Commit 23020f04 authored by Lorenzo Bianconi's avatar Lorenzo Bianconi Committed by Jakub Kicinski

net: airoha: Introduce ethernet support for EN7581 SoC

Add airoha_eth driver in order to introduce ethernet support for
Airoha EN7581 SoC available on EN7581 development board (en7581-evb).
EN7581 mac controller is mainly composed by the Frame Engine (PSE+PPE)
and QoS-DMA (QDMA) modules. FE is used for traffic offloading (just
basic functionalities are currently supported) while QDMA is used for
DMA operations and QOS functionalities between the mac layer and the
external modules conncted to the FE GDM ports (e.g MT7530 DSA switch
or external phys).
A general overview of airoha_eth architecture is reported below:

               ┌───────┐                                     ┌───────┐
               │ QDMA2 │                                     │ QDMA1 │
               └───┬───┘                                     └───┬───┘
                   │                                             │
           ┌───────▼─────────────────────────────────────────────▼────────┐
           │                                                              │
           │       P5                                            P0       │
           │                                                              │
           │                                                              │
           │                                                              │    ┌──────┐
           │                                                           P3 ├────► GDM3 │
           │                                                              │    └──────┘
           │                                                              │
           │                                                              │
┌─────┐    │                                                              │
│ PPE ◄────┤ P4                          PSE                              │
└─────┘    │                                                              │
           │                                                              │
           │                                                              │
           │                                                              │    ┌──────┐
           │                                                           P9 ├────► GDM4 │
           │                                                              │    └──────┘
           │                                                              │
           │                                                              │
           │                                                              │
           │        P2                                           P1       │
           └─────────┬───────────────────────────────────────────┬────────┘
                     │                                           │
                 ┌───▼──┐                                     ┌──▼───┐
                 │ GDM2 │                                     │ GDM1 │
                 └──────┘                                     └──┬───┘
                                                                 │
                                                            ┌────▼─────┐
                                                            │  MT7530  │
                                                            └──────────┘

Currently only hw LAN features (QDMA1+GDM1) are available while hw WAN
(QDMA2+GDM{2,3,4}) ones will be added with subsequent patches introducing
traffic offloading support.
Tested-by: default avatarBenjamin Larsson <benjamin.larsson@genexis.eu>
Signed-off-by: default avatarLorenzo Bianconi <lorenzo@kernel.org>
Link: https://patch.msgid.link/274945d2391c195098ab180a46d0617b18b9e42c.1720818878.git.lorenzo@kernel.orgSigned-off-by: default avatarJakub Kicinski <kuba@kernel.org>
parent 6bc8719c
...@@ -682,6 +682,15 @@ S: Supported ...@@ -682,6 +682,15 @@ S: Supported
F: fs/aio.c F: fs/aio.c
F: include/linux/*aio*.h F: include/linux/*aio*.h
AIROHA ETHERNET DRIVER
M: Lorenzo Bianconi <lorenzo@kernel.org>
L: linux-arm-kernel@lists.infradead.org (moderated for non-subscribers)
L: linux-mediatek@lists.infradead.org (moderated for non-subscribers)
L: netdev@vger.kernel.org
S: Maintained
F: Documentation/devicetree/bindings/net/airoha,en7581-eth.yaml
F: drivers/net/ethernet/mediatek/airoha_eth.c
AIROHA SPI SNFI DRIVER AIROHA SPI SNFI DRIVER
M: Lorenzo Bianconi <lorenzo@kernel.org> M: Lorenzo Bianconi <lorenzo@kernel.org>
M: Ray Liu <ray.liu@airoha.com> M: Ray Liu <ray.liu@airoha.com>
......
# SPDX-License-Identifier: GPL-2.0-only # SPDX-License-Identifier: GPL-2.0-only
config NET_VENDOR_MEDIATEK config NET_VENDOR_MEDIATEK
bool "MediaTek devices" bool "MediaTek devices"
depends on ARCH_MEDIATEK || SOC_MT7621 || SOC_MT7620 || COMPILE_TEST depends on ARCH_MEDIATEK || ARCH_AIROHA || SOC_MT7621 || SOC_MT7620 || COMPILE_TEST
help help
If you have a Mediatek SoC with ethernet, say Y. If you have a Mediatek SoC with ethernet, say Y.
if NET_VENDOR_MEDIATEK if NET_VENDOR_MEDIATEK
config NET_AIROHA
tristate "Airoha SoC Gigabit Ethernet support"
depends on NET_DSA || !NET_DSA
select PAGE_POOL
help
This driver supports the gigabit ethernet MACs in the
Airoha SoC family.
config NET_MEDIATEK_SOC_WED config NET_MEDIATEK_SOC_WED
depends on ARCH_MEDIATEK || COMPILE_TEST depends on ARCH_MEDIATEK || COMPILE_TEST
def_bool NET_MEDIATEK_SOC != n def_bool NET_MEDIATEK_SOC != n
......
...@@ -11,3 +11,4 @@ mtk_eth-$(CONFIG_NET_MEDIATEK_SOC_WED) += mtk_wed_debugfs.o ...@@ -11,3 +11,4 @@ mtk_eth-$(CONFIG_NET_MEDIATEK_SOC_WED) += mtk_wed_debugfs.o
endif endif
obj-$(CONFIG_NET_MEDIATEK_SOC_WED) += mtk_wed_ops.o obj-$(CONFIG_NET_MEDIATEK_SOC_WED) += mtk_wed_ops.o
obj-$(CONFIG_NET_MEDIATEK_STAR_EMAC) += mtk_star_emac.o obj-$(CONFIG_NET_MEDIATEK_STAR_EMAC) += mtk_star_emac.o
obj-$(CONFIG_NET_AIROHA) += airoha_eth.o
// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (c) 2024 AIROHA Inc
* Author: Lorenzo Bianconi <lorenzo@kernel.org>
*/
#include <linux/etherdevice.h>
#include <linux/iopoll.h>
#include <linux/kernel.h>
#include <linux/netdevice.h>
#include <linux/of.h>
#include <linux/of_net.h>
#include <linux/platform_device.h>
#include <linux/reset.h>
#include <linux/tcp.h>
#include <linux/u64_stats_sync.h>
#include <net/dsa.h>
#include <net/page_pool/helpers.h>
#include <uapi/linux/ppp_defs.h>
#define AIROHA_MAX_NUM_GDM_PORTS 1
#define AIROHA_MAX_NUM_RSTS 3
#define AIROHA_MAX_NUM_XSI_RSTS 5
#define AIROHA_MAX_MTU 2000
#define AIROHA_MAX_PACKET_SIZE 2048
#define AIROHA_NUM_TX_RING 32
#define AIROHA_NUM_RX_RING 32
#define AIROHA_FE_MC_MAX_VLAN_TABLE 64
#define AIROHA_FE_MC_MAX_VLAN_PORT 16
#define AIROHA_NUM_TX_IRQ 2
#define HW_DSCP_NUM 2048
#define IRQ_QUEUE_LEN(_n) ((_n) ? 1024 : 2048)
#define TX_DSCP_NUM 1024
#define RX_DSCP_NUM(_n) \
((_n) == 2 ? 128 : \
(_n) == 11 ? 128 : \
(_n) == 15 ? 128 : \
(_n) == 0 ? 1024 : 16)
#define PSE_RSV_PAGES 128
#define PSE_QUEUE_RSV_PAGES 64
/* FE */
#define PSE_BASE 0x0100
#define CSR_IFC_BASE 0x0200
#define CDM1_BASE 0x0400
#define GDM1_BASE 0x0500
#define PPE1_BASE 0x0c00
#define CDM2_BASE 0x1400
#define GDM2_BASE 0x1500
#define GDM3_BASE 0x1100
#define GDM4_BASE 0x2500
#define GDM_BASE(_n) \
((_n) == 4 ? GDM4_BASE : \
(_n) == 3 ? GDM3_BASE : \
(_n) == 2 ? GDM2_BASE : GDM1_BASE)
#define REG_FE_DMA_GLO_CFG 0x0000
#define FE_DMA_GLO_L2_SPACE_MASK GENMASK(7, 4)
#define FE_DMA_GLO_PG_SZ_MASK BIT(3)
#define REG_FE_RST_GLO_CFG 0x0004
#define FE_RST_GDM4_MBI_ARB_MASK BIT(3)
#define FE_RST_GDM3_MBI_ARB_MASK BIT(2)
#define FE_RST_CORE_MASK BIT(0)
#define REG_FE_LAN_MAC_H 0x0040
#define REG_FE_LAN_MAC_LMIN 0x0044
#define REG_FE_LAN_MAC_LMAX 0x0048
#define REG_FE_CDM1_OQ_MAP0 0x0050
#define REG_FE_CDM1_OQ_MAP1 0x0054
#define REG_FE_CDM1_OQ_MAP2 0x0058
#define REG_FE_CDM1_OQ_MAP3 0x005c
#define REG_FE_PCE_CFG 0x0070
#define PCE_DPI_EN_MASK BIT(2)
#define PCE_KA_EN_MASK BIT(1)
#define PCE_MC_EN_MASK BIT(0)
#define REG_FE_PSE_QUEUE_CFG_WR 0x0080
#define PSE_CFG_PORT_ID_MASK GENMASK(27, 24)
#define PSE_CFG_QUEUE_ID_MASK GENMASK(20, 16)
#define PSE_CFG_WR_EN_MASK BIT(8)
#define PSE_CFG_OQRSV_SEL_MASK BIT(0)
#define REG_FE_PSE_QUEUE_CFG_VAL 0x0084
#define PSE_CFG_OQ_RSV_MASK GENMASK(13, 0)
#define PSE_FQ_CFG 0x008c
#define PSE_FQ_LIMIT_MASK GENMASK(14, 0)
#define REG_FE_PSE_BUF_SET 0x0090
#define PSE_SHARE_USED_LTHD_MASK GENMASK(31, 16)
#define PSE_ALLRSV_MASK GENMASK(14, 0)
#define REG_PSE_SHARE_USED_THD 0x0094
#define PSE_SHARE_USED_MTHD_MASK GENMASK(31, 16)
#define PSE_SHARE_USED_HTHD_MASK GENMASK(15, 0)
#define REG_GDM_MISC_CFG 0x0148
#define GDM2_RDM_ACK_WAIT_PREF_MASK BIT(9)
#define GDM2_CHN_VLD_MODE_MASK BIT(5)
#define REG_FE_CSR_IFC_CFG CSR_IFC_BASE
#define FE_IFC_EN_MASK BIT(0)
#define REG_FE_VIP_PORT_EN 0x01f0
#define REG_FE_IFC_PORT_EN 0x01f4
#define REG_PSE_IQ_REV1 (PSE_BASE + 0x08)
#define PSE_IQ_RES1_P2_MASK GENMASK(23, 16)
#define REG_PSE_IQ_REV2 (PSE_BASE + 0x0c)
#define PSE_IQ_RES2_P5_MASK GENMASK(15, 8)
#define PSE_IQ_RES2_P4_MASK GENMASK(7, 0)
#define REG_FE_VIP_EN(_n) (0x0300 + ((_n) << 3))
#define PATN_FCPU_EN_MASK BIT(7)
#define PATN_SWP_EN_MASK BIT(6)
#define PATN_DP_EN_MASK BIT(5)
#define PATN_SP_EN_MASK BIT(4)
#define PATN_TYPE_MASK GENMASK(3, 1)
#define PATN_EN_MASK BIT(0)
#define REG_FE_VIP_PATN(_n) (0x0304 + ((_n) << 3))
#define PATN_DP_MASK GENMASK(31, 16)
#define PATN_SP_MASK GENMASK(15, 0)
#define REG_CDM1_VLAN_CTRL CDM1_BASE
#define CDM1_VLAN_MASK GENMASK(31, 16)
#define REG_CDM1_FWD_CFG (CDM1_BASE + 0x08)
#define CDM1_VIP_QSEL_MASK GENMASK(24, 20)
#define REG_CDM1_CRSN_QSEL(_n) (CDM1_BASE + 0x10 + ((_n) << 2))
#define CDM1_CRSN_QSEL_REASON_MASK(_n) \
GENMASK(4 + (((_n) % 4) << 3), (((_n) % 4) << 3))
#define REG_CDM2_FWD_CFG (CDM2_BASE + 0x08)
#define CDM2_OAM_QSEL_MASK GENMASK(31, 27)
#define CDM2_VIP_QSEL_MASK GENMASK(24, 20)
#define REG_CDM2_CRSN_QSEL(_n) (CDM2_BASE + 0x10 + ((_n) << 2))
#define CDM2_CRSN_QSEL_REASON_MASK(_n) \
GENMASK(4 + (((_n) % 4) << 3), (((_n) % 4) << 3))
#define REG_GDM_FWD_CFG(_n) GDM_BASE(_n)
#define GDM_DROP_CRC_ERR BIT(23)
#define GDM_IP4_CKSUM BIT(22)
#define GDM_TCP_CKSUM BIT(21)
#define GDM_UDP_CKSUM BIT(20)
#define GDM_UCFQ_MASK GENMASK(15, 12)
#define GDM_BCFQ_MASK GENMASK(11, 8)
#define GDM_MCFQ_MASK GENMASK(7, 4)
#define GDM_OCFQ_MASK GENMASK(3, 0)
#define REG_GDM_INGRESS_CFG(_n) (GDM_BASE(_n) + 0x10)
#define GDM_INGRESS_FC_EN_MASK BIT(1)
#define GDM_STAG_EN_MASK BIT(0)
#define REG_GDM_LEN_CFG(_n) (GDM_BASE(_n) + 0x14)
#define GDM_SHORT_LEN_MASK GENMASK(13, 0)
#define GDM_LONG_LEN_MASK GENMASK(29, 16)
#define REG_FE_CPORT_CFG (GDM1_BASE + 0x40)
#define FE_CPORT_PAD BIT(26)
#define FE_CPORT_PORT_XFC_MASK BIT(25)
#define FE_CPORT_QUEUE_XFC_MASK BIT(24)
#define REG_FE_GDM_MIB_CLEAR(_n) (GDM_BASE(_n) + 0xf0)
#define FE_GDM_MIB_RX_CLEAR_MASK BIT(1)
#define FE_GDM_MIB_TX_CLEAR_MASK BIT(0)
#define REG_FE_GDM1_MIB_CFG (GDM1_BASE + 0xf4)
#define FE_STRICT_RFC2819_MODE_MASK BIT(31)
#define FE_GDM1_TX_MIB_SPLIT_EN_MASK BIT(17)
#define FE_GDM1_RX_MIB_SPLIT_EN_MASK BIT(16)
#define FE_TX_MIB_ID_MASK GENMASK(15, 8)
#define FE_RX_MIB_ID_MASK GENMASK(7, 0)
#define REG_FE_GDM_TX_OK_PKT_CNT_L(_n) (GDM_BASE(_n) + 0x104)
#define REG_FE_GDM_TX_OK_BYTE_CNT_L(_n) (GDM_BASE(_n) + 0x10c)
#define REG_FE_GDM_TX_ETH_PKT_CNT_L(_n) (GDM_BASE(_n) + 0x110)
#define REG_FE_GDM_TX_ETH_BYTE_CNT_L(_n) (GDM_BASE(_n) + 0x114)
#define REG_FE_GDM_TX_ETH_DROP_CNT(_n) (GDM_BASE(_n) + 0x118)
#define REG_FE_GDM_TX_ETH_BC_CNT(_n) (GDM_BASE(_n) + 0x11c)
#define REG_FE_GDM_TX_ETH_MC_CNT(_n) (GDM_BASE(_n) + 0x120)
#define REG_FE_GDM_TX_ETH_RUNT_CNT(_n) (GDM_BASE(_n) + 0x124)
#define REG_FE_GDM_TX_ETH_LONG_CNT(_n) (GDM_BASE(_n) + 0x128)
#define REG_FE_GDM_TX_ETH_E64_CNT_L(_n) (GDM_BASE(_n) + 0x12c)
#define REG_FE_GDM_TX_ETH_L64_CNT_L(_n) (GDM_BASE(_n) + 0x130)
#define REG_FE_GDM_TX_ETH_L127_CNT_L(_n) (GDM_BASE(_n) + 0x134)
#define REG_FE_GDM_TX_ETH_L255_CNT_L(_n) (GDM_BASE(_n) + 0x138)
#define REG_FE_GDM_TX_ETH_L511_CNT_L(_n) (GDM_BASE(_n) + 0x13c)
#define REG_FE_GDM_TX_ETH_L1023_CNT_L(_n) (GDM_BASE(_n) + 0x140)
#define REG_FE_GDM_RX_OK_PKT_CNT_L(_n) (GDM_BASE(_n) + 0x148)
#define REG_FE_GDM_RX_FC_DROP_CNT(_n) (GDM_BASE(_n) + 0x14c)
#define REG_FE_GDM_RX_RC_DROP_CNT(_n) (GDM_BASE(_n) + 0x150)
#define REG_FE_GDM_RX_OVERFLOW_DROP_CNT(_n) (GDM_BASE(_n) + 0x154)
#define REG_FE_GDM_RX_ERROR_DROP_CNT(_n) (GDM_BASE(_n) + 0x158)
#define REG_FE_GDM_RX_OK_BYTE_CNT_L(_n) (GDM_BASE(_n) + 0x15c)
#define REG_FE_GDM_RX_ETH_PKT_CNT_L(_n) (GDM_BASE(_n) + 0x160)
#define REG_FE_GDM_RX_ETH_BYTE_CNT_L(_n) (GDM_BASE(_n) + 0x164)
#define REG_FE_GDM_RX_ETH_DROP_CNT(_n) (GDM_BASE(_n) + 0x168)
#define REG_FE_GDM_RX_ETH_BC_CNT(_n) (GDM_BASE(_n) + 0x16c)
#define REG_FE_GDM_RX_ETH_MC_CNT(_n) (GDM_BASE(_n) + 0x170)
#define REG_FE_GDM_RX_ETH_CRC_ERR_CNT(_n) (GDM_BASE(_n) + 0x174)
#define REG_FE_GDM_RX_ETH_FRAG_CNT(_n) (GDM_BASE(_n) + 0x178)
#define REG_FE_GDM_RX_ETH_JABBER_CNT(_n) (GDM_BASE(_n) + 0x17c)
#define REG_FE_GDM_RX_ETH_RUNT_CNT(_n) (GDM_BASE(_n) + 0x180)
#define REG_FE_GDM_RX_ETH_LONG_CNT(_n) (GDM_BASE(_n) + 0x184)
#define REG_FE_GDM_RX_ETH_E64_CNT_L(_n) (GDM_BASE(_n) + 0x188)
#define REG_FE_GDM_RX_ETH_L64_CNT_L(_n) (GDM_BASE(_n) + 0x18c)
#define REG_FE_GDM_RX_ETH_L127_CNT_L(_n) (GDM_BASE(_n) + 0x190)
#define REG_FE_GDM_RX_ETH_L255_CNT_L(_n) (GDM_BASE(_n) + 0x194)
#define REG_FE_GDM_RX_ETH_L511_CNT_L(_n) (GDM_BASE(_n) + 0x198)
#define REG_FE_GDM_RX_ETH_L1023_CNT_L(_n) (GDM_BASE(_n) + 0x19c)
#define REG_PPE1_TB_HASH_CFG (PPE1_BASE + 0x250)
#define PPE1_SRAM_TABLE_EN_MASK BIT(0)
#define PPE1_SRAM_HASH1_EN_MASK BIT(8)
#define PPE1_DRAM_TABLE_EN_MASK BIT(16)
#define PPE1_DRAM_HASH1_EN_MASK BIT(24)
#define REG_FE_GDM_TX_OK_PKT_CNT_H(_n) (GDM_BASE(_n) + 0x280)
#define REG_FE_GDM_TX_OK_BYTE_CNT_H(_n) (GDM_BASE(_n) + 0x284)
#define REG_FE_GDM_TX_ETH_PKT_CNT_H(_n) (GDM_BASE(_n) + 0x288)
#define REG_FE_GDM_TX_ETH_BYTE_CNT_H(_n) (GDM_BASE(_n) + 0x28c)
#define REG_FE_GDM_RX_OK_PKT_CNT_H(_n) (GDM_BASE(_n) + 0x290)
#define REG_FE_GDM_RX_OK_BYTE_CNT_H(_n) (GDM_BASE(_n) + 0x294)
#define REG_FE_GDM_RX_ETH_PKT_CNT_H(_n) (GDM_BASE(_n) + 0x298)
#define REG_FE_GDM_RX_ETH_BYTE_CNT_H(_n) (GDM_BASE(_n) + 0x29c)
#define REG_FE_GDM_TX_ETH_E64_CNT_H(_n) (GDM_BASE(_n) + 0x2b8)
#define REG_FE_GDM_TX_ETH_L64_CNT_H(_n) (GDM_BASE(_n) + 0x2bc)
#define REG_FE_GDM_TX_ETH_L127_CNT_H(_n) (GDM_BASE(_n) + 0x2c0)
#define REG_FE_GDM_TX_ETH_L255_CNT_H(_n) (GDM_BASE(_n) + 0x2c4)
#define REG_FE_GDM_TX_ETH_L511_CNT_H(_n) (GDM_BASE(_n) + 0x2c8)
#define REG_FE_GDM_TX_ETH_L1023_CNT_H(_n) (GDM_BASE(_n) + 0x2cc)
#define REG_FE_GDM_RX_ETH_E64_CNT_H(_n) (GDM_BASE(_n) + 0x2e8)
#define REG_FE_GDM_RX_ETH_L64_CNT_H(_n) (GDM_BASE(_n) + 0x2ec)
#define REG_FE_GDM_RX_ETH_L127_CNT_H(_n) (GDM_BASE(_n) + 0x2f0)
#define REG_FE_GDM_RX_ETH_L255_CNT_H(_n) (GDM_BASE(_n) + 0x2f4)
#define REG_FE_GDM_RX_ETH_L511_CNT_H(_n) (GDM_BASE(_n) + 0x2f8)
#define REG_FE_GDM_RX_ETH_L1023_CNT_H(_n) (GDM_BASE(_n) + 0x2fc)
#define REG_GDM2_CHN_RLS (GDM2_BASE + 0x20)
#define MBI_RX_AGE_SEL_MASK GENMASK(18, 17)
#define MBI_TX_AGE_SEL_MASK GENMASK(18, 17)
#define REG_GDM3_FWD_CFG GDM3_BASE
#define GDM3_PAD_EN_MASK BIT(28)
#define REG_GDM4_FWD_CFG (GDM4_BASE + 0x100)
#define GDM4_PAD_EN_MASK BIT(28)
#define GDM4_SPORT_OFFSET0_MASK GENMASK(11, 8)
#define REG_GDM4_SRC_PORT_SET (GDM4_BASE + 0x33c)
#define GDM4_SPORT_OFF2_MASK GENMASK(19, 16)
#define GDM4_SPORT_OFF1_MASK GENMASK(15, 12)
#define GDM4_SPORT_OFF0_MASK GENMASK(11, 8)
#define REG_IP_FRAG_FP 0x2010
#define IP_ASSEMBLE_PORT_MASK GENMASK(24, 21)
#define IP_ASSEMBLE_NBQ_MASK GENMASK(20, 16)
#define IP_FRAGMENT_PORT_MASK GENMASK(8, 5)
#define IP_FRAGMENT_NBQ_MASK GENMASK(4, 0)
#define REG_MC_VLAN_EN 0x2100
#define MC_VLAN_EN_MASK BIT(0)
#define REG_MC_VLAN_CFG 0x2104
#define MC_VLAN_CFG_CMD_DONE_MASK BIT(31)
#define MC_VLAN_CFG_TABLE_ID_MASK GENMASK(21, 16)
#define MC_VLAN_CFG_PORT_ID_MASK GENMASK(11, 8)
#define MC_VLAN_CFG_TABLE_SEL_MASK BIT(4)
#define MC_VLAN_CFG_RW_MASK BIT(0)
#define REG_MC_VLAN_DATA 0x2108
#define REG_CDM5_RX_OQ1_DROP_CNT 0x29d4
/* QDMA */
#define REG_QDMA_GLOBAL_CFG 0x0004
#define GLOBAL_CFG_RX_2B_OFFSET_MASK BIT(31)
#define GLOBAL_CFG_DMA_PREFERENCE_MASK GENMASK(30, 29)
#define GLOBAL_CFG_CPU_TXR_RR_MASK BIT(28)
#define GLOBAL_CFG_DSCP_BYTE_SWAP_MASK BIT(27)
#define GLOBAL_CFG_PAYLOAD_BYTE_SWAP_MASK BIT(26)
#define GLOBAL_CFG_MULTICAST_MODIFY_FP_MASK BIT(25)
#define GLOBAL_CFG_OAM_MODIFY_MASK BIT(24)
#define GLOBAL_CFG_RESET_MASK BIT(23)
#define GLOBAL_CFG_RESET_DONE_MASK BIT(22)
#define GLOBAL_CFG_MULTICAST_EN_MASK BIT(21)
#define GLOBAL_CFG_IRQ1_EN_MASK BIT(20)
#define GLOBAL_CFG_IRQ0_EN_MASK BIT(19)
#define GLOBAL_CFG_LOOPCNT_EN_MASK BIT(18)
#define GLOBAL_CFG_RD_BYPASS_WR_MASK BIT(17)
#define GLOBAL_CFG_QDMA_LOOPBACK_MASK BIT(16)
#define GLOBAL_CFG_LPBK_RXQ_SEL_MASK GENMASK(13, 8)
#define GLOBAL_CFG_CHECK_DONE_MASK BIT(7)
#define GLOBAL_CFG_TX_WB_DONE_MASK BIT(6)
#define GLOBAL_CFG_MAX_ISSUE_NUM_MASK GENMASK(5, 4)
#define GLOBAL_CFG_RX_DMA_BUSY_MASK BIT(3)
#define GLOBAL_CFG_RX_DMA_EN_MASK BIT(2)
#define GLOBAL_CFG_TX_DMA_BUSY_MASK BIT(1)
#define GLOBAL_CFG_TX_DMA_EN_MASK BIT(0)
#define REG_FWD_DSCP_BASE 0x0010
#define REG_FWD_BUF_BASE 0x0014
#define REG_HW_FWD_DSCP_CFG 0x0018
#define HW_FWD_DSCP_PAYLOAD_SIZE_MASK GENMASK(29, 28)
#define HW_FWD_DSCP_SCATTER_LEN_MASK GENMASK(17, 16)
#define HW_FWD_DSCP_MIN_SCATTER_LEN_MASK GENMASK(15, 0)
#define REG_INT_STATUS(_n) \
(((_n) == 4) ? 0x0730 : \
((_n) == 3) ? 0x0724 : \
((_n) == 2) ? 0x0720 : \
((_n) == 1) ? 0x0024 : 0x0020)
#define REG_INT_ENABLE(_n) \
(((_n) == 4) ? 0x0750 : \
((_n) == 3) ? 0x0744 : \
((_n) == 2) ? 0x0740 : \
((_n) == 1) ? 0x002c : 0x0028)
/* QDMA_CSR_INT_ENABLE1 */
#define RX15_COHERENT_INT_MASK BIT(31)
#define RX14_COHERENT_INT_MASK BIT(30)
#define RX13_COHERENT_INT_MASK BIT(29)
#define RX12_COHERENT_INT_MASK BIT(28)
#define RX11_COHERENT_INT_MASK BIT(27)
#define RX10_COHERENT_INT_MASK BIT(26)
#define RX9_COHERENT_INT_MASK BIT(25)
#define RX8_COHERENT_INT_MASK BIT(24)
#define RX7_COHERENT_INT_MASK BIT(23)
#define RX6_COHERENT_INT_MASK BIT(22)
#define RX5_COHERENT_INT_MASK BIT(21)
#define RX4_COHERENT_INT_MASK BIT(20)
#define RX3_COHERENT_INT_MASK BIT(19)
#define RX2_COHERENT_INT_MASK BIT(18)
#define RX1_COHERENT_INT_MASK BIT(17)
#define RX0_COHERENT_INT_MASK BIT(16)
#define TX7_COHERENT_INT_MASK BIT(15)
#define TX6_COHERENT_INT_MASK BIT(14)
#define TX5_COHERENT_INT_MASK BIT(13)
#define TX4_COHERENT_INT_MASK BIT(12)
#define TX3_COHERENT_INT_MASK BIT(11)
#define TX2_COHERENT_INT_MASK BIT(10)
#define TX1_COHERENT_INT_MASK BIT(9)
#define TX0_COHERENT_INT_MASK BIT(8)
#define CNT_OVER_FLOW_INT_MASK BIT(7)
#define IRQ1_FULL_INT_MASK BIT(5)
#define IRQ1_INT_MASK BIT(4)
#define HWFWD_DSCP_LOW_INT_MASK BIT(3)
#define HWFWD_DSCP_EMPTY_INT_MASK BIT(2)
#define IRQ0_FULL_INT_MASK BIT(1)
#define IRQ0_INT_MASK BIT(0)
#define TX_DONE_INT_MASK(_n) \
((_n) ? IRQ1_INT_MASK | IRQ1_FULL_INT_MASK \
: IRQ0_INT_MASK | IRQ0_FULL_INT_MASK)
#define INT_TX_MASK \
(IRQ1_INT_MASK | IRQ1_FULL_INT_MASK | \
IRQ0_INT_MASK | IRQ0_FULL_INT_MASK)
#define INT_IDX0_MASK \
(TX0_COHERENT_INT_MASK | TX1_COHERENT_INT_MASK | \
TX2_COHERENT_INT_MASK | TX3_COHERENT_INT_MASK | \
TX4_COHERENT_INT_MASK | TX5_COHERENT_INT_MASK | \
TX6_COHERENT_INT_MASK | TX7_COHERENT_INT_MASK | \
RX0_COHERENT_INT_MASK | RX1_COHERENT_INT_MASK | \
RX2_COHERENT_INT_MASK | RX3_COHERENT_INT_MASK | \
RX4_COHERENT_INT_MASK | RX7_COHERENT_INT_MASK | \
RX8_COHERENT_INT_MASK | RX9_COHERENT_INT_MASK | \
RX15_COHERENT_INT_MASK | INT_TX_MASK)
/* QDMA_CSR_INT_ENABLE2 */
#define RX15_NO_CPU_DSCP_INT_MASK BIT(31)
#define RX14_NO_CPU_DSCP_INT_MASK BIT(30)
#define RX13_NO_CPU_DSCP_INT_MASK BIT(29)
#define RX12_NO_CPU_DSCP_INT_MASK BIT(28)
#define RX11_NO_CPU_DSCP_INT_MASK BIT(27)
#define RX10_NO_CPU_DSCP_INT_MASK BIT(26)
#define RX9_NO_CPU_DSCP_INT_MASK BIT(25)
#define RX8_NO_CPU_DSCP_INT_MASK BIT(24)
#define RX7_NO_CPU_DSCP_INT_MASK BIT(23)
#define RX6_NO_CPU_DSCP_INT_MASK BIT(22)
#define RX5_NO_CPU_DSCP_INT_MASK BIT(21)
#define RX4_NO_CPU_DSCP_INT_MASK BIT(20)
#define RX3_NO_CPU_DSCP_INT_MASK BIT(19)
#define RX2_NO_CPU_DSCP_INT_MASK BIT(18)
#define RX1_NO_CPU_DSCP_INT_MASK BIT(17)
#define RX0_NO_CPU_DSCP_INT_MASK BIT(16)
#define RX15_DONE_INT_MASK BIT(15)
#define RX14_DONE_INT_MASK BIT(14)
#define RX13_DONE_INT_MASK BIT(13)
#define RX12_DONE_INT_MASK BIT(12)
#define RX11_DONE_INT_MASK BIT(11)
#define RX10_DONE_INT_MASK BIT(10)
#define RX9_DONE_INT_MASK BIT(9)
#define RX8_DONE_INT_MASK BIT(8)
#define RX7_DONE_INT_MASK BIT(7)
#define RX6_DONE_INT_MASK BIT(6)
#define RX5_DONE_INT_MASK BIT(5)
#define RX4_DONE_INT_MASK BIT(4)
#define RX3_DONE_INT_MASK BIT(3)
#define RX2_DONE_INT_MASK BIT(2)
#define RX1_DONE_INT_MASK BIT(1)
#define RX0_DONE_INT_MASK BIT(0)
#define RX_DONE_INT_MASK \
(RX0_DONE_INT_MASK | RX1_DONE_INT_MASK | \
RX2_DONE_INT_MASK | RX3_DONE_INT_MASK | \
RX4_DONE_INT_MASK | RX7_DONE_INT_MASK | \
RX8_DONE_INT_MASK | RX9_DONE_INT_MASK | \
RX15_DONE_INT_MASK)
#define INT_IDX1_MASK \
(RX_DONE_INT_MASK | \
RX0_NO_CPU_DSCP_INT_MASK | RX1_NO_CPU_DSCP_INT_MASK | \
RX2_NO_CPU_DSCP_INT_MASK | RX3_NO_CPU_DSCP_INT_MASK | \
RX4_NO_CPU_DSCP_INT_MASK | RX7_NO_CPU_DSCP_INT_MASK | \
RX8_NO_CPU_DSCP_INT_MASK | RX9_NO_CPU_DSCP_INT_MASK | \
RX15_NO_CPU_DSCP_INT_MASK)
/* QDMA_CSR_INT_ENABLE5 */
#define TX31_COHERENT_INT_MASK BIT(31)
#define TX30_COHERENT_INT_MASK BIT(30)
#define TX29_COHERENT_INT_MASK BIT(29)
#define TX28_COHERENT_INT_MASK BIT(28)
#define TX27_COHERENT_INT_MASK BIT(27)
#define TX26_COHERENT_INT_MASK BIT(26)
#define TX25_COHERENT_INT_MASK BIT(25)
#define TX24_COHERENT_INT_MASK BIT(24)
#define TX23_COHERENT_INT_MASK BIT(23)
#define TX22_COHERENT_INT_MASK BIT(22)
#define TX21_COHERENT_INT_MASK BIT(21)
#define TX20_COHERENT_INT_MASK BIT(20)
#define TX19_COHERENT_INT_MASK BIT(19)
#define TX18_COHERENT_INT_MASK BIT(18)
#define TX17_COHERENT_INT_MASK BIT(17)
#define TX16_COHERENT_INT_MASK BIT(16)
#define TX15_COHERENT_INT_MASK BIT(15)
#define TX14_COHERENT_INT_MASK BIT(14)
#define TX13_COHERENT_INT_MASK BIT(13)
#define TX12_COHERENT_INT_MASK BIT(12)
#define TX11_COHERENT_INT_MASK BIT(11)
#define TX10_COHERENT_INT_MASK BIT(10)
#define TX9_COHERENT_INT_MASK BIT(9)
#define TX8_COHERENT_INT_MASK BIT(8)
#define INT_IDX4_MASK \
(TX8_COHERENT_INT_MASK | TX9_COHERENT_INT_MASK | \
TX10_COHERENT_INT_MASK | TX11_COHERENT_INT_MASK | \
TX12_COHERENT_INT_MASK | TX13_COHERENT_INT_MASK | \
TX14_COHERENT_INT_MASK | TX15_COHERENT_INT_MASK | \
TX16_COHERENT_INT_MASK | TX17_COHERENT_INT_MASK | \
TX18_COHERENT_INT_MASK | TX19_COHERENT_INT_MASK | \
TX20_COHERENT_INT_MASK | TX21_COHERENT_INT_MASK | \
TX22_COHERENT_INT_MASK | TX23_COHERENT_INT_MASK | \
TX24_COHERENT_INT_MASK | TX25_COHERENT_INT_MASK | \
TX26_COHERENT_INT_MASK | TX27_COHERENT_INT_MASK | \
TX28_COHERENT_INT_MASK | TX29_COHERENT_INT_MASK | \
TX30_COHERENT_INT_MASK | TX31_COHERENT_INT_MASK)
#define REG_TX_IRQ_BASE(_n) ((_n) ? 0x0048 : 0x0050)
#define REG_TX_IRQ_CFG(_n) ((_n) ? 0x004c : 0x0054)
#define TX_IRQ_THR_MASK GENMASK(27, 16)
#define TX_IRQ_DEPTH_MASK GENMASK(11, 0)
#define REG_IRQ_CLEAR_LEN(_n) ((_n) ? 0x0064 : 0x0058)
#define IRQ_CLEAR_LEN_MASK GENMASK(7, 0)
#define REG_IRQ_STATUS(_n) ((_n) ? 0x0068 : 0x005c)
#define IRQ_ENTRY_LEN_MASK GENMASK(27, 16)
#define IRQ_HEAD_IDX_MASK GENMASK(11, 0)
#define REG_TX_RING_BASE(_n) \
(((_n) < 8) ? 0x0100 + ((_n) << 5) : 0x0b00 + (((_n) - 8) << 5))
#define REG_TX_RING_BLOCKING(_n) \
(((_n) < 8) ? 0x0104 + ((_n) << 5) : 0x0b04 + (((_n) - 8) << 5))
#define TX_RING_IRQ_BLOCKING_MAP_MASK BIT(6)
#define TX_RING_IRQ_BLOCKING_CFG_MASK BIT(4)
#define TX_RING_IRQ_BLOCKING_TX_DROP_EN_MASK BIT(2)
#define TX_RING_IRQ_BLOCKING_MAX_TH_TXRING_EN_MASK BIT(1)
#define TX_RING_IRQ_BLOCKING_MIN_TH_TXRING_EN_MASK BIT(0)
#define REG_TX_CPU_IDX(_n) \
(((_n) < 8) ? 0x0108 + ((_n) << 5) : 0x0b08 + (((_n) - 8) << 5))
#define TX_RING_CPU_IDX_MASK GENMASK(15, 0)
#define REG_TX_DMA_IDX(_n) \
(((_n) < 8) ? 0x010c + ((_n) << 5) : 0x0b0c + (((_n) - 8) << 5))
#define TX_RING_DMA_IDX_MASK GENMASK(15, 0)
#define IRQ_RING_IDX_MASK GENMASK(20, 16)
#define IRQ_DESC_IDX_MASK GENMASK(15, 0)
#define REG_RX_RING_BASE(_n) \
(((_n) < 16) ? 0x0200 + ((_n) << 5) : 0x0e00 + (((_n) - 16) << 5))
#define REG_RX_RING_SIZE(_n) \
(((_n) < 16) ? 0x0204 + ((_n) << 5) : 0x0e04 + (((_n) - 16) << 5))
#define RX_RING_THR_MASK GENMASK(31, 16)
#define RX_RING_SIZE_MASK GENMASK(15, 0)
#define REG_RX_CPU_IDX(_n) \
(((_n) < 16) ? 0x0208 + ((_n) << 5) : 0x0e08 + (((_n) - 16) << 5))
#define RX_RING_CPU_IDX_MASK GENMASK(15, 0)
#define REG_RX_DMA_IDX(_n) \
(((_n) < 16) ? 0x020c + ((_n) << 5) : 0x0e0c + (((_n) - 16) << 5))
#define REG_RX_DELAY_INT_IDX(_n) \
(((_n) < 16) ? 0x0210 + ((_n) << 5) : 0x0e10 + (((_n) - 16) << 5))
#define RX_DELAY_INT_MASK GENMASK(15, 0)
#define RX_RING_DMA_IDX_MASK GENMASK(15, 0)
#define REG_INGRESS_TRTCM_CFG 0x0070
#define INGRESS_TRTCM_EN_MASK BIT(31)
#define INGRESS_TRTCM_MODE_MASK BIT(30)
#define INGRESS_SLOW_TICK_RATIO_MASK GENMASK(29, 16)
#define INGRESS_FAST_TICK_MASK GENMASK(15, 0)
#define REG_TXQ_DIS_CFG_BASE(_n) ((_n) ? 0x20a0 : 0x00a0)
#define REG_TXQ_DIS_CFG(_n, _m) (REG_TXQ_DIS_CFG_BASE((_n)) + (_m) << 2)
#define REG_LMGR_INIT_CFG 0x1000
#define LMGR_INIT_START BIT(31)
#define LMGR_SRAM_MODE_MASK BIT(30)
#define HW_FWD_PKTSIZE_OVERHEAD_MASK GENMASK(27, 20)
#define HW_FWD_DESC_NUM_MASK GENMASK(16, 0)
#define REG_FWD_DSCP_LOW_THR 0x1004
#define FWD_DSCP_LOW_THR_MASK GENMASK(17, 0)
#define REG_EGRESS_RATE_METER_CFG 0x100c
#define EGRESS_RATE_METER_EN_MASK BIT(29)
#define EGRESS_RATE_METER_EQ_RATE_EN_MASK BIT(17)
#define EGRESS_RATE_METER_WINDOW_SZ_MASK GENMASK(16, 12)
#define EGRESS_RATE_METER_TIMESLICE_MASK GENMASK(10, 0)
#define REG_EGRESS_TRTCM_CFG 0x1010
#define EGRESS_TRTCM_EN_MASK BIT(31)
#define EGRESS_TRTCM_MODE_MASK BIT(30)
#define EGRESS_SLOW_TICK_RATIO_MASK GENMASK(29, 16)
#define EGRESS_FAST_TICK_MASK GENMASK(15, 0)
#define REG_TXWRR_MODE_CFG 0x1020
#define TWRR_WEIGHT_SCALE_MASK BIT(31)
#define TWRR_WEIGHT_BASE_MASK BIT(3)
#define REG_PSE_BUF_USAGE_CFG 0x1028
#define PSE_BUF_ESTIMATE_EN_MASK BIT(29)
#define REG_GLB_TRTCM_CFG 0x1080
#define GLB_TRTCM_EN_MASK BIT(31)
#define GLB_TRTCM_MODE_MASK BIT(30)
#define GLB_SLOW_TICK_RATIO_MASK GENMASK(29, 16)
#define GLB_FAST_TICK_MASK GENMASK(15, 0)
#define REG_TXQ_CNGST_CFG 0x10a0
#define TXQ_CNGST_DROP_EN BIT(31)
#define TXQ_CNGST_DEI_DROP_EN BIT(30)
#define REG_SLA_TRTCM_CFG 0x1150
#define SLA_TRTCM_EN_MASK BIT(31)
#define SLA_TRTCM_MODE_MASK BIT(30)
#define SLA_SLOW_TICK_RATIO_MASK GENMASK(29, 16)
#define SLA_FAST_TICK_MASK GENMASK(15, 0)
/* CTRL */
#define QDMA_DESC_DONE_MASK BIT(31)
#define QDMA_DESC_DROP_MASK BIT(30) /* tx: drop - rx: overflow */
#define QDMA_DESC_MORE_MASK BIT(29) /* more SG elements */
#define QDMA_DESC_DEI_MASK BIT(25)
#define QDMA_DESC_NO_DROP_MASK BIT(24)
#define QDMA_DESC_LEN_MASK GENMASK(15, 0)
/* DATA */
#define QDMA_DESC_NEXT_ID_MASK GENMASK(15, 0)
/* TX MSG0 */
#define QDMA_ETH_TXMSG_MIC_IDX_MASK BIT(30)
#define QDMA_ETH_TXMSG_SP_TAG_MASK GENMASK(29, 14)
#define QDMA_ETH_TXMSG_ICO_MASK BIT(13)
#define QDMA_ETH_TXMSG_UCO_MASK BIT(12)
#define QDMA_ETH_TXMSG_TCO_MASK BIT(11)
#define QDMA_ETH_TXMSG_TSO_MASK BIT(10)
#define QDMA_ETH_TXMSG_FAST_MASK BIT(9)
#define QDMA_ETH_TXMSG_OAM_MASK BIT(8)
#define QDMA_ETH_TXMSG_CHAN_MASK GENMASK(7, 3)
#define QDMA_ETH_TXMSG_QUEUE_MASK GENMASK(2, 0)
/* TX MSG1 */
#define QDMA_ETH_TXMSG_NO_DROP BIT(31)
#define QDMA_ETH_TXMSG_METER_MASK GENMASK(30, 24) /* 0x7f no meters */
#define QDMA_ETH_TXMSG_FPORT_MASK GENMASK(23, 20)
#define QDMA_ETH_TXMSG_NBOQ_MASK GENMASK(19, 15)
#define QDMA_ETH_TXMSG_HWF_MASK BIT(14)
#define QDMA_ETH_TXMSG_HOP_MASK BIT(13)
#define QDMA_ETH_TXMSG_PTP_MASK BIT(12)
#define QDMA_ETH_TXMSG_ACNT_G1_MASK GENMASK(10, 6) /* 0x1f do not count */
#define QDMA_ETH_TXMSG_ACNT_G0_MASK GENMASK(5, 0) /* 0x3f do not count */
/* RX MSG1 */
#define QDMA_ETH_RXMSG_DEI_MASK BIT(31)
#define QDMA_ETH_RXMSG_IP6_MASK BIT(30)
#define QDMA_ETH_RXMSG_IP4_MASK BIT(29)
#define QDMA_ETH_RXMSG_IP4F_MASK BIT(28)
#define QDMA_ETH_RXMSG_L4_VALID_MASK BIT(27)
#define QDMA_ETH_RXMSG_L4F_MASK BIT(26)
#define QDMA_ETH_RXMSG_SPORT_MASK GENMASK(25, 21)
#define QDMA_ETH_RXMSG_CRSN_MASK GENMASK(20, 16)
#define QDMA_ETH_RXMSG_PPE_ENTRY_MASK GENMASK(15, 0)
struct airoha_qdma_desc {
__le32 rsv;
__le32 ctrl;
__le32 addr;
__le32 data;
__le32 msg0;
__le32 msg1;
__le32 msg2;
__le32 msg3;
};
/* CTRL0 */
#define QDMA_FWD_DESC_CTX_MASK BIT(31)
#define QDMA_FWD_DESC_RING_MASK GENMASK(30, 28)
#define QDMA_FWD_DESC_IDX_MASK GENMASK(27, 16)
#define QDMA_FWD_DESC_LEN_MASK GENMASK(15, 0)
/* CTRL1 */
#define QDMA_FWD_DESC_FIRST_IDX_MASK GENMASK(15, 0)
/* CTRL2 */
#define QDMA_FWD_DESC_MORE_PKT_NUM_MASK GENMASK(2, 0)
struct airoha_qdma_fwd_desc {
__le32 addr;
__le32 ctrl0;
__le32 ctrl1;
__le32 ctrl2;
__le32 msg0;
__le32 msg1;
__le32 rsv0;
__le32 rsv1;
};
enum {
QDMA_INT_REG_IDX0,
QDMA_INT_REG_IDX1,
QDMA_INT_REG_IDX2,
QDMA_INT_REG_IDX3,
QDMA_INT_REG_IDX4,
QDMA_INT_REG_MAX
};
enum {
XSI_PCIE0_PORT,
XSI_PCIE1_PORT,
XSI_USB_PORT,
XSI_AE_PORT,
XSI_ETH_PORT,
};
enum {
XSI_PCIE0_VIP_PORT_MASK = BIT(22),
XSI_PCIE1_VIP_PORT_MASK = BIT(23),
XSI_USB_VIP_PORT_MASK = BIT(25),
XSI_ETH_VIP_PORT_MASK = BIT(24),
};
enum {
DEV_STATE_INITIALIZED,
};
enum {
CDM_CRSN_QSEL_Q1 = 1,
CDM_CRSN_QSEL_Q5 = 5,
CDM_CRSN_QSEL_Q6 = 6,
CDM_CRSN_QSEL_Q15 = 15,
};
enum {
CRSN_08 = 0x8,
CRSN_21 = 0x15, /* KA */
CRSN_22 = 0x16, /* hit bind and force route to CPU */
CRSN_24 = 0x18,
CRSN_25 = 0x19,
};
enum {
FE_PSE_PORT_CDM1,
FE_PSE_PORT_GDM1,
FE_PSE_PORT_GDM2,
FE_PSE_PORT_GDM3,
FE_PSE_PORT_PPE1,
FE_PSE_PORT_CDM2,
FE_PSE_PORT_CDM3,
FE_PSE_PORT_CDM4,
FE_PSE_PORT_PPE2,
FE_PSE_PORT_GDM4,
FE_PSE_PORT_CDM5,
FE_PSE_PORT_DROP = 0xf,
};
struct airoha_queue_entry {
union {
void *buf;
struct sk_buff *skb;
};
dma_addr_t dma_addr;
u16 dma_len;
};
struct airoha_queue {
struct airoha_eth *eth;
/* protect concurrent queue accesses */
spinlock_t lock;
struct airoha_queue_entry *entry;
struct airoha_qdma_desc *desc;
u16 head;
u16 tail;
int queued;
int ndesc;
int free_thr;
int buf_size;
struct napi_struct napi;
struct page_pool *page_pool;
};
struct airoha_tx_irq_queue {
struct airoha_eth *eth;
struct napi_struct napi;
u32 *q;
int size;
int queued;
u16 head;
};
struct airoha_hw_stats {
/* protect concurrent hw_stats accesses */
spinlock_t lock;
struct u64_stats_sync syncp;
/* get_stats64 */
u64 rx_ok_pkts;
u64 tx_ok_pkts;
u64 rx_ok_bytes;
u64 tx_ok_bytes;
u64 rx_multicast;
u64 rx_errors;
u64 rx_drops;
u64 tx_drops;
u64 rx_crc_error;
u64 rx_over_errors;
/* ethtool stats */
u64 tx_broadcast;
u64 tx_multicast;
u64 tx_len[7];
u64 rx_broadcast;
u64 rx_fragment;
u64 rx_jabber;
u64 rx_len[7];
};
struct airoha_gdm_port {
struct net_device *dev;
struct airoha_eth *eth;
int id;
struct airoha_hw_stats stats;
};
struct airoha_eth {
struct device *dev;
unsigned long state;
void __iomem *qdma_regs;
void __iomem *fe_regs;
/* protect concurrent irqmask accesses */
spinlock_t irq_lock;
u32 irqmask[QDMA_INT_REG_MAX];
int irq;
struct reset_control_bulk_data rsts[AIROHA_MAX_NUM_RSTS];
struct reset_control_bulk_data xsi_rsts[AIROHA_MAX_NUM_XSI_RSTS];
struct airoha_gdm_port *ports[AIROHA_MAX_NUM_GDM_PORTS];
struct net_device *napi_dev;
struct airoha_queue q_tx[AIROHA_NUM_TX_RING];
struct airoha_queue q_rx[AIROHA_NUM_RX_RING];
struct airoha_tx_irq_queue q_tx_irq[AIROHA_NUM_TX_IRQ];
/* descriptor and packet buffers for qdma hw forward */
struct {
void *desc;
void *q;
} hfwd;
};
static u32 airoha_rr(void __iomem *base, u32 offset)
{
return readl(base + offset);
}
static void airoha_wr(void __iomem *base, u32 offset, u32 val)
{
writel(val, base + offset);
}
static u32 airoha_rmw(void __iomem *base, u32 offset, u32 mask, u32 val)
{
val |= (airoha_rr(base, offset) & ~mask);
airoha_wr(base, offset, val);
return val;
}
#define airoha_fe_rr(eth, offset) \
airoha_rr((eth)->fe_regs, (offset))
#define airoha_fe_wr(eth, offset, val) \
airoha_wr((eth)->fe_regs, (offset), (val))
#define airoha_fe_rmw(eth, offset, mask, val) \
airoha_rmw((eth)->fe_regs, (offset), (mask), (val))
#define airoha_fe_set(eth, offset, val) \
airoha_rmw((eth)->fe_regs, (offset), 0, (val))
#define airoha_fe_clear(eth, offset, val) \
airoha_rmw((eth)->fe_regs, (offset), (val), 0)
#define airoha_qdma_rr(eth, offset) \
airoha_rr((eth)->qdma_regs, (offset))
#define airoha_qdma_wr(eth, offset, val) \
airoha_wr((eth)->qdma_regs, (offset), (val))
#define airoha_qdma_rmw(eth, offset, mask, val) \
airoha_rmw((eth)->qdma_regs, (offset), (mask), (val))
#define airoha_qdma_set(eth, offset, val) \
airoha_rmw((eth)->qdma_regs, (offset), 0, (val))
#define airoha_qdma_clear(eth, offset, val) \
airoha_rmw((eth)->qdma_regs, (offset), (val), 0)
static void airoha_qdma_set_irqmask(struct airoha_eth *eth, int index,
u32 clear, u32 set)
{
unsigned long flags;
if (WARN_ON_ONCE(index >= ARRAY_SIZE(eth->irqmask)))
return;
spin_lock_irqsave(&eth->irq_lock, flags);
eth->irqmask[index] &= ~clear;
eth->irqmask[index] |= set;
airoha_qdma_wr(eth, REG_INT_ENABLE(index), eth->irqmask[index]);
/* Read irq_enable register in order to guarantee the update above
* completes in the spinlock critical section.
*/
airoha_qdma_rr(eth, REG_INT_ENABLE(index));
spin_unlock_irqrestore(&eth->irq_lock, flags);
}
static void airoha_qdma_irq_enable(struct airoha_eth *eth, int index,
u32 mask)
{
airoha_qdma_set_irqmask(eth, index, 0, mask);
}
static void airoha_qdma_irq_disable(struct airoha_eth *eth, int index,
u32 mask)
{
airoha_qdma_set_irqmask(eth, index, mask, 0);
}
static void airoha_set_macaddr(struct airoha_eth *eth, const u8 *addr)
{
u32 val;
val = (addr[0] << 16) | (addr[1] << 8) | addr[2];
airoha_fe_wr(eth, REG_FE_LAN_MAC_H, val);
val = (addr[3] << 16) | (addr[4] << 8) | addr[5];
airoha_fe_wr(eth, REG_FE_LAN_MAC_LMIN, val);
airoha_fe_wr(eth, REG_FE_LAN_MAC_LMAX, val);
}
static void airoha_set_gdm_port_fwd_cfg(struct airoha_eth *eth, u32 addr,
u32 val)
{
airoha_fe_rmw(eth, addr, GDM_OCFQ_MASK,
FIELD_PREP(GDM_OCFQ_MASK, val));
airoha_fe_rmw(eth, addr, GDM_MCFQ_MASK,
FIELD_PREP(GDM_MCFQ_MASK, val));
airoha_fe_rmw(eth, addr, GDM_BCFQ_MASK,
FIELD_PREP(GDM_BCFQ_MASK, val));
airoha_fe_rmw(eth, addr, GDM_UCFQ_MASK,
FIELD_PREP(GDM_UCFQ_MASK, val));
}
static int airoha_set_gdm_port(struct airoha_eth *eth, int port, bool enable)
{
u32 val = enable ? FE_PSE_PORT_PPE1 : FE_PSE_PORT_DROP;
u32 vip_port, cfg_addr;
switch (port) {
case XSI_PCIE0_PORT:
vip_port = XSI_PCIE0_VIP_PORT_MASK;
cfg_addr = REG_GDM_FWD_CFG(3);
break;
case XSI_PCIE1_PORT:
vip_port = XSI_PCIE1_VIP_PORT_MASK;
cfg_addr = REG_GDM_FWD_CFG(3);
break;
case XSI_USB_PORT:
vip_port = XSI_USB_VIP_PORT_MASK;
cfg_addr = REG_GDM_FWD_CFG(4);
break;
case XSI_ETH_PORT:
vip_port = XSI_ETH_VIP_PORT_MASK;
cfg_addr = REG_GDM_FWD_CFG(4);
break;
default:
return -EINVAL;
}
if (enable) {
airoha_fe_set(eth, REG_FE_VIP_PORT_EN, vip_port);
airoha_fe_set(eth, REG_FE_IFC_PORT_EN, vip_port);
} else {
airoha_fe_clear(eth, REG_FE_VIP_PORT_EN, vip_port);
airoha_fe_clear(eth, REG_FE_IFC_PORT_EN, vip_port);
}
airoha_set_gdm_port_fwd_cfg(eth, cfg_addr, val);
return 0;
}
static int airoha_set_gdm_ports(struct airoha_eth *eth, bool enable)
{
const int port_list[] = {
XSI_PCIE0_PORT,
XSI_PCIE1_PORT,
XSI_USB_PORT,
XSI_ETH_PORT
};
int i, err;
for (i = 0; i < ARRAY_SIZE(port_list); i++) {
err = airoha_set_gdm_port(eth, port_list[i], enable);
if (err)
goto error;
}
return 0;
error:
for (i--; i >= 0; i++)
airoha_set_gdm_port(eth, port_list[i], false);
return err;
}
static void airoha_fe_maccr_init(struct airoha_eth *eth)
{
int p;
for (p = 1; p <= ARRAY_SIZE(eth->ports); p++) {
airoha_fe_set(eth, REG_GDM_FWD_CFG(p),
GDM_TCP_CKSUM | GDM_UDP_CKSUM | GDM_IP4_CKSUM |
GDM_DROP_CRC_ERR);
airoha_set_gdm_port_fwd_cfg(eth, REG_GDM_FWD_CFG(p),
FE_PSE_PORT_CDM1);
airoha_fe_rmw(eth, REG_GDM_LEN_CFG(p),
GDM_SHORT_LEN_MASK | GDM_LONG_LEN_MASK,
FIELD_PREP(GDM_SHORT_LEN_MASK, 60) |
FIELD_PREP(GDM_LONG_LEN_MASK, 4004));
}
airoha_fe_rmw(eth, REG_CDM1_VLAN_CTRL, CDM1_VLAN_MASK,
FIELD_PREP(CDM1_VLAN_MASK, 0x8100));
airoha_fe_set(eth, REG_FE_CPORT_CFG, FE_CPORT_PAD);
}
static void airoha_fe_vip_setup(struct airoha_eth *eth)
{
airoha_fe_wr(eth, REG_FE_VIP_PATN(3), ETH_P_PPP_DISC);
airoha_fe_wr(eth, REG_FE_VIP_EN(3), PATN_FCPU_EN_MASK | PATN_EN_MASK);
airoha_fe_wr(eth, REG_FE_VIP_PATN(4), PPP_LCP);
airoha_fe_wr(eth, REG_FE_VIP_EN(4),
PATN_FCPU_EN_MASK | FIELD_PREP(PATN_TYPE_MASK, 1) |
PATN_EN_MASK);
airoha_fe_wr(eth, REG_FE_VIP_PATN(6), PPP_IPCP);
airoha_fe_wr(eth, REG_FE_VIP_EN(6),
PATN_FCPU_EN_MASK | FIELD_PREP(PATN_TYPE_MASK, 1) |
PATN_EN_MASK);
airoha_fe_wr(eth, REG_FE_VIP_PATN(7), PPP_CHAP);
airoha_fe_wr(eth, REG_FE_VIP_EN(7),
PATN_FCPU_EN_MASK | FIELD_PREP(PATN_TYPE_MASK, 1) |
PATN_EN_MASK);
/* BOOTP (0x43) */
airoha_fe_wr(eth, REG_FE_VIP_PATN(8), 0x43);
airoha_fe_wr(eth, REG_FE_VIP_EN(8),
PATN_FCPU_EN_MASK | PATN_SP_EN_MASK |
FIELD_PREP(PATN_TYPE_MASK, 4) | PATN_EN_MASK);
/* BOOTP (0x44) */
airoha_fe_wr(eth, REG_FE_VIP_PATN(9), 0x44);
airoha_fe_wr(eth, REG_FE_VIP_EN(9),
PATN_FCPU_EN_MASK | PATN_SP_EN_MASK |
FIELD_PREP(PATN_TYPE_MASK, 4) | PATN_EN_MASK);
/* ISAKMP */
airoha_fe_wr(eth, REG_FE_VIP_PATN(10), 0x1f401f4);
airoha_fe_wr(eth, REG_FE_VIP_EN(10),
PATN_FCPU_EN_MASK | PATN_DP_EN_MASK | PATN_SP_EN_MASK |
FIELD_PREP(PATN_TYPE_MASK, 4) | PATN_EN_MASK);
airoha_fe_wr(eth, REG_FE_VIP_PATN(11), PPP_IPV6CP);
airoha_fe_wr(eth, REG_FE_VIP_EN(11),
PATN_FCPU_EN_MASK | FIELD_PREP(PATN_TYPE_MASK, 1) |
PATN_EN_MASK);
/* DHCPv6 */
airoha_fe_wr(eth, REG_FE_VIP_PATN(12), 0x2220223);
airoha_fe_wr(eth, REG_FE_VIP_EN(12),
PATN_FCPU_EN_MASK | PATN_DP_EN_MASK | PATN_SP_EN_MASK |
FIELD_PREP(PATN_TYPE_MASK, 4) | PATN_EN_MASK);
airoha_fe_wr(eth, REG_FE_VIP_PATN(19), PPP_PAP);
airoha_fe_wr(eth, REG_FE_VIP_EN(19),
PATN_FCPU_EN_MASK | FIELD_PREP(PATN_TYPE_MASK, 1) |
PATN_EN_MASK);
/* ETH->ETH_P_1905 (0x893a) */
airoha_fe_wr(eth, REG_FE_VIP_PATN(20), 0x893a);
airoha_fe_wr(eth, REG_FE_VIP_EN(20),
PATN_FCPU_EN_MASK | PATN_EN_MASK);
airoha_fe_wr(eth, REG_FE_VIP_PATN(21), ETH_P_LLDP);
airoha_fe_wr(eth, REG_FE_VIP_EN(21),
PATN_FCPU_EN_MASK | PATN_EN_MASK);
}
static u32 airoha_fe_get_pse_queue_rsv_pages(struct airoha_eth *eth,
u32 port, u32 queue)
{
u32 val;
airoha_fe_rmw(eth, REG_FE_PSE_QUEUE_CFG_WR,
PSE_CFG_PORT_ID_MASK | PSE_CFG_QUEUE_ID_MASK,
FIELD_PREP(PSE_CFG_PORT_ID_MASK, port) |
FIELD_PREP(PSE_CFG_QUEUE_ID_MASK, queue));
val = airoha_fe_rr(eth, REG_FE_PSE_QUEUE_CFG_VAL);
return FIELD_GET(PSE_CFG_OQ_RSV_MASK, val);
}
static void airoha_fe_set_pse_queue_rsv_pages(struct airoha_eth *eth,
u32 port, u32 queue, u32 val)
{
airoha_fe_rmw(eth, REG_FE_PSE_QUEUE_CFG_VAL, PSE_CFG_OQ_RSV_MASK,
FIELD_PREP(PSE_CFG_OQ_RSV_MASK, val));
airoha_fe_rmw(eth, REG_FE_PSE_QUEUE_CFG_WR,
PSE_CFG_PORT_ID_MASK | PSE_CFG_QUEUE_ID_MASK |
PSE_CFG_WR_EN_MASK | PSE_CFG_OQRSV_SEL_MASK,
FIELD_PREP(PSE_CFG_PORT_ID_MASK, port) |
FIELD_PREP(PSE_CFG_QUEUE_ID_MASK, queue) |
PSE_CFG_WR_EN_MASK | PSE_CFG_OQRSV_SEL_MASK);
}
static int airoha_fe_set_pse_oq_rsv(struct airoha_eth *eth,
u32 port, u32 queue, u32 val)
{
u32 orig_val, tmp, all_rsv, fq_limit;
airoha_fe_set_pse_queue_rsv_pages(eth, port, queue, val);
/* modify all rsv */
orig_val = airoha_fe_get_pse_queue_rsv_pages(eth, port, queue);
tmp = airoha_fe_rr(eth, REG_FE_PSE_BUF_SET);
all_rsv = FIELD_GET(PSE_ALLRSV_MASK, tmp);
all_rsv += (val - orig_val);
airoha_fe_rmw(eth, REG_FE_PSE_BUF_SET, PSE_ALLRSV_MASK,
FIELD_PREP(PSE_ALLRSV_MASK, all_rsv));
/* modify hthd */
tmp = airoha_fe_rr(eth, PSE_FQ_CFG);
fq_limit = FIELD_GET(PSE_FQ_LIMIT_MASK, tmp);
tmp = fq_limit - all_rsv - 0x20;
airoha_fe_rmw(eth, REG_PSE_SHARE_USED_THD,
PSE_SHARE_USED_HTHD_MASK,
FIELD_PREP(PSE_SHARE_USED_HTHD_MASK, tmp));
tmp = fq_limit - all_rsv - 0x100;
airoha_fe_rmw(eth, REG_PSE_SHARE_USED_THD,
PSE_SHARE_USED_MTHD_MASK,
FIELD_PREP(PSE_SHARE_USED_MTHD_MASK, tmp));
tmp = (3 * tmp) >> 2;
airoha_fe_rmw(eth, REG_FE_PSE_BUF_SET,
PSE_SHARE_USED_LTHD_MASK,
FIELD_PREP(PSE_SHARE_USED_LTHD_MASK, tmp));
return 0;
}
static void airoha_fe_pse_ports_init(struct airoha_eth *eth)
{
const u32 pse_port_num_queues[] = {
[FE_PSE_PORT_CDM1] = 6,
[FE_PSE_PORT_GDM1] = 6,
[FE_PSE_PORT_GDM2] = 32,
[FE_PSE_PORT_GDM3] = 6,
[FE_PSE_PORT_PPE1] = 4,
[FE_PSE_PORT_CDM2] = 6,
[FE_PSE_PORT_CDM3] = 8,
[FE_PSE_PORT_CDM4] = 10,
[FE_PSE_PORT_PPE2] = 4,
[FE_PSE_PORT_GDM4] = 2,
[FE_PSE_PORT_CDM5] = 2,
};
int q;
/* hw misses PPE2 oq rsv */
airoha_fe_set(eth, REG_FE_PSE_BUF_SET,
PSE_RSV_PAGES * pse_port_num_queues[FE_PSE_PORT_PPE2]);
/* CMD1 */
for (q = 0; q < pse_port_num_queues[FE_PSE_PORT_CDM1]; q++)
airoha_fe_set_pse_oq_rsv(eth, FE_PSE_PORT_CDM1, q,
PSE_QUEUE_RSV_PAGES);
/* GMD1 */
for (q = 0; q < pse_port_num_queues[FE_PSE_PORT_GDM1]; q++)
airoha_fe_set_pse_oq_rsv(eth, FE_PSE_PORT_GDM1, q,
PSE_QUEUE_RSV_PAGES);
/* GMD2 */
for (q = 6; q < pse_port_num_queues[FE_PSE_PORT_GDM2]; q++)
airoha_fe_set_pse_oq_rsv(eth, FE_PSE_PORT_GDM2, q, 0);
/* GMD3 */
for (q = 0; q < pse_port_num_queues[FE_PSE_PORT_GDM3]; q++)
airoha_fe_set_pse_oq_rsv(eth, FE_PSE_PORT_GDM3, q,
PSE_QUEUE_RSV_PAGES);
/* PPE1 */
for (q = 0; q < pse_port_num_queues[FE_PSE_PORT_PPE1]; q++) {
if (q < pse_port_num_queues[FE_PSE_PORT_PPE1])
airoha_fe_set_pse_oq_rsv(eth, FE_PSE_PORT_PPE1, q,
PSE_QUEUE_RSV_PAGES);
else
airoha_fe_set_pse_oq_rsv(eth, FE_PSE_PORT_PPE1, q, 0);
}
/* CDM2 */
for (q = 0; q < pse_port_num_queues[FE_PSE_PORT_CDM2]; q++)
airoha_fe_set_pse_oq_rsv(eth, FE_PSE_PORT_CDM2, q,
PSE_QUEUE_RSV_PAGES);
/* CDM3 */
for (q = 0; q < pse_port_num_queues[FE_PSE_PORT_CDM3] - 1; q++)
airoha_fe_set_pse_oq_rsv(eth, FE_PSE_PORT_CDM3, q, 0);
/* CDM4 */
for (q = 4; q < pse_port_num_queues[FE_PSE_PORT_CDM4]; q++)
airoha_fe_set_pse_oq_rsv(eth, FE_PSE_PORT_CDM4, q,
PSE_QUEUE_RSV_PAGES);
/* PPE2 */
for (q = 0; q < pse_port_num_queues[FE_PSE_PORT_PPE2]; q++) {
if (q < pse_port_num_queues[FE_PSE_PORT_PPE2] / 2)
airoha_fe_set_pse_oq_rsv(eth, FE_PSE_PORT_PPE2, q,
PSE_QUEUE_RSV_PAGES);
else
airoha_fe_set_pse_oq_rsv(eth, FE_PSE_PORT_PPE2, q, 0);
}
/* GMD4 */
for (q = 0; q < pse_port_num_queues[FE_PSE_PORT_GDM4]; q++)
airoha_fe_set_pse_oq_rsv(eth, FE_PSE_PORT_GDM4, q,
PSE_QUEUE_RSV_PAGES);
/* CDM5 */
for (q = 0; q < pse_port_num_queues[FE_PSE_PORT_CDM5]; q++)
airoha_fe_set_pse_oq_rsv(eth, FE_PSE_PORT_CDM5, q,
PSE_QUEUE_RSV_PAGES);
}
static int airoha_fe_mc_vlan_clear(struct airoha_eth *eth)
{
int i;
for (i = 0; i < AIROHA_FE_MC_MAX_VLAN_TABLE; i++) {
int err, j;
u32 val;
airoha_fe_wr(eth, REG_MC_VLAN_DATA, 0x0);
val = FIELD_PREP(MC_VLAN_CFG_TABLE_ID_MASK, i) |
MC_VLAN_CFG_TABLE_SEL_MASK | MC_VLAN_CFG_RW_MASK;
airoha_fe_wr(eth, REG_MC_VLAN_CFG, val);
err = read_poll_timeout(airoha_fe_rr, val,
val & MC_VLAN_CFG_CMD_DONE_MASK,
USEC_PER_MSEC, 5 * USEC_PER_MSEC,
false, eth, REG_MC_VLAN_CFG);
if (err)
return err;
for (j = 0; j < AIROHA_FE_MC_MAX_VLAN_PORT; j++) {
airoha_fe_wr(eth, REG_MC_VLAN_DATA, 0x0);
val = FIELD_PREP(MC_VLAN_CFG_TABLE_ID_MASK, i) |
FIELD_PREP(MC_VLAN_CFG_PORT_ID_MASK, j) |
MC_VLAN_CFG_RW_MASK;
airoha_fe_wr(eth, REG_MC_VLAN_CFG, val);
err = read_poll_timeout(airoha_fe_rr, val,
val & MC_VLAN_CFG_CMD_DONE_MASK,
USEC_PER_MSEC,
5 * USEC_PER_MSEC, false, eth,
REG_MC_VLAN_CFG);
if (err)
return err;
}
}
return 0;
}
static void airoha_fe_crsn_qsel_init(struct airoha_eth *eth)
{
/* CDM1_CRSN_QSEL */
airoha_fe_rmw(eth, REG_CDM1_CRSN_QSEL(CRSN_22 >> 2),
CDM1_CRSN_QSEL_REASON_MASK(CRSN_22),
FIELD_PREP(CDM1_CRSN_QSEL_REASON_MASK(CRSN_22),
CDM_CRSN_QSEL_Q1));
airoha_fe_rmw(eth, REG_CDM1_CRSN_QSEL(CRSN_08 >> 2),
CDM1_CRSN_QSEL_REASON_MASK(CRSN_08),
FIELD_PREP(CDM1_CRSN_QSEL_REASON_MASK(CRSN_08),
CDM_CRSN_QSEL_Q1));
airoha_fe_rmw(eth, REG_CDM1_CRSN_QSEL(CRSN_21 >> 2),
CDM1_CRSN_QSEL_REASON_MASK(CRSN_21),
FIELD_PREP(CDM1_CRSN_QSEL_REASON_MASK(CRSN_21),
CDM_CRSN_QSEL_Q1));
airoha_fe_rmw(eth, REG_CDM1_CRSN_QSEL(CRSN_24 >> 2),
CDM1_CRSN_QSEL_REASON_MASK(CRSN_24),
FIELD_PREP(CDM1_CRSN_QSEL_REASON_MASK(CRSN_24),
CDM_CRSN_QSEL_Q6));
airoha_fe_rmw(eth, REG_CDM1_CRSN_QSEL(CRSN_25 >> 2),
CDM1_CRSN_QSEL_REASON_MASK(CRSN_25),
FIELD_PREP(CDM1_CRSN_QSEL_REASON_MASK(CRSN_25),
CDM_CRSN_QSEL_Q1));
/* CDM2_CRSN_QSEL */
airoha_fe_rmw(eth, REG_CDM2_CRSN_QSEL(CRSN_08 >> 2),
CDM2_CRSN_QSEL_REASON_MASK(CRSN_08),
FIELD_PREP(CDM2_CRSN_QSEL_REASON_MASK(CRSN_08),
CDM_CRSN_QSEL_Q1));
airoha_fe_rmw(eth, REG_CDM2_CRSN_QSEL(CRSN_21 >> 2),
CDM2_CRSN_QSEL_REASON_MASK(CRSN_21),
FIELD_PREP(CDM2_CRSN_QSEL_REASON_MASK(CRSN_21),
CDM_CRSN_QSEL_Q1));
airoha_fe_rmw(eth, REG_CDM2_CRSN_QSEL(CRSN_22 >> 2),
CDM2_CRSN_QSEL_REASON_MASK(CRSN_22),
FIELD_PREP(CDM2_CRSN_QSEL_REASON_MASK(CRSN_22),
CDM_CRSN_QSEL_Q1));
airoha_fe_rmw(eth, REG_CDM2_CRSN_QSEL(CRSN_24 >> 2),
CDM2_CRSN_QSEL_REASON_MASK(CRSN_24),
FIELD_PREP(CDM2_CRSN_QSEL_REASON_MASK(CRSN_24),
CDM_CRSN_QSEL_Q6));
airoha_fe_rmw(eth, REG_CDM2_CRSN_QSEL(CRSN_25 >> 2),
CDM2_CRSN_QSEL_REASON_MASK(CRSN_25),
FIELD_PREP(CDM2_CRSN_QSEL_REASON_MASK(CRSN_25),
CDM_CRSN_QSEL_Q1));
}
static int airoha_fe_init(struct airoha_eth *eth)
{
airoha_fe_maccr_init(eth);
/* PSE IQ reserve */
airoha_fe_rmw(eth, REG_PSE_IQ_REV1, PSE_IQ_RES1_P2_MASK,
FIELD_PREP(PSE_IQ_RES1_P2_MASK, 0x10));
airoha_fe_rmw(eth, REG_PSE_IQ_REV2,
PSE_IQ_RES2_P5_MASK | PSE_IQ_RES2_P4_MASK,
FIELD_PREP(PSE_IQ_RES2_P5_MASK, 0x40) |
FIELD_PREP(PSE_IQ_RES2_P4_MASK, 0x34));
/* enable FE copy engine for MC/KA/DPI */
airoha_fe_wr(eth, REG_FE_PCE_CFG,
PCE_DPI_EN_MASK | PCE_KA_EN_MASK | PCE_MC_EN_MASK);
/* set vip queue selection to ring 1 */
airoha_fe_rmw(eth, REG_CDM1_FWD_CFG, CDM1_VIP_QSEL_MASK,
FIELD_PREP(CDM1_VIP_QSEL_MASK, 0x4));
airoha_fe_rmw(eth, REG_CDM2_FWD_CFG, CDM2_VIP_QSEL_MASK,
FIELD_PREP(CDM2_VIP_QSEL_MASK, 0x4));
/* set GDM4 source interface offset to 8 */
airoha_fe_rmw(eth, REG_GDM4_SRC_PORT_SET,
GDM4_SPORT_OFF2_MASK |
GDM4_SPORT_OFF1_MASK |
GDM4_SPORT_OFF0_MASK,
FIELD_PREP(GDM4_SPORT_OFF2_MASK, 8) |
FIELD_PREP(GDM4_SPORT_OFF1_MASK, 8) |
FIELD_PREP(GDM4_SPORT_OFF0_MASK, 8));
/* set PSE Page as 128B */
airoha_fe_rmw(eth, REG_FE_DMA_GLO_CFG,
FE_DMA_GLO_L2_SPACE_MASK | FE_DMA_GLO_PG_SZ_MASK,
FIELD_PREP(FE_DMA_GLO_L2_SPACE_MASK, 2) |
FE_DMA_GLO_PG_SZ_MASK);
airoha_fe_wr(eth, REG_FE_RST_GLO_CFG,
FE_RST_CORE_MASK | FE_RST_GDM3_MBI_ARB_MASK |
FE_RST_GDM4_MBI_ARB_MASK);
usleep_range(1000, 2000);
/* connect RxRing1 and RxRing15 to PSE Port0 OQ-1
* connect other rings to PSE Port0 OQ-0
*/
airoha_fe_wr(eth, REG_FE_CDM1_OQ_MAP0, BIT(4));
airoha_fe_wr(eth, REG_FE_CDM1_OQ_MAP1, BIT(28));
airoha_fe_wr(eth, REG_FE_CDM1_OQ_MAP2, BIT(4));
airoha_fe_wr(eth, REG_FE_CDM1_OQ_MAP3, BIT(28));
airoha_fe_vip_setup(eth);
airoha_fe_pse_ports_init(eth);
airoha_fe_set(eth, REG_GDM_MISC_CFG,
GDM2_RDM_ACK_WAIT_PREF_MASK |
GDM2_CHN_VLD_MODE_MASK);
airoha_fe_rmw(eth, REG_CDM2_FWD_CFG, CDM2_OAM_QSEL_MASK, 15);
/* init fragment and assemble Force Port */
/* NPU Core-3, NPU Bridge Channel-3 */
airoha_fe_rmw(eth, REG_IP_FRAG_FP,
IP_FRAGMENT_PORT_MASK | IP_FRAGMENT_NBQ_MASK,
FIELD_PREP(IP_FRAGMENT_PORT_MASK, 6) |
FIELD_PREP(IP_FRAGMENT_NBQ_MASK, 3));
/* QDMA LAN, RX Ring-22 */
airoha_fe_rmw(eth, REG_IP_FRAG_FP,
IP_ASSEMBLE_PORT_MASK | IP_ASSEMBLE_NBQ_MASK,
FIELD_PREP(IP_ASSEMBLE_PORT_MASK, 0) |
FIELD_PREP(IP_ASSEMBLE_NBQ_MASK, 22));
airoha_fe_set(eth, REG_GDM3_FWD_CFG, GDM3_PAD_EN_MASK);
airoha_fe_set(eth, REG_GDM4_FWD_CFG, GDM4_PAD_EN_MASK);
airoha_fe_crsn_qsel_init(eth);
airoha_fe_clear(eth, REG_FE_CPORT_CFG, FE_CPORT_QUEUE_XFC_MASK);
airoha_fe_set(eth, REG_FE_CPORT_CFG, FE_CPORT_PORT_XFC_MASK);
/* default aging mode for mbi unlock issue */
airoha_fe_rmw(eth, REG_GDM2_CHN_RLS,
MBI_RX_AGE_SEL_MASK | MBI_TX_AGE_SEL_MASK,
FIELD_PREP(MBI_RX_AGE_SEL_MASK, 3) |
FIELD_PREP(MBI_TX_AGE_SEL_MASK, 3));
/* disable IFC by default */
airoha_fe_clear(eth, REG_FE_CSR_IFC_CFG, FE_IFC_EN_MASK);
/* enable 1:N vlan action, init vlan table */
airoha_fe_set(eth, REG_MC_VLAN_EN, MC_VLAN_EN_MASK);
return airoha_fe_mc_vlan_clear(eth);
}
static int airoha_qdma_fill_rx_queue(struct airoha_queue *q)
{
enum dma_data_direction dir = page_pool_get_dma_dir(q->page_pool);
struct airoha_eth *eth = q->eth;
int qid = q - &eth->q_rx[0];
int nframes = 0;
while (q->queued < q->ndesc - 1) {
struct airoha_queue_entry *e = &q->entry[q->head];
struct airoha_qdma_desc *desc = &q->desc[q->head];
struct page *page;
int offset;
u32 val;
page = page_pool_dev_alloc_frag(q->page_pool, &offset,
q->buf_size);
if (!page)
break;
q->head = (q->head + 1) % q->ndesc;
q->queued++;
nframes++;
e->buf = page_address(page) + offset;
e->dma_addr = page_pool_get_dma_addr(page) + offset;
e->dma_len = SKB_WITH_OVERHEAD(q->buf_size);
dma_sync_single_for_device(eth->dev, e->dma_addr, e->dma_len,
dir);
val = FIELD_PREP(QDMA_DESC_LEN_MASK, e->dma_len);
WRITE_ONCE(desc->ctrl, cpu_to_le32(val));
WRITE_ONCE(desc->addr, cpu_to_le32(e->dma_addr));
val = FIELD_PREP(QDMA_DESC_NEXT_ID_MASK, q->head);
WRITE_ONCE(desc->data, cpu_to_le32(val));
WRITE_ONCE(desc->msg0, 0);
WRITE_ONCE(desc->msg1, 0);
WRITE_ONCE(desc->msg2, 0);
WRITE_ONCE(desc->msg3, 0);
airoha_qdma_rmw(eth, REG_RX_CPU_IDX(qid), RX_RING_CPU_IDX_MASK,
FIELD_PREP(RX_RING_CPU_IDX_MASK, q->head));
}
return nframes;
}
static int airoha_qdma_get_gdm_port(struct airoha_eth *eth,
struct airoha_qdma_desc *desc)
{
u32 port, sport, msg1 = le32_to_cpu(desc->msg1);
sport = FIELD_GET(QDMA_ETH_RXMSG_SPORT_MASK, msg1);
switch (sport) {
case 0x10 ... 0x13:
port = 0;
break;
case 0x2 ... 0x4:
port = sport - 1;
break;
default:
return -EINVAL;
}
return port >= ARRAY_SIZE(eth->ports) ? -EINVAL : port;
}
static int airoha_qdma_rx_process(struct airoha_queue *q, int budget)
{
enum dma_data_direction dir = page_pool_get_dma_dir(q->page_pool);
struct airoha_eth *eth = q->eth;
int qid = q - &eth->q_rx[0];
int done = 0;
while (done < budget) {
struct airoha_queue_entry *e = &q->entry[q->tail];
struct airoha_qdma_desc *desc = &q->desc[q->tail];
dma_addr_t dma_addr = le32_to_cpu(desc->addr);
u32 desc_ctrl = le32_to_cpu(desc->ctrl);
struct sk_buff *skb;
int len, p;
if (!(desc_ctrl & QDMA_DESC_DONE_MASK))
break;
if (!dma_addr)
break;
len = FIELD_GET(QDMA_DESC_LEN_MASK, desc_ctrl);
if (!len)
break;
q->tail = (q->tail + 1) % q->ndesc;
q->queued--;
dma_sync_single_for_cpu(eth->dev, dma_addr,
SKB_WITH_OVERHEAD(q->buf_size), dir);
p = airoha_qdma_get_gdm_port(eth, desc);
if (p < 0 || !eth->ports[p]) {
page_pool_put_full_page(q->page_pool,
virt_to_head_page(e->buf),
true);
continue;
}
skb = napi_build_skb(e->buf, q->buf_size);
if (!skb) {
page_pool_put_full_page(q->page_pool,
virt_to_head_page(e->buf),
true);
break;
}
skb_reserve(skb, 2);
__skb_put(skb, len);
skb_mark_for_recycle(skb);
skb->dev = eth->ports[p]->dev;
skb->protocol = eth_type_trans(skb, skb->dev);
skb->ip_summed = CHECKSUM_UNNECESSARY;
skb_record_rx_queue(skb, qid);
napi_gro_receive(&q->napi, skb);
done++;
}
airoha_qdma_fill_rx_queue(q);
return done;
}
static int airoha_qdma_rx_napi_poll(struct napi_struct *napi, int budget)
{
struct airoha_queue *q = container_of(napi, struct airoha_queue, napi);
struct airoha_eth *eth = q->eth;
int cur, done = 0;
do {
cur = airoha_qdma_rx_process(q, budget - done);
done += cur;
} while (cur && done < budget);
if (done < budget && napi_complete(napi))
airoha_qdma_irq_enable(eth, QDMA_INT_REG_IDX1,
RX_DONE_INT_MASK);
return done;
}
static int airoha_qdma_init_rx_queue(struct airoha_eth *eth,
struct airoha_queue *q, int ndesc)
{
const struct page_pool_params pp_params = {
.order = 0,
.pool_size = 256,
.flags = PP_FLAG_DMA_MAP | PP_FLAG_DMA_SYNC_DEV,
.dma_dir = DMA_FROM_DEVICE,
.max_len = PAGE_SIZE,
.nid = NUMA_NO_NODE,
.dev = eth->dev,
.napi = &q->napi,
};
int qid = q - &eth->q_rx[0], thr;
dma_addr_t dma_addr;
q->buf_size = PAGE_SIZE / 2;
q->ndesc = ndesc;
q->eth = eth;
q->entry = devm_kzalloc(eth->dev, q->ndesc * sizeof(*q->entry),
GFP_KERNEL);
if (!q->entry)
return -ENOMEM;
q->page_pool = page_pool_create(&pp_params);
if (IS_ERR(q->page_pool)) {
int err = PTR_ERR(q->page_pool);
q->page_pool = NULL;
return err;
}
q->desc = dmam_alloc_coherent(eth->dev, q->ndesc * sizeof(*q->desc),
&dma_addr, GFP_KERNEL);
if (!q->desc)
return -ENOMEM;
netif_napi_add(eth->napi_dev, &q->napi, airoha_qdma_rx_napi_poll);
airoha_qdma_wr(eth, REG_RX_RING_BASE(qid), dma_addr);
airoha_qdma_rmw(eth, REG_RX_RING_SIZE(qid), RX_RING_SIZE_MASK,
FIELD_PREP(RX_RING_SIZE_MASK, ndesc));
thr = clamp(ndesc >> 3, 1, 32);
airoha_qdma_rmw(eth, REG_RX_RING_SIZE(qid), RX_RING_THR_MASK,
FIELD_PREP(RX_RING_THR_MASK, thr));
airoha_qdma_rmw(eth, REG_RX_DMA_IDX(qid), RX_RING_DMA_IDX_MASK,
FIELD_PREP(RX_RING_DMA_IDX_MASK, q->head));
airoha_qdma_fill_rx_queue(q);
return 0;
}
static void airoha_qdma_cleanup_rx_queue(struct airoha_queue *q)
{
enum dma_data_direction dir = page_pool_get_dma_dir(q->page_pool);
struct airoha_eth *eth = q->eth;
while (q->queued) {
struct airoha_queue_entry *e = &q->entry[q->tail];
struct page *page = virt_to_head_page(e->buf);
dma_sync_single_for_cpu(eth->dev, e->dma_addr, e->dma_len,
dir);
page_pool_put_full_page(q->page_pool, page, false);
q->tail = (q->tail + 1) % q->ndesc;
q->queued--;
}
}
static int airoha_qdma_init_rx(struct airoha_eth *eth)
{
int i;
for (i = 0; i < ARRAY_SIZE(eth->q_rx); i++) {
int err;
if (!(RX_DONE_INT_MASK & BIT(i))) {
/* rx-queue not binded to irq */
continue;
}
err = airoha_qdma_init_rx_queue(eth, &eth->q_rx[i],
RX_DSCP_NUM(i));
if (err)
return err;
}
return 0;
}
static int airoha_qdma_tx_napi_poll(struct napi_struct *napi, int budget)
{
struct airoha_tx_irq_queue *irq_q;
struct airoha_eth *eth;
int id, done = 0;
irq_q = container_of(napi, struct airoha_tx_irq_queue, napi);
eth = irq_q->eth;
id = irq_q - &eth->q_tx_irq[0];
while (irq_q->queued > 0 && done < budget) {
u32 qid, last, val = irq_q->q[irq_q->head];
struct airoha_queue *q;
if (val == 0xff)
break;
irq_q->q[irq_q->head] = 0xff; /* mark as done */
irq_q->head = (irq_q->head + 1) % irq_q->size;
irq_q->queued--;
done++;
last = FIELD_GET(IRQ_DESC_IDX_MASK, val);
qid = FIELD_GET(IRQ_RING_IDX_MASK, val);
if (qid >= ARRAY_SIZE(eth->q_tx))
continue;
q = &eth->q_tx[qid];
if (!q->ndesc)
continue;
spin_lock_bh(&q->lock);
while (q->queued > 0) {
struct airoha_qdma_desc *desc = &q->desc[q->tail];
struct airoha_queue_entry *e = &q->entry[q->tail];
u32 desc_ctrl = le32_to_cpu(desc->ctrl);
struct sk_buff *skb = e->skb;
u16 index = q->tail;
if (!(desc_ctrl & QDMA_DESC_DONE_MASK) &&
!(desc_ctrl & QDMA_DESC_DROP_MASK))
break;
q->tail = (q->tail + 1) % q->ndesc;
q->queued--;
dma_unmap_single(eth->dev, e->dma_addr, e->dma_len,
DMA_TO_DEVICE);
WRITE_ONCE(desc->msg0, 0);
WRITE_ONCE(desc->msg1, 0);
if (skb) {
struct netdev_queue *txq;
txq = netdev_get_tx_queue(skb->dev, qid);
if (netif_tx_queue_stopped(txq) &&
q->ndesc - q->queued >= q->free_thr)
netif_tx_wake_queue(txq);
dev_kfree_skb_any(skb);
e->skb = NULL;
}
if (index == last)
break;
}
spin_unlock_bh(&q->lock);
}
if (done) {
int i, len = done >> 7;
for (i = 0; i < len; i++)
airoha_qdma_rmw(eth, REG_IRQ_CLEAR_LEN(id),
IRQ_CLEAR_LEN_MASK, 0x80);
airoha_qdma_rmw(eth, REG_IRQ_CLEAR_LEN(id),
IRQ_CLEAR_LEN_MASK, (done & 0x7f));
}
if (done < budget && napi_complete(napi))
airoha_qdma_irq_enable(eth, QDMA_INT_REG_IDX0,
TX_DONE_INT_MASK(id));
return done;
}
static int airoha_qdma_init_tx_queue(struct airoha_eth *eth,
struct airoha_queue *q, int size)
{
int i, qid = q - &eth->q_tx[0];
dma_addr_t dma_addr;
spin_lock_init(&q->lock);
q->ndesc = size;
q->eth = eth;
q->free_thr = 1 + MAX_SKB_FRAGS;
q->entry = devm_kzalloc(eth->dev, q->ndesc * sizeof(*q->entry),
GFP_KERNEL);
if (!q->entry)
return -ENOMEM;
q->desc = dmam_alloc_coherent(eth->dev, q->ndesc * sizeof(*q->desc),
&dma_addr, GFP_KERNEL);
if (!q->desc)
return -ENOMEM;
for (i = 0; i < q->ndesc; i++) {
u32 val;
val = FIELD_PREP(QDMA_DESC_DONE_MASK, 1);
WRITE_ONCE(q->desc[i].ctrl, cpu_to_le32(val));
}
airoha_qdma_wr(eth, REG_TX_RING_BASE(qid), dma_addr);
airoha_qdma_rmw(eth, REG_TX_CPU_IDX(qid), TX_RING_CPU_IDX_MASK,
FIELD_PREP(TX_RING_CPU_IDX_MASK, q->head));
airoha_qdma_rmw(eth, REG_TX_DMA_IDX(qid), TX_RING_DMA_IDX_MASK,
FIELD_PREP(TX_RING_DMA_IDX_MASK, q->head));
return 0;
}
static int airoha_qdma_tx_irq_init(struct airoha_eth *eth,
struct airoha_tx_irq_queue *irq_q,
int size)
{
int id = irq_q - &eth->q_tx_irq[0];
dma_addr_t dma_addr;
netif_napi_add_tx(eth->napi_dev, &irq_q->napi,
airoha_qdma_tx_napi_poll);
irq_q->q = dmam_alloc_coherent(eth->dev, size * sizeof(u32),
&dma_addr, GFP_KERNEL);
if (!irq_q->q)
return -ENOMEM;
memset(irq_q->q, 0xff, size * sizeof(u32));
irq_q->size = size;
irq_q->eth = eth;
airoha_qdma_wr(eth, REG_TX_IRQ_BASE(id), dma_addr);
airoha_qdma_rmw(eth, REG_TX_IRQ_CFG(id), TX_IRQ_DEPTH_MASK,
FIELD_PREP(TX_IRQ_DEPTH_MASK, size));
airoha_qdma_rmw(eth, REG_TX_IRQ_CFG(id), TX_IRQ_THR_MASK,
FIELD_PREP(TX_IRQ_THR_MASK, 1));
return 0;
}
static int airoha_qdma_init_tx(struct airoha_eth *eth)
{
int i, err;
for (i = 0; i < ARRAY_SIZE(eth->q_tx_irq); i++) {
err = airoha_qdma_tx_irq_init(eth, &eth->q_tx_irq[i],
IRQ_QUEUE_LEN(i));
if (err)
return err;
}
for (i = 0; i < ARRAY_SIZE(eth->q_tx); i++) {
err = airoha_qdma_init_tx_queue(eth, &eth->q_tx[i],
TX_DSCP_NUM);
if (err)
return err;
}
return 0;
}
static void airoha_qdma_cleanup_tx_queue(struct airoha_queue *q)
{
struct airoha_eth *eth = q->eth;
spin_lock_bh(&q->lock);
while (q->queued) {
struct airoha_queue_entry *e = &q->entry[q->tail];
dma_unmap_single(eth->dev, e->dma_addr, e->dma_len,
DMA_TO_DEVICE);
dev_kfree_skb_any(e->skb);
e->skb = NULL;
q->tail = (q->tail + 1) % q->ndesc;
q->queued--;
}
spin_unlock_bh(&q->lock);
}
static int airoha_qdma_init_hfwd_queues(struct airoha_eth *eth)
{
dma_addr_t dma_addr;
u32 status;
int size;
size = HW_DSCP_NUM * sizeof(struct airoha_qdma_fwd_desc);
eth->hfwd.desc = dmam_alloc_coherent(eth->dev, size, &dma_addr,
GFP_KERNEL);
if (!eth->hfwd.desc)
return -ENOMEM;
airoha_qdma_wr(eth, REG_FWD_DSCP_BASE, dma_addr);
size = AIROHA_MAX_PACKET_SIZE * HW_DSCP_NUM;
eth->hfwd.q = dmam_alloc_coherent(eth->dev, size, &dma_addr,
GFP_KERNEL);
if (!eth->hfwd.q)
return -ENOMEM;
airoha_qdma_wr(eth, REG_FWD_BUF_BASE, dma_addr);
airoha_qdma_rmw(eth, REG_HW_FWD_DSCP_CFG,
HW_FWD_DSCP_PAYLOAD_SIZE_MASK,
FIELD_PREP(HW_FWD_DSCP_PAYLOAD_SIZE_MASK, 0));
airoha_qdma_rmw(eth, REG_FWD_DSCP_LOW_THR, FWD_DSCP_LOW_THR_MASK,
FIELD_PREP(FWD_DSCP_LOW_THR_MASK, 128));
airoha_qdma_rmw(eth, REG_LMGR_INIT_CFG,
LMGR_INIT_START | LMGR_SRAM_MODE_MASK |
HW_FWD_DESC_NUM_MASK,
FIELD_PREP(HW_FWD_DESC_NUM_MASK, HW_DSCP_NUM) |
LMGR_INIT_START);
return read_poll_timeout(airoha_qdma_rr, status,
!(status & LMGR_INIT_START), USEC_PER_MSEC,
30 * USEC_PER_MSEC, true, eth,
REG_LMGR_INIT_CFG);
}
static void airoha_qdma_init_qos(struct airoha_eth *eth)
{
airoha_qdma_clear(eth, REG_TXWRR_MODE_CFG, TWRR_WEIGHT_SCALE_MASK);
airoha_qdma_set(eth, REG_TXWRR_MODE_CFG, TWRR_WEIGHT_BASE_MASK);
airoha_qdma_clear(eth, REG_PSE_BUF_USAGE_CFG,
PSE_BUF_ESTIMATE_EN_MASK);
airoha_qdma_set(eth, REG_EGRESS_RATE_METER_CFG,
EGRESS_RATE_METER_EN_MASK |
EGRESS_RATE_METER_EQ_RATE_EN_MASK);
/* 2047us x 31 = 63.457ms */
airoha_qdma_rmw(eth, REG_EGRESS_RATE_METER_CFG,
EGRESS_RATE_METER_WINDOW_SZ_MASK,
FIELD_PREP(EGRESS_RATE_METER_WINDOW_SZ_MASK, 0x1f));
airoha_qdma_rmw(eth, REG_EGRESS_RATE_METER_CFG,
EGRESS_RATE_METER_TIMESLICE_MASK,
FIELD_PREP(EGRESS_RATE_METER_TIMESLICE_MASK, 0x7ff));
/* ratelimit init */
airoha_qdma_set(eth, REG_GLB_TRTCM_CFG, GLB_TRTCM_EN_MASK);
/* fast-tick 25us */
airoha_qdma_rmw(eth, REG_GLB_TRTCM_CFG, GLB_FAST_TICK_MASK,
FIELD_PREP(GLB_FAST_TICK_MASK, 25));
airoha_qdma_rmw(eth, REG_GLB_TRTCM_CFG, GLB_SLOW_TICK_RATIO_MASK,
FIELD_PREP(GLB_SLOW_TICK_RATIO_MASK, 40));
airoha_qdma_set(eth, REG_EGRESS_TRTCM_CFG, EGRESS_TRTCM_EN_MASK);
airoha_qdma_rmw(eth, REG_EGRESS_TRTCM_CFG, EGRESS_FAST_TICK_MASK,
FIELD_PREP(EGRESS_FAST_TICK_MASK, 25));
airoha_qdma_rmw(eth, REG_EGRESS_TRTCM_CFG,
EGRESS_SLOW_TICK_RATIO_MASK,
FIELD_PREP(EGRESS_SLOW_TICK_RATIO_MASK, 40));
airoha_qdma_set(eth, REG_INGRESS_TRTCM_CFG, INGRESS_TRTCM_EN_MASK);
airoha_qdma_clear(eth, REG_INGRESS_TRTCM_CFG,
INGRESS_TRTCM_MODE_MASK);
airoha_qdma_rmw(eth, REG_INGRESS_TRTCM_CFG, INGRESS_FAST_TICK_MASK,
FIELD_PREP(INGRESS_FAST_TICK_MASK, 125));
airoha_qdma_rmw(eth, REG_INGRESS_TRTCM_CFG,
INGRESS_SLOW_TICK_RATIO_MASK,
FIELD_PREP(INGRESS_SLOW_TICK_RATIO_MASK, 8));
airoha_qdma_set(eth, REG_SLA_TRTCM_CFG, SLA_TRTCM_EN_MASK);
airoha_qdma_rmw(eth, REG_SLA_TRTCM_CFG, SLA_FAST_TICK_MASK,
FIELD_PREP(SLA_FAST_TICK_MASK, 25));
airoha_qdma_rmw(eth, REG_SLA_TRTCM_CFG, SLA_SLOW_TICK_RATIO_MASK,
FIELD_PREP(SLA_SLOW_TICK_RATIO_MASK, 40));
}
static int airoha_qdma_hw_init(struct airoha_eth *eth)
{
int i;
/* clear pending irqs */
for (i = 0; i < ARRAY_SIZE(eth->irqmask); i++)
airoha_qdma_wr(eth, REG_INT_STATUS(i), 0xffffffff);
/* setup irqs */
airoha_qdma_irq_enable(eth, QDMA_INT_REG_IDX0, INT_IDX0_MASK);
airoha_qdma_irq_enable(eth, QDMA_INT_REG_IDX1, INT_IDX1_MASK);
airoha_qdma_irq_enable(eth, QDMA_INT_REG_IDX4, INT_IDX4_MASK);
/* setup irq binding */
for (i = 0; i < ARRAY_SIZE(eth->q_tx); i++) {
if (!eth->q_tx[i].ndesc)
continue;
if (TX_RING_IRQ_BLOCKING_MAP_MASK & BIT(i))
airoha_qdma_set(eth, REG_TX_RING_BLOCKING(i),
TX_RING_IRQ_BLOCKING_CFG_MASK);
else
airoha_qdma_clear(eth, REG_TX_RING_BLOCKING(i),
TX_RING_IRQ_BLOCKING_CFG_MASK);
}
airoha_qdma_wr(eth, REG_QDMA_GLOBAL_CFG,
GLOBAL_CFG_RX_2B_OFFSET_MASK |
FIELD_PREP(GLOBAL_CFG_DMA_PREFERENCE_MASK, 3) |
GLOBAL_CFG_CPU_TXR_RR_MASK |
GLOBAL_CFG_PAYLOAD_BYTE_SWAP_MASK |
GLOBAL_CFG_MULTICAST_MODIFY_FP_MASK |
GLOBAL_CFG_MULTICAST_EN_MASK |
GLOBAL_CFG_IRQ0_EN_MASK | GLOBAL_CFG_IRQ1_EN_MASK |
GLOBAL_CFG_TX_WB_DONE_MASK |
FIELD_PREP(GLOBAL_CFG_MAX_ISSUE_NUM_MASK, 2));
airoha_qdma_init_qos(eth);
/* disable qdma rx delay interrupt */
for (i = 0; i < ARRAY_SIZE(eth->q_rx); i++) {
if (!eth->q_rx[i].ndesc)
continue;
airoha_qdma_clear(eth, REG_RX_DELAY_INT_IDX(i),
RX_DELAY_INT_MASK);
}
airoha_qdma_set(eth, REG_TXQ_CNGST_CFG,
TXQ_CNGST_DROP_EN | TXQ_CNGST_DEI_DROP_EN);
return 0;
}
static irqreturn_t airoha_irq_handler(int irq, void *dev_instance)
{
struct airoha_eth *eth = dev_instance;
u32 intr[ARRAY_SIZE(eth->irqmask)];
int i;
for (i = 0; i < ARRAY_SIZE(eth->irqmask); i++) {
intr[i] = airoha_qdma_rr(eth, REG_INT_STATUS(i));
intr[i] &= eth->irqmask[i];
airoha_qdma_wr(eth, REG_INT_STATUS(i), intr[i]);
}
if (!test_bit(DEV_STATE_INITIALIZED, &eth->state))
return IRQ_NONE;
if (intr[1] & RX_DONE_INT_MASK) {
airoha_qdma_irq_disable(eth, QDMA_INT_REG_IDX1,
RX_DONE_INT_MASK);
for (i = 0; i < ARRAY_SIZE(eth->q_rx); i++) {
if (!eth->q_rx[i].ndesc)
continue;
if (intr[1] & BIT(i))
napi_schedule(&eth->q_rx[i].napi);
}
}
if (intr[0] & INT_TX_MASK) {
for (i = 0; i < ARRAY_SIZE(eth->q_tx_irq); i++) {
struct airoha_tx_irq_queue *irq_q = &eth->q_tx_irq[i];
u32 status, head;
if (!(intr[0] & TX_DONE_INT_MASK(i)))
continue;
airoha_qdma_irq_disable(eth, QDMA_INT_REG_IDX0,
TX_DONE_INT_MASK(i));
status = airoha_qdma_rr(eth, REG_IRQ_STATUS(i));
head = FIELD_GET(IRQ_HEAD_IDX_MASK, status);
irq_q->head = head % irq_q->size;
irq_q->queued = FIELD_GET(IRQ_ENTRY_LEN_MASK, status);
napi_schedule(&eth->q_tx_irq[i].napi);
}
}
return IRQ_HANDLED;
}
static int airoha_qdma_init(struct airoha_eth *eth)
{
int err;
err = devm_request_irq(eth->dev, eth->irq, airoha_irq_handler,
IRQF_SHARED, KBUILD_MODNAME, eth);
if (err)
return err;
err = airoha_qdma_init_rx(eth);
if (err)
return err;
err = airoha_qdma_init_tx(eth);
if (err)
return err;
err = airoha_qdma_init_hfwd_queues(eth);
if (err)
return err;
err = airoha_qdma_hw_init(eth);
if (err)
return err;
set_bit(DEV_STATE_INITIALIZED, &eth->state);
return 0;
}
static int airoha_hw_init(struct airoha_eth *eth)
{
int err;
/* disable xsi */
reset_control_bulk_assert(ARRAY_SIZE(eth->xsi_rsts), eth->xsi_rsts);
reset_control_bulk_assert(ARRAY_SIZE(eth->rsts), eth->rsts);
msleep(20);
reset_control_bulk_deassert(ARRAY_SIZE(eth->rsts), eth->rsts);
msleep(20);
err = airoha_fe_init(eth);
if (err)
return err;
return airoha_qdma_init(eth);
}
static void airoha_hw_cleanup(struct airoha_eth *eth)
{
int i;
for (i = 0; i < ARRAY_SIZE(eth->q_rx); i++) {
if (!eth->q_rx[i].ndesc)
continue;
napi_disable(&eth->q_rx[i].napi);
netif_napi_del(&eth->q_rx[i].napi);
airoha_qdma_cleanup_rx_queue(&eth->q_rx[i]);
if (eth->q_rx[i].page_pool)
page_pool_destroy(eth->q_rx[i].page_pool);
}
for (i = 0; i < ARRAY_SIZE(eth->q_tx_irq); i++) {
napi_disable(&eth->q_tx_irq[i].napi);
netif_napi_del(&eth->q_tx_irq[i].napi);
}
for (i = 0; i < ARRAY_SIZE(eth->q_tx); i++) {
if (!eth->q_tx[i].ndesc)
continue;
airoha_qdma_cleanup_tx_queue(&eth->q_tx[i]);
}
}
static void airoha_qdma_start_napi(struct airoha_eth *eth)
{
int i;
for (i = 0; i < ARRAY_SIZE(eth->q_tx_irq); i++)
napi_enable(&eth->q_tx_irq[i].napi);
for (i = 0; i < ARRAY_SIZE(eth->q_rx); i++) {
if (!eth->q_rx[i].ndesc)
continue;
napi_enable(&eth->q_rx[i].napi);
}
}
static void airoha_update_hw_stats(struct airoha_gdm_port *port)
{
struct airoha_eth *eth = port->eth;
u32 val, i = 0;
spin_lock(&port->stats.lock);
u64_stats_update_begin(&port->stats.syncp);
/* TX */
val = airoha_fe_rr(eth, REG_FE_GDM_TX_OK_PKT_CNT_H(port->id));
port->stats.tx_ok_pkts += ((u64)val << 32);
val = airoha_fe_rr(eth, REG_FE_GDM_TX_OK_PKT_CNT_L(port->id));
port->stats.tx_ok_pkts += val;
val = airoha_fe_rr(eth, REG_FE_GDM_TX_OK_BYTE_CNT_H(port->id));
port->stats.tx_ok_bytes += ((u64)val << 32);
val = airoha_fe_rr(eth, REG_FE_GDM_TX_OK_BYTE_CNT_L(port->id));
port->stats.tx_ok_bytes += val;
val = airoha_fe_rr(eth, REG_FE_GDM_TX_ETH_DROP_CNT(port->id));
port->stats.tx_drops += val;
val = airoha_fe_rr(eth, REG_FE_GDM_TX_ETH_BC_CNT(port->id));
port->stats.tx_broadcast += val;
val = airoha_fe_rr(eth, REG_FE_GDM_TX_ETH_MC_CNT(port->id));
port->stats.tx_multicast += val;
val = airoha_fe_rr(eth, REG_FE_GDM_TX_ETH_RUNT_CNT(port->id));
port->stats.tx_len[i] += val;
val = airoha_fe_rr(eth, REG_FE_GDM_TX_ETH_E64_CNT_H(port->id));
port->stats.tx_len[i] += ((u64)val << 32);
val = airoha_fe_rr(eth, REG_FE_GDM_TX_ETH_E64_CNT_L(port->id));
port->stats.tx_len[i++] += val;
val = airoha_fe_rr(eth, REG_FE_GDM_TX_ETH_L64_CNT_H(port->id));
port->stats.tx_len[i] += ((u64)val << 32);
val = airoha_fe_rr(eth, REG_FE_GDM_TX_ETH_L64_CNT_L(port->id));
port->stats.tx_len[i++] += val;
val = airoha_fe_rr(eth, REG_FE_GDM_TX_ETH_L127_CNT_H(port->id));
port->stats.tx_len[i] += ((u64)val << 32);
val = airoha_fe_rr(eth, REG_FE_GDM_TX_ETH_L127_CNT_L(port->id));
port->stats.tx_len[i++] += val;
val = airoha_fe_rr(eth, REG_FE_GDM_TX_ETH_L255_CNT_H(port->id));
port->stats.tx_len[i] += ((u64)val << 32);
val = airoha_fe_rr(eth, REG_FE_GDM_TX_ETH_L255_CNT_L(port->id));
port->stats.tx_len[i++] += val;
val = airoha_fe_rr(eth, REG_FE_GDM_TX_ETH_L511_CNT_H(port->id));
port->stats.tx_len[i] += ((u64)val << 32);
val = airoha_fe_rr(eth, REG_FE_GDM_TX_ETH_L511_CNT_L(port->id));
port->stats.tx_len[i++] += val;
val = airoha_fe_rr(eth, REG_FE_GDM_TX_ETH_L1023_CNT_H(port->id));
port->stats.tx_len[i] += ((u64)val << 32);
val = airoha_fe_rr(eth, REG_FE_GDM_TX_ETH_L1023_CNT_L(port->id));
port->stats.tx_len[i++] += val;
val = airoha_fe_rr(eth, REG_FE_GDM_TX_ETH_LONG_CNT(port->id));
port->stats.tx_len[i++] += val;
/* RX */
val = airoha_fe_rr(eth, REG_FE_GDM_RX_OK_PKT_CNT_H(port->id));
port->stats.rx_ok_pkts += ((u64)val << 32);
val = airoha_fe_rr(eth, REG_FE_GDM_RX_OK_PKT_CNT_L(port->id));
port->stats.rx_ok_pkts += val;
val = airoha_fe_rr(eth, REG_FE_GDM_RX_OK_BYTE_CNT_H(port->id));
port->stats.rx_ok_bytes += ((u64)val << 32);
val = airoha_fe_rr(eth, REG_FE_GDM_RX_OK_BYTE_CNT_L(port->id));
port->stats.rx_ok_bytes += val;
val = airoha_fe_rr(eth, REG_FE_GDM_RX_ETH_DROP_CNT(port->id));
port->stats.rx_drops += val;
val = airoha_fe_rr(eth, REG_FE_GDM_RX_ETH_BC_CNT(port->id));
port->stats.rx_broadcast += val;
val = airoha_fe_rr(eth, REG_FE_GDM_RX_ETH_MC_CNT(port->id));
port->stats.rx_multicast += val;
val = airoha_fe_rr(eth, REG_FE_GDM_RX_ERROR_DROP_CNT(port->id));
port->stats.rx_errors += val;
val = airoha_fe_rr(eth, REG_FE_GDM_RX_ETH_CRC_ERR_CNT(port->id));
port->stats.rx_crc_error += val;
val = airoha_fe_rr(eth, REG_FE_GDM_RX_OVERFLOW_DROP_CNT(port->id));
port->stats.rx_over_errors += val;
val = airoha_fe_rr(eth, REG_FE_GDM_RX_ETH_FRAG_CNT(port->id));
port->stats.rx_fragment += val;
val = airoha_fe_rr(eth, REG_FE_GDM_RX_ETH_JABBER_CNT(port->id));
port->stats.rx_jabber += val;
i = 0;
val = airoha_fe_rr(eth, REG_FE_GDM_RX_ETH_RUNT_CNT(port->id));
port->stats.rx_len[i] += val;
val = airoha_fe_rr(eth, REG_FE_GDM_RX_ETH_E64_CNT_H(port->id));
port->stats.rx_len[i] += ((u64)val << 32);
val = airoha_fe_rr(eth, REG_FE_GDM_RX_ETH_E64_CNT_L(port->id));
port->stats.rx_len[i++] += val;
val = airoha_fe_rr(eth, REG_FE_GDM_RX_ETH_L64_CNT_H(port->id));
port->stats.rx_len[i] += ((u64)val << 32);
val = airoha_fe_rr(eth, REG_FE_GDM_RX_ETH_L64_CNT_L(port->id));
port->stats.rx_len[i++] += val;
val = airoha_fe_rr(eth, REG_FE_GDM_RX_ETH_L127_CNT_H(port->id));
port->stats.rx_len[i] += ((u64)val << 32);
val = airoha_fe_rr(eth, REG_FE_GDM_RX_ETH_L127_CNT_L(port->id));
port->stats.rx_len[i++] += val;
val = airoha_fe_rr(eth, REG_FE_GDM_RX_ETH_L255_CNT_H(port->id));
port->stats.rx_len[i] += ((u64)val << 32);
val = airoha_fe_rr(eth, REG_FE_GDM_RX_ETH_L255_CNT_L(port->id));
port->stats.rx_len[i++] += val;
val = airoha_fe_rr(eth, REG_FE_GDM_RX_ETH_L511_CNT_H(port->id));
port->stats.rx_len[i] += ((u64)val << 32);
val = airoha_fe_rr(eth, REG_FE_GDM_RX_ETH_L511_CNT_L(port->id));
port->stats.rx_len[i++] += val;
val = airoha_fe_rr(eth, REG_FE_GDM_RX_ETH_L1023_CNT_H(port->id));
port->stats.rx_len[i] += ((u64)val << 32);
val = airoha_fe_rr(eth, REG_FE_GDM_RX_ETH_L1023_CNT_L(port->id));
port->stats.rx_len[i++] += val;
val = airoha_fe_rr(eth, REG_FE_GDM_RX_ETH_LONG_CNT(port->id));
port->stats.rx_len[i++] += val;
/* reset mib counters */
airoha_fe_set(eth, REG_FE_GDM_MIB_CLEAR(port->id),
FE_GDM_MIB_RX_CLEAR_MASK | FE_GDM_MIB_TX_CLEAR_MASK);
u64_stats_update_end(&port->stats.syncp);
spin_unlock(&port->stats.lock);
}
static int airoha_dev_open(struct net_device *dev)
{
struct airoha_gdm_port *port = netdev_priv(dev);
struct airoha_eth *eth = port->eth;
int err;
netif_tx_start_all_queues(dev);
err = airoha_set_gdm_ports(eth, true);
if (err)
return err;
if (netdev_uses_dsa(dev))
airoha_fe_set(eth, REG_GDM_INGRESS_CFG(port->id),
GDM_STAG_EN_MASK);
else
airoha_fe_clear(eth, REG_GDM_INGRESS_CFG(port->id),
GDM_STAG_EN_MASK);
airoha_qdma_set(eth, REG_QDMA_GLOBAL_CFG, GLOBAL_CFG_TX_DMA_EN_MASK);
airoha_qdma_set(eth, REG_QDMA_GLOBAL_CFG, GLOBAL_CFG_RX_DMA_EN_MASK);
return 0;
}
static int airoha_dev_stop(struct net_device *dev)
{
struct airoha_gdm_port *port = netdev_priv(dev);
struct airoha_eth *eth = port->eth;
int err;
netif_tx_disable(dev);
err = airoha_set_gdm_ports(eth, false);
if (err)
return err;
airoha_qdma_clear(eth, REG_QDMA_GLOBAL_CFG, GLOBAL_CFG_TX_DMA_EN_MASK);
airoha_qdma_clear(eth, REG_QDMA_GLOBAL_CFG, GLOBAL_CFG_RX_DMA_EN_MASK);
return 0;
}
static int airoha_dev_set_macaddr(struct net_device *dev, void *p)
{
struct airoha_gdm_port *port = netdev_priv(dev);
int err;
err = eth_mac_addr(dev, p);
if (err)
return err;
airoha_set_macaddr(port->eth, dev->dev_addr);
return 0;
}
static int airoha_dev_init(struct net_device *dev)
{
struct airoha_gdm_port *port = netdev_priv(dev);
airoha_set_macaddr(port->eth, dev->dev_addr);
return 0;
}
static void airoha_dev_get_stats64(struct net_device *dev,
struct rtnl_link_stats64 *storage)
{
struct airoha_gdm_port *port = netdev_priv(dev);
unsigned int start;
airoha_update_hw_stats(port);
do {
start = u64_stats_fetch_begin(&port->stats.syncp);
storage->rx_packets = port->stats.rx_ok_pkts;
storage->tx_packets = port->stats.tx_ok_pkts;
storage->rx_bytes = port->stats.rx_ok_bytes;
storage->tx_bytes = port->stats.tx_ok_bytes;
storage->multicast = port->stats.rx_multicast;
storage->rx_errors = port->stats.rx_errors;
storage->rx_dropped = port->stats.rx_drops;
storage->tx_dropped = port->stats.tx_drops;
storage->rx_crc_errors = port->stats.rx_crc_error;
storage->rx_over_errors = port->stats.rx_over_errors;
} while (u64_stats_fetch_retry(&port->stats.syncp, start));
}
static netdev_tx_t airoha_dev_xmit(struct sk_buff *skb,
struct net_device *dev)
{
struct skb_shared_info *sinfo = skb_shinfo(skb);
struct airoha_gdm_port *port = netdev_priv(dev);
u32 msg0 = 0, msg1, len = skb_headlen(skb);
int i, qid = skb_get_queue_mapping(skb);
struct airoha_eth *eth = port->eth;
u32 nr_frags = 1 + sinfo->nr_frags;
struct netdev_queue *txq;
struct airoha_queue *q;
void *data = skb->data;
u16 index;
u8 fport;
if (skb->ip_summed == CHECKSUM_PARTIAL)
msg0 |= FIELD_PREP(QDMA_ETH_TXMSG_TCO_MASK, 1) |
FIELD_PREP(QDMA_ETH_TXMSG_UCO_MASK, 1) |
FIELD_PREP(QDMA_ETH_TXMSG_ICO_MASK, 1);
/* TSO: fill MSS info in tcp checksum field */
if (skb_is_gso(skb)) {
if (skb_cow_head(skb, 0))
goto error;
if (sinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)) {
__be16 csum = cpu_to_be16(sinfo->gso_size);
tcp_hdr(skb)->check = (__force __sum16)csum;
msg0 |= FIELD_PREP(QDMA_ETH_TXMSG_TSO_MASK, 1);
}
}
fport = port->id == 4 ? FE_PSE_PORT_GDM4 : port->id;
msg1 = FIELD_PREP(QDMA_ETH_TXMSG_FPORT_MASK, fport) |
FIELD_PREP(QDMA_ETH_TXMSG_METER_MASK, 0x7f);
q = &eth->q_tx[qid];
if (WARN_ON_ONCE(!q->ndesc))
goto error;
spin_lock_bh(&q->lock);
txq = netdev_get_tx_queue(dev, qid);
if (q->queued + nr_frags > q->ndesc) {
/* not enough space in the queue */
netif_tx_stop_queue(txq);
spin_unlock_bh(&q->lock);
return NETDEV_TX_BUSY;
}
index = q->head;
for (i = 0; i < nr_frags; i++) {
struct airoha_qdma_desc *desc = &q->desc[index];
struct airoha_queue_entry *e = &q->entry[index];
skb_frag_t *frag = &sinfo->frags[i];
dma_addr_t addr;
u32 val;
addr = dma_map_single(dev->dev.parent, data, len,
DMA_TO_DEVICE);
if (unlikely(dma_mapping_error(dev->dev.parent, addr)))
goto error_unmap;
index = (index + 1) % q->ndesc;
val = FIELD_PREP(QDMA_DESC_LEN_MASK, len);
if (i < nr_frags - 1)
val |= FIELD_PREP(QDMA_DESC_MORE_MASK, 1);
WRITE_ONCE(desc->ctrl, cpu_to_le32(val));
WRITE_ONCE(desc->addr, cpu_to_le32(addr));
val = FIELD_PREP(QDMA_DESC_NEXT_ID_MASK, index);
WRITE_ONCE(desc->data, cpu_to_le32(val));
WRITE_ONCE(desc->msg0, cpu_to_le32(msg0));
WRITE_ONCE(desc->msg1, cpu_to_le32(msg1));
WRITE_ONCE(desc->msg2, cpu_to_le32(0xffff));
e->skb = i ? NULL : skb;
e->dma_addr = addr;
e->dma_len = len;
airoha_qdma_rmw(eth, REG_TX_CPU_IDX(qid), TX_RING_CPU_IDX_MASK,
FIELD_PREP(TX_RING_CPU_IDX_MASK, index));
data = skb_frag_address(frag);
len = skb_frag_size(frag);
}
q->head = index;
q->queued += i;
skb_tx_timestamp(skb);
if (q->ndesc - q->queued < q->free_thr)
netif_tx_stop_queue(txq);
spin_unlock_bh(&q->lock);
return NETDEV_TX_OK;
error_unmap:
for (i--; i >= 0; i++)
dma_unmap_single(dev->dev.parent, q->entry[i].dma_addr,
q->entry[i].dma_len, DMA_TO_DEVICE);
spin_unlock_bh(&q->lock);
error:
dev_kfree_skb_any(skb);
dev->stats.tx_dropped++;
return NETDEV_TX_OK;
}
static void airoha_ethtool_get_drvinfo(struct net_device *dev,
struct ethtool_drvinfo *info)
{
struct airoha_gdm_port *port = netdev_priv(dev);
struct airoha_eth *eth = port->eth;
strscpy(info->driver, eth->dev->driver->name, sizeof(info->driver));
strscpy(info->bus_info, dev_name(eth->dev), sizeof(info->bus_info));
}
static void airoha_ethtool_get_mac_stats(struct net_device *dev,
struct ethtool_eth_mac_stats *stats)
{
struct airoha_gdm_port *port = netdev_priv(dev);
unsigned int start;
airoha_update_hw_stats(port);
do {
start = u64_stats_fetch_begin(&port->stats.syncp);
stats->MulticastFramesXmittedOK = port->stats.tx_multicast;
stats->BroadcastFramesXmittedOK = port->stats.tx_broadcast;
stats->BroadcastFramesReceivedOK = port->stats.rx_broadcast;
} while (u64_stats_fetch_retry(&port->stats.syncp, start));
}
static const struct ethtool_rmon_hist_range airoha_ethtool_rmon_ranges[] = {
{ 0, 64 },
{ 65, 127 },
{ 128, 255 },
{ 256, 511 },
{ 512, 1023 },
{ 1024, 1518 },
{ 1519, 10239 },
{},
};
static void
airoha_ethtool_get_rmon_stats(struct net_device *dev,
struct ethtool_rmon_stats *stats,
const struct ethtool_rmon_hist_range **ranges)
{
struct airoha_gdm_port *port = netdev_priv(dev);
struct airoha_hw_stats *hw_stats = &port->stats;
unsigned int start;
BUILD_BUG_ON(ARRAY_SIZE(airoha_ethtool_rmon_ranges) !=
ARRAY_SIZE(hw_stats->tx_len) + 1);
BUILD_BUG_ON(ARRAY_SIZE(airoha_ethtool_rmon_ranges) !=
ARRAY_SIZE(hw_stats->rx_len) + 1);
*ranges = airoha_ethtool_rmon_ranges;
airoha_update_hw_stats(port);
do {
int i;
start = u64_stats_fetch_begin(&port->stats.syncp);
stats->fragments = hw_stats->rx_fragment;
stats->jabbers = hw_stats->rx_jabber;
for (i = 0; i < ARRAY_SIZE(airoha_ethtool_rmon_ranges) - 1;
i++) {
stats->hist[i] = hw_stats->rx_len[i];
stats->hist_tx[i] = hw_stats->tx_len[i];
}
} while (u64_stats_fetch_retry(&port->stats.syncp, start));
}
static const struct net_device_ops airoha_netdev_ops = {
.ndo_init = airoha_dev_init,
.ndo_open = airoha_dev_open,
.ndo_stop = airoha_dev_stop,
.ndo_start_xmit = airoha_dev_xmit,
.ndo_get_stats64 = airoha_dev_get_stats64,
.ndo_set_mac_address = airoha_dev_set_macaddr,
};
static const struct ethtool_ops airoha_ethtool_ops = {
.get_drvinfo = airoha_ethtool_get_drvinfo,
.get_eth_mac_stats = airoha_ethtool_get_mac_stats,
.get_rmon_stats = airoha_ethtool_get_rmon_stats,
};
static int airoha_alloc_gdm_port(struct airoha_eth *eth, struct device_node *np)
{
const __be32 *id_ptr = of_get_property(np, "reg", NULL);
struct airoha_gdm_port *port;
struct net_device *dev;
int err, index;
u32 id;
if (!id_ptr) {
dev_err(eth->dev, "missing gdm port id\n");
return -EINVAL;
}
id = be32_to_cpup(id_ptr);
index = id - 1;
if (!id || id > ARRAY_SIZE(eth->ports)) {
dev_err(eth->dev, "invalid gdm port id: %d\n", id);
return -EINVAL;
}
if (eth->ports[index]) {
dev_err(eth->dev, "duplicate gdm port id: %d\n", id);
return -EINVAL;
}
dev = devm_alloc_etherdev_mqs(eth->dev, sizeof(*port),
AIROHA_NUM_TX_RING, AIROHA_NUM_RX_RING);
if (!dev) {
dev_err(eth->dev, "alloc_etherdev failed\n");
return -ENOMEM;
}
dev->netdev_ops = &airoha_netdev_ops;
dev->ethtool_ops = &airoha_ethtool_ops;
dev->max_mtu = AIROHA_MAX_MTU;
dev->watchdog_timeo = 5 * HZ;
dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_RXCSUM |
NETIF_F_TSO6 | NETIF_F_IPV6_CSUM |
NETIF_F_SG | NETIF_F_TSO;
dev->features |= dev->hw_features;
dev->dev.of_node = np;
SET_NETDEV_DEV(dev, eth->dev);
err = of_get_ethdev_address(np, dev);
if (err) {
if (err == -EPROBE_DEFER)
return err;
eth_hw_addr_random(dev);
dev_info(eth->dev, "generated random MAC address %pM\n",
dev->dev_addr);
}
port = netdev_priv(dev);
u64_stats_init(&port->stats.syncp);
spin_lock_init(&port->stats.lock);
port->dev = dev;
port->eth = eth;
port->id = id;
eth->ports[index] = port;
return register_netdev(dev);
}
static int airoha_probe(struct platform_device *pdev)
{
struct device_node *np;
struct airoha_eth *eth;
int i, err;
eth = devm_kzalloc(&pdev->dev, sizeof(*eth), GFP_KERNEL);
if (!eth)
return -ENOMEM;
eth->dev = &pdev->dev;
err = dma_set_mask_and_coherent(eth->dev, DMA_BIT_MASK(32));
if (err) {
dev_err(eth->dev, "failed configuring DMA mask\n");
return err;
}
eth->fe_regs = devm_platform_ioremap_resource_byname(pdev, "fe");
if (IS_ERR(eth->fe_regs))
return dev_err_probe(eth->dev, PTR_ERR(eth->fe_regs),
"failed to iomap fe regs\n");
eth->qdma_regs = devm_platform_ioremap_resource_byname(pdev, "qdma0");
if (IS_ERR(eth->qdma_regs))
return dev_err_probe(eth->dev, PTR_ERR(eth->qdma_regs),
"failed to iomap qdma regs\n");
eth->rsts[0].id = "fe";
eth->rsts[1].id = "pdma";
eth->rsts[2].id = "qdma";
err = devm_reset_control_bulk_get_exclusive(eth->dev,
ARRAY_SIZE(eth->rsts),
eth->rsts);
if (err) {
dev_err(eth->dev, "failed to get bulk reset lines\n");
return err;
}
eth->xsi_rsts[0].id = "xsi-mac";
eth->xsi_rsts[1].id = "hsi0-mac";
eth->xsi_rsts[2].id = "hsi1-mac";
eth->xsi_rsts[3].id = "hsi-mac";
eth->xsi_rsts[4].id = "xfp-mac";
err = devm_reset_control_bulk_get_exclusive(eth->dev,
ARRAY_SIZE(eth->xsi_rsts),
eth->xsi_rsts);
if (err) {
dev_err(eth->dev, "failed to get bulk xsi reset lines\n");
return err;
}
spin_lock_init(&eth->irq_lock);
eth->irq = platform_get_irq(pdev, 0);
if (eth->irq < 0)
return eth->irq;
eth->napi_dev = alloc_netdev_dummy(0);
if (!eth->napi_dev)
return -ENOMEM;
/* Enable threaded NAPI by default */
eth->napi_dev->threaded = true;
strscpy(eth->napi_dev->name, "qdma_eth", sizeof(eth->napi_dev->name));
platform_set_drvdata(pdev, eth);
err = airoha_hw_init(eth);
if (err)
goto error;
airoha_qdma_start_napi(eth);
for_each_child_of_node(pdev->dev.of_node, np) {
if (!of_device_is_compatible(np, "airoha,eth-mac"))
continue;
if (!of_device_is_available(np))
continue;
err = airoha_alloc_gdm_port(eth, np);
if (err) {
of_node_put(np);
goto error;
}
}
return 0;
error:
airoha_hw_cleanup(eth);
for (i = 0; i < ARRAY_SIZE(eth->ports); i++) {
struct airoha_gdm_port *port = eth->ports[i];
if (port && port->dev->reg_state == NETREG_REGISTERED)
unregister_netdev(port->dev);
}
free_netdev(eth->napi_dev);
platform_set_drvdata(pdev, NULL);
return err;
}
static void airoha_remove(struct platform_device *pdev)
{
struct airoha_eth *eth = platform_get_drvdata(pdev);
int i;
airoha_hw_cleanup(eth);
for (i = 0; i < ARRAY_SIZE(eth->ports); i++) {
struct airoha_gdm_port *port = eth->ports[i];
if (!port)
continue;
airoha_dev_stop(port->dev);
unregister_netdev(port->dev);
}
free_netdev(eth->napi_dev);
platform_set_drvdata(pdev, NULL);
}
static const struct of_device_id of_airoha_match[] = {
{ .compatible = "airoha,en7581-eth" },
{ /* sentinel */ }
};
static struct platform_driver airoha_driver = {
.probe = airoha_probe,
.remove_new = airoha_remove,
.driver = {
.name = KBUILD_MODNAME,
.of_match_table = of_airoha_match,
},
};
module_platform_driver(airoha_driver);
MODULE_LICENSE("GPL");
MODULE_AUTHOR("Lorenzo Bianconi <lorenzo@kernel.org>");
MODULE_DESCRIPTION("Ethernet driver for Airoha SoC");
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment