Commit 2d4238f5 authored by Krzysztof Kazimierczak's avatar Krzysztof Kazimierczak Committed by Jeff Kirsher

ice: Add support for AF_XDP

Add zero copy AF_XDP support.  This patch adds zero copy support for
Tx and Rx; code for zero copy is added to ice_xsk.h and ice_xsk.c.

For Tx, implement ndo_xsk_wakeup. As with other drivers, reuse
existing XDP Tx queues for this task, since XDP_REDIRECT guarantees
mutual exclusion between different NAPI contexts based on CPU ID. In
turn, a netdev can XDP_REDIRECT to another netdev with a different
NAPI context, since the operation is bound to a specific core and each
core has its own hardware ring.

For Rx, allocate frames as MEM_TYPE_ZERO_COPY on queues that AF_XDP is
enabled.
Signed-off-by: default avatarKrzysztof Kazimierczak <krzysztof.kazimierczak@intel.com>
Co-developed-by: default avatarMaciej Fijalkowski <maciej.fijalkowski@intel.com>
Signed-off-by: default avatarMaciej Fijalkowski <maciej.fijalkowski@intel.com>
Signed-off-by: default avatarTony Nguyen <anthony.l.nguyen@intel.com>
Signed-off-by: default avatarJeff Kirsher <jeffrey.t.kirsher@intel.com>
parent 0891d6d4
......@@ -21,3 +21,4 @@ ice-y := ice_main.o \
ice_ethtool.o
ice-$(CONFIG_PCI_IOV) += ice_virtchnl_pf.o ice_sriov.o
ice-$(CONFIG_DCB) += ice_dcb.o ice_dcb_lib.o
ice-$(CONFIG_XDP_SOCKETS) += ice_xsk.o
......@@ -35,6 +35,7 @@
#include <linux/bpf.h>
#include <linux/avf/virtchnl.h>
#include <net/ipv6.h>
#include <net/xdp_sock.h>
#include "ice_devids.h"
#include "ice_type.h"
#include "ice_txrx.h"
......@@ -44,6 +45,7 @@
#include "ice_sched.h"
#include "ice_virtchnl_pf.h"
#include "ice_sriov.h"
#include "ice_xsk.h"
extern const char ice_drv_ver[];
#define ICE_BAR0 0
......@@ -287,6 +289,9 @@ struct ice_vsi {
struct ice_ring **xdp_rings; /* XDP ring array */
u16 num_xdp_txq; /* Used XDP queues */
u8 xdp_mapping_mode; /* ICE_MAP_MODE_[CONTIG|SCATTER] */
struct xdp_umem **xsk_umems;
u16 num_xsk_umems_used;
u16 num_xsk_umems;
} ____cacheline_internodealigned_in_smp;
/* struct that defines an interrupt vector */
......@@ -440,6 +445,27 @@ static inline void ice_set_ring_xdp(struct ice_ring *ring)
ring->flags |= ICE_TX_FLAGS_RING_XDP;
}
/**
* ice_xsk_umem - get XDP UMEM bound to a ring
* @ring - ring to use
*
* Returns a pointer to xdp_umem structure if there is an UMEM present,
* NULL otherwise.
*/
static inline struct xdp_umem *ice_xsk_umem(struct ice_ring *ring)
{
struct xdp_umem **umems = ring->vsi->xsk_umems;
int qid = ring->q_index;
if (ice_ring_is_xdp(ring))
qid -= ring->vsi->num_xdp_txq;
if (!umems || !umems[qid] || !ice_is_xdp_ena_vsi(ring->vsi))
return NULL;
return umems[qid];
}
/**
* ice_get_main_vsi - Get the PF VSI
* @pf: PF instance
......
......@@ -276,14 +276,17 @@ ice_setup_tx_ctx(struct ice_ring *ring, struct ice_tlan_ctx *tlan_ctx, u16 pf_q)
*/
int ice_setup_rx_ctx(struct ice_ring *ring)
{
int chain_len = ICE_MAX_CHAINED_RX_BUFS;
struct ice_vsi *vsi = ring->vsi;
struct ice_hw *hw = &vsi->back->hw;
u32 rxdid = ICE_RXDID_FLEX_NIC;
struct ice_rlan_ctx rlan_ctx;
struct ice_hw *hw;
u32 regval;
u16 pf_q;
int err;
hw = &vsi->back->hw;
/* what is Rx queue number in global space of 2K Rx queues */
pf_q = vsi->rxq_map[ring->q_index];
......@@ -297,11 +300,39 @@ int ice_setup_rx_ctx(struct ice_ring *ring)
xdp_rxq_info_reg(&ring->xdp_rxq, ring->netdev,
ring->q_index);
ring->xsk_umem = ice_xsk_umem(ring);
if (ring->xsk_umem) {
xdp_rxq_info_unreg_mem_model(&ring->xdp_rxq);
ring->rx_buf_len = ring->xsk_umem->chunk_size_nohr -
XDP_PACKET_HEADROOM;
/* For AF_XDP ZC, we disallow packets to span on
* multiple buffers, thus letting us skip that
* handling in the fast-path.
*/
chain_len = 1;
ring->zca.free = ice_zca_free;
err = xdp_rxq_info_reg_mem_model(&ring->xdp_rxq,
MEM_TYPE_PAGE_SHARED, NULL);
MEM_TYPE_ZERO_COPY,
&ring->zca);
if (err)
return err;
dev_info(&vsi->back->pdev->dev, "Registered XDP mem model MEM_TYPE_ZERO_COPY on Rx ring %d\n",
ring->q_index);
} else {
if (!xdp_rxq_info_is_reg(&ring->xdp_rxq))
xdp_rxq_info_reg(&ring->xdp_rxq,
ring->netdev,
ring->q_index);
err = xdp_rxq_info_reg_mem_model(&ring->xdp_rxq,
MEM_TYPE_PAGE_SHARED,
NULL);
if (err)
return err;
}
}
/* Receive Queue Base Address.
* Indicates the starting address of the descriptor queue defined in
* 128 Byte units.
......@@ -340,7 +371,7 @@ int ice_setup_rx_ctx(struct ice_ring *ring)
* than 5 x DBUF
*/
rlan_ctx.rxmax = min_t(u16, vsi->max_frame,
ICE_MAX_CHAINED_RX_BUFS * vsi->rx_buf_len);
chain_len * ring->rx_buf_len);
/* Rx queue threshold in units of 64 */
rlan_ctx.lrxqthresh = 1;
......@@ -378,7 +409,15 @@ int ice_setup_rx_ctx(struct ice_ring *ring)
/* init queue specific tail register */
ring->tail = hw->hw_addr + QRX_TAIL(pf_q);
writel(0, ring->tail);
err = ring->xsk_umem ?
ice_alloc_rx_bufs_slow_zc(ring, ICE_DESC_UNUSED(ring)) :
ice_alloc_rx_bufs(ring, ICE_DESC_UNUSED(ring));
if (err)
dev_info(&vsi->back->pdev->dev,
"Failed allocate some buffers on %sRx ring %d (pf_q %d)\n",
ring->xsk_umem ? "UMEM enabled " : "",
ring->q_index, pf_q);
return 0;
}
......
......@@ -2612,6 +2612,13 @@ ice_set_ringparam(struct net_device *netdev, struct ethtool_ringparam *ring)
return 0;
}
/* If there is a AF_XDP UMEM attached to any of Rx rings,
* disallow changing the number of descriptors -- regardless
* if the netdev is running or not.
*/
if (ice_xsk_any_rx_ring_ena(vsi))
return -EBUSY;
while (test_and_set_bit(__ICE_CFG_BUSY, pf->state)) {
timeout--;
if (!timeout)
......
......@@ -1283,7 +1283,17 @@ int ice_vsi_cfg_lan_txqs(struct ice_vsi *vsi)
*/
int ice_vsi_cfg_xdp_txqs(struct ice_vsi *vsi)
{
return ice_vsi_cfg_txqs(vsi, vsi->xdp_rings);
int ret;
int i;
ret = ice_vsi_cfg_txqs(vsi, vsi->xdp_rings);
if (ret)
return ret;
for (i = 0; i < vsi->num_xdp_txq; i++)
vsi->xdp_rings[i]->xsk_umem = ice_xsk_umem(vsi->xdp_rings[i]);
return ret;
}
/**
......@@ -2514,6 +2524,51 @@ char *ice_nvm_version_str(struct ice_hw *hw)
return buf;
}
/**
* ice_update_ring_stats - Update ring statistics
* @ring: ring to update
* @cont: used to increment per-vector counters
* @pkts: number of processed packets
* @bytes: number of processed bytes
*
* This function assumes that caller has acquired a u64_stats_sync lock.
*/
static void
ice_update_ring_stats(struct ice_ring *ring, struct ice_ring_container *cont,
u64 pkts, u64 bytes)
{
ring->stats.bytes += bytes;
ring->stats.pkts += pkts;
cont->total_bytes += bytes;
cont->total_pkts += pkts;
}
/**
* ice_update_tx_ring_stats - Update Tx ring specific counters
* @tx_ring: ring to update
* @pkts: number of processed packets
* @bytes: number of processed bytes
*/
void ice_update_tx_ring_stats(struct ice_ring *tx_ring, u64 pkts, u64 bytes)
{
u64_stats_update_begin(&tx_ring->syncp);
ice_update_ring_stats(tx_ring, &tx_ring->q_vector->tx, pkts, bytes);
u64_stats_update_end(&tx_ring->syncp);
}
/**
* ice_update_rx_ring_stats - Update Rx ring specific counters
* @rx_ring: ring to update
* @pkts: number of processed packets
* @bytes: number of processed bytes
*/
void ice_update_rx_ring_stats(struct ice_ring *rx_ring, u64 pkts, u64 bytes)
{
u64_stats_update_begin(&rx_ring->syncp);
ice_update_ring_stats(rx_ring, &rx_ring->q_vector->rx, pkts, bytes);
u64_stats_update_end(&rx_ring->syncp);
}
/**
* ice_vsi_cfg_mac_fltr - Add or remove a MAC address filter for a VSI
* @vsi: the VSI being configured MAC filter
......
......@@ -83,6 +83,10 @@ void ice_vsi_free_tx_rings(struct ice_vsi *vsi);
int ice_vsi_manage_rss_lut(struct ice_vsi *vsi, bool ena);
void ice_update_tx_ring_stats(struct ice_ring *ring, u64 pkts, u64 bytes);
void ice_update_rx_ring_stats(struct ice_ring *ring, u64 pkts, u64 bytes);
void ice_vsi_cfg_frame_size(struct ice_vsi *vsi);
u32 ice_intrl_usec_to_reg(u8 intrl, u8 gran);
......
......@@ -1692,6 +1692,7 @@ static int ice_xdp_alloc_setup_rings(struct ice_vsi *vsi)
if (ice_setup_tx_ring(xdp_ring))
goto free_xdp_rings;
ice_set_ring_xdp(xdp_ring);
xdp_ring->xsk_umem = ice_xsk_umem(xdp_ring);
}
return 0;
......@@ -1934,6 +1935,17 @@ ice_xdp_setup_prog(struct ice_vsi *vsi, struct bpf_prog *prog,
if (if_running)
ret = ice_up(vsi);
if (!ret && prog && vsi->xsk_umems) {
int i;
ice_for_each_rxq(vsi, i) {
struct ice_ring *rx_ring = vsi->rx_rings[i];
if (rx_ring->xsk_umem)
napi_schedule(&rx_ring->q_vector->napi);
}
}
return (ret || xdp_ring_err) ? -ENOMEM : 0;
}
......@@ -1959,6 +1971,9 @@ static int ice_xdp(struct net_device *dev, struct netdev_bpf *xdp)
case XDP_QUERY_PROG:
xdp->prog_id = vsi->xdp_prog ? vsi->xdp_prog->aux->id : 0;
return 0;
case XDP_SETUP_XSK_UMEM:
return ice_xsk_umem_setup(vsi, xdp->xsk.umem,
xdp->xsk.queue_id);
default:
return -EINVAL;
}
......@@ -5205,4 +5220,5 @@ static const struct net_device_ops ice_netdev_ops = {
.ndo_tx_timeout = ice_tx_timeout,
.ndo_bpf = ice_xdp,
.ndo_xdp_xmit = ice_xdp_xmit,
.ndo_xsk_wakeup = ice_xsk_wakeup,
};
......@@ -11,6 +11,7 @@
#include "ice_lib.h"
#include "ice.h"
#include "ice_dcb_lib.h"
#include "ice_xsk.h"
#define ICE_RX_HDR_SIZE 256
......@@ -58,6 +59,11 @@ void ice_clean_tx_ring(struct ice_ring *tx_ring)
{
u16 i;
if (ice_ring_is_xdp(tx_ring) && tx_ring->xsk_umem) {
ice_xsk_clean_xdp_ring(tx_ring);
goto tx_skip_free;
}
/* ring already cleared, nothing to do */
if (!tx_ring->tx_buf)
return;
......@@ -66,6 +72,7 @@ void ice_clean_tx_ring(struct ice_ring *tx_ring)
for (i = 0; i < tx_ring->count; i++)
ice_unmap_and_free_tx_buf(tx_ring, &tx_ring->tx_buf[i]);
tx_skip_free:
memset(tx_ring->tx_buf, 0, sizeof(*tx_ring->tx_buf) * tx_ring->count);
/* Zero out the descriptor ring */
......@@ -198,12 +205,8 @@ static bool ice_clean_tx_irq(struct ice_ring *tx_ring, int napi_budget)
i += tx_ring->count;
tx_ring->next_to_clean = i;
u64_stats_update_begin(&tx_ring->syncp);
tx_ring->stats.bytes += total_bytes;
tx_ring->stats.pkts += total_pkts;
u64_stats_update_end(&tx_ring->syncp);
tx_ring->q_vector->tx.total_bytes += total_bytes;
tx_ring->q_vector->tx.total_pkts += total_pkts;
ice_update_tx_ring_stats(tx_ring, total_pkts, total_bytes);
if (ice_ring_is_xdp(tx_ring))
return !!budget;
......@@ -286,6 +289,11 @@ void ice_clean_rx_ring(struct ice_ring *rx_ring)
if (!rx_ring->rx_buf)
return;
if (rx_ring->xsk_umem) {
ice_xsk_clean_rx_ring(rx_ring);
goto rx_skip_free;
}
/* Free all the Rx ring sk_buffs */
for (i = 0; i < rx_ring->count; i++) {
struct ice_rx_buf *rx_buf = &rx_ring->rx_buf[i];
......@@ -313,6 +321,7 @@ void ice_clean_rx_ring(struct ice_ring *rx_ring)
rx_buf->page_offset = 0;
}
rx_skip_free:
memset(rx_ring->rx_buf, 0, sizeof(*rx_ring->rx_buf) * rx_ring->count);
/* Zero out the descriptor ring */
......@@ -1073,13 +1082,7 @@ static int ice_clean_rx_irq(struct ice_ring *rx_ring, int budget)
if (xdp_prog)
ice_finalize_xdp_rx(rx_ring, xdp_xmit);
/* update queue and vector specific stats */
u64_stats_update_begin(&rx_ring->syncp);
rx_ring->stats.pkts += total_rx_pkts;
rx_ring->stats.bytes += total_rx_bytes;
u64_stats_update_end(&rx_ring->syncp);
rx_ring->q_vector->rx.total_pkts += total_rx_pkts;
rx_ring->q_vector->rx.total_bytes += total_rx_bytes;
ice_update_rx_ring_stats(rx_ring, total_rx_pkts, total_rx_bytes);
/* guarantee a trip back through this routine if there was a failure */
return failure ? budget : (int)total_rx_pkts;
......@@ -1457,9 +1460,14 @@ int ice_napi_poll(struct napi_struct *napi, int budget)
/* Since the actual Tx work is minimal, we can give the Tx a larger
* budget and be more aggressive about cleaning up the Tx descriptors.
*/
ice_for_each_ring(ring, q_vector->tx)
if (!ice_clean_tx_irq(ring, budget))
ice_for_each_ring(ring, q_vector->tx) {
bool wd = ring->xsk_umem ?
ice_clean_tx_irq_zc(ring, budget) :
ice_clean_tx_irq(ring, budget);
if (!wd)
clean_complete = false;
}
/* Handle case where we are called by netpoll with a budget of 0 */
if (unlikely(budget <= 0))
......@@ -1479,7 +1487,13 @@ int ice_napi_poll(struct napi_struct *napi, int budget)
ice_for_each_ring(ring, q_vector->rx) {
int cleaned;
cleaned = ice_clean_rx_irq(ring, budget_per_ring);
/* A dedicated path for zero-copy allows making a single
* comparison in the irq context instead of many inside the
* ice_clean_rx_irq function and makes the codebase cleaner.
*/
cleaned = ring->xsk_umem ?
ice_clean_rx_irq_zc(ring, budget_per_ring) :
ice_clean_rx_irq(ring, budget_per_ring);
work_done += cleaned;
/* if we clean as many as budgeted, we must not be done */
if (cleaned >= budget_per_ring)
......
......@@ -4,6 +4,8 @@
#ifndef _ICE_TXRX_H_
#define _ICE_TXRX_H_
#include "ice_type.h"
#define ICE_DFLT_IRQ_WORK 256
#define ICE_RXBUF_2048 2048
#define ICE_MAX_CHAINED_RX_BUFS 5
......@@ -88,9 +90,17 @@ struct ice_tx_offload_params {
struct ice_rx_buf {
struct sk_buff *skb;
dma_addr_t dma;
union {
struct {
struct page *page;
unsigned int page_offset;
u16 pagecnt_bias;
};
struct {
void *addr;
u64 handle;
};
};
};
struct ice_q_stats {
......@@ -211,6 +221,8 @@ struct ice_ring {
struct rcu_head rcu; /* to avoid race on free */
struct bpf_prog *xdp_prog;
struct xdp_umem *xsk_umem;
struct zero_copy_allocator zca;
/* CL3 - 3rd cacheline starts here */
struct xdp_rxq_info xdp_rxq;
/* CLX - the below items are only accessed infrequently and should be
......@@ -250,6 +262,8 @@ struct ice_ring_container {
#define ice_for_each_ring(pos, head) \
for (pos = (head).ring; pos; pos = pos->next)
union ice_32b_rx_flex_desc;
bool ice_alloc_rx_bufs(struct ice_ring *rxr, u16 cleaned_count);
netdev_tx_t ice_start_xmit(struct sk_buff *skb, struct net_device *netdev);
void ice_clean_tx_ring(struct ice_ring *tx_ring);
......
// SPDX-License-Identifier: GPL-2.0
/* Copyright (c) 2019, Intel Corporation. */
#include <linux/bpf_trace.h>
#include <net/xdp_sock.h>
#include <net/xdp.h>
#include "ice.h"
#include "ice_base.h"
#include "ice_type.h"
#include "ice_xsk.h"
#include "ice_txrx.h"
#include "ice_txrx_lib.h"
#include "ice_lib.h"
/**
* ice_qp_reset_stats - Resets all stats for rings of given index
* @vsi: VSI that contains rings of interest
* @q_idx: ring index in array
*/
static void ice_qp_reset_stats(struct ice_vsi *vsi, u16 q_idx)
{
memset(&vsi->rx_rings[q_idx]->rx_stats, 0,
sizeof(vsi->rx_rings[q_idx]->rx_stats));
memset(&vsi->tx_rings[q_idx]->stats, 0,
sizeof(vsi->tx_rings[q_idx]->stats));
if (ice_is_xdp_ena_vsi(vsi))
memset(&vsi->xdp_rings[q_idx]->stats, 0,
sizeof(vsi->xdp_rings[q_idx]->stats));
}
/**
* ice_qp_clean_rings - Cleans all the rings of a given index
* @vsi: VSI that contains rings of interest
* @q_idx: ring index in array
*/
static void ice_qp_clean_rings(struct ice_vsi *vsi, u16 q_idx)
{
ice_clean_tx_ring(vsi->tx_rings[q_idx]);
if (ice_is_xdp_ena_vsi(vsi))
ice_clean_tx_ring(vsi->xdp_rings[q_idx]);
ice_clean_rx_ring(vsi->rx_rings[q_idx]);
}
/**
* ice_qvec_toggle_napi - Enables/disables NAPI for a given q_vector
* @vsi: VSI that has netdev
* @q_vector: q_vector that has NAPI context
* @enable: true for enable, false for disable
*/
static void
ice_qvec_toggle_napi(struct ice_vsi *vsi, struct ice_q_vector *q_vector,
bool enable)
{
if (!vsi->netdev || !q_vector)
return;
if (enable)
napi_enable(&q_vector->napi);
else
napi_disable(&q_vector->napi);
}
/**
* ice_qvec_dis_irq - Mask off queue interrupt generation on given ring
* @vsi: the VSI that contains queue vector being un-configured
* @rx_ring: Rx ring that will have its IRQ disabled
* @q_vector: queue vector
*/
static void
ice_qvec_dis_irq(struct ice_vsi *vsi, struct ice_ring *rx_ring,
struct ice_q_vector *q_vector)
{
struct ice_pf *pf = vsi->back;
struct ice_hw *hw = &pf->hw;
int base = vsi->base_vector;
u16 reg;
u32 val;
/* QINT_TQCTL is being cleared in ice_vsi_stop_tx_ring, so handle
* here only QINT_RQCTL
*/
reg = rx_ring->reg_idx;
val = rd32(hw, QINT_RQCTL(reg));
val &= ~QINT_RQCTL_CAUSE_ENA_M;
wr32(hw, QINT_RQCTL(reg), val);
if (q_vector) {
u16 v_idx = q_vector->v_idx;
wr32(hw, GLINT_DYN_CTL(q_vector->reg_idx), 0);
ice_flush(hw);
synchronize_irq(pf->msix_entries[v_idx + base].vector);
}
}
/**
* ice_qvec_cfg_msix - Enable IRQ for given queue vector
* @vsi: the VSI that contains queue vector
* @q_vector: queue vector
*/
static void
ice_qvec_cfg_msix(struct ice_vsi *vsi, struct ice_q_vector *q_vector)
{
u16 reg_idx = q_vector->reg_idx;
struct ice_pf *pf = vsi->back;
struct ice_hw *hw = &pf->hw;
struct ice_ring *ring;
ice_cfg_itr(hw, q_vector);
wr32(hw, GLINT_RATE(reg_idx),
ice_intrl_usec_to_reg(q_vector->intrl, hw->intrl_gran));
ice_for_each_ring(ring, q_vector->tx)
ice_cfg_txq_interrupt(vsi, ring->reg_idx, reg_idx,
q_vector->tx.itr_idx);
ice_for_each_ring(ring, q_vector->rx)
ice_cfg_rxq_interrupt(vsi, ring->reg_idx, reg_idx,
q_vector->rx.itr_idx);
ice_flush(hw);
}
/**
* ice_qvec_ena_irq - Enable IRQ for given queue vector
* @vsi: the VSI that contains queue vector
* @q_vector: queue vector
*/
static void ice_qvec_ena_irq(struct ice_vsi *vsi, struct ice_q_vector *q_vector)
{
struct ice_pf *pf = vsi->back;
struct ice_hw *hw = &pf->hw;
ice_irq_dynamic_ena(hw, vsi, q_vector);
ice_flush(hw);
}
/**
* ice_qp_dis - Disables a queue pair
* @vsi: VSI of interest
* @q_idx: ring index in array
*
* Returns 0 on success, negative on failure.
*/
static int ice_qp_dis(struct ice_vsi *vsi, u16 q_idx)
{
struct ice_txq_meta txq_meta = { };
struct ice_ring *tx_ring, *rx_ring;
struct ice_q_vector *q_vector;
int timeout = 50;
int err;
if (q_idx >= vsi->num_rxq || q_idx >= vsi->num_txq)
return -EINVAL;
tx_ring = vsi->tx_rings[q_idx];
rx_ring = vsi->rx_rings[q_idx];
q_vector = rx_ring->q_vector;
while (test_and_set_bit(__ICE_CFG_BUSY, vsi->state)) {
timeout--;
if (!timeout)
return -EBUSY;
usleep_range(1000, 2000);
}
netif_tx_stop_queue(netdev_get_tx_queue(vsi->netdev, q_idx));
ice_qvec_dis_irq(vsi, rx_ring, q_vector);
ice_fill_txq_meta(vsi, tx_ring, &txq_meta);
err = ice_vsi_stop_tx_ring(vsi, ICE_NO_RESET, 0, tx_ring, &txq_meta);
if (err)
return err;
if (ice_is_xdp_ena_vsi(vsi)) {
struct ice_ring *xdp_ring = vsi->xdp_rings[q_idx];
memset(&txq_meta, 0, sizeof(txq_meta));
ice_fill_txq_meta(vsi, xdp_ring, &txq_meta);
err = ice_vsi_stop_tx_ring(vsi, ICE_NO_RESET, 0, xdp_ring,
&txq_meta);
if (err)
return err;
}
err = ice_vsi_ctrl_rx_ring(vsi, false, q_idx);
if (err)
return err;
ice_qvec_toggle_napi(vsi, q_vector, false);
ice_qp_clean_rings(vsi, q_idx);
ice_qp_reset_stats(vsi, q_idx);
return 0;
}
/**
* ice_qp_ena - Enables a queue pair
* @vsi: VSI of interest
* @q_idx: ring index in array
*
* Returns 0 on success, negative on failure.
*/
static int ice_qp_ena(struct ice_vsi *vsi, u16 q_idx)
{
struct ice_aqc_add_tx_qgrp *qg_buf;
struct ice_ring *tx_ring, *rx_ring;
struct ice_q_vector *q_vector;
int err;
if (q_idx >= vsi->num_rxq || q_idx >= vsi->num_txq)
return -EINVAL;
qg_buf = kzalloc(sizeof(*qg_buf), GFP_KERNEL);
if (!qg_buf)
return -ENOMEM;
qg_buf->num_txqs = 1;
tx_ring = vsi->tx_rings[q_idx];
rx_ring = vsi->rx_rings[q_idx];
q_vector = rx_ring->q_vector;
err = ice_vsi_cfg_txq(vsi, tx_ring, qg_buf);
if (err)
goto free_buf;
if (ice_is_xdp_ena_vsi(vsi)) {
struct ice_ring *xdp_ring = vsi->xdp_rings[q_idx];
memset(qg_buf, 0, sizeof(*qg_buf));
qg_buf->num_txqs = 1;
err = ice_vsi_cfg_txq(vsi, xdp_ring, qg_buf);
if (err)
goto free_buf;
ice_set_ring_xdp(xdp_ring);
xdp_ring->xsk_umem = ice_xsk_umem(xdp_ring);
}
err = ice_setup_rx_ctx(rx_ring);
if (err)
goto free_buf;
ice_qvec_cfg_msix(vsi, q_vector);
err = ice_vsi_ctrl_rx_ring(vsi, true, q_idx);
if (err)
goto free_buf;
clear_bit(__ICE_CFG_BUSY, vsi->state);
ice_qvec_toggle_napi(vsi, q_vector, true);
ice_qvec_ena_irq(vsi, q_vector);
netif_tx_start_queue(netdev_get_tx_queue(vsi->netdev, q_idx));
free_buf:
kfree(qg_buf);
return err;
}
/**
* ice_xsk_alloc_umems - allocate a UMEM region for an XDP socket
* @vsi: VSI to allocate the UMEM on
*
* Returns 0 on success, negative on error
*/
static int ice_xsk_alloc_umems(struct ice_vsi *vsi)
{
if (vsi->xsk_umems)
return 0;
vsi->xsk_umems = kcalloc(vsi->num_xsk_umems, sizeof(*vsi->xsk_umems),
GFP_KERNEL);
if (!vsi->xsk_umems) {
vsi->num_xsk_umems = 0;
return -ENOMEM;
}
return 0;
}
/**
* ice_xsk_add_umem - add a UMEM region for XDP sockets
* @vsi: VSI to which the UMEM will be added
* @umem: pointer to a requested UMEM region
* @qid: queue ID
*
* Returns 0 on success, negative on error
*/
static int ice_xsk_add_umem(struct ice_vsi *vsi, struct xdp_umem *umem, u16 qid)
{
int err;
err = ice_xsk_alloc_umems(vsi);
if (err)
return err;
vsi->xsk_umems[qid] = umem;
vsi->num_xsk_umems_used++;
return 0;
}
/**
* ice_xsk_remove_umem - Remove an UMEM for a certain ring/qid
* @vsi: VSI from which the VSI will be removed
* @qid: Ring/qid associated with the UMEM
*/
static void ice_xsk_remove_umem(struct ice_vsi *vsi, u16 qid)
{
vsi->xsk_umems[qid] = NULL;
vsi->num_xsk_umems_used--;
if (vsi->num_xsk_umems_used == 0) {
kfree(vsi->xsk_umems);
vsi->xsk_umems = NULL;
vsi->num_xsk_umems = 0;
}
}
/**
* ice_xsk_umem_dma_map - DMA map UMEM region for XDP sockets
* @vsi: VSI to map the UMEM region
* @umem: UMEM to map
*
* Returns 0 on success, negative on error
*/
static int ice_xsk_umem_dma_map(struct ice_vsi *vsi, struct xdp_umem *umem)
{
struct ice_pf *pf = vsi->back;
struct device *dev;
unsigned int i;
dev = &pf->pdev->dev;
for (i = 0; i < umem->npgs; i++) {
dma_addr_t dma = dma_map_page_attrs(dev, umem->pgs[i], 0,
PAGE_SIZE,
DMA_BIDIRECTIONAL,
ICE_RX_DMA_ATTR);
if (dma_mapping_error(dev, dma)) {
dev_dbg(dev,
"XSK UMEM DMA mapping error on page num %d", i);
goto out_unmap;
}
umem->pages[i].dma = dma;
}
return 0;
out_unmap:
for (; i > 0; i--) {
dma_unmap_page_attrs(dev, umem->pages[i].dma, PAGE_SIZE,
DMA_BIDIRECTIONAL, ICE_RX_DMA_ATTR);
umem->pages[i].dma = 0;
}
return -EFAULT;
}
/**
* ice_xsk_umem_dma_unmap - DMA unmap UMEM region for XDP sockets
* @vsi: VSI from which the UMEM will be unmapped
* @umem: UMEM to unmap
*/
static void ice_xsk_umem_dma_unmap(struct ice_vsi *vsi, struct xdp_umem *umem)
{
struct ice_pf *pf = vsi->back;
struct device *dev;
unsigned int i;
dev = &pf->pdev->dev;
for (i = 0; i < umem->npgs; i++) {
dma_unmap_page_attrs(dev, umem->pages[i].dma, PAGE_SIZE,
DMA_BIDIRECTIONAL, ICE_RX_DMA_ATTR);
umem->pages[i].dma = 0;
}
}
/**
* ice_xsk_umem_disable - disable a UMEM region
* @vsi: Current VSI
* @qid: queue ID
*
* Returns 0 on success, negative on failure
*/
static int ice_xsk_umem_disable(struct ice_vsi *vsi, u16 qid)
{
if (!vsi->xsk_umems || qid >= vsi->num_xsk_umems ||
!vsi->xsk_umems[qid])
return -EINVAL;
ice_xsk_umem_dma_unmap(vsi, vsi->xsk_umems[qid]);
ice_xsk_remove_umem(vsi, qid);
return 0;
}
/**
* ice_xsk_umem_enable - enable a UMEM region
* @vsi: Current VSI
* @umem: pointer to a requested UMEM region
* @qid: queue ID
*
* Returns 0 on success, negative on failure
*/
static int
ice_xsk_umem_enable(struct ice_vsi *vsi, struct xdp_umem *umem, u16 qid)
{
struct xdp_umem_fq_reuse *reuseq;
int err;
if (vsi->type != ICE_VSI_PF)
return -EINVAL;
vsi->num_xsk_umems = min_t(u16, vsi->num_rxq, vsi->num_txq);
if (qid >= vsi->num_xsk_umems)
return -EINVAL;
if (vsi->xsk_umems && vsi->xsk_umems[qid])
return -EBUSY;
reuseq = xsk_reuseq_prepare(vsi->rx_rings[0]->count);
if (!reuseq)
return -ENOMEM;
xsk_reuseq_free(xsk_reuseq_swap(umem, reuseq));
err = ice_xsk_umem_dma_map(vsi, umem);
if (err)
return err;
err = ice_xsk_add_umem(vsi, umem, qid);
if (err)
return err;
return 0;
}
/**
* ice_xsk_umem_setup - enable/disable a UMEM region depending on its state
* @vsi: Current VSI
* @umem: UMEM to enable/associate to a ring, NULL to disable
* @qid: queue ID
*
* Returns 0 on success, negative on failure
*/
int ice_xsk_umem_setup(struct ice_vsi *vsi, struct xdp_umem *umem, u16 qid)
{
bool if_running, umem_present = !!umem;
int ret = 0, umem_failure = 0;
if_running = netif_running(vsi->netdev) && ice_is_xdp_ena_vsi(vsi);
if (if_running) {
ret = ice_qp_dis(vsi, qid);
if (ret) {
netdev_err(vsi->netdev, "ice_qp_dis error = %d", ret);
goto xsk_umem_if_up;
}
}
umem_failure = umem_present ? ice_xsk_umem_enable(vsi, umem, qid) :
ice_xsk_umem_disable(vsi, qid);
xsk_umem_if_up:
if (if_running) {
ret = ice_qp_ena(vsi, qid);
if (!ret && umem_present)
napi_schedule(&vsi->xdp_rings[qid]->q_vector->napi);
else if (ret)
netdev_err(vsi->netdev, "ice_qp_ena error = %d", ret);
}
if (umem_failure) {
netdev_err(vsi->netdev, "Could not %sable UMEM, error = %d",
umem_present ? "en" : "dis", umem_failure);
return umem_failure;
}
return ret;
}
/**
* ice_zca_free - Callback for MEM_TYPE_ZERO_COPY allocations
* @zca: zero-cpoy allocator
* @handle: Buffer handle
*/
void ice_zca_free(struct zero_copy_allocator *zca, unsigned long handle)
{
struct ice_rx_buf *rx_buf;
struct ice_ring *rx_ring;
struct xdp_umem *umem;
u64 hr, mask;
u16 nta;
rx_ring = container_of(zca, struct ice_ring, zca);
umem = rx_ring->xsk_umem;
hr = umem->headroom + XDP_PACKET_HEADROOM;
mask = umem->chunk_mask;
nta = rx_ring->next_to_alloc;
rx_buf = &rx_ring->rx_buf[nta];
nta++;
rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
handle &= mask;
rx_buf->dma = xdp_umem_get_dma(umem, handle);
rx_buf->dma += hr;
rx_buf->addr = xdp_umem_get_data(umem, handle);
rx_buf->addr += hr;
rx_buf->handle = (u64)handle + umem->headroom;
}
/**
* ice_alloc_buf_fast_zc - Retrieve buffer address from XDP umem
* @rx_ring: ring with an xdp_umem bound to it
* @rx_buf: buffer to which xsk page address will be assigned
*
* This function allocates an Rx buffer in the hot path.
* The buffer can come from fill queue or recycle queue.
*
* Returns true if an assignment was successful, false if not.
*/
static __always_inline bool
ice_alloc_buf_fast_zc(struct ice_ring *rx_ring, struct ice_rx_buf *rx_buf)
{
struct xdp_umem *umem = rx_ring->xsk_umem;
void *addr = rx_buf->addr;
u64 handle, hr;
if (addr) {
rx_ring->rx_stats.page_reuse_count++;
return true;
}
if (!xsk_umem_peek_addr(umem, &handle)) {
rx_ring->rx_stats.alloc_page_failed++;
return false;
}
hr = umem->headroom + XDP_PACKET_HEADROOM;
rx_buf->dma = xdp_umem_get_dma(umem, handle);
rx_buf->dma += hr;
rx_buf->addr = xdp_umem_get_data(umem, handle);
rx_buf->addr += hr;
rx_buf->handle = handle + umem->headroom;
xsk_umem_discard_addr(umem);
return true;
}
/**
* ice_alloc_buf_slow_zc - Retrieve buffer address from XDP umem
* @rx_ring: ring with an xdp_umem bound to it
* @rx_buf: buffer to which xsk page address will be assigned
*
* This function allocates an Rx buffer in the slow path.
* The buffer can come from fill queue or recycle queue.
*
* Returns true if an assignment was successful, false if not.
*/
static __always_inline bool
ice_alloc_buf_slow_zc(struct ice_ring *rx_ring, struct ice_rx_buf *rx_buf)
{
struct xdp_umem *umem = rx_ring->xsk_umem;
u64 handle, headroom;
if (!xsk_umem_peek_addr_rq(umem, &handle)) {
rx_ring->rx_stats.alloc_page_failed++;
return false;
}
handle &= umem->chunk_mask;
headroom = umem->headroom + XDP_PACKET_HEADROOM;
rx_buf->dma = xdp_umem_get_dma(umem, handle);
rx_buf->dma += headroom;
rx_buf->addr = xdp_umem_get_data(umem, handle);
rx_buf->addr += headroom;
rx_buf->handle = handle + umem->headroom;
xsk_umem_discard_addr_rq(umem);
return true;
}
/**
* ice_alloc_rx_bufs_zc - allocate a number of Rx buffers
* @rx_ring: Rx ring
* @count: The number of buffers to allocate
* @alloc: the function pointer to call for allocation
*
* This function allocates a number of Rx buffers from the fill ring
* or the internal recycle mechanism and places them on the Rx ring.
*
* Returns false if all allocations were successful, true if any fail.
*/
static bool
ice_alloc_rx_bufs_zc(struct ice_ring *rx_ring, int count,
bool alloc(struct ice_ring *, struct ice_rx_buf *))
{
union ice_32b_rx_flex_desc *rx_desc;
u16 ntu = rx_ring->next_to_use;
struct ice_rx_buf *rx_buf;
bool ret = false;
if (!count)
return false;
rx_desc = ICE_RX_DESC(rx_ring, ntu);
rx_buf = &rx_ring->rx_buf[ntu];
do {
if (!alloc(rx_ring, rx_buf)) {
ret = true;
break;
}
dma_sync_single_range_for_device(rx_ring->dev, rx_buf->dma, 0,
rx_ring->rx_buf_len,
DMA_BIDIRECTIONAL);
rx_desc->read.pkt_addr = cpu_to_le64(rx_buf->dma);
rx_desc->wb.status_error0 = 0;
rx_desc++;
rx_buf++;
ntu++;
if (unlikely(ntu == rx_ring->count)) {
rx_desc = ICE_RX_DESC(rx_ring, 0);
rx_buf = rx_ring->rx_buf;
ntu = 0;
}
} while (--count);
if (rx_ring->next_to_use != ntu)
ice_release_rx_desc(rx_ring, ntu);
return ret;
}
/**
* ice_alloc_rx_bufs_fast_zc - allocate zero copy bufs in the hot path
* @rx_ring: Rx ring
* @count: number of bufs to allocate
*
* Returns false on success, true on failure.
*/
static bool ice_alloc_rx_bufs_fast_zc(struct ice_ring *rx_ring, u16 count)
{
return ice_alloc_rx_bufs_zc(rx_ring, count,
ice_alloc_buf_fast_zc);
}
/**
* ice_alloc_rx_bufs_slow_zc - allocate zero copy bufs in the slow path
* @rx_ring: Rx ring
* @count: number of bufs to allocate
*
* Returns false on success, true on failure.
*/
bool ice_alloc_rx_bufs_slow_zc(struct ice_ring *rx_ring, u16 count)
{
return ice_alloc_rx_bufs_zc(rx_ring, count,
ice_alloc_buf_slow_zc);
}
/**
* ice_bump_ntc - Bump the next_to_clean counter of an Rx ring
* @rx_ring: Rx ring
*/
static void ice_bump_ntc(struct ice_ring *rx_ring)
{
int ntc = rx_ring->next_to_clean + 1;
ntc = (ntc < rx_ring->count) ? ntc : 0;
rx_ring->next_to_clean = ntc;
prefetch(ICE_RX_DESC(rx_ring, ntc));
}
/**
* ice_get_rx_buf_zc - Fetch the current Rx buffer
* @rx_ring: Rx ring
* @size: size of a buffer
*
* This function returns the current, received Rx buffer and does
* DMA synchronization.
*
* Returns a pointer to the received Rx buffer.
*/
static struct ice_rx_buf *ice_get_rx_buf_zc(struct ice_ring *rx_ring, int size)
{
struct ice_rx_buf *rx_buf;
rx_buf = &rx_ring->rx_buf[rx_ring->next_to_clean];
dma_sync_single_range_for_cpu(rx_ring->dev, rx_buf->dma, 0,
size, DMA_BIDIRECTIONAL);
return rx_buf;
}
/**
* ice_reuse_rx_buf_zc - reuse an Rx buffer
* @rx_ring: Rx ring
* @old_buf: The buffer to recycle
*
* This function recycles a finished Rx buffer, and places it on the recycle
* queue (next_to_alloc).
*/
static void
ice_reuse_rx_buf_zc(struct ice_ring *rx_ring, struct ice_rx_buf *old_buf)
{
unsigned long mask = (unsigned long)rx_ring->xsk_umem->chunk_mask;
u64 hr = rx_ring->xsk_umem->headroom + XDP_PACKET_HEADROOM;
u16 nta = rx_ring->next_to_alloc;
struct ice_rx_buf *new_buf;
new_buf = &rx_ring->rx_buf[nta++];
rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
new_buf->dma = old_buf->dma & mask;
new_buf->dma += hr;
new_buf->addr = (void *)((unsigned long)old_buf->addr & mask);
new_buf->addr += hr;
new_buf->handle = old_buf->handle & mask;
new_buf->handle += rx_ring->xsk_umem->headroom;
old_buf->addr = NULL;
}
/**
* ice_construct_skb_zc - Create an sk_buff from zero-copy buffer
* @rx_ring: Rx ring
* @rx_buf: zero-copy Rx buffer
* @xdp: XDP buffer
*
* This function allocates a new skb from a zero-copy Rx buffer.
*
* Returns the skb on success, NULL on failure.
*/
static struct sk_buff *
ice_construct_skb_zc(struct ice_ring *rx_ring, struct ice_rx_buf *rx_buf,
struct xdp_buff *xdp)
{
unsigned int metasize = xdp->data - xdp->data_meta;
unsigned int datasize = xdp->data_end - xdp->data;
unsigned int datasize_hard = xdp->data_end -
xdp->data_hard_start;
struct sk_buff *skb;
skb = __napi_alloc_skb(&rx_ring->q_vector->napi, datasize_hard,
GFP_ATOMIC | __GFP_NOWARN);
if (unlikely(!skb))
return NULL;
skb_reserve(skb, xdp->data - xdp->data_hard_start);
memcpy(__skb_put(skb, datasize), xdp->data, datasize);
if (metasize)
skb_metadata_set(skb, metasize);
ice_reuse_rx_buf_zc(rx_ring, rx_buf);
return skb;
}
/**
* ice_run_xdp_zc - Executes an XDP program in zero-copy path
* @rx_ring: Rx ring
* @xdp: xdp_buff used as input to the XDP program
*
* Returns any of ICE_XDP_{PASS, CONSUMED, TX, REDIR}
*/
static int
ice_run_xdp_zc(struct ice_ring *rx_ring, struct xdp_buff *xdp)
{
int err, result = ICE_XDP_PASS;
struct bpf_prog *xdp_prog;
struct ice_ring *xdp_ring;
u32 act;
rcu_read_lock();
xdp_prog = READ_ONCE(rx_ring->xdp_prog);
if (!xdp_prog) {
rcu_read_unlock();
return ICE_XDP_PASS;
}
act = bpf_prog_run_xdp(xdp_prog, xdp);
xdp->handle += xdp->data - xdp->data_hard_start;
switch (act) {
case XDP_PASS:
break;
case XDP_TX:
xdp_ring = rx_ring->vsi->xdp_rings[rx_ring->q_index];
result = ice_xmit_xdp_buff(xdp, xdp_ring);
break;
case XDP_REDIRECT:
err = xdp_do_redirect(rx_ring->netdev, xdp, xdp_prog);
result = !err ? ICE_XDP_REDIR : ICE_XDP_CONSUMED;
break;
default:
bpf_warn_invalid_xdp_action(act);
/* fallthrough -- not supported action */
case XDP_ABORTED:
trace_xdp_exception(rx_ring->netdev, xdp_prog, act);
/* fallthrough -- handle aborts by dropping frame */
case XDP_DROP:
result = ICE_XDP_CONSUMED;
break;
}
rcu_read_unlock();
return result;
}
/**
* ice_clean_rx_irq_zc - consumes packets from the hardware ring
* @rx_ring: AF_XDP Rx ring
* @budget: NAPI budget
*
* Returns number of processed packets on success, remaining budget on failure.
*/
int ice_clean_rx_irq_zc(struct ice_ring *rx_ring, int budget)
{
unsigned int total_rx_bytes = 0, total_rx_packets = 0;
u16 cleaned_count = ICE_DESC_UNUSED(rx_ring);
unsigned int xdp_xmit = 0;
struct xdp_buff xdp;
bool failure = 0;
xdp.rxq = &rx_ring->xdp_rxq;
while (likely(total_rx_packets < (unsigned int)budget)) {
union ice_32b_rx_flex_desc *rx_desc;
unsigned int size, xdp_res = 0;
struct ice_rx_buf *rx_buf;
struct sk_buff *skb;
u16 stat_err_bits;
u16 vlan_tag = 0;
u8 rx_ptype;
if (cleaned_count >= ICE_RX_BUF_WRITE) {
failure |= ice_alloc_rx_bufs_fast_zc(rx_ring,
cleaned_count);
cleaned_count = 0;
}
rx_desc = ICE_RX_DESC(rx_ring, rx_ring->next_to_clean);
stat_err_bits = BIT(ICE_RX_FLEX_DESC_STATUS0_DD_S);
if (!ice_test_staterr(rx_desc, stat_err_bits))
break;
/* This memory barrier is needed to keep us from reading
* any other fields out of the rx_desc until we have
* verified the descriptor has been written back.
*/
dma_rmb();
size = le16_to_cpu(rx_desc->wb.pkt_len) &
ICE_RX_FLX_DESC_PKT_LEN_M;
if (!size)
break;
rx_buf = ice_get_rx_buf_zc(rx_ring, size);
if (!rx_buf->addr)
break;
xdp.data = rx_buf->addr;
xdp.data_meta = xdp.data;
xdp.data_hard_start = xdp.data - XDP_PACKET_HEADROOM;
xdp.data_end = xdp.data + size;
xdp.handle = rx_buf->handle;
xdp_res = ice_run_xdp_zc(rx_ring, &xdp);
if (xdp_res) {
if (xdp_res & (ICE_XDP_TX | ICE_XDP_REDIR)) {
xdp_xmit |= xdp_res;
rx_buf->addr = NULL;
} else {
ice_reuse_rx_buf_zc(rx_ring, rx_buf);
}
total_rx_bytes += size;
total_rx_packets++;
cleaned_count++;
ice_bump_ntc(rx_ring);
continue;
}
/* XDP_PASS path */
skb = ice_construct_skb_zc(rx_ring, rx_buf, &xdp);
if (!skb) {
rx_ring->rx_stats.alloc_buf_failed++;
break;
}
cleaned_count++;
ice_bump_ntc(rx_ring);
if (eth_skb_pad(skb)) {
skb = NULL;
continue;
}
total_rx_bytes += skb->len;
total_rx_packets++;
stat_err_bits = BIT(ICE_RX_FLEX_DESC_STATUS0_L2TAG1P_S);
if (ice_test_staterr(rx_desc, stat_err_bits))
vlan_tag = le16_to_cpu(rx_desc->wb.l2tag1);
rx_ptype = le16_to_cpu(rx_desc->wb.ptype_flex_flags0) &
ICE_RX_FLEX_DESC_PTYPE_M;
ice_process_skb_fields(rx_ring, rx_desc, skb, rx_ptype);
ice_receive_skb(rx_ring, skb, vlan_tag);
}
ice_finalize_xdp_rx(rx_ring, xdp_xmit);
ice_update_rx_ring_stats(rx_ring, total_rx_packets, total_rx_bytes);
return failure ? budget : (int)total_rx_packets;
}
/**
* ice_xmit_zc - Completes AF_XDP entries, and cleans XDP entries
* @xdp_ring: XDP Tx ring
* @budget: max number of frames to xmit
*
* Returns true if cleanup/transmission is done.
*/
static bool ice_xmit_zc(struct ice_ring *xdp_ring, int budget)
{
struct ice_tx_desc *tx_desc = NULL;
bool work_done = true;
struct xdp_desc desc;
dma_addr_t dma;
while (likely(budget-- > 0)) {
struct ice_tx_buf *tx_buf;
if (unlikely(!ICE_DESC_UNUSED(xdp_ring))) {
xdp_ring->tx_stats.tx_busy++;
work_done = false;
break;
}
tx_buf = &xdp_ring->tx_buf[xdp_ring->next_to_use];
if (!xsk_umem_consume_tx(xdp_ring->xsk_umem, &desc))
break;
dma = xdp_umem_get_dma(xdp_ring->xsk_umem, desc.addr);
dma_sync_single_for_device(xdp_ring->dev, dma, desc.len,
DMA_BIDIRECTIONAL);
tx_buf->bytecount = desc.len;
tx_desc = ICE_TX_DESC(xdp_ring, xdp_ring->next_to_use);
tx_desc->buf_addr = cpu_to_le64(dma);
tx_desc->cmd_type_offset_bsz = build_ctob(ICE_TXD_LAST_DESC_CMD,
0, desc.len, 0);
xdp_ring->next_to_use++;
if (xdp_ring->next_to_use == xdp_ring->count)
xdp_ring->next_to_use = 0;
}
if (tx_desc) {
ice_xdp_ring_update_tail(xdp_ring);
xsk_umem_consume_tx_done(xdp_ring->xsk_umem);
}
return budget > 0 && work_done;
}
/**
* ice_clean_xdp_tx_buf - Free and unmap XDP Tx buffer
* @xdp_ring: XDP Tx ring
* @tx_buf: Tx buffer to clean
*/
static void
ice_clean_xdp_tx_buf(struct ice_ring *xdp_ring, struct ice_tx_buf *tx_buf)
{
xdp_return_frame((struct xdp_frame *)tx_buf->raw_buf);
dma_unmap_single(xdp_ring->dev, dma_unmap_addr(tx_buf, dma),
dma_unmap_len(tx_buf, len), DMA_TO_DEVICE);
dma_unmap_len_set(tx_buf, len, 0);
}
/**
* ice_clean_tx_irq_zc - Completes AF_XDP entries, and cleans XDP entries
* @xdp_ring: XDP Tx ring
* @budget: NAPI budget
*
* Returns true if cleanup/tranmission is done.
*/
bool ice_clean_tx_irq_zc(struct ice_ring *xdp_ring, int budget)
{
int total_packets = 0, total_bytes = 0;
s16 ntc = xdp_ring->next_to_clean;
struct ice_tx_desc *tx_desc;
struct ice_tx_buf *tx_buf;
bool xmit_done = true;
u32 xsk_frames = 0;
tx_desc = ICE_TX_DESC(xdp_ring, ntc);
tx_buf = &xdp_ring->tx_buf[ntc];
ntc -= xdp_ring->count;
do {
if (!(tx_desc->cmd_type_offset_bsz &
cpu_to_le64(ICE_TX_DESC_DTYPE_DESC_DONE)))
break;
total_bytes += tx_buf->bytecount;
total_packets++;
if (tx_buf->raw_buf) {
ice_clean_xdp_tx_buf(xdp_ring, tx_buf);
tx_buf->raw_buf = NULL;
} else {
xsk_frames++;
}
tx_desc->cmd_type_offset_bsz = 0;
tx_buf++;
tx_desc++;
ntc++;
if (unlikely(!ntc)) {
ntc -= xdp_ring->count;
tx_buf = xdp_ring->tx_buf;
tx_desc = ICE_TX_DESC(xdp_ring, 0);
}
prefetch(tx_desc);
} while (likely(--budget));
ntc += xdp_ring->count;
xdp_ring->next_to_clean = ntc;
if (xsk_frames)
xsk_umem_complete_tx(xdp_ring->xsk_umem, xsk_frames);
ice_update_tx_ring_stats(xdp_ring, total_packets, total_bytes);
xmit_done = ice_xmit_zc(xdp_ring, ICE_DFLT_IRQ_WORK);
return budget > 0 && xmit_done;
}
/**
* ice_xsk_wakeup - Implements ndo_xsk_wakeup
* @netdev: net_device
* @queue_id: queue to wake up
* @flags: ignored in our case, since we have Rx and Tx in the same NAPI
*
* Returns negative on error, zero otherwise.
*/
int
ice_xsk_wakeup(struct net_device *netdev, u32 queue_id,
u32 __always_unused flags)
{
struct ice_netdev_priv *np = netdev_priv(netdev);
struct ice_q_vector *q_vector;
struct ice_vsi *vsi = np->vsi;
struct ice_ring *ring;
if (test_bit(__ICE_DOWN, vsi->state))
return -ENETDOWN;
if (!ice_is_xdp_ena_vsi(vsi))
return -ENXIO;
if (queue_id >= vsi->num_txq)
return -ENXIO;
if (!vsi->xdp_rings[queue_id]->xsk_umem)
return -ENXIO;
ring = vsi->xdp_rings[queue_id];
/* The idea here is that if NAPI is running, mark a miss, so
* it will run again. If not, trigger an interrupt and
* schedule the NAPI from interrupt context. If NAPI would be
* scheduled here, the interrupt affinity would not be
* honored.
*/
q_vector = ring->q_vector;
if (!napi_if_scheduled_mark_missed(&q_vector->napi))
ice_trigger_sw_intr(&vsi->back->hw, q_vector);
return 0;
}
/**
* ice_xsk_any_rx_ring_ena - Checks if Rx rings have AF_XDP UMEM attached
* @vsi: VSI to be checked
*
* Returns true if any of the Rx rings has an AF_XDP UMEM attached
*/
bool ice_xsk_any_rx_ring_ena(struct ice_vsi *vsi)
{
int i;
if (!vsi->xsk_umems)
return false;
for (i = 0; i < vsi->num_xsk_umems; i++) {
if (vsi->xsk_umems[i])
return true;
}
return false;
}
/**
* ice_xsk_clean_rx_ring - clean UMEM queues connected to a given Rx ring
* @rx_ring: ring to be cleaned
*/
void ice_xsk_clean_rx_ring(struct ice_ring *rx_ring)
{
u16 i;
for (i = 0; i < rx_ring->count; i++) {
struct ice_rx_buf *rx_buf = &rx_ring->rx_buf[i];
if (!rx_buf->addr)
continue;
xsk_umem_fq_reuse(rx_ring->xsk_umem, rx_buf->handle);
rx_buf->addr = NULL;
}
}
/**
* ice_xsk_clean_xdp_ring - Clean the XDP Tx ring and its UMEM queues
* @xdp_ring: XDP_Tx ring
*/
void ice_xsk_clean_xdp_ring(struct ice_ring *xdp_ring)
{
u16 ntc = xdp_ring->next_to_clean, ntu = xdp_ring->next_to_use;
u32 xsk_frames = 0;
while (ntc != ntu) {
struct ice_tx_buf *tx_buf = &xdp_ring->tx_buf[ntc];
if (tx_buf->raw_buf)
ice_clean_xdp_tx_buf(xdp_ring, tx_buf);
else
xsk_frames++;
tx_buf->raw_buf = NULL;
ntc++;
if (ntc >= xdp_ring->count)
ntc = 0;
}
if (xsk_frames)
xsk_umem_complete_tx(xdp_ring->xsk_umem, xsk_frames);
}
/* SPDX-License-Identifier: GPL-2.0 */
/* Copyright (c) 2019, Intel Corporation. */
#ifndef _ICE_XSK_H_
#define _ICE_XSK_H_
#include "ice_txrx.h"
#include "ice.h"
struct ice_vsi;
#ifdef CONFIG_XDP_SOCKETS
int ice_xsk_umem_setup(struct ice_vsi *vsi, struct xdp_umem *umem, u16 qid);
void ice_zca_free(struct zero_copy_allocator *zca, unsigned long handle);
int ice_clean_rx_irq_zc(struct ice_ring *rx_ring, int budget);
bool ice_clean_tx_irq_zc(struct ice_ring *xdp_ring, int budget);
int ice_xsk_wakeup(struct net_device *netdev, u32 queue_id, u32 flags);
bool ice_alloc_rx_bufs_slow_zc(struct ice_ring *rx_ring, u16 count);
bool ice_xsk_any_rx_ring_ena(struct ice_vsi *vsi);
void ice_xsk_clean_rx_ring(struct ice_ring *rx_ring);
void ice_xsk_clean_xdp_ring(struct ice_ring *xdp_ring);
#else
static inline int
ice_xsk_umem_setup(struct ice_vsi __always_unused *vsi,
struct xdp_umem __always_unused *umem,
u16 __always_unused qid)
{
return -ENOTSUPP;
}
static inline void
ice_zca_free(struct zero_copy_allocator __always_unused *zca,
unsigned long __always_unused handle)
{
}
static inline int
ice_clean_rx_irq_zc(struct ice_ring __always_unused *rx_ring,
int __always_unused budget)
{
return 0;
}
static inline bool
ice_clean_tx_irq_zc(struct ice_ring __always_unused *xdp_ring,
int __always_unused budget)
{
return false;
}
static inline bool
ice_alloc_rx_bufs_slow_zc(struct ice_ring __always_unused *rx_ring,
u16 __always_unused count)
{
return false;
}
static inline bool ice_xsk_any_rx_ring_ena(struct ice_vsi __always_unused *vsi)
{
return false;
}
static inline int
ice_xsk_wakeup(struct net_device __always_unused *netdev,
u32 __always_unused queue_id, u32 __always_unused flags)
{
return -ENOTSUPP;
}
#define ice_xsk_clean_rx_ring(rx_ring) do {} while (0)
#define ice_xsk_clean_xdp_ring(xdp_ring) do {} while (0)
#endif /* CONFIG_XDP_SOCKETS */
#endif /* !_ICE_XSK_H_ */
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment