Commit 2718d918 authored by Boris Brezillon's avatar Boris Brezillon

drm/panthor: Add the FW logical block

Contains everything that's FW related, that includes the code dealing
with the microcontroller unit (MCU) that's running the FW, and anything
related to allocating memory shared between the FW and the CPU.

A few global FW events are processed in the IRQ handler, the rest is
forwarded to the scheduler, since scheduling is the primary reason for
the FW existence, and also the main source of FW <-> kernel
interactions.

v6:
- Add Maxime's and Heiko's acks
- Keep header inclusion alphabetically ordered

v5:
- Fix typo in GLB_PERFCNT_SAMPLE definition
- Fix unbalanced panthor_vm_idle/active() calls
- Fallback to a slow reset when the fast reset fails
- Add extra information when reporting a FW boot failure

v4:
- Add a MODULE_FIRMWARE() entry for gen 10.8
- Fix a wrong return ERR_PTR() in panthor_fw_load_section_entry()
- Fix typos
- Add Steve's R-b

v3:
- Make the FW path more future-proof (Liviu)
- Use one waitqueue for all FW events
- Simplify propagation of FW events to the scheduler logic
- Drop the panthor_fw_mem abstraction and use panthor_kernel_bo instead
- Account for the panthor_vm changes
- Replace magic number with 0x7fffffff with ~0 to better signify that
  it's the maximum permitted value.
- More accurate rounding when computing the firmware timeout.
- Add a 'sub iterator' helper function. This also adds a check that a
  firmware entry doesn't overflow the firmware image.
- Drop __packed from FW structures, natural alignment is good enough.
- Other minor code improvements.
Co-developed-by: default avatarSteven Price <steven.price@arm.com>
Signed-off-by: default avatarSteven Price <steven.price@arm.com>
Signed-off-by: default avatarBoris Brezillon <boris.brezillon@collabora.com>
Reviewed-by: default avatarSteven Price <steven.price@arm.com>
Acked-by: default avatarMaxime Ripard <mripard@kernel.org>
Acked-by: default avatarHeiko Stuebner <heiko@sntech.de>
Link: https://patchwork.freedesktop.org/patch/msgid/20240229162230.2634044-9-boris.brezillon@collabora.com
parent 647810ec
// SPDX-License-Identifier: GPL-2.0 or MIT
/* Copyright 2023 Collabora ltd. */
#ifdef CONFIG_ARM_ARCH_TIMER
#include <asm/arch_timer.h>
#endif
#include <linux/clk.h>
#include <linux/dma-mapping.h>
#include <linux/firmware.h>
#include <linux/iopoll.h>
#include <linux/iosys-map.h>
#include <linux/mutex.h>
#include <linux/platform_device.h>
#include <drm/drm_drv.h>
#include <drm/drm_managed.h>
#include "panthor_device.h"
#include "panthor_fw.h"
#include "panthor_gem.h"
#include "panthor_gpu.h"
#include "panthor_mmu.h"
#include "panthor_regs.h"
#include "panthor_sched.h"
#define CSF_FW_NAME "mali_csffw.bin"
#define PING_INTERVAL_MS 12000
#define PROGRESS_TIMEOUT_CYCLES (5ull * 500 * 1024 * 1024)
#define PROGRESS_TIMEOUT_SCALE_SHIFT 10
#define IDLE_HYSTERESIS_US 800
#define PWROFF_HYSTERESIS_US 10000
/**
* struct panthor_fw_binary_hdr - Firmware binary header.
*/
struct panthor_fw_binary_hdr {
/** @magic: Magic value to check binary validity. */
u32 magic;
#define CSF_FW_BINARY_HEADER_MAGIC 0xc3f13a6e
/** @minor: Minor FW version. */
u8 minor;
/** @major: Major FW version. */
u8 major;
#define CSF_FW_BINARY_HEADER_MAJOR_MAX 0
/** @padding1: MBZ. */
u16 padding1;
/** @version_hash: FW version hash. */
u32 version_hash;
/** @padding2: MBZ. */
u32 padding2;
/** @size: FW binary size. */
u32 size;
};
/**
* enum panthor_fw_binary_entry_type - Firmware binary entry type
*/
enum panthor_fw_binary_entry_type {
/** @CSF_FW_BINARY_ENTRY_TYPE_IFACE: Host <-> FW interface. */
CSF_FW_BINARY_ENTRY_TYPE_IFACE = 0,
/** @CSF_FW_BINARY_ENTRY_TYPE_CONFIG: FW config. */
CSF_FW_BINARY_ENTRY_TYPE_CONFIG = 1,
/** @CSF_FW_BINARY_ENTRY_TYPE_FUTF_TEST: Unit-tests. */
CSF_FW_BINARY_ENTRY_TYPE_FUTF_TEST = 2,
/** @CSF_FW_BINARY_ENTRY_TYPE_TRACE_BUFFER: Trace buffer interface. */
CSF_FW_BINARY_ENTRY_TYPE_TRACE_BUFFER = 3,
/** @CSF_FW_BINARY_ENTRY_TYPE_TIMELINE_METADATA: Timeline metadata interface. */
CSF_FW_BINARY_ENTRY_TYPE_TIMELINE_METADATA = 4,
};
#define CSF_FW_BINARY_ENTRY_TYPE(ehdr) ((ehdr) & 0xff)
#define CSF_FW_BINARY_ENTRY_SIZE(ehdr) (((ehdr) >> 8) & 0xff)
#define CSF_FW_BINARY_ENTRY_UPDATE BIT(30)
#define CSF_FW_BINARY_ENTRY_OPTIONAL BIT(31)
#define CSF_FW_BINARY_IFACE_ENTRY_RD_RD BIT(0)
#define CSF_FW_BINARY_IFACE_ENTRY_RD_WR BIT(1)
#define CSF_FW_BINARY_IFACE_ENTRY_RD_EX BIT(2)
#define CSF_FW_BINARY_IFACE_ENTRY_RD_CACHE_MODE_NONE (0 << 3)
#define CSF_FW_BINARY_IFACE_ENTRY_RD_CACHE_MODE_CACHED (1 << 3)
#define CSF_FW_BINARY_IFACE_ENTRY_RD_CACHE_MODE_UNCACHED_COHERENT (2 << 3)
#define CSF_FW_BINARY_IFACE_ENTRY_RD_CACHE_MODE_CACHED_COHERENT (3 << 3)
#define CSF_FW_BINARY_IFACE_ENTRY_RD_CACHE_MODE_MASK GENMASK(4, 3)
#define CSF_FW_BINARY_IFACE_ENTRY_RD_PROT BIT(5)
#define CSF_FW_BINARY_IFACE_ENTRY_RD_SHARED BIT(30)
#define CSF_FW_BINARY_IFACE_ENTRY_RD_ZERO BIT(31)
#define CSF_FW_BINARY_IFACE_ENTRY_RD_SUPPORTED_FLAGS \
(CSF_FW_BINARY_IFACE_ENTRY_RD_RD | \
CSF_FW_BINARY_IFACE_ENTRY_RD_WR | \
CSF_FW_BINARY_IFACE_ENTRY_RD_EX | \
CSF_FW_BINARY_IFACE_ENTRY_RD_CACHE_MODE_MASK | \
CSF_FW_BINARY_IFACE_ENTRY_RD_PROT | \
CSF_FW_BINARY_IFACE_ENTRY_RD_SHARED | \
CSF_FW_BINARY_IFACE_ENTRY_RD_ZERO)
/**
* struct panthor_fw_binary_section_entry_hdr - Describes a section of FW binary
*/
struct panthor_fw_binary_section_entry_hdr {
/** @flags: Section flags. */
u32 flags;
/** @va: MCU virtual range to map this binary section to. */
struct {
/** @start: Start address. */
u32 start;
/** @end: End address. */
u32 end;
} va;
/** @data: Data to initialize the FW section with. */
struct {
/** @start: Start offset in the FW binary. */
u32 start;
/** @end: End offset in the FW binary. */
u32 end;
} data;
};
/**
* struct panthor_fw_binary_iter - Firmware binary iterator
*
* Used to parse a firmware binary.
*/
struct panthor_fw_binary_iter {
/** @data: FW binary data. */
const void *data;
/** @size: FW binary size. */
size_t size;
/** @offset: Iterator offset. */
size_t offset;
};
/**
* struct panthor_fw_section - FW section
*/
struct panthor_fw_section {
/** @node: Used to keep track of FW sections. */
struct list_head node;
/** @flags: Section flags, as encoded in the FW binary. */
u32 flags;
/** @mem: Section memory. */
struct panthor_kernel_bo *mem;
/**
* @name: Name of the section, as specified in the binary.
*
* Can be NULL.
*/
const char *name;
/**
* @data: Initial data copied to the FW memory.
*
* We keep data around so we can reload sections after a reset.
*/
struct {
/** @buf: Buffed used to store init data. */
const void *buf;
/** @size: Size of @buf in bytes. */
size_t size;
} data;
};
#define CSF_MCU_SHARED_REGION_START 0x04000000ULL
#define CSF_MCU_SHARED_REGION_SIZE 0x04000000ULL
#define MIN_CS_PER_CSG 8
#define MIN_CSGS 3
#define MAX_CSG_PRIO 0xf
#define CSF_IFACE_VERSION(major, minor, patch) \
(((major) << 24) | ((minor) << 16) | (patch))
#define CSF_IFACE_VERSION_MAJOR(v) ((v) >> 24)
#define CSF_IFACE_VERSION_MINOR(v) (((v) >> 16) & 0xff)
#define CSF_IFACE_VERSION_PATCH(v) ((v) & 0xffff)
#define CSF_GROUP_CONTROL_OFFSET 0x1000
#define CSF_STREAM_CONTROL_OFFSET 0x40
#define CSF_UNPRESERVED_REG_COUNT 4
/**
* struct panthor_fw_iface - FW interfaces
*/
struct panthor_fw_iface {
/** @global: Global interface. */
struct panthor_fw_global_iface global;
/** @groups: Group slot interfaces. */
struct panthor_fw_csg_iface groups[MAX_CSGS];
/** @streams: Command stream slot interfaces. */
struct panthor_fw_cs_iface streams[MAX_CSGS][MAX_CS_PER_CSG];
};
/**
* struct panthor_fw - Firmware management
*/
struct panthor_fw {
/** @vm: MCU VM. */
struct panthor_vm *vm;
/** @sections: List of FW sections. */
struct list_head sections;
/** @shared_section: The section containing the FW interfaces. */
struct panthor_fw_section *shared_section;
/** @iface: FW interfaces. */
struct panthor_fw_iface iface;
/** @watchdog: Collection of fields relating to the FW watchdog. */
struct {
/** @ping_work: Delayed work used to ping the FW. */
struct delayed_work ping_work;
} watchdog;
/**
* @req_waitqueue: FW request waitqueue.
*
* Everytime a request is sent to a command stream group or the global
* interface, the caller will first busy wait for the request to be
* acknowledged, and then fallback to a sleeping wait.
*
* This wait queue is here to support the sleeping wait flavor.
*/
wait_queue_head_t req_waitqueue;
/** @booted: True is the FW is booted */
bool booted;
/**
* @fast_reset: True if the post_reset logic can proceed with a fast reset.
*
* A fast reset is just a reset where the driver doesn't reload the FW sections.
*
* Any time the firmware is properly suspended, a fast reset can take place.
* On the other hand, if the halt operation failed, the driver will reload
* all sections to make sure we start from a fresh state.
*/
bool fast_reset;
/** @irq: Job irq data. */
struct panthor_irq irq;
};
struct panthor_vm *panthor_fw_vm(struct panthor_device *ptdev)
{
return ptdev->fw->vm;
}
/**
* panthor_fw_get_glb_iface() - Get the global interface
* @ptdev: Device.
*
* Return: The global interface.
*/
struct panthor_fw_global_iface *
panthor_fw_get_glb_iface(struct panthor_device *ptdev)
{
return &ptdev->fw->iface.global;
}
/**
* panthor_fw_get_csg_iface() - Get a command stream group slot interface
* @ptdev: Device.
* @csg_slot: Index of the command stream group slot.
*
* Return: The command stream group slot interface.
*/
struct panthor_fw_csg_iface *
panthor_fw_get_csg_iface(struct panthor_device *ptdev, u32 csg_slot)
{
if (drm_WARN_ON(&ptdev->base, csg_slot >= MAX_CSGS))
return NULL;
return &ptdev->fw->iface.groups[csg_slot];
}
/**
* panthor_fw_get_cs_iface() - Get a command stream slot interface
* @ptdev: Device.
* @csg_slot: Index of the command stream group slot.
* @cs_slot: Index of the command stream slot.
*
* Return: The command stream slot interface.
*/
struct panthor_fw_cs_iface *
panthor_fw_get_cs_iface(struct panthor_device *ptdev, u32 csg_slot, u32 cs_slot)
{
if (drm_WARN_ON(&ptdev->base, csg_slot >= MAX_CSGS || cs_slot > MAX_CS_PER_CSG))
return NULL;
return &ptdev->fw->iface.streams[csg_slot][cs_slot];
}
/**
* panthor_fw_conv_timeout() - Convert a timeout into a cycle-count
* @ptdev: Device.
* @timeout_us: Timeout expressed in micro-seconds.
*
* The FW has two timer sources: the GPU counter or arch-timer. We need
* to express timeouts in term of number of cycles and specify which
* timer source should be used.
*
* Return: A value suitable for timeout fields in the global interface.
*/
static u32 panthor_fw_conv_timeout(struct panthor_device *ptdev, u32 timeout_us)
{
bool use_cycle_counter = false;
u32 timer_rate = 0;
u64 mod_cycles;
#ifdef CONFIG_ARM_ARCH_TIMER
timer_rate = arch_timer_get_cntfrq();
#endif
if (!timer_rate) {
use_cycle_counter = true;
timer_rate = clk_get_rate(ptdev->clks.core);
}
if (drm_WARN_ON(&ptdev->base, !timer_rate)) {
/* We couldn't get a valid clock rate, let's just pick the
* maximum value so the FW still handles the core
* power on/off requests.
*/
return GLB_TIMER_VAL(~0) |
GLB_TIMER_SOURCE_GPU_COUNTER;
}
mod_cycles = DIV_ROUND_UP_ULL((u64)timeout_us * timer_rate,
1000000ull << 10);
if (drm_WARN_ON(&ptdev->base, mod_cycles > GLB_TIMER_VAL(~0)))
mod_cycles = GLB_TIMER_VAL(~0);
return GLB_TIMER_VAL(mod_cycles) |
(use_cycle_counter ? GLB_TIMER_SOURCE_GPU_COUNTER : 0);
}
static int panthor_fw_binary_iter_read(struct panthor_device *ptdev,
struct panthor_fw_binary_iter *iter,
void *out, size_t size)
{
size_t new_offset = iter->offset + size;
if (new_offset > iter->size || new_offset < iter->offset) {
drm_err(&ptdev->base, "Firmware too small\n");
return -EINVAL;
}
memcpy(out, iter->data + iter->offset, size);
iter->offset = new_offset;
return 0;
}
static int panthor_fw_binary_sub_iter_init(struct panthor_device *ptdev,
struct panthor_fw_binary_iter *iter,
struct panthor_fw_binary_iter *sub_iter,
size_t size)
{
size_t new_offset = iter->offset + size;
if (new_offset > iter->size || new_offset < iter->offset) {
drm_err(&ptdev->base, "Firmware entry too long\n");
return -EINVAL;
}
sub_iter->offset = 0;
sub_iter->data = iter->data + iter->offset;
sub_iter->size = size;
iter->offset = new_offset;
return 0;
}
static void panthor_fw_init_section_mem(struct panthor_device *ptdev,
struct panthor_fw_section *section)
{
bool was_mapped = !!section->mem->kmap;
int ret;
if (!section->data.size &&
!(section->flags & CSF_FW_BINARY_IFACE_ENTRY_RD_ZERO))
return;
ret = panthor_kernel_bo_vmap(section->mem);
if (drm_WARN_ON(&ptdev->base, ret))
return;
memcpy(section->mem->kmap, section->data.buf, section->data.size);
if (section->flags & CSF_FW_BINARY_IFACE_ENTRY_RD_ZERO) {
memset(section->mem->kmap + section->data.size, 0,
panthor_kernel_bo_size(section->mem) - section->data.size);
}
if (!was_mapped)
panthor_kernel_bo_vunmap(section->mem);
}
/**
* panthor_fw_alloc_queue_iface_mem() - Allocate a ring-buffer interfaces.
* @ptdev: Device.
* @input: Pointer holding the input interface on success.
* Should be ignored on failure.
* @output: Pointer holding the output interface on success.
* Should be ignored on failure.
* @input_fw_va: Pointer holding the input interface FW VA on success.
* Should be ignored on failure.
* @output_fw_va: Pointer holding the output interface FW VA on success.
* Should be ignored on failure.
*
* Allocates panthor_fw_ringbuf_{input,out}_iface interfaces. The input
* interface is at offset 0, and the output interface at offset 4096.
*
* Return: A valid pointer in case of success, an ERR_PTR() otherwise.
*/
struct panthor_kernel_bo *
panthor_fw_alloc_queue_iface_mem(struct panthor_device *ptdev,
struct panthor_fw_ringbuf_input_iface **input,
const struct panthor_fw_ringbuf_output_iface **output,
u32 *input_fw_va, u32 *output_fw_va)
{
struct panthor_kernel_bo *mem;
int ret;
mem = panthor_kernel_bo_create(ptdev, ptdev->fw->vm, SZ_8K,
DRM_PANTHOR_BO_NO_MMAP,
DRM_PANTHOR_VM_BIND_OP_MAP_NOEXEC |
DRM_PANTHOR_VM_BIND_OP_MAP_UNCACHED,
PANTHOR_VM_KERNEL_AUTO_VA);
if (IS_ERR(mem))
return mem;
ret = panthor_kernel_bo_vmap(mem);
if (ret) {
panthor_kernel_bo_destroy(panthor_fw_vm(ptdev), mem);
return ERR_PTR(ret);
}
memset(mem->kmap, 0, panthor_kernel_bo_size(mem));
*input = mem->kmap;
*output = mem->kmap + SZ_4K;
*input_fw_va = panthor_kernel_bo_gpuva(mem);
*output_fw_va = *input_fw_va + SZ_4K;
return mem;
}
/**
* panthor_fw_alloc_suspend_buf_mem() - Allocate a suspend buffer for a command stream group.
* @ptdev: Device.
* @size: Size of the suspend buffer.
*
* Return: A valid pointer in case of success, an ERR_PTR() otherwise.
*/
struct panthor_kernel_bo *
panthor_fw_alloc_suspend_buf_mem(struct panthor_device *ptdev, size_t size)
{
return panthor_kernel_bo_create(ptdev, panthor_fw_vm(ptdev), size,
DRM_PANTHOR_BO_NO_MMAP,
DRM_PANTHOR_VM_BIND_OP_MAP_NOEXEC,
PANTHOR_VM_KERNEL_AUTO_VA);
}
static int panthor_fw_load_section_entry(struct panthor_device *ptdev,
const struct firmware *fw,
struct panthor_fw_binary_iter *iter,
u32 ehdr)
{
struct panthor_fw_binary_section_entry_hdr hdr;
struct panthor_fw_section *section;
u32 section_size;
u32 name_len;
int ret;
ret = panthor_fw_binary_iter_read(ptdev, iter, &hdr, sizeof(hdr));
if (ret)
return ret;
if (hdr.data.end < hdr.data.start) {
drm_err(&ptdev->base, "Firmware corrupted, data.end < data.start (0x%x < 0x%x)\n",
hdr.data.end, hdr.data.start);
return -EINVAL;
}
if (hdr.va.end < hdr.va.start) {
drm_err(&ptdev->base, "Firmware corrupted, hdr.va.end < hdr.va.start (0x%x < 0x%x)\n",
hdr.va.end, hdr.va.start);
return -EINVAL;
}
if (hdr.data.end > fw->size) {
drm_err(&ptdev->base, "Firmware corrupted, file truncated? data_end=0x%x > fw size=0x%zx\n",
hdr.data.end, fw->size);
return -EINVAL;
}
if ((hdr.va.start & ~PAGE_MASK) != 0 ||
(hdr.va.end & ~PAGE_MASK) != 0) {
drm_err(&ptdev->base, "Firmware corrupted, virtual addresses not page aligned: 0x%x-0x%x\n",
hdr.va.start, hdr.va.end);
return -EINVAL;
}
if (hdr.flags & ~CSF_FW_BINARY_IFACE_ENTRY_RD_SUPPORTED_FLAGS) {
drm_err(&ptdev->base, "Firmware contains interface with unsupported flags (0x%x)\n",
hdr.flags);
return -EINVAL;
}
if (hdr.flags & CSF_FW_BINARY_IFACE_ENTRY_RD_PROT) {
drm_warn(&ptdev->base,
"Firmware protected mode entry not be supported, ignoring");
return 0;
}
if (hdr.va.start == CSF_MCU_SHARED_REGION_START &&
!(hdr.flags & CSF_FW_BINARY_IFACE_ENTRY_RD_SHARED)) {
drm_err(&ptdev->base,
"Interface at 0x%llx must be shared", CSF_MCU_SHARED_REGION_START);
return -EINVAL;
}
name_len = iter->size - iter->offset;
section = drmm_kzalloc(&ptdev->base, sizeof(*section), GFP_KERNEL);
if (!section)
return -ENOMEM;
list_add_tail(&section->node, &ptdev->fw->sections);
section->flags = hdr.flags;
section->data.size = hdr.data.end - hdr.data.start;
if (section->data.size > 0) {
void *data = drmm_kmalloc(&ptdev->base, section->data.size, GFP_KERNEL);
if (!data)
return -ENOMEM;
memcpy(data, fw->data + hdr.data.start, section->data.size);
section->data.buf = data;
}
if (name_len > 0) {
char *name = drmm_kmalloc(&ptdev->base, name_len + 1, GFP_KERNEL);
if (!name)
return -ENOMEM;
memcpy(name, iter->data + iter->offset, name_len);
name[name_len] = '\0';
section->name = name;
}
section_size = hdr.va.end - hdr.va.start;
if (section_size) {
u32 cache_mode = hdr.flags & CSF_FW_BINARY_IFACE_ENTRY_RD_CACHE_MODE_MASK;
struct panthor_gem_object *bo;
u32 vm_map_flags = 0;
struct sg_table *sgt;
u64 va = hdr.va.start;
if (!(hdr.flags & CSF_FW_BINARY_IFACE_ENTRY_RD_WR))
vm_map_flags |= DRM_PANTHOR_VM_BIND_OP_MAP_READONLY;
if (!(hdr.flags & CSF_FW_BINARY_IFACE_ENTRY_RD_EX))
vm_map_flags |= DRM_PANTHOR_VM_BIND_OP_MAP_NOEXEC;
/* TODO: CSF_FW_BINARY_IFACE_ENTRY_RD_CACHE_MODE_*_COHERENT are mapped to
* non-cacheable for now. We might want to introduce a new
* IOMMU_xxx flag (or abuse IOMMU_MMIO, which maps to device
* memory and is currently not used by our driver) for
* AS_MEMATTR_AARCH64_SHARED memory, so we can take benefit
* of IO-coherent systems.
*/
if (cache_mode != CSF_FW_BINARY_IFACE_ENTRY_RD_CACHE_MODE_CACHED)
vm_map_flags |= DRM_PANTHOR_VM_BIND_OP_MAP_UNCACHED;
section->mem = panthor_kernel_bo_create(ptdev, panthor_fw_vm(ptdev),
section_size,
DRM_PANTHOR_BO_NO_MMAP,
vm_map_flags, va);
if (IS_ERR(section->mem))
return PTR_ERR(section->mem);
if (drm_WARN_ON(&ptdev->base, section->mem->va_node.start != hdr.va.start))
return -EINVAL;
if (section->flags & CSF_FW_BINARY_IFACE_ENTRY_RD_SHARED) {
ret = panthor_kernel_bo_vmap(section->mem);
if (ret)
return ret;
}
panthor_fw_init_section_mem(ptdev, section);
bo = to_panthor_bo(section->mem->obj);
sgt = drm_gem_shmem_get_pages_sgt(&bo->base);
if (IS_ERR(sgt))
return PTR_ERR(sgt);
dma_sync_sgtable_for_device(ptdev->base.dev, sgt, DMA_TO_DEVICE);
}
if (hdr.va.start == CSF_MCU_SHARED_REGION_START)
ptdev->fw->shared_section = section;
return 0;
}
static void
panthor_reload_fw_sections(struct panthor_device *ptdev, bool full_reload)
{
struct panthor_fw_section *section;
list_for_each_entry(section, &ptdev->fw->sections, node) {
struct sg_table *sgt;
if (!full_reload && !(section->flags & CSF_FW_BINARY_IFACE_ENTRY_RD_WR))
continue;
panthor_fw_init_section_mem(ptdev, section);
sgt = drm_gem_shmem_get_pages_sgt(&to_panthor_bo(section->mem->obj)->base);
if (!drm_WARN_ON(&ptdev->base, IS_ERR_OR_NULL(sgt)))
dma_sync_sgtable_for_device(ptdev->base.dev, sgt, DMA_TO_DEVICE);
}
}
static int panthor_fw_load_entry(struct panthor_device *ptdev,
const struct firmware *fw,
struct panthor_fw_binary_iter *iter)
{
struct panthor_fw_binary_iter eiter;
u32 ehdr;
int ret;
ret = panthor_fw_binary_iter_read(ptdev, iter, &ehdr, sizeof(ehdr));
if (ret)
return ret;
if ((iter->offset % sizeof(u32)) ||
(CSF_FW_BINARY_ENTRY_SIZE(ehdr) % sizeof(u32))) {
drm_err(&ptdev->base, "Firmware entry isn't 32 bit aligned, offset=0x%x size=0x%x\n",
(u32)(iter->offset - sizeof(u32)), CSF_FW_BINARY_ENTRY_SIZE(ehdr));
return -EINVAL;
}
if (panthor_fw_binary_sub_iter_init(ptdev, iter, &eiter,
CSF_FW_BINARY_ENTRY_SIZE(ehdr) - sizeof(ehdr)))
return -EINVAL;
switch (CSF_FW_BINARY_ENTRY_TYPE(ehdr)) {
case CSF_FW_BINARY_ENTRY_TYPE_IFACE:
return panthor_fw_load_section_entry(ptdev, fw, &eiter, ehdr);
/* FIXME: handle those entry types? */
case CSF_FW_BINARY_ENTRY_TYPE_CONFIG:
case CSF_FW_BINARY_ENTRY_TYPE_FUTF_TEST:
case CSF_FW_BINARY_ENTRY_TYPE_TRACE_BUFFER:
case CSF_FW_BINARY_ENTRY_TYPE_TIMELINE_METADATA:
return 0;
default:
break;
}
if (ehdr & CSF_FW_BINARY_ENTRY_OPTIONAL)
return 0;
drm_err(&ptdev->base,
"Unsupported non-optional entry type %u in firmware\n",
CSF_FW_BINARY_ENTRY_TYPE(ehdr));
return -EINVAL;
}
static int panthor_fw_load(struct panthor_device *ptdev)
{
const struct firmware *fw = NULL;
struct panthor_fw_binary_iter iter = {};
struct panthor_fw_binary_hdr hdr;
char fw_path[128];
int ret;
snprintf(fw_path, sizeof(fw_path), "arm/mali/arch%d.%d/%s",
(u32)GPU_ARCH_MAJOR(ptdev->gpu_info.gpu_id),
(u32)GPU_ARCH_MINOR(ptdev->gpu_info.gpu_id),
CSF_FW_NAME);
ret = request_firmware(&fw, fw_path, ptdev->base.dev);
if (ret) {
drm_err(&ptdev->base, "Failed to load firmware image '%s'\n",
CSF_FW_NAME);
return ret;
}
iter.data = fw->data;
iter.size = fw->size;
ret = panthor_fw_binary_iter_read(ptdev, &iter, &hdr, sizeof(hdr));
if (ret)
goto out;
if (hdr.magic != CSF_FW_BINARY_HEADER_MAGIC) {
ret = -EINVAL;
drm_err(&ptdev->base, "Invalid firmware magic\n");
goto out;
}
if (hdr.major != CSF_FW_BINARY_HEADER_MAJOR_MAX) {
ret = -EINVAL;
drm_err(&ptdev->base, "Unsupported firmware binary header version %d.%d (expected %d.x)\n",
hdr.major, hdr.minor, CSF_FW_BINARY_HEADER_MAJOR_MAX);
goto out;
}
if (hdr.size > iter.size) {
drm_err(&ptdev->base, "Firmware image is truncated\n");
goto out;
}
iter.size = hdr.size;
while (iter.offset < hdr.size) {
ret = panthor_fw_load_entry(ptdev, fw, &iter);
if (ret)
goto out;
}
if (!ptdev->fw->shared_section) {
drm_err(&ptdev->base, "Shared interface region not found\n");
ret = -EINVAL;
goto out;
}
out:
release_firmware(fw);
return ret;
}
/**
* iface_fw_to_cpu_addr() - Turn an MCU address into a CPU address
* @ptdev: Device.
* @mcu_va: MCU address.
*
* Return: NULL if the address is not part of the shared section, non-NULL otherwise.
*/
static void *iface_fw_to_cpu_addr(struct panthor_device *ptdev, u32 mcu_va)
{
u64 shared_mem_start = panthor_kernel_bo_gpuva(ptdev->fw->shared_section->mem);
u64 shared_mem_end = shared_mem_start +
panthor_kernel_bo_size(ptdev->fw->shared_section->mem);
if (mcu_va < shared_mem_start || mcu_va >= shared_mem_end)
return NULL;
return ptdev->fw->shared_section->mem->kmap + (mcu_va - shared_mem_start);
}
static int panthor_init_cs_iface(struct panthor_device *ptdev,
unsigned int csg_idx, unsigned int cs_idx)
{
struct panthor_fw_global_iface *glb_iface = panthor_fw_get_glb_iface(ptdev);
struct panthor_fw_csg_iface *csg_iface = panthor_fw_get_csg_iface(ptdev, csg_idx);
struct panthor_fw_cs_iface *cs_iface = &ptdev->fw->iface.streams[csg_idx][cs_idx];
u64 shared_section_sz = panthor_kernel_bo_size(ptdev->fw->shared_section->mem);
u32 iface_offset = CSF_GROUP_CONTROL_OFFSET +
(csg_idx * glb_iface->control->group_stride) +
CSF_STREAM_CONTROL_OFFSET +
(cs_idx * csg_iface->control->stream_stride);
struct panthor_fw_cs_iface *first_cs_iface =
panthor_fw_get_cs_iface(ptdev, 0, 0);
if (iface_offset + sizeof(*cs_iface) >= shared_section_sz)
return -EINVAL;
spin_lock_init(&cs_iface->lock);
cs_iface->control = ptdev->fw->shared_section->mem->kmap + iface_offset;
cs_iface->input = iface_fw_to_cpu_addr(ptdev, cs_iface->control->input_va);
cs_iface->output = iface_fw_to_cpu_addr(ptdev, cs_iface->control->output_va);
if (!cs_iface->input || !cs_iface->output) {
drm_err(&ptdev->base, "Invalid stream control interface input/output VA");
return -EINVAL;
}
if (cs_iface != first_cs_iface) {
if (cs_iface->control->features != first_cs_iface->control->features) {
drm_err(&ptdev->base, "Expecting identical CS slots");
return -EINVAL;
}
} else {
u32 reg_count = CS_FEATURES_WORK_REGS(cs_iface->control->features);
ptdev->csif_info.cs_reg_count = reg_count;
ptdev->csif_info.unpreserved_cs_reg_count = CSF_UNPRESERVED_REG_COUNT;
}
return 0;
}
static bool compare_csg(const struct panthor_fw_csg_control_iface *a,
const struct panthor_fw_csg_control_iface *b)
{
if (a->features != b->features)
return false;
if (a->suspend_size != b->suspend_size)
return false;
if (a->protm_suspend_size != b->protm_suspend_size)
return false;
if (a->stream_num != b->stream_num)
return false;
return true;
}
static int panthor_init_csg_iface(struct panthor_device *ptdev,
unsigned int csg_idx)
{
struct panthor_fw_global_iface *glb_iface = panthor_fw_get_glb_iface(ptdev);
struct panthor_fw_csg_iface *csg_iface = &ptdev->fw->iface.groups[csg_idx];
u64 shared_section_sz = panthor_kernel_bo_size(ptdev->fw->shared_section->mem);
u32 iface_offset = CSF_GROUP_CONTROL_OFFSET + (csg_idx * glb_iface->control->group_stride);
unsigned int i;
if (iface_offset + sizeof(*csg_iface) >= shared_section_sz)
return -EINVAL;
spin_lock_init(&csg_iface->lock);
csg_iface->control = ptdev->fw->shared_section->mem->kmap + iface_offset;
csg_iface->input = iface_fw_to_cpu_addr(ptdev, csg_iface->control->input_va);
csg_iface->output = iface_fw_to_cpu_addr(ptdev, csg_iface->control->output_va);
if (csg_iface->control->stream_num < MIN_CS_PER_CSG ||
csg_iface->control->stream_num > MAX_CS_PER_CSG)
return -EINVAL;
if (!csg_iface->input || !csg_iface->output) {
drm_err(&ptdev->base, "Invalid group control interface input/output VA");
return -EINVAL;
}
if (csg_idx > 0) {
struct panthor_fw_csg_iface *first_csg_iface =
panthor_fw_get_csg_iface(ptdev, 0);
if (!compare_csg(first_csg_iface->control, csg_iface->control)) {
drm_err(&ptdev->base, "Expecting identical CSG slots");
return -EINVAL;
}
}
for (i = 0; i < csg_iface->control->stream_num; i++) {
int ret = panthor_init_cs_iface(ptdev, csg_idx, i);
if (ret)
return ret;
}
return 0;
}
static u32 panthor_get_instr_features(struct panthor_device *ptdev)
{
struct panthor_fw_global_iface *glb_iface = panthor_fw_get_glb_iface(ptdev);
if (glb_iface->control->version < CSF_IFACE_VERSION(1, 1, 0))
return 0;
return glb_iface->control->instr_features;
}
static int panthor_fw_init_ifaces(struct panthor_device *ptdev)
{
struct panthor_fw_global_iface *glb_iface = &ptdev->fw->iface.global;
unsigned int i;
if (!ptdev->fw->shared_section->mem->kmap)
return -EINVAL;
spin_lock_init(&glb_iface->lock);
glb_iface->control = ptdev->fw->shared_section->mem->kmap;
if (!glb_iface->control->version) {
drm_err(&ptdev->base, "Firmware version is 0. Firmware may have failed to boot");
return -EINVAL;
}
glb_iface->input = iface_fw_to_cpu_addr(ptdev, glb_iface->control->input_va);
glb_iface->output = iface_fw_to_cpu_addr(ptdev, glb_iface->control->output_va);
if (!glb_iface->input || !glb_iface->output) {
drm_err(&ptdev->base, "Invalid global control interface input/output VA");
return -EINVAL;
}
if (glb_iface->control->group_num > MAX_CSGS ||
glb_iface->control->group_num < MIN_CSGS) {
drm_err(&ptdev->base, "Invalid number of control groups");
return -EINVAL;
}
for (i = 0; i < glb_iface->control->group_num; i++) {
int ret = panthor_init_csg_iface(ptdev, i);
if (ret)
return ret;
}
drm_info(&ptdev->base, "CSF FW v%d.%d.%d, Features %#x Instrumentation features %#x",
CSF_IFACE_VERSION_MAJOR(glb_iface->control->version),
CSF_IFACE_VERSION_MINOR(glb_iface->control->version),
CSF_IFACE_VERSION_PATCH(glb_iface->control->version),
glb_iface->control->features,
panthor_get_instr_features(ptdev));
return 0;
}
static void panthor_fw_init_global_iface(struct panthor_device *ptdev)
{
struct panthor_fw_global_iface *glb_iface = panthor_fw_get_glb_iface(ptdev);
/* Enable all cores. */
glb_iface->input->core_en_mask = ptdev->gpu_info.shader_present;
/* Setup timers. */
glb_iface->input->poweroff_timer = panthor_fw_conv_timeout(ptdev, PWROFF_HYSTERESIS_US);
glb_iface->input->progress_timer = PROGRESS_TIMEOUT_CYCLES >> PROGRESS_TIMEOUT_SCALE_SHIFT;
glb_iface->input->idle_timer = panthor_fw_conv_timeout(ptdev, IDLE_HYSTERESIS_US);
/* Enable interrupts we care about. */
glb_iface->input->ack_irq_mask = GLB_CFG_ALLOC_EN |
GLB_PING |
GLB_CFG_PROGRESS_TIMER |
GLB_CFG_POWEROFF_TIMER |
GLB_IDLE_EN |
GLB_IDLE;
panthor_fw_update_reqs(glb_iface, req, GLB_IDLE_EN, GLB_IDLE_EN);
panthor_fw_toggle_reqs(glb_iface, req, ack,
GLB_CFG_ALLOC_EN |
GLB_CFG_POWEROFF_TIMER |
GLB_CFG_PROGRESS_TIMER);
gpu_write(ptdev, CSF_DOORBELL(CSF_GLB_DOORBELL_ID), 1);
/* Kick the watchdog. */
mod_delayed_work(ptdev->reset.wq, &ptdev->fw->watchdog.ping_work,
msecs_to_jiffies(PING_INTERVAL_MS));
}
static void panthor_job_irq_handler(struct panthor_device *ptdev, u32 status)
{
if (!ptdev->fw->booted && (status & JOB_INT_GLOBAL_IF))
ptdev->fw->booted = true;
wake_up_all(&ptdev->fw->req_waitqueue);
/* If the FW is not booted, don't process IRQs, just flag the FW as booted. */
if (!ptdev->fw->booted)
return;
panthor_sched_report_fw_events(ptdev, status);
}
PANTHOR_IRQ_HANDLER(job, JOB, panthor_job_irq_handler);
static int panthor_fw_start(struct panthor_device *ptdev)
{
bool timedout = false;
ptdev->fw->booted = false;
panthor_job_irq_resume(&ptdev->fw->irq, ~0);
gpu_write(ptdev, MCU_CONTROL, MCU_CONTROL_AUTO);
if (!wait_event_timeout(ptdev->fw->req_waitqueue,
ptdev->fw->booted,
msecs_to_jiffies(1000))) {
if (!ptdev->fw->booted &&
!(gpu_read(ptdev, JOB_INT_STAT) & JOB_INT_GLOBAL_IF))
timedout = true;
}
if (timedout) {
static const char * const status_str[] = {
[MCU_STATUS_DISABLED] = "disabled",
[MCU_STATUS_ENABLED] = "enabled",
[MCU_STATUS_HALT] = "halt",
[MCU_STATUS_FATAL] = "fatal",
};
u32 status = gpu_read(ptdev, MCU_STATUS);
drm_err(&ptdev->base, "Failed to boot MCU (status=%s)",
status < ARRAY_SIZE(status_str) ? status_str[status] : "unknown");
return -ETIMEDOUT;
}
return 0;
}
static void panthor_fw_stop(struct panthor_device *ptdev)
{
u32 status;
gpu_write(ptdev, MCU_CONTROL, MCU_CONTROL_DISABLE);
if (readl_poll_timeout(ptdev->iomem + MCU_STATUS, status,
status == MCU_STATUS_DISABLED, 10, 100000))
drm_err(&ptdev->base, "Failed to stop MCU");
}
/**
* panthor_fw_pre_reset() - Call before a reset.
* @ptdev: Device.
* @on_hang: true if the reset was triggered on a GPU hang.
*
* If the reset is not triggered on a hang, we try to gracefully halt the
* MCU, so we can do a fast-reset when panthor_fw_post_reset() is called.
*/
void panthor_fw_pre_reset(struct panthor_device *ptdev, bool on_hang)
{
/* Make sure we won't be woken up by a ping. */
cancel_delayed_work_sync(&ptdev->fw->watchdog.ping_work);
ptdev->fw->fast_reset = false;
if (!on_hang) {
struct panthor_fw_global_iface *glb_iface = panthor_fw_get_glb_iface(ptdev);
u32 status;
panthor_fw_update_reqs(glb_iface, req, GLB_HALT, GLB_HALT);
gpu_write(ptdev, CSF_DOORBELL(CSF_GLB_DOORBELL_ID), 1);
if (!readl_poll_timeout(ptdev->iomem + MCU_STATUS, status,
status == MCU_STATUS_HALT, 10, 100000) &&
glb_iface->output->halt_status == PANTHOR_FW_HALT_OK) {
ptdev->fw->fast_reset = true;
} else {
drm_warn(&ptdev->base, "Failed to cleanly suspend MCU");
}
/* The FW detects 0 -> 1 transitions. Make sure we reset
* the HALT bit before the FW is rebooted.
*/
panthor_fw_update_reqs(glb_iface, req, 0, GLB_HALT);
}
panthor_job_irq_suspend(&ptdev->fw->irq);
}
/**
* panthor_fw_post_reset() - Call after a reset.
* @ptdev: Device.
*
* Start the FW. If this is not a fast reset, all FW sections are reloaded to
* make sure we can recover from a memory corruption.
*/
int panthor_fw_post_reset(struct panthor_device *ptdev)
{
int ret;
/* Make the MCU VM active. */
ret = panthor_vm_active(ptdev->fw->vm);
if (ret)
return ret;
/* If this is a fast reset, try to start the MCU without reloading
* the FW sections. If it fails, go for a full reset.
*/
if (ptdev->fw->fast_reset) {
ret = panthor_fw_start(ptdev);
if (!ret)
goto out;
/* Force a disable, so we get a fresh boot on the next
* panthor_fw_start() call.
*/
gpu_write(ptdev, MCU_CONTROL, MCU_CONTROL_DISABLE);
drm_err(&ptdev->base, "FW fast reset failed, trying a slow reset");
}
/* Reload all sections, including RO ones. We're not supposed
* to end up here anyway, let's just assume the overhead of
* reloading everything is acceptable.
*/
panthor_reload_fw_sections(ptdev, true);
ret = panthor_fw_start(ptdev);
if (ret) {
drm_err(&ptdev->base, "FW slow reset failed");
return ret;
}
out:
/* We must re-initialize the global interface even on fast-reset. */
panthor_fw_init_global_iface(ptdev);
return 0;
}
/**
* panthor_fw_unplug() - Called when the device is unplugged.
* @ptdev: Device.
*
* This function must make sure all pending operations are flushed before
* will release device resources, thus preventing any interaction with
* the HW.
*
* If there is still FW-related work running after this function returns,
* they must use drm_dev_{enter,exit}() and skip any HW access when
* drm_dev_enter() returns false.
*/
void panthor_fw_unplug(struct panthor_device *ptdev)
{
struct panthor_fw_section *section;
cancel_delayed_work_sync(&ptdev->fw->watchdog.ping_work);
/* Make sure the IRQ handler can be called after that point. */
if (ptdev->fw->irq.irq)
panthor_job_irq_suspend(&ptdev->fw->irq);
panthor_fw_stop(ptdev);
list_for_each_entry(section, &ptdev->fw->sections, node)
panthor_kernel_bo_destroy(panthor_fw_vm(ptdev), section->mem);
/* We intentionally don't call panthor_vm_idle() and let
* panthor_mmu_unplug() release the AS we acquired with
* panthor_vm_active() so we don't have to track the VM active/idle
* state to keep the active_refcnt balanced.
*/
panthor_vm_put(ptdev->fw->vm);
panthor_gpu_power_off(ptdev, L2, ptdev->gpu_info.l2_present, 20000);
}
/**
* panthor_fw_wait_acks() - Wait for requests to be acknowledged by the FW.
* @req_ptr: Pointer to the req register.
* @ack_ptr: Pointer to the ack register.
* @wq: Wait queue to use for the sleeping wait.
* @req_mask: Mask of requests to wait for.
* @acked: Pointer to field that's updated with the acked requests.
* If the function returns 0, *acked == req_mask.
* @timeout_ms: Timeout expressed in milliseconds.
*
* Return: 0 on success, -ETIMEDOUT otherwise.
*/
static int panthor_fw_wait_acks(const u32 *req_ptr, const u32 *ack_ptr,
wait_queue_head_t *wq,
u32 req_mask, u32 *acked,
u32 timeout_ms)
{
u32 ack, req = READ_ONCE(*req_ptr) & req_mask;
int ret;
/* Busy wait for a few µsecs before falling back to a sleeping wait. */
*acked = req_mask;
ret = read_poll_timeout_atomic(READ_ONCE, ack,
(ack & req_mask) == req,
0, 10, 0,
*ack_ptr);
if (!ret)
return 0;
if (wait_event_timeout(*wq, (READ_ONCE(*ack_ptr) & req_mask) == req,
msecs_to_jiffies(timeout_ms)))
return 0;
/* Check one last time, in case we were not woken up for some reason. */
ack = READ_ONCE(*ack_ptr);
if ((ack & req_mask) == req)
return 0;
*acked = ~(req ^ ack) & req_mask;
return -ETIMEDOUT;
}
/**
* panthor_fw_glb_wait_acks() - Wait for global requests to be acknowledged.
* @ptdev: Device.
* @req_mask: Mask of requests to wait for.
* @acked: Pointer to field that's updated with the acked requests.
* If the function returns 0, *acked == req_mask.
* @timeout_ms: Timeout expressed in milliseconds.
*
* Return: 0 on success, -ETIMEDOUT otherwise.
*/
int panthor_fw_glb_wait_acks(struct panthor_device *ptdev,
u32 req_mask, u32 *acked,
u32 timeout_ms)
{
struct panthor_fw_global_iface *glb_iface = panthor_fw_get_glb_iface(ptdev);
/* GLB_HALT doesn't get acked through the FW interface. */
if (drm_WARN_ON(&ptdev->base, req_mask & (~GLB_REQ_MASK | GLB_HALT)))
return -EINVAL;
return panthor_fw_wait_acks(&glb_iface->input->req,
&glb_iface->output->ack,
&ptdev->fw->req_waitqueue,
req_mask, acked, timeout_ms);
}
/**
* panthor_fw_csg_wait_acks() - Wait for command stream group requests to be acknowledged.
* @ptdev: Device.
* @csg_slot: CSG slot ID.
* @req_mask: Mask of requests to wait for.
* @acked: Pointer to field that's updated with the acked requests.
* If the function returns 0, *acked == req_mask.
* @timeout_ms: Timeout expressed in milliseconds.
*
* Return: 0 on success, -ETIMEDOUT otherwise.
*/
int panthor_fw_csg_wait_acks(struct panthor_device *ptdev, u32 csg_slot,
u32 req_mask, u32 *acked, u32 timeout_ms)
{
struct panthor_fw_csg_iface *csg_iface = panthor_fw_get_csg_iface(ptdev, csg_slot);
int ret;
if (drm_WARN_ON(&ptdev->base, req_mask & ~CSG_REQ_MASK))
return -EINVAL;
ret = panthor_fw_wait_acks(&csg_iface->input->req,
&csg_iface->output->ack,
&ptdev->fw->req_waitqueue,
req_mask, acked, timeout_ms);
/*
* Check that all bits in the state field were updated, if any mismatch
* then clear all bits in the state field. This allows code to do
* (acked & CSG_STATE_MASK) and get the right value.
*/
if ((*acked & CSG_STATE_MASK) != CSG_STATE_MASK)
*acked &= ~CSG_STATE_MASK;
return ret;
}
/**
* panthor_fw_ring_csg_doorbells() - Ring command stream group doorbells.
* @ptdev: Device.
* @csg_mask: Bitmask encoding the command stream group doorbells to ring.
*
* This function is toggling bits in the doorbell_req and ringing the
* global doorbell. It doesn't require a user doorbell to be attached to
* the group.
*/
void panthor_fw_ring_csg_doorbells(struct panthor_device *ptdev, u32 csg_mask)
{
struct panthor_fw_global_iface *glb_iface = panthor_fw_get_glb_iface(ptdev);
panthor_fw_toggle_reqs(glb_iface, doorbell_req, doorbell_ack, csg_mask);
gpu_write(ptdev, CSF_DOORBELL(CSF_GLB_DOORBELL_ID), 1);
}
static void panthor_fw_ping_work(struct work_struct *work)
{
struct panthor_fw *fw = container_of(work, struct panthor_fw, watchdog.ping_work.work);
struct panthor_device *ptdev = fw->irq.ptdev;
struct panthor_fw_global_iface *glb_iface = panthor_fw_get_glb_iface(ptdev);
u32 acked;
int ret;
if (panthor_device_reset_is_pending(ptdev))
return;
panthor_fw_toggle_reqs(glb_iface, req, ack, GLB_PING);
gpu_write(ptdev, CSF_DOORBELL(CSF_GLB_DOORBELL_ID), 1);
ret = panthor_fw_glb_wait_acks(ptdev, GLB_PING, &acked, 100);
if (ret) {
panthor_device_schedule_reset(ptdev);
drm_err(&ptdev->base, "FW ping timeout, scheduling a reset");
} else {
mod_delayed_work(ptdev->reset.wq, &fw->watchdog.ping_work,
msecs_to_jiffies(PING_INTERVAL_MS));
}
}
/**
* panthor_fw_init() - Initialize FW related data.
* @ptdev: Device.
*
* Return: 0 on success, a negative error code otherwise.
*/
int panthor_fw_init(struct panthor_device *ptdev)
{
struct panthor_fw *fw;
int ret, irq;
fw = drmm_kzalloc(&ptdev->base, sizeof(*fw), GFP_KERNEL);
if (!fw)
return -ENOMEM;
ptdev->fw = fw;
init_waitqueue_head(&fw->req_waitqueue);
INIT_LIST_HEAD(&fw->sections);
INIT_DELAYED_WORK(&fw->watchdog.ping_work, panthor_fw_ping_work);
irq = platform_get_irq_byname(to_platform_device(ptdev->base.dev), "job");
if (irq <= 0)
return -ENODEV;
ret = panthor_request_job_irq(ptdev, &fw->irq, irq, 0);
if (ret) {
drm_err(&ptdev->base, "failed to request job irq");
return ret;
}
ret = panthor_gpu_l2_power_on(ptdev);
if (ret)
return ret;
fw->vm = panthor_vm_create(ptdev, true,
0, SZ_4G,
CSF_MCU_SHARED_REGION_START,
CSF_MCU_SHARED_REGION_SIZE);
if (IS_ERR(fw->vm)) {
ret = PTR_ERR(fw->vm);
fw->vm = NULL;
goto err_unplug_fw;
}
ret = panthor_fw_load(ptdev);
if (ret)
goto err_unplug_fw;
ret = panthor_vm_active(fw->vm);
if (ret)
goto err_unplug_fw;
ret = panthor_fw_start(ptdev);
if (ret)
goto err_unplug_fw;
ret = panthor_fw_init_ifaces(ptdev);
if (ret)
goto err_unplug_fw;
panthor_fw_init_global_iface(ptdev);
return 0;
err_unplug_fw:
panthor_fw_unplug(ptdev);
return ret;
}
MODULE_FIRMWARE("arm/mali/arch10.8/mali_csffw.bin");
/* SPDX-License-Identifier: GPL-2.0 or MIT */
/* Copyright 2023 Collabora ltd. */
#ifndef __PANTHOR_MCU_H__
#define __PANTHOR_MCU_H__
#include <linux/types.h>
struct panthor_device;
struct panthor_kernel_bo;
#define MAX_CSGS 31
#define MAX_CS_PER_CSG 32
struct panthor_fw_ringbuf_input_iface {
u64 insert;
u64 extract;
};
struct panthor_fw_ringbuf_output_iface {
u64 extract;
u32 active;
};
struct panthor_fw_cs_control_iface {
#define CS_FEATURES_WORK_REGS(x) (((x) & GENMASK(7, 0)) + 1)
#define CS_FEATURES_SCOREBOARDS(x) (((x) & GENMASK(15, 8)) >> 8)
#define CS_FEATURES_COMPUTE BIT(16)
#define CS_FEATURES_FRAGMENT BIT(17)
#define CS_FEATURES_TILER BIT(18)
u32 features;
u32 input_va;
u32 output_va;
};
struct panthor_fw_cs_input_iface {
#define CS_STATE_MASK GENMASK(2, 0)
#define CS_STATE_STOP 0
#define CS_STATE_START 1
#define CS_EXTRACT_EVENT BIT(4)
#define CS_IDLE_SYNC_WAIT BIT(8)
#define CS_IDLE_PROTM_PENDING BIT(9)
#define CS_IDLE_EMPTY BIT(10)
#define CS_IDLE_RESOURCE_REQ BIT(11)
#define CS_TILER_OOM BIT(26)
#define CS_PROTM_PENDING BIT(27)
#define CS_FATAL BIT(30)
#define CS_FAULT BIT(31)
#define CS_REQ_MASK (CS_STATE_MASK | \
CS_EXTRACT_EVENT | \
CS_IDLE_SYNC_WAIT | \
CS_IDLE_PROTM_PENDING | \
CS_IDLE_EMPTY | \
CS_IDLE_RESOURCE_REQ)
#define CS_EVT_MASK (CS_TILER_OOM | \
CS_PROTM_PENDING | \
CS_FATAL | \
CS_FAULT)
u32 req;
#define CS_CONFIG_PRIORITY(x) ((x) & GENMASK(3, 0))
#define CS_CONFIG_DOORBELL(x) (((x) << 8) & GENMASK(15, 8))
u32 config;
u32 reserved1;
u32 ack_irq_mask;
u64 ringbuf_base;
u32 ringbuf_size;
u32 reserved2;
u64 heap_start;
u64 heap_end;
u64 ringbuf_input;
u64 ringbuf_output;
u32 instr_config;
u32 instrbuf_size;
u64 instrbuf_base;
u64 instrbuf_offset_ptr;
};
struct panthor_fw_cs_output_iface {
u32 ack;
u32 reserved1[15];
u64 status_cmd_ptr;
#define CS_STATUS_WAIT_SB_MASK GENMASK(15, 0)
#define CS_STATUS_WAIT_SB_SRC_MASK GENMASK(19, 16)
#define CS_STATUS_WAIT_SB_SRC_NONE (0 << 16)
#define CS_STATUS_WAIT_SB_SRC_WAIT (8 << 16)
#define CS_STATUS_WAIT_SYNC_COND_LE (0 << 24)
#define CS_STATUS_WAIT_SYNC_COND_GT (1 << 24)
#define CS_STATUS_WAIT_SYNC_COND_MASK GENMASK(27, 24)
#define CS_STATUS_WAIT_PROGRESS BIT(28)
#define CS_STATUS_WAIT_PROTM BIT(29)
#define CS_STATUS_WAIT_SYNC_64B BIT(30)
#define CS_STATUS_WAIT_SYNC BIT(31)
u32 status_wait;
u32 status_req_resource;
u64 status_wait_sync_ptr;
u32 status_wait_sync_value;
u32 status_scoreboards;
#define CS_STATUS_BLOCKED_REASON_UNBLOCKED 0
#define CS_STATUS_BLOCKED_REASON_SB_WAIT 1
#define CS_STATUS_BLOCKED_REASON_PROGRESS_WAIT 2
#define CS_STATUS_BLOCKED_REASON_SYNC_WAIT 3
#define CS_STATUS_BLOCKED_REASON_DEFERRED 5
#define CS_STATUS_BLOCKED_REASON_RES 6
#define CS_STATUS_BLOCKED_REASON_FLUSH 7
#define CS_STATUS_BLOCKED_REASON_MASK GENMASK(3, 0)
u32 status_blocked_reason;
u32 status_wait_sync_value_hi;
u32 reserved2[6];
#define CS_EXCEPTION_TYPE(x) ((x) & GENMASK(7, 0))
#define CS_EXCEPTION_DATA(x) (((x) >> 8) & GENMASK(23, 0))
u32 fault;
u32 fatal;
u64 fault_info;
u64 fatal_info;
u32 reserved3[10];
u32 heap_vt_start;
u32 heap_vt_end;
u32 reserved4;
u32 heap_frag_end;
u64 heap_address;
};
struct panthor_fw_csg_control_iface {
u32 features;
u32 input_va;
u32 output_va;
u32 suspend_size;
u32 protm_suspend_size;
u32 stream_num;
u32 stream_stride;
};
struct panthor_fw_csg_input_iface {
#define CSG_STATE_MASK GENMASK(2, 0)
#define CSG_STATE_TERMINATE 0
#define CSG_STATE_START 1
#define CSG_STATE_SUSPEND 2
#define CSG_STATE_RESUME 3
#define CSG_ENDPOINT_CONFIG BIT(4)
#define CSG_STATUS_UPDATE BIT(5)
#define CSG_SYNC_UPDATE BIT(28)
#define CSG_IDLE BIT(29)
#define CSG_DOORBELL BIT(30)
#define CSG_PROGRESS_TIMER_EVENT BIT(31)
#define CSG_REQ_MASK (CSG_STATE_MASK | \
CSG_ENDPOINT_CONFIG | \
CSG_STATUS_UPDATE)
#define CSG_EVT_MASK (CSG_SYNC_UPDATE | \
CSG_IDLE | \
CSG_PROGRESS_TIMER_EVENT)
u32 req;
u32 ack_irq_mask;
u32 doorbell_req;
u32 cs_irq_ack;
u32 reserved1[4];
u64 allow_compute;
u64 allow_fragment;
u32 allow_other;
#define CSG_EP_REQ_COMPUTE(x) ((x) & GENMASK(7, 0))
#define CSG_EP_REQ_FRAGMENT(x) (((x) << 8) & GENMASK(15, 8))
#define CSG_EP_REQ_TILER(x) (((x) << 16) & GENMASK(19, 16))
#define CSG_EP_REQ_EXCL_COMPUTE BIT(20)
#define CSG_EP_REQ_EXCL_FRAGMENT BIT(21)
#define CSG_EP_REQ_PRIORITY(x) (((x) << 28) & GENMASK(31, 28))
#define CSG_EP_REQ_PRIORITY_MASK GENMASK(31, 28)
u32 endpoint_req;
u32 reserved2[2];
u64 suspend_buf;
u64 protm_suspend_buf;
u32 config;
u32 iter_trace_config;
};
struct panthor_fw_csg_output_iface {
u32 ack;
u32 reserved1;
u32 doorbell_ack;
u32 cs_irq_req;
u32 status_endpoint_current;
u32 status_endpoint_req;
#define CSG_STATUS_STATE_IS_IDLE BIT(0)
u32 status_state;
u32 resource_dep;
};
struct panthor_fw_global_control_iface {
u32 version;
u32 features;
u32 input_va;
u32 output_va;
u32 group_num;
u32 group_stride;
u32 perfcnt_size;
u32 instr_features;
};
struct panthor_fw_global_input_iface {
#define GLB_HALT BIT(0)
#define GLB_CFG_PROGRESS_TIMER BIT(1)
#define GLB_CFG_ALLOC_EN BIT(2)
#define GLB_CFG_POWEROFF_TIMER BIT(3)
#define GLB_PROTM_ENTER BIT(4)
#define GLB_PERFCNT_EN BIT(5)
#define GLB_PERFCNT_SAMPLE BIT(6)
#define GLB_COUNTER_EN BIT(7)
#define GLB_PING BIT(8)
#define GLB_FWCFG_UPDATE BIT(9)
#define GLB_IDLE_EN BIT(10)
#define GLB_SLEEP BIT(12)
#define GLB_INACTIVE_COMPUTE BIT(20)
#define GLB_INACTIVE_FRAGMENT BIT(21)
#define GLB_INACTIVE_TILER BIT(22)
#define GLB_PROTM_EXIT BIT(23)
#define GLB_PERFCNT_THRESHOLD BIT(24)
#define GLB_PERFCNT_OVERFLOW BIT(25)
#define GLB_IDLE BIT(26)
#define GLB_DBG_CSF BIT(30)
#define GLB_DBG_HOST BIT(31)
#define GLB_REQ_MASK GENMASK(10, 0)
#define GLB_EVT_MASK GENMASK(26, 20)
u32 req;
u32 ack_irq_mask;
u32 doorbell_req;
u32 reserved1;
u32 progress_timer;
#define GLB_TIMER_VAL(x) ((x) & GENMASK(30, 0))
#define GLB_TIMER_SOURCE_GPU_COUNTER BIT(31)
u32 poweroff_timer;
u64 core_en_mask;
u32 reserved2;
u32 perfcnt_as;
u64 perfcnt_base;
u32 perfcnt_extract;
u32 reserved3[3];
u32 perfcnt_config;
u32 perfcnt_csg_select;
u32 perfcnt_fw_enable;
u32 perfcnt_csg_enable;
u32 perfcnt_csf_enable;
u32 perfcnt_shader_enable;
u32 perfcnt_tiler_enable;
u32 perfcnt_mmu_l2_enable;
u32 reserved4[8];
u32 idle_timer;
};
enum panthor_fw_halt_status {
PANTHOR_FW_HALT_OK = 0,
PANTHOR_FW_HALT_ON_PANIC = 0x4e,
PANTHOR_FW_HALT_ON_WATCHDOG_EXPIRATION = 0x4f,
};
struct panthor_fw_global_output_iface {
u32 ack;
u32 reserved1;
u32 doorbell_ack;
u32 reserved2;
u32 halt_status;
u32 perfcnt_status;
u32 perfcnt_insert;
};
/**
* struct panthor_fw_cs_iface - Firmware command stream slot interface
*/
struct panthor_fw_cs_iface {
/**
* @lock: Lock protecting access to the panthor_fw_cs_input_iface::req
* field.
*
* Needed so we can update the req field concurrently from the interrupt
* handler and the scheduler logic.
*
* TODO: Ideally we'd want to use a cmpxchg() to update the req, but FW
* interface sections are mapped uncached/write-combined right now, and
* using cmpxchg() on such mappings leads to SError faults. Revisit when
* we have 'SHARED' GPU mappings hooked up.
*/
spinlock_t lock;
/**
* @control: Command stream slot control interface.
*
* Used to expose command stream slot properties.
*
* This interface is read-only.
*/
struct panthor_fw_cs_control_iface *control;
/**
* @input: Command stream slot input interface.
*
* Used for host updates/events.
*/
struct panthor_fw_cs_input_iface *input;
/**
* @output: Command stream slot output interface.
*
* Used for FW updates/events.
*
* This interface is read-only.
*/
const struct panthor_fw_cs_output_iface *output;
};
/**
* struct panthor_fw_csg_iface - Firmware command stream group slot interface
*/
struct panthor_fw_csg_iface {
/**
* @lock: Lock protecting access to the panthor_fw_csg_input_iface::req
* field.
*
* Needed so we can update the req field concurrently from the interrupt
* handler and the scheduler logic.
*
* TODO: Ideally we'd want to use a cmpxchg() to update the req, but FW
* interface sections are mapped uncached/write-combined right now, and
* using cmpxchg() on such mappings leads to SError faults. Revisit when
* we have 'SHARED' GPU mappings hooked up.
*/
spinlock_t lock;
/**
* @control: Command stream group slot control interface.
*
* Used to expose command stream group slot properties.
*
* This interface is read-only.
*/
const struct panthor_fw_csg_control_iface *control;
/**
* @input: Command stream slot input interface.
*
* Used for host updates/events.
*/
struct panthor_fw_csg_input_iface *input;
/**
* @output: Command stream group slot output interface.
*
* Used for FW updates/events.
*
* This interface is read-only.
*/
const struct panthor_fw_csg_output_iface *output;
};
/**
* struct panthor_fw_global_iface - Firmware global interface
*/
struct panthor_fw_global_iface {
/**
* @lock: Lock protecting access to the panthor_fw_global_input_iface::req
* field.
*
* Needed so we can update the req field concurrently from the interrupt
* handler and the scheduler/FW management logic.
*
* TODO: Ideally we'd want to use a cmpxchg() to update the req, but FW
* interface sections are mapped uncached/write-combined right now, and
* using cmpxchg() on such mappings leads to SError faults. Revisit when
* we have 'SHARED' GPU mappings hooked up.
*/
spinlock_t lock;
/**
* @control: Command stream group slot control interface.
*
* Used to expose global FW properties.
*
* This interface is read-only.
*/
const struct panthor_fw_global_control_iface *control;
/**
* @input: Global input interface.
*
* Used for host updates/events.
*/
struct panthor_fw_global_input_iface *input;
/**
* @output: Global output interface.
*
* Used for FW updates/events.
*
* This interface is read-only.
*/
const struct panthor_fw_global_output_iface *output;
};
/**
* panthor_fw_toggle_reqs() - Toggle acknowledge bits to send an event to the FW
* @__iface: The interface to operate on.
* @__in_reg: Name of the register to update in the input section of the interface.
* @__out_reg: Name of the register to take as a reference in the output section of the
* interface.
* @__mask: Mask to apply to the update.
*
* The Host -> FW event/message passing was designed to be lockless, with each side of
* the channel having its writeable section. Events are signaled as a difference between
* the host and FW side in the req/ack registers (when a bit differs, there's an event
* pending, when they are the same, nothing needs attention).
*
* This helper allows one to update the req register based on the current value of the
* ack register managed by the FW. Toggling a specific bit will flag an event. In order
* for events to be re-evaluated, the interface doorbell needs to be rung.
*
* Concurrent accesses to the same req register is covered.
*
* Anything requiring atomic updates to multiple registers requires a dedicated lock.
*/
#define panthor_fw_toggle_reqs(__iface, __in_reg, __out_reg, __mask) \
do { \
u32 __cur_val, __new_val, __out_val; \
spin_lock(&(__iface)->lock); \
__cur_val = READ_ONCE((__iface)->input->__in_reg); \
__out_val = READ_ONCE((__iface)->output->__out_reg); \
__new_val = ((__out_val ^ (__mask)) & (__mask)) | (__cur_val & ~(__mask)); \
WRITE_ONCE((__iface)->input->__in_reg, __new_val); \
spin_unlock(&(__iface)->lock); \
} while (0)
/**
* panthor_fw_update_reqs() - Update bits to reflect a configuration change
* @__iface: The interface to operate on.
* @__in_reg: Name of the register to update in the input section of the interface.
* @__val: Value to set.
* @__mask: Mask to apply to the update.
*
* Some configuration get passed through req registers that are also used to
* send events to the FW. Those req registers being updated from the interrupt
* handler, they require special helpers to update the configuration part as well.
*
* Concurrent accesses to the same req register is covered.
*
* Anything requiring atomic updates to multiple registers requires a dedicated lock.
*/
#define panthor_fw_update_reqs(__iface, __in_reg, __val, __mask) \
do { \
u32 __cur_val, __new_val; \
spin_lock(&(__iface)->lock); \
__cur_val = READ_ONCE((__iface)->input->__in_reg); \
__new_val = (__cur_val & ~(__mask)) | ((__val) & (__mask)); \
WRITE_ONCE((__iface)->input->__in_reg, __new_val); \
spin_unlock(&(__iface)->lock); \
} while (0)
struct panthor_fw_global_iface *
panthor_fw_get_glb_iface(struct panthor_device *ptdev);
struct panthor_fw_csg_iface *
panthor_fw_get_csg_iface(struct panthor_device *ptdev, u32 csg_slot);
struct panthor_fw_cs_iface *
panthor_fw_get_cs_iface(struct panthor_device *ptdev, u32 csg_slot, u32 cs_slot);
int panthor_fw_csg_wait_acks(struct panthor_device *ptdev, u32 csg_id, u32 req_mask,
u32 *acked, u32 timeout_ms);
int panthor_fw_glb_wait_acks(struct panthor_device *ptdev, u32 req_mask, u32 *acked,
u32 timeout_ms);
void panthor_fw_ring_csg_doorbells(struct panthor_device *ptdev, u32 csg_slot);
struct panthor_kernel_bo *
panthor_fw_alloc_queue_iface_mem(struct panthor_device *ptdev,
struct panthor_fw_ringbuf_input_iface **input,
const struct panthor_fw_ringbuf_output_iface **output,
u32 *input_fw_va, u32 *output_fw_va);
struct panthor_kernel_bo *
panthor_fw_alloc_suspend_buf_mem(struct panthor_device *ptdev, size_t size);
struct panthor_vm *panthor_fw_vm(struct panthor_device *ptdev);
void panthor_fw_pre_reset(struct panthor_device *ptdev, bool on_hang);
int panthor_fw_post_reset(struct panthor_device *ptdev);
static inline void panthor_fw_suspend(struct panthor_device *ptdev)
{
panthor_fw_pre_reset(ptdev, false);
}
static inline int panthor_fw_resume(struct panthor_device *ptdev)
{
return panthor_fw_post_reset(ptdev);
}
int panthor_fw_init(struct panthor_device *ptdev);
void panthor_fw_unplug(struct panthor_device *ptdev);
#endif
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment