Commit 16b25d1a authored by David S. Miller's avatar David S. Miller

Merge git://git.kernel.org/pub/scm/linux/kernel/git/pablo/nf-next

Pablo Neira Ayuso says:

====================
Netfilter updates for net-next

This batch contains Netfilter updates for net-next:

1) Add nft_setelem_parse_key() helper function.

2) Add NFTA_SET_ELEM_KEY_END to specify a range with one single element.

3) Add NFTA_SET_DESC_CONCAT to describe the set element concatenation,
   from Stefano Brivio.

4) Add bitmap_cut() to copy n-bits from source to destination,
   from Stefano Brivio.

5) Add set to match on arbitrary concatenations, from Stefano Brivio.

6) Add selftest for this new set type. An extract of Stefano's
   description follows:

"Existing nftables set implementations allow matching entries with
interval expressions (rbtree), e.g. 192.0.2.1-192.0.2.4, entries
specifying field concatenation (hash, rhash), e.g. 192.0.2.1:22,
but not both.

In other words, none of the set types allows matching on range
expressions for more than one packet field at a time, such as ipset
does with types bitmap:ip,mac, and, to a more limited extent
(netmasks, not arbitrary ranges), with types hash:net,net,
hash:net,port, hash:ip,port,net, and hash:net,port,net.

As a pure hash-based approach is unsuitable for matching on ranges,
and "proxying" the existing red-black tree type looks impractical as
elements would need to be shared and managed across all employed
trees, this new set implementation intends to fill the functionality
gap by employing a relatively novel approach.

The fundamental idea, illustrated in deeper detail in patch 5/9, is to
use lookup tables classifying a small number of grouped bits from each
field, and map the lookup results in a way that yields a verdict for
the full set of specified fields.

The grouping bit aspect is loosely inspired by the Grouper algorithm,
by Jay Ligatti, Josh Kuhn, and Chris Gage (see patch 5/9 for the full
reference).

A reference, stand-alone implementation of the algorithm itself is
available at:
        https://pipapo.lameexcu.se

Some notes about possible future optimisations are also mentioned
there. This algorithm reduces the matching problem to, essentially,
a repetitive sequence of simple bitwise operations, and is
particularly suitable to be optimised by leveraging SIMD instruction
sets."
====================
Signed-off-by: default avatarDavid S. Miller <davem@davemloft.net>
parents 32efcc06 611973c1
...@@ -53,6 +53,7 @@ ...@@ -53,6 +53,7 @@
* bitmap_find_next_zero_area_off(buf, len, pos, n, mask) as above * bitmap_find_next_zero_area_off(buf, len, pos, n, mask) as above
* bitmap_shift_right(dst, src, n, nbits) *dst = *src >> n * bitmap_shift_right(dst, src, n, nbits) *dst = *src >> n
* bitmap_shift_left(dst, src, n, nbits) *dst = *src << n * bitmap_shift_left(dst, src, n, nbits) *dst = *src << n
* bitmap_cut(dst, src, first, n, nbits) Cut n bits from first, copy rest
* bitmap_replace(dst, old, new, mask, nbits) *dst = (*old & ~(*mask)) | (*new & *mask) * bitmap_replace(dst, old, new, mask, nbits) *dst = (*old & ~(*mask)) | (*new & *mask)
* bitmap_remap(dst, src, old, new, nbits) *dst = map(old, new)(src) * bitmap_remap(dst, src, old, new, nbits) *dst = map(old, new)(src)
* bitmap_bitremap(oldbit, old, new, nbits) newbit = map(old, new)(oldbit) * bitmap_bitremap(oldbit, old, new, nbits) newbit = map(old, new)(oldbit)
...@@ -133,6 +134,9 @@ extern void __bitmap_shift_right(unsigned long *dst, const unsigned long *src, ...@@ -133,6 +134,9 @@ extern void __bitmap_shift_right(unsigned long *dst, const unsigned long *src,
unsigned int shift, unsigned int nbits); unsigned int shift, unsigned int nbits);
extern void __bitmap_shift_left(unsigned long *dst, const unsigned long *src, extern void __bitmap_shift_left(unsigned long *dst, const unsigned long *src,
unsigned int shift, unsigned int nbits); unsigned int shift, unsigned int nbits);
extern void bitmap_cut(unsigned long *dst, const unsigned long *src,
unsigned int first, unsigned int cut,
unsigned int nbits);
extern int __bitmap_and(unsigned long *dst, const unsigned long *bitmap1, extern int __bitmap_and(unsigned long *dst, const unsigned long *bitmap1,
const unsigned long *bitmap2, unsigned int nbits); const unsigned long *bitmap2, unsigned int nbits);
extern void __bitmap_or(unsigned long *dst, const unsigned long *bitmap1, extern void __bitmap_or(unsigned long *dst, const unsigned long *bitmap1,
......
...@@ -231,6 +231,7 @@ struct nft_userdata { ...@@ -231,6 +231,7 @@ struct nft_userdata {
* struct nft_set_elem - generic representation of set elements * struct nft_set_elem - generic representation of set elements
* *
* @key: element key * @key: element key
* @key_end: closing element key
* @priv: element private data and extensions * @priv: element private data and extensions
*/ */
struct nft_set_elem { struct nft_set_elem {
...@@ -238,6 +239,10 @@ struct nft_set_elem { ...@@ -238,6 +239,10 @@ struct nft_set_elem {
u32 buf[NFT_DATA_VALUE_MAXLEN / sizeof(u32)]; u32 buf[NFT_DATA_VALUE_MAXLEN / sizeof(u32)];
struct nft_data val; struct nft_data val;
} key; } key;
union {
u32 buf[NFT_DATA_VALUE_MAXLEN / sizeof(u32)];
struct nft_data val;
} key_end;
void *priv; void *priv;
}; };
...@@ -259,11 +264,15 @@ struct nft_set_iter { ...@@ -259,11 +264,15 @@ struct nft_set_iter {
* @klen: key length * @klen: key length
* @dlen: data length * @dlen: data length
* @size: number of set elements * @size: number of set elements
* @field_len: length of each field in concatenation, bytes
* @field_count: number of concatenated fields in element
*/ */
struct nft_set_desc { struct nft_set_desc {
unsigned int klen; unsigned int klen;
unsigned int dlen; unsigned int dlen;
unsigned int size; unsigned int size;
u8 field_len[NFT_REG32_COUNT];
u8 field_count;
}; };
/** /**
...@@ -404,6 +413,8 @@ void nft_unregister_set(struct nft_set_type *type); ...@@ -404,6 +413,8 @@ void nft_unregister_set(struct nft_set_type *type);
* @dtype: data type (verdict or numeric type defined by userspace) * @dtype: data type (verdict or numeric type defined by userspace)
* @objtype: object type (see NFT_OBJECT_* definitions) * @objtype: object type (see NFT_OBJECT_* definitions)
* @size: maximum set size * @size: maximum set size
* @field_len: length of each field in concatenation, bytes
* @field_count: number of concatenated fields in element
* @use: number of rules references to this set * @use: number of rules references to this set
* @nelems: number of elements * @nelems: number of elements
* @ndeact: number of deactivated elements queued for removal * @ndeact: number of deactivated elements queued for removal
...@@ -430,6 +441,8 @@ struct nft_set { ...@@ -430,6 +441,8 @@ struct nft_set {
u32 dtype; u32 dtype;
u32 objtype; u32 objtype;
u32 size; u32 size;
u8 field_len[NFT_REG32_COUNT];
u8 field_count;
u32 use; u32 use;
atomic_t nelems; atomic_t nelems;
u32 ndeact; u32 ndeact;
...@@ -502,6 +515,7 @@ void nf_tables_destroy_set(const struct nft_ctx *ctx, struct nft_set *set); ...@@ -502,6 +515,7 @@ void nf_tables_destroy_set(const struct nft_ctx *ctx, struct nft_set *set);
* enum nft_set_extensions - set extension type IDs * enum nft_set_extensions - set extension type IDs
* *
* @NFT_SET_EXT_KEY: element key * @NFT_SET_EXT_KEY: element key
* @NFT_SET_EXT_KEY_END: upper bound element key, for ranges
* @NFT_SET_EXT_DATA: mapping data * @NFT_SET_EXT_DATA: mapping data
* @NFT_SET_EXT_FLAGS: element flags * @NFT_SET_EXT_FLAGS: element flags
* @NFT_SET_EXT_TIMEOUT: element timeout * @NFT_SET_EXT_TIMEOUT: element timeout
...@@ -513,6 +527,7 @@ void nf_tables_destroy_set(const struct nft_ctx *ctx, struct nft_set *set); ...@@ -513,6 +527,7 @@ void nf_tables_destroy_set(const struct nft_ctx *ctx, struct nft_set *set);
*/ */
enum nft_set_extensions { enum nft_set_extensions {
NFT_SET_EXT_KEY, NFT_SET_EXT_KEY,
NFT_SET_EXT_KEY_END,
NFT_SET_EXT_DATA, NFT_SET_EXT_DATA,
NFT_SET_EXT_FLAGS, NFT_SET_EXT_FLAGS,
NFT_SET_EXT_TIMEOUT, NFT_SET_EXT_TIMEOUT,
...@@ -606,6 +621,11 @@ static inline struct nft_data *nft_set_ext_key(const struct nft_set_ext *ext) ...@@ -606,6 +621,11 @@ static inline struct nft_data *nft_set_ext_key(const struct nft_set_ext *ext)
return nft_set_ext(ext, NFT_SET_EXT_KEY); return nft_set_ext(ext, NFT_SET_EXT_KEY);
} }
static inline struct nft_data *nft_set_ext_key_end(const struct nft_set_ext *ext)
{
return nft_set_ext(ext, NFT_SET_EXT_KEY_END);
}
static inline struct nft_data *nft_set_ext_data(const struct nft_set_ext *ext) static inline struct nft_data *nft_set_ext_data(const struct nft_set_ext *ext)
{ {
return nft_set_ext(ext, NFT_SET_EXT_DATA); return nft_set_ext(ext, NFT_SET_EXT_DATA);
...@@ -655,7 +675,7 @@ static inline struct nft_object **nft_set_ext_obj(const struct nft_set_ext *ext) ...@@ -655,7 +675,7 @@ static inline struct nft_object **nft_set_ext_obj(const struct nft_set_ext *ext)
void *nft_set_elem_init(const struct nft_set *set, void *nft_set_elem_init(const struct nft_set *set,
const struct nft_set_ext_tmpl *tmpl, const struct nft_set_ext_tmpl *tmpl,
const u32 *key, const u32 *data, const u32 *key, const u32 *key_end, const u32 *data,
u64 timeout, u64 expiration, gfp_t gfp); u64 timeout, u64 expiration, gfp_t gfp);
void nft_set_elem_destroy(const struct nft_set *set, void *elem, void nft_set_elem_destroy(const struct nft_set *set, void *elem,
bool destroy_expr); bool destroy_expr);
......
...@@ -74,6 +74,7 @@ extern struct nft_set_type nft_set_hash_type; ...@@ -74,6 +74,7 @@ extern struct nft_set_type nft_set_hash_type;
extern struct nft_set_type nft_set_hash_fast_type; extern struct nft_set_type nft_set_hash_fast_type;
extern struct nft_set_type nft_set_rbtree_type; extern struct nft_set_type nft_set_rbtree_type;
extern struct nft_set_type nft_set_bitmap_type; extern struct nft_set_type nft_set_bitmap_type;
extern struct nft_set_type nft_set_pipapo_type;
struct nft_expr; struct nft_expr;
struct nft_regs; struct nft_regs;
......
...@@ -48,6 +48,7 @@ enum nft_registers { ...@@ -48,6 +48,7 @@ enum nft_registers {
#define NFT_REG_SIZE 16 #define NFT_REG_SIZE 16
#define NFT_REG32_SIZE 4 #define NFT_REG32_SIZE 4
#define NFT_REG32_COUNT (NFT_REG32_15 - NFT_REG32_00 + 1)
/** /**
* enum nft_verdicts - nf_tables internal verdicts * enum nft_verdicts - nf_tables internal verdicts
...@@ -301,14 +302,28 @@ enum nft_set_policies { ...@@ -301,14 +302,28 @@ enum nft_set_policies {
* enum nft_set_desc_attributes - set element description * enum nft_set_desc_attributes - set element description
* *
* @NFTA_SET_DESC_SIZE: number of elements in set (NLA_U32) * @NFTA_SET_DESC_SIZE: number of elements in set (NLA_U32)
* @NFTA_SET_DESC_CONCAT: description of field concatenation (NLA_NESTED)
*/ */
enum nft_set_desc_attributes { enum nft_set_desc_attributes {
NFTA_SET_DESC_UNSPEC, NFTA_SET_DESC_UNSPEC,
NFTA_SET_DESC_SIZE, NFTA_SET_DESC_SIZE,
NFTA_SET_DESC_CONCAT,
__NFTA_SET_DESC_MAX __NFTA_SET_DESC_MAX
}; };
#define NFTA_SET_DESC_MAX (__NFTA_SET_DESC_MAX - 1) #define NFTA_SET_DESC_MAX (__NFTA_SET_DESC_MAX - 1)
/**
* enum nft_set_field_attributes - attributes of concatenated fields
*
* @NFTA_SET_FIELD_LEN: length of single field, in bits (NLA_U32)
*/
enum nft_set_field_attributes {
NFTA_SET_FIELD_UNSPEC,
NFTA_SET_FIELD_LEN,
__NFTA_SET_FIELD_MAX
};
#define NFTA_SET_FIELD_MAX (__NFTA_SET_FIELD_MAX - 1)
/** /**
* enum nft_set_attributes - nf_tables set netlink attributes * enum nft_set_attributes - nf_tables set netlink attributes
* *
...@@ -370,6 +385,7 @@ enum nft_set_elem_flags { ...@@ -370,6 +385,7 @@ enum nft_set_elem_flags {
* @NFTA_SET_ELEM_USERDATA: user data (NLA_BINARY) * @NFTA_SET_ELEM_USERDATA: user data (NLA_BINARY)
* @NFTA_SET_ELEM_EXPR: expression (NLA_NESTED: nft_expr_attributes) * @NFTA_SET_ELEM_EXPR: expression (NLA_NESTED: nft_expr_attributes)
* @NFTA_SET_ELEM_OBJREF: stateful object reference (NLA_STRING) * @NFTA_SET_ELEM_OBJREF: stateful object reference (NLA_STRING)
* @NFTA_SET_ELEM_KEY_END: closing key value (NLA_NESTED: nft_data)
*/ */
enum nft_set_elem_attributes { enum nft_set_elem_attributes {
NFTA_SET_ELEM_UNSPEC, NFTA_SET_ELEM_UNSPEC,
...@@ -382,6 +398,7 @@ enum nft_set_elem_attributes { ...@@ -382,6 +398,7 @@ enum nft_set_elem_attributes {
NFTA_SET_ELEM_EXPR, NFTA_SET_ELEM_EXPR,
NFTA_SET_ELEM_PAD, NFTA_SET_ELEM_PAD,
NFTA_SET_ELEM_OBJREF, NFTA_SET_ELEM_OBJREF,
NFTA_SET_ELEM_KEY_END,
__NFTA_SET_ELEM_MAX __NFTA_SET_ELEM_MAX
}; };
#define NFTA_SET_ELEM_MAX (__NFTA_SET_ELEM_MAX - 1) #define NFTA_SET_ELEM_MAX (__NFTA_SET_ELEM_MAX - 1)
......
...@@ -168,6 +168,72 @@ void __bitmap_shift_left(unsigned long *dst, const unsigned long *src, ...@@ -168,6 +168,72 @@ void __bitmap_shift_left(unsigned long *dst, const unsigned long *src,
} }
EXPORT_SYMBOL(__bitmap_shift_left); EXPORT_SYMBOL(__bitmap_shift_left);
/**
* bitmap_cut() - remove bit region from bitmap and right shift remaining bits
* @dst: destination bitmap, might overlap with src
* @src: source bitmap
* @first: start bit of region to be removed
* @cut: number of bits to remove
* @nbits: bitmap size, in bits
*
* Set the n-th bit of @dst iff the n-th bit of @src is set and
* n is less than @first, or the m-th bit of @src is set for any
* m such that @first <= n < nbits, and m = n + @cut.
*
* In pictures, example for a big-endian 32-bit architecture:
*
* @src:
* 31 63
* | |
* 10000000 11000001 11110010 00010101 10000000 11000001 01110010 00010101
* | | | |
* 16 14 0 32
*
* if @cut is 3, and @first is 14, bits 14-16 in @src are cut and @dst is:
*
* 31 63
* | |
* 10110000 00011000 00110010 00010101 00010000 00011000 00101110 01000010
* | | |
* 14 (bit 17 0 32
* from @src)
*
* Note that @dst and @src might overlap partially or entirely.
*
* This is implemented in the obvious way, with a shift and carry
* step for each moved bit. Optimisation is left as an exercise
* for the compiler.
*/
void bitmap_cut(unsigned long *dst, const unsigned long *src,
unsigned int first, unsigned int cut, unsigned int nbits)
{
unsigned int len = BITS_TO_LONGS(nbits);
unsigned long keep = 0, carry;
int i;
memmove(dst, src, len * sizeof(*dst));
if (first % BITS_PER_LONG) {
keep = src[first / BITS_PER_LONG] &
(~0UL >> (BITS_PER_LONG - first % BITS_PER_LONG));
}
while (cut--) {
for (i = first / BITS_PER_LONG; i < len; i++) {
if (i < len - 1)
carry = dst[i + 1] & 1UL;
else
carry = 0;
dst[i] = (dst[i] >> 1) | (carry << (BITS_PER_LONG - 1));
}
}
dst[first / BITS_PER_LONG] &= ~0UL << (first % BITS_PER_LONG);
dst[first / BITS_PER_LONG] |= keep;
}
EXPORT_SYMBOL(bitmap_cut);
int __bitmap_and(unsigned long *dst, const unsigned long *bitmap1, int __bitmap_and(unsigned long *dst, const unsigned long *bitmap1,
const unsigned long *bitmap2, unsigned int bits) const unsigned long *bitmap2, unsigned int bits)
{ {
......
...@@ -81,7 +81,8 @@ nf_tables-objs := nf_tables_core.o nf_tables_api.o nft_chain_filter.o \ ...@@ -81,7 +81,8 @@ nf_tables-objs := nf_tables_core.o nf_tables_api.o nft_chain_filter.o \
nft_chain_route.o nf_tables_offload.o nft_chain_route.o nf_tables_offload.o
nf_tables_set-objs := nf_tables_set_core.o \ nf_tables_set-objs := nf_tables_set_core.o \
nft_set_hash.o nft_set_bitmap.o nft_set_rbtree.o nft_set_hash.o nft_set_bitmap.o nft_set_rbtree.o \
nft_set_pipapo.o
obj-$(CONFIG_NF_TABLES) += nf_tables.o obj-$(CONFIG_NF_TABLES) += nf_tables.o
obj-$(CONFIG_NF_TABLES_SET) += nf_tables_set.o obj-$(CONFIG_NF_TABLES_SET) += nf_tables_set.o
......
...@@ -3391,6 +3391,7 @@ static const struct nla_policy nft_set_policy[NFTA_SET_MAX + 1] = { ...@@ -3391,6 +3391,7 @@ static const struct nla_policy nft_set_policy[NFTA_SET_MAX + 1] = {
static const struct nla_policy nft_set_desc_policy[NFTA_SET_DESC_MAX + 1] = { static const struct nla_policy nft_set_desc_policy[NFTA_SET_DESC_MAX + 1] = {
[NFTA_SET_DESC_SIZE] = { .type = NLA_U32 }, [NFTA_SET_DESC_SIZE] = { .type = NLA_U32 },
[NFTA_SET_DESC_CONCAT] = { .type = NLA_NESTED },
}; };
static int nft_ctx_init_from_setattr(struct nft_ctx *ctx, struct net *net, static int nft_ctx_init_from_setattr(struct nft_ctx *ctx, struct net *net,
...@@ -3557,6 +3558,33 @@ static __be64 nf_jiffies64_to_msecs(u64 input) ...@@ -3557,6 +3558,33 @@ static __be64 nf_jiffies64_to_msecs(u64 input)
return cpu_to_be64(jiffies64_to_msecs(input)); return cpu_to_be64(jiffies64_to_msecs(input));
} }
static int nf_tables_fill_set_concat(struct sk_buff *skb,
const struct nft_set *set)
{
struct nlattr *concat, *field;
int i;
concat = nla_nest_start_noflag(skb, NFTA_SET_DESC_CONCAT);
if (!concat)
return -ENOMEM;
for (i = 0; i < set->field_count; i++) {
field = nla_nest_start_noflag(skb, NFTA_LIST_ELEM);
if (!field)
return -ENOMEM;
if (nla_put_be32(skb, NFTA_SET_FIELD_LEN,
htonl(set->field_len[i])))
return -ENOMEM;
nla_nest_end(skb, field);
}
nla_nest_end(skb, concat);
return 0;
}
static int nf_tables_fill_set(struct sk_buff *skb, const struct nft_ctx *ctx, static int nf_tables_fill_set(struct sk_buff *skb, const struct nft_ctx *ctx,
const struct nft_set *set, u16 event, u16 flags) const struct nft_set *set, u16 event, u16 flags)
{ {
...@@ -3620,11 +3648,17 @@ static int nf_tables_fill_set(struct sk_buff *skb, const struct nft_ctx *ctx, ...@@ -3620,11 +3648,17 @@ static int nf_tables_fill_set(struct sk_buff *skb, const struct nft_ctx *ctx,
goto nla_put_failure; goto nla_put_failure;
desc = nla_nest_start_noflag(skb, NFTA_SET_DESC); desc = nla_nest_start_noflag(skb, NFTA_SET_DESC);
if (desc == NULL) if (desc == NULL)
goto nla_put_failure; goto nla_put_failure;
if (set->size && if (set->size &&
nla_put_be32(skb, NFTA_SET_DESC_SIZE, htonl(set->size))) nla_put_be32(skb, NFTA_SET_DESC_SIZE, htonl(set->size)))
goto nla_put_failure; goto nla_put_failure;
if (set->field_count > 1 &&
nf_tables_fill_set_concat(skb, set))
goto nla_put_failure;
nla_nest_end(skb, desc); nla_nest_end(skb, desc);
nlmsg_end(skb, nlh); nlmsg_end(skb, nlh);
...@@ -3797,6 +3831,53 @@ static int nf_tables_getset(struct net *net, struct sock *nlsk, ...@@ -3797,6 +3831,53 @@ static int nf_tables_getset(struct net *net, struct sock *nlsk,
return err; return err;
} }
static const struct nla_policy nft_concat_policy[NFTA_SET_FIELD_MAX + 1] = {
[NFTA_SET_FIELD_LEN] = { .type = NLA_U32 },
};
static int nft_set_desc_concat_parse(const struct nlattr *attr,
struct nft_set_desc *desc)
{
struct nlattr *tb[NFTA_SET_FIELD_MAX + 1];
u32 len;
int err;
err = nla_parse_nested_deprecated(tb, NFTA_SET_FIELD_MAX, attr,
nft_concat_policy, NULL);
if (err < 0)
return err;
if (!tb[NFTA_SET_FIELD_LEN])
return -EINVAL;
len = ntohl(nla_get_be32(tb[NFTA_SET_FIELD_LEN]));
if (len * BITS_PER_BYTE / 32 > NFT_REG32_COUNT)
return -E2BIG;
desc->field_len[desc->field_count++] = len;
return 0;
}
static int nft_set_desc_concat(struct nft_set_desc *desc,
const struct nlattr *nla)
{
struct nlattr *attr;
int rem, err;
nla_for_each_nested(attr, nla, rem) {
if (nla_type(attr) != NFTA_LIST_ELEM)
return -EINVAL;
err = nft_set_desc_concat_parse(attr, desc);
if (err < 0)
return err;
}
return 0;
}
static int nf_tables_set_desc_parse(struct nft_set_desc *desc, static int nf_tables_set_desc_parse(struct nft_set_desc *desc,
const struct nlattr *nla) const struct nlattr *nla)
{ {
...@@ -3810,8 +3891,10 @@ static int nf_tables_set_desc_parse(struct nft_set_desc *desc, ...@@ -3810,8 +3891,10 @@ static int nf_tables_set_desc_parse(struct nft_set_desc *desc,
if (da[NFTA_SET_DESC_SIZE] != NULL) if (da[NFTA_SET_DESC_SIZE] != NULL)
desc->size = ntohl(nla_get_be32(da[NFTA_SET_DESC_SIZE])); desc->size = ntohl(nla_get_be32(da[NFTA_SET_DESC_SIZE]));
if (da[NFTA_SET_DESC_CONCAT])
err = nft_set_desc_concat(desc, da[NFTA_SET_DESC_CONCAT]);
return 0; return err;
} }
static int nf_tables_newset(struct net *net, struct sock *nlsk, static int nf_tables_newset(struct net *net, struct sock *nlsk,
...@@ -3834,6 +3917,7 @@ static int nf_tables_newset(struct net *net, struct sock *nlsk, ...@@ -3834,6 +3917,7 @@ static int nf_tables_newset(struct net *net, struct sock *nlsk,
unsigned char *udata; unsigned char *udata;
u16 udlen; u16 udlen;
int err; int err;
int i;
if (nla[NFTA_SET_TABLE] == NULL || if (nla[NFTA_SET_TABLE] == NULL ||
nla[NFTA_SET_NAME] == NULL || nla[NFTA_SET_NAME] == NULL ||
...@@ -4012,6 +4096,10 @@ static int nf_tables_newset(struct net *net, struct sock *nlsk, ...@@ -4012,6 +4096,10 @@ static int nf_tables_newset(struct net *net, struct sock *nlsk,
set->gc_int = gc_int; set->gc_int = gc_int;
set->handle = nf_tables_alloc_handle(table); set->handle = nf_tables_alloc_handle(table);
set->field_count = desc.field_count;
for (i = 0; i < desc.field_count; i++)
set->field_len[i] = desc.field_len[i];
err = ops->init(set, &desc, nla); err = ops->init(set, &desc, nla);
if (err < 0) if (err < 0)
goto err3; goto err3;
...@@ -4215,6 +4303,9 @@ const struct nft_set_ext_type nft_set_ext_types[] = { ...@@ -4215,6 +4303,9 @@ const struct nft_set_ext_type nft_set_ext_types[] = {
.len = sizeof(struct nft_userdata), .len = sizeof(struct nft_userdata),
.align = __alignof__(struct nft_userdata), .align = __alignof__(struct nft_userdata),
}, },
[NFT_SET_EXT_KEY_END] = {
.align = __alignof__(u32),
},
}; };
EXPORT_SYMBOL_GPL(nft_set_ext_types); EXPORT_SYMBOL_GPL(nft_set_ext_types);
...@@ -4233,6 +4324,7 @@ static const struct nla_policy nft_set_elem_policy[NFTA_SET_ELEM_MAX + 1] = { ...@@ -4233,6 +4324,7 @@ static const struct nla_policy nft_set_elem_policy[NFTA_SET_ELEM_MAX + 1] = {
[NFTA_SET_ELEM_EXPR] = { .type = NLA_NESTED }, [NFTA_SET_ELEM_EXPR] = { .type = NLA_NESTED },
[NFTA_SET_ELEM_OBJREF] = { .type = NLA_STRING, [NFTA_SET_ELEM_OBJREF] = { .type = NLA_STRING,
.len = NFT_OBJ_MAXNAMELEN - 1 }, .len = NFT_OBJ_MAXNAMELEN - 1 },
[NFTA_SET_ELEM_KEY_END] = { .type = NLA_NESTED },
}; };
static const struct nla_policy nft_set_elem_list_policy[NFTA_SET_ELEM_LIST_MAX + 1] = { static const struct nla_policy nft_set_elem_list_policy[NFTA_SET_ELEM_LIST_MAX + 1] = {
...@@ -4282,6 +4374,11 @@ static int nf_tables_fill_setelem(struct sk_buff *skb, ...@@ -4282,6 +4374,11 @@ static int nf_tables_fill_setelem(struct sk_buff *skb,
NFT_DATA_VALUE, set->klen) < 0) NFT_DATA_VALUE, set->klen) < 0)
goto nla_put_failure; goto nla_put_failure;
if (nft_set_ext_exists(ext, NFT_SET_EXT_KEY_END) &&
nft_data_dump(skb, NFTA_SET_ELEM_KEY_END, nft_set_ext_key_end(ext),
NFT_DATA_VALUE, set->klen) < 0)
goto nla_put_failure;
if (nft_set_ext_exists(ext, NFT_SET_EXT_DATA) && if (nft_set_ext_exists(ext, NFT_SET_EXT_DATA) &&
nft_data_dump(skb, NFTA_SET_ELEM_DATA, nft_set_ext_data(ext), nft_data_dump(skb, NFTA_SET_ELEM_DATA, nft_set_ext_data(ext),
set->dtype == NFT_DATA_VERDICT ? NFT_DATA_VERDICT : NFT_DATA_VALUE, set->dtype == NFT_DATA_VERDICT ? NFT_DATA_VERDICT : NFT_DATA_VALUE,
...@@ -4524,11 +4621,28 @@ static int nft_setelem_parse_flags(const struct nft_set *set, ...@@ -4524,11 +4621,28 @@ static int nft_setelem_parse_flags(const struct nft_set *set,
return 0; return 0;
} }
static int nft_setelem_parse_key(struct nft_ctx *ctx, struct nft_set *set,
struct nft_data *key, struct nlattr *attr)
{
struct nft_data_desc desc;
int err;
err = nft_data_init(ctx, key, NFT_DATA_VALUE_MAXLEN, &desc, attr);
if (err < 0)
return err;
if (desc.type != NFT_DATA_VALUE || desc.len != set->klen) {
nft_data_release(key, desc.type);
return -EINVAL;
}
return 0;
}
static int nft_get_set_elem(struct nft_ctx *ctx, struct nft_set *set, static int nft_get_set_elem(struct nft_ctx *ctx, struct nft_set *set,
const struct nlattr *attr) const struct nlattr *attr)
{ {
struct nlattr *nla[NFTA_SET_ELEM_MAX + 1]; struct nlattr *nla[NFTA_SET_ELEM_MAX + 1];
struct nft_data_desc desc;
struct nft_set_elem elem; struct nft_set_elem elem;
struct sk_buff *skb; struct sk_buff *skb;
uint32_t flags = 0; uint32_t flags = 0;
...@@ -4547,15 +4661,16 @@ static int nft_get_set_elem(struct nft_ctx *ctx, struct nft_set *set, ...@@ -4547,15 +4661,16 @@ static int nft_get_set_elem(struct nft_ctx *ctx, struct nft_set *set,
if (err < 0) if (err < 0)
return err; return err;
err = nft_data_init(ctx, &elem.key.val, sizeof(elem.key), &desc, err = nft_setelem_parse_key(ctx, set, &elem.key.val,
nla[NFTA_SET_ELEM_KEY]); nla[NFTA_SET_ELEM_KEY]);
if (err < 0) if (err < 0)
return err; return err;
err = -EINVAL; if (nla[NFTA_SET_ELEM_KEY_END]) {
if (desc.type != NFT_DATA_VALUE || desc.len != set->klen) { err = nft_setelem_parse_key(ctx, set, &elem.key_end.val,
nft_data_release(&elem.key.val, desc.type); nla[NFTA_SET_ELEM_KEY_END]);
return err; if (err < 0)
return err;
} }
priv = set->ops->get(ctx->net, set, &elem, flags); priv = set->ops->get(ctx->net, set, &elem, flags);
...@@ -4683,8 +4798,8 @@ static struct nft_trans *nft_trans_elem_alloc(struct nft_ctx *ctx, ...@@ -4683,8 +4798,8 @@ static struct nft_trans *nft_trans_elem_alloc(struct nft_ctx *ctx,
void *nft_set_elem_init(const struct nft_set *set, void *nft_set_elem_init(const struct nft_set *set,
const struct nft_set_ext_tmpl *tmpl, const struct nft_set_ext_tmpl *tmpl,
const u32 *key, const u32 *data, const u32 *key, const u32 *key_end,
u64 timeout, u64 expiration, gfp_t gfp) const u32 *data, u64 timeout, u64 expiration, gfp_t gfp)
{ {
struct nft_set_ext *ext; struct nft_set_ext *ext;
void *elem; void *elem;
...@@ -4697,6 +4812,8 @@ void *nft_set_elem_init(const struct nft_set *set, ...@@ -4697,6 +4812,8 @@ void *nft_set_elem_init(const struct nft_set *set,
nft_set_ext_init(ext, tmpl); nft_set_ext_init(ext, tmpl);
memcpy(nft_set_ext_key(ext), key, set->klen); memcpy(nft_set_ext_key(ext), key, set->klen);
if (nft_set_ext_exists(ext, NFT_SET_EXT_KEY_END))
memcpy(nft_set_ext_key_end(ext), key_end, set->klen);
if (nft_set_ext_exists(ext, NFT_SET_EXT_DATA)) if (nft_set_ext_exists(ext, NFT_SET_EXT_DATA))
memcpy(nft_set_ext_data(ext), data, set->dlen); memcpy(nft_set_ext_data(ext), data, set->dlen);
if (nft_set_ext_exists(ext, NFT_SET_EXT_EXPIRATION)) { if (nft_set_ext_exists(ext, NFT_SET_EXT_EXPIRATION)) {
...@@ -4756,13 +4873,13 @@ static int nft_add_set_elem(struct nft_ctx *ctx, struct nft_set *set, ...@@ -4756,13 +4873,13 @@ static int nft_add_set_elem(struct nft_ctx *ctx, struct nft_set *set,
{ {
struct nlattr *nla[NFTA_SET_ELEM_MAX + 1]; struct nlattr *nla[NFTA_SET_ELEM_MAX + 1];
u8 genmask = nft_genmask_next(ctx->net); u8 genmask = nft_genmask_next(ctx->net);
struct nft_data_desc d1, d2;
struct nft_set_ext_tmpl tmpl; struct nft_set_ext_tmpl tmpl;
struct nft_set_ext *ext, *ext2; struct nft_set_ext *ext, *ext2;
struct nft_set_elem elem; struct nft_set_elem elem;
struct nft_set_binding *binding; struct nft_set_binding *binding;
struct nft_object *obj = NULL; struct nft_object *obj = NULL;
struct nft_userdata *udata; struct nft_userdata *udata;
struct nft_data_desc desc;
struct nft_data data; struct nft_data data;
enum nft_registers dreg; enum nft_registers dreg;
struct nft_trans *trans; struct nft_trans *trans;
...@@ -4828,15 +4945,22 @@ static int nft_add_set_elem(struct nft_ctx *ctx, struct nft_set *set, ...@@ -4828,15 +4945,22 @@ static int nft_add_set_elem(struct nft_ctx *ctx, struct nft_set *set,
return err; return err;
} }
err = nft_data_init(ctx, &elem.key.val, sizeof(elem.key), &d1, err = nft_setelem_parse_key(ctx, set, &elem.key.val,
nla[NFTA_SET_ELEM_KEY]); nla[NFTA_SET_ELEM_KEY]);
if (err < 0) if (err < 0)
goto err1; return err;
err = -EINVAL;
if (d1.type != NFT_DATA_VALUE || d1.len != set->klen) nft_set_ext_add_length(&tmpl, NFT_SET_EXT_KEY, set->klen);
goto err2;
if (nla[NFTA_SET_ELEM_KEY_END]) {
err = nft_setelem_parse_key(ctx, set, &elem.key_end.val,
nla[NFTA_SET_ELEM_KEY_END]);
if (err < 0)
goto err_parse_key;
nft_set_ext_add_length(&tmpl, NFT_SET_EXT_KEY_END, set->klen);
}
nft_set_ext_add_length(&tmpl, NFT_SET_EXT_KEY, d1.len);
if (timeout > 0) { if (timeout > 0) {
nft_set_ext_add(&tmpl, NFT_SET_EXT_EXPIRATION); nft_set_ext_add(&tmpl, NFT_SET_EXT_EXPIRATION);
if (timeout != set->timeout) if (timeout != set->timeout)
...@@ -4846,27 +4970,27 @@ static int nft_add_set_elem(struct nft_ctx *ctx, struct nft_set *set, ...@@ -4846,27 +4970,27 @@ static int nft_add_set_elem(struct nft_ctx *ctx, struct nft_set *set,
if (nla[NFTA_SET_ELEM_OBJREF] != NULL) { if (nla[NFTA_SET_ELEM_OBJREF] != NULL) {
if (!(set->flags & NFT_SET_OBJECT)) { if (!(set->flags & NFT_SET_OBJECT)) {
err = -EINVAL; err = -EINVAL;
goto err2; goto err_parse_key_end;
} }
obj = nft_obj_lookup(ctx->net, ctx->table, obj = nft_obj_lookup(ctx->net, ctx->table,
nla[NFTA_SET_ELEM_OBJREF], nla[NFTA_SET_ELEM_OBJREF],
set->objtype, genmask); set->objtype, genmask);
if (IS_ERR(obj)) { if (IS_ERR(obj)) {
err = PTR_ERR(obj); err = PTR_ERR(obj);
goto err2; goto err_parse_key_end;
} }
nft_set_ext_add(&tmpl, NFT_SET_EXT_OBJREF); nft_set_ext_add(&tmpl, NFT_SET_EXT_OBJREF);
} }
if (nla[NFTA_SET_ELEM_DATA] != NULL) { if (nla[NFTA_SET_ELEM_DATA] != NULL) {
err = nft_data_init(ctx, &data, sizeof(data), &d2, err = nft_data_init(ctx, &data, sizeof(data), &desc,
nla[NFTA_SET_ELEM_DATA]); nla[NFTA_SET_ELEM_DATA]);
if (err < 0) if (err < 0)
goto err2; goto err_parse_key_end;
err = -EINVAL; err = -EINVAL;
if (set->dtype != NFT_DATA_VERDICT && d2.len != set->dlen) if (set->dtype != NFT_DATA_VERDICT && desc.len != set->dlen)
goto err3; goto err_parse_data;
dreg = nft_type_to_reg(set->dtype); dreg = nft_type_to_reg(set->dtype);
list_for_each_entry(binding, &set->bindings, list) { list_for_each_entry(binding, &set->bindings, list) {
...@@ -4882,18 +5006,18 @@ static int nft_add_set_elem(struct nft_ctx *ctx, struct nft_set *set, ...@@ -4882,18 +5006,18 @@ static int nft_add_set_elem(struct nft_ctx *ctx, struct nft_set *set,
err = nft_validate_register_store(&bind_ctx, dreg, err = nft_validate_register_store(&bind_ctx, dreg,
&data, &data,
d2.type, d2.len); desc.type, desc.len);
if (err < 0) if (err < 0)
goto err3; goto err_parse_data;
if (d2.type == NFT_DATA_VERDICT && if (desc.type == NFT_DATA_VERDICT &&
(data.verdict.code == NFT_GOTO || (data.verdict.code == NFT_GOTO ||
data.verdict.code == NFT_JUMP)) data.verdict.code == NFT_JUMP))
nft_validate_state_update(ctx->net, nft_validate_state_update(ctx->net,
NFT_VALIDATE_NEED); NFT_VALIDATE_NEED);
} }
nft_set_ext_add_length(&tmpl, NFT_SET_EXT_DATA, d2.len); nft_set_ext_add_length(&tmpl, NFT_SET_EXT_DATA, desc.len);
} }
/* The full maximum length of userdata can exceed the maximum /* The full maximum length of userdata can exceed the maximum
...@@ -4909,10 +5033,11 @@ static int nft_add_set_elem(struct nft_ctx *ctx, struct nft_set *set, ...@@ -4909,10 +5033,11 @@ static int nft_add_set_elem(struct nft_ctx *ctx, struct nft_set *set,
} }
err = -ENOMEM; err = -ENOMEM;
elem.priv = nft_set_elem_init(set, &tmpl, elem.key.val.data, data.data, elem.priv = nft_set_elem_init(set, &tmpl, elem.key.val.data,
elem.key_end.val.data, data.data,
timeout, expiration, GFP_KERNEL); timeout, expiration, GFP_KERNEL);
if (elem.priv == NULL) if (elem.priv == NULL)
goto err3; goto err_parse_data;
ext = nft_set_elem_ext(set, elem.priv); ext = nft_set_elem_ext(set, elem.priv);
if (flags) if (flags)
...@@ -4929,7 +5054,7 @@ static int nft_add_set_elem(struct nft_ctx *ctx, struct nft_set *set, ...@@ -4929,7 +5054,7 @@ static int nft_add_set_elem(struct nft_ctx *ctx, struct nft_set *set,
trans = nft_trans_elem_alloc(ctx, NFT_MSG_NEWSETELEM, set); trans = nft_trans_elem_alloc(ctx, NFT_MSG_NEWSETELEM, set);
if (trans == NULL) if (trans == NULL)
goto err4; goto err_trans;
ext->genmask = nft_genmask_cur(ctx->net) | NFT_SET_ELEM_BUSY_MASK; ext->genmask = nft_genmask_cur(ctx->net) | NFT_SET_ELEM_BUSY_MASK;
err = set->ops->insert(ctx->net, set, &elem, &ext2); err = set->ops->insert(ctx->net, set, &elem, &ext2);
...@@ -4940,7 +5065,7 @@ static int nft_add_set_elem(struct nft_ctx *ctx, struct nft_set *set, ...@@ -4940,7 +5065,7 @@ static int nft_add_set_elem(struct nft_ctx *ctx, struct nft_set *set,
nft_set_ext_exists(ext, NFT_SET_EXT_OBJREF) ^ nft_set_ext_exists(ext, NFT_SET_EXT_OBJREF) ^
nft_set_ext_exists(ext2, NFT_SET_EXT_OBJREF)) { nft_set_ext_exists(ext2, NFT_SET_EXT_OBJREF)) {
err = -EBUSY; err = -EBUSY;
goto err5; goto err_element_clash;
} }
if ((nft_set_ext_exists(ext, NFT_SET_EXT_DATA) && if ((nft_set_ext_exists(ext, NFT_SET_EXT_DATA) &&
nft_set_ext_exists(ext2, NFT_SET_EXT_DATA) && nft_set_ext_exists(ext2, NFT_SET_EXT_DATA) &&
...@@ -4953,33 +5078,35 @@ static int nft_add_set_elem(struct nft_ctx *ctx, struct nft_set *set, ...@@ -4953,33 +5078,35 @@ static int nft_add_set_elem(struct nft_ctx *ctx, struct nft_set *set,
else if (!(nlmsg_flags & NLM_F_EXCL)) else if (!(nlmsg_flags & NLM_F_EXCL))
err = 0; err = 0;
} }
goto err5; goto err_element_clash;
} }
if (set->size && if (set->size &&
!atomic_add_unless(&set->nelems, 1, set->size + set->ndeact)) { !atomic_add_unless(&set->nelems, 1, set->size + set->ndeact)) {
err = -ENFILE; err = -ENFILE;
goto err6; goto err_set_full;
} }
nft_trans_elem(trans) = elem; nft_trans_elem(trans) = elem;
list_add_tail(&trans->list, &ctx->net->nft.commit_list); list_add_tail(&trans->list, &ctx->net->nft.commit_list);
return 0; return 0;
err6: err_set_full:
set->ops->remove(ctx->net, set, &elem); set->ops->remove(ctx->net, set, &elem);
err5: err_element_clash:
kfree(trans); kfree(trans);
err4: err_trans:
if (obj) if (obj)
obj->use--; obj->use--;
kfree(elem.priv); kfree(elem.priv);
err3: err_parse_data:
if (nla[NFTA_SET_ELEM_DATA] != NULL) if (nla[NFTA_SET_ELEM_DATA] != NULL)
nft_data_release(&data, d2.type); nft_data_release(&data, desc.type);
err2: err_parse_key_end:
nft_data_release(&elem.key.val, d1.type); nft_data_release(&elem.key_end.val, NFT_DATA_VALUE);
err1: err_parse_key:
nft_data_release(&elem.key.val, NFT_DATA_VALUE);
return err; return err;
} }
...@@ -5074,7 +5201,6 @@ static int nft_del_setelem(struct nft_ctx *ctx, struct nft_set *set, ...@@ -5074,7 +5201,6 @@ static int nft_del_setelem(struct nft_ctx *ctx, struct nft_set *set,
{ {
struct nlattr *nla[NFTA_SET_ELEM_MAX + 1]; struct nlattr *nla[NFTA_SET_ELEM_MAX + 1];
struct nft_set_ext_tmpl tmpl; struct nft_set_ext_tmpl tmpl;
struct nft_data_desc desc;
struct nft_set_elem elem; struct nft_set_elem elem;
struct nft_set_ext *ext; struct nft_set_ext *ext;
struct nft_trans *trans; struct nft_trans *trans;
...@@ -5085,11 +5211,10 @@ static int nft_del_setelem(struct nft_ctx *ctx, struct nft_set *set, ...@@ -5085,11 +5211,10 @@ static int nft_del_setelem(struct nft_ctx *ctx, struct nft_set *set,
err = nla_parse_nested_deprecated(nla, NFTA_SET_ELEM_MAX, attr, err = nla_parse_nested_deprecated(nla, NFTA_SET_ELEM_MAX, attr,
nft_set_elem_policy, NULL); nft_set_elem_policy, NULL);
if (err < 0) if (err < 0)
goto err1; return err;
err = -EINVAL;
if (nla[NFTA_SET_ELEM_KEY] == NULL) if (nla[NFTA_SET_ELEM_KEY] == NULL)
goto err1; return -EINVAL;
nft_set_ext_prepare(&tmpl); nft_set_ext_prepare(&tmpl);
...@@ -5099,37 +5224,41 @@ static int nft_del_setelem(struct nft_ctx *ctx, struct nft_set *set, ...@@ -5099,37 +5224,41 @@ static int nft_del_setelem(struct nft_ctx *ctx, struct nft_set *set,
if (flags != 0) if (flags != 0)
nft_set_ext_add(&tmpl, NFT_SET_EXT_FLAGS); nft_set_ext_add(&tmpl, NFT_SET_EXT_FLAGS);
err = nft_data_init(ctx, &elem.key.val, sizeof(elem.key), &desc, err = nft_setelem_parse_key(ctx, set, &elem.key.val,
nla[NFTA_SET_ELEM_KEY]); nla[NFTA_SET_ELEM_KEY]);
if (err < 0) if (err < 0)
goto err1; return err;
err = -EINVAL; nft_set_ext_add_length(&tmpl, NFT_SET_EXT_KEY, set->klen);
if (desc.type != NFT_DATA_VALUE || desc.len != set->klen)
goto err2;
nft_set_ext_add_length(&tmpl, NFT_SET_EXT_KEY, desc.len); if (nla[NFTA_SET_ELEM_KEY_END]) {
err = nft_setelem_parse_key(ctx, set, &elem.key_end.val,
nla[NFTA_SET_ELEM_KEY_END]);
if (err < 0)
return err;
nft_set_ext_add_length(&tmpl, NFT_SET_EXT_KEY_END, set->klen);
}
err = -ENOMEM; err = -ENOMEM;
elem.priv = nft_set_elem_init(set, &tmpl, elem.key.val.data, NULL, 0, elem.priv = nft_set_elem_init(set, &tmpl, elem.key.val.data,
0, GFP_KERNEL); elem.key_end.val.data, NULL, 0, 0,
GFP_KERNEL);
if (elem.priv == NULL) if (elem.priv == NULL)
goto err2; goto fail_elem;
ext = nft_set_elem_ext(set, elem.priv); ext = nft_set_elem_ext(set, elem.priv);
if (flags) if (flags)
*nft_set_ext_flags(ext) = flags; *nft_set_ext_flags(ext) = flags;
trans = nft_trans_elem_alloc(ctx, NFT_MSG_DELSETELEM, set); trans = nft_trans_elem_alloc(ctx, NFT_MSG_DELSETELEM, set);
if (trans == NULL) { if (trans == NULL)
err = -ENOMEM; goto fail_trans;
goto err3;
}
priv = set->ops->deactivate(ctx->net, set, &elem); priv = set->ops->deactivate(ctx->net, set, &elem);
if (priv == NULL) { if (priv == NULL) {
err = -ENOENT; err = -ENOENT;
goto err4; goto fail_ops;
} }
kfree(elem.priv); kfree(elem.priv);
elem.priv = priv; elem.priv = priv;
...@@ -5140,13 +5269,12 @@ static int nft_del_setelem(struct nft_ctx *ctx, struct nft_set *set, ...@@ -5140,13 +5269,12 @@ static int nft_del_setelem(struct nft_ctx *ctx, struct nft_set *set,
list_add_tail(&trans->list, &ctx->net->nft.commit_list); list_add_tail(&trans->list, &ctx->net->nft.commit_list);
return 0; return 0;
err4: fail_ops:
kfree(trans); kfree(trans);
err3: fail_trans:
kfree(elem.priv); kfree(elem.priv);
err2: fail_elem:
nft_data_release(&elem.key.val, desc.type); nft_data_release(&elem.key.val, NFT_DATA_VALUE);
err1:
return err; return err;
} }
......
...@@ -9,12 +9,14 @@ static int __init nf_tables_set_module_init(void) ...@@ -9,12 +9,14 @@ static int __init nf_tables_set_module_init(void)
nft_register_set(&nft_set_rhash_type); nft_register_set(&nft_set_rhash_type);
nft_register_set(&nft_set_bitmap_type); nft_register_set(&nft_set_bitmap_type);
nft_register_set(&nft_set_rbtree_type); nft_register_set(&nft_set_rbtree_type);
nft_register_set(&nft_set_pipapo_type);
return 0; return 0;
} }
static void __exit nf_tables_set_module_exit(void) static void __exit nf_tables_set_module_exit(void)
{ {
nft_unregister_set(&nft_set_pipapo_type);
nft_unregister_set(&nft_set_rbtree_type); nft_unregister_set(&nft_set_rbtree_type);
nft_unregister_set(&nft_set_bitmap_type); nft_unregister_set(&nft_set_bitmap_type);
nft_unregister_set(&nft_set_rhash_type); nft_unregister_set(&nft_set_rhash_type);
......
...@@ -54,7 +54,7 @@ static void *nft_dynset_new(struct nft_set *set, const struct nft_expr *expr, ...@@ -54,7 +54,7 @@ static void *nft_dynset_new(struct nft_set *set, const struct nft_expr *expr,
timeout = priv->timeout ? : set->timeout; timeout = priv->timeout ? : set->timeout;
elem = nft_set_elem_init(set, &priv->tmpl, elem = nft_set_elem_init(set, &priv->tmpl,
&regs->data[priv->sreg_key], &regs->data[priv->sreg_key], NULL,
&regs->data[priv->sreg_data], &regs->data[priv->sreg_data],
timeout, 0, GFP_ATOMIC); timeout, 0, GFP_ATOMIC);
if (elem == NULL) if (elem == NULL)
......
// SPDX-License-Identifier: GPL-2.0-only
/* PIPAPO: PIle PAcket POlicies: set for arbitrary concatenations of ranges
*
* Copyright (c) 2019-2020 Red Hat GmbH
*
* Author: Stefano Brivio <sbrivio@redhat.com>
*/
/**
* DOC: Theory of Operation
*
*
* Problem
* -------
*
* Match packet bytes against entries composed of ranged or non-ranged packet
* field specifiers, mapping them to arbitrary references. For example:
*
* ::
*
* --- fields --->
* | [net],[port],[net]... => [reference]
* entries [net],[port],[net]... => [reference]
* | [net],[port],[net]... => [reference]
* V ...
*
* where [net] fields can be IP ranges or netmasks, and [port] fields are port
* ranges. Arbitrary packet fields can be matched.
*
*
* Algorithm Overview
* ------------------
*
* This algorithm is loosely inspired by [Ligatti 2010], and fundamentally
* relies on the consideration that every contiguous range in a space of b bits
* can be converted into b * 2 netmasks, from Theorem 3 in [Rottenstreich 2010],
* as also illustrated in Section 9 of [Kogan 2014].
*
* Classification against a number of entries, that require matching given bits
* of a packet field, is performed by grouping those bits in sets of arbitrary
* size, and classifying packet bits one group at a time.
*
* Example:
* to match the source port (16 bits) of a packet, we can divide those 16 bits
* in 4 groups of 4 bits each. Given the entry:
* 0000 0001 0101 1001
* and a packet with source port:
* 0000 0001 1010 1001
* first and second groups match, but the third doesn't. We conclude that the
* packet doesn't match the given entry.
*
* Translate the set to a sequence of lookup tables, one per field. Each table
* has two dimensions: bit groups to be matched for a single packet field, and
* all the possible values of said groups (buckets). Input entries are
* represented as one or more rules, depending on the number of composing
* netmasks for the given field specifier, and a group match is indicated as a
* set bit, with number corresponding to the rule index, in all the buckets
* whose value matches the entry for a given group.
*
* Rules are mapped between fields through an array of x, n pairs, with each
* item mapping a matched rule to one or more rules. The position of the pair in
* the array indicates the matched rule to be mapped to the next field, x
* indicates the first rule index in the next field, and n the amount of
* next-field rules the current rule maps to.
*
* The mapping array for the last field maps to the desired references.
*
* To match, we perform table lookups using the values of grouped packet bits,
* and use a sequence of bitwise operations to progressively evaluate rule
* matching.
*
* A stand-alone, reference implementation, also including notes about possible
* future optimisations, is available at:
* https://pipapo.lameexcu.se/
*
* Insertion
* ---------
*
* - For each packet field:
*
* - divide the b packet bits we want to classify into groups of size t,
* obtaining ceil(b / t) groups
*
* Example: match on destination IP address, with t = 4: 32 bits, 8 groups
* of 4 bits each
*
* - allocate a lookup table with one column ("bucket") for each possible
* value of a group, and with one row for each group
*
* Example: 8 groups, 2^4 buckets:
*
* ::
*
* bucket
* group 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
* 0
* 1
* 2
* 3
* 4
* 5
* 6
* 7
*
* - map the bits we want to classify for the current field, for a given
* entry, to a single rule for non-ranged and netmask set items, and to one
* or multiple rules for ranges. Ranges are expanded to composing netmasks
* by pipapo_expand().
*
* Example: 2 entries, 10.0.0.5:1024 and 192.168.1.0-192.168.2.1:2048
* - rule #0: 10.0.0.5
* - rule #1: 192.168.1.0/24
* - rule #2: 192.168.2.0/31
*
* - insert references to the rules in the lookup table, selecting buckets
* according to bit values of a rule in the given group. This is done by
* pipapo_insert().
*
* Example: given:
* - rule #0: 10.0.0.5 mapping to buckets
* < 0 10 0 0 0 0 0 5 >
* - rule #1: 192.168.1.0/24 mapping to buckets
* < 12 0 10 8 0 1 < 0..15 > < 0..15 > >
* - rule #2: 192.168.2.0/31 mapping to buckets
* < 12 0 10 8 0 2 0 < 0..1 > >
*
* these bits are set in the lookup table:
*
* ::
*
* bucket
* group 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
* 0 0 1,2
* 1 1,2 0
* 2 0 1,2
* 3 0 1,2
* 4 0,1,2
* 5 0 1 2
* 6 0,1,2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
* 7 1,2 1,2 1 1 1 0,1 1 1 1 1 1 1 1 1 1 1
*
* - if this is not the last field in the set, fill a mapping array that maps
* rules from the lookup table to rules belonging to the same entry in
* the next lookup table, done by pipapo_map().
*
* Note that as rules map to contiguous ranges of rules, given how netmask
* expansion and insertion is performed, &union nft_pipapo_map_bucket stores
* this information as pairs of first rule index, rule count.
*
* Example: 2 entries, 10.0.0.5:1024 and 192.168.1.0-192.168.2.1:2048,
* given lookup table #0 for field 0 (see example above):
*
* ::
*
* bucket
* group 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
* 0 0 1,2
* 1 1,2 0
* 2 0 1,2
* 3 0 1,2
* 4 0,1,2
* 5 0 1 2
* 6 0,1,2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
* 7 1,2 1,2 1 1 1 0,1 1 1 1 1 1 1 1 1 1 1
*
* and lookup table #1 for field 1 with:
* - rule #0: 1024 mapping to buckets
* < 0 0 4 0 >
* - rule #1: 2048 mapping to buckets
* < 0 0 5 0 >
*
* ::
*
* bucket
* group 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
* 0 0,1
* 1 0,1
* 2 0 1
* 3 0,1
*
* we need to map rules for 10.0.0.5 in lookup table #0 (rule #0) to 1024
* in lookup table #1 (rule #0) and rules for 192.168.1.0-192.168.2.1
* (rules #1, #2) to 2048 in lookup table #2 (rule #1):
*
* ::
*
* rule indices in current field: 0 1 2
* map to rules in next field: 0 1 1
*
* - if this is the last field in the set, fill a mapping array that maps
* rules from the last lookup table to element pointers, also done by
* pipapo_map().
*
* Note that, in this implementation, we have two elements (start, end) for
* each entry. The pointer to the end element is stored in this array, and
* the pointer to the start element is linked from it.
*
* Example: entry 10.0.0.5:1024 has a corresponding &struct nft_pipapo_elem
* pointer, 0x66, and element for 192.168.1.0-192.168.2.1:2048 is at 0x42.
* From the rules of lookup table #1 as mapped above:
*
* ::
*
* rule indices in last field: 0 1
* map to elements: 0x42 0x66
*
*
* Matching
* --------
*
* We use a result bitmap, with the size of a single lookup table bucket, to
* represent the matching state that applies at every algorithm step. This is
* done by pipapo_lookup().
*
* - For each packet field:
*
* - start with an all-ones result bitmap (res_map in pipapo_lookup())
*
* - perform a lookup into the table corresponding to the current field,
* for each group, and at every group, AND the current result bitmap with
* the value from the lookup table bucket
*
* ::
*
* Example: 192.168.1.5 < 12 0 10 8 0 1 0 5 >, with lookup table from
* insertion examples.
* Lookup table buckets are at least 3 bits wide, we'll assume 8 bits for
* convenience in this example. Initial result bitmap is 0xff, the steps
* below show the value of the result bitmap after each group is processed:
*
* bucket
* group 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
* 0 0 1,2
* result bitmap is now: 0xff & 0x6 [bucket 12] = 0x6
*
* 1 1,2 0
* result bitmap is now: 0x6 & 0x6 [bucket 0] = 0x6
*
* 2 0 1,2
* result bitmap is now: 0x6 & 0x6 [bucket 10] = 0x6
*
* 3 0 1,2
* result bitmap is now: 0x6 & 0x6 [bucket 8] = 0x6
*
* 4 0,1,2
* result bitmap is now: 0x6 & 0x7 [bucket 0] = 0x6
*
* 5 0 1 2
* result bitmap is now: 0x6 & 0x2 [bucket 1] = 0x2
*
* 6 0,1,2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
* result bitmap is now: 0x2 & 0x7 [bucket 0] = 0x2
*
* 7 1,2 1,2 1 1 1 0,1 1 1 1 1 1 1 1 1 1 1
* final result bitmap for this field is: 0x2 & 0x3 [bucket 5] = 0x2
*
* - at the next field, start with a new, all-zeroes result bitmap. For each
* bit set in the previous result bitmap, fill the new result bitmap
* (fill_map in pipapo_lookup()) with the rule indices from the
* corresponding buckets of the mapping field for this field, done by
* pipapo_refill()
*
* Example: with mapping table from insertion examples, with the current
* result bitmap from the previous example, 0x02:
*
* ::
*
* rule indices in current field: 0 1 2
* map to rules in next field: 0 1 1
*
* the new result bitmap will be 0x02: rule 1 was set, and rule 1 will be
* set.
*
* We can now extend this example to cover the second iteration of the step
* above (lookup and AND bitmap): assuming the port field is
* 2048 < 0 0 5 0 >, with starting result bitmap 0x2, and lookup table
* for "port" field from pre-computation example:
*
* ::
*
* bucket
* group 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
* 0 0,1
* 1 0,1
* 2 0 1
* 3 0,1
*
* operations are: 0x2 & 0x3 [bucket 0] & 0x3 [bucket 0] & 0x2 [bucket 5]
* & 0x3 [bucket 0], resulting bitmap is 0x2.
*
* - if this is the last field in the set, look up the value from the mapping
* array corresponding to the final result bitmap
*
* Example: 0x2 resulting bitmap from 192.168.1.5:2048, mapping array for
* last field from insertion example:
*
* ::
*
* rule indices in last field: 0 1
* map to elements: 0x42 0x66
*
* the matching element is at 0x42.
*
*
* References
* ----------
*
* [Ligatti 2010]
* A Packet-classification Algorithm for Arbitrary Bitmask Rules, with
* Automatic Time-space Tradeoffs
* Jay Ligatti, Josh Kuhn, and Chris Gage.
* Proceedings of the IEEE International Conference on Computer
* Communication Networks (ICCCN), August 2010.
* http://www.cse.usf.edu/~ligatti/papers/grouper-conf.pdf
*
* [Rottenstreich 2010]
* Worst-Case TCAM Rule Expansion
* Ori Rottenstreich and Isaac Keslassy.
* 2010 Proceedings IEEE INFOCOM, San Diego, CA, 2010.
* http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.212.4592&rep=rep1&type=pdf
*
* [Kogan 2014]
* SAX-PAC (Scalable And eXpressive PAcket Classification)
* Kirill Kogan, Sergey Nikolenko, Ori Rottenstreich, William Culhane,
* and Patrick Eugster.
* Proceedings of the 2014 ACM conference on SIGCOMM, August 2014.
* http://www.sigcomm.org/sites/default/files/ccr/papers/2014/August/2619239-2626294.pdf
*/
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/log2.h>
#include <linux/module.h>
#include <linux/netlink.h>
#include <linux/netfilter.h>
#include <linux/netfilter/nf_tables.h>
#include <net/netfilter/nf_tables_core.h>
#include <uapi/linux/netfilter/nf_tables.h>
#include <net/ipv6.h> /* For the maximum length of a field */
#include <linux/bitmap.h>
#include <linux/bitops.h>
/* Count of concatenated fields depends on count of 32-bit nftables registers */
#define NFT_PIPAPO_MAX_FIELDS NFT_REG32_COUNT
/* Largest supported field size */
#define NFT_PIPAPO_MAX_BYTES (sizeof(struct in6_addr))
#define NFT_PIPAPO_MAX_BITS (NFT_PIPAPO_MAX_BYTES * BITS_PER_BYTE)
/* Number of bits to be grouped together in lookup table buckets, arbitrary */
#define NFT_PIPAPO_GROUP_BITS 4
#define NFT_PIPAPO_GROUPS_PER_BYTE (BITS_PER_BYTE / NFT_PIPAPO_GROUP_BITS)
/* Fields are padded to 32 bits in input registers */
#define NFT_PIPAPO_GROUPS_PADDED_SIZE(x) \
(round_up((x) / NFT_PIPAPO_GROUPS_PER_BYTE, sizeof(u32)))
#define NFT_PIPAPO_GROUPS_PADDING(x) \
(NFT_PIPAPO_GROUPS_PADDED_SIZE((x)) - (x) / NFT_PIPAPO_GROUPS_PER_BYTE)
/* Number of buckets, given by 2 ^ n, with n grouped bits */
#define NFT_PIPAPO_BUCKETS (1 << NFT_PIPAPO_GROUP_BITS)
/* Each n-bit range maps to up to n * 2 rules */
#define NFT_PIPAPO_MAP_NBITS (const_ilog2(NFT_PIPAPO_MAX_BITS * 2))
/* Use the rest of mapping table buckets for rule indices, but it makes no sense
* to exceed 32 bits
*/
#if BITS_PER_LONG == 64
#define NFT_PIPAPO_MAP_TOBITS 32
#else
#define NFT_PIPAPO_MAP_TOBITS (BITS_PER_LONG - NFT_PIPAPO_MAP_NBITS)
#endif
/* ...which gives us the highest allowed index for a rule */
#define NFT_PIPAPO_RULE0_MAX ((1UL << (NFT_PIPAPO_MAP_TOBITS - 1)) \
- (1UL << NFT_PIPAPO_MAP_NBITS))
#define nft_pipapo_for_each_field(field, index, match) \
for ((field) = (match)->f, (index) = 0; \
(index) < (match)->field_count; \
(index)++, (field)++)
/**
* union nft_pipapo_map_bucket - Bucket of mapping table
* @to: First rule number (in next field) this rule maps to
* @n: Number of rules (in next field) this rule maps to
* @e: If there's no next field, pointer to element this rule maps to
*/
union nft_pipapo_map_bucket {
struct {
#if BITS_PER_LONG == 64
static_assert(NFT_PIPAPO_MAP_TOBITS <= 32);
u32 to;
static_assert(NFT_PIPAPO_MAP_NBITS <= 32);
u32 n;
#else
unsigned long to:NFT_PIPAPO_MAP_TOBITS;
unsigned long n:NFT_PIPAPO_MAP_NBITS;
#endif
};
struct nft_pipapo_elem *e;
};
/**
* struct nft_pipapo_field - Lookup, mapping tables and related data for a field
* @groups: Amount of 4-bit groups
* @rules: Number of inserted rules
* @bsize: Size of each bucket in lookup table, in longs
* @lt: Lookup table: 'groups' rows of NFT_PIPAPO_BUCKETS buckets
* @mt: Mapping table: one bucket per rule
*/
struct nft_pipapo_field {
int groups;
unsigned long rules;
size_t bsize;
unsigned long *lt;
union nft_pipapo_map_bucket *mt;
};
/**
* struct nft_pipapo_match - Data used for lookup and matching
* @field_count Amount of fields in set
* @scratch: Preallocated per-CPU maps for partial matching results
* @bsize_max: Maximum lookup table bucket size of all fields, in longs
* @rcu Matching data is swapped on commits
* @f: Fields, with lookup and mapping tables
*/
struct nft_pipapo_match {
int field_count;
unsigned long * __percpu *scratch;
size_t bsize_max;
struct rcu_head rcu;
struct nft_pipapo_field f[0];
};
/* Current working bitmap index, toggled between field matches */
static DEFINE_PER_CPU(bool, nft_pipapo_scratch_index);
/**
* struct nft_pipapo - Representation of a set
* @match: Currently in-use matching data
* @clone: Copy where pending insertions and deletions are kept
* @groups: Total amount of 4-bit groups for fields in this set
* @width: Total bytes to be matched for one packet, including padding
* @dirty: Working copy has pending insertions or deletions
* @last_gc: Timestamp of last garbage collection run, jiffies
*/
struct nft_pipapo {
struct nft_pipapo_match __rcu *match;
struct nft_pipapo_match *clone;
int groups;
int width;
bool dirty;
unsigned long last_gc;
};
struct nft_pipapo_elem;
/**
* struct nft_pipapo_elem - API-facing representation of single set element
* @ext: nftables API extensions
*/
struct nft_pipapo_elem {
struct nft_set_ext ext;
};
/**
* pipapo_refill() - For each set bit, set bits from selected mapping table item
* @map: Bitmap to be scanned for set bits
* @len: Length of bitmap in longs
* @rules: Number of rules in field
* @dst: Destination bitmap
* @mt: Mapping table containing bit set specifiers
* @match_only: Find a single bit and return, don't fill
*
* Iteration over set bits with __builtin_ctzl(): Daniel Lemire, public domain.
*
* For each bit set in map, select the bucket from mapping table with index
* corresponding to the position of the bit set. Use start bit and amount of
* bits specified in bucket to fill region in dst.
*
* Return: -1 on no match, bit position on 'match_only', 0 otherwise.
*/
static int pipapo_refill(unsigned long *map, int len, int rules,
unsigned long *dst, union nft_pipapo_map_bucket *mt,
bool match_only)
{
unsigned long bitset;
int k, ret = -1;
for (k = 0; k < len; k++) {
bitset = map[k];
while (bitset) {
unsigned long t = bitset & -bitset;
int r = __builtin_ctzl(bitset);
int i = k * BITS_PER_LONG + r;
if (unlikely(i >= rules)) {
map[k] = 0;
return -1;
}
if (unlikely(match_only)) {
bitmap_clear(map, i, 1);
return i;
}
ret = 0;
bitmap_set(dst, mt[i].to, mt[i].n);
bitset ^= t;
}
map[k] = 0;
}
return ret;
}
/**
* nft_pipapo_lookup() - Lookup function
* @net: Network namespace
* @set: nftables API set representation
* @elem: nftables API element representation containing key data
* @ext: nftables API extension pointer, filled with matching reference
*
* For more details, see DOC: Theory of Operation.
*
* Return: true on match, false otherwise.
*/
static bool nft_pipapo_lookup(const struct net *net, const struct nft_set *set,
const u32 *key, const struct nft_set_ext **ext)
{
struct nft_pipapo *priv = nft_set_priv(set);
unsigned long *res_map, *fill_map;
u8 genmask = nft_genmask_cur(net);
const u8 *rp = (const u8 *)key;
struct nft_pipapo_match *m;
struct nft_pipapo_field *f;
bool map_index;
int i;
local_bh_disable();
map_index = raw_cpu_read(nft_pipapo_scratch_index);
m = rcu_dereference(priv->match);
if (unlikely(!m || !*raw_cpu_ptr(m->scratch)))
goto out;
res_map = *raw_cpu_ptr(m->scratch) + (map_index ? m->bsize_max : 0);
fill_map = *raw_cpu_ptr(m->scratch) + (map_index ? 0 : m->bsize_max);
memset(res_map, 0xff, m->bsize_max * sizeof(*res_map));
nft_pipapo_for_each_field(f, i, m) {
bool last = i == m->field_count - 1;
unsigned long *lt = f->lt;
int b, group;
/* For each 4-bit group: select lookup table bucket depending on
* packet bytes value, then AND bucket value
*/
for (group = 0; group < f->groups; group += 2) {
u8 v;
v = *rp >> 4;
__bitmap_and(res_map, res_map, lt + v * f->bsize,
f->bsize * BITS_PER_LONG);
lt += f->bsize * NFT_PIPAPO_BUCKETS;
v = *rp & 0x0f;
rp++;
__bitmap_and(res_map, res_map, lt + v * f->bsize,
f->bsize * BITS_PER_LONG);
lt += f->bsize * NFT_PIPAPO_BUCKETS;
}
/* Now populate the bitmap for the next field, unless this is
* the last field, in which case return the matched 'ext'
* pointer if any.
*
* Now res_map contains the matching bitmap, and fill_map is the
* bitmap for the next field.
*/
next_match:
b = pipapo_refill(res_map, f->bsize, f->rules, fill_map, f->mt,
last);
if (b < 0) {
raw_cpu_write(nft_pipapo_scratch_index, map_index);
local_bh_enable();
return false;
}
if (last) {
*ext = &f->mt[b].e->ext;
if (unlikely(nft_set_elem_expired(*ext) ||
!nft_set_elem_active(*ext, genmask)))
goto next_match;
/* Last field: we're just returning the key without
* filling the initial bitmap for the next field, so the
* current inactive bitmap is clean and can be reused as
* *next* bitmap (not initial) for the next packet.
*/
raw_cpu_write(nft_pipapo_scratch_index, map_index);
local_bh_enable();
return true;
}
/* Swap bitmap indices: res_map is the initial bitmap for the
* next field, and fill_map is guaranteed to be all-zeroes at
* this point.
*/
map_index = !map_index;
swap(res_map, fill_map);
rp += NFT_PIPAPO_GROUPS_PADDING(f->groups);
}
out:
local_bh_enable();
return false;
}
/**
* pipapo_get() - Get matching element reference given key data
* @net: Network namespace
* @set: nftables API set representation
* @data: Key data to be matched against existing elements
* @genmask: If set, check that element is active in given genmask
*
* This is essentially the same as the lookup function, except that it matches
* key data against the uncommitted copy and doesn't use preallocated maps for
* bitmap results.
*
* Return: pointer to &struct nft_pipapo_elem on match, error pointer otherwise.
*/
static struct nft_pipapo_elem *pipapo_get(const struct net *net,
const struct nft_set *set,
const u8 *data, u8 genmask)
{
struct nft_pipapo_elem *ret = ERR_PTR(-ENOENT);
struct nft_pipapo *priv = nft_set_priv(set);
struct nft_pipapo_match *m = priv->clone;
unsigned long *res_map, *fill_map = NULL;
struct nft_pipapo_field *f;
int i;
res_map = kmalloc_array(m->bsize_max, sizeof(*res_map), GFP_ATOMIC);
if (!res_map) {
ret = ERR_PTR(-ENOMEM);
goto out;
}
fill_map = kcalloc(m->bsize_max, sizeof(*res_map), GFP_ATOMIC);
if (!fill_map) {
ret = ERR_PTR(-ENOMEM);
goto out;
}
memset(res_map, 0xff, m->bsize_max * sizeof(*res_map));
nft_pipapo_for_each_field(f, i, m) {
bool last = i == m->field_count - 1;
unsigned long *lt = f->lt;
int b, group;
/* For each 4-bit group: select lookup table bucket depending on
* packet bytes value, then AND bucket value
*/
for (group = 0; group < f->groups; group++) {
u8 v;
if (group % 2) {
v = *data & 0x0f;
data++;
} else {
v = *data >> 4;
}
__bitmap_and(res_map, res_map, lt + v * f->bsize,
f->bsize * BITS_PER_LONG);
lt += f->bsize * NFT_PIPAPO_BUCKETS;
}
/* Now populate the bitmap for the next field, unless this is
* the last field, in which case return the matched 'ext'
* pointer if any.
*
* Now res_map contains the matching bitmap, and fill_map is the
* bitmap for the next field.
*/
next_match:
b = pipapo_refill(res_map, f->bsize, f->rules, fill_map, f->mt,
last);
if (b < 0)
goto out;
if (last) {
if (nft_set_elem_expired(&f->mt[b].e->ext) ||
(genmask &&
!nft_set_elem_active(&f->mt[b].e->ext, genmask)))
goto next_match;
ret = f->mt[b].e;
goto out;
}
data += NFT_PIPAPO_GROUPS_PADDING(f->groups);
/* Swap bitmap indices: fill_map will be the initial bitmap for
* the next field (i.e. the new res_map), and res_map is
* guaranteed to be all-zeroes at this point, ready to be filled
* according to the next mapping table.
*/
swap(res_map, fill_map);
}
out:
kfree(fill_map);
kfree(res_map);
return ret;
}
/**
* nft_pipapo_get() - Get matching element reference given key data
* @net: Network namespace
* @set: nftables API set representation
* @elem: nftables API element representation containing key data
* @flags: Unused
*/
void *nft_pipapo_get(const struct net *net, const struct nft_set *set,
const struct nft_set_elem *elem, unsigned int flags)
{
return pipapo_get(net, set, (const u8 *)elem->key.val.data,
nft_genmask_cur(net));
}
/**
* pipapo_resize() - Resize lookup or mapping table, or both
* @f: Field containing lookup and mapping tables
* @old_rules: Previous amount of rules in field
* @rules: New amount of rules
*
* Increase, decrease or maintain tables size depending on new amount of rules,
* and copy data over. In case the new size is smaller, throw away data for
* highest-numbered rules.
*
* Return: 0 on success, -ENOMEM on allocation failure.
*/
static int pipapo_resize(struct nft_pipapo_field *f, int old_rules, int rules)
{
long *new_lt = NULL, *new_p, *old_lt = f->lt, *old_p;
union nft_pipapo_map_bucket *new_mt, *old_mt = f->mt;
size_t new_bucket_size, copy;
int group, bucket;
new_bucket_size = DIV_ROUND_UP(rules, BITS_PER_LONG);
if (new_bucket_size == f->bsize)
goto mt;
if (new_bucket_size > f->bsize)
copy = f->bsize;
else
copy = new_bucket_size;
new_lt = kvzalloc(f->groups * NFT_PIPAPO_BUCKETS * new_bucket_size *
sizeof(*new_lt), GFP_KERNEL);
if (!new_lt)
return -ENOMEM;
new_p = new_lt;
old_p = old_lt;
for (group = 0; group < f->groups; group++) {
for (bucket = 0; bucket < NFT_PIPAPO_BUCKETS; bucket++) {
memcpy(new_p, old_p, copy * sizeof(*new_p));
new_p += copy;
old_p += copy;
if (new_bucket_size > f->bsize)
new_p += new_bucket_size - f->bsize;
else
old_p += f->bsize - new_bucket_size;
}
}
mt:
new_mt = kvmalloc(rules * sizeof(*new_mt), GFP_KERNEL);
if (!new_mt) {
kvfree(new_lt);
return -ENOMEM;
}
memcpy(new_mt, f->mt, min(old_rules, rules) * sizeof(*new_mt));
if (rules > old_rules) {
memset(new_mt + old_rules, 0,
(rules - old_rules) * sizeof(*new_mt));
}
if (new_lt) {
f->bsize = new_bucket_size;
f->lt = new_lt;
kvfree(old_lt);
}
f->mt = new_mt;
kvfree(old_mt);
return 0;
}
/**
* pipapo_bucket_set() - Set rule bit in bucket given group and group value
* @f: Field containing lookup table
* @rule: Rule index
* @group: Group index
* @v: Value of bit group
*/
static void pipapo_bucket_set(struct nft_pipapo_field *f, int rule, int group,
int v)
{
unsigned long *pos;
pos = f->lt + f->bsize * NFT_PIPAPO_BUCKETS * group;
pos += f->bsize * v;
__set_bit(rule, pos);
}
/**
* pipapo_insert() - Insert new rule in field given input key and mask length
* @f: Field containing lookup table
* @k: Input key for classification, without nftables padding
* @mask_bits: Length of mask; matches field length for non-ranged entry
*
* Insert a new rule reference in lookup buckets corresponding to k and
* mask_bits.
*
* Return: 1 on success (one rule inserted), negative error code on failure.
*/
static int pipapo_insert(struct nft_pipapo_field *f, const uint8_t *k,
int mask_bits)
{
int rule = f->rules++, group, ret;
ret = pipapo_resize(f, f->rules - 1, f->rules);
if (ret)
return ret;
for (group = 0; group < f->groups; group++) {
int i, v;
u8 mask;
if (group % 2)
v = k[group / 2] & 0x0f;
else
v = k[group / 2] >> 4;
if (mask_bits >= (group + 1) * 4) {
/* Not masked */
pipapo_bucket_set(f, rule, group, v);
} else if (mask_bits <= group * 4) {
/* Completely masked */
for (i = 0; i < NFT_PIPAPO_BUCKETS; i++)
pipapo_bucket_set(f, rule, group, i);
} else {
/* The mask limit falls on this group */
mask = 0x0f >> (mask_bits - group * 4);
for (i = 0; i < NFT_PIPAPO_BUCKETS; i++) {
if ((i & ~mask) == (v & ~mask))
pipapo_bucket_set(f, rule, group, i);
}
}
}
return 1;
}
/**
* pipapo_step_diff() - Check if setting @step bit in netmask would change it
* @base: Mask we are expanding
* @step: Step bit for given expansion step
* @len: Total length of mask space (set and unset bits), bytes
*
* Convenience function for mask expansion.
*
* Return: true if step bit changes mask (i.e. isn't set), false otherwise.
*/
static bool pipapo_step_diff(u8 *base, int step, int len)
{
/* Network order, byte-addressed */
#ifdef __BIG_ENDIAN__
return !(BIT(step % BITS_PER_BYTE) & base[step / BITS_PER_BYTE]);
#else
return !(BIT(step % BITS_PER_BYTE) &
base[len - 1 - step / BITS_PER_BYTE]);
#endif
}
/**
* pipapo_step_after_end() - Check if mask exceeds range end with given step
* @base: Mask we are expanding
* @end: End of range
* @step: Step bit for given expansion step, highest bit to be set
* @len: Total length of mask space (set and unset bits), bytes
*
* Convenience function for mask expansion.
*
* Return: true if mask exceeds range setting step bits, false otherwise.
*/
static bool pipapo_step_after_end(const u8 *base, const u8 *end, int step,
int len)
{
u8 tmp[NFT_PIPAPO_MAX_BYTES];
int i;
memcpy(tmp, base, len);
/* Network order, byte-addressed */
for (i = 0; i <= step; i++)
#ifdef __BIG_ENDIAN__
tmp[i / BITS_PER_BYTE] |= BIT(i % BITS_PER_BYTE);
#else
tmp[len - 1 - i / BITS_PER_BYTE] |= BIT(i % BITS_PER_BYTE);
#endif
return memcmp(tmp, end, len) > 0;
}
/**
* pipapo_base_sum() - Sum step bit to given len-sized netmask base with carry
* @base: Netmask base
* @step: Step bit to sum
* @len: Netmask length, bytes
*/
static void pipapo_base_sum(u8 *base, int step, int len)
{
bool carry = false;
int i;
/* Network order, byte-addressed */
#ifdef __BIG_ENDIAN__
for (i = step / BITS_PER_BYTE; i < len; i++) {
#else
for (i = len - 1 - step / BITS_PER_BYTE; i >= 0; i--) {
#endif
if (carry)
base[i]++;
else
base[i] += 1 << (step % BITS_PER_BYTE);
if (base[i])
break;
carry = true;
}
}
/**
* pipapo_expand() - Expand to composing netmasks, insert into lookup table
* @f: Field containing lookup table
* @start: Start of range
* @end: End of range
* @len: Length of value in bits
*
* Expand range to composing netmasks and insert corresponding rule references
* in lookup buckets.
*
* Return: number of inserted rules on success, negative error code on failure.
*/
static int pipapo_expand(struct nft_pipapo_field *f,
const u8 *start, const u8 *end, int len)
{
int step, masks = 0, bytes = DIV_ROUND_UP(len, BITS_PER_BYTE);
u8 base[NFT_PIPAPO_MAX_BYTES];
memcpy(base, start, bytes);
while (memcmp(base, end, bytes) <= 0) {
int err;
step = 0;
while (pipapo_step_diff(base, step, bytes)) {
if (pipapo_step_after_end(base, end, step, bytes))
break;
step++;
if (step >= len) {
if (!masks) {
pipapo_insert(f, base, 0);
masks = 1;
}
goto out;
}
}
err = pipapo_insert(f, base, len - step);
if (err < 0)
return err;
masks++;
pipapo_base_sum(base, step, bytes);
}
out:
return masks;
}
/**
* pipapo_map() - Insert rules in mapping tables, mapping them between fields
* @m: Matching data, including mapping table
* @map: Table of rule maps: array of first rule and amount of rules
* in next field a given rule maps to, for each field
* @ext: For last field, nft_set_ext pointer matching rules map to
*/
static void pipapo_map(struct nft_pipapo_match *m,
union nft_pipapo_map_bucket map[NFT_PIPAPO_MAX_FIELDS],
struct nft_pipapo_elem *e)
{
struct nft_pipapo_field *f;
int i, j;
for (i = 0, f = m->f; i < m->field_count - 1; i++, f++) {
for (j = 0; j < map[i].n; j++) {
f->mt[map[i].to + j].to = map[i + 1].to;
f->mt[map[i].to + j].n = map[i + 1].n;
}
}
/* Last field: map to ext instead of mapping to next field */
for (j = 0; j < map[i].n; j++)
f->mt[map[i].to + j].e = e;
}
/**
* pipapo_realloc_scratch() - Reallocate scratch maps for partial match results
* @clone: Copy of matching data with pending insertions and deletions
* @bsize_max Maximum bucket size, scratch maps cover two buckets
*
* Return: 0 on success, -ENOMEM on failure.
*/
static int pipapo_realloc_scratch(struct nft_pipapo_match *clone,
unsigned long bsize_max)
{
int i;
for_each_possible_cpu(i) {
unsigned long *scratch;
scratch = kzalloc_node(bsize_max * sizeof(*scratch) * 2,
GFP_KERNEL, cpu_to_node(i));
if (!scratch) {
/* On failure, there's no need to undo previous
* allocations: this means that some scratch maps have
* a bigger allocated size now (this is only called on
* insertion), but the extra space won't be used by any
* CPU as new elements are not inserted and m->bsize_max
* is not updated.
*/
return -ENOMEM;
}
kfree(*per_cpu_ptr(clone->scratch, i));
*per_cpu_ptr(clone->scratch, i) = scratch;
}
return 0;
}
/**
* nft_pipapo_insert() - Validate and insert ranged elements
* @net: Network namespace
* @set: nftables API set representation
* @elem: nftables API element representation containing key data
* @ext2: Filled with pointer to &struct nft_set_ext in inserted element
*
* Return: 0 on success, error pointer on failure.
*/
static int nft_pipapo_insert(const struct net *net, const struct nft_set *set,
const struct nft_set_elem *elem,
struct nft_set_ext **ext2)
{
const struct nft_set_ext *ext = nft_set_elem_ext(set, elem->priv);
union nft_pipapo_map_bucket rulemap[NFT_PIPAPO_MAX_FIELDS];
const u8 *start = (const u8 *)elem->key.val.data, *end;
struct nft_pipapo_elem *e = elem->priv, *dup;
struct nft_pipapo *priv = nft_set_priv(set);
struct nft_pipapo_match *m = priv->clone;
u8 genmask = nft_genmask_next(net);
struct nft_pipapo_field *f;
int i, bsize_max, err = 0;
dup = pipapo_get(net, set, start, genmask);
if (PTR_ERR(dup) == -ENOENT) {
if (nft_set_ext_exists(ext, NFT_SET_EXT_KEY_END)) {
end = (const u8 *)nft_set_ext_key_end(ext)->data;
dup = pipapo_get(net, set, end, nft_genmask_next(net));
} else {
end = start;
}
}
if (PTR_ERR(dup) != -ENOENT) {
if (IS_ERR(dup))
return PTR_ERR(dup);
*ext2 = &dup->ext;
return -EEXIST;
}
/* Validate */
nft_pipapo_for_each_field(f, i, m) {
const u8 *start_p = start, *end_p = end;
if (f->rules >= (unsigned long)NFT_PIPAPO_RULE0_MAX)
return -ENOSPC;
if (memcmp(start_p, end_p,
f->groups / NFT_PIPAPO_GROUPS_PER_BYTE) > 0)
return -EINVAL;
start_p += NFT_PIPAPO_GROUPS_PADDED_SIZE(f->groups);
end_p += NFT_PIPAPO_GROUPS_PADDED_SIZE(f->groups);
}
/* Insert */
priv->dirty = true;
bsize_max = m->bsize_max;
nft_pipapo_for_each_field(f, i, m) {
int ret;
rulemap[i].to = f->rules;
ret = memcmp(start, end,
f->groups / NFT_PIPAPO_GROUPS_PER_BYTE);
if (!ret) {
ret = pipapo_insert(f, start,
f->groups * NFT_PIPAPO_GROUP_BITS);
} else {
ret = pipapo_expand(f, start, end,
f->groups * NFT_PIPAPO_GROUP_BITS);
}
if (f->bsize > bsize_max)
bsize_max = f->bsize;
rulemap[i].n = ret;
start += NFT_PIPAPO_GROUPS_PADDED_SIZE(f->groups);
end += NFT_PIPAPO_GROUPS_PADDED_SIZE(f->groups);
}
if (!*this_cpu_ptr(m->scratch) || bsize_max > m->bsize_max) {
err = pipapo_realloc_scratch(m, bsize_max);
if (err)
return err;
this_cpu_write(nft_pipapo_scratch_index, false);
m->bsize_max = bsize_max;
}
*ext2 = &e->ext;
pipapo_map(m, rulemap, e);
return 0;
}
/**
* pipapo_clone() - Clone matching data to create new working copy
* @old: Existing matching data
*
* Return: copy of matching data passed as 'old', error pointer on failure
*/
static struct nft_pipapo_match *pipapo_clone(struct nft_pipapo_match *old)
{
struct nft_pipapo_field *dst, *src;
struct nft_pipapo_match *new;
int i;
new = kmalloc(sizeof(*new) + sizeof(*dst) * old->field_count,
GFP_KERNEL);
if (!new)
return ERR_PTR(-ENOMEM);
new->field_count = old->field_count;
new->bsize_max = old->bsize_max;
new->scratch = alloc_percpu(*new->scratch);
if (!new->scratch)
goto out_scratch;
rcu_head_init(&new->rcu);
src = old->f;
dst = new->f;
for (i = 0; i < old->field_count; i++) {
memcpy(dst, src, offsetof(struct nft_pipapo_field, lt));
dst->lt = kvzalloc(src->groups * NFT_PIPAPO_BUCKETS *
src->bsize * sizeof(*dst->lt),
GFP_KERNEL);
if (!dst->lt)
goto out_lt;
memcpy(dst->lt, src->lt,
src->bsize * sizeof(*dst->lt) *
src->groups * NFT_PIPAPO_BUCKETS);
dst->mt = kvmalloc(src->rules * sizeof(*src->mt), GFP_KERNEL);
if (!dst->mt)
goto out_mt;
memcpy(dst->mt, src->mt, src->rules * sizeof(*src->mt));
src++;
dst++;
}
return new;
out_mt:
kvfree(dst->lt);
out_lt:
for (dst--; i > 0; i--) {
kvfree(dst->mt);
kvfree(dst->lt);
dst--;
}
free_percpu(new->scratch);
out_scratch:
kfree(new);
return ERR_PTR(-ENOMEM);
}
/**
* pipapo_rules_same_key() - Get number of rules originated from the same entry
* @f: Field containing mapping table
* @first: Index of first rule in set of rules mapping to same entry
*
* Using the fact that all rules in a field that originated from the same entry
* will map to the same set of rules in the next field, or to the same element
* reference, return the cardinality of the set of rules that originated from
* the same entry as the rule with index @first, @first rule included.
*
* In pictures:
* rules
* field #0 0 1 2 3 4
* map to: 0 1 2-4 2-4 5-9
* . . ....... . ...
* | | | | \ \
* | | | | \ \
* | | | | \ \
* ' ' ' ' ' \
* in field #1 0 1 2 3 4 5 ...
*
* if this is called for rule 2 on field #0, it will return 3, as also rules 2
* and 3 in field 0 map to the same set of rules (2, 3, 4) in the next field.
*
* For the last field in a set, we can rely on associated entries to map to the
* same element references.
*
* Return: Number of rules that originated from the same entry as @first.
*/
static int pipapo_rules_same_key(struct nft_pipapo_field *f, int first)
{
struct nft_pipapo_elem *e = NULL; /* Keep gcc happy */
int r;
for (r = first; r < f->rules; r++) {
if (r != first && e != f->mt[r].e)
return r - first;
e = f->mt[r].e;
}
if (r != first)
return r - first;
return 0;
}
/**
* pipapo_unmap() - Remove rules from mapping tables, renumber remaining ones
* @mt: Mapping array
* @rules: Original amount of rules in mapping table
* @start: First rule index to be removed
* @n: Amount of rules to be removed
* @to_offset: First rule index, in next field, this group of rules maps to
* @is_last: If this is the last field, delete reference from mapping array
*
* This is used to unmap rules from the mapping table for a single field,
* maintaining consistency and compactness for the existing ones.
*
* In pictures: let's assume that we want to delete rules 2 and 3 from the
* following mapping array:
*
* rules
* 0 1 2 3 4
* map to: 4-10 4-10 11-15 11-15 16-18
*
* the result will be:
*
* rules
* 0 1 2
* map to: 4-10 4-10 11-13
*
* for fields before the last one. In case this is the mapping table for the
* last field in a set, and rules map to pointers to &struct nft_pipapo_elem:
*
* rules
* 0 1 2 3 4
* element pointers: 0x42 0x42 0x33 0x33 0x44
*
* the result will be:
*
* rules
* 0 1 2
* element pointers: 0x42 0x42 0x44
*/
static void pipapo_unmap(union nft_pipapo_map_bucket *mt, int rules,
int start, int n, int to_offset, bool is_last)
{
int i;
memmove(mt + start, mt + start + n, (rules - start - n) * sizeof(*mt));
memset(mt + rules - n, 0, n * sizeof(*mt));
if (is_last)
return;
for (i = start; i < rules - n; i++)
mt[i].to -= to_offset;
}
/**
* pipapo_drop() - Delete entry from lookup and mapping tables, given rule map
* @m: Matching data
* @rulemap Table of rule maps, arrays of first rule and amount of rules
* in next field a given entry maps to, for each field
*
* For each rule in lookup table buckets mapping to this set of rules, drop
* all bits set in lookup table mapping. In pictures, assuming we want to drop
* rules 0 and 1 from this lookup table:
*
* bucket
* group 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
* 0 0 1,2
* 1 1,2 0
* 2 0 1,2
* 3 0 1,2
* 4 0,1,2
* 5 0 1 2
* 6 0,1,2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
* 7 1,2 1,2 1 1 1 0,1 1 1 1 1 1 1 1 1 1 1
*
* rule 2 becomes rule 0, and the result will be:
*
* bucket
* group 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
* 0 0
* 1 0
* 2 0
* 3 0
* 4 0
* 5 0
* 6 0
* 7 0 0
*
* once this is done, call unmap() to drop all the corresponding rule references
* from mapping tables.
*/
static void pipapo_drop(struct nft_pipapo_match *m,
union nft_pipapo_map_bucket rulemap[])
{
struct nft_pipapo_field *f;
int i;
nft_pipapo_for_each_field(f, i, m) {
int g;
for (g = 0; g < f->groups; g++) {
unsigned long *pos;
int b;
pos = f->lt + g * NFT_PIPAPO_BUCKETS * f->bsize;
for (b = 0; b < NFT_PIPAPO_BUCKETS; b++) {
bitmap_cut(pos, pos, rulemap[i].to,
rulemap[i].n,
f->bsize * BITS_PER_LONG);
pos += f->bsize;
}
}
pipapo_unmap(f->mt, f->rules, rulemap[i].to, rulemap[i].n,
rulemap[i + 1].n, i == m->field_count - 1);
if (pipapo_resize(f, f->rules, f->rules - rulemap[i].n)) {
/* We can ignore this, a failure to shrink tables down
* doesn't make tables invalid.
*/
;
}
f->rules -= rulemap[i].n;
}
}
/**
* pipapo_gc() - Drop expired entries from set, destroy start and end elements
* @set: nftables API set representation
* @m: Matching data
*/
static void pipapo_gc(const struct nft_set *set, struct nft_pipapo_match *m)
{
struct nft_pipapo *priv = nft_set_priv(set);
int rules_f0, first_rule = 0;
while ((rules_f0 = pipapo_rules_same_key(m->f, first_rule))) {
union nft_pipapo_map_bucket rulemap[NFT_PIPAPO_MAX_FIELDS];
struct nft_pipapo_field *f;
struct nft_pipapo_elem *e;
int i, start, rules_fx;
start = first_rule;
rules_fx = rules_f0;
nft_pipapo_for_each_field(f, i, m) {
rulemap[i].to = start;
rulemap[i].n = rules_fx;
if (i < m->field_count - 1) {
rules_fx = f->mt[start].n;
start = f->mt[start].to;
}
}
/* Pick the last field, and its last index */
f--;
i--;
e = f->mt[rulemap[i].to].e;
if (nft_set_elem_expired(&e->ext) &&
!nft_set_elem_mark_busy(&e->ext)) {
priv->dirty = true;
pipapo_drop(m, rulemap);
rcu_barrier();
nft_set_elem_destroy(set, e, true);
/* And check again current first rule, which is now the
* first we haven't checked.
*/
} else {
first_rule += rules_f0;
}
}
priv->last_gc = jiffies;
}
/**
* pipapo_free_fields() - Free per-field tables contained in matching data
* @m: Matching data
*/
static void pipapo_free_fields(struct nft_pipapo_match *m)
{
struct nft_pipapo_field *f;
int i;
nft_pipapo_for_each_field(f, i, m) {
kvfree(f->lt);
kvfree(f->mt);
}
}
/**
* pipapo_reclaim_match - RCU callback to free fields from old matching data
* @rcu: RCU head
*/
static void pipapo_reclaim_match(struct rcu_head *rcu)
{
struct nft_pipapo_match *m;
int i;
m = container_of(rcu, struct nft_pipapo_match, rcu);
for_each_possible_cpu(i)
kfree(*per_cpu_ptr(m->scratch, i));
free_percpu(m->scratch);
pipapo_free_fields(m);
kfree(m);
}
/**
* pipapo_commit() - Replace lookup data with current working copy
* @set: nftables API set representation
*
* While at it, check if we should perform garbage collection on the working
* copy before committing it for lookup, and don't replace the table if the
* working copy doesn't have pending changes.
*
* We also need to create a new working copy for subsequent insertions and
* deletions.
*/
static void pipapo_commit(const struct nft_set *set)
{
struct nft_pipapo *priv = nft_set_priv(set);
struct nft_pipapo_match *new_clone, *old;
if (time_after_eq(jiffies, priv->last_gc + nft_set_gc_interval(set)))
pipapo_gc(set, priv->clone);
if (!priv->dirty)
return;
new_clone = pipapo_clone(priv->clone);
if (IS_ERR(new_clone))
return;
priv->dirty = false;
old = rcu_access_pointer(priv->match);
rcu_assign_pointer(priv->match, priv->clone);
if (old)
call_rcu(&old->rcu, pipapo_reclaim_match);
priv->clone = new_clone;
}
/**
* nft_pipapo_activate() - Mark element reference as active given key, commit
* @net: Network namespace
* @set: nftables API set representation
* @elem: nftables API element representation containing key data
*
* On insertion, elements are added to a copy of the matching data currently
* in use for lookups, and not directly inserted into current lookup data, so
* we'll take care of that by calling pipapo_commit() here. Both
* nft_pipapo_insert() and nft_pipapo_activate() are called once for each
* element, hence we can't purpose either one as a real commit operation.
*/
static void nft_pipapo_activate(const struct net *net,
const struct nft_set *set,
const struct nft_set_elem *elem)
{
struct nft_pipapo_elem *e;
e = pipapo_get(net, set, (const u8 *)elem->key.val.data, 0);
if (IS_ERR(e))
return;
nft_set_elem_change_active(net, set, &e->ext);
nft_set_elem_clear_busy(&e->ext);
pipapo_commit(set);
}
/**
* pipapo_deactivate() - Check that element is in set, mark as inactive
* @net: Network namespace
* @set: nftables API set representation
* @data: Input key data
* @ext: nftables API extension pointer, used to check for end element
*
* This is a convenience function that can be called from both
* nft_pipapo_deactivate() and nft_pipapo_flush(), as they are in fact the same
* operation.
*
* Return: deactivated element if found, NULL otherwise.
*/
static void *pipapo_deactivate(const struct net *net, const struct nft_set *set,
const u8 *data, const struct nft_set_ext *ext)
{
struct nft_pipapo_elem *e;
e = pipapo_get(net, set, data, nft_genmask_next(net));
if (IS_ERR(e))
return NULL;
nft_set_elem_change_active(net, set, &e->ext);
return e;
}
/**
* nft_pipapo_deactivate() - Call pipapo_deactivate() to make element inactive
* @net: Network namespace
* @set: nftables API set representation
* @elem: nftables API element representation containing key data
*
* Return: deactivated element if found, NULL otherwise.
*/
static void *nft_pipapo_deactivate(const struct net *net,
const struct nft_set *set,
const struct nft_set_elem *elem)
{
const struct nft_set_ext *ext = nft_set_elem_ext(set, elem->priv);
return pipapo_deactivate(net, set, (const u8 *)elem->key.val.data, ext);
}
/**
* nft_pipapo_flush() - Call pipapo_deactivate() to make element inactive
* @net: Network namespace
* @set: nftables API set representation
* @elem: nftables API element representation containing key data
*
* This is functionally the same as nft_pipapo_deactivate(), with a slightly
* different interface, and it's also called once for each element in a set
* being flushed, so we can't implement, strictly speaking, a flush operation,
* which would otherwise be as simple as allocating an empty copy of the
* matching data.
*
* Note that we could in theory do that, mark the set as flushed, and ignore
* subsequent calls, but we would leak all the elements after the first one,
* because they wouldn't then be freed as result of API calls.
*
* Return: true if element was found and deactivated.
*/
static bool nft_pipapo_flush(const struct net *net, const struct nft_set *set,
void *elem)
{
struct nft_pipapo_elem *e = elem;
return pipapo_deactivate(net, set, (const u8 *)nft_set_ext_key(&e->ext),
&e->ext);
}
/**
* pipapo_get_boundaries() - Get byte interval for associated rules
* @f: Field including lookup table
* @first_rule: First rule (lowest index)
* @rule_count: Number of associated rules
* @left: Byte expression for left boundary (start of range)
* @right: Byte expression for right boundary (end of range)
*
* Given the first rule and amount of rules that originated from the same entry,
* build the original range associated with the entry, and calculate the length
* of the originating netmask.
*
* In pictures:
*
* bucket
* group 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
* 0 1,2
* 1 1,2
* 2 1,2
* 3 1,2
* 4 1,2
* 5 1 2
* 6 1,2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
* 7 1,2 1,2 1 1 1 1 1 1 1 1 1 1 1 1 1 1
*
* this is the lookup table corresponding to the IPv4 range
* 192.168.1.0-192.168.2.1, which was expanded to the two composing netmasks,
* rule #1: 192.168.1.0/24, and rule #2: 192.168.2.0/31.
*
* This function fills @left and @right with the byte values of the leftmost
* and rightmost bucket indices for the lowest and highest rule indices,
* respectively. If @first_rule is 1 and @rule_count is 2, we obtain, in
* nibbles:
* left: < 12, 0, 10, 8, 0, 1, 0, 0 >
* right: < 12, 0, 10, 8, 0, 2, 2, 1 >
* corresponding to bytes:
* left: < 192, 168, 1, 0 >
* right: < 192, 168, 2, 1 >
* with mask length irrelevant here, unused on return, as the range is already
* defined by its start and end points. The mask length is relevant for a single
* ranged entry instead: if @first_rule is 1 and @rule_count is 1, we ignore
* rule 2 above: @left becomes < 192, 168, 1, 0 >, @right becomes
* < 192, 168, 1, 255 >, and the mask length, calculated from the distances
* between leftmost and rightmost bucket indices for each group, would be 24.
*
* Return: mask length, in bits.
*/
static int pipapo_get_boundaries(struct nft_pipapo_field *f, int first_rule,
int rule_count, u8 *left, u8 *right)
{
u8 *l = left, *r = right;
int g, mask_len = 0;
for (g = 0; g < f->groups; g++) {
int b, x0, x1;
x0 = -1;
x1 = -1;
for (b = 0; b < NFT_PIPAPO_BUCKETS; b++) {
unsigned long *pos;
pos = f->lt + (g * NFT_PIPAPO_BUCKETS + b) * f->bsize;
if (test_bit(first_rule, pos) && x0 == -1)
x0 = b;
if (test_bit(first_rule + rule_count - 1, pos))
x1 = b;
}
if (g % 2) {
*(l++) |= x0 & 0x0f;
*(r++) |= x1 & 0x0f;
} else {
*l |= x0 << 4;
*r |= x1 << 4;
}
if (x1 - x0 == 0)
mask_len += 4;
else if (x1 - x0 == 1)
mask_len += 3;
else if (x1 - x0 == 3)
mask_len += 2;
else if (x1 - x0 == 7)
mask_len += 1;
}
return mask_len;
}
/**
* pipapo_match_field() - Match rules against byte ranges
* @f: Field including the lookup table
* @first_rule: First of associated rules originating from same entry
* @rule_count: Amount of associated rules
* @start: Start of range to be matched
* @end: End of range to be matched
*
* Return: true on match, false otherwise.
*/
static bool pipapo_match_field(struct nft_pipapo_field *f,
int first_rule, int rule_count,
const u8 *start, const u8 *end)
{
u8 right[NFT_PIPAPO_MAX_BYTES] = { 0 };
u8 left[NFT_PIPAPO_MAX_BYTES] = { 0 };
pipapo_get_boundaries(f, first_rule, rule_count, left, right);
return !memcmp(start, left, f->groups / NFT_PIPAPO_GROUPS_PER_BYTE) &&
!memcmp(end, right, f->groups / NFT_PIPAPO_GROUPS_PER_BYTE);
}
/**
* nft_pipapo_remove() - Remove element given key, commit
* @net: Network namespace
* @set: nftables API set representation
* @elem: nftables API element representation containing key data
*
* Similarly to nft_pipapo_activate(), this is used as commit operation by the
* API, but it's called once per element in the pending transaction, so we can't
* implement this as a single commit operation. Closest we can get is to remove
* the matched element here, if any, and commit the updated matching data.
*/
static void nft_pipapo_remove(const struct net *net, const struct nft_set *set,
const struct nft_set_elem *elem)
{
const u8 *data = (const u8 *)elem->key.val.data;
struct nft_pipapo *priv = nft_set_priv(set);
struct nft_pipapo_match *m = priv->clone;
int rules_f0, first_rule = 0;
struct nft_pipapo_elem *e;
e = pipapo_get(net, set, data, 0);
if (IS_ERR(e))
return;
while ((rules_f0 = pipapo_rules_same_key(m->f, first_rule))) {
union nft_pipapo_map_bucket rulemap[NFT_PIPAPO_MAX_FIELDS];
const u8 *match_start, *match_end;
struct nft_pipapo_field *f;
int i, start, rules_fx;
match_start = data;
match_end = (const u8 *)nft_set_ext_key_end(&e->ext)->data;
start = first_rule;
rules_fx = rules_f0;
nft_pipapo_for_each_field(f, i, m) {
if (!pipapo_match_field(f, start, rules_fx,
match_start, match_end))
break;
rulemap[i].to = start;
rulemap[i].n = rules_fx;
rules_fx = f->mt[start].n;
start = f->mt[start].to;
match_start += NFT_PIPAPO_GROUPS_PADDED_SIZE(f->groups);
match_end += NFT_PIPAPO_GROUPS_PADDED_SIZE(f->groups);
}
if (i == m->field_count) {
priv->dirty = true;
pipapo_drop(m, rulemap);
pipapo_commit(set);
return;
}
first_rule += rules_f0;
}
}
/**
* nft_pipapo_walk() - Walk over elements
* @ctx: nftables API context
* @set: nftables API set representation
* @iter: Iterator
*
* As elements are referenced in the mapping array for the last field, directly
* scan that array: there's no need to follow rule mappings from the first
* field.
*/
static void nft_pipapo_walk(const struct nft_ctx *ctx, struct nft_set *set,
struct nft_set_iter *iter)
{
struct nft_pipapo *priv = nft_set_priv(set);
struct nft_pipapo_match *m;
struct nft_pipapo_field *f;
int i, r;
rcu_read_lock();
m = rcu_dereference(priv->match);
if (unlikely(!m))
goto out;
for (i = 0, f = m->f; i < m->field_count - 1; i++, f++)
;
for (r = 0; r < f->rules; r++) {
struct nft_pipapo_elem *e;
struct nft_set_elem elem;
if (r < f->rules - 1 && f->mt[r + 1].e == f->mt[r].e)
continue;
if (iter->count < iter->skip)
goto cont;
e = f->mt[r].e;
if (nft_set_elem_expired(&e->ext))
goto cont;
elem.priv = e;
iter->err = iter->fn(ctx, set, iter, &elem);
if (iter->err < 0)
goto out;
cont:
iter->count++;
}
out:
rcu_read_unlock();
}
/**
* nft_pipapo_privsize() - Return the size of private data for the set
* @nla: netlink attributes, ignored as size doesn't depend on them
* @desc: Set description, ignored as size doesn't depend on it
*
* Return: size of private data for this set implementation, in bytes
*/
static u64 nft_pipapo_privsize(const struct nlattr * const nla[],
const struct nft_set_desc *desc)
{
return sizeof(struct nft_pipapo);
}
/**
* nft_pipapo_estimate() - Estimate set size, space and lookup complexity
* @desc: Set description, element count and field description used here
* @features: Flags: NFT_SET_INTERVAL needs to be there
* @est: Storage for estimation data
*
* The size for this set type can vary dramatically, as it depends on the number
* of rules (composing netmasks) the entries expand to. We compute the worst
* case here.
*
* In general, for a non-ranged entry or a single composing netmask, we need
* one bit in each of the sixteen NFT_PIPAPO_BUCKETS, for each 4-bit group (that
* is, each input bit needs four bits of matching data), plus a bucket in the
* mapping table for each field.
*
* Return: true only for compatible range concatenations
*/
static bool nft_pipapo_estimate(const struct nft_set_desc *desc, u32 features,
struct nft_set_estimate *est)
{
unsigned long entry_size;
int i;
if (!(features & NFT_SET_INTERVAL) || desc->field_count <= 1)
return false;
for (i = 0, entry_size = 0; i < desc->field_count; i++) {
unsigned long rules;
if (desc->field_len[i] > NFT_PIPAPO_MAX_BYTES)
return false;
/* Worst-case ranges for each concatenated field: each n-bit
* field can expand to up to n * 2 rules in each bucket, and
* each rule also needs a mapping bucket.
*/
rules = ilog2(desc->field_len[i] * BITS_PER_BYTE) * 2;
entry_size += rules * NFT_PIPAPO_BUCKETS / BITS_PER_BYTE;
entry_size += rules * sizeof(union nft_pipapo_map_bucket);
}
/* Rules in lookup and mapping tables are needed for each entry */
est->size = desc->size * entry_size;
if (est->size && div_u64(est->size, desc->size) != entry_size)
return false;
est->size += sizeof(struct nft_pipapo) +
sizeof(struct nft_pipapo_match) * 2;
est->size += sizeof(struct nft_pipapo_field) * desc->field_count;
est->lookup = NFT_SET_CLASS_O_LOG_N;
est->space = NFT_SET_CLASS_O_N;
return true;
}
/**
* nft_pipapo_init() - Initialise data for a set instance
* @set: nftables API set representation
* @desc: Set description
* @nla: netlink attributes
*
* Validate number and size of fields passed as NFTA_SET_DESC_CONCAT netlink
* attributes, initialise internal set parameters, current instance of matching
* data and a copy for subsequent insertions.
*
* Return: 0 on success, negative error code on failure.
*/
static int nft_pipapo_init(const struct nft_set *set,
const struct nft_set_desc *desc,
const struct nlattr * const nla[])
{
struct nft_pipapo *priv = nft_set_priv(set);
struct nft_pipapo_match *m;
struct nft_pipapo_field *f;
int err, i;
if (desc->field_count > NFT_PIPAPO_MAX_FIELDS)
return -EINVAL;
m = kmalloc(sizeof(*priv->match) + sizeof(*f) * desc->field_count,
GFP_KERNEL);
if (!m)
return -ENOMEM;
m->field_count = desc->field_count;
m->bsize_max = 0;
m->scratch = alloc_percpu(unsigned long *);
if (!m->scratch) {
err = -ENOMEM;
goto out_free;
}
for_each_possible_cpu(i)
*per_cpu_ptr(m->scratch, i) = NULL;
rcu_head_init(&m->rcu);
nft_pipapo_for_each_field(f, i, m) {
f->groups = desc->field_len[i] * NFT_PIPAPO_GROUPS_PER_BYTE;
priv->groups += f->groups;
priv->width += round_up(desc->field_len[i], sizeof(u32));
f->bsize = 0;
f->rules = 0;
f->lt = NULL;
f->mt = NULL;
}
/* Create an initial clone of matching data for next insertion */
priv->clone = pipapo_clone(m);
if (IS_ERR(priv->clone)) {
err = PTR_ERR(priv->clone);
goto out_free;
}
priv->dirty = false;
rcu_assign_pointer(priv->match, m);
return 0;
out_free:
free_percpu(m->scratch);
kfree(m);
return err;
}
/**
* nft_pipapo_destroy() - Free private data for set and all committed elements
* @set: nftables API set representation
*/
static void nft_pipapo_destroy(const struct nft_set *set)
{
struct nft_pipapo *priv = nft_set_priv(set);
struct nft_pipapo_match *m;
struct nft_pipapo_field *f;
int i, r, cpu;
m = rcu_dereference_protected(priv->match, true);
if (m) {
rcu_barrier();
for (i = 0, f = m->f; i < m->field_count - 1; i++, f++)
;
for (r = 0; r < f->rules; r++) {
struct nft_pipapo_elem *e;
if (r < f->rules - 1 && f->mt[r + 1].e == f->mt[r].e)
continue;
e = f->mt[r].e;
nft_set_elem_destroy(set, e, true);
}
for_each_possible_cpu(cpu)
kfree(*per_cpu_ptr(m->scratch, cpu));
free_percpu(m->scratch);
pipapo_free_fields(m);
kfree(m);
priv->match = NULL;
}
if (priv->clone) {
for_each_possible_cpu(cpu)
kfree(*per_cpu_ptr(priv->clone->scratch, cpu));
free_percpu(priv->clone->scratch);
pipapo_free_fields(priv->clone);
kfree(priv->clone);
priv->clone = NULL;
}
}
/**
* nft_pipapo_gc_init() - Initialise garbage collection
* @set: nftables API set representation
*
* Instead of actually setting up a periodic work for garbage collection, as
* this operation requires a swap of matching data with the working copy, we'll
* do that opportunistically with other commit operations if the interval is
* elapsed, so we just need to set the current jiffies timestamp here.
*/
static void nft_pipapo_gc_init(const struct nft_set *set)
{
struct nft_pipapo *priv = nft_set_priv(set);
priv->last_gc = jiffies;
}
struct nft_set_type nft_set_pipapo_type __read_mostly = {
.owner = THIS_MODULE,
.features = NFT_SET_INTERVAL | NFT_SET_MAP | NFT_SET_OBJECT |
NFT_SET_TIMEOUT,
.ops = {
.lookup = nft_pipapo_lookup,
.insert = nft_pipapo_insert,
.activate = nft_pipapo_activate,
.deactivate = nft_pipapo_deactivate,
.flush = nft_pipapo_flush,
.remove = nft_pipapo_remove,
.walk = nft_pipapo_walk,
.get = nft_pipapo_get,
.privsize = nft_pipapo_privsize,
.estimate = nft_pipapo_estimate,
.init = nft_pipapo_init,
.destroy = nft_pipapo_destroy,
.gc_init = nft_pipapo_gc_init,
.elemsize = offsetof(struct nft_pipapo_elem, ext),
},
};
...@@ -466,6 +466,9 @@ static void nft_rbtree_destroy(const struct nft_set *set) ...@@ -466,6 +466,9 @@ static void nft_rbtree_destroy(const struct nft_set *set)
static bool nft_rbtree_estimate(const struct nft_set_desc *desc, u32 features, static bool nft_rbtree_estimate(const struct nft_set_desc *desc, u32 features,
struct nft_set_estimate *est) struct nft_set_estimate *est)
{ {
if (desc->field_count > 1)
return false;
if (desc->size) if (desc->size)
est->size = sizeof(struct nft_rbtree) + est->size = sizeof(struct nft_rbtree) +
desc->size * sizeof(struct nft_rbtree_elem); desc->size * sizeof(struct nft_rbtree_elem);
......
...@@ -2,6 +2,7 @@ ...@@ -2,6 +2,7 @@
# Makefile for netfilter selftests # Makefile for netfilter selftests
TEST_PROGS := nft_trans_stress.sh nft_nat.sh bridge_brouter.sh \ TEST_PROGS := nft_trans_stress.sh nft_nat.sh bridge_brouter.sh \
conntrack_icmp_related.sh nft_flowtable.sh ipvs.sh conntrack_icmp_related.sh nft_flowtable.sh ipvs.sh \
nft_concat_range.sh
include ../lib.mk include ../lib.mk
#!/bin/sh
# SPDX-License-Identifier: GPL-2.0
#
# nft_concat_range.sh - Tests for sets with concatenation of ranged fields
#
# Copyright (c) 2019 Red Hat GmbH
#
# Author: Stefano Brivio <sbrivio@redhat.com>
#
# shellcheck disable=SC2154,SC2034,SC2016,SC2030,SC2031
# ^ Configuration and templates sourced with eval, counters reused in subshells
KSELFTEST_SKIP=4
# Available test groups:
# - correctness: check that packets match given entries, and only those
# - concurrency: attempt races between insertion, deletion and lookup
# - timeout: check that packets match entries until they expire
# - performance: estimate matching rate, compare with rbtree and hash baselines
TESTS="correctness concurrency timeout"
[ "${quicktest}" != "1" ] && TESTS="${TESTS} performance"
# Set types, defined by TYPE_ variables below
TYPES="net_port port_net net6_port port_proto net6_port_mac net6_port_mac_proto
net_port_net net_mac net_mac_icmp net6_mac_icmp net6_port_net6_port
net_port_mac_proto_net"
# List of possible paths to pktgen script from kernel tree for performance tests
PKTGEN_SCRIPT_PATHS="
../../../samples/pktgen/pktgen_bench_xmit_mode_netif_receive.sh
pktgen/pktgen_bench_xmit_mode_netif_receive.sh"
# Definition of set types:
# display display text for test report
# type_spec nftables set type specifier
# chain_spec nftables type specifier for rules mapping to set
# dst call sequence of format_*() functions for destination fields
# src call sequence of format_*() functions for source fields
# start initial integer used to generate addresses and ports
# count count of entries to generate and match
# src_delta number summed to destination generator for source fields
# tools list of tools for correctness and timeout tests, any can be used
# proto L4 protocol of test packets
#
# race_repeat race attempts per thread, 0 disables concurrency test for type
# flood_tools list of tools for concurrency tests, any can be used
# flood_proto L4 protocol of test packets for concurrency tests
# flood_spec nftables type specifier for concurrency tests
#
# perf_duration duration of single pktgen injection test
# perf_spec nftables type specifier for performance tests
# perf_dst format_*() functions for destination fields in performance test
# perf_src format_*() functions for source fields in performance test
# perf_entries number of set entries for performance test
# perf_proto L3 protocol of test packets
TYPE_net_port="
display net,port
type_spec ipv4_addr . inet_service
chain_spec ip daddr . udp dport
dst addr4 port
src
start 1
count 5
src_delta 2000
tools sendip nc bash
proto udp
race_repeat 3
flood_tools iperf3 iperf netperf
flood_proto udp
flood_spec ip daddr . udp dport
perf_duration 5
perf_spec ip daddr . udp dport
perf_dst addr4 port
perf_src
perf_entries 1000
perf_proto ipv4
"
TYPE_port_net="
display port,net
type_spec inet_service . ipv4_addr
chain_spec udp dport . ip daddr
dst port addr4
src
start 1
count 5
src_delta 2000
tools sendip nc bash
proto udp
race_repeat 3
flood_tools iperf3 iperf netperf
flood_proto udp
flood_spec udp dport . ip daddr
perf_duration 5
perf_spec udp dport . ip daddr
perf_dst port addr4
perf_src
perf_entries 100
perf_proto ipv4
"
TYPE_net6_port="
display net6,port
type_spec ipv6_addr . inet_service
chain_spec ip6 daddr . udp dport
dst addr6 port
src
start 10
count 5
src_delta 2000
tools sendip nc bash
proto udp6
race_repeat 3
flood_tools iperf3 iperf netperf
flood_proto tcp6
flood_spec ip6 daddr . udp dport
perf_duration 5
perf_spec ip6 daddr . udp dport
perf_dst addr6 port
perf_src
perf_entries 1000
perf_proto ipv6
"
TYPE_port_proto="
display port,proto
type_spec inet_service . inet_proto
chain_spec udp dport . meta l4proto
dst port proto
src
start 1
count 5
src_delta 2000
tools sendip nc bash
proto udp
race_repeat 0
perf_duration 5
perf_spec udp dport . meta l4proto
perf_dst port proto
perf_src
perf_entries 30000
perf_proto ipv4
"
TYPE_net6_port_mac="
display net6,port,mac
type_spec ipv6_addr . inet_service . ether_addr
chain_spec ip6 daddr . udp dport . ether saddr
dst addr6 port
src mac
start 10
count 5
src_delta 2000
tools sendip nc bash
proto udp6
race_repeat 0
perf_duration 5
perf_spec ip6 daddr . udp dport . ether daddr
perf_dst addr6 port mac
perf_src
perf_entries 10
perf_proto ipv6
"
TYPE_net6_port_mac_proto="
display net6,port,mac,proto
type_spec ipv6_addr . inet_service . ether_addr . inet_proto
chain_spec ip6 daddr . udp dport . ether saddr . meta l4proto
dst addr6 port
src mac proto
start 10
count 5
src_delta 2000
tools sendip nc bash
proto udp6
race_repeat 0
perf_duration 5
perf_spec ip6 daddr . udp dport . ether daddr . meta l4proto
perf_dst addr6 port mac proto
perf_src
perf_entries 1000
perf_proto ipv6
"
TYPE_net_port_net="
display net,port,net
type_spec ipv4_addr . inet_service . ipv4_addr
chain_spec ip daddr . udp dport . ip saddr
dst addr4 port
src addr4
start 1
count 5
src_delta 2000
tools sendip nc bash
proto udp
race_repeat 3
flood_tools iperf3 iperf netperf
flood_proto tcp
flood_spec ip daddr . udp dport . ip saddr
perf_duration 0
"
TYPE_net6_port_net6_port="
display net6,port,net6,port
type_spec ipv6_addr . inet_service . ipv6_addr . inet_service
chain_spec ip6 daddr . udp dport . ip6 saddr . udp sport
dst addr6 port
src addr6 port
start 10
count 5
src_delta 2000
tools sendip nc
proto udp6
race_repeat 3
flood_tools iperf3 iperf netperf
flood_proto tcp6
flood_spec ip6 daddr . tcp dport . ip6 saddr . tcp sport
perf_duration 0
"
TYPE_net_port_mac_proto_net="
display net,port,mac,proto,net
type_spec ipv4_addr . inet_service . ether_addr . inet_proto . ipv4_addr
chain_spec ip daddr . udp dport . ether saddr . meta l4proto . ip saddr
dst addr4 port
src mac proto addr4
start 1
count 5
src_delta 2000
tools sendip nc bash
proto udp
race_repeat 0
perf_duration 0
"
TYPE_net_mac="
display net,mac
type_spec ipv4_addr . ether_addr
chain_spec ip daddr . ether saddr
dst addr4
src mac
start 1
count 5
src_delta 2000
tools sendip nc bash
proto udp
race_repeat 0
perf_duration 5
perf_spec ip daddr . ether daddr
perf_dst addr4 mac
perf_src
perf_entries 1000
perf_proto ipv4
"
TYPE_net_mac_icmp="
display net,mac - ICMP
type_spec ipv4_addr . ether_addr
chain_spec ip daddr . ether saddr
dst addr4
src mac
start 1
count 5
src_delta 2000
tools ping
proto icmp
race_repeat 0
perf_duration 0
"
TYPE_net6_mac_icmp="
display net6,mac - ICMPv6
type_spec ipv6_addr . ether_addr
chain_spec ip6 daddr . ether saddr
dst addr6
src mac
start 10
count 50
src_delta 2000
tools ping
proto icmp6
race_repeat 0
perf_duration 0
"
TYPE_net_port_proto_net="
display net,port,proto,net
type_spec ipv4_addr . inet_service . inet_proto . ipv4_addr
chain_spec ip daddr . udp dport . meta l4proto . ip saddr
dst addr4 port proto
src addr4
start 1
count 5
src_delta 2000
tools sendip nc
proto udp
race_repeat 3
flood_tools iperf3 iperf netperf
flood_proto tcp
flood_spec ip daddr . tcp dport . meta l4proto . ip saddr
perf_duration 0
"
# Set template for all tests, types and rules are filled in depending on test
set_template='
flush ruleset
table inet filter {
counter test {
packets 0 bytes 0
}
set test {
type ${type_spec}
flags interval,timeout
}
chain input {
type filter hook prerouting priority 0; policy accept;
${chain_spec} @test counter name \"test\"
}
}
table netdev perf {
counter test {
packets 0 bytes 0
}
counter match {
packets 0 bytes 0
}
set test {
type ${type_spec}
flags interval
}
set norange {
type ${type_spec}
}
set noconcat {
type ${type_spec%% *}
flags interval
}
chain test {
type filter hook ingress device veth_a priority 0;
}
}
'
err_buf=
info_buf=
# Append string to error buffer
err() {
err_buf="${err_buf}${1}
"
}
# Append string to information buffer
info() {
info_buf="${info_buf}${1}
"
}
# Flush error buffer to stdout
err_flush() {
printf "%s" "${err_buf}"
err_buf=
}
# Flush information buffer to stdout
info_flush() {
printf "%s" "${info_buf}"
info_buf=
}
# Setup veth pair: this namespace receives traffic, B generates it
setup_veth() {
ip netns add B
ip link add veth_a type veth peer name veth_b || return 1
ip link set veth_a up
ip link set veth_b netns B
ip -n B link set veth_b up
ip addr add dev veth_a 10.0.0.1
ip route add default dev veth_a
ip -6 addr add fe80::1/64 dev veth_a nodad
ip -6 addr add 2001:db8::1/64 dev veth_a nodad
ip -6 route add default dev veth_a
ip -n B route add default dev veth_b
ip -6 -n B addr add fe80::2/64 dev veth_b nodad
ip -6 -n B addr add 2001:db8::2/64 dev veth_b nodad
ip -6 -n B route add default dev veth_b
B() {
ip netns exec B "$@" >/dev/null 2>&1
}
sleep 2
}
# Fill in set template and initialise set
setup_set() {
eval "echo \"${set_template}\"" | nft -f -
}
# Check that at least one of the needed tools is available
check_tools() {
__tools=
for tool in ${tools}; do
if [ "${tool}" = "nc" ] && [ "${proto}" = "udp6" ] && \
! nc -u -w0 1.1.1.1 1 2>/dev/null; then
# Some GNU netcat builds might not support IPv6
__tools="${__tools} netcat-openbsd"
continue
fi
__tools="${__tools} ${tool}"
command -v "${tool}" >/dev/null && return 0
done
err "need one of:${__tools}, skipping" && return 1
}
# Set up function to send ICMP packets
setup_send_icmp() {
send_icmp() {
B ping -c1 -W1 "${dst_addr4}" >/dev/null 2>&1
}
}
# Set up function to send ICMPv6 packets
setup_send_icmp6() {
if command -v ping6 >/dev/null; then
send_icmp6() {
ip -6 addr add "${dst_addr6}" dev veth_a nodad \
2>/dev/null
B ping6 -q -c1 -W1 "${dst_addr6}"
}
else
send_icmp6() {
ip -6 addr add "${dst_addr6}" dev veth_a nodad \
2>/dev/null
B ping -q -6 -c1 -W1 "${dst_addr6}"
}
fi
}
# Set up function to send single UDP packets on IPv4
setup_send_udp() {
if command -v sendip >/dev/null; then
send_udp() {
[ -n "${src_port}" ] && src_port="-us ${src_port}"
[ -n "${dst_port}" ] && dst_port="-ud ${dst_port}"
[ -n "${src_addr4}" ] && src_addr4="-is ${src_addr4}"
# shellcheck disable=SC2086 # sendip needs split options
B sendip -p ipv4 -p udp ${src_addr4} ${src_port} \
${dst_port} "${dst_addr4}"
src_port=
dst_port=
src_addr4=
}
elif command -v nc >/dev/null; then
if nc -u -w0 1.1.1.1 1 2>/dev/null; then
# OpenBSD netcat
nc_opt="-w0"
else
# GNU netcat
nc_opt="-q0"
fi
send_udp() {
if [ -n "${src_addr4}" ]; then
B ip addr add "${src_addr4}" dev veth_b
__src_addr4="-s ${src_addr4}"
fi
ip addr add "${dst_addr4}" dev veth_a 2>/dev/null
[ -n "${src_port}" ] && src_port="-p ${src_port}"
echo "" | B nc -u "${nc_opt}" "${__src_addr4}" \
"${src_port}" "${dst_addr4}" "${dst_port}"
src_addr4=
src_port=
}
elif [ -z "$(bash -c 'type -p')" ]; then
send_udp() {
ip addr add "${dst_addr4}" dev veth_a 2>/dev/null
if [ -n "${src_addr4}" ]; then
B ip addr add "${src_addr4}/16" dev veth_b
B ip route add default dev veth_b
fi
B bash -c "echo > /dev/udp/${dst_addr4}/${dst_port}"
if [ -n "${src_addr4}" ]; then
B ip addr del "${src_addr4}/16" dev veth_b
fi
src_addr4=
}
else
return 1
fi
}
# Set up function to send single UDP packets on IPv6
setup_send_udp6() {
if command -v sendip >/dev/null; then
send_udp6() {
[ -n "${src_port}" ] && src_port="-us ${src_port}"
[ -n "${dst_port}" ] && dst_port="-ud ${dst_port}"
if [ -n "${src_addr6}" ]; then
src_addr6="-6s ${src_addr6}"
else
src_addr6="-6s 2001:db8::2"
fi
ip -6 addr add "${dst_addr6}" dev veth_a nodad \
2>/dev/null
# shellcheck disable=SC2086 # this needs split options
B sendip -p ipv6 -p udp ${src_addr6} ${src_port} \
${dst_port} "${dst_addr6}"
src_port=
dst_port=
src_addr6=
}
elif command -v nc >/dev/null && nc -u -w0 1.1.1.1 1 2>/dev/null; then
# GNU netcat might not work with IPv6, try next tool
send_udp6() {
ip -6 addr add "${dst_addr6}" dev veth_a nodad \
2>/dev/null
if [ -n "${src_addr6}" ]; then
B ip addr add "${src_addr6}" dev veth_b nodad
else
src_addr6="2001:db8::2"
fi
[ -n "${src_port}" ] && src_port="-p ${src_port}"
# shellcheck disable=SC2086 # this needs split options
echo "" | B nc -u w0 "-s${src_addr6}" ${src_port} \
${dst_addr6} ${dst_port}
src_addr6=
src_port=
}
elif [ -z "$(bash -c 'type -p')" ]; then
send_udp6() {
ip -6 addr add "${dst_addr6}" dev veth_a nodad \
2>/dev/null
B ip addr add "${src_addr6}" dev veth_b nodad
B bash -c "echo > /dev/udp/${dst_addr6}/${dst_port}"
ip -6 addr del "${dst_addr6}" dev veth_a 2>/dev/null
}
else
return 1
fi
}
# Set up function to send TCP traffic on IPv4
setup_flood_tcp() {
if command -v iperf3 >/dev/null; then
flood_tcp() {
[ -n "${dst_port}" ] && dst_port="-p ${dst_port}"
if [ -n "${src_addr4}" ]; then
B ip addr add "${src_addr4}/16" dev veth_b
src_addr4="-B ${src_addr4}"
else
B ip addr add dev veth_b 10.0.0.2
src_addr4="-B 10.0.0.2"
fi
if [ -n "${src_port}" ]; then
src_port="--cport ${src_port}"
fi
B ip route add default dev veth_b 2>/dev/null
ip addr add "${dst_addr4}" dev veth_a 2>/dev/null
# shellcheck disable=SC2086 # this needs split options
iperf3 -s -DB "${dst_addr4}" ${dst_port} >/dev/null 2>&1
sleep 2
# shellcheck disable=SC2086 # this needs split options
B iperf3 -c "${dst_addr4}" ${dst_port} ${src_port} \
${src_addr4} -l16 -t 1000
src_addr4=
src_port=
dst_port=
}
elif command -v iperf >/dev/null; then
flood_tcp() {
[ -n "${dst_port}" ] && dst_port="-p ${dst_port}"
if [ -n "${src_addr4}" ]; then
B ip addr add "${src_addr4}/16" dev veth_b
src_addr4="-B ${src_addr4}"
else
B ip addr add dev veth_b 10.0.0.2 2>/dev/null
src_addr4="-B 10.0.0.2"
fi
if [ -n "${src_port}" ]; then
src_addr4="${src_addr4}:${src_port}"
fi
B ip route add default dev veth_b
ip addr add "${dst_addr4}" dev veth_a 2>/dev/null
# shellcheck disable=SC2086 # this needs split options
iperf -s -DB "${dst_addr4}" ${dst_port} >/dev/null 2>&1
sleep 2
# shellcheck disable=SC2086 # this needs split options
B iperf -c "${dst_addr4}" ${dst_port} ${src_addr4} \
-l20 -t 1000
src_addr4=
src_port=
dst_port=
}
elif command -v netperf >/dev/null; then
flood_tcp() {
[ -n "${dst_port}" ] && dst_port="-p ${dst_port}"
if [ -n "${src_addr4}" ]; then
B ip addr add "${src_addr4}/16" dev veth_b
else
B ip addr add dev veth_b 10.0.0.2
src_addr4="10.0.0.2"
fi
if [ -n "${src_port}" ]; then
dst_port="${dst_port},${src_port}"
fi
B ip route add default dev veth_b
ip addr add "${dst_addr4}" dev veth_a 2>/dev/null
# shellcheck disable=SC2086 # this needs split options
netserver -4 ${dst_port} -L "${dst_addr4}" \
>/dev/null 2>&1
sleep 2
# shellcheck disable=SC2086 # this needs split options
B netperf -4 -H "${dst_addr4}" ${dst_port} \
-L "${src_addr4}" -l 1000 -t TCP_STREAM
src_addr4=
src_port=
dst_port=
}
else
return 1
fi
}
# Set up function to send TCP traffic on IPv6
setup_flood_tcp6() {
if command -v iperf3 >/dev/null; then
flood_tcp6() {
[ -n "${dst_port}" ] && dst_port="-p ${dst_port}"
if [ -n "${src_addr6}" ]; then
B ip addr add "${src_addr6}" dev veth_b nodad
src_addr6="-B ${src_addr6}"
else
src_addr6="-B 2001:db8::2"
fi
if [ -n "${src_port}" ]; then
src_port="--cport ${src_port}"
fi
B ip route add default dev veth_b
ip -6 addr add "${dst_addr6}" dev veth_a nodad \
2>/dev/null
# shellcheck disable=SC2086 # this needs split options
iperf3 -s -DB "${dst_addr6}" ${dst_port} >/dev/null 2>&1
sleep 2
# shellcheck disable=SC2086 # this needs split options
B iperf3 -c "${dst_addr6}" ${dst_port} \
${src_port} ${src_addr6} -l16 -t 1000
src_addr6=
src_port=
dst_port=
}
elif command -v iperf >/dev/null; then
flood_tcp6() {
[ -n "${dst_port}" ] && dst_port="-p ${dst_port}"
if [ -n "${src_addr6}" ]; then
B ip addr add "${src_addr6}" dev veth_b nodad
src_addr6="-B ${src_addr6}"
else
src_addr6="-B 2001:db8::2"
fi
if [ -n "${src_port}" ]; then
src_addr6="${src_addr6}:${src_port}"
fi
B ip route add default dev veth_b
ip -6 addr add "${dst_addr6}" dev veth_a nodad \
2>/dev/null
# shellcheck disable=SC2086 # this needs split options
iperf -s -VDB "${dst_addr6}" ${dst_port} >/dev/null 2>&1
sleep 2
# shellcheck disable=SC2086 # this needs split options
B iperf -c "${dst_addr6}" -V ${dst_port} \
${src_addr6} -l1 -t 1000
src_addr6=
src_port=
dst_port=
}
elif command -v netperf >/dev/null; then
flood_tcp6() {
[ -n "${dst_port}" ] && dst_port="-p ${dst_port}"
if [ -n "${src_addr6}" ]; then
B ip addr add "${src_addr6}" dev veth_b nodad
else
src_addr6="2001:db8::2"
fi
if [ -n "${src_port}" ]; then
dst_port="${dst_port},${src_port}"
fi
B ip route add default dev veth_b
ip -6 addr add "${dst_addr6}" dev veth_a nodad \
2>/dev/null
# shellcheck disable=SC2086 # this needs split options
netserver -6 ${dst_port} -L "${dst_addr6}" \
>/dev/null 2>&1
sleep 2
# shellcheck disable=SC2086 # this needs split options
B netperf -6 -H "${dst_addr6}" ${dst_port} \
-L "${src_addr6}" -l 1000 -t TCP_STREAM
src_addr6=
src_port=
dst_port=
}
else
return 1
fi
}
# Set up function to send UDP traffic on IPv4
setup_flood_udp() {
if command -v iperf3 >/dev/null; then
flood_udp() {
[ -n "${dst_port}" ] && dst_port="-p ${dst_port}"
if [ -n "${src_addr4}" ]; then
B ip addr add "${src_addr4}/16" dev veth_b
src_addr4="-B ${src_addr4}"
else
B ip addr add dev veth_b 10.0.0.2 2>/dev/null
src_addr4="-B 10.0.0.2"
fi
if [ -n "${src_port}" ]; then
src_port="--cport ${src_port}"
fi
B ip route add default dev veth_b
ip addr add "${dst_addr4}" dev veth_a 2>/dev/null
# shellcheck disable=SC2086 # this needs split options
iperf3 -s -DB "${dst_addr4}" ${dst_port}
sleep 2
# shellcheck disable=SC2086 # this needs split options
B iperf3 -u -c "${dst_addr4}" -Z -b 100M -l16 -t1000 \
${dst_port} ${src_port} ${src_addr4}
src_addr4=
src_port=
dst_port=
}
elif command -v iperf >/dev/null; then
flood_udp() {
[ -n "${dst_port}" ] && dst_port="-p ${dst_port}"
if [ -n "${src_addr4}" ]; then
B ip addr add "${src_addr4}/16" dev veth_b
src_addr4="-B ${src_addr4}"
else
B ip addr add dev veth_b 10.0.0.2
src_addr4="-B 10.0.0.2"
fi
if [ -n "${src_port}" ]; then
src_addr4="${src_addr4}:${src_port}"
fi
B ip route add default dev veth_b
ip addr add "${dst_addr4}" dev veth_a 2>/dev/null
# shellcheck disable=SC2086 # this needs split options
iperf -u -sDB "${dst_addr4}" ${dst_port} >/dev/null 2>&1
sleep 2
# shellcheck disable=SC2086 # this needs split options
B iperf -u -c "${dst_addr4}" -b 100M -l1 -t1000 \
${dst_port} ${src_addr4}
src_addr4=
src_port=
dst_port=
}
elif command -v netperf >/dev/null; then
flood_udp() {
[ -n "${dst_port}" ] && dst_port="-p ${dst_port}"
if [ -n "${src_addr4}" ]; then
B ip addr add "${src_addr4}/16" dev veth_b
else
B ip addr add dev veth_b 10.0.0.2
src_addr4="10.0.0.2"
fi
if [ -n "${src_port}" ]; then
dst_port="${dst_port},${src_port}"
fi
B ip route add default dev veth_b
ip addr add "${dst_addr4}" dev veth_a 2>/dev/null
# shellcheck disable=SC2086 # this needs split options
netserver -4 ${dst_port} -L "${dst_addr4}" \
>/dev/null 2>&1
sleep 2
# shellcheck disable=SC2086 # this needs split options
B netperf -4 -H "${dst_addr4}" ${dst_port} \
-L "${src_addr4}" -l 1000 -t UDP_STREAM
src_addr4=
src_port=
dst_port=
}
else
return 1
fi
}
# Find pktgen script and set up function to start pktgen injection
setup_perf() {
for pktgen_script_path in ${PKTGEN_SCRIPT_PATHS} __notfound; do
command -v "${pktgen_script_path}" >/dev/null && break
done
[ "${pktgen_script_path}" = "__notfound" ] && return 1
perf_ipv4() {
${pktgen_script_path} -s80 \
-i veth_a -d "${dst_addr4}" -p "${dst_port}" \
-m "${dst_mac}" \
-t $(($(nproc) / 5 + 1)) -b10000 -n0 2>/dev/null &
perf_pid=$!
}
perf_ipv6() {
IP6=6 ${pktgen_script_path} -s100 \
-i veth_a -d "${dst_addr6}" -p "${dst_port}" \
-m "${dst_mac}" \
-t $(($(nproc) / 5 + 1)) -b10000 -n0 2>/dev/null &
perf_pid=$!
}
}
# Clean up before each test
cleanup() {
nft reset counter inet filter test >/dev/null 2>&1
nft flush ruleset >/dev/null 2>&1
ip link del dummy0 2>/dev/null
ip route del default 2>/dev/null
ip -6 route del default 2>/dev/null
ip netns del B 2>/dev/null
ip link del veth_a 2>/dev/null
timeout=
killall iperf3 2>/dev/null
killall iperf 2>/dev/null
killall netperf 2>/dev/null
killall netserver 2>/dev/null
rm -f ${tmp}
sleep 2
}
# Entry point for setup functions
setup() {
if [ "$(id -u)" -ne 0 ]; then
echo " need to run as root"
exit ${KSELFTEST_SKIP}
fi
cleanup
check_tools || return 1
for arg do
if ! eval setup_"${arg}"; then
err " ${arg} not supported"
return 1
fi
done
}
# Format integer into IPv4 address, summing 10.0.0.5 (arbitrary) to it
format_addr4() {
a=$((${1} + 16777216 * 10 + 5))
printf "%i.%i.%i.%i" \
"$((a / 16777216))" "$((a % 16777216 / 65536))" \
"$((a % 65536 / 256))" "$((a % 256))"
}
# Format integer into IPv6 address, summing 2001:db8:: to it
format_addr6() {
printf "2001:db8::%04x:%04x" "$((${1} / 65536))" "$((${1} % 65536))"
}
# Format integer into EUI-48 address, summing 00:01:00:00:00:00 to it
format_mac() {
printf "00:01:%02x:%02x:%02x:%02x" \
"$((${1} / 16777216))" "$((${1} % 16777216 / 65536))" \
"$((${1} % 65536 / 256))" "$((${1} % 256))"
}
# Format integer into port, avoid 0 port
format_port() {
printf "%i" "$((${1} % 65534 + 1))"
}
# Drop suffixed '6' from L4 protocol, if any
format_proto() {
printf "%s" "${proto}" | tr -d 6
}
# Format destination and source fields into nft concatenated type
format() {
__start=
__end=
__expr="{ "
for f in ${dst}; do
[ "${__expr}" != "{ " ] && __expr="${__expr} . "
__start="$(eval format_"${f}" "${start}")"
__end="$(eval format_"${f}" "${end}")"
if [ "${f}" = "proto" ]; then
__expr="${__expr}${__start}"
else
__expr="${__expr}${__start}-${__end}"
fi
done
for f in ${src}; do
__expr="${__expr} . "
__start="$(eval format_"${f}" "${srcstart}")"
__end="$(eval format_"${f}" "${srcend}")"
if [ "${f}" = "proto" ]; then
__expr="${__expr}${__start}"
else
__expr="${__expr}${__start}-${__end}"
fi
done
if [ -n "${timeout}" ]; then
echo "${__expr} timeout ${timeout}s }"
else
echo "${__expr} }"
fi
}
# Format destination and source fields into nft type, start element only
format_norange() {
__expr="{ "
for f in ${dst}; do
[ "${__expr}" != "{ " ] && __expr="${__expr} . "
__expr="${__expr}$(eval format_"${f}" "${start}")"
done
for f in ${src}; do
__expr="${__expr} . $(eval format_"${f}" "${start}")"
done
echo "${__expr} }"
}
# Format first destination field into nft type
format_noconcat() {
for f in ${dst}; do
__start="$(eval format_"${f}" "${start}")"
__end="$(eval format_"${f}" "${end}")"
if [ "${f}" = "proto" ]; then
echo "{ ${__start} }"
else
echo "{ ${__start}-${__end} }"
fi
return
done
}
# Add single entry to 'test' set in 'inet filter' table
add() {
if ! nft add element inet filter test "${1}"; then
err "Failed to add ${1} given ruleset:"
err "$(nft list ruleset -a)"
return 1
fi
}
# Format and output entries for sets in 'netdev perf' table
add_perf() {
if [ "${1}" = "test" ]; then
echo "add element netdev perf test $(format)"
elif [ "${1}" = "norange" ]; then
echo "add element netdev perf norange $(format_norange)"
elif [ "${1}" = "noconcat" ]; then
echo "add element netdev perf noconcat $(format_noconcat)"
fi
}
# Add single entry to 'norange' set in 'netdev perf' table
add_perf_norange() {
if ! nft add element netdev perf norange "${1}"; then
err "Failed to add ${1} given ruleset:"
err "$(nft list ruleset -a)"
return 1
fi
}
# Add single entry to 'noconcat' set in 'netdev perf' table
add_perf_noconcat() {
if ! nft add element netdev perf noconcat "${1}"; then
err "Failed to add ${1} given ruleset:"
err "$(nft list ruleset -a)"
return 1
fi
}
# Delete single entry from set
del() {
if ! nft delete element inet filter test "${1}"; then
err "Failed to delete ${1} given ruleset:"
err "$(nft list ruleset -a)"
return 1
fi
}
# Return packet count from 'test' counter in 'inet filter' table
count_packets() {
found=0
for token in $(nft list counter inet filter test); do
[ ${found} -eq 1 ] && echo "${token}" && return
[ "${token}" = "packets" ] && found=1
done
}
# Return packet count from 'test' counter in 'netdev perf' table
count_perf_packets() {
found=0
for token in $(nft list counter netdev perf test); do
[ ${found} -eq 1 ] && echo "${token}" && return
[ "${token}" = "packets" ] && found=1
done
}
# Set MAC addresses, send traffic according to specifier
flood() {
ip link set veth_a address "$(format_mac "${1}")"
ip -n B link set veth_b address "$(format_mac "${2}")"
for f in ${dst}; do
eval dst_"$f"=\$\(format_\$f "${1}"\)
done
for f in ${src}; do
eval src_"$f"=\$\(format_\$f "${2}"\)
done
eval flood_\$proto
}
# Set MAC addresses, start pktgen injection
perf() {
dst_mac="$(format_mac "${1}")"
ip link set veth_a address "${dst_mac}"
for f in ${dst}; do
eval dst_"$f"=\$\(format_\$f "${1}"\)
done
for f in ${src}; do
eval src_"$f"=\$\(format_\$f "${2}"\)
done
eval perf_\$perf_proto
}
# Set MAC addresses, send single packet, check that it matches, reset counter
send_match() {
ip link set veth_a address "$(format_mac "${1}")"
ip -n B link set veth_b address "$(format_mac "${2}")"
for f in ${dst}; do
eval dst_"$f"=\$\(format_\$f "${1}"\)
done
for f in ${src}; do
eval src_"$f"=\$\(format_\$f "${2}"\)
done
eval send_\$proto
if [ "$(count_packets)" != "1" ]; then
err "${proto} packet to:"
err " $(for f in ${dst}; do
eval format_\$f "${1}"; printf ' '; done)"
err "from:"
err " $(for f in ${src}; do
eval format_\$f "${2}"; printf ' '; done)"
err "should have matched ruleset:"
err "$(nft list ruleset -a)"
return 1
fi
nft reset counter inet filter test >/dev/null
}
# Set MAC addresses, send single packet, check that it doesn't match
send_nomatch() {
ip link set veth_a address "$(format_mac "${1}")"
ip -n B link set veth_b address "$(format_mac "${2}")"
for f in ${dst}; do
eval dst_"$f"=\$\(format_\$f "${1}"\)
done
for f in ${src}; do
eval src_"$f"=\$\(format_\$f "${2}"\)
done
eval send_\$proto
if [ "$(count_packets)" != "0" ]; then
err "${proto} packet to:"
err " $(for f in ${dst}; do
eval format_\$f "${1}"; printf ' '; done)"
err "from:"
err " $(for f in ${src}; do
eval format_\$f "${2}"; printf ' '; done)"
err "should not have matched ruleset:"
err "$(nft list ruleset -a)"
return 1
fi
}
# Correctness test template:
# - add ranged element, check that packets match it
# - check that packets outside range don't match it
# - remove some elements, check that packets don't match anymore
test_correctness() {
setup veth send_"${proto}" set || return ${KSELFTEST_SKIP}
range_size=1
for i in $(seq "${start}" $((start + count))); do
end=$((start + range_size))
# Avoid negative or zero-sized port ranges
if [ $((end / 65534)) -gt $((start / 65534)) ]; then
start=${end}
end=$((end + 1))
fi
srcstart=$((start + src_delta))
srcend=$((end + src_delta))
add "$(format)" || return 1
for j in $(seq ${start} $((range_size / 2 + 1)) ${end}); do
send_match "${j}" $((j + src_delta)) || return 1
done
send_nomatch $((end + 1)) $((end + 1 + src_delta)) || return 1
# Delete elements now and then
if [ $((i % 3)) -eq 0 ]; then
del "$(format)" || return 1
for j in $(seq ${start} \
$((range_size / 2 + 1)) ${end}); do
send_nomatch "${j}" $((j + src_delta)) \
|| return 1
done
fi
range_size=$((range_size + 1))
start=$((end + range_size))
done
}
# Concurrency test template:
# - add all the elements
# - start a thread for each physical thread that:
# - adds all the elements
# - flushes the set
# - adds all the elements
# - flushes the entire ruleset
# - adds the set back
# - adds all the elements
# - delete all the elements
test_concurrency() {
proto=${flood_proto}
tools=${flood_tools}
chain_spec=${flood_spec}
setup veth flood_"${proto}" set || return ${KSELFTEST_SKIP}
range_size=1
cstart=${start}
flood_pids=
for i in $(seq ${start} $((start + count))); do
end=$((start + range_size))
srcstart=$((start + src_delta))
srcend=$((end + src_delta))
add "$(format)" || return 1
flood "${i}" $((i + src_delta)) & flood_pids="${flood_pids} $!"
range_size=$((range_size + 1))
start=$((end + range_size))
done
sleep 10
pids=
for c in $(seq 1 "$(nproc)"); do (
for r in $(seq 1 "${race_repeat}"); do
range_size=1
# $start needs to be local to this subshell
# shellcheck disable=SC2030
start=${cstart}
for i in $(seq ${start} $((start + count))); do
end=$((start + range_size))
srcstart=$((start + src_delta))
srcend=$((end + src_delta))
add "$(format)" 2>/dev/null
range_size=$((range_size + 1))
start=$((end + range_size))
done
nft flush inet filter test 2>/dev/null
range_size=1
start=${cstart}
for i in $(seq ${start} $((start + count))); do
end=$((start + range_size))
srcstart=$((start + src_delta))
srcend=$((end + src_delta))
add "$(format)" 2>/dev/null
range_size=$((range_size + 1))
start=$((end + range_size))
done
nft flush ruleset
setup set 2>/dev/null
range_size=1
start=${cstart}
for i in $(seq ${start} $((start + count))); do
end=$((start + range_size))
srcstart=$((start + src_delta))
srcend=$((end + src_delta))
add "$(format)" 2>/dev/null
range_size=$((range_size + 1))
start=$((end + range_size))
done
range_size=1
start=${cstart}
for i in $(seq ${start} $((start + count))); do
end=$((start + range_size))
srcstart=$((start + src_delta))
srcend=$((end + src_delta))
del "$(format)" 2>/dev/null
range_size=$((range_size + 1))
start=$((end + range_size))
done
done
) & pids="${pids} $!"
done
# shellcheck disable=SC2046,SC2086 # word splitting wanted here
wait $(for pid in ${pids}; do echo ${pid}; done)
# shellcheck disable=SC2046,SC2086
kill $(for pid in ${flood_pids}; do echo ${pid}; done) 2>/dev/null
# shellcheck disable=SC2046,SC2086
wait $(for pid in ${flood_pids}; do echo ${pid}; done) 2>/dev/null
return 0
}
# Timeout test template:
# - add all the elements with 3s timeout while checking that packets match
# - wait 3s after the last insertion, check that packets don't match any entry
test_timeout() {
setup veth send_"${proto}" set || return ${KSELFTEST_SKIP}
timeout=3
range_size=1
for i in $(seq "${start}" $((start + count))); do
end=$((start + range_size))
srcstart=$((start + src_delta))
srcend=$((end + src_delta))
add "$(format)" || return 1
for j in $(seq ${start} $((range_size / 2 + 1)) ${end}); do
send_match "${j}" $((j + src_delta)) || return 1
done
range_size=$((range_size + 1))
start=$((end + range_size))
done
sleep 3
for i in $(seq ${start} $((start + count))); do
end=$((start + range_size))
srcstart=$((start + src_delta))
srcend=$((end + src_delta))
for j in $(seq ${start} $((range_size / 2 + 1)) ${end}); do
send_nomatch "${j}" $((j + src_delta)) || return 1
done
range_size=$((range_size + 1))
start=$((end + range_size))
done
}
# Performance test template:
# - add concatenated ranged entries
# - add non-ranged concatenated entries (for hash set matching rate baseline)
# - add ranged entries with first field only (for rbhash baseline)
# - start pktgen injection directly on device rx path of this namespace
# - measure drop only rate, hash and rbtree baselines, then matching rate
test_performance() {
chain_spec=${perf_spec}
dst="${perf_dst}"
src="${perf_src}"
setup veth perf set || return ${KSELFTEST_SKIP}
first=${start}
range_size=1
for set in test norange noconcat; do
start=${first}
for i in $(seq ${start} $((start + perf_entries))); do
end=$((start + range_size))
srcstart=$((start + src_delta))
srcend=$((end + src_delta))
if [ $((end / 65534)) -gt $((start / 65534)) ]; then
start=${end}
end=$((end + 1))
elif [ ${start} -eq ${end} ]; then
end=$((start + 1))
fi
add_perf ${set}
start=$((end + range_size))
done > "${tmp}"
nft -f "${tmp}"
done
perf $((end - 1)) ${srcstart}
sleep 2
nft add rule netdev perf test counter name \"test\" drop
nft reset counter netdev perf test >/dev/null 2>&1
sleep "${perf_duration}"
pps="$(printf %10s $(($(count_perf_packets) / perf_duration)))"
info " baseline (drop from netdev hook): ${pps}pps"
handle="$(nft -a list chain netdev perf test | grep counter)"
handle="${handle##* }"
nft delete rule netdev perf test handle "${handle}"
nft add rule "netdev perf test ${chain_spec} @norange \
counter name \"test\" drop"
nft reset counter netdev perf test >/dev/null 2>&1
sleep "${perf_duration}"
pps="$(printf %10s $(($(count_perf_packets) / perf_duration)))"
info " baseline hash (non-ranged entries): ${pps}pps"
handle="$(nft -a list chain netdev perf test | grep counter)"
handle="${handle##* }"
nft delete rule netdev perf test handle "${handle}"
nft add rule "netdev perf test ${chain_spec%%. *} @noconcat \
counter name \"test\" drop"
nft reset counter netdev perf test >/dev/null 2>&1
sleep "${perf_duration}"
pps="$(printf %10s $(($(count_perf_packets) / perf_duration)))"
info " baseline rbtree (match on first field only): ${pps}pps"
handle="$(nft -a list chain netdev perf test | grep counter)"
handle="${handle##* }"
nft delete rule netdev perf test handle "${handle}"
nft add rule "netdev perf test ${chain_spec} @test \
counter name \"test\" drop"
nft reset counter netdev perf test >/dev/null 2>&1
sleep "${perf_duration}"
pps="$(printf %10s $(($(count_perf_packets) / perf_duration)))"
p5="$(printf %5s "${perf_entries}")"
info " set with ${p5} full, ranged entries: ${pps}pps"
kill "${perf_pid}"
}
# Run everything in a separate network namespace
[ "${1}" != "run" ] && { unshare -n "${0}" run; exit $?; }
tmp="$(mktemp)"
trap cleanup EXIT
# Entry point for test runs
passed=0
for name in ${TESTS}; do
printf "TEST: %s\n" "${name}"
for type in ${TYPES}; do
eval desc=\$TYPE_"${type}"
IFS='
'
for __line in ${desc}; do
# shellcheck disable=SC2086
eval ${__line%% *}=\"${__line##* }\";
done
IFS='
'
if [ "${name}" = "concurrency" ] && \
[ "${race_repeat}" = "0" ]; then
continue
fi
if [ "${name}" = "performance" ] && \
[ "${perf_duration}" = "0" ]; then
continue
fi
printf " %-60s " "${display}"
eval test_"${name}"
ret=$?
if [ $ret -eq 0 ]; then
printf "[ OK ]\n"
info_flush
passed=$((passed + 1))
elif [ $ret -eq 1 ]; then
printf "[FAIL]\n"
err_flush
exit 1
elif [ $ret -eq ${KSELFTEST_SKIP} ]; then
printf "[SKIP]\n"
err_flush
fi
done
done
[ ${passed} -eq 0 ] && exit ${KSELFTEST_SKIP}
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment