDR_44 << TTBCR2_SEP_SHIFT);
break;
case 48:
reg = (TTBCR2_ADDR_48 << TTBCR2_SEP_SHIFT);
break;
}
switch (smmu->s1_output_size) {
case 32:
reg |= (TTBCR2_ADDR_32 << TTBCR2_PASIZE_SHIFT);
break;
case 36:
reg |= (TTBCR2_ADDR_36 << TTBCR2_PASIZE_SHIFT);
break;
case 39:
case 40:
reg |= (TTBCR2_ADDR_40 << TTBCR2_PASIZE_SHIFT);
break;
case 42:
reg |= (TTBCR2_ADDR_42 << TTBCR2_PASIZE_SHIFT);
break;
case 44:
reg |= (TTBCR2_ADDR_44 << TTBCR2_PASIZE_SHIFT);
break;
case 48:
reg |= (TTBCR2_ADDR_48 << TTBCR2_PASIZE_SHIFT);
break;
} }
if (stage1) /* TTBRs */
writel_relaxed(reg, cb_base + ARM_SMMU_CB_TTBCR2); if (stage1) {
} reg = pgtbl_cfg->arm_lpae_s1_cfg.ttbr[0];
/* TTBR0 */
arm_smmu_flush_pgtable(smmu, cfg->pgd,
PTRS_PER_PGD * sizeof(pgd_t));
reg = __pa(cfg->pgd);
writel_relaxed(reg, cb_base + ARM_SMMU_CB_TTBR0_LO); writel_relaxed(reg, cb_base + ARM_SMMU_CB_TTBR0_LO);
reg = (phys_addr_t)__pa(cfg->pgd) >> 32; reg = pgtbl_cfg->arm_lpae_s1_cfg.ttbr[0] >> 32;
if (stage1)
reg |= ARM_SMMU_CB_ASID(cfg) << TTBRn_HI_ASID_SHIFT; reg |= ARM_SMMU_CB_ASID(cfg) << TTBRn_HI_ASID_SHIFT;
writel_relaxed(reg, cb_base + ARM_SMMU_CB_TTBR0_HI); writel_relaxed(reg, cb_base + ARM_SMMU_CB_TTBR0_HI);
/* reg = pgtbl_cfg->arm_lpae_s1_cfg.ttbr[1];
* TTBCR writel_relaxed(reg, cb_base + ARM_SMMU_CB_TTBR1_LO);
* We use long descriptor, with inner-shareable WBWA tables in TTBR0. reg = pgtbl_cfg->arm_lpae_s1_cfg.ttbr[1] >> 32;
*/ reg |= ARM_SMMU_CB_ASID(cfg) << TTBRn_HI_ASID_SHIFT;
if (smmu->version > ARM_SMMU_V1) { writel_relaxed(reg, cb_base + ARM_SMMU_CB_TTBR1_HI);
if (PAGE_SIZE == SZ_4K) } else {
reg = TTBCR_TG0_4K; reg = pgtbl_cfg->arm_lpae_s2_cfg.vttbr;
else writel_relaxed(reg, cb_base + ARM_SMMU_CB_TTBR0_LO);
reg = TTBCR_TG0_64K; reg = pgtbl_cfg->arm_lpae_s2_cfg.vttbr >> 32;
writel_relaxed(reg, cb_base + ARM_SMMU_CB_TTBR0_HI);
if (!stage1) { }
reg |= (64 - smmu->s2_input_size) << TTBCR_T0SZ_SHIFT;
switch (smmu->s2_output_size) { /* TTBCR */
if (stage1) {
reg = pgtbl_cfg->arm_lpae_s1_cfg.tcr;
writel_relaxed(reg, cb_base + ARM_SMMU_CB_TTBCR);
if (smmu->version > ARM_SMMU_V1) {
reg = pgtbl_cfg->arm_lpae_s1_cfg.tcr >> 32;
switch (smmu->va_size) {
case 32: case 32:
reg |= (TTBCR2_ADDR_32 << TTBCR_PASIZE_SHIFT); reg |= (TTBCR2_ADDR_32 << TTBCR2_SEP_SHIFT);
break; break;
case 36: case 36:
reg |= (TTBCR2_ADDR_36 << TTBCR_PASIZE_SHIFT); reg |= (TTBCR2_ADDR_36 << TTBCR2_SEP_SHIFT);
break; break;
case 40: case 40:
reg |= (TTBCR2_ADDR_40 << TTBCR_PASIZE_SHIFT); reg |= (TTBCR2_ADDR_40 << TTBCR2_SEP_SHIFT);
break; break;
case 42: case 42:
reg |= (TTBCR2_ADDR_42 << TTBCR_PASIZE_SHIFT); reg |= (TTBCR2_ADDR_42 << TTBCR2_SEP_SHIFT);
break; break;
case 44: case 44:
reg |= (TTBCR2_ADDR_44 << TTBCR_PASIZE_SHIFT); reg |= (TTBCR2_ADDR_44 << TTBCR2_SEP_SHIFT);
break; break;
case 48: case 48:
reg |= (TTBCR2_ADDR_48 << TTBCR_PASIZE_SHIFT); reg |= (TTBCR2_ADDR_48 << TTBCR2_SEP_SHIFT);
break; break;
} }
} else { writel_relaxed(reg, cb_base + ARM_SMMU_CB_TTBCR2);
reg |= (64 - smmu->s1_input_size) << TTBCR_T0SZ_SHIFT;
} }
} else { } else {
reg = 0; reg = pgtbl_cfg->arm_lpae_s2_cfg.vtcr;
}
reg |= TTBCR_EAE |
(TTBCR_SH_IS << TTBCR_SH0_SHIFT) |
(TTBCR_RGN_WBWA << TTBCR_ORGN0_SHIFT) |
(TTBCR_RGN_WBWA << TTBCR_IRGN0_SHIFT);
if (!stage1)
reg |= (TTBCR_SL0_LVL_1 << TTBCR_SL0_SHIFT);
writel_relaxed(reg, cb_base + ARM_SMMU_CB_TTBCR); writel_relaxed(reg, cb_base + ARM_SMMU_CB_TTBCR);
}
/* MAIR0 (stage-1 only) */ /* MAIRs (stage-1 only) */
if (stage1) { if (stage1) {
reg = (MAIR_ATTR_NC << MAIR_ATTR_SHIFT(MAIR_ATTR_IDX_NC)) | reg = pgtbl_cfg->arm_lpae_s1_cfg.mair[0];
(MAIR_ATTR_WBRWA << MAIR_ATTR_SHIFT(MAIR_ATTR_IDX_CACHE)) |
(MAIR_ATTR_DEVICE << MAIR_ATTR_SHIFT(MAIR_ATTR_IDX_DEV));
writel_relaxed(reg, cb_base + ARM_SMMU_CB_S1_MAIR0); writel_relaxed(reg, cb_base + ARM_SMMU_CB_S1_MAIR0);
reg = pgtbl_cfg->arm_lpae_s1_cfg.mair[1];
writel_relaxed(reg, cb_base + ARM_SMMU_CB_S1_MAIR1);
} }
/* SCTLR */ /* SCTLR */
...@@ -905,11 +832,14 @@ static int arm_smmu_init_domain_context(struct iommu_domain *domain, ...@@ -905,11 +832,14 @@ static int arm_smmu_init_domain_context(struct iommu_domain *domain,
struct arm_smmu_device *smmu) struct arm_smmu_device *smmu)
{ {
int irq, start, ret = 0; int irq, start, ret = 0;
unsigned long flags; unsigned long ias, oas;
struct io_pgtable_ops *pgtbl_ops;
struct io_pgtable_cfg pgtbl_cfg;
enum io_pgtable_fmt fmt;
struct arm_smmu_domain *smmu_domain = domain->priv; struct arm_smmu_domain *smmu_domain = domain->priv;
struct arm_smmu_cfg *cfg = &smmu_domain->cfg; struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
spin_lock_irqsave(&smmu_domain->lock, flags); mutex_lock(&smmu_domain->init_mutex);
if (smmu_domain->smmu) if (smmu_domain->smmu)
goto out_unlock; goto out_unlock;
...@@ -940,6 +870,12 @@ static int arm_smmu_init_domain_context(struct iommu_domain *domain, ...@@ -940,6 +870,12 @@ static int arm_smmu_init_domain_context(struct iommu_domain *domain,
case ARM_SMMU_DOMAIN_S1: case ARM_SMMU_DOMAIN_S1:
cfg->cbar = CBAR_TYPE_S1_TRANS_S2_BYPASS; cfg->cbar = CBAR_TYPE_S1_TRANS_S2_BYPASS;
start = smmu->num_s2_context_banks; start = smmu->num_s2_context_banks;
ias = smmu->va_size;
oas = smmu->ipa_size;
if (IS_ENABLED(CONFIG_64BIT))
fmt = ARM_64_LPAE_S1;
else
fmt = ARM_32_LPAE_S1;
break; break;
case ARM_SMMU_DOMAIN_NESTED: case ARM_SMMU_DOMAIN_NESTED:
/* /*
...@@ -949,6 +885,12 @@ static int arm_smmu_init_domain_context(struct iommu_domain *domain, ...@@ -949,6 +885,12 @@ static int arm_smmu_init_domain_context(struct iommu_domain *domain,
case ARM_SMMU_DOMAIN_S2: case ARM_SMMU_DOMAIN_S2:
cfg->cbar = CBAR_TYPE_S2_TRANS; cfg->cbar = CBAR_TYPE_S2_TRANS;
start = 0; start = 0;
ias = smmu->ipa_size;
oas = smmu->pa_size;
if (IS_ENABLED(CONFIG_64BIT))
fmt = ARM_64_LPAE_S2;
else
fmt = ARM_32_LPAE_S2;
break; break;
default: default:
ret = -EINVAL; ret = -EINVAL;
...@@ -968,10 +910,30 @@ static int arm_smmu_init_domain_context(struct iommu_domain *domain, ...@@ -968,10 +910,30 @@ static int arm_smmu_init_domain_context(struct iommu_domain *domain,
cfg->irptndx = cfg->cbndx; cfg->irptndx = cfg->cbndx;
} }
ACCESS_ONCE(smmu_domain->smmu) = smmu; pgtbl_cfg = (struct io_pgtable_cfg) {
arm_smmu_init_context_bank(smmu_domain); .pgsize_bitmap = arm_smmu_ops.pgsize_bitmap,
spin_unlock_irqrestore(&smmu_domain->lock, flags); .ias = ias,
.oas = oas,
.tlb = &arm_smmu_gather_ops,
};
smmu_domain->smmu = smmu;
pgtbl_ops = alloc_io_pgtable_ops(fmt, &pgtbl_cfg, smmu_domain);
if (!pgtbl_ops) {
ret = -ENOMEM;
goto out_clear_smmu;
}
/* Update our support page sizes to reflect the page table format */
arm_smmu_ops.pgsize_bitmap = pgtbl_cfg.pgsize_bitmap;
/* Initialise the context bank with our page table cfg */
arm_smmu_init_context_bank(smmu_domain, &pgtbl_cfg);
/*
* Request context fault interrupt. Do this last to avoid the
* handler seeing a half-initialised domain state.
*/
irq = smmu->irqs[smmu->num_global_irqs + cfg->irptndx]; irq = smmu->irqs[smmu->num_global_irqs + cfg->irptndx];
ret = request_irq(irq, arm_smmu_context_fault, IRQF_SHARED, ret = request_irq(irq, arm_smmu_context_fault, IRQF_SHARED,
"arm-smmu-context-fault", domain); "arm-smmu-context-fault", domain);
...@@ -981,10 +943,16 @@ static int arm_smmu_init_domain_context(struct iommu_domain *domain, ...@@ -981,10 +943,16 @@ static int arm_smmu_init_domain_context(struct iommu_domain *domain,
cfg->irptndx = INVALID_IRPTNDX; cfg->irptndx = INVALID_IRPTNDX;
} }
mutex_unlock(&smmu_domain->init_mutex);
/* Publish page table ops for map/unmap */
smmu_domain->pgtbl_ops = pgtbl_ops;
return 0; return 0;
out_clear_smmu:
smmu_domain->smmu = NULL;
out_unlock: out_unlock:
spin_unlock_irqrestore(&smmu_domain->lock, flags); mutex_unlock(&smmu_domain->init_mutex);
return ret; return ret;
} }
...@@ -999,23 +967,27 @@ static void arm_smmu_destroy_domain_context(struct iommu_domain *domain) ...@@ -999,23 +967,27 @@ static void arm_smmu_destroy_domain_context(struct iommu_domain *domain)
if (!smmu) if (!smmu)
return; return;
/* Disable the context bank and nuke the TLB before freeing it. */ /*
* Disable the context bank and free the page tables before freeing
* it.
*/
cb_base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx); cb_base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);
writel_relaxed(0, cb_base + ARM_SMMU_CB_SCTLR); writel_relaxed(0, cb_base + ARM_SMMU_CB_SCTLR);
arm_smmu_tlb_inv_context(smmu_domain);
if (cfg->irptndx != INVALID_IRPTNDX) { if (cfg->irptndx != INVALID_IRPTNDX) {
irq = smmu->irqs[smmu->num_global_irqs + cfg->irptndx]; irq = smmu->irqs[smmu->num_global_irqs + cfg->irptndx];
free_irq(irq, domain); free_irq(irq, domain);
} }
if (smmu_domain->pgtbl_ops)
free_io_pgtable_ops(smmu_domain->pgtbl_ops);
__arm_smmu_free_bitmap(smmu->context_map, cfg->cbndx); __arm_smmu_free_bitmap(smmu->context_map, cfg->cbndx);
} }
static int arm_smmu_domain_init(struct iommu_domain *domain) static int arm_smmu_domain_init(struct iommu_domain *domain)
{ {
struct arm_smmu_domain *smmu_domain; struct arm_smmu_domain *smmu_domain;
pgd_t *pgd;
/* /*
* Allocate the domain and initialise some of its data structures. * Allocate the domain and initialise some of its data structures.
...@@ -1026,81 +998,10 @@ static int arm_smmu_domain_init(struct iommu_domain *domain) ...@@ -1026,81 +998,10 @@ static int arm_smmu_domain_init(struct iommu_domain *domain)
if (!smmu_domain) if (!smmu_domain)
return -ENOMEM; return -ENOMEM;
pgd = kcalloc(PTRS_PER_PGD, sizeof(pgd_t), GFP_KERNEL); mutex_init(&smmu_domain->init_mutex);
if (!pgd) spin_lock_init(&smmu_domain->pgtbl_lock);
goto out_free_domain;
smmu_domain->cfg.pgd = pgd;
spin_lock_init(&smmu_domain->lock);
domain->priv = smmu_domain; domain->priv = smmu_domain;
return 0; return 0;
out_free_domain:
kfree(smmu_domain);
return -ENOMEM;
}
static void arm_smmu_free_ptes(pmd_t *pmd)
{
pgtable_t table = pmd_pgtable(*pmd);
__free_page(table);
}
static void arm_smmu_free_pmds(pud_t *pud)
{
int i;
pmd_t *pmd, *pmd_base = pmd_offset(pud, 0);
pmd = pmd_base;
for (i = 0; i < PTRS_PER_PMD; ++i) {
if (pmd_none(*pmd))
continue;
arm_smmu_free_ptes(pmd);
pmd++;
}
pmd_free(NULL, pmd_base);
}
static void arm_smmu_free_puds(pgd_t *pgd)
{
int i;
pud_t *pud, *pud_base = pud_offset(pgd, 0);
pud = pud_base;
for (i = 0; i < PTRS_PER_PUD; ++i) {
if (pud_none(*pud))
continue;
arm_smmu_free_pmds(pud);
pud++;
}
pud_free(NULL, pud_base);
}
static void arm_smmu_free_pgtables(struct arm_smmu_domain *smmu_domain)
{
int i;
struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
pgd_t *pgd, *pgd_base = cfg->pgd;
/*
* Recursively free the page tables for this domain. We don't
* care about speculative TLB filling because the tables should
* not be active in any context bank at this point (SCTLR.M is 0).
*/
pgd = pgd_base;
for (i = 0; i < PTRS_PER_PGD; ++i) {
if (pgd_none(*pgd))
continue;
arm_smmu_free_puds(pgd);
pgd++;
}
kfree(pgd_base);
} }
static void arm_smmu_domain_destroy(struct iommu_domain *domain) static void arm_smmu_domain_destroy(struct iommu_domain *domain)
...@@ -1112,7 +1013,6 @@ static void arm_smmu_domain_destroy(struct iommu_domain *domain) ...@@ -1112,7 +1013,6 @@ static void arm_smmu_domain_destroy(struct iommu_domain *domain)
* already been detached. * already been detached.
*/ */
arm_smmu_destroy_domain_context(domain); arm_smmu_destroy_domain_context(domain);
arm_smmu_free_pgtables(smmu_domain);
kfree(smmu_domain); kfree(smmu_domain);
} }
...@@ -1244,7 +1144,7 @@ static int arm_smmu_attach_dev(struct iommu_domain *domain, struct device *dev) ...@@ -1244,7 +1144,7 @@ static int arm_smmu_attach_dev(struct iommu_domain *domain, struct device *dev)
{ {
int ret; int ret;
struct arm_smmu_domain *smmu_domain = domain->priv; struct arm_smmu_domain *smmu_domain = domain->priv;
struct arm_smmu_device *smmu, *dom_smmu; struct arm_smmu_device *smmu;
struct arm_smmu_master_cfg *cfg; struct arm_smmu_master_cfg *cfg;
smmu = find_smmu_for_device(dev); smmu = find_smmu_for_device(dev);
...@@ -1258,21 +1158,16 @@ static int arm_smmu_attach_dev(struct iommu_domain *domain, struct device *dev) ...@@ -1258,21 +1158,16 @@ static int arm_smmu_attach_dev(struct iommu_domain *domain, struct device *dev)
return -EEXIST; return -EEXIST;
} }
/* /* Ensure that the domain is finalised */
* Sanity check the domain. We don't support domains across
* different SMMUs.
*/
dom_smmu = ACCESS_ONCE(smmu_domain->smmu);
if (!dom_smmu) {
/* Now that we have a master, we can finalise the domain */
ret = arm_smmu_init_domain_context(domain, smmu); ret = arm_smmu_init_domain_context(domain, smmu);
if (IS_ERR_VALUE(ret)) if (IS_ERR_VALUE(ret))
return ret; return ret;
dom_smmu = smmu_domain->smmu; /*
} * Sanity check the domain. We don't support domains across
* different SMMUs.
if (dom_smmu != smmu) { */
if (smmu_domain->smmu != smmu) {
dev_err(dev, dev_err(dev,
"cannot attach to SMMU %s whilst already attached to domain on SMMU %s\n", "cannot attach to SMMU %s whilst already attached to domain on SMMU %s\n",
dev_name(smmu_domain->smmu->dev), dev_name(smmu->dev)); dev_name(smmu_domain->smmu->dev), dev_name(smmu->dev));
...@@ -1303,293 +1198,103 @@ static void arm_smmu_detach_dev(struct iommu_domain *domain, struct device *dev) ...@@ -1303,293 +1198,103 @@ static void arm_smmu_detach_dev(struct iommu_domain *domain, struct device *dev)
arm_smmu_domain_remove_master(smmu_domain, cfg); arm_smmu_domain_remove_master(smmu_domain, cfg);
} }
static bool arm_smmu_pte_is_contiguous_range(unsigned long addr, static int arm_smmu_map(struct iommu_domain *domain, unsigned long iova,
unsigned long end) phys_addr_t paddr, size_t size, int prot)
{
return !(addr & ~ARM_SMMU_PTE_CONT_MASK) &&
(addr + ARM_SMMU_PTE_CONT_SIZE <= end);
}
static int arm_smmu_alloc_init_pte(struct arm_smmu_device *smmu, pmd_t *pmd,
unsigned long addr, unsigned long end,
unsigned long pfn, int prot, int stage)
{
pte_t *pte, *start;
pteval_t pteval = ARM_SMMU_PTE_PAGE | ARM_SMMU_PTE_AF;
if (pmd_none(*pmd)) {
/* Allocate a new set of tables */
pgtable_t table = alloc_page(GFP_ATOMIC|__GFP_ZERO);
if (!table)
return -ENOMEM;
arm_smmu_flush_pgtable(smmu, page_address(table), PAGE_SIZE);
pmd_populate(NULL, pmd, table);
arm_smmu_flush_pgtable(smmu, pmd, sizeof(*pmd));
}
if (stage == 1) {
pteval |= ARM_SMMU_PTE_AP_UNPRIV | ARM_SMMU_PTE_nG;
if (!(prot & IOMMU_WRITE) && (prot & IOMMU_READ))
pteval |= ARM_SMMU_PTE_AP_RDONLY;
if (prot & IOMMU_CACHE)
pteval |= (MAIR_ATTR_IDX_CACHE <<
ARM_SMMU_PTE_ATTRINDX_SHIFT);
} else {
pteval |= ARM_SMMU_PTE_HAP_FAULT;
if (prot & IOMMU_READ)
pteval |= ARM_SMMU_PTE_HAP_READ;
if (prot & IOMMU_WRITE)
pteval |= ARM_SMMU_PTE_HAP_WRITE;
if (prot & IOMMU_CACHE)
pteval |= ARM_SMMU_PTE_MEMATTR_OIWB;
else
pteval |= ARM_SMMU_PTE_MEMATTR_NC;
}
if (prot & IOMMU_NOEXEC)
pteval |= ARM_SMMU_PTE_XN;
/* If no access, create a faulting entry to avoid TLB fills */
if (!(prot & (IOMMU_READ | IOMMU_WRITE)))
pteval &= ~ARM_SMMU_PTE_PAGE;
pteval |= ARM_SMMU_PTE_SH_IS;
start = pmd_page_vaddr(*pmd) + pte_index(addr);
pte = start;
/*
* Install the page table entries. This is fairly complicated
* since we attempt to make use of the contiguous hint in the
* ptes where possible. The contiguous hint indicates a series
* of ARM_SMMU_PTE_CONT_ENTRIES ptes mapping a physically
* contiguous region with the following constraints:
*
* - The region start is aligned to ARM_SMMU_PTE_CONT_SIZE
* - Each pte in the region has the contiguous hint bit set
*
* This complicates unmapping (also handled by this code, when
* neither IOMMU_READ or IOMMU_WRITE are set) because it is
* possible, yet highly unlikely, that a client may unmap only
* part of a contiguous range. This requires clearing of the
* contiguous hint bits in the range before installing the new
* faulting entries.
*
* Note that re-mapping an address range without first unmapping
* it is not supported, so TLB invalidation is not required here
* and is instead performed at unmap and domain-init time.
*/
do {
int i = 1;
pteval &= ~ARM_SMMU_PTE_CONT;
if (arm_smmu_pte_is_contiguous_range(addr, end)) {
i = ARM_SMMU_PTE_CONT_ENTRIES;
pteval |= ARM_SMMU_PTE_CONT;
} else if (pte_val(*pte) &
(ARM_SMMU_PTE_CONT | ARM_SMMU_PTE_PAGE)) {
int j;
pte_t *cont_start;
unsigned long idx = pte_index(addr);
idx &= ~(ARM_SMMU_PTE_CONT_ENTRIES - 1);
cont_start = pmd_page_vaddr(*pmd) + idx;
for (j = 0; j < ARM_SMMU_PTE_CONT_ENTRIES; ++j)
pte_val(*(cont_start + j)) &=
~ARM_SMMU_PTE_CONT;
arm_smmu_flush_pgtable(smmu, cont_start,
sizeof(*pte) *
ARM_SMMU_PTE_CONT_ENTRIES);
}
do {
*pte = pfn_pte(pfn, __pgprot(pteval));
} while (pte++, pfn++, addr += PAGE_SIZE, --i);
} while (addr != end);
arm_smmu_flush_pgtable(smmu, start, sizeof(*pte) * (pte - start));
return 0;
}
static int arm_smmu_alloc_init_pmd(struct arm_smmu_device *smmu, pud_t *pud,
unsigned long addr, unsigned long end,
phys_addr_t phys, int prot, int stage)
{ {
int ret; int ret;
pmd_t *pmd; unsigned long flags;
unsigned long next, pfn = __phys_to_pfn(phys); struct arm_smmu_domain *smmu_domain = domain->priv;
struct io_pgtable_ops *ops= smmu_domain->pgtbl_ops;
#ifndef __PAGETABLE_PMD_FOLDED
if (pud_none(*pud)) {
pmd = (pmd_t *)get_zeroed_page(GFP_ATOMIC);
if (!pmd)
return -ENOMEM;
arm_smmu_flush_pgtable(smmu, pmd, PAGE_SIZE);
pud_populate(NULL, pud, pmd);
arm_smmu_flush_pgtable(smmu, pud, sizeof(*pud));
pmd += pmd_index(addr);
} else
#endif
pmd = pmd_offset(pud, addr);
do { if (!ops)
next = pmd_addr_end(addr, end); return -ENODEV;
ret = arm_smmu_alloc_init_pte(smmu, pmd, addr, next, pfn,
prot, stage);
phys += next - addr;
pfn = __phys_to_pfn(phys);
} while (pmd++, addr = next, addr < end);
spin_lock_irqsave(&smmu_domain->pgtbl_lock, flags);
ret = ops->map(ops, iova, paddr, size, prot);
spin_unlock_irqrestore(&smmu_domain->pgtbl_lock, flags);
return ret; return ret;
} }
static int arm_smmu_alloc_init_pud(struct arm_smmu_device *smmu, pgd_t *pgd, static size_t arm_smmu_unmap(struct iommu_domain *domain, unsigned long iova,
unsigned long addr, unsigned long end, size_t size)
phys_addr_t phys, int prot, int stage)
{ {
int ret = 0; size_t ret;
pud_t *pud; unsigned long flags;
unsigned long next; struct arm_smmu_domain *smmu_domain = domain->priv;
struct io_pgtable_ops *ops= smmu_domain->pgtbl_ops;
#ifndef __PAGETABLE_PUD_FOLDED
if (pgd_none(*pgd)) {
pud = (pud_t *)get_zeroed_page(GFP_ATOMIC);
if (!pud)
return -ENOMEM;
arm_smmu_flush_pgtable(smmu, pud, PAGE_SIZE);
pgd_populate(NULL, pgd, pud);
arm_smmu_flush_pgtable(smmu, pgd, sizeof(*pgd));
pud += pud_index(addr);
} else
#endif
pud = pud_offset(pgd, addr);
do { if (!ops)
next = pud_addr_end(addr, end); return 0;
ret = arm_smmu_alloc_init_pmd(smmu, pud, addr, next, phys,
prot, stage);
phys += next - addr;
} while (pud++, addr = next, addr < end);
spin_lock_irqsave(&smmu_domain->pgtbl_lock, flags);
ret = ops->unmap(ops, iova, size);
spin_unlock_irqrestore(&smmu_domain->pgtbl_lock, flags);
return ret; return ret;
} }
static int arm_smmu_handle_mapping(struct arm_smmu_domain *smmu_domain, static phys_addr_t arm_smmu_iova_to_phys_hard(struct iommu_domain *domain,
unsigned long iova, phys_addr_t paddr, dma_addr_t iova)
size_t size, int prot)
{ {
int ret, stage; struct arm_smmu_domain *smmu_domain = domain->priv;
unsigned long end;
phys_addr_t input_mask, output_mask;
struct arm_smmu_device *smmu = smmu_domain->smmu; struct arm_smmu_device *smmu = smmu_domain->smmu;
struct arm_smmu_cfg *cfg = &smmu_domain->cfg; struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
pgd_t *pgd = cfg->pgd; struct io_pgtable_ops *ops= smmu_domain->pgtbl_ops;
unsigned long flags; struct device *dev = smmu->dev;
void __iomem *cb_base;
u32 tmp;
u64 phys;
if (cfg->cbar == CBAR_TYPE_S2_TRANS) { cb_base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);
stage = 2;
input_mask = (1ULL << smmu->s2_input_size) - 1; if (smmu->version == 1) {
output_mask = (1ULL << smmu->s2_output_size) - 1; u32 reg = iova & ~0xfff;
writel_relaxed(reg, cb_base + ARM_SMMU_CB_ATS1PR_LO);
} else { } else {
stage = 1; u32 reg = iova & ~0xfff;
input_mask = (1ULL << smmu->s1_input_size) - 1; writel_relaxed(reg, cb_base + ARM_SMMU_CB_ATS1PR_LO);
output_mask = (1ULL << smmu->s1_output_size) - 1; reg = (iova & ~0xfff) >> 32;
writel_relaxed(reg, cb_base + ARM_SMMU_CB_ATS1PR_HI);
} }
if (!pgd) if (readl_poll_timeout_atomic(cb_base + ARM_SMMU_CB_ATSR, tmp,
return -EINVAL; !(tmp & ATSR_ACTIVE), 5, 50)) {
dev_err(dev,
if (size & ~PAGE_MASK) "iova to phys timed out on 0x%pad. Falling back to software table walk.\n",
return -EINVAL; &iova);
return ops->iova_to_phys(ops, iova);
if ((phys_addr_t)iova & ~input_mask) }
return -ERANGE;
if (paddr & ~output_mask)
return -ERANGE;
spin_lock_irqsave(&smmu_domain->lock, flags);
pgd += pgd_index(iova);
end = iova + size;
do {
unsigned long next = pgd_addr_end(iova, end);
ret = arm_smmu_alloc_init_pud(smmu, pgd, iova, next, paddr,
prot, stage);
if (ret)
goto out_unlock;
paddr += next - iova;
iova = next;
} while (pgd++, iova != end);
out_unlock:
spin_unlock_irqrestore(&smmu_domain->lock, flags);
return ret;
}
static int arm_smmu_map(struct iommu_domain *domain, unsigned long iova,
phys_addr_t paddr, size_t size, int prot)
{
struct arm_smmu_domain *smmu_domain = domain->priv;
if (!smmu_domain)
return -ENODEV;
return arm_smmu_handle_mapping(smmu_domain, iova, paddr, size, prot); phys = readl_relaxed(cb_base + ARM_SMMU_CB_PAR_LO);
} phys |= ((u64)readl_relaxed(cb_base + ARM_SMMU_CB_PAR_HI)) << 32;
static size_t arm_smmu_unmap(struct iommu_domain *domain, unsigned long iova, if (phys & CB_PAR_F) {
size_t size) dev_err(dev, "translation fault!\n");
{ dev_err(dev, "PAR = 0x%llx\n", phys);
int ret; return 0;
struct arm_smmu_domain *smmu_domain = domain->priv; }
ret = arm_smmu_handle_mapping(smmu_domain, iova, 0, size, 0); return (phys & GENMASK_ULL(39, 12)) | (iova & 0xfff);
arm_smmu_tlb_inv_context(smmu_domain);
return ret ? 0 : size;
} }
static phys_addr_t arm_smmu_iova_to_phys(struct iommu_domain *domain, static phys_addr_t arm_smmu_iova_to_phys(struct iommu_domain *domain,
dma_addr_t iova) dma_addr_t iova)
{ {
pgd_t *pgdp, pgd; phys_addr_t ret;
pud_t pud; unsigned long flags;
pmd_t pmd;
pte_t pte;
struct arm_smmu_domain *smmu_domain = domain->priv; struct arm_smmu_domain *smmu_domain = domain->priv;
struct arm_smmu_cfg *cfg = &smmu_domain->cfg; struct io_pgtable_ops *ops= smmu_domain->pgtbl_ops;
pgdp = cfg->pgd; if (!ops)
if (!pgdp)
return 0; return 0;
pgd = *(pgdp + pgd_index(iova)); spin_lock_irqsave(&smmu_domain->pgtbl_lock, flags);
if (pgd_none(pgd)) if (smmu_domain->smmu->features & ARM_SMMU_FEAT_TRANS_OPS)
return 0; ret = arm_smmu_iova_to_phys_hard(domain, iova);
else
pud = *pud_offset(&pgd, iova); ret = ops->iova_to_phys(ops, iova);
if (pud_none(pud)) spin_unlock_irqrestore(&smmu_domain->pgtbl_lock, flags);
return 0;
pmd = *pmd_offset(&pud, iova);
if (pmd_none(pmd))
return 0;
pte = *(pmd_page_vaddr(pmd) + pte_index(iova));
if (pte_none(pte))
return 0;
return __pfn_to_phys(pte_pfn(pte)) | (iova & ~PAGE_MASK); return ret;
} }
static bool arm_smmu_capable(enum iommu_cap cap) static bool arm_smmu_capable(enum iommu_cap cap)
...@@ -1698,24 +1403,34 @@ static int arm_smmu_domain_get_attr(struct iommu_domain *domain, ...@@ -1698,24 +1403,34 @@ static int arm_smmu_domain_get_attr(struct iommu_domain *domain,
static int arm_smmu_domain_set_attr(struct iommu_domain *domain, static int arm_smmu_domain_set_attr(struct iommu_domain *domain,
enum iommu_attr attr, void *data) enum iommu_attr attr, void *data)
{ {
int ret = 0;
struct arm_smmu_domain *smmu_domain = domain->priv; struct arm_smmu_domain *smmu_domain = domain->priv;
mutex_lock(&smmu_domain->init_mutex);
switch (attr) { switch (attr) {
case DOMAIN_ATTR_NESTING: case DOMAIN_ATTR_NESTING:
if (smmu_domain->smmu) if (smmu_domain->smmu) {
return -EPERM; ret = -EPERM;
goto out_unlock;
}
if (*(int *)data) if (*(int *)data)
smmu_domain->stage = ARM_SMMU_DOMAIN_NESTED; smmu_domain->stage = ARM_SMMU_DOMAIN_NESTED;
else else
smmu_domain->stage = ARM_SMMU_DOMAIN_S1; smmu_domain->stage = ARM_SMMU_DOMAIN_S1;
return 0; break;
default: default:
return -ENODEV; ret = -ENODEV;
} }
out_unlock:
mutex_unlock(&smmu_domain->init_mutex);
return ret;
} }
static const struct iommu_ops arm_smmu_ops = { static struct iommu_ops arm_smmu_ops = {
.capable = arm_smmu_capable, .capable = arm_smmu_capable,
.domain_init = arm_smmu_domain_init, .domain_init = arm_smmu_domain_init,
.domain_destroy = arm_smmu_domain_destroy, .domain_destroy = arm_smmu_domain_destroy,
...@@ -1729,9 +1444,7 @@ static const struct iommu_ops arm_smmu_ops = { ...@@ -1729,9 +1444,7 @@ static const struct iommu_ops arm_smmu_ops = {
.remove_device = arm_smmu_remove_device, .remove_device = arm_smmu_remove_device,
.domain_get_attr = arm_smmu_domain_get_attr, .domain_get_attr = arm_smmu_domain_get_attr,
.domain_set_attr = arm_smmu_domain_set_attr, .domain_set_attr = arm_smmu_domain_set_attr,
.pgsize_bitmap = (SECTION_SIZE | .pgsize_bitmap = -1UL, /* Restricted during device attach */
ARM_SMMU_PTE_CONT_SIZE |
PAGE_SIZE),
}; };
static void arm_smmu_device_reset(struct arm_smmu_device *smmu) static void arm_smmu_device_reset(struct arm_smmu_device *smmu)
...@@ -1760,7 +1473,6 @@ static void arm_smmu_device_reset(struct arm_smmu_device *smmu) ...@@ -1760,7 +1473,6 @@ static void arm_smmu_device_reset(struct arm_smmu_device *smmu)
} }
/* Invalidate the TLB, just in case */ /* Invalidate the TLB, just in case */
writel_relaxed(0, gr0_base + ARM_SMMU_GR0_STLBIALL);
writel_relaxed(0, gr0_base + ARM_SMMU_GR0_TLBIALLH); writel_relaxed(0, gr0_base + ARM_SMMU_GR0_TLBIALLH);
writel_relaxed(0, gr0_base + ARM_SMMU_GR0_TLBIALLNSNH); writel_relaxed(0, gr0_base + ARM_SMMU_GR0_TLBIALLNSNH);
...@@ -1782,7 +1494,7 @@ static void arm_smmu_device_reset(struct arm_smmu_device *smmu) ...@@ -1782,7 +1494,7 @@ static void arm_smmu_device_reset(struct arm_smmu_device *smmu)
reg &= ~(sCR0_BSU_MASK << sCR0_BSU_SHIFT); reg &= ~(sCR0_BSU_MASK << sCR0_BSU_SHIFT);
/* Push the button */ /* Push the button */
arm_smmu_tlb_sync(smmu); __arm_smmu_tlb_sync(smmu);
writel(reg, ARM_SMMU_GR0_NS(smmu) + ARM_SMMU_GR0_sCR0); writel(reg, ARM_SMMU_GR0_NS(smmu) + ARM_SMMU_GR0_sCR0);
} }
...@@ -1816,12 +1528,6 @@ static int arm_smmu_device_cfg_probe(struct arm_smmu_device *smmu) ...@@ -1816,12 +1528,6 @@ static int arm_smmu_device_cfg_probe(struct arm_smmu_device *smmu)
/* ID0 */ /* ID0 */
id = readl_relaxed(gr0_base + ARM_SMMU_GR0_ID0); id = readl_relaxed(gr0_base + ARM_SMMU_GR0_ID0);
#ifndef CONFIG_64BIT
if (((id >> ID0_PTFS_SHIFT) & ID0_PTFS_MASK) == ID0_PTFS_V8_ONLY) {
dev_err(smmu->dev, "\tno v7 descriptor support!\n");
return -ENODEV;
}
#endif
/* Restrict available stages based on module parameter */ /* Restrict available stages based on module parameter */
if (force_stage == 1) if (force_stage == 1)
...@@ -1850,6 +1556,11 @@ static int arm_smmu_device_cfg_probe(struct arm_smmu_device *smmu) ...@@ -1850,6 +1556,11 @@ static int arm_smmu_device_cfg_probe(struct arm_smmu_device *smmu)
return -ENODEV; return -ENODEV;
} }
if (smmu->version == 1 || (!(id & ID0_ATOSNS) && (id & ID0_S1TS))) {
smmu->features |= ARM_SMMU_FEAT_TRANS_OPS;
dev_notice(smmu->dev, "\taddress translation ops\n");
}
if (id & ID0_CTTW) { if (id & ID0_CTTW) {
smmu->features |= ARM_SMMU_FEAT_COHERENT_WALK; smmu->features |= ARM_SMMU_FEAT_COHERENT_WALK;
dev_notice(smmu->dev, "\tcoherent table walk\n"); dev_notice(smmu->dev, "\tcoherent table walk\n");
...@@ -1894,16 +1605,14 @@ static int arm_smmu_device_cfg_probe(struct arm_smmu_device *smmu) ...@@ -1894,16 +1605,14 @@ static int arm_smmu_device_cfg_probe(struct arm_smmu_device *smmu)
smmu->pgshift = (id & ID1_PAGESIZE) ? 16 : 12; smmu->pgshift = (id & ID1_PAGESIZE) ? 16 : 12;
/* Check for size mismatch of SMMU address space from mapped region */ /* Check for size mismatch of SMMU address space from mapped region */
size = 1 << size = 1 << (((id >> ID1_NUMPAGENDXB_SHIFT) & ID1_NUMPAGENDXB_MASK) + 1);
(((id >> ID1_NUMPAGENDXB_SHIFT) & ID1_NUMPAGENDXB_MASK) + 1);
size *= 2 << smmu->pgshift; size *= 2 << smmu->pgshift;
if (smmu->size != size) if (smmu->size != size)
dev_warn(smmu->dev, dev_warn(smmu->dev,
"SMMU address space size (0x%lx) differs from mapped region size (0x%lx)!\n", "SMMU address space size (0x%lx) differs from mapped region size (0x%lx)!\n",
size, smmu->size); size, smmu->size);
smmu->num_s2_context_banks = (id >> ID1_NUMS2CB_SHIFT) & smmu->num_s2_context_banks = (id >> ID1_NUMS2CB_SHIFT) & ID1_NUMS2CB_MASK;
ID1_NUMS2CB_MASK;
smmu->num_context_banks = (id >> ID1_NUMCB_SHIFT) & ID1_NUMCB_MASK; smmu->num_context_banks = (id >> ID1_NUMCB_SHIFT) & ID1_NUMCB_MASK;
if (smmu->num_s2_context_banks > smmu->num_context_banks) { if (smmu->num_s2_context_banks > smmu->num_context_banks) {
dev_err(smmu->dev, "impossible number of S2 context banks!\n"); dev_err(smmu->dev, "impossible number of S2 context banks!\n");
...@@ -1915,46 +1624,40 @@ static int arm_smmu_device_cfg_probe(struct arm_smmu_device *smmu) ...@@ -1915,46 +1624,40 @@ static int arm_smmu_device_cfg_probe(struct arm_smmu_device *smmu)
/* ID2 */ /* ID2 */
id = readl_relaxed(gr0_base + ARM_SMMU_GR0_ID2); id = readl_relaxed(gr0_base + ARM_SMMU_GR0_ID2);
size = arm_smmu_id_size_to_bits((id >> ID2_IAS_SHIFT) & ID2_IAS_MASK); size = arm_smmu_id_size_to_bits((id >> ID2_IAS_SHIFT) & ID2_IAS_MASK);
smmu->s1_output_size = min_t(unsigned long, PHYS_MASK_SHIFT, size); smmu->ipa_size = size;
/* Stage-2 input size limited due to pgd allocation (PTRS_PER_PGD) */ /* The output mask is also applied for bypass */
#ifdef CONFIG_64BIT
smmu->s2_input_size = min_t(unsigned long, VA_BITS, size);
#else
smmu->s2_input_size = min(32UL, size);
#endif
/* The stage-2 output mask is also applied for bypass */
size = arm_smmu_id_size_to_bits((id >> ID2_OAS_SHIFT) & ID2_OAS_MASK); size = arm_smmu_id_size_to_bits((id >> ID2_OAS_SHIFT) & ID2_OAS_MASK);
smmu->s2_output_size = min_t(unsigned long, PHYS_MASK_SHIFT, size); smmu->pa_size = size;
if (smmu->version == ARM_SMMU_V1) { if (smmu->version == ARM_SMMU_V1) {
smmu->s1_input_size = 32; smmu->va_size = smmu->ipa_size;
size = SZ_4K | SZ_2M | SZ_1G;
} else { } else {
#ifdef CONFIG_64BIT
size = (id >> ID2_UBS_SHIFT) & ID2_UBS_MASK; size = (id >> ID2_UBS_SHIFT) & ID2_UBS_MASK;
size = min(VA_BITS, arm_smmu_id_size_to_bits(size)); smmu->va_size = arm_smmu_id_size_to_bits(size);
#else #ifndef CONFIG_64BIT
size = 32; smmu->va_size = min(32UL, smmu->va_size);
#endif #endif
smmu->s1_input_size = size; size = 0;
if (id & ID2_PTFS_4K)
if ((PAGE_SIZE == SZ_4K && !(id & ID2_PTFS_4K)) || size |= SZ_4K | SZ_2M | SZ_1G;
(PAGE_SIZE == SZ_64K && !(id & ID2_PTFS_64K)) || if (id & ID2_PTFS_16K)
(PAGE_SIZE != SZ_4K && PAGE_SIZE != SZ_64K)) { size |= SZ_16K | SZ_32M;
dev_err(smmu->dev, "CPU page size 0x%lx unsupported\n", if (id & ID2_PTFS_64K)
PAGE_SIZE); size |= SZ_64K | SZ_512M;
return -ENODEV;
}
} }
arm_smmu_ops.pgsize_bitmap &= size;
dev_notice(smmu->dev, "\tSupported page sizes: 0x%08lx\n", size);
if (smmu->features & ARM_SMMU_FEAT_TRANS_S1) if (smmu->features & ARM_SMMU_FEAT_TRANS_S1)
dev_notice(smmu->dev, "\tStage-1: %lu-bit VA -> %lu-bit IPA\n", dev_notice(smmu->dev, "\tStage-1: %lu-bit VA -> %lu-bit IPA\n",
smmu->s1_input_size, smmu->s1_output_size); smmu->va_size, smmu->ipa_size);
if (smmu->features & ARM_SMMU_FEAT_TRANS_S2) if (smmu->features & ARM_SMMU_FEAT_TRANS_S2)
dev_notice(smmu->dev, "\tStage-2: %lu-bit IPA -> %lu-bit PA\n", dev_notice(smmu->dev, "\tStage-2: %lu-bit IPA -> %lu-bit PA\n",
smmu->s2_input_size, smmu->s2_output_size); smmu->ipa_size, smmu->pa_size);
return 0; return 0;
} }
......
/*
* CPU-agnostic ARM page table allocator.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
* Copyright (C) 2014 ARM Limited
*
* Author: Will Deacon <will.deacon@arm.com>
*/
#define pr_fmt(fmt) "arm-lpae io-pgtable: " fmt
#include <linux/iommu.h>
#include <linux/kernel.h>
#include <linux/sizes.h>
#include <linux/slab.h>
#include <linux/types.h>
#include "io-pgtable.h"
#define ARM_LPAE_MAX_ADDR_BITS 48
#define ARM_LPAE_S2_MAX_CONCAT_PAGES 16
#define ARM_LPAE_MAX_LEVELS 4
/* Struct accessors */
#define io_pgtable_to_data(x) \
container_of((x), struct arm_lpae_io_pgtable, iop)
#define io_pgtable_ops_to_pgtable(x) \
container_of((x), struct io_pgtable, ops)
#define io_pgtable_ops_to_data(x) \
io_pgtable_to_data(io_pgtable_ops_to_pgtable(x))
/*
* For consistency with the architecture, we always consider
* ARM_LPAE_MAX_LEVELS levels, with the walk starting at level n >=0
*/
#define ARM_LPAE_START_LVL(d) (ARM_LPAE_MAX_LEVELS - (d)->levels)
/*
* Calculate the right shift amount to get to the portion describing level l
* in a virtual address mapped by the pagetable in d.
*/
#define ARM_LPAE_LVL_SHIFT(l,d) \
((((d)->levels - ((l) - ARM_LPAE_START_LVL(d) + 1)) \
* (d)->bits_per_level) + (d)->pg_shift)
#define ARM_LPAE_PAGES_PER_PGD(d) ((d)->pgd_size >> (d)->pg_shift)
/*
* Calculate the index at level l used to map virtual address a using the
* pagetable in d.
*/
#define ARM_LPAE_PGD_IDX(l,d) \
((l) == ARM_LPAE_START_LVL(d) ? ilog2(ARM_LPAE_PAGES_PER_PGD(d)) : 0)
#define ARM_LPAE_LVL_IDX(a,l,d) \
(((a) >> ARM_LPAE_LVL_SHIFT(l,d)) & \
((1 << ((d)->bits_per_level + ARM_LPAE_PGD_IDX(l,d))) - 1))
/* Calculate the block/page mapping size at level l for pagetable in d. */
#define ARM_LPAE_BLOCK_SIZE(l,d) \
(1 << (ilog2(sizeof(arm_lpae_iopte)) + \
((ARM_LPAE_MAX_LEVELS - (l)) * (d)->bits_per_level)))
/* Page table bits */
#define ARM_LPAE_PTE_TYPE_SHIFT 0
#define ARM_LPAE_PTE_TYPE_MASK 0x3
#define ARM_LPAE_PTE_TYPE_BLOCK 1
#define ARM_LPAE_PTE_TYPE_TABLE 3
#define ARM_LPAE_PTE_TYPE_PAGE 3
#define ARM_LPAE_PTE_NSTABLE (((arm_lpae_iopte)1) << 63)
#define ARM_LPAE_PTE_XN (((arm_lpae_iopte)3) << 53)
#define ARM_LPAE_PTE_AF (((arm_lpae_iopte)1) << 10)
#define ARM_LPAE_PTE_SH_NS (((arm_lpae_iopte)0) << 8)
#define ARM_LPAE_PTE_SH_OS (((arm_lpae_iopte)2) << 8)
#define ARM_LPAE_PTE_SH_IS (((arm_lpae_iopte)3) << 8)
#define ARM_LPAE_PTE_NS (((arm_lpae_iopte)1) << 5)
#define ARM_LPAE_PTE_VALID (((arm_lpae_iopte)1) << 0)
#define ARM_LPAE_PTE_ATTR_LO_MASK (((arm_lpae_iopte)0x3ff) << 2)
/* Ignore the contiguous bit for block splitting */
#define ARM_LPAE_PTE_ATTR_HI_MASK (((arm_lpae_iopte)6) << 52)
#define ARM_LPAE_PTE_ATTR_MASK (ARM_LPAE_PTE_ATTR_LO_MASK | \
ARM_LPAE_PTE_ATTR_HI_MASK)
/* Stage-1 PTE */
#define ARM_LPAE_PTE_AP_UNPRIV (((arm_lpae_iopte)1) << 6)
#define ARM_LPAE_PTE_AP_RDONLY (((arm_lpae_iopte)2) << 6)
#define ARM_LPAE_PTE_ATTRINDX_SHIFT 2
#define ARM_LPAE_PTE_nG (((arm_lpae_iopte)1) << 11)
/* Stage-2 PTE */
#define ARM_LPAE_PTE_HAP_FAULT (((arm_lpae_iopte)0) << 6)
#define ARM_LPAE_PTE_HAP_READ (((arm_lpae_iopte)1) << 6)
#define ARM_LPAE_PTE_HAP_WRITE (((arm_lpae_iopte)2) << 6)
#define ARM_LPAE_PTE_MEMATTR_OIWB (((arm_lpae_iopte)0xf) << 2)
#define ARM_LPAE_PTE_MEMATTR_NC (((arm_lpae_iopte)0x5) << 2)
#define ARM_LPAE_PTE_MEMATTR_DEV (((arm_lpae_iopte)0x1) << 2)
/* Register bits */
#define ARM_32_LPAE_TCR_EAE (1 << 31)
#define ARM_64_LPAE_S2_TCR_RES1 (1 << 31)
#define ARM_LPAE_TCR_TG0_4K (0 << 14)
#define ARM_LPAE_TCR_TG0_64K (1 << 14)
#define ARM_LPAE_TCR_TG0_16K (2 << 14)
#define ARM_LPAE_TCR_SH0_SHIFT 12
#define ARM_LPAE_TCR_SH0_MASK 0x3
#define ARM_LPAE_TCR_SH_NS 0
#define ARM_LPAE_TCR_SH_OS 2
#define ARM_LPAE_TCR_SH_IS 3
#define ARM_LPAE_TCR_ORGN0_SHIFT 10
#define ARM_LPAE_TCR_IRGN0_SHIFT 8
#define ARM_LPAE_TCR_RGN_MASK 0x3
#define ARM_LPAE_TCR_RGN_NC 0
#define ARM_LPAE_TCR_RGN_WBWA 1
#define ARM_LPAE_TCR_RGN_WT 2
#define ARM_LPAE_TCR_RGN_WB 3
#define ARM_LPAE_TCR_SL0_SHIFT 6
#define ARM_LPAE_TCR_SL0_MASK 0x3
#define ARM_LPAE_TCR_T0SZ_SHIFT 0
#define ARM_LPAE_TCR_SZ_MASK 0xf
#define ARM_LPAE_TCR_PS_SHIFT 16
#define ARM_LPAE_TCR_PS_MASK 0x7
#define ARM_LPAE_TCR_IPS_SHIFT 32
#define ARM_LPAE_TCR_IPS_MASK 0x7
#define ARM_LPAE_TCR_PS_32_BIT 0x0ULL
#define ARM_LPAE_TCR_PS_36_BIT 0x1ULL
#define ARM_LPAE_TCR_PS_40_BIT 0x2ULL
#define ARM_LPAE_TCR_PS_42_BIT 0x3ULL
#define ARM_LPAE_TCR_PS_44_BIT 0x4ULL
#define ARM_LPAE_TCR_PS_48_BIT 0x5ULL
#define ARM_LPAE_MAIR_ATTR_SHIFT(n) ((n) << 3)
#define ARM_LPAE_MAIR_ATTR_MASK 0xff
#define ARM_LPAE_MAIR_ATTR_DEVICE 0x04
#define ARM_LPAE_MAIR_ATTR_NC 0x44
#define ARM_LPAE_MAIR_ATTR_WBRWA 0xff
#define ARM_LPAE_MAIR_ATTR_IDX_NC 0
#define ARM_LPAE_MAIR_ATTR_IDX_CACHE 1
#define ARM_LPAE_MAIR_ATTR_IDX_DEV 2
/* IOPTE accessors */
#define iopte_deref(pte,d) \
(__va((pte) & ((1ULL << ARM_LPAE_MAX_ADDR_BITS) - 1) \
& ~((1ULL << (d)->pg_shift) - 1)))
#define iopte_type(pte,l) \
(((pte) >> ARM_LPAE_PTE_TYPE_SHIFT) & ARM_LPAE_PTE_TYPE_MASK)
#define iopte_prot(pte) ((pte) & ARM_LPAE_PTE_ATTR_MASK)
#define iopte_leaf(pte,l) \
(l == (ARM_LPAE_MAX_LEVELS - 1) ? \
(iopte_type(pte,l) == ARM_LPAE_PTE_TYPE_PAGE) : \
(iopte_type(pte,l) == ARM_LPAE_PTE_TYPE_BLOCK))
#define iopte_to_pfn(pte,d) \
(((pte) & ((1ULL << ARM_LPAE_MAX_ADDR_BITS) - 1)) >> (d)->pg_shift)
#define pfn_to_iopte(pfn,d) \
(((pfn) << (d)->pg_shift) & ((1ULL << ARM_LPAE_MAX_ADDR_BITS) - 1))
struct arm_lpae_io_pgtable {
struct io_pgtable iop;
int levels;
size_t pgd_size;
unsigned long pg_shift;
unsigned long bits_per_level;
void *pgd;
};
typedef u64 arm_lpae_iopte;
static bool selftest_running = false;
static int arm_lpae_init_pte(struct arm_lpae_io_pgtable *data,
unsigned long iova, phys_addr_t paddr,
arm_lpae_iopte prot, int lvl,
arm_lpae_iopte *ptep)
{
arm_lpae_iopte pte = prot;
/* We require an unmap first */
if (iopte_leaf(*ptep, lvl)) {
WARN_ON(!selftest_running);
return -EEXIST;
}
if (data->iop.cfg.quirks & IO_PGTABLE_QUIRK_ARM_NS)
pte |= ARM_LPAE_PTE_NS;
if (lvl == ARM_LPAE_MAX_LEVELS - 1)
pte |= ARM_LPAE_PTE_TYPE_PAGE;
else
pte |= ARM_LPAE_PTE_TYPE_BLOCK;
pte |= ARM_LPAE_PTE_AF | ARM_LPAE_PTE_SH_IS;
pte |= pfn_to_iopte(paddr >> data->pg_shift, data);
*ptep = pte;
data->iop.cfg.tlb->flush_pgtable(ptep, sizeof(*ptep), data->iop.cookie);
return 0;
}
static int __arm_lpae_map(struct arm_lpae_io_pgtable *data, unsigned long iova,
phys_addr_t paddr, size_t size, arm_lpae_iopte prot,
int lvl, arm_lpae_iopte *ptep)
{
arm_lpae_iopte *cptep, pte;
void *cookie = data->iop.cookie;
size_t block_size = ARM_LPAE_BLOCK_SIZE(lvl, data);
/* Find our entry at the current level */
ptep += ARM_LPAE_LVL_IDX(iova, lvl, data);
/* If we can install a leaf entry at this level, then do so */
if (size == block_size && (size & data->iop.cfg.pgsize_bitmap))
return arm_lpae_init_pte(data, iova, paddr, prot, lvl, ptep);
/* We can't allocate tables at the final level */
if (WARN_ON(lvl >= ARM_LPAE_MAX_LEVELS - 1))
return -EINVAL;
/* Grab a pointer to the next level */
pte = *ptep;
if (!pte) {
cptep = alloc_pages_exact(1UL << data->pg_shift,
GFP_ATOMIC | __GFP_ZERO);
if (!cptep)
return -ENOMEM;
data->iop.cfg.tlb->flush_pgtable(cptep, 1UL << data->pg_shift,
cookie);
pte = __pa(cptep) | ARM_LPAE_PTE_TYPE_TABLE;
if (data->iop.cfg.quirks & IO_PGTABLE_QUIRK_ARM_NS)
pte |= ARM_LPAE_PTE_NSTABLE;
*ptep = pte;
data->iop.cfg.tlb->flush_pgtable(ptep, sizeof(*ptep), cookie);
} else {
cptep = iopte_deref(pte, data);
}
/* Rinse, repeat */
return __arm_lpae_map(data, iova, paddr, size, prot, lvl + 1, cptep);
}
static arm_lpae_iopte arm_lpae_prot_to_pte(struct arm_lpae_io_pgtable *data,
int prot)
{
arm_lpae_iopte pte;
if (data->iop.fmt == ARM_64_LPAE_S1 ||
data->iop.fmt == ARM_32_LPAE_S1) {
pte = ARM_LPAE_PTE_AP_UNPRIV | ARM_LPAE_PTE_nG;
if (!(prot & IOMMU_WRITE) && (prot & IOMMU_READ))
pte |= ARM_LPAE_PTE_AP_RDONLY;
if (prot & IOMMU_CACHE)
pte |= (ARM_LPAE_MAIR_ATTR_IDX_CACHE
<< ARM_LPAE_PTE_ATTRINDX_SHIFT);
} else {
pte = ARM_LPAE_PTE_HAP_FAULT;
if (prot & IOMMU_READ)
pte |= ARM_LPAE_PTE_HAP_READ;
if (prot & IOMMU_WRITE)
pte |= ARM_LPAE_PTE_HAP_WRITE;
if (prot & IOMMU_CACHE)
pte |= ARM_LPAE_PTE_MEMATTR_OIWB;
else
pte |= ARM_LPAE_PTE_MEMATTR_NC;
}
if (prot & IOMMU_NOEXEC)
pte |= ARM_LPAE_PTE_XN;
return pte;
}
static int arm_lpae_map(struct io_pgtable_ops *ops, unsigned long iova,
phys_addr_t paddr, size_t size, int iommu_prot)
{
struct arm_lpae_io_pgtable *data = io_pgtable_ops_to_data(ops);
arm_lpae_iopte *ptep = data->pgd;
int lvl = ARM_LPAE_START_LVL(data);
arm_lpae_iopte prot;
/* If no access, then nothing to do */
if (!(iommu_prot & (IOMMU_READ | IOMMU_WRITE)))
return 0;
prot = arm_lpae_prot_to_pte(data, iommu_prot);
return __arm_lpae_map(data, iova, paddr, size, prot, lvl, ptep);
}
static void __arm_lpae_free_pgtable(struct arm_lpae_io_pgtable *data, int lvl,
arm_lpae_iopte *ptep)
{
arm_lpae_iopte *start, *end;
unsigned long table_size;
/* Only leaf entries at the last level */
if (lvl == ARM_LPAE_MAX_LEVELS - 1)
return;
if (lvl == ARM_LPAE_START_LVL(data))
table_size = data->pgd_size;
else
table_size = 1UL << data->pg_shift;
start = ptep;
end = (void *)ptep + table_size;
while (ptep != end) {
arm_lpae_iopte pte = *ptep++;
if (!pte || iopte_leaf(pte, lvl))
continue;
__arm_lpae_free_pgtable(data, lvl + 1, iopte_deref(pte, data));
}
free_pages_exact(start, table_size);
}
static void arm_lpae_free_pgtable(struct io_pgtable *iop)
{
struct arm_lpae_io_pgtable *data = io_pgtable_to_data(iop);
__arm_lpae_free_pgtable(data, ARM_LPAE_START_LVL(data), data->pgd);
kfree(data);
}
static int arm_lpae_split_blk_unmap(struct arm_lpae_io_pgtable *data,
unsigned long iova, size_t size,
arm_lpae_iopte prot, int lvl,
arm_lpae_iopte *ptep, size_t blk_size)
{
unsigned long blk_start, blk_end;
phys_addr_t blk_paddr;
arm_lpae_iopte table = 0;
void *cookie = data->iop.cookie;
const struct iommu_gather_ops *tlb = data->iop.cfg.tlb;
blk_start = iova & ~(blk_size - 1);
blk_end = blk_start + blk_size;
blk_paddr = iopte_to_pfn(*ptep, data) << data->pg_shift;
for (; blk_start < blk_end; blk_start += size, blk_paddr += size) {
arm_lpae_iopte *tablep;
/* Unmap! */
if (blk_start == iova)
continue;
/* __arm_lpae_map expects a pointer to the start of the table */
tablep = &table - ARM_LPAE_LVL_IDX(blk_start, lvl, data);
if (__arm_lpae_map(data, blk_start, blk_paddr, size, prot, lvl,
tablep) < 0) {
if (table) {
/* Free the table we allocated */
tablep = iopte_deref(table, data);
__arm_lpae_free_pgtable(data, lvl + 1, tablep);
}
return 0; /* Bytes unmapped */
}
}
*ptep = table;
tlb->flush_pgtable(ptep, sizeof(*ptep), cookie);
iova &= ~(blk_size - 1);
tlb->tlb_add_flush(iova, blk_size, true, cookie);
return size;
}
static int __arm_lpae_unmap(struct arm_lpae_io_pgtable *data,
unsigned long iova, size_t size, int lvl,
arm_lpae_iopte *ptep)
{
arm_lpae_iopte pte;
const struct iommu_gather_ops *tlb = data->iop.cfg.tlb;
void *cookie = data->iop.cookie;
size_t blk_size = ARM_LPAE_BLOCK_SIZE(lvl, data);
ptep += ARM_LPAE_LVL_IDX(iova, lvl, data);
pte = *ptep;
/* Something went horribly wrong and we ran out of page table */
if (WARN_ON(!pte || (lvl == ARM_LPAE_MAX_LEVELS)))
return 0;
/* If the size matches this level, we're in the right place */
if (size == blk_size) {
*ptep = 0;
tlb->flush_pgtable(ptep, sizeof(*ptep), cookie);
if (!iopte_leaf(pte, lvl)) {
/* Also flush any partial walks */
tlb->tlb_add_flush(iova, size, false, cookie);
tlb->tlb_sync(data->iop.cookie);
ptep = iopte_deref(pte, data);
__arm_lpae_free_pgtable(data, lvl + 1, ptep);
} else {
tlb->tlb_add_flush(iova, size, true, cookie);
}
return size;
} else if (iopte_leaf(pte, lvl)) {
/*
* Insert a table at the next level to map the old region,
* minus the part we want to unmap
*/
return arm_lpae_split_blk_unmap(data, iova, size,
iopte_prot(pte), lvl, ptep,
blk_size);
}
/* Keep on walkin' */
ptep = iopte_deref(pte, data);
return __arm_lpae_unmap(data, iova, size, lvl + 1, ptep);
}
static int arm_lpae_unmap(struct io_pgtable_ops *ops, unsigned long iova,
size_t size)
{
size_t unmapped;
struct arm_lpae_io_pgtable *data = io_pgtable_ops_to_data(ops);
struct io_pgtable *iop = &data->iop;
arm_lpae_iopte *ptep = data->pgd;
int lvl = ARM_LPAE_START_LVL(data);
unmapped = __arm_lpae_unmap(data, iova, size, lvl, ptep);
if (unmapped)
iop->cfg.tlb->tlb_sync(iop->cookie);
return unmapped;
}
static phys_addr_t arm_lpae_iova_to_phys(struct io_pgtable_ops *ops,
unsigned long iova)
{
struct arm_lpae_io_pgtable *data = io_pgtable_ops_to_data(ops);
arm_lpae_iopte pte, *ptep = data->pgd;
int lvl = ARM_LPAE_START_LVL(data);
do {
/* Valid IOPTE pointer? */
if (!ptep)
return 0;
/* Grab the IOPTE we're interested in */
pte = *(ptep + ARM_LPAE_LVL_IDX(iova, lvl, data));
/* Valid entry? */
if (!pte)
return 0;
/* Leaf entry? */
if (iopte_leaf(pte,lvl))
goto found_translation;
/* Take it to the next level */
ptep = iopte_deref(pte, data);
} while (++lvl < ARM_LPAE_MAX_LEVELS);
/* Ran out of page tables to walk */
return 0;
found_translation:
iova &= ((1 << data->pg_shift) - 1);
return ((phys_addr_t)iopte_to_pfn(pte,data) << data->pg_shift) | iova;
}
static void arm_lpae_restrict_pgsizes(struct io_pgtable_cfg *cfg)
{
unsigned long granule;
/*
* We need to restrict the supported page sizes to match the
* translation regime for a particular granule. Aim to match
* the CPU page size if possible, otherwise prefer smaller sizes.
* While we're at it, restrict the block sizes to match the
* chosen granule.
*/
if (cfg->pgsize_bitmap & PAGE_SIZE)
granule = PAGE_SIZE;
else if (cfg->pgsize_bitmap & ~PAGE_MASK)
granule = 1UL << __fls(cfg->pgsize_bitmap & ~PAGE_MASK);
else if (cfg->pgsize_bitmap & PAGE_MASK)
granule = 1UL << __ffs(cfg->pgsize_bitmap & PAGE_MASK);
else
granule = 0;
switch (granule) {
case SZ_4K:
cfg->pgsize_bitmap &= (SZ_4K | SZ_2M | SZ_1G);
break;
case SZ_16K:
cfg->pgsize_bitmap &= (SZ_16K | SZ_32M);
break;
case SZ_64K:
cfg->pgsize_bitmap &= (SZ_64K | SZ_512M);
break;
default:
cfg->pgsize_bitmap = 0;
}
}
static struct arm_lpae_io_pgtable *
arm_lpae_alloc_pgtable(struct io_pgtable_cfg *cfg)
{
unsigned long va_bits, pgd_bits;
struct arm_lpae_io_pgtable *data;
arm_lpae_restrict_pgsizes(cfg);
if (!(cfg->pgsize_bitmap & (SZ_4K | SZ_16K | SZ_64K)))
return NULL;
if (cfg->ias > ARM_LPAE_MAX_ADDR_BITS)
return NULL;
if (cfg->oas > ARM_LPAE_MAX_ADDR_BITS)
return NULL;
data = kmalloc(sizeof(*data), GFP_KERNEL);
if (!data)
return NULL;
data->pg_shift = __ffs(cfg->pgsize_bitmap);
data->bits_per_level = data->pg_shift - ilog2(sizeof(arm_lpae_iopte));
va_bits = cfg->ias - data->pg_shift;
data->levels = DIV_ROUND_UP(va_bits, data->bits_per_level);
/* Calculate the actual size of our pgd (without concatenation) */
pgd_bits = va_bits - (data->bits_per_level * (data->levels - 1));
data->pgd_size = 1UL << (pgd_bits + ilog2(sizeof(arm_lpae_iopte)));
data->iop.ops = (struct io_pgtable_ops) {
.map = arm_lpae_map,
.unmap = arm_lpae_unmap,
.iova_to_phys = arm_lpae_iova_to_phys,
};
return data;
}
static struct io_pgtable *
arm_64_lpae_alloc_pgtable_s1(struct io_pgtable_cfg *cfg, void *cookie)
{
u64 reg;
struct arm_lpae_io_pgtable *data = arm_lpae_alloc_pgtable(cfg);
if (!data)
return NULL;
/* TCR */
reg = (ARM_LPAE_TCR_SH_IS << ARM_LPAE_TCR_SH0_SHIFT) |
(ARM_LPAE_TCR_RGN_WBWA << ARM_LPAE_TCR_IRGN0_SHIFT) |
(ARM_LPAE_TCR_RGN_WBWA << ARM_LPAE_TCR_ORGN0_SHIFT);
switch (1 << data->pg_shift) {
case SZ_4K:
reg |= ARM_LPAE_TCR_TG0_4K;
break;
case SZ_16K:
reg |= ARM_LPAE_TCR_TG0_16K;
break;
case SZ_64K:
reg |= ARM_LPAE_TCR_TG0_64K;
break;
}
switch (cfg->oas) {
case 32:
reg |= (ARM_LPAE_TCR_PS_32_BIT << ARM_LPAE_TCR_IPS_SHIFT);
break;
case 36:
reg |= (ARM_LPAE_TCR_PS_36_BIT << ARM_LPAE_TCR_IPS_SHIFT);
break;
case 40:
reg |= (ARM_LPAE_TCR_PS_40_BIT << ARM_LPAE_TCR_IPS_SHIFT);
break;
case 42:
reg |= (ARM_LPAE_TCR_PS_42_BIT << ARM_LPAE_TCR_IPS_SHIFT);
break;
case 44:
reg |= (ARM_LPAE_TCR_PS_44_BIT << ARM_LPAE_TCR_IPS_SHIFT);
break;
case 48:
reg |= (ARM_LPAE_TCR_PS_48_BIT << ARM_LPAE_TCR_IPS_SHIFT);
break;
default:
goto out_free_data;
}
reg |= (64ULL - cfg->ias) << ARM_LPAE_TCR_T0SZ_SHIFT;
cfg->arm_lpae_s1_cfg.tcr = reg;
/* MAIRs */
reg = (ARM_LPAE_MAIR_ATTR_NC
<< ARM_LPAE_MAIR_ATTR_SHIFT(ARM_LPAE_MAIR_ATTR_IDX_NC)) |
(ARM_LPAE_MAIR_ATTR_WBRWA
<< ARM_LPAE_MAIR_ATTR_SHIFT(ARM_LPAE_MAIR_ATTR_IDX_CACHE)) |
(ARM_LPAE_MAIR_ATTR_DEVICE
<< ARM_LPAE_MAIR_ATTR_SHIFT(ARM_LPAE_MAIR_ATTR_IDX_DEV));
cfg->arm_lpae_s1_cfg.mair[0] = reg;
cfg->arm_lpae_s1_cfg.mair[1] = 0;
/* Looking good; allocate a pgd */
data->pgd = alloc_pages_exact(data->pgd_size, GFP_KERNEL | __GFP_ZERO);
if (!data->pgd)
goto out_free_data;
cfg->tlb->flush_pgtable(data->pgd, data->pgd_size, cookie);
/* TTBRs */
cfg->arm_lpae_s1_cfg.ttbr[0] = virt_to_phys(data->pgd);
cfg->arm_lpae_s1_cfg.ttbr[1] = 0;
return &data->iop;
out_free_data:
kfree(data);
return NULL;
}
static struct io_pgtable *
arm_64_lpae_alloc_pgtable_s2(struct io_pgtable_cfg *cfg, void *cookie)
{
u64 reg, sl;
struct arm_lpae_io_pgtable *data = arm_lpae_alloc_pgtable(cfg);
if (!data)
return NULL;
/*
* Concatenate PGDs at level 1 if possible in order to reduce
* the depth of the stage-2 walk.
*/
if (data->levels == ARM_LPAE_MAX_LEVELS) {
unsigned long pgd_pages;
pgd_pages = data->pgd_size >> ilog2(sizeof(arm_lpae_iopte));
if (pgd_pages <= ARM_LPAE_S2_MAX_CONCAT_PAGES) {
data->pgd_size = pgd_pages << data->pg_shift;
data->levels--;
}
}
/* VTCR */
reg = ARM_64_LPAE_S2_TCR_RES1 |
(ARM_LPAE_TCR_SH_IS << ARM_LPAE_TCR_SH0_SHIFT) |
(ARM_LPAE_TCR_RGN_WBWA << ARM_LPAE_TCR_IRGN0_SHIFT) |
(ARM_LPAE_TCR_RGN_WBWA << ARM_LPAE_TCR_ORGN0_SHIFT);
sl = ARM_LPAE_START_LVL(data);
switch (1 << data->pg_shift) {
case SZ_4K:
reg |= ARM_LPAE_TCR_TG0_4K;
sl++; /* SL0 format is different for 4K granule size */
break;
case SZ_16K:
reg |= ARM_LPAE_TCR_TG0_16K;
break;
case SZ_64K:
reg |= ARM_LPAE_TCR_TG0_64K;
break;
}
switch (cfg->oas) {
case 32:
reg |= (ARM_LPAE_TCR_PS_32_BIT << ARM_LPAE_TCR_PS_SHIFT);
break;
case 36:
reg |= (ARM_LPAE_TCR_PS_36_BIT << ARM_LPAE_TCR_PS_SHIFT);
break;
case 40:
reg |= (ARM_LPAE_TCR_PS_40_BIT << ARM_LPAE_TCR_PS_SHIFT);
break;
case 42:
reg |= (ARM_LPAE_TCR_PS_42_BIT << ARM_LPAE_TCR_PS_SHIFT);
break;
case 44:
reg |= (ARM_LPAE_TCR_PS_44_BIT << ARM_LPAE_TCR_PS_SHIFT);
break;
case 48:
reg |= (ARM_LPAE_TCR_PS_48_BIT << ARM_LPAE_TCR_PS_SHIFT);
break;
default:
goto out_free_data;
}
reg |= (64ULL - cfg->ias) << ARM_LPAE_TCR_T0SZ_SHIFT;
reg |= (~sl & ARM_LPAE_TCR_SL0_MASK) << ARM_LPAE_TCR_SL0_SHIFT;
cfg->arm_lpae_s2_cfg.vtcr = reg;
/* Allocate pgd pages */
data->pgd = alloc_pages_exact(data->pgd_size, GFP_KERNEL | __GFP_ZERO);
if (!data->pgd)
goto out_free_data;
cfg->tlb->flush_pgtable(data->pgd, data->pgd_size, cookie);
/* VTTBR */
cfg->arm_lpae_s2_cfg.vttbr = virt_to_phys(data->pgd);
return &data->iop;
out_free_data:
kfree(data);
return NULL;
}
static struct io_pgtable *
arm_32_lpae_alloc_pgtable_s1(struct io_pgtable_cfg *cfg, void *cookie)
{
struct io_pgtable *iop;
if (cfg->ias > 32 || cfg->oas > 40)
return NULL;
cfg->pgsize_bitmap &= (SZ_4K | SZ_2M | SZ_1G);
iop = arm_64_lpae_alloc_pgtable_s1(cfg, cookie);
if (iop) {
cfg->arm_lpae_s1_cfg.tcr |= ARM_32_LPAE_TCR_EAE;
cfg->arm_lpae_s1_cfg.tcr &= 0xffffffff;
}
return iop;
}
static struct io_pgtable *
arm_32_lpae_alloc_pgtable_s2(struct io_pgtable_cfg *cfg, void *cookie)
{
struct io_pgtable *iop;
if (cfg->ias > 40 || cfg->oas > 40)
return NULL;
cfg->pgsize_bitmap &= (SZ_4K | SZ_2M | SZ_1G);
iop = arm_64_lpae_alloc_pgtable_s2(cfg, cookie);
if (iop)
cfg->arm_lpae_s2_cfg.vtcr &= 0xffffffff;
return iop;
}
struct io_pgtable_init_fns io_pgtable_arm_64_lpae_s1_init_fns = {
.alloc = arm_64_lpae_alloc_pgtable_s1,
.free = arm_lpae_free_pgtable,
};
struct io_pgtable_init_fns io_pgtable_arm_64_lpae_s2_init_fns = {
.alloc = arm_64_lpae_alloc_pgtable_s2,
.free = arm_lpae_free_pgtable,
};
struct io_pgtable_init_fns io_pgtable_arm_32_lpae_s1_init_fns = {
.alloc = arm_32_lpae_alloc_pgtable_s1,
.free = arm_lpae_free_pgtable,
};
struct io_pgtable_init_fns io_pgtable_arm_32_lpae_s2_init_fns = {
.alloc = arm_32_lpae_alloc_pgtable_s2,
.free = arm_lpae_free_pgtable,
};
#ifdef CONFIG_IOMMU_IO_PGTABLE_LPAE_SELFTEST
static struct io_pgtable_cfg *cfg_cookie;
static void dummy_tlb_flush_all(void *cookie)
{
WARN_ON(cookie != cfg_cookie);
}
static void dummy_tlb_add_flush(unsigned long iova, size_t size, bool leaf,
void *cookie)
{
WARN_ON(cookie != cfg_cookie);
WARN_ON(!(size & cfg_cookie->pgsize_bitmap));
}
static void dummy_tlb_sync(void *cookie)
{
WARN_ON(cookie != cfg_cookie);
}
static void dummy_flush_pgtable(void *ptr, size_t size, void *cookie)
{
WARN_ON(cookie != cfg_cookie);
}
static struct iommu_gather_ops dummy_tlb_ops __initdata = {
.tlb_flush_all = dummy_tlb_flush_all,
.tlb_add_flush = dummy_tlb_add_flush,
.tlb_sync = dummy_tlb_sync,
.flush_pgtable = dummy_flush_pgtable,
};
static void __init arm_lpae_dump_ops(struct io_pgtable_ops *ops)
{
struct arm_lpae_io_pgtable *data = io_pgtable_ops_to_data(ops);
struct io_pgtable_cfg *cfg = &data->iop.cfg;
pr_err("cfg: pgsize_bitmap 0x%lx, ias %u-bit\n",
cfg->pgsize_bitmap, cfg->ias);
pr_err("data: %d levels, 0x%zx pgd_size, %lu pg_shift, %lu bits_per_level, pgd @ %p\n",
data->levels, data->pgd_size, data->pg_shift,
data->bits_per_level, data->pgd);
}
#define __FAIL(ops, i) ({ \
WARN(1, "selftest: test failed for fmt idx %d\n", (i)); \
arm_lpae_dump_ops(ops); \
selftest_running = false; \
-EFAULT; \
})
static int __init arm_lpae_run_tests(struct io_pgtable_cfg *cfg)
{
static const enum io_pgtable_fmt fmts[] = {
ARM_64_LPAE_S1,
ARM_64_LPAE_S2,
};
int i, j;
unsigned long iova;
size_t size;
struct io_pgtable_ops *ops;
selftest_running = true;
for (i = 0; i < ARRAY_SIZE(fmts); ++i) {
cfg_cookie = cfg;
ops = alloc_io_pgtable_ops(fmts[i], cfg, cfg);
if (!ops) {
pr_err("selftest: failed to allocate io pgtable ops\n");
return -ENOMEM;
}
/*
* Initial sanity checks.
* Empty page tables shouldn't provide any translations.
*/
if (ops->iova_to_phys(ops, 42))
return __FAIL(ops, i);
if (ops->iova_to_phys(ops, SZ_1G + 42))
return __FAIL(ops, i);
if (ops->iova_to_phys(ops, SZ_2G + 42))
return __FAIL(ops, i);
/*
* Distinct mappings of different granule sizes.
*/
iova = 0;
j = find_first_bit(&cfg->pgsize_bitmap, BITS_PER_LONG);
while (j != BITS_PER_LONG) {
size = 1UL << j;
if (ops->map(ops, iova, iova, size, IOMMU_READ |
IOMMU_WRITE |
IOMMU_NOEXEC |
IOMMU_CACHE))
return __FAIL(ops, i);
/* Overlapping mappings */
if (!ops->map(ops, iova, iova + size, size,
IOMMU_READ | IOMMU_NOEXEC))
return __FAIL(ops, i);
if (ops->iova_to_phys(ops, iova + 42) != (iova + 42))
return __FAIL(ops, i);
iova += SZ_1G;
j++;
j = find_next_bit(&cfg->pgsize_bitmap, BITS_PER_LONG, j);
}
/* Partial unmap */
size = 1UL << __ffs(cfg->pgsize_bitmap);
if (ops->unmap(ops, SZ_1G + size, size) != size)
return __FAIL(ops, i);
/* Remap of partial unmap */
if (ops->map(ops, SZ_1G + size, size, size, IOMMU_READ))
return __FAIL(ops, i);
if (ops->iova_to_phys(ops, SZ_1G + size + 42) != (size + 42))
return __FAIL(ops, i);
/* Full unmap */
iova = 0;
j = find_first_bit(&cfg->pgsize_bitmap, BITS_PER_LONG);
while (j != BITS_PER_LONG) {
size = 1UL << j;
if (ops->unmap(ops, iova, size) != size)
return __FAIL(ops, i);
if (ops->iova_to_phys(ops, iova + 42))
return __FAIL(ops, i);
/* Remap full block */
if (ops->map(ops, iova, iova, size, IOMMU_WRITE))
return __FAIL(ops, i);
if (ops->iova_to_phys(ops, iova + 42) != (iova + 42))
return __FAIL(ops, i);
iova += SZ_1G;
j++;
j = find_next_bit(&cfg->pgsize_bitmap, BITS_PER_LONG, j);
}
free_io_pgtable_ops(ops);
}
selftest_running = false;
return 0;
}
static int __init arm_lpae_do_selftests(void)
{
static const unsigned long pgsize[] = {
SZ_4K | SZ_2M | SZ_1G,
SZ_16K | SZ_32M,
SZ_64K | SZ_512M,
};
static const unsigned int ias[] = {
32, 36, 40, 42, 44, 48,
};
int i, j, pass = 0, fail = 0;
struct io_pgtable_cfg cfg = {
.tlb = &dummy_tlb_ops,
.oas = 48,
};
for (i = 0; i < ARRAY_SIZE(pgsize); ++i) {
for (j = 0; j < ARRAY_SIZE(ias); ++j) {
cfg.pgsize_bitmap = pgsize[i];
cfg.ias = ias[j];
pr_info("selftest: pgsize_bitmap 0x%08lx, IAS %u\n",
pgsize[i], ias[j]);
if (arm_lpae_run_tests(&cfg))
fail++;
else
pass++;
}
}
pr_info("selftest: completed with %d PASS %d FAIL\n", pass, fail);
return fail ? -EFAULT : 0;
}
subsys_initcall(arm_lpae_do_selftests);
#endif
/*
* Generic page table allocator for IOMMUs.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
* Copyright (C) 2014 ARM Limited
*
* Author: Will Deacon <will.deacon@arm.com>
*/
#include <linux/bug.h>
#include <linux/kernel.h>
#include <linux/types.h>
#include "io-pgtable.h"
extern struct io_pgtable_init_fns io_pgtable_arm_32_lpae_s1_init_fns;
extern struct io_pgtable_init_fns io_pgtable_arm_32_lpae_s2_init_fns;
extern struct io_pgtable_init_fns io_pgtable_arm_64_lpae_s1_init_fns;
extern struct io_pgtable_init_fns io_pgtable_arm_64_lpae_s2_init_fns;
static const struct io_pgtable_init_fns *
io_pgtable_init_table[IO_PGTABLE_NUM_FMTS] =
{
#ifdef CONFIG_IOMMU_IO_PGTABLE_LPAE
[ARM_32_LPAE_S1] = &io_pgtable_arm_32_lpae_s1_init_fns,
[ARM_32_LPAE_S2] = &io_pgtable_arm_32_lpae_s2_init_fns,
[ARM_64_LPAE_S1] = &io_pgtable_arm_64_lpae_s1_init_fns,
[ARM_64_LPAE_S2] = &io_pgtable_arm_64_lpae_s2_init_fns,
#endif
};
struct io_pgtable_ops *alloc_io_pgtable_ops(enum io_pgtable_fmt fmt,
struct io_pgtable_cfg *cfg,
void *cookie)
{
struct io_pgtable *iop;
const struct io_pgtable_init_fns *fns;
if (fmt >= IO_PGTABLE_NUM_FMTS)
return NULL;
fns = io_pgtable_init_table[fmt];
if (!fns)
return NULL;
iop = fns->alloc(cfg, cookie);
if (!iop)
return NULL;
iop->fmt = fmt;
iop->cookie = cookie;
iop->cfg = *cfg;
return &iop->ops;
}
/*
* It is the IOMMU driver's responsibility to ensure that the page table
* is no longer accessible to the walker by this point.
*/
void free_io_pgtable_ops(struct io_pgtable_ops *ops)
{
struct io_pgtable *iop;
if (!ops)
return;
iop = container_of(ops, struct io_pgtable, ops);
iop->cfg.tlb->tlb_flush_all(iop->cookie);
io_pgtable_init_table[iop->fmt]->free(iop);
}
#ifndef __IO_PGTABLE_H
#define __IO_PGTABLE_H
/*
* Public API for use by IOMMU drivers
*/
enum io_pgtable_fmt {
ARM_32_LPAE_S1,
ARM_32_LPAE_S2,
ARM_64_LPAE_S1,
ARM_64_LPAE_S2,
IO_PGTABLE_NUM_FMTS,
};
/**
* struct iommu_gather_ops - IOMMU callbacks for TLB and page table management.
*
* @tlb_flush_all: Synchronously invalidate the entire TLB context.
* @tlb_add_flush: Queue up a TLB invalidation for a virtual address range.
* @tlb_sync: Ensure any queue TLB invalidation has taken effect.
* @flush_pgtable: Ensure page table updates are visible to the IOMMU.
*
* Note that these can all be called in atomic context and must therefore
* not block.
*/
struct iommu_gather_ops {
void (*tlb_flush_all)(void *cookie);
void (*tlb_add_flush)(unsigned long iova, size_t size, bool leaf,
void *cookie);
void (*tlb_sync)(void *cookie);
void (*flush_pgtable)(void *ptr, size_t size, void *cookie);
};
/**
* struct io_pgtable_cfg - Configuration data for a set of page tables.
*
* @quirks: A bitmap of hardware quirks that require some special
* action by the low-level page table allocator.
* @pgsize_bitmap: A bitmap of page sizes supported by this set of page
* tables.
* @ias: Input address (iova) size, in bits.
* @oas: Output address (paddr) size, in bits.
* @tlb: TLB management callbacks for this set of tables.
*/
struct io_pgtable_cfg {
#define IO_PGTABLE_QUIRK_ARM_NS (1 << 0) /* Set NS bit in PTEs */
int quirks;
unsigned long pgsize_bitmap;
unsigned int ias;
unsigned int oas;
const struct iommu_gather_ops *tlb;
/* Low-level data specific to the table format */
union {
struct {
u64 ttbr[2];
u64 tcr;
u64 mair[2];
} arm_lpae_s1_cfg;
struct {
u64 vttbr;
u64 vtcr;
} arm_lpae_s2_cfg;
};
};
/**
* struct io_pgtable_ops - Page table manipulation API for IOMMU drivers.
*
* @map: Map a physically contiguous memory region.
* @unmap: Unmap a physically contiguous memory region.
* @iova_to_phys: Translate iova to physical address.
*
* These functions map directly onto the iommu_ops member functions with
* the same names.
*/
struct io_pgtable_ops {
int (*map)(struct io_pgtable_ops *ops, unsigned long iova,
phys_addr_t paddr, size_t size, int prot);
int (*unmap)(struct io_pgtable_ops *ops, unsigned long iova,
size_t size);
phys_addr_t (*iova_to_phys)(struct io_pgtable_ops *ops,
unsigned long iova);
};
/**
* alloc_io_pgtable_ops() - Allocate a page table allocator for use by an IOMMU.
*
* @fmt: The page table format.
* @cfg: The page table configuration. This will be modified to represent
* the configuration actually provided by the allocator (e.g. the
* pgsize_bitmap may be restricted).
* @cookie: An opaque token provided by the IOMMU driver and passed back to
* the callback routines in cfg->tlb.
*/
struct io_pgtable_ops *alloc_io_pgtable_ops(enum io_pgtable_fmt fmt,
struct io_pgtable_cfg *cfg,
void *cookie);
/**
* free_io_pgtable_ops() - Free an io_pgtable_ops structure. The caller
* *must* ensure that the page table is no longer
* live, but the TLB can be dirty.
*
* @ops: The ops returned from alloc_io_pgtable_ops.
*/
void free_io_pgtable_ops(struct io_pgtable_ops *ops);
/*
* Internal structures for page table allocator implementations.
*/
/**
* struct io_pgtable - Internal structure describing a set of page tables.
*
* @fmt: The page table format.
* @cookie: An opaque token provided by the IOMMU driver and passed back to
* any callback routines.
* @cfg: A copy of the page table configuration.
* @ops: The page table operations in use for this set of page tables.
*/
struct io_pgtable {
enum io_pgtable_fmt fmt;
void *cookie;
struct io_pgtable_cfg cfg;
struct io_pgtable_ops ops;
};
/**
* struct io_pgtable_init_fns - Alloc/free a set of page tables for a
* particular format.
*
* @alloc: Allocate a set of page tables described by cfg.
* @free: Free the page tables associated with iop.
*/
struct io_pgtable_init_fns {
struct io_pgtable *(*alloc)(struct io_pgtable_cfg *cfg, void *cookie);
void (*free)(struct io_pgtable *iop);
};
#endif /* __IO_PGTABLE_H */
/*
* Copyright (c) 2012-2014 The Linux Foundation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 and
* only version 2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
*/
#ifndef _LINUX_IOPOLL_H
#define _LINUX_IOPOLL_H
#include <linux/kernel.h>
#include <linux/types.h>
#include <linux/hrtimer.h>
#include <linux/delay.h>
#include <linux/errno.h>
#include <linux/io.h>
/**
* readx_poll_timeout - Periodically poll an address until a condition is met or a timeout occurs
* @op: accessor function (takes @addr as its only argument)
* @addr: Address to poll
* @val: Variable to read the value into
* @cond: Break condition (usually involving @val)
* @sleep_us: Maximum time to sleep between reads in us (0
* tight-loops). Should be less than ~20ms since usleep_range
* is used (see Documentation/timers/timers-howto.txt).
* @timeout_us: Timeout in us, 0 means never timeout
*
* Returns 0 on success and -ETIMEDOUT upon a timeout. In either
* case, the last read value at @addr is stored in @val. Must not
* be called from atomic context if sleep_us or timeout_us are used.
*
* When available, you'll probably want to use one of the specialized
* macros defined below rather than this macro directly.
*/
#define readx_poll_timeout(op, addr, val, cond, sleep_us, timeout_us) \
({ \
ktime_t timeout = ktime_add_us(ktime_get(), timeout_us); \
might_sleep_if(sleep_us); \
for (;;) { \
(val) = op(addr); \
if (cond) \
break; \
if (timeout_us && ktime_compare(ktime_get(), timeout) > 0) { \
(val) = op(addr); \
break; \
} \
if (sleep_us) \
usleep_range((sleep_us >> 2) + 1, sleep_us); \
} \
(cond) ? 0 : -ETIMEDOUT; \
})
/**
* readx_poll_timeout_atomic - Periodically poll an address until a condition is met or a timeout occurs
* @op: accessor function (takes @addr as its only argument)
* @addr: Address to poll
* @val: Variable to read the value into
* @cond: Break condition (usually involving @val)
* @delay_us: Time to udelay between reads in us (0 tight-loops). Should
* be less than ~10us since udelay is used (see
* Documentation/timers/timers-howto.txt).
* @timeout_us: Timeout in us, 0 means never timeout
*
* Returns 0 on success and -ETIMEDOUT upon a timeout. In either
* case, the last read value at @addr is stored in @val.
*
* When available, you'll probably want to use one of the specialized
* macros defined below rather than this macro directly.
*/
#define readx_poll_timeout_atomic(op, addr, val, cond, delay_us, timeout_us) \
({ \
ktime_t timeout = ktime_add_us(ktime_get(), timeout_us); \
for (;;) { \
(val) = op(addr); \
if (cond) \
break; \
if (timeout_us && ktime_compare(ktime_get(), timeout) > 0) { \
(val) = op(addr); \
break; \
} \
if (delay_us) \
udelay(delay_us); \
} \
(cond) ? 0 : -ETIMEDOUT; \
})
#define readb_poll_timeout(addr, val, cond, delay_us, timeout_us) \
readx_poll_timeout(readb, addr, val, cond, delay_us, timeout_us)
#define readb_poll_timeout_atomic(addr, val, cond, delay_us, timeout_us) \
readx_poll_timeout_atomic(readb, addr, val, cond, delay_us, timeout_us)
#define readw_poll_timeout(addr, val, cond, delay_us, timeout_us) \
readx_poll_timeout(readw, addr, val, cond, delay_us, timeout_us)
#define readw_poll_timeout_atomic(addr, val, cond, delay_us, timeout_us) \
readx_poll_timeout_atomic(readw, addr, val, cond, delay_us, timeout_us)
#define readl_poll_timeout(addr, val, cond, delay_us, timeout_us) \
readx_poll_timeout(readl, addr, val, cond, delay_us, timeout_us)
#define readl_poll_timeout_atomic(addr, val, cond, delay_us, timeout_us) \
readx_poll_timeout_atomic(readl, addr, val, cond, delay_us, timeout_us)
#define readq_poll_timeout(addr, val, cond, delay_us, timeout_us) \
readx_poll_timeout(readq, addr, val, cond, delay_us, timeout_us)
#define readq_poll_timeout_atomic(addr, val, cond, delay_us, timeout_us) \
readx_poll_timeout_atomic(readq, addr, val, cond, delay_us, timeout_us)
#define readb_relaxed_poll_timeout(addr, val, cond, delay_us, timeout_us) \
readx_poll_timeout(readb_relaxed, addr, val, cond, delay_us, timeout_us)
#define readb_relaxed_poll_timeout_atomic(addr, val, cond, delay_us, timeout_us) \
readx_poll_timeout_atomic(readb_relaxed, addr, val, cond, delay_us, timeout_us)
#define readw_relaxed_poll_timeout(addr, val, cond, delay_us, timeout_us) \
readx_poll_timeout(readw_relaxed, addr, val, cond, delay_us, timeout_us)
#define readw_relaxed_poll_timeout_atomic(addr, val, cond, delay_us, timeout_us) \
readx_poll_timeout_atomic(readw_relaxed, addr, val, cond, delay_us, timeout_us)
#define readl_relaxed_poll_timeout(addr, val, cond, delay_us, timeout_us) \
readx_poll_timeout(readl_relaxed, addr, val, cond, delay_us, timeout_us)
#define readl_relaxed_poll_timeout_atomic(addr, val, cond, delay_us, timeout_us) \
readx_poll_timeout_atomic(readl_relaxed, addr, val, cond, delay_us, timeout_us)
#define readq_relaxed_poll_timeout(addr, val, cond, delay_us, timeout_us) \
readx_poll_timeout(readq_relaxed, addr, val, cond, delay_us, timeout_us)
#define readq_relaxed_poll_timeout_atomic(addr, val, cond, delay_us, timeout_us) \
readx_poll_timeout_atomic(readq_relaxed, addr, val, cond, delay_us, timeout_us)
#endif /* _LINUX_IOPOLL_H */
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment