Update PowerMac IDE driver. Adapt to new driver model, add proper

support for Kauai ATA/100 and add activity led code.
NOTE: The activity LED code has been left out of Kconfig until the
proper support for it in the blk & ide layers have been merged
(pending patch from Jens Axboe) 
parent 27f8aeb2
...@@ -815,6 +815,17 @@ config BLK_DEV_IDE_PMAC ...@@ -815,6 +815,17 @@ config BLK_DEV_IDE_PMAC
most of the recent Apple Power Macintoshes and PowerBooks. most of the recent Apple Power Macintoshes and PowerBooks.
If unsure, say Y. If unsure, say Y.
config BLK_DEV_IDE_PMAC_ATA100FIRST
bool "Probe internal ATA/100 (Kauai) first"
depends on BLK_DEV_IDE_PMAC
help
This option will cause the ATA/100 controller found in UniNorth2
based machines (Windtunnel PowerMac, Aluminium PowerBooks, ...)
to be probed before the ATA/66 and ATA/33 controllers. Without
these, those machine used to have the hard disk on hdc and the
CD-ROM on hda. This option changes this to more natural hda for
hard disk and hdc for CD-ROM.
config BLK_DEV_IDEDMA_PMAC config BLK_DEV_IDEDMA_PMAC
bool "PowerMac IDE DMA support" bool "PowerMac IDE DMA support"
depends on BLK_DEV_IDE_PMAC depends on BLK_DEV_IDE_PMAC
......
...@@ -5,7 +5,7 @@ ...@@ -5,7 +5,7 @@
* These IDE interfaces are memory-mapped and have a DBDMA channel * These IDE interfaces are memory-mapped and have a DBDMA channel
* for doing DMA. * for doing DMA.
* *
* Copyright (C) 1998-2001 Paul Mackerras & Ben. Herrenschmidt * Copyright (C) 1998-2003 Paul Mackerras & Ben. Herrenschmidt
* *
* This program is free software; you can redistribute it and/or * This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License * modify it under the terms of the GNU General Public License
...@@ -16,6 +16,11 @@ ...@@ -16,6 +16,11 @@
* *
* Copyright (c) 1995-1998 Mark Lord * Copyright (c) 1995-1998 Mark Lord
* *
* TODO: - Use pre-calculated (kauai) timing tables all the time and
* get rid of the "rounded" tables used previously, so we have the
* same table format for all controllers and can then just have one
* big table
*
*/ */
#include <linux/config.h> #include <linux/config.h>
#include <linux/types.h> #include <linux/types.h>
...@@ -27,6 +32,8 @@ ...@@ -27,6 +32,8 @@
#include <linux/notifier.h> #include <linux/notifier.h>
#include <linux/reboot.h> #include <linux/reboot.h>
#include <linux/pci.h> #include <linux/pci.h>
#include <linux/adb.h>
#include <linux/pmu.h>
#include <asm/prom.h> #include <asm/prom.h>
#include <asm/io.h> #include <asm/io.h>
...@@ -38,26 +45,27 @@ ...@@ -38,26 +45,27 @@
#include <asm/pmac_feature.h> #include <asm/pmac_feature.h>
#include <asm/sections.h> #include <asm/sections.h>
#include <asm/irq.h> #include <asm/irq.h>
#ifdef CONFIG_PMAC_PBOOK
#include <linux/adb.h>
#include <linux/pmu.h>
#endif
#include "ide_modes.h" #include "ide_modes.h"
#include "ide-timing.h"
extern void ide_do_request(ide_hwgroup_t *hwgroup, int masked_irq); extern void ide_do_request(ide_hwgroup_t *hwgroup, int masked_irq);
#define IDE_PMAC_DEBUG #define IDE_PMAC_DEBUG
#define DMA_WAIT_TIMEOUT 500 #define DMA_WAIT_TIMEOUT 100
typedef struct pmac_ide_hwif { typedef struct pmac_ide_hwif {
unsigned long regbase; unsigned long regbase;
int irq; int irq;
int kind; int kind;
int aapl_bus_id; int aapl_bus_id;
int cable_80 : 1;
int mediabay : 1;
int broken_dma : 1;
int broken_dma_warn : 1;
struct device_node* node; struct device_node* node;
u32 timings[2]; struct macio_dev *mdev;
int index; u32 timings[4];
#ifdef CONFIG_BLK_DEV_IDEDMA_PMAC #ifdef CONFIG_BLK_DEV_IDEDMA_PMAC
/* Those fields are duplicating what is in hwif. We currently /* Those fields are duplicating what is in hwif. We currently
* can't use the hwif ones because of some assumptions that are * can't use the hwif ones because of some assumptions that are
...@@ -82,7 +90,15 @@ enum { ...@@ -82,7 +90,15 @@ enum {
controller_heathrow, /* Heathrow/Paddington */ controller_heathrow, /* Heathrow/Paddington */
controller_kl_ata3, /* KeyLargo ATA-3 */ controller_kl_ata3, /* KeyLargo ATA-3 */
controller_kl_ata4, /* KeyLargo ATA-4 */ controller_kl_ata4, /* KeyLargo ATA-4 */
controller_kl_ata4_80 /* KeyLargo ATA-4 with 80 conductor cable */ controller_un_ata6 /* UniNorth2 ATA-6 */
};
static const char* model_name[] = {
"OHare ATA", /* OHare based */
"Heathrow ATA", /* Heathrow/Paddington */
"KeyLargo ATA-3", /* KeyLargo ATA-3 */
"KeyLargo ATA-4", /* KeyLargo ATA-4 */
"UniNorth ATA-6" /* UniNorth2 ATA-6 */
}; };
/* /*
...@@ -91,6 +107,11 @@ enum { ...@@ -91,6 +107,11 @@ enum {
#define IDE_TIMING_CONFIG 0x200 #define IDE_TIMING_CONFIG 0x200
#define IDE_INTERRUPT 0x300 #define IDE_INTERRUPT 0x300
/* Kauai (U2) ATA has different register setup */
#define IDE_KAUAI_PIO_CONFIG 0x200
#define IDE_KAUAI_ULTRA_CONFIG 0x210
#define IDE_KAUAI_POLL_CONFIG 0x220
/* /*
* Timing configuration register definitions * Timing configuration register definitions
*/ */
...@@ -101,6 +122,28 @@ enum { ...@@ -101,6 +122,28 @@ enum {
#define IDE_SYSCLK_NS 30 /* 33Mhz cell */ #define IDE_SYSCLK_NS 30 /* 33Mhz cell */
#define IDE_SYSCLK_66_NS 15 /* 66Mhz cell */ #define IDE_SYSCLK_66_NS 15 /* 66Mhz cell */
/* 100Mhz cell, found in Uninorth 2. I don't have much infos about
* this one yet, it appears as a pci device (106b/0033) on uninorth
* internal PCI bus and it's clock is controlled like gem or fw. It
* appears to be an evolution of keylargo ATA4 with a timing register
* extended to 2 32bits registers and a similar DBDMA channel. Other
* registers seem to exist but I can't tell much about them.
*
* So far, I'm using pre-calculated tables for this extracted from
* the values used by the MacOS X driver.
*
* The "PIO" register controls PIO and MDMA timings, the "ULTRA"
* register controls the UDMA timings. At least, it seems bit 0
* of this one enables UDMA vs. MDMA, and bits 4..7 are the
* cycle time in units of 10ns. Bits 8..15 are used by I don't
* know their meaning yet
*/
#define TR_100_PIOREG_PIO_MASK 0xff000fff
#define TR_100_PIOREG_MDMA_MASK 0x00fff000
#define TR_100_UDMAREG_UDMA_MASK 0x0000ffff
#define TR_100_UDMAREG_UDMA_EN 0x00000001
/* 66Mhz cell, found in KeyLargo. Can do ultra mode 0 to 2 on /* 66Mhz cell, found in KeyLargo. Can do ultra mode 0 to 2 on
* 40 connector cable and to 4 on 80 connector one. * 40 connector cable and to 4 on 80 connector one.
* Clock unit is 15ns (66Mhz) * Clock unit is 15ns (66Mhz)
...@@ -115,8 +158,7 @@ enum { ...@@ -115,8 +158,7 @@ enum {
* well, despite a comment that would lead to think it has a * well, despite a comment that would lead to think it has a
* min value of 45ns. * min value of 45ns.
* Apple also add 60ns to the write data setup (or cycle time ?) on * Apple also add 60ns to the write data setup (or cycle time ?) on
* reads. I can't explain that, I tried it and it broke everything * reads.
* here.
*/ */
#define TR_66_UDMA_MASK 0xfff00000 #define TR_66_UDMA_MASK 0xfff00000
#define TR_66_UDMA_EN 0x00100000 /* Enable Ultra mode for DMA */ #define TR_66_UDMA_EN 0x00100000 /* Enable Ultra mode for DMA */
...@@ -220,12 +262,12 @@ struct mdma_timings_t mdma_timings_66[] __pmacdata = ...@@ -220,12 +262,12 @@ struct mdma_timings_t mdma_timings_66[] __pmacdata =
{ 0, 0, 0 } { 0, 0, 0 }
}; };
/* Ultra DMA timings (rounded) */ /* KeyLargo ATA-4 Ultra DMA timings (rounded) */
struct { struct {
int addrSetup; /* ??? */ int addrSetup; /* ??? */
int rdy2pause; int rdy2pause;
int wrDataSetup; int wrDataSetup;
} udma_timings[] __pmacdata = } kl66_udma_timings[] __pmacdata =
{ {
{ 0, 180, 120 }, /* Mode 0 */ { 0, 180, 120 }, /* Mode 0 */
{ 0, 150, 90 }, /* 1 */ { 0, 150, 90 }, /* 1 */
...@@ -234,6 +276,63 @@ struct { ...@@ -234,6 +276,63 @@ struct {
{ 0, 90, 30 } /* 4 */ { 0, 90, 30 } /* 4 */
}; };
/* UniNorth 2 ATA/100 timings */
struct kauai_timing {
int cycle_time;
u32 timing_reg;
};
static struct kauai_timing kauai_pio_timings[] __pmacdata =
{
{ 930 , 0x08000fff },
{ 600 , 0x08000a92 },
{ 383 , 0x0800060f },
{ 360 , 0x08000492 },
{ 330 , 0x0800048f },
{ 300 , 0x080003cf },
{ 270 , 0x080003cc },
{ 240 , 0x0800038b },
{ 239 , 0x0800030c },
{ 180 , 0x05000249 },
{ 120 , 0x04000148 }
};
static struct kauai_timing kauai_mdma_timings[] __pmacdata =
{
{ 1260 , 0x00fff000 },
{ 480 , 0x00618000 },
{ 360 , 0x00492000 },
{ 270 , 0x0038e000 },
{ 240 , 0x0030c000 },
{ 210 , 0x002cb000 },
{ 180 , 0x00249000 },
{ 150 , 0x00209000 },
{ 120 , 0x00148000 },
{ 0 , 0 },
};
static struct kauai_timing kauai_udma_timings[] __pmacdata =
{
{ 120 , 0x000070c0 },
{ 90 , 0x00005d80 },
{ 60 , 0x00004a60 },
{ 45 , 0x00003a50 },
{ 30 , 0x00002a30 },
{ 20 , 0x00002921 },
{ 0 , 0 },
};
static inline u32
kauai_lookup_timing(struct kauai_timing* table, int cycle_time)
{
int i;
for (i=0; table[i].cycle_time; i++)
if (cycle_time > table[i+1].cycle_time)
return table[i].timing_reg;
return 0;
}
/* allow up to 256 DBDMA commands per xfer */ /* allow up to 256 DBDMA commands per xfer */
#define MAX_DCMDS 256 #define MAX_DCMDS 256
...@@ -242,24 +341,106 @@ struct { ...@@ -242,24 +341,106 @@ struct {
* NOTE: There is at least one case I know of a disk that needs about 10sec * NOTE: There is at least one case I know of a disk that needs about 10sec
* before anwering on the bus. I beleive we could add a kernel command * before anwering on the bus. I beleive we could add a kernel command
* line arg to override this delay for such cases. * line arg to override this delay for such cases.
*
* NOTE2: This has to be fixed with a BSY wait loop. I'm working on adding
* that to the generic probe code.
*/ */
#define IDE_WAKEUP_DELAY_MS 2000 #define IDE_WAKEUP_DELAY_MS 2000
static void pmac_ide_setup_dma(struct device_node *np, int ix); static void pmac_ide_setup_dma(pmac_ide_hwif_t *pmif, ide_hwif_t *hwif);
static int pmac_ide_build_dmatable(ide_drive_t *drive, int wr); static int pmac_ide_build_dmatable(ide_drive_t *drive, struct request *rq);
static int pmac_ide_tune_chipset(ide_drive_t *drive, u8 speed); static int pmac_ide_tune_chipset(ide_drive_t *drive, u8 speed);
static void pmac_ide_tuneproc(ide_drive_t *drive, u8 pio); static void pmac_ide_tuneproc(ide_drive_t *drive, u8 pio);
static void pmac_ide_selectproc(ide_drive_t *drive); static void pmac_ide_selectproc(ide_drive_t *drive);
static void pmac_ide_kauai_selectproc(ide_drive_t *drive);
static int pmac_ide_dma_begin (ide_drive_t *drive); static int pmac_ide_dma_begin (ide_drive_t *drive);
#endif /* CONFIG_BLK_DEV_IDEDMA_PMAC */ #endif /* CONFIG_BLK_DEV_IDEDMA_PMAC */
#ifdef CONFIG_PMAC_PBOOK #ifdef CONFIG_BLK_DEV_IDE_PMAC_BLINK
static int idepmac_notify_sleep(struct pmu_sleep_notifier *self, int when);
struct pmu_sleep_notifier idepmac_sleep_notifier = { /* Set to 50ms */
idepmac_notify_sleep, SLEEP_LEVEL_BLOCK, #define PMU_HD_BLINK_TIME (HZ/50)
};
#endif /* CONFIG_PMAC_PBOOK */ static struct adb_request pmu_blink_on, pmu_blink_off;
static spinlock_t pmu_blink_lock;
static unsigned long pmu_blink_stoptime;
static int pmu_blink_ledstate;
static struct timer_list pmu_blink_timer;
static int pmu_ide_blink_enabled;
static void
pmu_hd_blink_timeout(unsigned long data)
{
unsigned long flags;
spin_lock_irqsave(&pmu_blink_lock, flags);
/* We may have been triggered again in a racy way, check
* that we really want to switch it off
*/
if (time_after(pmu_blink_stoptime, jiffies))
goto done;
/* Previous req. not complete, try 100ms more */
if (pmu_blink_off.complete == 0)
mod_timer(&pmu_blink_timer, jiffies + PMU_HD_BLINK_TIME);
else if (pmu_blink_ledstate) {
pmu_request(&pmu_blink_off, NULL, 4, 0xee, 4, 0, 0);
pmu_blink_ledstate = 0;
}
done:
spin_unlock_irqrestore(&pmu_blink_lock, flags);
}
static void
pmu_hd_kick_blink(void *data, int rw)
{
unsigned long flags;
pmu_blink_stoptime = jiffies + PMU_HD_BLINK_TIME;
wmb();
mod_timer(&pmu_blink_timer, pmu_blink_stoptime);
if (pmu_blink_ledstate == 1)
return;
spin_lock_irqsave(&pmu_blink_lock, flags);
if (pmu_blink_on.complete && !pmu_blink_ledstate) {
pmu_request(&pmu_blink_on, NULL, 4, 0xee, 4, 0, 1);
pmu_blink_ledstate = 1;
}
spin_unlock_irqrestore(&pmu_blink_lock, flags);
}
static int
pmu_hd_blink_init(void)
{
struct device_node *dt;
const char *model;
if (pmu_get_model() != PMU_KEYLARGO_BASED)
return 0;
dt = find_devices("device-tree");
if (dt == NULL)
return 0;
model = (const char *)get_property(dt, "model", NULL);
if (model == NULL)
return 0;
if (strncmp(model, "PowerBook", strlen("PowerBook")) != 0 &&
strncmp(model, "iBook", strlen("iBook")) != 0)
return 0;
pmu_blink_on.complete = 1;
pmu_blink_off.complete = 1;
spin_lock_init(&pmu_blink_lock);
init_timer(&pmu_blink_timer);
pmu_blink_timer.function = pmu_hd_blink_timeout;
return 1;
}
#endif /* CONFIG_BLK_DEV_IDE_PMAC_BLINK */
/* /*
* N.B. this can't be an initfunc, because the media-bay task can * N.B. this can't be an initfunc, because the media-bay task can
...@@ -315,6 +496,41 @@ pmac_ide_selectproc(ide_drive_t *drive) ...@@ -315,6 +496,41 @@ pmac_ide_selectproc(ide_drive_t *drive)
(void)readl((unsigned *)(IDE_DATA_REG+IDE_TIMING_CONFIG)); (void)readl((unsigned *)(IDE_DATA_REG+IDE_TIMING_CONFIG));
} }
static void __pmac
pmac_ide_kauai_selectproc(ide_drive_t *drive)
{
pmac_ide_hwif_t* pmif = (pmac_ide_hwif_t *)HWIF(drive)->hwif_data;
if (pmif == NULL)
return;
if (drive->select.b.unit & 0x01) {
writel(pmif->timings[1],
(unsigned *)(IDE_DATA_REG + IDE_KAUAI_PIO_CONFIG));
writel(pmif->timings[3],
(unsigned *)(IDE_DATA_REG + IDE_KAUAI_ULTRA_CONFIG));
} else {
writel(pmif->timings[0],
(unsigned *)(IDE_DATA_REG + IDE_KAUAI_PIO_CONFIG));
writel(pmif->timings[2],
(unsigned *)(IDE_DATA_REG + IDE_KAUAI_ULTRA_CONFIG));
}
(void)readl((unsigned *)(IDE_DATA_REG + IDE_KAUAI_PIO_CONFIG));
}
static void __pmac
pmac_ide_do_update_timings(ide_drive_t *drive)
{
pmac_ide_hwif_t* pmif = (pmac_ide_hwif_t *)HWIF(drive)->hwif_data;
if (pmif == NULL)
return;
if (pmif->kind == controller_un_ata6)
pmac_ide_kauai_selectproc(drive);
else
pmac_ide_selectproc(drive);
}
static int __pmac static int __pmac
pmac_ide_do_setfeature(ide_drive_t *drive, u8 command) pmac_ide_do_setfeature(ide_drive_t *drive, u8 command)
...@@ -322,7 +538,7 @@ pmac_ide_do_setfeature(ide_drive_t *drive, u8 command) ...@@ -322,7 +538,7 @@ pmac_ide_do_setfeature(ide_drive_t *drive, u8 command)
ide_hwif_t *hwif = HWIF(drive); ide_hwif_t *hwif = HWIF(drive);
int result = 1; int result = 1;
disable_irq(hwif->irq); /* disable_irq_nosync ?? */ disable_irq_nosync(hwif->irq);
udelay(1); udelay(1);
SELECT_DRIVE(drive); SELECT_DRIVE(drive);
SELECT_MASK(drive, 0); SELECT_MASK(drive, 0);
...@@ -332,22 +548,22 @@ pmac_ide_do_setfeature(ide_drive_t *drive, u8 command) ...@@ -332,22 +548,22 @@ pmac_ide_do_setfeature(ide_drive_t *drive, u8 command)
/* Timeout bumped for some powerbooks */ /* Timeout bumped for some powerbooks */
if (wait_for_ready(drive, 2000)) { if (wait_for_ready(drive, 2000)) {
/* Timeout bumped for some powerbooks */ /* Timeout bumped for some powerbooks */
printk(KERN_ERR "pmac_ide_do_setfeature disk not ready " printk(KERN_ERR "%s: pmac_ide_do_setfeature disk not ready "
"before SET_FEATURE!\n"); "before SET_FEATURE!\n", drive->name);
goto out; goto out;
} }
udelay(10); udelay(10);
hwif->OUTB(drive->ctl | 2, IDE_CONTROL_REG); hwif->OUTB(drive->ctl | 2, IDE_CONTROL_REG);
hwif->OUTB(command, IDE_NSECTOR_REG); hwif->OUTB(command, IDE_NSECTOR_REG);
hwif->OUTB(SETFEATURES_XFER, IDE_FEATURE_REG); hwif->OUTB(SETFEATURES_XFER, IDE_FEATURE_REG);
hwif->OUTB(WIN_SETFEATURES, IDE_COMMAND_REG); hwif->OUTBSYNC(drive, WIN_SETFEATURES, IDE_COMMAND_REG);
udelay(1); udelay(1);
/* Timeout bumped for some powerbooks */ /* Timeout bumped for some powerbooks */
result = wait_for_ready(drive, 2000); result = wait_for_ready(drive, 2000);
hwif->OUTB(drive->ctl, IDE_CONTROL_REG); hwif->OUTB(drive->ctl, IDE_CONTROL_REG);
if (result) if (result)
printk(KERN_ERR "pmac_ide_do_setfeature disk not ready " printk(KERN_ERR "%s: pmac_ide_do_setfeature disk not ready "
"after SET_FEATURE !\n"); "after SET_FEATURE !\n", drive->name);
out: out:
SELECT_MASK(drive, 0); SELECT_MASK(drive, 0);
if (result == 0) { if (result == 0) {
...@@ -403,21 +619,27 @@ pmac_ide_tuneproc(ide_drive_t *drive, u8 pio) ...@@ -403,21 +619,27 @@ pmac_ide_tuneproc(ide_drive_t *drive, u8 pio)
if (pmif == NULL) if (pmif == NULL)
return; return;
/* which drive is it ? */
timings = &pmif->timings[drive->select.b.unit & 0x01];
pio = ide_get_best_pio_mode(drive, pio, 4, &d); pio = ide_get_best_pio_mode(drive, pio, 4, &d);
accessTicks = SYSCLK_TICKS(ide_pio_timings[pio].active_time);
if (drive->select.b.unit & 0x01)
timings = &pmif->timings[1];
else
timings = &pmif->timings[0];
switch (pmif->kind) {
case controller_un_ata6: {
/* 100Mhz cell */
u32 tr = kauai_lookup_timing(kauai_pio_timings, d.cycle_time);
if (tr == 0)
return;
*timings = ((*timings) & ~TR_100_PIOREG_PIO_MASK) | tr;
break;
}
case controller_kl_ata4:
/* 66Mhz cell */
recTime = d.cycle_time - ide_pio_timings[pio].active_time recTime = d.cycle_time - ide_pio_timings[pio].active_time
- ide_pio_timings[pio].setup_time; - ide_pio_timings[pio].setup_time;
recTime = max(recTime, 150U); recTime = max(recTime, 150U);
accessTime = ide_pio_timings[pio].active_time; accessTime = ide_pio_timings[pio].active_time;
accessTime = max(accessTime, 150U); accessTime = max(accessTime, 150U);
if (pmif->kind == controller_kl_ata4 ||
pmif->kind == controller_kl_ata4_80) {
/* 66Mhz cell */
accessTicks = SYSCLK_TICKS_66(accessTime); accessTicks = SYSCLK_TICKS_66(accessTime);
accessTicks = min(accessTicks, 0x1fU); accessTicks = min(accessTicks, 0x1fU);
recTicks = SYSCLK_TICKS_66(recTime); recTicks = SYSCLK_TICKS_66(recTime);
...@@ -425,9 +647,15 @@ pmac_ide_tuneproc(ide_drive_t *drive, u8 pio) ...@@ -425,9 +647,15 @@ pmac_ide_tuneproc(ide_drive_t *drive, u8 pio)
*timings = ((*timings) & ~TR_66_PIO_MASK) | *timings = ((*timings) & ~TR_66_PIO_MASK) |
(accessTicks << TR_66_PIO_ACCESS_SHIFT) | (accessTicks << TR_66_PIO_ACCESS_SHIFT) |
(recTicks << TR_66_PIO_RECOVERY_SHIFT); (recTicks << TR_66_PIO_RECOVERY_SHIFT);
} else { break;
default: {
/* 33Mhz cell */ /* 33Mhz cell */
int ebit = 0; int ebit = 0;
recTime = d.cycle_time - ide_pio_timings[pio].active_time
- ide_pio_timings[pio].setup_time;
recTime = max(recTime, 150U);
accessTime = ide_pio_timings[pio].active_time;
accessTime = max(accessTime, 150U);
accessTicks = SYSCLK_TICKS(accessTime); accessTicks = SYSCLK_TICKS(accessTime);
accessTicks = min(accessTicks, 0x1fU); accessTicks = min(accessTicks, 0x1fU);
accessTicks = max(accessTicks, 4U); accessTicks = max(accessTicks, 4U);
...@@ -443,26 +671,31 @@ pmac_ide_tuneproc(ide_drive_t *drive, u8 pio) ...@@ -443,26 +671,31 @@ pmac_ide_tuneproc(ide_drive_t *drive, u8 pio)
(recTicks << TR_33_PIO_RECOVERY_SHIFT); (recTicks << TR_33_PIO_RECOVERY_SHIFT);
if (ebit) if (ebit)
*timings |= TR_33_PIO_E; *timings |= TR_33_PIO_E;
break;
}
} }
#ifdef IDE_PMAC_DEBUG #ifdef IDE_PMAC_DEBUG
printk(KERN_ERR "ide_pmac: Set PIO timing for mode %d, reg: 0x%08x\n", printk(KERN_ERR "%s: Set PIO timing for mode %d, reg: 0x%08x\n",
pio, *timings); drive->name, pio, *timings);
#endif #endif
if (drive->select.all == HWIF(drive)->INB(IDE_SELECT_REG)) if (drive->select.all == HWIF(drive)->INB(IDE_SELECT_REG))
pmac_ide_selectproc(drive); pmac_ide_do_update_timings(drive);
} }
#ifdef CONFIG_BLK_DEV_IDEDMA_PMAC #ifdef CONFIG_BLK_DEV_IDEDMA_PMAC
static int __pmac static int __pmac
set_timings_udma(u32 *timings, u8 speed) set_timings_udma_ata4(u32 *timings, u8 speed)
{ {
unsigned rdyToPauseTicks, wrDataSetupTicks, addrTicks; unsigned rdyToPauseTicks, wrDataSetupTicks, addrTicks;
rdyToPauseTicks = SYSCLK_TICKS_66(udma_timings[speed & 0xf].rdy2pause); if (speed > XFER_UDMA_4)
wrDataSetupTicks = SYSCLK_TICKS_66(udma_timings[speed & 0xf].wrDataSetup); return 1;
addrTicks = SYSCLK_TICKS_66(udma_timings[speed & 0xf].addrSetup);
rdyToPauseTicks = SYSCLK_TICKS_66(kl66_udma_timings[speed & 0xf].rdy2pause);
wrDataSetupTicks = SYSCLK_TICKS_66(kl66_udma_timings[speed & 0xf].wrDataSetup);
addrTicks = SYSCLK_TICKS_66(kl66_udma_timings[speed & 0xf].addrSetup);
*timings = ((*timings) & ~(TR_66_UDMA_MASK | TR_66_MDMA_MASK)) | *timings = ((*timings) & ~(TR_66_UDMA_MASK | TR_66_MDMA_MASK)) |
(wrDataSetupTicks << TR_66_UDMA_WRDATASETUP_SHIFT) | (wrDataSetupTicks << TR_66_UDMA_WRDATASETUP_SHIFT) |
...@@ -478,11 +711,29 @@ set_timings_udma(u32 *timings, u8 speed) ...@@ -478,11 +711,29 @@ set_timings_udma(u32 *timings, u8 speed)
} }
static int __pmac static int __pmac
set_timings_mdma(int intf_type, u32 *timings, u8 speed, int drive_cycle_time) set_timings_udma_ata6(u32 *pio_timings, u32 *ultra_timings, u8 speed)
{
struct ide_timing *t = ide_timing_find_mode(speed);
u32 tr;
if (speed > XFER_UDMA_5 || t == NULL)
return 1;
tr = kauai_lookup_timing(kauai_udma_timings, (int)t->udma);
if (tr == 0)
return 1;
*ultra_timings = ((*ultra_timings) & ~TR_100_UDMAREG_UDMA_MASK) | tr;
*ultra_timings = (*ultra_timings) | TR_100_UDMAREG_UDMA_EN;
return 0;
}
static int __pmac
set_timings_mdma(ide_drive_t *drive, int intf_type, u32 *timings, u32 *timings2,
u8 speed, int drive_cycle_time)
{ {
int cycleTime, accessTime, recTime; int cycleTime, accessTime, recTime;
unsigned accessTicks, recTicks; unsigned accessTicks, recTicks;
struct mdma_timings_t* tm; struct mdma_timings_t* tm = NULL;
int i; int i;
/* Get default cycle time for mode */ /* Get default cycle time for mode */
...@@ -491,7 +742,7 @@ set_timings_mdma(int intf_type, u32 *timings, u8 speed, int drive_cycle_time) ...@@ -491,7 +742,7 @@ set_timings_mdma(int intf_type, u32 *timings, u8 speed, int drive_cycle_time)
case 1: cycleTime = 150; break; case 1: cycleTime = 150; break;
case 2: cycleTime = 120; break; case 2: cycleTime = 120; break;
default: default:
return -1; return 1;
} }
/* Adjust for drive */ /* Adjust for drive */
if (drive_cycle_time && drive_cycle_time > cycleTime) if (drive_cycle_time && drive_cycle_time > cycleTime)
...@@ -501,8 +752,9 @@ set_timings_mdma(int intf_type, u32 *timings, u8 speed, int drive_cycle_time) ...@@ -501,8 +752,9 @@ set_timings_mdma(int intf_type, u32 *timings, u8 speed, int drive_cycle_time)
cycleTime = 150; cycleTime = 150;
/* Get the proper timing array for this controller */ /* Get the proper timing array for this controller */
switch(intf_type) { switch(intf_type) {
case controller_un_ata6:
break;
case controller_kl_ata4: case controller_kl_ata4:
case controller_kl_ata4_80:
tm = mdma_timings_66; tm = mdma_timings_66;
break; break;
case controller_kl_ata3: case controller_kl_ata3:
...@@ -512,6 +764,7 @@ set_timings_mdma(int intf_type, u32 *timings, u8 speed, int drive_cycle_time) ...@@ -512,6 +764,7 @@ set_timings_mdma(int intf_type, u32 *timings, u8 speed, int drive_cycle_time)
tm = mdma_timings_33; tm = mdma_timings_33;
break; break;
} }
if (tm != NULL) {
/* Lookup matching access & recovery times */ /* Lookup matching access & recovery times */
i = -1; i = -1;
for (;;) { for (;;) {
...@@ -520,16 +773,27 @@ set_timings_mdma(int intf_type, u32 *timings, u8 speed, int drive_cycle_time) ...@@ -520,16 +773,27 @@ set_timings_mdma(int intf_type, u32 *timings, u8 speed, int drive_cycle_time)
i++; i++;
} }
if (i < 0) if (i < 0)
return -1; return 1;
cycleTime = tm[i].cycleTime; cycleTime = tm[i].cycleTime;
accessTime = tm[i].accessTime; accessTime = tm[i].accessTime;
recTime = tm[i].recoveryTime; recTime = tm[i].recoveryTime;
#ifdef IDE_PMAC_DEBUG #ifdef IDE_PMAC_DEBUG
printk(KERN_ERR "ide_pmac: MDMA, cycleTime: %d, accessTime: %d, recTime: %d\n", printk(KERN_ERR "%s: MDMA, cycleTime: %d, accessTime: %d, recTime: %d\n",
cycleTime, accessTime, recTime); drive->name, cycleTime, accessTime, recTime);
#endif #endif
if (intf_type == controller_kl_ata4 || intf_type == controller_kl_ata4_80) { }
switch(intf_type) {
case controller_un_ata6: {
/* 100Mhz cell */
u32 tr = kauai_lookup_timing(kauai_mdma_timings, cycleTime);
if (tr == 0)
return 1;
*timings = ((*timings) & ~TR_100_PIOREG_MDMA_MASK) | tr;
*timings2 = (*timings2) & ~TR_100_UDMAREG_UDMA_EN;
}
break;
case controller_kl_ata4:
/* 66Mhz cell */ /* 66Mhz cell */
accessTicks = SYSCLK_TICKS_66(accessTime); accessTicks = SYSCLK_TICKS_66(accessTime);
accessTicks = min(accessTicks, 0x1fU); accessTicks = min(accessTicks, 0x1fU);
...@@ -541,7 +805,8 @@ set_timings_mdma(int intf_type, u32 *timings, u8 speed, int drive_cycle_time) ...@@ -541,7 +805,8 @@ set_timings_mdma(int intf_type, u32 *timings, u8 speed, int drive_cycle_time)
*timings = ((*timings) & ~(TR_66_MDMA_MASK | TR_66_UDMA_MASK)) | *timings = ((*timings) & ~(TR_66_MDMA_MASK | TR_66_UDMA_MASK)) |
(accessTicks << TR_66_MDMA_ACCESS_SHIFT) | (accessTicks << TR_66_MDMA_ACCESS_SHIFT) |
(recTicks << TR_66_MDMA_RECOVERY_SHIFT); (recTicks << TR_66_MDMA_RECOVERY_SHIFT);
} else if (intf_type == controller_kl_ata3) { break;
case controller_kl_ata3:
/* 33Mhz cell on KeyLargo */ /* 33Mhz cell on KeyLargo */
accessTicks = SYSCLK_TICKS(accessTime); accessTicks = SYSCLK_TICKS(accessTime);
accessTicks = max(accessTicks, 1U); accessTicks = max(accessTicks, 1U);
...@@ -553,7 +818,8 @@ set_timings_mdma(int intf_type, u32 *timings, u8 speed, int drive_cycle_time) ...@@ -553,7 +818,8 @@ set_timings_mdma(int intf_type, u32 *timings, u8 speed, int drive_cycle_time)
*timings = ((*timings) & ~TR_33_MDMA_MASK) | *timings = ((*timings) & ~TR_33_MDMA_MASK) |
(accessTicks << TR_33_MDMA_ACCESS_SHIFT) | (accessTicks << TR_33_MDMA_ACCESS_SHIFT) |
(recTicks << TR_33_MDMA_RECOVERY_SHIFT); (recTicks << TR_33_MDMA_RECOVERY_SHIFT);
} else { break;
default: {
/* 33Mhz cell on others */ /* 33Mhz cell on others */
int halfTick = 0; int halfTick = 0;
int origAccessTime = accessTime; int origAccessTime = accessTime;
...@@ -579,9 +845,10 @@ set_timings_mdma(int intf_type, u32 *timings, u8 speed, int drive_cycle_time) ...@@ -579,9 +845,10 @@ set_timings_mdma(int intf_type, u32 *timings, u8 speed, int drive_cycle_time)
if (halfTick) if (halfTick)
*timings |= TR_33_MDMA_HALFTICK; *timings |= TR_33_MDMA_HALFTICK;
} }
}
#ifdef IDE_PMAC_DEBUG #ifdef IDE_PMAC_DEBUG
printk(KERN_ERR "ide_pmac: Set MDMA timing for mode %d, reg: 0x%08x\n", printk(KERN_ERR "%s: Set MDMA timing for mode %d, reg: 0x%08x\n",
speed & 0xf, *timings); drive->name, speed & 0xf, *timings);
#endif #endif
return 0; return 0;
} }
...@@ -591,36 +858,42 @@ set_timings_mdma(int intf_type, u32 *timings, u8 speed, int drive_cycle_time) ...@@ -591,36 +858,42 @@ set_timings_mdma(int intf_type, u32 *timings, u8 speed, int drive_cycle_time)
* our, normal mdma function is supposed to be more precise * our, normal mdma function is supposed to be more precise
*/ */
static int __pmac static int __pmac
pmac_ide_tune_chipset (ide_drive_t *drive, u8 speed) pmac_ide_tune_chipset (ide_drive_t *drive, byte speed)
{ {
int unit = (drive->select.b.unit & 0x01); int unit = (drive->select.b.unit & 0x01);
int ret = 0; int ret = 0;
pmac_ide_hwif_t* pmif = (pmac_ide_hwif_t *)HWIF(drive)->hwif_data; pmac_ide_hwif_t* pmif = (pmac_ide_hwif_t *)HWIF(drive)->hwif_data;
u32 *timings; u32 *timings, *timings2;
if (pmif == NULL) if (pmif == NULL)
return 1; return 1;
timings = &pmif->timings[unit]; timings = &pmif->timings[unit];
timings2 = &pmif->timings[unit+2];
switch(speed) { switch(speed) {
#ifdef CONFIG_BLK_DEV_IDEDMA_PMAC #ifdef CONFIG_BLK_DEV_IDEDMA_PMAC
case XFER_UDMA_5:
if (pmif->kind != controller_un_ata6)
return 1;
case XFER_UDMA_4: case XFER_UDMA_4:
case XFER_UDMA_3: case XFER_UDMA_3:
if (pmif->kind != controller_kl_ata4_80) if (HWIF(drive)->udma_four == 0)
return 1; return 1;
case XFER_UDMA_2: case XFER_UDMA_2:
case XFER_UDMA_1: case XFER_UDMA_1:
case XFER_UDMA_0: case XFER_UDMA_0:
if (pmif->kind != controller_kl_ata4 && if (pmif->kind == controller_kl_ata4)
pmif->kind != controller_kl_ata4_80) ret = set_timings_udma_ata4(timings, speed);
return 1; else if (pmif->kind == controller_un_ata6)
ret = set_timings_udma(timings, speed); ret = set_timings_udma_ata6(timings, timings2, speed);
else
ret = 1;
break; break;
case XFER_MW_DMA_2: case XFER_MW_DMA_2:
case XFER_MW_DMA_1: case XFER_MW_DMA_1:
case XFER_MW_DMA_0: case XFER_MW_DMA_0:
ret = set_timings_mdma(pmif->kind, timings, speed, 0); ret = set_timings_mdma(drive, pmif->kind, timings, timings2, speed, 0);
break; break;
case XFER_SW_DMA_2: case XFER_SW_DMA_2:
case XFER_SW_DMA_1: case XFER_SW_DMA_1:
...@@ -644,7 +917,7 @@ pmac_ide_tune_chipset (ide_drive_t *drive, u8 speed) ...@@ -644,7 +917,7 @@ pmac_ide_tune_chipset (ide_drive_t *drive, u8 speed)
if (ret) if (ret)
return ret; return ret;
pmac_ide_selectproc(drive); pmac_ide_do_update_timings(drive);
drive->current_speed = speed; drive->current_speed = speed;
return 0; return 0;
...@@ -653,11 +926,14 @@ pmac_ide_tune_chipset (ide_drive_t *drive, u8 speed) ...@@ -653,11 +926,14 @@ pmac_ide_tune_chipset (ide_drive_t *drive, u8 speed)
static void __pmac static void __pmac
sanitize_timings(pmac_ide_hwif_t *pmif) sanitize_timings(pmac_ide_hwif_t *pmif)
{ {
unsigned value; unsigned int value, value2 = 0;
switch(pmif->kind) { switch(pmif->kind) {
case controller_un_ata6:
value = 0x08618a92;
value2 = 0x00002921;
break;
case controller_kl_ata4: case controller_kl_ata4:
case controller_kl_ata4_80:
value = 0x0008438c; value = 0x0008438c;
break; break;
case controller_kl_ata3: case controller_kl_ata3:
...@@ -670,6 +946,7 @@ sanitize_timings(pmac_ide_hwif_t *pmif) ...@@ -670,6 +946,7 @@ sanitize_timings(pmac_ide_hwif_t *pmif)
break; break;
} }
pmif->timings[0] = pmif->timings[1] = value; pmif->timings[0] = pmif->timings[1] = value;
pmif->timings[2] = pmif->timings[3] = value2;
} }
unsigned long __pmac unsigned long __pmac
...@@ -724,147 +1001,112 @@ pmac_find_ide_boot(char *bootdevice, int n) ...@@ -724,147 +1001,112 @@ pmac_find_ide_boot(char *bootdevice, int n)
return 0; return 0;
} }
void __init /* Suspend call back, should be called after the child devices
pmac_ide_probe(void) * have actually been suspended
*/
static int
pmac_ide_do_suspend(ide_hwif_t *hwif)
{ {
struct device_node *np; pmac_ide_hwif_t *pmif = (pmac_ide_hwif_t *)hwif->hwif_data;
int i;
struct device_node *atas;
struct device_node *p, **pp, *removables, **rp;
unsigned long base;
int irq, big_delay;
ide_hwif_t *hwif;
if (_machine != _MACH_Pmac) /* We clear the timings */
return; pmif->timings[0] = 0;
pp = &atas; pmif->timings[1] = 0;
rp = &removables;
p = find_devices("ATA");
if (p == NULL)
p = find_devices("IDE");
if (p == NULL)
p = find_type_devices("ide");
if (p == NULL)
p = find_type_devices("ata");
/* Move removable devices such as the media-bay CDROM
on the PB3400 to the end of the list. */
for (; p != NULL; p = p->next) {
if (p->parent && p->parent->type
&& strcasecmp(p->parent->type, "media-bay") == 0) {
*rp = p;
rp = &p->next;
} else {
*pp = p;
pp = &p->next;
}
}
*rp = NULL;
*pp = removables;
big_delay = 0;
for (i = 0, np = atas; i < MAX_HWIFS && np != NULL; np = np->next) {
struct device_node *tp;
struct pmac_ide_hwif* pmif;
int *bidp;
int in_bay = 0;
u8 pbus, pid;
struct pci_dev *pdev = NULL;
/*
* If this node is not under a mac-io or dbdma node,
* leave it to the generic PCI driver.
*/
for (tp = np->parent; tp != 0; tp = tp->parent)
if (tp->type && (strcmp(tp->type, "mac-io") == 0
|| strcmp(tp->type, "dbdma") == 0))
break;
if (tp == 0)
continue;
if (np->n_addrs == 0) { #ifdef CONFIG_BLK_DEV_IDE_PMAC_BLINK
printk(KERN_WARNING "ide: no address for device %s\n", /* Note: This code will be called for every hwif, thus we'll
np->full_name); * try several time to stop the LED blinker timer, but that
continue; * should be harmless
*/
if (pmu_ide_blink_enabled) {
unsigned long flags;
/* Make sure we don't hit the PMU blink */
spin_lock_irqsave(&pmu_blink_lock, flags);
if (pmu_blink_ledstate)
del_timer(&pmu_blink_timer);
pmu_blink_ledstate = 0;
spin_unlock_irqrestore(&pmu_blink_lock, flags);
} }
#endif /* CONFIG_BLK_DEV_IDE_PMAC_BLINK */
/* We need to find the pci_dev of the mac-io holding the /* The media bay will handle itself just fine */
* IDE interface if (pmif->mediabay)
*/ return 0;
if (pci_device_from_OF_node(tp, &pbus, &pid) == 0)
pdev = pci_find_slot(pbus, pid); /* Disable the bus */
if (pdev == NULL) ppc_md.feature_call(PMAC_FTR_IDE_ENABLE, pmif->node, pmif->aapl_bus_id, 0);
printk(KERN_WARNING "ide: no PCI host for device %s, DMA disabled\n",
np->full_name); return 0;
}
/*
* If this slot is taken (e.g. by ide-pci.c) try the next one.
*/
while (i < MAX_HWIFS
&& ide_hwifs[i].io_ports[IDE_DATA_OFFSET] != 0)
++i;
if (i >= MAX_HWIFS)
break;
pmif = &pmac_ide[i];
/* /* Resume call back, should be called before the child devices
* Some older OFs have bogus sizes, causing request_OF_resource * are resumed
* to fail. We fix them up here
*/ */
if (np->addrs[0].size > 0x1000) static int
np->addrs[0].size = 0x1000; pmac_ide_do_resume(ide_hwif_t *hwif)
if (np->n_addrs > 1 && np->addrs[1].size > 0x100) {
np->addrs[1].size = 0x100; pmac_ide_hwif_t *pmif = (pmac_ide_hwif_t *)hwif->hwif_data;
if (request_OF_resource(np, 0, " (mac-io IDE IO)") == NULL) { /* Hard reset & re-enable controller (do we really need to reset ? -BenH) */
printk(KERN_ERR "ide-pmac(%s): can't request IO resource !\n", np->name); if (!pmif->mediabay) {
continue; ppc_md.feature_call(PMAC_FTR_IDE_RESET, pmif->node, pmif->aapl_bus_id, 1);
ppc_md.feature_call(PMAC_FTR_IDE_ENABLE, pmif->node, pmif->aapl_bus_id, 1);
mdelay(10);
ppc_md.feature_call(PMAC_FTR_IDE_RESET, pmif->node, pmif->aapl_bus_id, 0);
mdelay(100);
} }
base = (unsigned long) ioremap(np->addrs[0].address, 0x400); /* Sanitize drive timings */
sanitize_timings(pmif);
/* XXX This is bogus. Should be fixed in the registry by checking return 0;
the kind of host interrupt controller, a bit like gatwick }
fixes in irq.c
*/ static int
if (np->n_intrs == 0) { pmac_ide_setup_device(pmac_ide_hwif_t *pmif, ide_hwif_t *hwif)
printk(KERN_WARNING "ide: no intrs for device %s, using 13\n", {
np->full_name); struct device_node *np = pmif->node;
irq = 13; int *bidp, i;
} else {
irq = np->intrs[0].line; pmif->cable_80 = 0;
} pmif->broken_dma = pmif->broken_dma_warn = 0;
pmif->regbase = base; if (device_is_compatible(np, "kauai-ata"))
pmif->irq = irq; pmif->kind = controller_un_ata6;
pmif->node = np; else if (device_is_compatible(np, "keylargo-ata")) {
pmif->index = i;
if (device_is_compatible(np, "keylargo-ata")) {
if (strcmp(np->name, "ata-4") == 0) if (strcmp(np->name, "ata-4") == 0)
pmif->kind = controller_kl_ata4; pmif->kind = controller_kl_ata4;
else else
pmif->kind = controller_kl_ata3; pmif->kind = controller_kl_ata3;
} else if (device_is_compatible(np, "heathrow-ata")) } else if (device_is_compatible(np, "heathrow-ata"))
pmif->kind = controller_heathrow; pmif->kind = controller_heathrow;
else else {
pmif->kind = controller_ohare; pmif->kind = controller_ohare;
pmif->broken_dma = 1;
}
bidp = (int *)get_property(np, "AAPL,bus-id", NULL); bidp = (int *)get_property(np, "AAPL,bus-id", NULL);
pmif->aapl_bus_id = bidp ? *bidp : 0; pmif->aapl_bus_id = bidp ? *bidp : 0;
if (pmif->kind == controller_kl_ata4) { /* Get cable type from device-tree */
if (pmif->kind == controller_kl_ata4 || pmif->kind == controller_un_ata6) {
char* cable = get_property(np, "cable-type", NULL); char* cable = get_property(np, "cable-type", NULL);
if (cable && !strncmp(cable, "80-", 3)) if (cable && !strncmp(cable, "80-", 3))
pmif->kind = controller_kl_ata4_80; pmif->cable_80 = 1;
} }
pmif->mediabay = 0;
/* Make sure we have sane timings */ /* Make sure we have sane timings */
sanitize_timings(pmif); sanitize_timings(pmif);
/* XXX FIXME: Media bay stuff need re-organizing */
if (np->parent && np->parent->name if (np->parent && np->parent->name
&& strcasecmp(np->parent->name, "media-bay") == 0) { && strcasecmp(np->parent->name, "media-bay") == 0) {
#ifdef CONFIG_PMAC_PBOOK #ifdef CONFIG_PMAC_PBOOK
media_bay_set_ide_infos(np->parent,base,irq,i); media_bay_set_ide_infos(np->parent, pmif->regbase, pmif->irq, hwif->index);
#endif /* CONFIG_PMAC_PBOOK */ #endif /* CONFIG_PMAC_PBOOK */
in_bay = 1; pmif->mediabay = 1;
if (!bidp) if (!bidp)
pmif->aapl_bus_id = 1; pmif->aapl_bus_id = 1;
} else if (pmif->kind == controller_ohare) { } else if (pmif->kind == controller_ohare) {
...@@ -875,131 +1117,425 @@ pmac_ide_probe(void) ...@@ -875,131 +1117,425 @@ pmac_ide_probe(void)
ppc_md.feature_call(PMAC_FTR_IDE_ENABLE, np, 0, 1); ppc_md.feature_call(PMAC_FTR_IDE_ENABLE, np, 0, 1);
} else { } else {
/* This is necessary to enable IDE when net-booting */ /* This is necessary to enable IDE when net-booting */
printk(KERN_INFO "pmac_ide: enabling IDE bus ID %d\n",
pmif->aapl_bus_id);
ppc_md.feature_call(PMAC_FTR_IDE_RESET, np, pmif->aapl_bus_id, 1); ppc_md.feature_call(PMAC_FTR_IDE_RESET, np, pmif->aapl_bus_id, 1);
ppc_md.feature_call(PMAC_FTR_IDE_ENABLE, np, pmif->aapl_bus_id, 1); ppc_md.feature_call(PMAC_FTR_IDE_ENABLE, np, pmif->aapl_bus_id, 1);
mdelay(10); mdelay(10);
ppc_md.feature_call(PMAC_FTR_IDE_RESET, np, pmif->aapl_bus_id, 0); ppc_md.feature_call(PMAC_FTR_IDE_RESET, np, pmif->aapl_bus_id, 0);
big_delay = 1; mdelay(100);
} }
hwif = &ide_hwifs[i];
/* Setup MMIO ops */ /* Setup MMIO ops */
default_hwif_mmiops(hwif); default_hwif_mmiops(hwif);
/* Tell common code _not_ to mess with resources */ /* Tell common code _not_ to mess with resources */
hwif->mmio = 2; hwif->mmio = 2;
hwif->hwif_data = pmif; hwif->hwif_data = pmif;
pmac_ide_init_hwif_ports(&hwif->hw, base, 0, &hwif->irq); pmac_ide_init_hwif_ports(&hwif->hw, pmif->regbase, 0, &hwif->irq);
memcpy(hwif->io_ports, hwif->hw.io_ports, sizeof(hwif->io_ports)); memcpy(hwif->io_ports, hwif->hw.io_ports, sizeof(hwif->io_ports));
hwif->chipset = ide_pmac; hwif->chipset = ide_pmac;
hwif->noprobe = !hwif->io_ports[IDE_DATA_OFFSET] || in_bay; hwif->noprobe = !hwif->io_ports[IDE_DATA_OFFSET] || pmif->mediabay;
hwif->udma_four = (pmif->kind == controller_kl_ata4_80); hwif->hold = pmif->mediabay;
hwif->pci_dev = pdev; hwif->udma_four = pmif->cable_80;
hwif->drives[0].unmask = 1; hwif->drives[0].unmask = 1;
hwif->drives[1].unmask = 1; hwif->drives[1].unmask = 1;
hwif->tuneproc = pmac_ide_tuneproc; hwif->tuneproc = pmac_ide_tuneproc;
if (pmif->kind == controller_un_ata6)
hwif->selectproc = pmac_ide_kauai_selectproc;
else
hwif->selectproc = pmac_ide_selectproc; hwif->selectproc = pmac_ide_selectproc;
hwif->speedproc = pmac_ide_tune_chipset; hwif->speedproc = pmac_ide_tune_chipset;
#ifdef CONFIG_BLK_DEV_IDE_PMAC_BLINK
pmu_ide_blink_enabled = pmu_hd_blink_init();
if (pmu_ide_blink_enabled)
hwif->led_act = pmu_hd_kick_blink;
#endif
printk(KERN_INFO "ide%d: Found Apple %s controller, bus ID %d%s\n",
hwif->index, model_name[pmif->kind], pmif->aapl_bus_id,
pmif->mediabay ? " (mediabay)" : "");
#ifdef CONFIG_PMAC_PBOOK #ifdef CONFIG_PMAC_PBOOK
if (in_bay && check_media_bay_by_base(base, MB_CD) == 0) if (pmif->mediabay && check_media_bay_by_base(pmif->regbase, MB_CD) == 0)
hwif->noprobe = 0; hwif->noprobe = 0;
#endif /* CONFIG_PMAC_PBOOK */ #endif /* CONFIG_PMAC_PBOOK */
#ifdef CONFIG_BLK_DEV_IDEDMA_PMAC #ifdef CONFIG_BLK_DEV_IDEDMA_PMAC
if (np->n_addrs >= 2) {
/* has a DBDMA controller channel */ /* has a DBDMA controller channel */
pmac_ide_setup_dma(np, i); if (pmif->dma_regs)
} pmac_ide_setup_dma(pmif, hwif);
hwif->atapi_dma = 1;
hwif->ultra_mask = 0x1f;
hwif->mwdma_mask = 0x07;
hwif->swdma_mask = 0x07;
#endif /* CONFIG_BLK_DEV_IDEDMA_PMAC */ #endif /* CONFIG_BLK_DEV_IDEDMA_PMAC */
++i; /* We probe the hwif now */
probe_hwif_init(hwif);
/* The code IDE code will have set hwif->present if we have devices attached,
* if we don't, the discard the interface except if we are on a media bay slot
*/
if (!hwif->present && !pmif->mediabay) {
printk(KERN_INFO "ide%d: Bus empty, interface released.\n",
hwif->index);
default_hwif_iops(hwif);
for (i = IDE_DATA_OFFSET; i <= IDE_CONTROL_OFFSET; ++i)
hwif->io_ports[i] = 0;
hwif->chipset = ide_unknown;
return -ENODEV;
} }
pmac_ide_count = i;
if (big_delay)
mdelay(IDE_WAKEUP_DELAY_MS);
#ifdef CONFIG_PMAC_PBOOK return 0;
pmu_register_sleep_notifier(&idepmac_sleep_notifier);
#endif /* CONFIG_PMAC_PBOOK */
} }
#ifdef CONFIG_BLK_DEV_IDEDMA_PMAC static int __devinit
pmac_ide_macio_attach(struct macio_dev *mdev, const struct of_match *match)
static int
pmac_ide_build_sglist(ide_drive_t *drive, struct request *rq)
{ {
ide_hwif_t *hwif = HWIF(drive); unsigned long base, regbase;
pmac_ide_hwif_t *pmif = (pmac_ide_hwif_t *)hwif->hwif_data; int irq;
struct scatterlist *sg = pmif->sg_table; ide_hwif_t *hwif;
int nents; pmac_ide_hwif_t *pmif;
int i, rc;
if (hwif->sg_dma_active)
BUG();
nents = blk_rq_map_sg(&drive->queue, rq, sg); i = 0;
while (i < MAX_HWIFS && (ide_hwifs[i].io_ports[IDE_DATA_OFFSET] != 0
|| pmac_ide[i].node != NULL))
++i;
if (i >= MAX_HWIFS) {
printk(KERN_ERR "ide-pmac: MacIO interface attach with no slot\n");
printk(KERN_ERR " %s\n", mdev->ofdev.node->full_name);
return -ENODEV;
}
if (rq_data_dir(rq) == READ) pmif = &pmac_ide[i];
pmif->sg_dma_direction = PCI_DMA_FROMDEVICE; hwif = &ide_hwifs[i];
if (mdev->ofdev.node->n_addrs == 0) {
printk(KERN_WARNING "ide%d: no address for %s\n",
i, mdev->ofdev.node->full_name);
return -ENXIO;
}
/*
* Some older OFs have bogus sizes, causing request_OF_resource
* to fail. We fix them up here
*/
if (mdev->ofdev.node->addrs[0].size > 0x1000)
mdev->ofdev.node->addrs[0].size = 0x1000;
if (mdev->ofdev.node->n_addrs > 1 && mdev->ofdev.node->addrs[1].size > 0x100)
mdev->ofdev.node->addrs[1].size = 0x100;
/* Request memory resource for IO ports */
if (request_OF_resource(mdev->ofdev.node, 0, " (mac-io ata ports)") == NULL) {
printk(KERN_ERR "ide%d: can't request mmio resource !\n", i);
return -EBUSY;
}
/* XXX This is bogus. Should be fixed in the registry by checking
* the kind of host interrupt controller, a bit like gatwick
* fixes in irq.c. That works well enough for the single case
* where that happens though...
*/
if (mdev->ofdev.node->n_intrs == 0) {
printk(KERN_WARNING "ide%d: no intrs for device %s, using 13\n",
i, mdev->ofdev.node->full_name);
irq = 13;
} else
irq = mdev->ofdev.node->intrs[0].line;
base = (unsigned long) ioremap(mdev->ofdev.node->addrs[0].address, 0x400);
regbase = base;
hwif->pci_dev = mdev->bus->pdev;
hwif->gendev.parent = &mdev->ofdev.dev;
pmif->mdev = mdev;
pmif->node = mdev->ofdev.node;
pmif->regbase = regbase;
pmif->irq = irq;
#ifdef CONFIG_BLK_DEV_IDEDMA_PMAC
if (mdev->ofdev.node->n_addrs >= 2)
pmif->dma_regs = (volatile struct dbdma_regs*)
ioremap(mdev->ofdev.node->addrs[1].address, 0x1000);
else else
pmif->sg_dma_direction = PCI_DMA_TODEVICE; pmif->dma_regs = NULL;
#endif /* CONFIG_BLK_DEV_IDEDMA_PMAC */
dev_set_drvdata(&mdev->ofdev.dev, hwif);
rc = pmac_ide_setup_device(pmif, hwif);
if (rc != 0) {
/* The inteface is released to the common IDE layer */
dev_set_drvdata(&mdev->ofdev.dev, NULL);
iounmap((void *)base);
if (pmif->dma_regs)
iounmap((void *)pmif->dma_regs);
memset(pmif, 0, sizeof(*pmif));
release_OF_resource(mdev->ofdev.node, 0);
}
return pci_map_sg(hwif->pci_dev, sg, nents, pmif->sg_dma_direction); return rc;
} }
static int static int
pmac_ide_raw_build_sglist(ide_drive_t *drive, struct request *rq) pmac_ide_macio_suspend(struct macio_dev *mdev, u32 state)
{ {
ide_hwif_t *hwif = HWIF(drive); ide_hwif_t *hwif = (ide_hwif_t *)dev_get_drvdata(&mdev->ofdev.dev);
pmac_ide_hwif_t *pmif = (pmac_ide_hwif_t *)hwif->hwif_data; int rc = 0;
struct scatterlist *sg = pmif->sg_table;
int nents = 0;
ide_task_t *args = rq->special;
unsigned char *virt_addr = rq->buffer;
int sector_count = rq->nr_sectors;
if (args->command_type == IDE_DRIVE_TASK_RAW_WRITE) if (state != mdev->ofdev.dev.power_state && state >= 2) {
pmif->sg_dma_direction = PCI_DMA_TODEVICE; rc = pmac_ide_do_suspend(hwif);
else if (rc == 0)
pmif->sg_dma_direction = PCI_DMA_FROMDEVICE; mdev->ofdev.dev.power_state = state;
if (sector_count > 127) {
memset(&sg[nents], 0, sizeof(*sg));
sg[nents].page = virt_to_page(virt_addr);
sg[nents].offset = offset_in_page(virt_addr);
sg[nents].length = 127 * SECTOR_SIZE;
nents++;
virt_addr = virt_addr + (127 * SECTOR_SIZE);
sector_count -= 127;
} }
memset(&sg[nents], 0, sizeof(*sg));
sg[nents].page = virt_to_page(virt_addr); return rc;
sg[nents].offset = offset_in_page(virt_addr);
sg[nents].length = sector_count * SECTOR_SIZE;
nents++;
return pci_map_sg(hwif->pci_dev, sg, nents, pmif->sg_dma_direction);
} }
/*
* pmac_ide_build_dmatable builds the DBDMA command list
* for a transfer and sets the DBDMA channel to point to it.
*/
static int static int
pmac_ide_build_dmatable(ide_drive_t *drive, int wr) pmac_ide_macio_resume(struct macio_dev *mdev)
{
ide_hwif_t *hwif = (ide_hwif_t *)dev_get_drvdata(&mdev->ofdev.dev);
int rc = 0;
if (mdev->ofdev.dev.power_state != 0) {
rc = pmac_ide_do_resume(hwif);
if (rc == 0)
mdev->ofdev.dev.power_state = 0;
}
return rc;
}
static int __devinit
pmac_ide_pci_attach(struct pci_dev *pdev, const struct pci_device_id *id)
{
ide_hwif_t *hwif;
struct device_node *np;
pmac_ide_hwif_t *pmif;
unsigned long base;
unsigned long rbase, rlen;
int i, rc;
np = pci_device_to_OF_node(pdev);
if (np == NULL) {
printk(KERN_ERR "ide-pmac: cannot find MacIO node for Kauai ATA interface\n");
return -ENODEV;
}
i = 0;
while (i < MAX_HWIFS && (ide_hwifs[i].io_ports[IDE_DATA_OFFSET] != 0
|| pmac_ide[i].node != NULL))
++i;
if (i >= MAX_HWIFS) {
printk(KERN_ERR "ide-pmac: PCI interface attach with no slot\n");
printk(KERN_ERR " %s\n", np->full_name);
return -ENODEV;
}
pmif = &pmac_ide[i];
hwif = &ide_hwifs[i];
if (pci_enable_device(pdev)) {
printk(KERN_WARNING "ide%i: Can't enable PCI device for %s\n",
i, np->full_name);
return -ENXIO;
}
pci_set_master(pdev);
if (pci_request_regions(pdev, "Kauai ATA")) {
printk(KERN_ERR "ide%d: Cannot obtain PCI resources for %s\n",
i, np->full_name);
return -ENXIO;
}
hwif->pci_dev = pdev;
hwif->gendev.parent = &pdev->dev;
pmif->mdev = NULL;
pmif->node = np;
rbase = pci_resource_start(pdev, 0);
rlen = pci_resource_len(pdev, 0);
base = (unsigned long) ioremap(rbase, rlen);
pmif->regbase = base + 0x2000;
#ifdef CONFIG_BLK_DEV_IDEDMA_PMAC
pmif->dma_regs = (volatile struct dbdma_regs*)(base + 0x1000);
#endif /* CONFIG_BLK_DEV_IDEDMA_PMAC */
pmif->irq = pdev->irq;
pci_set_drvdata(pdev, hwif);
rc = pmac_ide_setup_device(pmif, hwif);
if (rc != 0) {
/* The inteface is released to the common IDE layer */
pci_set_drvdata(pdev, NULL);
iounmap((void *)base);
memset(pmif, 0, sizeof(*pmif));
pci_release_regions(pdev);
}
return rc;
}
static int
pmac_ide_pci_suspend(struct pci_dev *pdev, u32 state)
{
ide_hwif_t *hwif = (ide_hwif_t *)pci_get_drvdata(pdev);
int rc = 0;
if (state != pdev->dev.power_state && state >= 2) {
rc = pmac_ide_do_suspend(hwif);
if (rc == 0)
pdev->dev.power_state = state;
}
return rc;
}
static int
pmac_ide_pci_resume(struct pci_dev *pdev)
{
ide_hwif_t *hwif = (ide_hwif_t *)pci_get_drvdata(pdev);
int rc = 0;
if (pdev->dev.power_state != 0) {
rc = pmac_ide_do_resume(hwif);
if (rc == 0)
pdev->dev.power_state = 0;
}
return rc;
}
static struct of_match pmac_ide_macio_match[] =
{
{
.name = "IDE",
.type = OF_ANY_MATCH,
.compatible = OF_ANY_MATCH
},
{
.name = "ATA",
.type = OF_ANY_MATCH,
.compatible = OF_ANY_MATCH
},
{
.name = OF_ANY_MATCH,
.type = "ide",
.compatible = OF_ANY_MATCH
},
{
.name = OF_ANY_MATCH,
.type = "ata",
.compatible = OF_ANY_MATCH
},
{},
};
static struct macio_driver pmac_ide_macio_driver =
{
.name = "ide-pmac",
.match_table = pmac_ide_macio_match,
.probe = pmac_ide_macio_attach,
.suspend = pmac_ide_macio_suspend,
.resume = pmac_ide_macio_resume,
};
static struct pci_device_id pmac_ide_pci_match[] __devinitdata = {
{ PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_KAUAI_ATA, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
};
static struct pci_driver pmac_ide_pci_driver = {
.name = "ide-pmac",
.id_table = pmac_ide_pci_match,
.probe = pmac_ide_pci_attach,
.suspend = pmac_ide_pci_suspend,
.resume = pmac_ide_pci_resume,
};
void __init
pmac_ide_probe(void)
{
if (_machine != _MACH_Pmac)
return;
#ifdef CONFIG_BLK_DEV_IDE_PMAC_ATA100FIRST
pci_register_driver(&pmac_ide_pci_driver);
macio_register_driver(&pmac_ide_macio_driver);
#else
macio_register_driver(&pmac_ide_macio_driver);
pci_register_driver(&pmac_ide_pci_driver);
#endif
}
#ifdef CONFIG_BLK_DEV_IDEDMA_PMAC
static int __pmac
pmac_ide_build_sglist(ide_drive_t *drive, struct request *rq)
{
ide_hwif_t *hwif = HWIF(drive);
pmac_ide_hwif_t *pmif = (pmac_ide_hwif_t *)hwif->hwif_data;
struct scatterlist *sg = pmif->sg_table;
int nents;
if (hwif->sg_dma_active)
BUG();
nents = blk_rq_map_sg(drive->queue, rq, sg);
if (rq_data_dir(rq) == READ)
pmif->sg_dma_direction = PCI_DMA_FROMDEVICE;
else
pmif->sg_dma_direction = PCI_DMA_TODEVICE;
return pci_map_sg(hwif->pci_dev, sg, nents, pmif->sg_dma_direction);
}
static int __pmac
pmac_ide_raw_build_sglist(ide_drive_t *drive, struct request *rq)
{ {
struct dbdma_cmd *table; ide_hwif_t *hwif = HWIF(drive);
int i, count = 0; pmac_ide_hwif_t *pmif = (pmac_ide_hwif_t *)hwif->hwif_data;
struct request *rq = HWGROUP(drive)->rq; struct scatterlist *sg = pmif->sg_table;
int nents = 0;
ide_task_t *args = rq->special;
unsigned char *virt_addr = rq->buffer;
int sector_count = rq->nr_sectors;
if (args->command_type == IDE_DRIVE_TASK_RAW_WRITE)
pmif->sg_dma_direction = PCI_DMA_TODEVICE;
else
pmif->sg_dma_direction = PCI_DMA_FROMDEVICE;
if (sector_count > 128) {
memset(&sg[nents], 0, sizeof(*sg));
sg[nents].page = virt_to_page(virt_addr);
sg[nents].offset = offset_in_page(virt_addr);
sg[nents].length = 128 * SECTOR_SIZE;
nents++;
virt_addr = virt_addr + (128 * SECTOR_SIZE);
sector_count -= 128;
}
memset(&sg[nents], 0, sizeof(*sg));
sg[nents].page = virt_to_page(virt_addr);
sg[nents].offset = offset_in_page(virt_addr);
sg[nents].length = sector_count * SECTOR_SIZE;
nents++;
return pci_map_sg(hwif->pci_dev, sg, nents, pmif->sg_dma_direction);
}
/*
* pmac_ide_build_dmatable builds the DBDMA command list
* for a transfer and sets the DBDMA channel to point to it.
*/
static int __pmac
pmac_ide_build_dmatable(ide_drive_t *drive, struct request *rq)
{
struct dbdma_cmd *table;
int i, count = 0;
ide_hwif_t *hwif = HWIF(drive); ide_hwif_t *hwif = HWIF(drive);
pmac_ide_hwif_t* pmif = (pmac_ide_hwif_t *)hwif->hwif_data; pmac_ide_hwif_t* pmif = (pmac_ide_hwif_t *)hwif->hwif_data;
volatile struct dbdma_regs *dma = pmif->dma_regs; volatile struct dbdma_regs *dma = pmif->dma_regs;
struct scatterlist *sg; struct scatterlist *sg;
int wr = (rq_data_dir(rq) == WRITE);
/* DMA table is already aligned */ /* DMA table is already aligned */
table = (struct dbdma_cmd *) pmif->dma_table_cpu; table = (struct dbdma_cmd *) pmif->dma_table_cpu;
...@@ -1026,10 +1562,18 @@ pmac_ide_build_dmatable(ide_drive_t *drive, int wr) ...@@ -1026,10 +1562,18 @@ pmac_ide_build_dmatable(ide_drive_t *drive, int wr)
cur_addr = sg_dma_address(sg); cur_addr = sg_dma_address(sg);
cur_len = sg_dma_len(sg); cur_len = sg_dma_len(sg);
if (pmif->broken_dma && cur_addr & (L1_CACHE_BYTES - 1)) {
if (pmif->broken_dma_warn == 0) {
printk(KERN_WARNING "%s: DMA on non aligned address,"
"switching to PIO on Ohare chipset\n", drive->name);
pmif->broken_dma_warn = 1;
}
goto use_pio_instead;
}
while (cur_len) { while (cur_len) {
unsigned int tc = (cur_len < 0xfe00)? cur_len: 0xfe00; unsigned int tc = (cur_len < 0xfe00)? cur_len: 0xfe00;
if (++count >= MAX_DCMDS) { if (count++ >= MAX_DCMDS) {
printk(KERN_WARNING "%s: DMA table too small\n", printk(KERN_WARNING "%s: DMA table too small\n",
drive->name); drive->name);
goto use_pio_instead; goto use_pio_instead;
...@@ -1070,7 +1614,7 @@ pmac_ide_build_dmatable(ide_drive_t *drive, int wr) ...@@ -1070,7 +1614,7 @@ pmac_ide_build_dmatable(ide_drive_t *drive, int wr)
} }
/* Teardown mappings after DMA has completed. */ /* Teardown mappings after DMA has completed. */
static void static void __pmac
pmac_ide_destroy_dmatable (ide_drive_t *drive) pmac_ide_destroy_dmatable (ide_drive_t *drive)
{ {
struct pci_dev *dev = HWIF(drive)->pci_dev; struct pci_dev *dev = HWIF(drive)->pci_dev;
...@@ -1081,67 +1625,25 @@ pmac_ide_destroy_dmatable (ide_drive_t *drive) ...@@ -1081,67 +1625,25 @@ pmac_ide_destroy_dmatable (ide_drive_t *drive)
if (nents) { if (nents) {
pci_unmap_sg(dev, sg, nents, pmif->sg_dma_direction); pci_unmap_sg(dev, sg, nents, pmif->sg_dma_direction);
pmif->sg_nents = 0; pmif->sg_nents = 0;
HWIF(drive)->sg_dma_active = 0;
} }
} }
static __inline__ unsigned char
dma_bits_to_command(unsigned char bits)
{
if(bits & 0x04)
return XFER_MW_DMA_2;
if(bits & 0x02)
return XFER_MW_DMA_1;
if(bits & 0x01)
return XFER_MW_DMA_0;
return 0;
}
static __inline__ unsigned char
udma_bits_to_command(unsigned char bits, int high_speed)
{
if (high_speed) {
if(bits & 0x10)
return XFER_UDMA_4;
if(bits & 0x08)
return XFER_UDMA_3;
}
if(bits & 0x04)
return XFER_UDMA_2;
if(bits & 0x02)
return XFER_UDMA_1;
if(bits & 0x01)
return XFER_UDMA_0;
return 0;
}
/* Calculate MultiWord DMA timings */ /* Calculate MultiWord DMA timings */
static int __pmac static int __pmac
pmac_ide_mdma_enable(ide_drive_t *drive) pmac_ide_mdma_enable(ide_drive_t *drive, u16 mode)
{ {
u8 bits = drive->id->dma_mword & 0x07; ide_hwif_t *hwif = HWIF(drive);
u8 feature = dma_bits_to_command(bits); pmac_ide_hwif_t* pmif = (pmac_ide_hwif_t *)hwif->hwif_data;
u32 *timings;
int drive_cycle_time; int drive_cycle_time;
struct hd_driveid *id = drive->id; struct hd_driveid *id = drive->id;
pmac_ide_hwif_t* pmif = (pmac_ide_hwif_t *)HWIF(drive)->hwif_data; u32 *timings, *timings2;
u32 timing_local[2];
int ret; int ret;
/* Set feature on drive */
printk(KERN_INFO "%s: Enabling MultiWord DMA %d\n", drive->name, feature & 0xf);
ret = pmac_ide_do_setfeature(drive, feature);
if (ret) {
printk(KERN_WARNING "%s: Failed !\n", drive->name);
return 0;
}
if (!drive->init_speed)
drive->init_speed = feature;
/* which drive is it ? */ /* which drive is it ? */
if (drive->select.b.unit & 0x01) timings = &pmif->timings[drive->select.b.unit & 0x01];
timings = &pmif->timings[1]; timings2 = &pmif->timings[(drive->select.b.unit & 0x01) + 2];
else
timings = &pmif->timings[0];
/* Check if drive provide explicit cycle time */ /* Check if drive provide explicit cycle time */
if ((id->field_valid & 2) && (id->eide_dma_time)) if ((id->field_valid & 2) && (id->eide_dma_time))
...@@ -1149,201 +1651,220 @@ pmac_ide_mdma_enable(ide_drive_t *drive) ...@@ -1149,201 +1651,220 @@ pmac_ide_mdma_enable(ide_drive_t *drive)
else else
drive_cycle_time = 0; drive_cycle_time = 0;
/* Copy timings to local image */
timing_local[0] = *timings;
timing_local[1] = *timings2;
/* Calculate controller timings */ /* Calculate controller timings */
set_timings_mdma(pmif->kind, timings, feature, drive_cycle_time); ret = set_timings_mdma( drive, pmif->kind,
&timing_local[0],
&timing_local[1],
mode,
drive_cycle_time);
if (ret)
return 0;
/* Set feature on drive */
printk(KERN_INFO "%s: Enabling MultiWord DMA %d\n", drive->name, mode & 0xf);
ret = pmac_ide_do_setfeature(drive, mode);
if (ret) {
printk(KERN_WARNING "%s: Failed !\n", drive->name);
return 0;
}
/* Apply timings to controller */
*timings = timing_local[0];
*timings2 = timing_local[1];
/* Set speed info in drive */
drive->current_speed = mode;
if (!drive->init_speed)
drive->init_speed = mode;
drive->current_speed = feature;
return 1; return 1;
} }
/* Calculate Ultra DMA timings */ /* Calculate Ultra DMA timings */
static int __pmac static int __pmac
pmac_ide_udma_enable(ide_drive_t *drive, int high_speed) pmac_ide_udma_enable(ide_drive_t *drive, u16 mode)
{ {
u8 bits = drive->id->dma_ultra & 0x1f; ide_hwif_t *hwif = HWIF(drive);
u8 feature = udma_bits_to_command(bits, high_speed); pmac_ide_hwif_t* pmif = (pmac_ide_hwif_t *)hwif->hwif_data;
pmac_ide_hwif_t* pmif = (pmac_ide_hwif_t *)HWIF(drive)->hwif_data; u32 *timings, *timings2;
u32 *timings; u32 timing_local[2];
int ret; int ret;
/* which drive is it ? */
timings = &pmif->timings[drive->select.b.unit & 0x01];
timings2 = &pmif->timings[(drive->select.b.unit & 0x01) + 2];
/* Copy timings to local image */
timing_local[0] = *timings;
timing_local[1] = *timings2;
/* Calculate timings for interface */
if (pmif->kind == controller_un_ata6)
ret = set_timings_udma_ata6( &timing_local[0],
&timing_local[1],
mode);
else
ret = set_timings_udma_ata4(&timing_local[0], mode);
if (ret)
return 0;
/* Set feature on drive */ /* Set feature on drive */
printk(KERN_INFO "%s: Enabling Ultra DMA %d\n", drive->name, feature & 0xf); printk(KERN_INFO "%s: Enabling Ultra DMA %d\n", drive->name, mode & 0x0f);
ret = pmac_ide_do_setfeature(drive, feature); ret = pmac_ide_do_setfeature(drive, mode);
if (ret) { if (ret) {
printk(KERN_WARNING "%s: Failed !\n", drive->name); printk(KERN_WARNING "%s: Failed !\n", drive->name);
return 0; return 0;
} }
if (!drive->init_speed) /* Apply timings to controller */
drive->init_speed = feature; *timings = timing_local[0];
*timings2 = timing_local[1];
/* which drive is it ? */
if (drive->select.b.unit & 0x01)
timings = &pmif->timings[1];
else
timings = &pmif->timings[0];
set_timings_udma(timings, feature); /* Set speed info in drive */
drive->current_speed = mode;
if (!drive->init_speed)
drive->init_speed = mode;
drive->current_speed = feature;
return 1; return 1;
} }
int pmac_ide_dma_check(ide_drive_t *drive) static int __pmac
pmac_ide_dma_check(ide_drive_t *drive)
{ {
int ata4, udma;
struct hd_driveid *id = drive->id; struct hd_driveid *id = drive->id;
ide_hwif_t *hwif = HWIF(drive); ide_hwif_t *hwif = HWIF(drive);
pmac_ide_hwif_t* pmif = (pmac_ide_hwif_t *)hwif->hwif_data; pmac_ide_hwif_t* pmif = (pmac_ide_hwif_t *)hwif->hwif_data;
int enable = 1; int enable = 1;
int map;
drive->using_dma = 0; drive->using_dma = 0;
if (pmif == NULL)
return 0;
if (drive->media == ide_floppy) if (drive->media == ide_floppy)
enable = 0; enable = 0;
if (((id->capability & 1) == 0) && if (((id->capability & 1) == 0) && !__ide_dma_good_drive(drive))
!HWIF(drive)->ide_dma_good_drive(drive))
enable = 0; enable = 0;
if (HWIF(drive)->ide_dma_bad_drive(drive)) if (__ide_dma_bad_drive(drive))
enable = 0; enable = 0;
udma = 0;
ata4 = (pmif->kind == controller_kl_ata4 || if (enable) {
pmif->kind == controller_kl_ata4_80); short mode;
if(enable) { map = XFER_MWDMA;
if (ata4 && (drive->media == ide_disk) && if (pmif->kind == controller_kl_ata4 || pmif->kind == controller_un_ata6) {
(id->field_valid & 0x0004) && (id->dma_ultra & 0x1f)) { map |= XFER_UDMA;
/* UltraDMA modes. */ if (pmif->cable_80) {
drive->using_dma = pmac_ide_udma_enable(drive, map |= XFER_UDMA_66;
pmif->kind == controller_kl_ata4_80); if (pmif->kind == controller_un_ata6)
} map |= XFER_UDMA_100;
if (!drive->using_dma && (id->dma_mword & 0x0007)) { }
/* Normal MultiWord DMA modes. */
drive->using_dma = pmac_ide_mdma_enable(drive);
} }
mode = ide_find_best_mode(drive, map);
if (mode & XFER_UDMA)
drive->using_dma = pmac_ide_udma_enable(drive, mode);
else if (mode & XFER_MWDMA)
drive->using_dma = pmac_ide_mdma_enable(drive, mode);
hwif->OUTB(0, IDE_CONTROL_REG); hwif->OUTB(0, IDE_CONTROL_REG);
/* Apply settings to controller */ /* Apply settings to controller */
pmac_ide_selectproc(drive); pmac_ide_do_update_timings(drive);
} }
return 0; return 0;
} }
static int static int __pmac
pmac_ide_dma_read (ide_drive_t *drive) pmac_ide_dma_start(ide_drive_t *drive, int reading)
{ {
ide_hwif_t *hwif = HWIF(drive); ide_hwif_t *hwif = HWIF(drive);
pmac_ide_hwif_t* pmif = (pmac_ide_hwif_t *)hwif->hwif_data; pmac_ide_hwif_t* pmif = (pmac_ide_hwif_t *)hwif->hwif_data;
struct request *rq = HWGROUP(drive)->rq; struct request *rq = HWGROUP(drive)->rq;
// ide_task_t *args = rq->special;
u8 unit = (drive->select.b.unit & 0x01); u8 unit = (drive->select.b.unit & 0x01);
u8 ata4; u8 ata4;
u8 lba48 = (drive->addressing == 1) ? 1 : 0;
task_ioreg_t command = WIN_NOP;
if (pmif == NULL) if (pmif == NULL)
return 1; return 1;
ata4 = (pmif->kind == controller_kl_ata4);
ata4 = (pmif->kind == controller_kl_ata4 || if (!pmac_ide_build_dmatable(drive, rq))
pmif->kind == controller_kl_ata4_80);
if (!pmac_ide_build_dmatable(drive, 0))
return 1; return 1;
/* Apple adds 60ns to wrDataSetup on reads */ /* Apple adds 60ns to wrDataSetup on reads */
if (ata4 && (pmif->timings[unit] & TR_66_UDMA_EN)) { if (ata4 && (pmif->timings[unit] & TR_66_UDMA_EN)) {
writel(pmif->timings[unit]+0x00800000UL, writel(pmif->timings[unit] + (reading ? 0x00800000UL : 0),
(unsigned *)(IDE_DATA_REG+IDE_TIMING_CONFIG)); (unsigned *)(IDE_DATA_REG+IDE_TIMING_CONFIG));
(void)readl((unsigned *)(IDE_DATA_REG + IDE_TIMING_CONFIG)); (void)readl((unsigned *)(IDE_DATA_REG + IDE_TIMING_CONFIG));
} }
drive->waiting_for_dma = 1; drive->waiting_for_dma = 1;
return 0;
}
static int __pmac
pmac_ide_dma_read(ide_drive_t *drive)
{
struct request *rq = HWGROUP(drive)->rq;
u8 lba48 = (drive->addressing == 1) ? 1 : 0;
task_ioreg_t command = WIN_NOP;
if (pmac_ide_dma_start(drive, 1))
return 1;
if (drive->media != ide_disk) if (drive->media != ide_disk)
return 0; return 0;
if (HWGROUP(drive)->handler != NULL) /* paranoia check */
BUG();
ide_set_handler(drive, &ide_dma_intr, WAIT_CMD, NULL);
/*
* FIX ME to use only ACB ide_task_t args Struct
*/
#if 0
{
ide_task_t *args = rq->special;
command = args->tfRegister[IDE_COMMAND_OFFSET];
}
#else
command = (lba48) ? WIN_READDMA_EXT : WIN_READDMA; command = (lba48) ? WIN_READDMA_EXT : WIN_READDMA;
if (drive->vdma)
command = (lba48) ? WIN_READ_EXT: WIN_READ;
if (rq->flags & REQ_DRIVE_TASKFILE) { if (rq->flags & REQ_DRIVE_TASKFILE) {
ide_task_t *args = rq->special; ide_task_t *args = rq->special;
command = args->tfRegister[IDE_COMMAND_OFFSET]; command = args->tfRegister[IDE_COMMAND_OFFSET];
} }
#endif
/* issue cmd to drive */ /* issue cmd to drive */
hwif->OUTB(command, IDE_COMMAND_REG); ide_execute_command(drive, command, &ide_dma_intr, 2*WAIT_CMD, NULL);
return pmac_ide_dma_begin(drive); return pmac_ide_dma_begin(drive);
} }
static int static int __pmac
pmac_ide_dma_write (ide_drive_t *drive) pmac_ide_dma_write (ide_drive_t *drive)
{ {
ide_hwif_t *hwif = HWIF(drive);
pmac_ide_hwif_t* pmif = (pmac_ide_hwif_t *)hwif->hwif_data;
struct request *rq = HWGROUP(drive)->rq; struct request *rq = HWGROUP(drive)->rq;
// ide_task_t *args = rq->special;
u8 unit = (drive->select.b.unit & 0x01);
u8 ata4;
u8 lba48 = (drive->addressing == 1) ? 1 : 0; u8 lba48 = (drive->addressing == 1) ? 1 : 0;
task_ioreg_t command = WIN_NOP; task_ioreg_t command = WIN_NOP;
if (pmif == NULL) if (pmac_ide_dma_start(drive, 0))
return 1; return 1;
ata4 = (pmif->kind == controller_kl_ata4 ||
pmif->kind == controller_kl_ata4_80);
if (!pmac_ide_build_dmatable(drive, 1))
return 1;
/* Apple adds 60ns to wrDataSetup on reads */
if (ata4 && (pmif->timings[unit] & TR_66_UDMA_EN)) {
writel(pmif->timings[unit],
(unsigned *)(IDE_DATA_REG+IDE_TIMING_CONFIG));
(void)readl((unsigned *)(IDE_DATA_REG + IDE_TIMING_CONFIG));
}
drive->waiting_for_dma = 1;
if (drive->media != ide_disk) if (drive->media != ide_disk)
return 0; return 0;
if (HWGROUP(drive)->handler != NULL) /* paranoia check */
BUG();
ide_set_handler(drive, &ide_dma_intr, WAIT_CMD, NULL);
/*
* FIX ME to use only ACB ide_task_t args Struct
*/
#if 0
{
ide_task_t *args = rq->special;
command = args->tfRegister[IDE_COMMAND_OFFSET];
}
#else
command = (lba48) ? WIN_WRITEDMA_EXT : WIN_WRITEDMA; command = (lba48) ? WIN_WRITEDMA_EXT : WIN_WRITEDMA;
if (drive->vdma)
command = (lba48) ? WIN_WRITE_EXT: WIN_WRITE;
if (rq->flags & REQ_DRIVE_TASKFILE) { if (rq->flags & REQ_DRIVE_TASKFILE) {
ide_task_t *args = rq->special; ide_task_t *args = rq->special;
command = args->tfRegister[IDE_COMMAND_OFFSET]; command = args->tfRegister[IDE_COMMAND_OFFSET];
} }
#endif
/* issue cmd to drive */ /* issue cmd to drive */
hwif->OUTB(command, IDE_COMMAND_REG); ide_execute_command(drive, command, &ide_dma_intr, 2*WAIT_CMD, NULL);
return pmac_ide_dma_begin(drive); return pmac_ide_dma_begin(drive);
} }
static int static int __pmac
pmac_ide_dma_count (ide_drive_t *drive) pmac_ide_dma_count (ide_drive_t *drive)
{ {
return HWIF(drive)->ide_dma_begin(drive); return HWIF(drive)->ide_dma_begin(drive);
} }
static int static int __pmac
pmac_ide_dma_begin (ide_drive_t *drive) pmac_ide_dma_begin (ide_drive_t *drive)
{ {
pmac_ide_hwif_t* pmif = (pmac_ide_hwif_t *)HWIF(drive)->hwif_data; pmac_ide_hwif_t* pmif = (pmac_ide_hwif_t *)HWIF(drive)->hwif_data;
...@@ -1359,7 +1880,7 @@ pmac_ide_dma_begin (ide_drive_t *drive) ...@@ -1359,7 +1880,7 @@ pmac_ide_dma_begin (ide_drive_t *drive)
return 0; return 0;
} }
static int static int __pmac
pmac_ide_dma_end (ide_drive_t *drive) pmac_ide_dma_end (ide_drive_t *drive)
{ {
pmac_ide_hwif_t* pmif = (pmac_ide_hwif_t *)HWIF(drive)->hwif_data; pmac_ide_hwif_t* pmif = (pmac_ide_hwif_t *)HWIF(drive)->hwif_data;
...@@ -1378,7 +1899,7 @@ pmac_ide_dma_end (ide_drive_t *drive) ...@@ -1378,7 +1899,7 @@ pmac_ide_dma_end (ide_drive_t *drive)
return (dstat & (RUN|DEAD|ACTIVE)) != RUN; return (dstat & (RUN|DEAD|ACTIVE)) != RUN;
} }
static int static int __pmac
pmac_ide_dma_test_irq (ide_drive_t *drive) pmac_ide_dma_test_irq (ide_drive_t *drive)
{ {
pmac_ide_hwif_t* pmif = (pmac_ide_hwif_t *)HWIF(drive)->hwif_data; pmac_ide_hwif_t* pmif = (pmac_ide_hwif_t *)HWIF(drive)->hwif_data;
...@@ -1418,33 +1939,33 @@ pmac_ide_dma_test_irq (ide_drive_t *drive) ...@@ -1418,33 +1939,33 @@ pmac_ide_dma_test_irq (ide_drive_t *drive)
return 1; return 1;
if (!drive->waiting_for_dma) if (!drive->waiting_for_dma)
printk(KERN_WARNING "ide%d, ide_dma_test_irq \ printk(KERN_WARNING "ide%d, ide_dma_test_irq \
called while not waiting\n", pmif->index); called while not waiting\n", HWIF(drive)->index);
/* If dbdma didn't execute the STOP command yet, the /* If dbdma didn't execute the STOP command yet, the
* active bit is still set */ * active bit is still set */
drive->waiting_for_dma++; drive->waiting_for_dma++;
if (drive->waiting_for_dma >= DMA_WAIT_TIMEOUT) { if (drive->waiting_for_dma >= DMA_WAIT_TIMEOUT) {
printk(KERN_WARNING "ide%d, timeout waiting \ printk(KERN_WARNING "ide%d, timeout waiting \
for dbdma command stop\n", pmif->index); for dbdma command stop\n", HWIF(drive)->index);
return 1; return 1;
} }
udelay(1); udelay(5);
return 0; return 0;
} }
static int static int __pmac
pmac_ide_dma_host_off (ide_drive_t *drive) pmac_ide_dma_host_off (ide_drive_t *drive)
{ {
return 0; return 0;
} }
static int static int __pmac
pmac_ide_dma_host_on (ide_drive_t *drive) pmac_ide_dma_host_on (ide_drive_t *drive)
{ {
return 0; return 0;
} }
static int static int __pmac
pmac_ide_dma_lostirq (ide_drive_t *drive) pmac_ide_dma_lostirq (ide_drive_t *drive)
{ {
pmac_ide_hwif_t* pmif = (pmac_ide_hwif_t *)HWIF(drive)->hwif_data; pmac_ide_hwif_t* pmif = (pmac_ide_hwif_t *)HWIF(drive)->hwif_data;
...@@ -1461,316 +1982,87 @@ pmac_ide_dma_lostirq (ide_drive_t *drive) ...@@ -1461,316 +1982,87 @@ pmac_ide_dma_lostirq (ide_drive_t *drive)
} }
static void __init static void __init
pmac_ide_setup_dma(struct device_node *np, int ix) pmac_ide_setup_dma(pmac_ide_hwif_t *pmif, ide_hwif_t *hwif)
{ {
struct pmac_ide_hwif *pmif = &pmac_ide[ix]; /* We won't need pci_dev if we switch to generic consistent
* DMA routines ...
if (request_OF_resource(np, 1, " (mac-io IDE DMA)") == NULL) { */
printk(KERN_ERR "ide-pmac(%s): can't request DMA resource !\n", np->name); if (hwif->pci_dev == NULL)
return; return;
}
pmif->dma_regs =
(volatile struct dbdma_regs*)ioremap(np->addrs[1].address, 0x200);
/* /*
* Allocate space for the DBDMA commands. * Allocate space for the DBDMA commands.
* The +2 is +1 for the stop command and +1 to allow for * The +2 is +1 for the stop command and +1 to allow for
* aligning the start address to a multiple of 16 bytes. * aligning the start address to a multiple of 16 bytes.
*/ */
pmif->dma_table_cpu = (struct dbdma_cmd*)pci_alloc_consistent( pmif->dma_table_cpu = (struct dbdma_cmd*)pci_alloc_consistent(
ide_hwifs[ix].pci_dev, hwif->pci_dev,
(MAX_DCMDS + 2) * sizeof(struct dbdma_cmd), (MAX_DCMDS + 2) * sizeof(struct dbdma_cmd),
&pmif->dma_table_dma); &pmif->dma_table_dma);
if (pmif->dma_table_cpu == NULL) { if (pmif->dma_table_cpu == NULL) {
printk(KERN_ERR "%s: unable to allocate DMA command list\n", printk(KERN_ERR "%s: unable to allocate DMA command list\n",
ide_hwifs[ix].name); hwif->name);
return; return;
} }
pmif->sg_table = kmalloc(sizeof(struct scatterlist) * MAX_DCMDS, pmif->sg_table = kmalloc(sizeof(struct scatterlist) * MAX_DCMDS,
GFP_KERNEL); GFP_KERNEL);
if (pmif->sg_table == NULL) { if (pmif->sg_table == NULL) {
pci_free_consistent( ide_hwifs[ix].pci_dev, pci_free_consistent( hwif->pci_dev,
(MAX_DCMDS + 2) * sizeof(struct dbdma_cmd), (MAX_DCMDS + 2) * sizeof(struct dbdma_cmd),
pmif->dma_table_cpu, pmif->dma_table_dma); pmif->dma_table_cpu, pmif->dma_table_dma);
return; return;
} }
ide_hwifs[ix].ide_dma_off = &__ide_dma_off; hwif->ide_dma_off = &__ide_dma_off;
ide_hwifs[ix].ide_dma_off_quietly = &__ide_dma_off_quietly; hwif->ide_dma_off_quietly = &__ide_dma_off_quietly;
ide_hwifs[ix].ide_dma_on = &__ide_dma_on; hwif->ide_dma_on = &__ide_dma_on;
ide_hwifs[ix].ide_dma_check = &pmac_ide_dma_check; hwif->ide_dma_check = &pmac_ide_dma_check;
ide_hwifs[ix].ide_dma_read = &pmac_ide_dma_read; hwif->ide_dma_read = &pmac_ide_dma_read;
ide_hwifs[ix].ide_dma_write = &pmac_ide_dma_write; hwif->ide_dma_write = &pmac_ide_dma_write;
ide_hwifs[ix].ide_dma_count = &pmac_ide_dma_count; hwif->ide_dma_count = &pmac_ide_dma_count;
ide_hwifs[ix].ide_dma_begin = &pmac_ide_dma_begin; hwif->ide_dma_begin = &pmac_ide_dma_begin;
ide_hwifs[ix].ide_dma_end = &pmac_ide_dma_end; hwif->ide_dma_end = &pmac_ide_dma_end;
ide_hwifs[ix].ide_dma_test_irq = &pmac_ide_dma_test_irq; hwif->ide_dma_test_irq = &pmac_ide_dma_test_irq;
ide_hwifs[ix].ide_dma_host_off = &pmac_ide_dma_host_off; hwif->ide_dma_host_off = &pmac_ide_dma_host_off;
ide_hwifs[ix].ide_dma_host_on = &pmac_ide_dma_host_on; hwif->ide_dma_host_on = &pmac_ide_dma_host_on;
ide_hwifs[ix].ide_dma_good_drive = &__ide_dma_good_drive; hwif->ide_dma_good_drive = &__ide_dma_good_drive;
ide_hwifs[ix].ide_dma_bad_drive = &__ide_dma_bad_drive; hwif->ide_dma_bad_drive = &__ide_dma_bad_drive;
ide_hwifs[ix].ide_dma_verbose = &__ide_dma_verbose; hwif->ide_dma_verbose = &__ide_dma_verbose;
ide_hwifs[ix].ide_dma_timeout = &__ide_dma_timeout; hwif->ide_dma_timeout = &__ide_dma_timeout;
ide_hwifs[ix].ide_dma_retune = &__ide_dma_retune; hwif->ide_dma_retune = &__ide_dma_retune;
ide_hwifs[ix].ide_dma_lostirq = &pmac_ide_dma_lostirq; hwif->ide_dma_lostirq = &pmac_ide_dma_lostirq;
ide_hwifs[ix].ide_dma_queued_on = &__ide_dma_queued_on; hwif->ide_dma_queued_on = &__ide_dma_queued_on;
ide_hwifs[ix].ide_dma_queued_off = &__ide_dma_queued_off; hwif->ide_dma_queued_off = &__ide_dma_queued_off;
#ifdef CONFIG_BLK_DEV_IDE_TCQ
hwif->ide_dma_queued_read = __ide_dma_queued_read;
hwif->ide_dma_queued_write = __ide_dma_queued_write;
hwif->ide_dma_queued_start = __ide_dma_queued_start;
#endif
#ifdef CONFIG_BLK_DEV_IDEDMA_PMAC_AUTO #ifdef CONFIG_BLK_DEV_IDEDMA_PMAC_AUTO
if (!noautodma) if (!noautodma)
ide_hwifs[ix].autodma = 1; hwif->autodma = 1;
#endif #endif
ide_hwifs[ix].drives[0].autodma = ide_hwifs[ix].autodma; hwif->drives[0].autodma = hwif->autodma;
ide_hwifs[ix].drives[1].autodma = ide_hwifs[ix].autodma; hwif->drives[1].autodma = hwif->autodma;
}
#endif /* CONFIG_BLK_DEV_IDEDMA_PMAC */
static void __pmac
idepmac_sleep_device(ide_drive_t *drive, unsigned base)
{
ide_hwif_t *hwif = HWIF(drive);
int j;
/* FIXME: We only handle the master IDE disk, we shoud hwif->atapi_dma = 1;
* try to fix CD-ROMs here switch(pmif->kind) {
*/ case controller_un_ata6:
switch (drive->media) { hwif->ultra_mask = pmif->cable_80 ? 0x3f : 0x07;
case ide_disk: hwif->mwdma_mask = 0x07;
/* Spin down the drive */ hwif->swdma_mask = 0x00;
hwif->OUTB(drive->select.all, base+0x60);
(void) hwif->INB(base+0x60);
udelay(100);
hwif->OUTB(0x0, base+0x30);
hwif->OUTB(0x0, base+0x20);
hwif->OUTB(0x0, base+0x40);
hwif->OUTB(0x0, base+0x50);
hwif->OUTB(0xe0, base+0x70);
hwif->OUTB(0x2, base+0x160);
for (j = 0; j < 10; j++) {
u8 status;
mdelay(100);
status = hwif->INB(base+0x70);
if (!(status & BUSY_STAT) && (status & DRQ_STAT))
break;
}
break; break;
case ide_cdrom: case controller_kl_ata4:
// todo hwif->ultra_mask = pmif->cable_80 ? 0x1f : 0x07;
hwif->mwdma_mask = 0x07;
hwif->swdma_mask = 0x00;
break; break;
case ide_floppy: default:
// todo hwif->ultra_mask = 0x00;
hwif->mwdma_mask = 0x07;
hwif->swdma_mask = 0x00;
break; break;
} }
} }
#ifdef CONFIG_PMAC_PBOOK
static void __pmac
idepmac_wake_device(ide_drive_t *drive, int used_dma)
{
/* We force the IDE subdriver to check for a media change
* This must be done first or we may lost the condition
*
* Problem: This can schedule. I moved the block device
* wakeup almost late by priority because of that.
*/
//if (DRIVER(drive))
// check_disk_change(MKDEV(drive->disk->major, drive->disk->first_minor));
#ifdef CONFIG_BLK_DEV_IDEDMA_PMAC
/* We re-enable DMA on the drive if it was active. */
/* This doesn't work with the CD-ROM in the media-bay, probably
* because of a pending unit attention. The problem if that if I
* clear the error, the filesystem dies.
*/
if (used_dma && !ide_spin_wait_hwgroup(drive)) {
/* Lock HW group */
HWGROUP(drive)->busy = 1;
pmac_ide_dma_check(drive);
HWGROUP(drive)->busy = 0;
if (!list_empty(&drive->queue.queue_head))
ide_do_request(HWGROUP(drive), 0);
spin_unlock_irq(&ide_lock);
}
#endif /* CONFIG_BLK_DEV_IDEDMA_PMAC */ #endif /* CONFIG_BLK_DEV_IDEDMA_PMAC */
}
static void __pmac
idepmac_sleep_interface(pmac_ide_hwif_t *pmif, unsigned base, int mediabay)
{
struct device_node* np = pmif->node;
/* We clear the timings */
pmif->timings[0] = 0;
pmif->timings[1] = 0;
/* The media bay will handle itself just fine */
if (mediabay)
return;
/* Disable the bus */
ppc_md.feature_call(PMAC_FTR_IDE_ENABLE, np, pmif->aapl_bus_id, 0);
}
static void __pmac
idepmac_wake_interface(pmac_ide_hwif_t *pmif, unsigned long base, int mediabay)
{
struct device_node* np = pmif->node;
if (!mediabay) {
/* Revive IDE disk and controller */
ppc_md.feature_call(PMAC_FTR_IDE_RESET, np, pmif->aapl_bus_id, 1);
ppc_md.feature_call(PMAC_FTR_IDE_ENABLE, np, pmif->aapl_bus_id, 1);
mdelay(10);
ppc_md.feature_call(PMAC_FTR_IDE_RESET, np, pmif->aapl_bus_id, 0);
}
}
static void
idepmac_sleep_drive(ide_drive_t *drive, unsigned long base)
{
int unlock = 0;
/* Wait for HW group to complete operations */
if (ide_spin_wait_hwgroup(drive)) {
// What can we do here ? Wake drive we had already
// put to sleep and return an error ?
} else {
unlock = 1;
/* Lock HW group */
HWGROUP(drive)->busy = 1;
/* Stop the device */
idepmac_sleep_device(drive, base);
}
if (unlock)
spin_unlock_irq(&ide_lock);
}
static void
idepmac_wake_drive(ide_drive_t *drive, unsigned long base)
{
ide_hwif_t *hwif = HWIF(drive);
unsigned long flags;
int j;
/* Reset timings */
pmac_ide_selectproc(drive);
mdelay(10);
/* Wait up to 20 seconds for the drive to be ready */
for (j = 0; j < 200; j++) {
u8 status = 0;
mdelay(100);
hwif->OUTB(drive->select.all, base + 0x60);
if ((hwif->INB(base + 0x60)) != drive->select.all)
continue;
status = hwif->INB(base + 0x70);
if (!(status & BUSY_STAT))
break;
}
/* We resume processing on the HW group */
spin_lock_irqsave(&ide_lock, flags);
HWGROUP(drive)->busy = 0;
if (!list_empty(&drive->queue.queue_head))
ide_do_request(HWGROUP(drive), 0);
spin_unlock_irqrestore(&ide_lock, flags);
}
/* Note: We support only master drives for now. This will have to be
* improved if we want to handle sleep on the iMacDV where the CD-ROM
* is a slave
*/
static int __pmac
idepmac_notify_sleep(struct pmu_sleep_notifier *self, int when)
{
int i, ret;
unsigned long base;
int big_delay;
switch (when) {
case PBOOK_SLEEP_REQUEST:
break;
case PBOOK_SLEEP_REJECT:
break;
case PBOOK_SLEEP_NOW:
for (i = 0; i < pmac_ide_count; ++i) {
ide_hwif_t *hwif;
int dn;
if ((base = pmac_ide[i].regbase) == 0)
continue;
hwif = &ide_hwifs[i];
for (dn=0; dn<MAX_DRIVES; dn++) {
if (!hwif->drives[dn].present)
continue;
idepmac_sleep_drive(&hwif->drives[dn], base);
}
/* Disable irq during sleep */
disable_irq(pmac_ide[i].irq);
/* Check if this is a media bay with an IDE device or not
* a media bay.
*/
ret = check_media_bay_by_base(base, MB_CD);
if ((ret == 0) || (ret == -ENODEV))
idepmac_sleep_interface(&pmac_ide[i], base, (ret == 0));
}
break;
case PBOOK_WAKE:
big_delay = 0;
for (i = 0; i < pmac_ide_count; ++i) {
if ((base = pmac_ide[i].regbase) == 0)
continue;
/* Make sure we have sane timings */
sanitize_timings(&pmac_ide[i]);
/* Check if this is a media bay with an IDE device or not
* a media bay
*/
ret = check_media_bay_by_base(base, MB_CD);
if ((ret == 0) || (ret == -ENODEV)) {
idepmac_wake_interface(&pmac_ide[i], base, (ret == 0));
big_delay = 1;
}
}
/* Let hardware get up to speed */
if (big_delay)
mdelay(IDE_WAKEUP_DELAY_MS);
for (i = 0; i < pmac_ide_count; ++i) {
ide_hwif_t *hwif;
int used_dma, dn;
int irq_on = 0;
if ((base = pmac_ide[i].regbase) == 0)
continue;
hwif = &ide_hwifs[i];
for (dn=0; dn<MAX_DRIVES; dn++) {
ide_drive_t *drive = &hwif->drives[dn];
if (!drive->present)
continue;
/* We don't have re-configured DMA yet */
used_dma = drive->using_dma;
drive->using_dma = 0;
idepmac_wake_drive(drive, base);
if (!irq_on) {
enable_irq(pmac_ide[i].irq);
irq_on = 1;
}
idepmac_wake_device(drive, used_dma);
}
if (!irq_on)
enable_irq(pmac_ide[i].irq);
}
break;
}
return PBOOK_SLEEP_OK;
}
#endif /* CONFIG_PMAC_PBOOK */
...@@ -798,6 +798,7 @@ ...@@ -798,6 +798,7 @@
#define PCI_DEVICE_ID_APPLE_UNI_N_FW2 0x0030 #define PCI_DEVICE_ID_APPLE_UNI_N_FW2 0x0030
#define PCI_DEVICE_ID_APPLE_UNI_N_GMAC2 0x0032 #define PCI_DEVICE_ID_APPLE_UNI_N_GMAC2 0x0032
#define PCI_DEVICE_ID_APPLE_UNI_N_AGP2 0x0034 #define PCI_DEVICE_ID_APPLE_UNI_N_AGP2 0x0034
#define PCI_DEVICE_ID_APPLE_KAUAI_ATA 0x003b
#define PCI_DEVICE_ID_APPLE_KEYLARGO_I 0x003e #define PCI_DEVICE_ID_APPLE_KEYLARGO_I 0x003e
#define PCI_DEVICE_ID_APPLE_TIGON3 0x1645 #define PCI_DEVICE_ID_APPLE_TIGON3 0x1645
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment