Commit 45471cd9 authored by Linus Torvalds's avatar Linus Torvalds

Merge tag 'edac_for_4.2_2' of git://git.kernel.org/pub/scm/linux/kernel/git/bp/bp

Pull EDAC updates from Borislav Petkov:

 - New APM X-Gene SoC EDAC driver (Loc Ho)

 - AMD error injection module improvements (Aravind Gopalakrishnan)

 - Altera Arria 10 support (Thor Thayer)

 - misc fixes and cleanups all over the place

* tag 'edac_for_4.2_2' of git://git.kernel.org/pub/scm/linux/kernel/git/bp/bp: (28 commits)
  EDAC: Update Documentation/edac.txt
  EDAC: Fix typos in Documentation/edac.txt
  EDAC, mce_amd_inj: Set MISCV on injection
  EDAC, mce_amd_inj: Move bit preparations before the injection
  EDAC, mce_amd_inj: Cleanup and simplify README
  EDAC, altera: Do not allow suspend when EDAC is enabled
  EDAC, mce_amd_inj: Make inj_type static
  arm: socfpga: dts: Add Arria10 SDRAM EDAC DTS support
  EDAC, altera: Add Arria10 EDAC support
  EDAC, altera: Refactor for Altera CycloneV SoC
  EDAC, altera: Generalize driver to use DT Memory size
  EDAC, mce_amd_inj: Add README file
  EDAC, mce_amd_inj: Add individual permissions field to dfs_node
  EDAC, mce_amd_inj: Modify flags attribute to use string arguments
  EDAC, mce_amd_inj: Read out number of MCE banks from the hardware
  EDAC, mce_amd_inj: Use MCE_INJECT_GET macro for bank node too
  EDAC, xgene: Fix cpuid abuse
  EDAC, mpc85xx: Extend error address to 64 bit
  EDAC, mpc8xxx: Adapt for FSL SoC
  EDAC, edac_stub: Drop arch-specific include
  ...
parents 93a4b1b9 043b4318
......@@ -2,7 +2,7 @@ Altera SOCFPGA SDRAM Error Detection & Correction [EDAC]
The EDAC accesses a range of registers in the SDRAM controller.
Required properties:
- compatible : should contain "altr,sdram-edac";
- compatible : should contain "altr,sdram-edac" or "altr,sdram-edac-a10"
- altr,sdr-syscon : phandle of the sdr module
- interrupts : Should contain the SDRAM ECC IRQ in the
appropriate format for the IRQ controller.
......
* APM X-Gene SoC EDAC node
EDAC node is defined to describe on-chip error detection and correction.
The follow error types are supported:
memory controller - Memory controller
PMD (L1/L2) - Processor module unit (PMD) L1/L2 cache
The following section describes the EDAC DT node binding.
Required properties:
- compatible : Shall be "apm,xgene-edac".
- regmap-csw : Regmap of the CPU switch fabric (CSW) resource.
- regmap-mcba : Regmap of the MCB-A (memory bridge) resource.
- regmap-mcbb : Regmap of the MCB-B (memory bridge) resource.
- regmap-efuse : Regmap of the PMD efuse resource.
- reg : First resource shall be the CPU bus (PCP) resource.
- interrupts : Interrupt-specifier for MCU, PMD, L3, or SoC error
IRQ(s).
Required properties for memory controller subnode:
- compatible : Shall be "apm,xgene-edac-mc".
- reg : First resource shall be the memory controller unit
(MCU) resource.
- memory-controller : Instance number of the memory controller.
Required properties for PMD subnode:
- compatible : Shall be "apm,xgene-edac-pmd" or
"apm,xgene-edac-pmd-v2".
- reg : First resource shall be the PMD resource.
- pmd-controller : Instance number of the PMD controller.
Example:
csw: csw@7e200000 {
compatible = "apm,xgene-csw", "syscon";
reg = <0x0 0x7e200000 0x0 0x1000>;
};
mcba: mcba@7e700000 {
compatible = "apm,xgene-mcb", "syscon";
reg = <0x0 0x7e700000 0x0 0x1000>;
};
mcbb: mcbb@7e720000 {
compatible = "apm,xgene-mcb", "syscon";
reg = <0x0 0x7e720000 0x0 0x1000>;
};
efuse: efuse@1054a000 {
compatible = "apm,xgene-efuse", "syscon";
reg = <0x0 0x1054a000 0x0 0x20>;
};
edac@78800000 {
compatible = "apm,xgene-edac";
#address-cells = <2>;
#size-cells = <2>;
ranges;
regmap-csw = <&csw>;
regmap-mcba = <&mcba>;
regmap-mcbb = <&mcbb>;
regmap-efuse = <&efuse>;
reg = <0x0 0x78800000 0x0 0x100>;
interrupts = <0x0 0x20 0x4>,
<0x0 0x21 0x4>,
<0x0 0x27 0x4>;
edacmc@7e800000 {
compatible = "apm,xgene-edac-mc";
reg = <0x0 0x7e800000 0x0 0x1000>;
memory-controller = <0>;
};
edacpmd@7c000000 {
compatible = "apm,xgene-edac-pmd";
reg = <0x0 0x7c000000 0x0 0x200000>;
pmd-controller = <0>;
};
};
EDAC - Error Detection And Correction
Written by Doug Thompson <dougthompson@xmission.com>
7 Dec 2005
17 Jul 2007 Updated
(c) Mauro Carvalho Chehab
05 Aug 2009 Nehalem interface
EDAC is maintained and written by:
Doug Thompson, Dave Jiang, Dave Peterson et al,
original author: Thayne Harbaugh,
Contact:
website: bluesmoke.sourceforge.net
mailing list: bluesmoke-devel@lists.sourceforge.net
=====================================
"bluesmoke" was the name for this device driver when it was "out-of-tree"
and maintained at sourceforge.net. When it was pushed into 2.6.16 for the
first time, it was renamed to 'EDAC'.
The bluesmoke project at sourceforge.net is now utilized as a 'staging area'
for EDAC development, before it is sent upstream to kernel.org
At the bluesmoke/EDAC project site is a series of quilt patches against
recent kernels, stored in a SVN repository. For easier downloading, there
is also a tarball snapshot available.
PURPOSE
-------
============================================================================
EDAC PURPOSE
The 'edac' kernel module goal is to detect and report errors that occur
within the computer system running under linux.
The 'edac' kernel module's goal is to detect and report hardware errors
that occur within the computer system running under linux.
MEMORY
------
In the initial release, memory Correctable Errors (CE) and Uncorrectable
Errors (UE) are the primary errors being harvested. These types of errors
are harvested by the 'edac_mc' class of device.
Memory Correctable Errors (CE) and Uncorrectable Errors (UE) are the
primary errors being harvested. These types of errors are harvested by
the 'edac_mc' device.
Detecting CE events, then harvesting those events and reporting them,
CAN be a predictor of future UE events. With CE events, the system can
continue to operate, but with less safety. Preventive maintenance and
proactive part replacement of memory DIMMs exhibiting CEs can reduce
the likelihood of the dreaded UE events and system 'panics'.
*can* but must not necessarily be a predictor of future UE events. With
CE events only, the system can and will continue to operate as no data
has been damaged yet.
However, preventive maintenance and proactive part replacement of memory
DIMMs exhibiting CEs can reduce the likelihood of the dreaded UE events
and system panics.
NON-MEMORY
OTHER HARDWARE ELEMENTS
-----------------------
A new feature for EDAC, the edac_device class of device, was added in
the 2.6.23 version of the kernel.
......@@ -56,70 +37,57 @@ This new device type allows for non-memory type of ECC hardware detectors
to have their states harvested and presented to userspace via the sysfs
interface.
Some architectures have ECC detectors for L1, L2 and L3 caches, along with DMA
engines, fabric switches, main data path switches, interconnections,
and various other hardware data paths. If the hardware reports it, then
a edac_device device probably can be constructed to harvest and present
that to userspace.
Some architectures have ECC detectors for L1, L2 and L3 caches,
along with DMA engines, fabric switches, main data path switches,
interconnections, and various other hardware data paths. If the hardware
reports it, then a edac_device device probably can be constructed to
harvest and present that to userspace.
PCI BUS SCANNING
----------------
In addition, PCI Bus Parity and SERR Errors are scanned for on PCI devices
in order to determine if errors are occurring on data transfers.
In addition, PCI devices are scanned for PCI Bus Parity and SERR Errors
in order to determine if errors are occurring during data transfers.
The presence of PCI Parity errors must be examined with a grain of salt.
There are several add-in adapters that do NOT follow the PCI specification
There are several add-in adapters that do *not* follow the PCI specification
with regards to Parity generation and reporting. The specification says
the vendor should tie the parity status bits to 0 if they do not intend
to generate parity. Some vendors do not do this, and thus the parity bit
can "float" giving false positives.
In the kernel there is a PCI device attribute located in sysfs that is
checked by the EDAC PCI scanning code. If that attribute is set,
PCI parity/error scanning is skipped for that device. The attribute
is:
There is a PCI device attribute located in sysfs that is checked by
the EDAC PCI scanning code. If that attribute is set, PCI parity/error
scanning is skipped for that device. The attribute is:
broken_parity_status
as is located in /sys/devices/pci<XXX>/0000:XX:YY.Z directories for
and is located in /sys/devices/pci<XXX>/0000:XX:YY.Z directories for
PCI devices.
FUTURE HARDWARE SCANNING
EDAC will have future error detectors that will be integrated with
EDAC or added to it, in the following list:
MCE Machine Check Exception
MCA Machine Check Architecture
NMI NMI notification of ECC errors
MSRs Machine Specific Register error cases
and other mechanisms.
These errors are usually bus errors, ECC errors, thermal throttling
and the like.
============================================================================
EDAC VERSIONING
VERSIONING
----------
EDAC is composed of a "core" module (edac_core.ko) and several Memory
Controller (MC) driver modules. On a given system, the CORE
is loaded and one MC driver will be loaded. Both the CORE and
the MC driver (or edac_device driver) have individual versions that reflect
current release level of their respective modules.
Controller (MC) driver modules. On a given system, the CORE is loaded
and one MC driver will be loaded. Both the CORE and the MC driver (or
edac_device driver) have individual versions that reflect current
release level of their respective modules.
Thus, to "report" on what version a system is running, one must report both
the CORE's and the MC driver's versions.
Thus, to "report" on what version a system is running, one must report
both the CORE's and the MC driver's versions.
LOADING
-------
If 'edac' was statically linked with the kernel then no loading is
necessary. If 'edac' was built as modules then simply modprobe the
'edac' pieces that you need. You should be able to modprobe
hardware-specific modules and have the dependencies load the necessary core
modules.
If 'edac' was statically linked with the kernel then no loading
is necessary. If 'edac' was built as modules then simply modprobe
the 'edac' pieces that you need. You should be able to modprobe
hardware-specific modules and have the dependencies load the necessary
core modules.
Example:
......@@ -129,35 +97,33 @@ loads both the amd76x_edac.ko memory controller module and the edac_mc.ko
core module.
============================================================================
EDAC sysfs INTERFACE
EDAC presents a 'sysfs' interface for control, reporting and attribute
reporting purposes.
SYSFS INTERFACE
---------------
EDAC lives in the /sys/devices/system/edac directory.
EDAC presents a 'sysfs' interface for control and reporting purposes. It
lives in the /sys/devices/system/edac directory.
Within this directory there currently reside 2 'edac' components:
Within this directory there currently reside 2 components:
mc memory controller(s) system
pci PCI control and status system
============================================================================
Memory Controller (mc) Model
----------------------------
First a background on the memory controller's model abstracted in EDAC.
Each 'mc' device controls a set of DIMM memory modules. These modules are
laid out in a Chip-Select Row (csrowX) and Channel table (chX). There can
be multiple csrows and multiple channels.
Each 'mc' device controls a set of DIMM memory modules. These modules
are laid out in a Chip-Select Row (csrowX) and Channel table (chX).
There can be multiple csrows and multiple channels.
Memory controllers allow for several csrows, with 8 csrows being a typical value.
Yet, the actual number of csrows depends on the electrical "loading"
of a given motherboard, memory controller and DIMM characteristics.
Memory controllers allow for several csrows, with 8 csrows being a
typical value. Yet, the actual number of csrows depends on the layout of
a given motherboard, memory controller and DIMM characteristics.
Dual channels allows for 128 bit data transfers to the CPU from memory.
Some newer chipsets allow for more than 2 channels, like Fully Buffered DIMMs
(FB-DIMMs). The following example will assume 2 channels:
Dual channels allows for 128 bit data transfers to/from the CPU from/to
memory. Some newer chipsets allow for more than 2 channels, like Fully
Buffered DIMMs (FB-DIMMs). The following example will assume 2 channels:
Channel 0 Channel 1
......@@ -179,12 +145,12 @@ for memory DIMMs:
DIMM_A1
DIMM_B1
Labels for these slots are usually silk screened on the motherboard. Slots
labeled 'A' are channel 0 in this example. Slots labeled 'B'
are channel 1. Notice that there are two csrows possible on a
physical DIMM. These csrows are allocated their csrow assignment
based on the slot into which the memory DIMM is placed. Thus, when 1 DIMM
is placed in each Channel, the csrows cross both DIMMs.
Labels for these slots are usually silk-screened on the motherboard.
Slots labeled 'A' are channel 0 in this example. Slots labeled 'B' are
channel 1. Notice that there are two csrows possible on a physical DIMM.
These csrows are allocated their csrow assignment based on the slot into
which the memory DIMM is placed. Thus, when 1 DIMM is placed in each
Channel, the csrows cross both DIMMs.
Memory DIMMs come single or dual "ranked". A rank is a populated csrow.
Thus, 2 single ranked DIMMs, placed in slots DIMM_A0 and DIMM_B0 above
......@@ -193,8 +159,8 @@ when 2 dual ranked DIMMs are similarly placed, then both csrow0 and
csrow1 will be populated. The pattern repeats itself for csrow2 and
csrow3.
The representation of the above is reflected in the directory tree
in EDAC's sysfs interface. Starting in directory
The representation of the above is reflected in the directory
tree in EDAC's sysfs interface. Starting in directory
/sys/devices/system/edac/mc each memory controller will be represented
by its own 'mcX' directory, where 'X' is the index of the MC.
......@@ -217,34 +183,35 @@ Under each 'mcX' directory each 'csrowX' is again represented by a
|->csrow3
....
Notice that there is no csrow1, which indicates that csrow0 is
composed of a single ranked DIMMs. This should also apply in both
Channels, in order to have dual-channel mode be operational. Since
both csrow2 and csrow3 are populated, this indicates a dual ranked
set of DIMMs for channels 0 and 1.
Notice that there is no csrow1, which indicates that csrow0 is composed
of a single ranked DIMMs. This should also apply in both Channels, in
order to have dual-channel mode be operational. Since both csrow2 and
csrow3 are populated, this indicates a dual ranked set of DIMMs for
channels 0 and 1.
Within each of the 'mcX' and 'csrowX' directories are several
EDAC control and attribute files.
Within each of the 'mcX' and 'csrowX' directories are several EDAC
control and attribute files.
============================================================================
'mcX' DIRECTORIES
'mcX' directories
-----------------
In 'mcX' directories are EDAC control and attribute files for
this 'X' instance of the memory controllers.
For a description of the sysfs API, please see:
Documentation/ABI/testing/sysfs/devices-edac
Documentation/ABI/testing/sysfs-devices-edac
============================================================================
'csrowX' DIRECTORIES
'csrowX' directories
--------------------
When CONFIG_EDAC_LEGACY_SYSFS is enabled, the sysfs will contain the
csrowX directories. As this API doesn't work properly for Rambus, FB-DIMMs
and modern Intel Memory Controllers, this is being deprecated in favor
of dimmX directories.
When CONFIG_EDAC_LEGACY_SYSFS is enabled, sysfs will contain the csrowX
directories. As this API doesn't work properly for Rambus, FB-DIMMs and
modern Intel Memory Controllers, this is being deprecated in favor of
dimmX directories.
In the 'csrowX' directories are EDAC control and attribute files for
this 'X' instance of csrow:
......@@ -265,18 +232,18 @@ Total Correctable Errors count attribute file:
'ce_count'
This attribute file displays the total count of correctable
errors that have occurred on this csrow. This
count is very important to examine. CEs provide early
indications that a DIMM is beginning to fail. This count
field should be monitored for non-zero values and report
such information to the system administrator.
errors that have occurred on this csrow. This count is very
important to examine. CEs provide early indications that a
DIMM is beginning to fail. This count field should be
monitored for non-zero values and report such information
to the system administrator.
Total memory managed by this csrow attribute file:
'size_mb'
This attribute file displays, in count of megabytes, of memory
This attribute file displays, in count of megabytes, the memory
that this csrow contains.
......@@ -377,11 +344,13 @@ Channel 1 DIMM Label control file:
motherboard specific and determination of this information
must occur in userland at this time.
============================================================================
SYSTEM LOGGING
--------------
If logging for UEs and CEs are enabled then system logs will have
error notices indicating errors that have been detected:
If logging for UEs and CEs is enabled, then system logs will contain
information indicating that errors have been detected:
EDAC MC0: CE page 0x283, offset 0xce0, grain 8, syndrome 0x6ec3, row 0,
channel 1 "DIMM_B1": amd76x_edac
......@@ -404,24 +373,23 @@ The structure of the message is:
and then an optional, driver-specific message that may
have additional information.
Both UEs and CEs with no info will lack all but memory controller,
error type, a notice of "no info" and then an optional,
driver-specific error message.
Both UEs and CEs with no info will lack all but memory controller, error
type, a notice of "no info" and then an optional, driver-specific error
message.
============================================================================
PCI Bus Parity Detection
------------------------
On Header Type 00 devices the primary status is looked at
for any parity error regardless of whether Parity is enabled on the
device. (The spec indicates parity is generated in some cases).
On Header Type 01 bridges, the secondary status register is also
looked at to see if parity occurred on the bus on the other side of
the bridge.
On Header Type 00 devices, the primary status is looked at for any
parity error regardless of whether parity is enabled on the device or
not. (The spec indicates parity is generated in some cases). On Header
Type 01 bridges, the secondary status register is also looked at to see
if parity occurred on the bus on the other side of the bridge.
SYSFS CONFIGURATION
-------------------
Under /sys/devices/system/edac/pci are control and attribute files as follows:
......@@ -450,8 +418,9 @@ Parity Count:
have been detected.
============================================================================
MODULE PARAMETERS
-----------------
Panic on UE control file:
......@@ -516,7 +485,7 @@ Panic on PCI PARITY Error:
'panic_on_pci_parity'
This control files enables or disables panicking when a parity
This control file enables or disables panicking when a parity
error has been detected.
......@@ -530,10 +499,8 @@ Panic on PCI PARITY Error:
=======================================================================
EDAC_DEVICE type of device
EDAC device type
----------------
In the header file, edac_core.h, there is a series of edac_device structures
and APIs for the EDAC_DEVICE.
......@@ -573,6 +540,7 @@ The test_device_edac device adds at least one of its own custom control:
The symlink points to the 'struct dev' that is registered for this edac_device.
INSTANCES
---------
One or more instance directories are present. For the 'test_device_edac' case:
......@@ -586,6 +554,7 @@ counter in deeper subdirectories.
ue_count total of UE events of subdirectories
BLOCKS
------
At the lowest directory level is the 'block' directory. There can be 0, 1
or more blocks specified in each instance.
......@@ -617,14 +586,15 @@ The 'test_device_edac' device adds 4 attributes and 1 control:
reset all the above counters.
Use of the 'test_device_edac' driver should any others to create their own
Use of the 'test_device_edac' driver should enable any others to create their own
unique drivers for their hardware systems.
The 'test_device_edac' sample driver is located at the
bluesmoke.sourceforge.net project site for EDAC.
=======================================================================
NEHALEM USAGE OF EDAC APIs
--------------------------
This chapter documents some EXPERIMENTAL mappings for EDAC API to handle
Nehalem EDAC driver. They will likely be changed on future versions
......@@ -633,7 +603,7 @@ of the driver.
Due to the way Nehalem exports Memory Controller data, some adjustments
were done at i7core_edac driver. This chapter will cover those differences
1) On Nehalem, there are one Memory Controller per Quick Patch Interconnect
1) On Nehalem, there is one Memory Controller per Quick Patch Interconnect
(QPI). At the driver, the term "socket" means one QPI. This is
associated with a physical CPU socket.
......@@ -642,7 +612,7 @@ were done at i7core_edac driver. This chapter will cover those differences
Each channel can have up to 3 DIMMs.
The minimum known unity is DIMMs. There are no information about csrows.
As EDAC API maps the minimum unity is csrows, the driver sequencially
As EDAC API maps the minimum unity is csrows, the driver sequentially
maps channel/dimm into different csrows.
For example, supposing the following layout:
......@@ -664,7 +634,7 @@ exports one
Each QPI is exported as a different memory controller.
2) Nehalem MC has the hability to generate errors. The driver implements this
2) Nehalem MC has the ability to generate errors. The driver implements this
functionality via some error injection nodes:
For injecting a memory error, there are some sysfs nodes, under
......@@ -771,5 +741,22 @@ exports one
The standard error counters are generated when an mcelog error is received
by the driver. Since, with udimm, this is counted by software, it is
possible that some errors could be lost. With rdimm's, they displays the
possible that some errors could be lost. With rdimm's, they display the
contents of the registers
CREDITS:
========
Written by Doug Thompson <dougthompson@xmission.com>
7 Dec 2005
17 Jul 2007 Updated
(c) Mauro Carvalho Chehab
05 Aug 2009 Nehalem interface
EDAC authors/maintainers:
Doug Thompson, Dave Jiang, Dave Peterson et al,
Mauro Carvalho Chehab
Borislav Petkov
original author: Thayne Harbaugh
......@@ -3777,7 +3777,7 @@ S: Maintained
F: drivers/edac/ie31200_edac.c
EDAC-MPC85XX
M: Johannes Thumshirn <johannes.thumshirn@men.de>
M: Johannes Thumshirn <morbidrsa@gmail.com>
L: linux-edac@vger.kernel.org
W: bluesmoke.sourceforge.net
S: Maintained
......@@ -3804,6 +3804,13 @@ W: bluesmoke.sourceforge.net
S: Maintained
F: drivers/edac/sb_edac.c
EDAC-XGENE
APPLIED MICRO (APM) X-GENE SOC EDAC
M: Loc Ho <lho@apm.com>
S: Supported
F: drivers/edac/xgene_edac.c
F: Documentation/devicetree/bindings/edac/apm-xgene-edac.txt
EDIROL UA-101/UA-1000 DRIVER
M: Clemens Ladisch <clemens@ladisch.de>
L: alsa-devel@alsa-project.org (moderated for non-subscribers)
......@@ -6488,14 +6495,14 @@ F: include/linux/mtd/
F: include/uapi/mtd/
MEN A21 WATCHDOG DRIVER
M: Johannes Thumshirn <johannes.thumshirn@men.de>
M: Johannes Thumshirn <morbidrsa@gmail.com>
L: linux-watchdog@vger.kernel.org
S: Supported
S: Maintained
F: drivers/watchdog/mena21_wdt.c
MEN CHAMELEON BUS (mcb)
M: Johannes Thumshirn <johannes.thumshirn@men.de>
S: Supported
M: Johannes Thumshirn <morbidrsa@gmail.com>
S: Maintained
F: drivers/mcb/
F: include/linux/mcb.h
......
......@@ -15,6 +15,8 @@ config ARM
select CLONE_BACKWARDS
select CPU_PM if (SUSPEND || CPU_IDLE)
select DCACHE_WORD_ACCESS if HAVE_EFFICIENT_UNALIGNED_ACCESS
select EDAC_SUPPORT
select EDAC_ATOMIC_SCRUB
select GENERIC_ALLOCATOR
select GENERIC_ATOMIC64 if (CPU_V7M || CPU_V6 || !CPU_32v6K || !AEABI)
select GENERIC_CLOCKEVENTS_BROADCAST if SMP
......
......@@ -253,6 +253,17 @@ i2c4: i2c@ffc02600 {
status = "disabled";
};
sdr: sdr@ffc25000 {
compatible = "syscon";
reg = <0xffcfb100 0x80>;
};
sdramedac {
compatible = "altr,sdram-edac-a10";
altr,sdr-syscon = <&sdr>;
interrupts = <0 2 4>, <0 0 4>;
};
L2: l2-cache@fffff000 {
compatible = "arm,pl310-cache";
reg = <0xfffff000 0x1000>;
......
......@@ -18,11 +18,12 @@
#define ASM_EDAC_H
/*
* ECC atomic, DMA, SMP and interrupt safe scrub function.
* Implements the per arch atomic_scrub() that EDAC use for software
* Implements the per arch edac_atomic_scrub() that EDAC use for software
* ECC scrubbing. It reads memory and then writes back the original
* value, allowing the hardware to detect and correct memory errors.
*/
static inline void atomic_scrub(void *va, u32 size)
static inline void edac_atomic_scrub(void *va, u32 size)
{
#if __LINUX_ARM_ARCH__ >= 6
unsigned int *virt_addr = va;
......
......@@ -23,6 +23,7 @@ config ARM64
select BUILDTIME_EXTABLE_SORT
select CLONE_BACKWARDS
select COMMON_CLK
select EDAC_SUPPORT
select CPU_PM if (SUSPEND || CPU_IDLE)
select DCACHE_WORD_ACCESS
select GENERIC_ALLOCATOR
......
......@@ -396,6 +396,89 @@ msi: msi@79000000 {
0x0 0x1f 0x4>;
};
csw: csw@7e200000 {
compatible = "apm,xgene-csw", "syscon";
reg = <0x0 0x7e200000 0x0 0x1000>;
};
mcba: mcba@7e700000 {
compatible = "apm,xgene-mcb", "syscon";
reg = <0x0 0x7e700000 0x0 0x1000>;
};
mcbb: mcbb@7e720000 {
compatible = "apm,xgene-mcb", "syscon";
reg = <0x0 0x7e720000 0x0 0x1000>;
};
efuse: efuse@1054a000 {
compatible = "apm,xgene-efuse", "syscon";
reg = <0x0 0x1054a000 0x0 0x20>;
};
edac@78800000 {
compatible = "apm,xgene-edac";
#address-cells = <2>;
#size-cells = <2>;
ranges;
regmap-csw = <&csw>;
regmap-mcba = <&mcba>;
regmap-mcbb = <&mcbb>;
regmap-efuse = <&efuse>;
reg = <0x0 0x78800000 0x0 0x100>;
interrupts = <0x0 0x20 0x4>,
<0x0 0x21 0x4>,
<0x0 0x27 0x4>;
edacmc@7e800000 {
compatible = "apm,xgene-edac-mc";
reg = <0x0 0x7e800000 0x0 0x1000>;
memory-controller = <0>;
};
edacmc@7e840000 {
compatible = "apm,xgene-edac-mc";
reg = <0x0 0x7e840000 0x0 0x1000>;
memory-controller = <1>;
};
edacmc@7e880000 {
compatible = "apm,xgene-edac-mc";
reg = <0x0 0x7e880000 0x0 0x1000>;
memory-controller = <2>;
};
edacmc@7e8c0000 {
compatible = "apm,xgene-edac-mc";
reg = <0x0 0x7e8c0000 0x0 0x1000>;
memory-controller = <3>;
};
edacpmd@7c000000 {
compatible = "apm,xgene-edac-pmd";
reg = <0x0 0x7c000000 0x0 0x200000>;
pmd-controller = <0>;
};
edacpmd@7c200000 {
compatible = "apm,xgene-edac-pmd";
reg = <0x0 0x7c200000 0x0 0x200000>;
pmd-controller = <1>;
};
edacpmd@7c400000 {
compatible = "apm,xgene-edac-pmd";
reg = <0x0 0x7c400000 0x0 0x200000>;
pmd-controller = <2>;
};
edacpmd@7c600000 {
compatible = "apm,xgene-edac-pmd";
reg = <0x0 0x7c600000 0x0 0x200000>;
pmd-controller = <3>;
};
};
pcie0: pcie@1f2b0000 {
status = "disabled";
device_type = "pci";
......
......@@ -819,6 +819,7 @@ config CAVIUM_OCTEON_SOC
select SYS_SUPPORTS_64BIT_KERNEL
select SYS_SUPPORTS_BIG_ENDIAN
select EDAC_SUPPORT
select EDAC_ATOMIC_SCRUB
select SYS_SUPPORTS_LITTLE_ENDIAN
select SYS_SUPPORTS_HOTPLUG_CPU if CPU_BIG_ENDIAN
select SYS_HAS_EARLY_PRINTK
......
......@@ -5,7 +5,7 @@
/* ECC atomic, DMA, SMP and interrupt safe scrub function */
static inline void atomic_scrub(void *va, u32 size)
static inline void edac_atomic_scrub(void *va, u32 size)
{
unsigned long *virt_addr = va;
unsigned long temp;
......@@ -21,7 +21,7 @@ static inline void atomic_scrub(void *va, u32 size)
__asm__ __volatile__ (
" .set mips2 \n"
"1: ll %0, %1 # atomic_scrub \n"
"1: ll %0, %1 # edac_atomic_scrub \n"
" addu %0, $0 \n"
" sc %0, %1 \n"
" beqz %0, 1b \n"
......
......@@ -153,6 +153,8 @@ config PPC
select NO_BOOTMEM
select HAVE_GENERIC_RCU_GUP
select HAVE_PERF_EVENTS_NMI if PPC64
select EDAC_SUPPORT
select EDAC_ATOMIC_SCRUB
config GENERIC_CSUM
def_bool CPU_LITTLE_ENDIAN
......
......@@ -12,11 +12,11 @@
#define ASM_EDAC_H
/*
* ECC atomic, DMA, SMP and interrupt safe scrub function.
* Implements the per arch atomic_scrub() that EDAC use for software
* Implements the per arch edac_atomic_scrub() that EDAC use for software
* ECC scrubbing. It reads memory and then writes back the original
* value, allowing the hardware to detect and correct memory errors.
*/
static __inline__ void atomic_scrub(void *va, u32 size)
static __inline__ void edac_atomic_scrub(void *va, u32 size)
{
unsigned int *virt_addr = va;
unsigned int temp;
......
......@@ -28,6 +28,7 @@ config TILE
select HAVE_DEBUG_STACKOVERFLOW
select ARCH_WANT_FRAME_POINTERS
select HAVE_CONTEXT_TRACKING
select EDAC_SUPPORT
# FIXME: investigate whether we need/want these options.
# select HAVE_IOREMAP_PROT
......
/*
* Copyright 2011 Tilera Corporation. All Rights Reserved.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation, version 2.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
* NON INFRINGEMENT. See the GNU General Public License for
* more details.
*/
#ifndef _ASM_TILE_EDAC_H
#define _ASM_TILE_EDAC_H
/* ECC atomic, DMA, SMP and interrupt safe scrub function */
static inline void atomic_scrub(void *va, u32 size)
{
/*
* These is nothing to be done here because CE is
* corrected by the mshim.
*/
return;
}
#endif /* _ASM_TILE_EDAC_H */
......@@ -50,6 +50,8 @@ config X86
select CLONE_BACKWARDS if X86_32
select COMPAT_OLD_SIGACTION if IA32_EMULATION
select DCACHE_WORD_ACCESS
select EDAC_ATOMIC_SCRUB
select EDAC_SUPPORT
select GENERIC_CLOCKEVENTS
select GENERIC_CLOCKEVENTS_BROADCAST if X86_64 || (X86_32 && X86_LOCAL_APIC)
select GENERIC_CLOCKEVENTS_MIN_ADJUST
......
......@@ -3,7 +3,7 @@
/* ECC atomic, DMA, SMP and interrupt safe scrub function */
static inline void atomic_scrub(void *va, u32 size)
static inline void edac_atomic_scrub(void *va, u32 size)
{
u32 i, *virt_addr = va;
......
......@@ -2,15 +2,16 @@
# EDAC Kconfig
# Copyright (c) 2008 Doug Thompson www.softwarebitmaker.com
# Licensed and distributed under the GPL
#
config EDAC_ATOMIC_SCRUB
bool
config EDAC_SUPPORT
bool
menuconfig EDAC
bool "EDAC (Error Detection And Correction) reporting"
depends on HAS_IOMEM
depends on X86 || PPC || TILE || ARM || EDAC_SUPPORT
depends on HAS_IOMEM && EDAC_SUPPORT
help
EDAC is designed to report errors in the core system.
These are low-level errors that are reported in the CPU or
......@@ -262,10 +263,10 @@ config EDAC_SBRIDGE
config EDAC_MPC85XX
tristate "Freescale MPC83xx / MPC85xx"
depends on EDAC_MM_EDAC && FSL_SOC && (PPC_83xx || PPC_85xx)
depends on EDAC_MM_EDAC && FSL_SOC
help
Support for error detection and correction on the Freescale
MPC8349, MPC8560, MPC8540, MPC8548
MPC8349, MPC8560, MPC8540, MPC8548, T4240
config EDAC_MV64X60
tristate "Marvell MV64x60"
......@@ -377,8 +378,8 @@ config EDAC_OCTEON_PCI
Cavium Octeon family of SOCs.
config EDAC_ALTERA_MC
tristate "Altera SDRAM Memory Controller EDAC"
depends on EDAC_MM_EDAC && ARCH_SOCFPGA
bool "Altera SDRAM Memory Controller EDAC"
depends on EDAC_MM_EDAC=y && ARCH_SOCFPGA
help
Support for error detection and correction on the
Altera SDRAM memory controller. Note that the
......@@ -392,4 +393,11 @@ config EDAC_SYNOPSYS
Support for error detection and correction on the Synopsys DDR
memory controller.
config EDAC_XGENE
tristate "APM X-Gene SoC"
depends on EDAC_MM_EDAC && (ARM64 || COMPILE_TEST)
help
Support for error detection and correction on the
APM X-Gene family of SOCs.
endif # EDAC
......@@ -68,3 +68,4 @@ obj-$(CONFIG_EDAC_OCTEON_PCI) += octeon_edac-pci.o
obj-$(CONFIG_EDAC_ALTERA_MC) += altera_edac.o
obj-$(CONFIG_EDAC_SYNOPSYS) += synopsys_edac.o
obj-$(CONFIG_EDAC_XGENE) += xgene_edac.o
/*
* Copyright Altera Corporation (C) 2014. All rights reserved.
* Copyright Altera Corporation (C) 2014-2015. All rights reserved.
* Copyright 2011-2012 Calxeda, Inc.
*
* This program is free software; you can redistribute it and/or modify it
......@@ -28,113 +28,92 @@
#include <linux/types.h>
#include <linux/uaccess.h>
#include "altera_edac.h"
#include "edac_core.h"
#include "edac_module.h"
#define EDAC_MOD_STR "altera_edac"
#define EDAC_VERSION "1"
/* SDRAM Controller CtrlCfg Register */
#define CTLCFG_OFST 0x00
/* SDRAM Controller CtrlCfg Register Bit Masks */
#define CTLCFG_ECC_EN 0x400
#define CTLCFG_ECC_CORR_EN 0x800
#define CTLCFG_GEN_SB_ERR 0x2000
#define CTLCFG_GEN_DB_ERR 0x4000
#define CTLCFG_ECC_AUTO_EN (CTLCFG_ECC_EN | \
CTLCFG_ECC_CORR_EN)
/* SDRAM Controller Address Width Register */
#define DRAMADDRW_OFST 0x2C
/* SDRAM Controller Address Widths Field Register */
#define DRAMADDRW_COLBIT_MASK 0x001F
#define DRAMADDRW_COLBIT_SHIFT 0
#define DRAMADDRW_ROWBIT_MASK 0x03E0
#define DRAMADDRW_ROWBIT_SHIFT 5
#define DRAMADDRW_BANKBIT_MASK 0x1C00
#define DRAMADDRW_BANKBIT_SHIFT 10
#define DRAMADDRW_CSBIT_MASK 0xE000
#define DRAMADDRW_CSBIT_SHIFT 13
/* SDRAM Controller Interface Data Width Register */
#define DRAMIFWIDTH_OFST 0x30
/* SDRAM Controller Interface Data Width Defines */
#define DRAMIFWIDTH_16B_ECC 24
#define DRAMIFWIDTH_32B_ECC 40
/* SDRAM Controller DRAM Status Register */
#define DRAMSTS_OFST 0x38
/* SDRAM Controller DRAM Status Register Bit Masks */
#define DRAMSTS_SBEERR 0x04
#define DRAMSTS_DBEERR 0x08
#define DRAMSTS_CORR_DROP 0x10
/* SDRAM Controller DRAM IRQ Register */
#define DRAMINTR_OFST 0x3C
/* SDRAM Controller DRAM IRQ Register Bit Masks */
#define DRAMINTR_INTREN 0x01
#define DRAMINTR_SBEMASK 0x02
#define DRAMINTR_DBEMASK 0x04
#define DRAMINTR_CORRDROPMASK 0x08
#define DRAMINTR_INTRCLR 0x10
/* SDRAM Controller Single Bit Error Count Register */
#define SBECOUNT_OFST 0x40
/* SDRAM Controller Single Bit Error Count Register Bit Masks */
#define SBECOUNT_MASK 0x0F
/* SDRAM Controller Double Bit Error Count Register */
#define DBECOUNT_OFST 0x44
/* SDRAM Controller Double Bit Error Count Register Bit Masks */
#define DBECOUNT_MASK 0x0F
/* SDRAM Controller ECC Error Address Register */
#define ERRADDR_OFST 0x48
/* SDRAM Controller ECC Error Address Register Bit Masks */
#define ERRADDR_MASK 0xFFFFFFFF
static const struct altr_sdram_prv_data c5_data = {
.ecc_ctrl_offset = CV_CTLCFG_OFST,
.ecc_ctl_en_mask = CV_CTLCFG_ECC_AUTO_EN,
.ecc_stat_offset = CV_DRAMSTS_OFST,
.ecc_stat_ce_mask = CV_DRAMSTS_SBEERR,
.ecc_stat_ue_mask = CV_DRAMSTS_DBEERR,
.ecc_saddr_offset = CV_ERRADDR_OFST,
.ecc_daddr_offset = CV_ERRADDR_OFST,
.ecc_cecnt_offset = CV_SBECOUNT_OFST,
.ecc_uecnt_offset = CV_DBECOUNT_OFST,
.ecc_irq_en_offset = CV_DRAMINTR_OFST,
.ecc_irq_en_mask = CV_DRAMINTR_INTREN,
.ecc_irq_clr_offset = CV_DRAMINTR_OFST,
.ecc_irq_clr_mask = (CV_DRAMINTR_INTRCLR | CV_DRAMINTR_INTREN),
.ecc_cnt_rst_offset = CV_DRAMINTR_OFST,
.ecc_cnt_rst_mask = CV_DRAMINTR_INTRCLR,
#ifdef CONFIG_EDAC_DEBUG
.ce_ue_trgr_offset = CV_CTLCFG_OFST,
.ce_set_mask = CV_CTLCFG_GEN_SB_ERR,
.ue_set_mask = CV_CTLCFG_GEN_DB_ERR,
#endif
};
/* Altera SDRAM Memory Controller data */
struct altr_sdram_mc_data {
struct regmap *mc_vbase;
static const struct altr_sdram_prv_data a10_data = {
.ecc_ctrl_offset = A10_ECCCTRL1_OFST,
.ecc_ctl_en_mask = A10_ECCCTRL1_ECC_EN,
.ecc_stat_offset = A10_INTSTAT_OFST,
.ecc_stat_ce_mask = A10_INTSTAT_SBEERR,
.ecc_stat_ue_mask = A10_INTSTAT_DBEERR,
.ecc_saddr_offset = A10_SERRADDR_OFST,
.ecc_daddr_offset = A10_DERRADDR_OFST,
.ecc_irq_en_offset = A10_ERRINTEN_OFST,
.ecc_irq_en_mask = A10_ECC_IRQ_EN_MASK,
.ecc_irq_clr_offset = A10_INTSTAT_OFST,
.ecc_irq_clr_mask = (A10_INTSTAT_SBEERR | A10_INTSTAT_DBEERR),
.ecc_cnt_rst_offset = A10_ECCCTRL1_OFST,
.ecc_cnt_rst_mask = A10_ECC_CNT_RESET_MASK,
#ifdef CONFIG_EDAC_DEBUG
.ce_ue_trgr_offset = A10_DIAGINTTEST_OFST,
.ce_set_mask = A10_DIAGINT_TSERRA_MASK,
.ue_set_mask = A10_DIAGINT_TDERRA_MASK,
#endif
};
static irqreturn_t altr_sdram_mc_err_handler(int irq, void *dev_id)
{
struct mem_ctl_info *mci = dev_id;
struct altr_sdram_mc_data *drvdata = mci->pvt_info;
u32 status, err_count, err_addr;
/* Error Address is shared by both SBE & DBE */
regmap_read(drvdata->mc_vbase, ERRADDR_OFST, &err_addr);
const struct altr_sdram_prv_data *priv = drvdata->data;
u32 status, err_count = 1, err_addr;
regmap_read(drvdata->mc_vbase, DRAMSTS_OFST, &status);
regmap_read(drvdata->mc_vbase, priv->ecc_stat_offset, &status);
if (status & DRAMSTS_DBEERR) {
regmap_read(drvdata->mc_vbase, DBECOUNT_OFST, &err_count);
if (status & priv->ecc_stat_ue_mask) {
regmap_read(drvdata->mc_vbase, priv->ecc_daddr_offset,
&err_addr);
if (priv->ecc_uecnt_offset)
regmap_read(drvdata->mc_vbase, priv->ecc_uecnt_offset,
&err_count);
panic("\nEDAC: [%d Uncorrectable errors @ 0x%08X]\n",
err_count, err_addr);
}
if (status & DRAMSTS_SBEERR) {
regmap_read(drvdata->mc_vbase, SBECOUNT_OFST, &err_count);
if (status & priv->ecc_stat_ce_mask) {
regmap_read(drvdata->mc_vbase, priv->ecc_saddr_offset,
&err_addr);
if (priv->ecc_uecnt_offset)
regmap_read(drvdata->mc_vbase, priv->ecc_cecnt_offset,
&err_count);
edac_mc_handle_error(HW_EVENT_ERR_CORRECTED, mci, err_count,
err_addr >> PAGE_SHIFT,
err_addr & ~PAGE_MASK, 0,
0, 0, -1, mci->ctl_name, "");
}
regmap_write(drvdata->mc_vbase, DRAMINTR_OFST,
(DRAMINTR_INTRCLR | DRAMINTR_INTREN));
/* Clear IRQ to resume */
regmap_write(drvdata->mc_vbase, priv->ecc_irq_clr_offset,
priv->ecc_irq_clr_mask);
return IRQ_HANDLED;
}
return IRQ_NONE;
}
#ifdef CONFIG_EDAC_DEBUG
......@@ -144,6 +123,7 @@ static ssize_t altr_sdr_mc_err_inject_write(struct file *file,
{
struct mem_ctl_info *mci = file->private_data;
struct altr_sdram_mc_data *drvdata = mci->pvt_info;
const struct altr_sdram_prv_data *priv = drvdata->data;
u32 *ptemp;
dma_addr_t dma_handle;
u32 reg, read_reg;
......@@ -156,8 +136,9 @@ static ssize_t altr_sdr_mc_err_inject_write(struct file *file,
return -ENOMEM;
}
regmap_read(drvdata->mc_vbase, CTLCFG_OFST, &read_reg);
read_reg &= ~(CTLCFG_GEN_SB_ERR | CTLCFG_GEN_DB_ERR);
regmap_read(drvdata->mc_vbase, priv->ce_ue_trgr_offset,
&read_reg);
read_reg &= ~(priv->ce_set_mask | priv->ue_set_mask);
/* Error are injected by writing a word while the SBE or DBE
* bit in the CTLCFG register is set. Reading the word will
......@@ -166,20 +147,20 @@ static ssize_t altr_sdr_mc_err_inject_write(struct file *file,
if (count == 3) {
edac_printk(KERN_ALERT, EDAC_MC,
"Inject Double bit error\n");
regmap_write(drvdata->mc_vbase, CTLCFG_OFST,
(read_reg | CTLCFG_GEN_DB_ERR));
regmap_write(drvdata->mc_vbase, priv->ce_ue_trgr_offset,
(read_reg | priv->ue_set_mask));
} else {
edac_printk(KERN_ALERT, EDAC_MC,
"Inject Single bit error\n");
regmap_write(drvdata->mc_vbase, CTLCFG_OFST,
(read_reg | CTLCFG_GEN_SB_ERR));
regmap_write(drvdata->mc_vbase, priv->ce_ue_trgr_offset,
(read_reg | priv->ce_set_mask));
}
ptemp[0] = 0x5A5A5A5A;
ptemp[1] = 0xA5A5A5A5;
/* Clear the error injection bits */
regmap_write(drvdata->mc_vbase, CTLCFG_OFST, read_reg);
regmap_write(drvdata->mc_vbase, priv->ce_ue_trgr_offset, read_reg);
/* Ensure it has been written out */
wmb();
......@@ -219,50 +200,106 @@ static void altr_sdr_mc_create_debugfs_nodes(struct mem_ctl_info *mci)
{}
#endif
/* Get total memory size in bytes */
static u32 altr_sdram_get_total_mem_size(struct regmap *mc_vbase)
/* Get total memory size from Open Firmware DTB */
static unsigned long get_total_mem(void)
{
u32 size, read_reg, row, bank, col, cs, width;
struct device_node *np = NULL;
const unsigned int *reg, *reg_end;
int len, sw, aw;
unsigned long start, size, total_mem = 0;
for_each_node_by_type(np, "memory") {
aw = of_n_addr_cells(np);
sw = of_n_size_cells(np);
reg = (const unsigned int *)of_get_property(np, "reg", &len);
reg_end = reg + (len / sizeof(u32));
total_mem = 0;
do {
start = of_read_number(reg, aw);
reg += aw;
size = of_read_number(reg, sw);
reg += sw;
total_mem += size;
} while (reg < reg_end);
}
edac_dbg(0, "total_mem 0x%lx\n", total_mem);
return total_mem;
}
if (regmap_read(mc_vbase, DRAMADDRW_OFST, &read_reg) < 0)
return 0;
static const struct of_device_id altr_sdram_ctrl_of_match[] = {
{ .compatible = "altr,sdram-edac", .data = (void *)&c5_data},
{ .compatible = "altr,sdram-edac-a10", .data = (void *)&a10_data},
{},
};
MODULE_DEVICE_TABLE(of, altr_sdram_ctrl_of_match);
static int a10_init(struct regmap *mc_vbase)
{
if (regmap_update_bits(mc_vbase, A10_INTMODE_OFST,
A10_INTMODE_SB_INT, A10_INTMODE_SB_INT)) {
edac_printk(KERN_ERR, EDAC_MC,
"Error setting SB IRQ mode\n");
return -ENODEV;
}
if (regmap_write(mc_vbase, A10_SERRCNTREG_OFST, 1)) {
edac_printk(KERN_ERR, EDAC_MC,
"Error setting trigger count\n");
return -ENODEV;
}
if (regmap_read(mc_vbase, DRAMIFWIDTH_OFST, &width) < 0)
return 0;
}
static int a10_unmask_irq(struct platform_device *pdev, u32 mask)
{
void __iomem *sm_base;
int ret = 0;
if (!request_mem_region(A10_SYMAN_INTMASK_CLR, sizeof(u32),
dev_name(&pdev->dev))) {
edac_printk(KERN_ERR, EDAC_MC,
"Unable to request mem region\n");
return -EBUSY;
}
sm_base = ioremap(A10_SYMAN_INTMASK_CLR, sizeof(u32));
if (!sm_base) {
edac_printk(KERN_ERR, EDAC_MC,
"Unable to ioremap device\n");
ret = -ENOMEM;
goto release;
}
iowrite32(mask, sm_base);
col = (read_reg & DRAMADDRW_COLBIT_MASK) >>
DRAMADDRW_COLBIT_SHIFT;
row = (read_reg & DRAMADDRW_ROWBIT_MASK) >>
DRAMADDRW_ROWBIT_SHIFT;
bank = (read_reg & DRAMADDRW_BANKBIT_MASK) >>
DRAMADDRW_BANKBIT_SHIFT;
cs = (read_reg & DRAMADDRW_CSBIT_MASK) >>
DRAMADDRW_CSBIT_SHIFT;
/* Correct for ECC as its not addressible */
if (width == DRAMIFWIDTH_32B_ECC)
width = 32;
if (width == DRAMIFWIDTH_16B_ECC)
width = 16;
/* calculate the SDRAM size base on this info */
size = 1 << (row + bank + col);
size = size * cs * (width / 8);
return size;
iounmap(sm_base);
release:
release_mem_region(A10_SYMAN_INTMASK_CLR, sizeof(u32));
return ret;
}
static int altr_sdram_probe(struct platform_device *pdev)
{
const struct of_device_id *id;
struct edac_mc_layer layers[2];
struct mem_ctl_info *mci;
struct altr_sdram_mc_data *drvdata;
const struct altr_sdram_prv_data *priv;
struct regmap *mc_vbase;
struct dimm_info *dimm;
u32 read_reg, mem_size;
int irq;
int res = 0;
u32 read_reg;
int irq, irq2, res = 0;
unsigned long mem_size, irqflags = 0;
id = of_match_device(altr_sdram_ctrl_of_match, &pdev->dev);
if (!id)
return -ENODEV;
/* Validate the SDRAM controller has ECC enabled */
/* Grab the register range from the sdr controller in device tree */
mc_vbase = syscon_regmap_lookup_by_phandle(pdev->dev.of_node,
"altr,sdr-syscon");
......@@ -272,25 +309,46 @@ static int altr_sdram_probe(struct platform_device *pdev)
return -ENODEV;
}
if (regmap_read(mc_vbase, CTLCFG_OFST, &read_reg) ||
((read_reg & CTLCFG_ECC_AUTO_EN) != CTLCFG_ECC_AUTO_EN)) {
/* Check specific dependencies for the module */
priv = of_match_node(altr_sdram_ctrl_of_match,
pdev->dev.of_node)->data;
/* Validate the SDRAM controller has ECC enabled */
if (regmap_read(mc_vbase, priv->ecc_ctrl_offset, &read_reg) ||
((read_reg & priv->ecc_ctl_en_mask) != priv->ecc_ctl_en_mask)) {
edac_printk(KERN_ERR, EDAC_MC,
"No ECC/ECC disabled [0x%08X]\n", read_reg);
return -ENODEV;
}
/* Grab memory size from device tree. */
mem_size = altr_sdram_get_total_mem_size(mc_vbase);
mem_size = get_total_mem();
if (!mem_size) {
edac_printk(KERN_ERR, EDAC_MC, "Unable to calculate memory size\n");
return -ENODEV;
}
/* Ensure the SDRAM Interrupt is disabled */
if (regmap_update_bits(mc_vbase, priv->ecc_irq_en_offset,
priv->ecc_irq_en_mask, 0)) {
edac_printk(KERN_ERR, EDAC_MC,
"Error disabling SDRAM ECC IRQ\n");
return -ENODEV;
}
/* Toggle to clear the SDRAM Error count */
if (regmap_update_bits(mc_vbase, priv->ecc_cnt_rst_offset,
priv->ecc_cnt_rst_mask,
priv->ecc_cnt_rst_mask)) {
edac_printk(KERN_ERR, EDAC_MC,
"Unable to calculate memory size\n");
"Error clearing SDRAM ECC count\n");
return -ENODEV;
}
/* Ensure the SDRAM Interrupt is disabled and cleared */
if (regmap_write(mc_vbase, DRAMINTR_OFST, DRAMINTR_INTRCLR)) {
if (regmap_update_bits(mc_vbase, priv->ecc_cnt_rst_offset,
priv->ecc_cnt_rst_mask, 0)) {
edac_printk(KERN_ERR, EDAC_MC,
"Error clearing SDRAM ECC IRQ\n");
"Error clearing SDRAM ECC count\n");
return -ENODEV;
}
......@@ -301,6 +359,9 @@ static int altr_sdram_probe(struct platform_device *pdev)
return -ENODEV;
}
/* Arria10 has a 2nd IRQ */
irq2 = platform_get_irq(pdev, 1);
layers[0].type = EDAC_MC_LAYER_CHIP_SELECT;
layers[0].size = 1;
layers[0].is_virt_csrow = true;
......@@ -315,9 +376,12 @@ static int altr_sdram_probe(struct platform_device *pdev)
mci->pdev = &pdev->dev;
drvdata = mci->pvt_info;
drvdata->mc_vbase = mc_vbase;
drvdata->data = priv;
platform_set_drvdata(pdev, mci);
if (!devres_open_group(&pdev->dev, NULL, GFP_KERNEL)) {
edac_printk(KERN_ERR, EDAC_MC,
"Unable to get managed device resource\n");
res = -ENOMEM;
goto free;
}
......@@ -342,8 +406,32 @@ static int altr_sdram_probe(struct platform_device *pdev)
if (res < 0)
goto err;
/* Only the Arria10 has separate IRQs */
if (irq2 > 0) {
/* Arria10 specific initialization */
res = a10_init(mc_vbase);
if (res < 0)
goto err2;
res = devm_request_irq(&pdev->dev, irq2,
altr_sdram_mc_err_handler,
IRQF_SHARED, dev_name(&pdev->dev), mci);
if (res < 0) {
edac_mc_printk(mci, KERN_ERR,
"Unable to request irq %d\n", irq2);
res = -ENODEV;
goto err2;
}
res = a10_unmask_irq(pdev, A10_DDR0_IRQ_MASK);
if (res < 0)
goto err2;
irqflags = IRQF_SHARED;
}
res = devm_request_irq(&pdev->dev, irq, altr_sdram_mc_err_handler,
0, dev_name(&pdev->dev), mci);
irqflags, dev_name(&pdev->dev), mci);
if (res < 0) {
edac_mc_printk(mci, KERN_ERR,
"Unable to request irq %d\n", irq);
......@@ -351,8 +439,9 @@ static int altr_sdram_probe(struct platform_device *pdev)
goto err2;
}
if (regmap_write(drvdata->mc_vbase, DRAMINTR_OFST,
(DRAMINTR_INTRCLR | DRAMINTR_INTREN))) {
/* Infrastructure ready - enable the IRQ */
if (regmap_update_bits(drvdata->mc_vbase, priv->ecc_irq_en_offset,
priv->ecc_irq_en_mask, priv->ecc_irq_en_mask)) {
edac_mc_printk(mci, KERN_ERR,
"Error enabling SDRAM ECC IRQ\n");
res = -ENODEV;
......@@ -388,17 +477,31 @@ static int altr_sdram_remove(struct platform_device *pdev)
return 0;
}
static const struct of_device_id altr_sdram_ctrl_of_match[] = {
{ .compatible = "altr,sdram-edac", },
{},
/*
* If you want to suspend, need to disable EDAC by removing it
* from the device tree or defconfig.
*/
#ifdef CONFIG_PM
static int altr_sdram_prepare(struct device *dev)
{
pr_err("Suspend not allowed when EDAC is enabled.\n");
return -EPERM;
}
static const struct dev_pm_ops altr_sdram_pm_ops = {
.prepare = altr_sdram_prepare,
};
MODULE_DEVICE_TABLE(of, altr_sdram_ctrl_of_match);
#endif
static struct platform_driver altr_sdram_edac_driver = {
.probe = altr_sdram_probe,
.remove = altr_sdram_remove,
.driver = {
.name = "altr_sdram_edac",
#ifdef CONFIG_PM
.pm = &altr_sdram_pm_ops,
#endif
.of_match_table = altr_sdram_ctrl_of_match,
},
};
......
/*
*
* Copyright (C) 2015 Altera Corporation
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License along with
* this program. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef _ALTERA_EDAC_H
#define _ALTERA_EDAC_H
#include <linux/edac.h>
#include <linux/types.h>
/* SDRAM Controller CtrlCfg Register */
#define CV_CTLCFG_OFST 0x00
/* SDRAM Controller CtrlCfg Register Bit Masks */
#define CV_CTLCFG_ECC_EN 0x400
#define CV_CTLCFG_ECC_CORR_EN 0x800
#define CV_CTLCFG_GEN_SB_ERR 0x2000
#define CV_CTLCFG_GEN_DB_ERR 0x4000
#define CV_CTLCFG_ECC_AUTO_EN (CV_CTLCFG_ECC_EN | \
CV_CTLCFG_ECC_CORR_EN)
/* SDRAM Controller Address Width Register */
#define CV_DRAMADDRW_OFST 0x2C
/* SDRAM Controller Address Widths Field Register */
#define DRAMADDRW_COLBIT_MASK 0x001F
#define DRAMADDRW_COLBIT_SHIFT 0
#define DRAMADDRW_ROWBIT_MASK 0x03E0
#define DRAMADDRW_ROWBIT_SHIFT 5
#define CV_DRAMADDRW_BANKBIT_MASK 0x1C00
#define CV_DRAMADDRW_BANKBIT_SHIFT 10
#define CV_DRAMADDRW_CSBIT_MASK 0xE000
#define CV_DRAMADDRW_CSBIT_SHIFT 13
/* SDRAM Controller Interface Data Width Register */
#define CV_DRAMIFWIDTH_OFST 0x30
/* SDRAM Controller Interface Data Width Defines */
#define CV_DRAMIFWIDTH_16B_ECC 24
#define CV_DRAMIFWIDTH_32B_ECC 40
/* SDRAM Controller DRAM Status Register */
#define CV_DRAMSTS_OFST 0x38
/* SDRAM Controller DRAM Status Register Bit Masks */
#define CV_DRAMSTS_SBEERR 0x04
#define CV_DRAMSTS_DBEERR 0x08
#define CV_DRAMSTS_CORR_DROP 0x10
/* SDRAM Controller DRAM IRQ Register */
#define CV_DRAMINTR_OFST 0x3C
/* SDRAM Controller DRAM IRQ Register Bit Masks */
#define CV_DRAMINTR_INTREN 0x01
#define CV_DRAMINTR_SBEMASK 0x02
#define CV_DRAMINTR_DBEMASK 0x04
#define CV_DRAMINTR_CORRDROPMASK 0x08
#define CV_DRAMINTR_INTRCLR 0x10
/* SDRAM Controller Single Bit Error Count Register */
#define CV_SBECOUNT_OFST 0x40
/* SDRAM Controller Double Bit Error Count Register */
#define CV_DBECOUNT_OFST 0x44
/* SDRAM Controller ECC Error Address Register */
#define CV_ERRADDR_OFST 0x48
/*-----------------------------------------*/
/* SDRAM Controller EccCtrl Register */
#define A10_ECCCTRL1_OFST 0x00
/* SDRAM Controller EccCtrl Register Bit Masks */
#define A10_ECCCTRL1_ECC_EN 0x001
#define A10_ECCCTRL1_CNT_RST 0x010
#define A10_ECCCTRL1_AWB_CNT_RST 0x100
#define A10_ECC_CNT_RESET_MASK (A10_ECCCTRL1_CNT_RST | \
A10_ECCCTRL1_AWB_CNT_RST)
/* SDRAM Controller Address Width Register */
#define CV_DRAMADDRW 0xFFC2502C
#define A10_DRAMADDRW 0xFFCFA0A8
/* SDRAM Controller Address Widths Field Register */
#define DRAMADDRW_COLBIT_MASK 0x001F
#define DRAMADDRW_COLBIT_SHIFT 0
#define DRAMADDRW_ROWBIT_MASK 0x03E0
#define DRAMADDRW_ROWBIT_SHIFT 5
#define CV_DRAMADDRW_BANKBIT_MASK 0x1C00
#define CV_DRAMADDRW_BANKBIT_SHIFT 10
#define CV_DRAMADDRW_CSBIT_MASK 0xE000
#define CV_DRAMADDRW_CSBIT_SHIFT 13
#define A10_DRAMADDRW_BANKBIT_MASK 0x3C00
#define A10_DRAMADDRW_BANKBIT_SHIFT 10
#define A10_DRAMADDRW_GRPBIT_MASK 0xC000
#define A10_DRAMADDRW_GRPBIT_SHIFT 14
#define A10_DRAMADDRW_CSBIT_MASK 0x70000
#define A10_DRAMADDRW_CSBIT_SHIFT 16
/* SDRAM Controller Interface Data Width Register */
#define CV_DRAMIFWIDTH 0xFFC25030
#define A10_DRAMIFWIDTH 0xFFCFB008
/* SDRAM Controller Interface Data Width Defines */
#define CV_DRAMIFWIDTH_16B_ECC 24
#define CV_DRAMIFWIDTH_32B_ECC 40
#define A10_DRAMIFWIDTH_16B 0x0
#define A10_DRAMIFWIDTH_32B 0x1
#define A10_DRAMIFWIDTH_64B 0x2
/* SDRAM Controller DRAM IRQ Register */
#define A10_ERRINTEN_OFST 0x10
/* SDRAM Controller DRAM IRQ Register Bit Masks */
#define A10_ERRINTEN_SERRINTEN 0x01
#define A10_ERRINTEN_DERRINTEN 0x02
#define A10_ECC_IRQ_EN_MASK (A10_ERRINTEN_SERRINTEN | \
A10_ERRINTEN_DERRINTEN)
/* SDRAM Interrupt Mode Register */
#define A10_INTMODE_OFST 0x1C
#define A10_INTMODE_SB_INT 1
/* SDRAM Controller Error Status Register */
#define A10_INTSTAT_OFST 0x20
/* SDRAM Controller Error Status Register Bit Masks */
#define A10_INTSTAT_SBEERR 0x01
#define A10_INTSTAT_DBEERR 0x02
/* SDRAM Controller ECC Error Address Register */
#define A10_DERRADDR_OFST 0x2C
#define A10_SERRADDR_OFST 0x30
/* SDRAM Controller ECC Diagnostic Register */
#define A10_DIAGINTTEST_OFST 0x24
#define A10_DIAGINT_TSERRA_MASK 0x0001
#define A10_DIAGINT_TDERRA_MASK 0x0100
#define A10_SBERR_IRQ 34
#define A10_DBERR_IRQ 32
/* SDRAM Single Bit Error Count Compare Set Register */
#define A10_SERRCNTREG_OFST 0x3C
#define A10_SYMAN_INTMASK_CLR 0xFFD06098
#define A10_INTMASK_CLR_OFST 0x10
#define A10_DDR0_IRQ_MASK BIT(17)
struct altr_sdram_prv_data {
int ecc_ctrl_offset;
int ecc_ctl_en_mask;
int ecc_cecnt_offset;
int ecc_uecnt_offset;
int ecc_stat_offset;
int ecc_stat_ce_mask;
int ecc_stat_ue_mask;
int ecc_saddr_offset;
int ecc_daddr_offset;
int ecc_irq_en_offset;
int ecc_irq_en_mask;
int ecc_irq_clr_offset;
int ecc_irq_clr_mask;
int ecc_cnt_rst_offset;
int ecc_cnt_rst_mask;
#ifdef CONFIG_EDAC_DEBUG
struct edac_dev_sysfs_attribute *eccmgr_sysfs_attr;
int ecc_enable_mask;
int ce_set_mask;
int ue_set_mask;
int ce_ue_trgr_offset;
#endif
};
/* Altera SDRAM Memory Controller data */
struct altr_sdram_mc_data {
struct regmap *mc_vbase;
int sb_irq;
int db_irq;
const struct altr_sdram_prv_data *data;
};
#endif /* #ifndef _ALTERA_EDAC_H */
......@@ -30,11 +30,16 @@
#include <linux/bitops.h>
#include <asm/uaccess.h>
#include <asm/page.h>
#include <asm/edac.h>
#include "edac_core.h"
#include "edac_module.h"
#include <ras/ras_event.h>
#ifdef CONFIG_EDAC_ATOMIC_SCRUB
#include <asm/edac.h>
#else
#define edac_atomic_scrub(va, size) do { } while (0)
#endif
/* lock to memory controller's control array */
static DEFINE_MUTEX(mem_ctls_mutex);
static LIST_HEAD(mc_devices);
......@@ -874,7 +879,7 @@ static void edac_mc_scrub_block(unsigned long page, unsigned long offset,
virt_addr = kmap_atomic(pg);
/* Perform architecture specific atomic scrub operation */
atomic_scrub(virt_addr + offset, size);
edac_atomic_scrub(virt_addr + offset, size);
/* Unmap and complete */
kunmap_atomic(virt_addr);
......
......@@ -16,7 +16,6 @@
#include <linux/edac.h>
#include <linux/atomic.h>
#include <linux/device.h>
#include <asm/edac.h>
int edac_op_state = EDAC_OPSTATE_INVAL;
EXPORT_SYMBOL_GPL(edac_op_state);
......
......@@ -15,6 +15,8 @@
#include <linux/device.h>
#include <linux/module.h>
#include <linux/cpu.h>
#include <linux/string.h>
#include <linux/uaccess.h>
#include <asm/mce.h>
#include "mce_amd.h"
......@@ -25,6 +27,25 @@
static struct mce i_mce;
static struct dentry *dfs_inj;
static u8 n_banks;
#define MAX_FLAG_OPT_SIZE 3
enum injection_type {
SW_INJ = 0, /* SW injection, simply decode the error */
HW_INJ, /* Trigger a #MC */
N_INJ_TYPES,
};
static const char * const flags_options[] = {
[SW_INJ] = "sw",
[HW_INJ] = "hw",
NULL
};
/* Set default injection to SW_INJ */
static enum injection_type inj_type = SW_INJ;
#define MCE_INJECT_SET(reg) \
static int inj_##reg##_set(void *data, u64 val) \
{ \
......@@ -79,24 +100,66 @@ static int toggle_hw_mce_inject(unsigned int cpu, bool enable)
return err;
}
static int flags_get(void *data, u64 *val)
static int __set_inj(const char *buf)
{
struct mce *m = (struct mce *)data;
*val = m->inject_flags;
int i;
for (i = 0; i < N_INJ_TYPES; i++) {
if (!strncmp(flags_options[i], buf, strlen(flags_options[i]))) {
inj_type = i;
return 0;
}
}
return -EINVAL;
}
static int flags_set(void *data, u64 val)
static ssize_t flags_read(struct file *filp, char __user *ubuf,
size_t cnt, loff_t *ppos)
{
struct mce *m = (struct mce *)data;
char buf[MAX_FLAG_OPT_SIZE];
int n;
m->inject_flags = (u8)val;
return 0;
n = sprintf(buf, "%s\n", flags_options[inj_type]);
return simple_read_from_buffer(ubuf, cnt, ppos, buf, n);
}
DEFINE_SIMPLE_ATTRIBUTE(flags_fops, flags_get, flags_set, "%llu\n");
static ssize_t flags_write(struct file *filp, const char __user *ubuf,
size_t cnt, loff_t *ppos)
{
char buf[MAX_FLAG_OPT_SIZE], *__buf;
int err;
size_t ret;
if (cnt > MAX_FLAG_OPT_SIZE)
cnt = MAX_FLAG_OPT_SIZE;
ret = cnt;
if (copy_from_user(&buf, ubuf, cnt))
return -EFAULT;
buf[cnt - 1] = 0;
/* strip whitespace */
__buf = strstrip(buf);
err = __set_inj(__buf);
if (err) {
pr_err("%s: Invalid flags value: %s\n", __func__, __buf);
return err;
}
*ppos += ret;
return ret;
}
static const struct file_operations flags_fops = {
.read = flags_read,
.write = flags_write,
.llseek = generic_file_llseek,
};
/*
* On which CPU to inject?
......@@ -128,21 +191,24 @@ static void do_inject(void)
unsigned int cpu = i_mce.extcpu;
u8 b = i_mce.bank;
if (!(i_mce.inject_flags & MCJ_EXCEPTION)) {
if (i_mce.misc)
i_mce.status |= MCI_STATUS_MISCV;
if (inj_type == SW_INJ) {
amd_decode_mce(NULL, 0, &i_mce);
return;
}
get_online_cpus();
if (!cpu_online(cpu))
goto err;
/* prep MCE global settings for the injection */
mcg_status = MCG_STATUS_MCIP | MCG_STATUS_EIPV;
if (!(i_mce.status & MCI_STATUS_PCC))
mcg_status |= MCG_STATUS_RIPV;
get_online_cpus();
if (!cpu_online(cpu))
goto err;
toggle_hw_mce_inject(cpu, true);
wrmsr_on_cpu(cpu, MSR_IA32_MCG_STATUS,
......@@ -174,12 +240,10 @@ static int inj_bank_set(void *data, u64 val)
{
struct mce *m = (struct mce *)data;
if (val > 5) {
if (boot_cpu_data.x86 != 0x15 || val > 6) {
if (val >= n_banks) {
pr_err("Non-existent MCE bank: %llu\n", val);
return -EINVAL;
}
}
m->bank = val;
do_inject();
......@@ -187,32 +251,81 @@ static int inj_bank_set(void *data, u64 val)
return 0;
}
static int inj_bank_get(void *data, u64 *val)
{
struct mce *m = (struct mce *)data;
MCE_INJECT_GET(bank);
*val = m->bank;
return 0;
DEFINE_SIMPLE_ATTRIBUTE(bank_fops, inj_bank_get, inj_bank_set, "%llu\n");
static const char readme_msg[] =
"Description of the files and their usages:\n"
"\n"
"Note1: i refers to the bank number below.\n"
"Note2: See respective BKDGs for the exact bit definitions of the files below\n"
"as they mirror the hardware registers.\n"
"\n"
"status:\t Set MCi_STATUS: the bits in that MSR control the error type and\n"
"\t attributes of the error which caused the MCE.\n"
"\n"
"misc:\t Set MCi_MISC: provide auxiliary info about the error. It is mostly\n"
"\t used for error thresholding purposes and its validity is indicated by\n"
"\t MCi_STATUS[MiscV].\n"
"\n"
"addr:\t Error address value to be written to MCi_ADDR. Log address information\n"
"\t associated with the error.\n"
"\n"
"cpu:\t The CPU to inject the error on.\n"
"\n"
"bank:\t Specify the bank you want to inject the error into: the number of\n"
"\t banks in a processor varies and is family/model-specific, therefore, the\n"
"\t supplied value is sanity-checked. Setting the bank value also triggers the\n"
"\t injection.\n"
"\n"
"flags:\t Injection type to be performed. Writing to this file will trigger a\n"
"\t real machine check, an APIC interrupt or invoke the error decoder routines\n"
"\t for AMD processors.\n"
"\n"
"\t Allowed error injection types:\n"
"\t - \"sw\": Software error injection. Decode error to a human-readable \n"
"\t format only. Safe to use.\n"
"\t - \"hw\": Hardware error injection. Causes the #MC exception handler to \n"
"\t handle the error. Be warned: might cause system panic if MCi_STATUS[PCC] \n"
"\t is set. Therefore, consider setting (debugfs_mountpoint)/mce/fake_panic \n"
"\t before injecting.\n"
"\n";
static ssize_t
inj_readme_read(struct file *filp, char __user *ubuf,
size_t cnt, loff_t *ppos)
{
return simple_read_from_buffer(ubuf, cnt, ppos,
readme_msg, strlen(readme_msg));
}
DEFINE_SIMPLE_ATTRIBUTE(bank_fops, inj_bank_get, inj_bank_set, "%llu\n");
static const struct file_operations readme_fops = {
.read = inj_readme_read,
};
static struct dfs_node {
char *name;
struct dentry *d;
const struct file_operations *fops;
umode_t perm;
} dfs_fls[] = {
{ .name = "status", .fops = &status_fops },
{ .name = "misc", .fops = &misc_fops },
{ .name = "addr", .fops = &addr_fops },
{ .name = "bank", .fops = &bank_fops },
{ .name = "flags", .fops = &flags_fops },
{ .name = "cpu", .fops = &extcpu_fops },
{ .name = "status", .fops = &status_fops, .perm = S_IRUSR | S_IWUSR },
{ .name = "misc", .fops = &misc_fops, .perm = S_IRUSR | S_IWUSR },
{ .name = "addr", .fops = &addr_fops, .perm = S_IRUSR | S_IWUSR },
{ .name = "bank", .fops = &bank_fops, .perm = S_IRUSR | S_IWUSR },
{ .name = "flags", .fops = &flags_fops, .perm = S_IRUSR | S_IWUSR },
{ .name = "cpu", .fops = &extcpu_fops, .perm = S_IRUSR | S_IWUSR },
{ .name = "README", .fops = &readme_fops, .perm = S_IRUSR | S_IRGRP | S_IROTH },
};
static int __init init_mce_inject(void)
{
int i;
u64 cap;
rdmsrl(MSR_IA32_MCG_CAP, cap);
n_banks = cap & MCG_BANKCNT_MASK;
dfs_inj = debugfs_create_dir("mce-inject", NULL);
if (!dfs_inj)
......@@ -220,7 +333,7 @@ static int __init init_mce_inject(void)
for (i = 0; i < ARRAY_SIZE(dfs_fls); i++) {
dfs_fls[i].d = debugfs_create_file(dfs_fls[i].name,
S_IRUSR | S_IWUSR,
dfs_fls[i].perm,
dfs_inj,
&i_mce,
dfs_fls[i].fops);
......
......@@ -811,6 +811,8 @@ static void sbe_ecc_decode(u32 cap_high, u32 cap_low, u32 cap_ecc,
}
}
#define make64(high, low) (((u64)(high) << 32) | (low))
static void mpc85xx_mc_check(struct mem_ctl_info *mci)
{
struct mpc85xx_mc_pdata *pdata = mci->pvt_info;
......@@ -818,7 +820,7 @@ static void mpc85xx_mc_check(struct mem_ctl_info *mci)
u32 bus_width;
u32 err_detect;
u32 syndrome;
u32 err_addr;
u64 err_addr;
u32 pfn;
int row_index;
u32 cap_high;
......@@ -849,7 +851,9 @@ static void mpc85xx_mc_check(struct mem_ctl_info *mci)
else
syndrome &= 0xffff;
err_addr = in_be32(pdata->mc_vbase + MPC85XX_MC_CAPTURE_ADDRESS);
err_addr = make64(
in_be32(pdata->mc_vbase + MPC85XX_MC_CAPTURE_EXT_ADDRESS),
in_be32(pdata->mc_vbase + MPC85XX_MC_CAPTURE_ADDRESS));
pfn = err_addr >> PAGE_SHIFT;
for (row_index = 0; row_index < mci->nr_csrows; row_index++) {
......@@ -886,7 +890,7 @@ static void mpc85xx_mc_check(struct mem_ctl_info *mci)
mpc85xx_mc_printk(mci, KERN_ERR,
"Captured Data / ECC:\t%#8.8x_%08x / %#2.2x\n",
cap_high, cap_low, syndrome);
mpc85xx_mc_printk(mci, KERN_ERR, "Err addr: %#8.8x\n", err_addr);
mpc85xx_mc_printk(mci, KERN_ERR, "Err addr: %#8.8llx\n", err_addr);
mpc85xx_mc_printk(mci, KERN_ERR, "PFN: %#8.8x\n", pfn);
/* we are out of range */
......
......@@ -43,6 +43,7 @@
#define MPC85XX_MC_ERR_INT_EN 0x0e48
#define MPC85XX_MC_CAPTURE_ATRIBUTES 0x0e4c
#define MPC85XX_MC_CAPTURE_ADDRESS 0x0e50
#define MPC85XX_MC_CAPTURE_EXT_ADDRESS 0x0e54
#define MPC85XX_MC_ERR_SBE 0x0e58
#define DSC_MEM_EN 0x80000000
......
/*
* APM X-Gene SoC EDAC (error detection and correction)
*
* Copyright (c) 2015, Applied Micro Circuits Corporation
* Author: Feng Kan <fkan@apm.com>
* Loc Ho <lho@apm.com>
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation; either version 2 of the License, or (at your
* option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <linux/ctype.h>
#include <linux/edac.h>
#include <linux/interrupt.h>
#include <linux/mfd/syscon.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/of_address.h>
#include <linux/regmap.h>
#include "edac_core.h"
#define EDAC_MOD_STR "xgene_edac"
/* Global error configuration status registers (CSR) */
#define PCPHPERRINTSTS 0x0000
#define PCPHPERRINTMSK 0x0004
#define MCU_CTL_ERR_MASK BIT(12)
#define IOB_PA_ERR_MASK BIT(11)
#define IOB_BA_ERR_MASK BIT(10)
#define IOB_XGIC_ERR_MASK BIT(9)
#define IOB_RB_ERR_MASK BIT(8)
#define L3C_UNCORR_ERR_MASK BIT(5)
#define MCU_UNCORR_ERR_MASK BIT(4)
#define PMD3_MERR_MASK BIT(3)
#define PMD2_MERR_MASK BIT(2)
#define PMD1_MERR_MASK BIT(1)
#define PMD0_MERR_MASK BIT(0)
#define PCPLPERRINTSTS 0x0008
#define PCPLPERRINTMSK 0x000C
#define CSW_SWITCH_TRACE_ERR_MASK BIT(2)
#define L3C_CORR_ERR_MASK BIT(1)
#define MCU_CORR_ERR_MASK BIT(0)
#define MEMERRINTSTS 0x0010
#define MEMERRINTMSK 0x0014
struct xgene_edac {
struct device *dev;
struct regmap *csw_map;
struct regmap *mcba_map;
struct regmap *mcbb_map;
struct regmap *efuse_map;
void __iomem *pcp_csr;
spinlock_t lock;
struct dentry *dfs;
struct list_head mcus;
struct list_head pmds;
struct mutex mc_lock;
int mc_active_mask;
int mc_registered_mask;
};
static void xgene_edac_pcp_rd(struct xgene_edac *edac, u32 reg, u32 *val)
{
*val = readl(edac->pcp_csr + reg);
}
static void xgene_edac_pcp_clrbits(struct xgene_edac *edac, u32 reg,
u32 bits_mask)
{
u32 val;
spin_lock(&edac->lock);
val = readl(edac->pcp_csr + reg);
val &= ~bits_mask;
writel(val, edac->pcp_csr + reg);
spin_unlock(&edac->lock);
}
static void xgene_edac_pcp_setbits(struct xgene_edac *edac, u32 reg,
u32 bits_mask)
{
u32 val;
spin_lock(&edac->lock);
val = readl(edac->pcp_csr + reg);
val |= bits_mask;
writel(val, edac->pcp_csr + reg);
spin_unlock(&edac->lock);
}
/* Memory controller error CSR */
#define MCU_MAX_RANK 8
#define MCU_RANK_STRIDE 0x40
#define MCUGECR 0x0110
#define MCU_GECR_DEMANDUCINTREN_MASK BIT(0)
#define MCU_GECR_BACKUCINTREN_MASK BIT(1)
#define MCU_GECR_CINTREN_MASK BIT(2)
#define MUC_GECR_MCUADDRERREN_MASK BIT(9)
#define MCUGESR 0x0114
#define MCU_GESR_ADDRNOMATCH_ERR_MASK BIT(7)
#define MCU_GESR_ADDRMULTIMATCH_ERR_MASK BIT(6)
#define MCU_GESR_PHYP_ERR_MASK BIT(3)
#define MCUESRR0 0x0314
#define MCU_ESRR_MULTUCERR_MASK BIT(3)
#define MCU_ESRR_BACKUCERR_MASK BIT(2)
#define MCU_ESRR_DEMANDUCERR_MASK BIT(1)
#define MCU_ESRR_CERR_MASK BIT(0)
#define MCUESRRA0 0x0318
#define MCUEBLRR0 0x031c
#define MCU_EBLRR_ERRBANK_RD(src) (((src) & 0x00000007) >> 0)
#define MCUERCRR0 0x0320
#define MCU_ERCRR_ERRROW_RD(src) (((src) & 0xFFFF0000) >> 16)
#define MCU_ERCRR_ERRCOL_RD(src) ((src) & 0x00000FFF)
#define MCUSBECNT0 0x0324
#define MCU_SBECNT_COUNT(src) ((src) & 0xFFFF)
#define CSW_CSWCR 0x0000
#define CSW_CSWCR_DUALMCB_MASK BIT(0)
#define MCBADDRMR 0x0000
#define MCBADDRMR_MCU_INTLV_MODE_MASK BIT(3)
#define MCBADDRMR_DUALMCU_MODE_MASK BIT(2)
#define MCBADDRMR_MCB_INTLV_MODE_MASK BIT(1)
#define MCBADDRMR_ADDRESS_MODE_MASK BIT(0)
struct xgene_edac_mc_ctx {
struct list_head next;
char *name;
struct mem_ctl_info *mci;
struct xgene_edac *edac;
void __iomem *mcu_csr;
u32 mcu_id;
};
static ssize_t xgene_edac_mc_err_inject_write(struct file *file,
const char __user *data,
size_t count, loff_t *ppos)
{
struct mem_ctl_info *mci = file->private_data;
struct xgene_edac_mc_ctx *ctx = mci->pvt_info;
int i;
for (i = 0; i < MCU_MAX_RANK; i++) {
writel(MCU_ESRR_MULTUCERR_MASK | MCU_ESRR_BACKUCERR_MASK |
MCU_ESRR_DEMANDUCERR_MASK | MCU_ESRR_CERR_MASK,
ctx->mcu_csr + MCUESRRA0 + i * MCU_RANK_STRIDE);
}
return count;
}
static const struct file_operations xgene_edac_mc_debug_inject_fops = {
.open = simple_open,
.write = xgene_edac_mc_err_inject_write,
.llseek = generic_file_llseek,
};
static void xgene_edac_mc_create_debugfs_node(struct mem_ctl_info *mci)
{
if (!IS_ENABLED(CONFIG_EDAC_DEBUG))
return;
#ifdef CONFIG_EDAC_DEBUG
if (!mci->debugfs)
return;
debugfs_create_file("inject_ctrl", S_IWUSR, mci->debugfs, mci,
&xgene_edac_mc_debug_inject_fops);
#endif
}
static void xgene_edac_mc_check(struct mem_ctl_info *mci)
{
struct xgene_edac_mc_ctx *ctx = mci->pvt_info;
unsigned int pcp_hp_stat;
unsigned int pcp_lp_stat;
u32 reg;
u32 rank;
u32 bank;
u32 count;
u32 col_row;
xgene_edac_pcp_rd(ctx->edac, PCPHPERRINTSTS, &pcp_hp_stat);
xgene_edac_pcp_rd(ctx->edac, PCPLPERRINTSTS, &pcp_lp_stat);
if (!((MCU_UNCORR_ERR_MASK & pcp_hp_stat) ||
(MCU_CTL_ERR_MASK & pcp_hp_stat) ||
(MCU_CORR_ERR_MASK & pcp_lp_stat)))
return;
for (rank = 0; rank < MCU_MAX_RANK; rank++) {
reg = readl(ctx->mcu_csr + MCUESRR0 + rank * MCU_RANK_STRIDE);
/* Detect uncorrectable memory error */
if (reg & (MCU_ESRR_DEMANDUCERR_MASK |
MCU_ESRR_BACKUCERR_MASK)) {
/* Detected uncorrectable memory error */
edac_mc_chipset_printk(mci, KERN_ERR, "X-Gene",
"MCU uncorrectable error at rank %d\n", rank);
edac_mc_handle_error(HW_EVENT_ERR_UNCORRECTED, mci,
1, 0, 0, 0, 0, 0, -1, mci->ctl_name, "");
}
/* Detect correctable memory error */
if (reg & MCU_ESRR_CERR_MASK) {
bank = readl(ctx->mcu_csr + MCUEBLRR0 +
rank * MCU_RANK_STRIDE);
col_row = readl(ctx->mcu_csr + MCUERCRR0 +
rank * MCU_RANK_STRIDE);
count = readl(ctx->mcu_csr + MCUSBECNT0 +
rank * MCU_RANK_STRIDE);
edac_mc_chipset_printk(mci, KERN_WARNING, "X-Gene",
"MCU correctable error at rank %d bank %d column %d row %d count %d\n",
rank, MCU_EBLRR_ERRBANK_RD(bank),
MCU_ERCRR_ERRCOL_RD(col_row),
MCU_ERCRR_ERRROW_RD(col_row),
MCU_SBECNT_COUNT(count));
edac_mc_handle_error(HW_EVENT_ERR_CORRECTED, mci,
1, 0, 0, 0, 0, 0, -1, mci->ctl_name, "");
}
/* Clear all error registers */
writel(0x0, ctx->mcu_csr + MCUEBLRR0 + rank * MCU_RANK_STRIDE);
writel(0x0, ctx->mcu_csr + MCUERCRR0 + rank * MCU_RANK_STRIDE);
writel(0x0, ctx->mcu_csr + MCUSBECNT0 +
rank * MCU_RANK_STRIDE);
writel(reg, ctx->mcu_csr + MCUESRR0 + rank * MCU_RANK_STRIDE);
}
/* Detect memory controller error */
reg = readl(ctx->mcu_csr + MCUGESR);
if (reg) {
if (reg & MCU_GESR_ADDRNOMATCH_ERR_MASK)
edac_mc_chipset_printk(mci, KERN_WARNING, "X-Gene",
"MCU address miss-match error\n");
if (reg & MCU_GESR_ADDRMULTIMATCH_ERR_MASK)
edac_mc_chipset_printk(mci, KERN_WARNING, "X-Gene",
"MCU address multi-match error\n");
writel(reg, ctx->mcu_csr + MCUGESR);
}
}
static void xgene_edac_mc_irq_ctl(struct mem_ctl_info *mci, bool enable)
{
struct xgene_edac_mc_ctx *ctx = mci->pvt_info;
unsigned int val;
if (edac_op_state != EDAC_OPSTATE_INT)
return;
mutex_lock(&ctx->edac->mc_lock);
/*
* As there is only single bit for enable error and interrupt mask,
* we must only enable top level interrupt after all MCUs are
* registered. Otherwise, if there is an error and the corresponding
* MCU has not registered, the interrupt will never get cleared. To
* determine all MCU have registered, we will keep track of active
* MCUs and registered MCUs.
*/
if (enable) {
/* Set registered MCU bit */
ctx->edac->mc_registered_mask |= 1 << ctx->mcu_id;
/* Enable interrupt after all active MCU registered */
if (ctx->edac->mc_registered_mask ==
ctx->edac->mc_active_mask) {
/* Enable memory controller top level interrupt */
xgene_edac_pcp_clrbits(ctx->edac, PCPHPERRINTMSK,
MCU_UNCORR_ERR_MASK |
MCU_CTL_ERR_MASK);
xgene_edac_pcp_clrbits(ctx->edac, PCPLPERRINTMSK,
MCU_CORR_ERR_MASK);
}
/* Enable MCU interrupt and error reporting */
val = readl(ctx->mcu_csr + MCUGECR);
val |= MCU_GECR_DEMANDUCINTREN_MASK |
MCU_GECR_BACKUCINTREN_MASK |
MCU_GECR_CINTREN_MASK |
MUC_GECR_MCUADDRERREN_MASK;
writel(val, ctx->mcu_csr + MCUGECR);
} else {
/* Disable MCU interrupt */
val = readl(ctx->mcu_csr + MCUGECR);
val &= ~(MCU_GECR_DEMANDUCINTREN_MASK |
MCU_GECR_BACKUCINTREN_MASK |
MCU_GECR_CINTREN_MASK |
MUC_GECR_MCUADDRERREN_MASK);
writel(val, ctx->mcu_csr + MCUGECR);
/* Disable memory controller top level interrupt */
xgene_edac_pcp_setbits(ctx->edac, PCPHPERRINTMSK,
MCU_UNCORR_ERR_MASK | MCU_CTL_ERR_MASK);
xgene_edac_pcp_setbits(ctx->edac, PCPLPERRINTMSK,
MCU_CORR_ERR_MASK);
/* Clear registered MCU bit */
ctx->edac->mc_registered_mask &= ~(1 << ctx->mcu_id);
}
mutex_unlock(&ctx->edac->mc_lock);
}
static int xgene_edac_mc_is_active(struct xgene_edac_mc_ctx *ctx, int mc_idx)
{
unsigned int reg;
u32 mcu_mask;
if (regmap_read(ctx->edac->csw_map, CSW_CSWCR, &reg))
return 0;
if (reg & CSW_CSWCR_DUALMCB_MASK) {
/*
* Dual MCB active - Determine if all 4 active or just MCU0
* and MCU2 active
*/
if (regmap_read(ctx->edac->mcbb_map, MCBADDRMR, &reg))
return 0;
mcu_mask = (reg & MCBADDRMR_DUALMCU_MODE_MASK) ? 0xF : 0x5;
} else {
/*
* Single MCB active - Determine if MCU0/MCU1 or just MCU0
* active
*/
if (regmap_read(ctx->edac->mcba_map, MCBADDRMR, &reg))
return 0;
mcu_mask = (reg & MCBADDRMR_DUALMCU_MODE_MASK) ? 0x3 : 0x1;
}
/* Save active MC mask if hasn't set already */
if (!ctx->edac->mc_active_mask)
ctx->edac->mc_active_mask = mcu_mask;
return (mcu_mask & (1 << mc_idx)) ? 1 : 0;
}
static int xgene_edac_mc_add(struct xgene_edac *edac, struct device_node *np)
{
struct mem_ctl_info *mci;
struct edac_mc_layer layers[2];
struct xgene_edac_mc_ctx tmp_ctx;
struct xgene_edac_mc_ctx *ctx;
struct resource res;
int rc;
memset(&tmp_ctx, 0, sizeof(tmp_ctx));
tmp_ctx.edac = edac;
if (!devres_open_group(edac->dev, xgene_edac_mc_add, GFP_KERNEL))
return -ENOMEM;
rc = of_address_to_resource(np, 0, &res);
if (rc < 0) {
dev_err(edac->dev, "no MCU resource address\n");
goto err_group;
}
tmp_ctx.mcu_csr = devm_ioremap_resource(edac->dev, &res);
if (IS_ERR(tmp_ctx.mcu_csr)) {
dev_err(edac->dev, "unable to map MCU resource\n");
rc = PTR_ERR(tmp_ctx.mcu_csr);
goto err_group;
}
/* Ignore non-active MCU */
if (of_property_read_u32(np, "memory-controller", &tmp_ctx.mcu_id)) {
dev_err(edac->dev, "no memory-controller property\n");
rc = -ENODEV;
goto err_group;
}
if (!xgene_edac_mc_is_active(&tmp_ctx, tmp_ctx.mcu_id)) {
rc = -ENODEV;
goto err_group;
}
layers[0].type = EDAC_MC_LAYER_CHIP_SELECT;
layers[0].size = 4;
layers[0].is_virt_csrow = true;
layers[1].type = EDAC_MC_LAYER_CHANNEL;
layers[1].size = 2;
layers[1].is_virt_csrow = false;
mci = edac_mc_alloc(tmp_ctx.mcu_id, ARRAY_SIZE(layers), layers,
sizeof(*ctx));
if (!mci) {
rc = -ENOMEM;
goto err_group;
}
ctx = mci->pvt_info;
*ctx = tmp_ctx; /* Copy over resource value */
ctx->name = "xgene_edac_mc_err";
ctx->mci = mci;
mci->pdev = &mci->dev;
mci->ctl_name = ctx->name;
mci->dev_name = ctx->name;
mci->mtype_cap = MEM_FLAG_RDDR | MEM_FLAG_RDDR2 | MEM_FLAG_RDDR3 |
MEM_FLAG_DDR | MEM_FLAG_DDR2 | MEM_FLAG_DDR3;
mci->edac_ctl_cap = EDAC_FLAG_SECDED;
mci->edac_cap = EDAC_FLAG_SECDED;
mci->mod_name = EDAC_MOD_STR;
mci->mod_ver = "0.1";
mci->ctl_page_to_phys = NULL;
mci->scrub_cap = SCRUB_FLAG_HW_SRC;
mci->scrub_mode = SCRUB_HW_SRC;
if (edac_op_state == EDAC_OPSTATE_POLL)
mci->edac_check = xgene_edac_mc_check;
if (edac_mc_add_mc(mci)) {
dev_err(edac->dev, "edac_mc_add_mc failed\n");
rc = -EINVAL;
goto err_free;
}
xgene_edac_mc_create_debugfs_node(mci);
list_add(&ctx->next, &edac->mcus);
xgene_edac_mc_irq_ctl(mci, true);
devres_remove_group(edac->dev, xgene_edac_mc_add);
dev_info(edac->dev, "X-Gene EDAC MC registered\n");
return 0;
err_free:
edac_mc_free(mci);
err_group:
devres_release_group(edac->dev, xgene_edac_mc_add);
return rc;
}
static int xgene_edac_mc_remove(struct xgene_edac_mc_ctx *mcu)
{
xgene_edac_mc_irq_ctl(mcu->mci, false);
edac_mc_del_mc(&mcu->mci->dev);
edac_mc_free(mcu->mci);
return 0;
}
/* CPU L1/L2 error CSR */
#define MAX_CPU_PER_PMD 2
#define CPU_CSR_STRIDE 0x00100000
#define CPU_L2C_PAGE 0x000D0000
#define CPU_MEMERR_L2C_PAGE 0x000E0000
#define CPU_MEMERR_CPU_PAGE 0x000F0000
#define MEMERR_CPU_ICFECR_PAGE_OFFSET 0x0000
#define MEMERR_CPU_ICFESR_PAGE_OFFSET 0x0004
#define MEMERR_CPU_ICFESR_ERRWAY_RD(src) (((src) & 0xFF000000) >> 24)
#define MEMERR_CPU_ICFESR_ERRINDEX_RD(src) (((src) & 0x003F0000) >> 16)
#define MEMERR_CPU_ICFESR_ERRINFO_RD(src) (((src) & 0x0000FF00) >> 8)
#define MEMERR_CPU_ICFESR_ERRTYPE_RD(src) (((src) & 0x00000070) >> 4)
#define MEMERR_CPU_ICFESR_MULTCERR_MASK BIT(2)
#define MEMERR_CPU_ICFESR_CERR_MASK BIT(0)
#define MEMERR_CPU_LSUESR_PAGE_OFFSET 0x000c
#define MEMERR_CPU_LSUESR_ERRWAY_RD(src) (((src) & 0xFF000000) >> 24)
#define MEMERR_CPU_LSUESR_ERRINDEX_RD(src) (((src) & 0x003F0000) >> 16)
#define MEMERR_CPU_LSUESR_ERRINFO_RD(src) (((src) & 0x0000FF00) >> 8)
#define MEMERR_CPU_LSUESR_ERRTYPE_RD(src) (((src) & 0x00000070) >> 4)
#define MEMERR_CPU_LSUESR_MULTCERR_MASK BIT(2)
#define MEMERR_CPU_LSUESR_CERR_MASK BIT(0)
#define MEMERR_CPU_LSUECR_PAGE_OFFSET 0x0008
#define MEMERR_CPU_MMUECR_PAGE_OFFSET 0x0010
#define MEMERR_CPU_MMUESR_PAGE_OFFSET 0x0014
#define MEMERR_CPU_MMUESR_ERRWAY_RD(src) (((src) & 0xFF000000) >> 24)
#define MEMERR_CPU_MMUESR_ERRINDEX_RD(src) (((src) & 0x007F0000) >> 16)
#define MEMERR_CPU_MMUESR_ERRINFO_RD(src) (((src) & 0x0000FF00) >> 8)
#define MEMERR_CPU_MMUESR_ERRREQSTR_LSU_MASK BIT(7)
#define MEMERR_CPU_MMUESR_ERRTYPE_RD(src) (((src) & 0x00000070) >> 4)
#define MEMERR_CPU_MMUESR_MULTCERR_MASK BIT(2)
#define MEMERR_CPU_MMUESR_CERR_MASK BIT(0)
#define MEMERR_CPU_ICFESRA_PAGE_OFFSET 0x0804
#define MEMERR_CPU_LSUESRA_PAGE_OFFSET 0x080c
#define MEMERR_CPU_MMUESRA_PAGE_OFFSET 0x0814
#define MEMERR_L2C_L2ECR_PAGE_OFFSET 0x0000
#define MEMERR_L2C_L2ESR_PAGE_OFFSET 0x0004
#define MEMERR_L2C_L2ESR_ERRSYN_RD(src) (((src) & 0xFF000000) >> 24)
#define MEMERR_L2C_L2ESR_ERRWAY_RD(src) (((src) & 0x00FC0000) >> 18)
#define MEMERR_L2C_L2ESR_ERRCPU_RD(src) (((src) & 0x00020000) >> 17)
#define MEMERR_L2C_L2ESR_ERRGROUP_RD(src) (((src) & 0x0000E000) >> 13)
#define MEMERR_L2C_L2ESR_ERRACTION_RD(src) (((src) & 0x00001C00) >> 10)
#define MEMERR_L2C_L2ESR_ERRTYPE_RD(src) (((src) & 0x00000300) >> 8)
#define MEMERR_L2C_L2ESR_MULTUCERR_MASK BIT(3)
#define MEMERR_L2C_L2ESR_MULTICERR_MASK BIT(2)
#define MEMERR_L2C_L2ESR_UCERR_MASK BIT(1)
#define MEMERR_L2C_L2ESR_ERR_MASK BIT(0)
#define MEMERR_L2C_L2EALR_PAGE_OFFSET 0x0008
#define CPUX_L2C_L2RTOCR_PAGE_OFFSET 0x0010
#define MEMERR_L2C_L2EAHR_PAGE_OFFSET 0x000c
#define CPUX_L2C_L2RTOSR_PAGE_OFFSET 0x0014
#define MEMERR_L2C_L2RTOSR_MULTERR_MASK BIT(1)
#define MEMERR_L2C_L2RTOSR_ERR_MASK BIT(0)
#define CPUX_L2C_L2RTOALR_PAGE_OFFSET 0x0018
#define CPUX_L2C_L2RTOAHR_PAGE_OFFSET 0x001c
#define MEMERR_L2C_L2ESRA_PAGE_OFFSET 0x0804
/*
* Processor Module Domain (PMD) context - Context for a pair of processsors.
* Each PMD consists of 2 CPUs and a shared L2 cache. Each CPU consists of
* its own L1 cache.
*/
struct xgene_edac_pmd_ctx {
struct list_head next;
struct device ddev;
char *name;
struct xgene_edac *edac;
struct edac_device_ctl_info *edac_dev;
void __iomem *pmd_csr;
u32 pmd;
int version;
};
static void xgene_edac_pmd_l1_check(struct edac_device_ctl_info *edac_dev,
int cpu_idx)
{
struct xgene_edac_pmd_ctx *ctx = edac_dev->pvt_info;
void __iomem *pg_f;
u32 val;
pg_f = ctx->pmd_csr + cpu_idx * CPU_CSR_STRIDE + CPU_MEMERR_CPU_PAGE;
val = readl(pg_f + MEMERR_CPU_ICFESR_PAGE_OFFSET);
if (val) {
dev_err(edac_dev->dev,
"CPU%d L1 memory error ICF 0x%08X Way 0x%02X Index 0x%02X Info 0x%02X\n",
ctx->pmd * MAX_CPU_PER_PMD + cpu_idx, val,
MEMERR_CPU_ICFESR_ERRWAY_RD(val),
MEMERR_CPU_ICFESR_ERRINDEX_RD(val),
MEMERR_CPU_ICFESR_ERRINFO_RD(val));
if (val & MEMERR_CPU_ICFESR_CERR_MASK)
dev_err(edac_dev->dev,
"One or more correctable error\n");
if (val & MEMERR_CPU_ICFESR_MULTCERR_MASK)
dev_err(edac_dev->dev, "Multiple correctable error\n");
switch (MEMERR_CPU_ICFESR_ERRTYPE_RD(val)) {
case 1:
dev_err(edac_dev->dev, "L1 TLB multiple hit\n");
break;
case 2:
dev_err(edac_dev->dev, "Way select multiple hit\n");
break;
case 3:
dev_err(edac_dev->dev, "Physical tag parity error\n");
break;
case 4:
case 5:
dev_err(edac_dev->dev, "L1 data parity error\n");
break;
case 6:
dev_err(edac_dev->dev, "L1 pre-decode parity error\n");
break;
}
/* Clear any HW errors */
writel(val, pg_f + MEMERR_CPU_ICFESR_PAGE_OFFSET);
if (val & (MEMERR_CPU_ICFESR_CERR_MASK |
MEMERR_CPU_ICFESR_MULTCERR_MASK))
edac_device_handle_ce(edac_dev, 0, 0,
edac_dev->ctl_name);
}
val = readl(pg_f + MEMERR_CPU_LSUESR_PAGE_OFFSET);
if (val) {
dev_err(edac_dev->dev,
"CPU%d memory error LSU 0x%08X Way 0x%02X Index 0x%02X Info 0x%02X\n",
ctx->pmd * MAX_CPU_PER_PMD + cpu_idx, val,
MEMERR_CPU_LSUESR_ERRWAY_RD(val),
MEMERR_CPU_LSUESR_ERRINDEX_RD(val),
MEMERR_CPU_LSUESR_ERRINFO_RD(val));
if (val & MEMERR_CPU_LSUESR_CERR_MASK)
dev_err(edac_dev->dev,
"One or more correctable error\n");
if (val & MEMERR_CPU_LSUESR_MULTCERR_MASK)
dev_err(edac_dev->dev, "Multiple correctable error\n");
switch (MEMERR_CPU_LSUESR_ERRTYPE_RD(val)) {
case 0:
dev_err(edac_dev->dev, "Load tag error\n");
break;
case 1:
dev_err(edac_dev->dev, "Load data error\n");
break;
case 2:
dev_err(edac_dev->dev, "WSL multihit error\n");
break;
case 3:
dev_err(edac_dev->dev, "Store tag error\n");
break;
case 4:
dev_err(edac_dev->dev,
"DTB multihit from load pipeline error\n");
break;
case 5:
dev_err(edac_dev->dev,
"DTB multihit from store pipeline error\n");
break;
}
/* Clear any HW errors */
writel(val, pg_f + MEMERR_CPU_LSUESR_PAGE_OFFSET);
if (val & (MEMERR_CPU_LSUESR_CERR_MASK |
MEMERR_CPU_LSUESR_MULTCERR_MASK))
edac_device_handle_ce(edac_dev, 0, 0,
edac_dev->ctl_name);
}
val = readl(pg_f + MEMERR_CPU_MMUESR_PAGE_OFFSET);
if (val) {
dev_err(edac_dev->dev,
"CPU%d memory error MMU 0x%08X Way 0x%02X Index 0x%02X Info 0x%02X %s\n",
ctx->pmd * MAX_CPU_PER_PMD + cpu_idx, val,
MEMERR_CPU_MMUESR_ERRWAY_RD(val),
MEMERR_CPU_MMUESR_ERRINDEX_RD(val),
MEMERR_CPU_MMUESR_ERRINFO_RD(val),
val & MEMERR_CPU_MMUESR_ERRREQSTR_LSU_MASK ? "LSU" :
"ICF");
if (val & MEMERR_CPU_MMUESR_CERR_MASK)
dev_err(edac_dev->dev,
"One or more correctable error\n");
if (val & MEMERR_CPU_MMUESR_MULTCERR_MASK)
dev_err(edac_dev->dev, "Multiple correctable error\n");
switch (MEMERR_CPU_MMUESR_ERRTYPE_RD(val)) {
case 0:
dev_err(edac_dev->dev, "Stage 1 UTB hit error\n");
break;
case 1:
dev_err(edac_dev->dev, "Stage 1 UTB miss error\n");
break;
case 2:
dev_err(edac_dev->dev, "Stage 1 UTB allocate error\n");
break;
case 3:
dev_err(edac_dev->dev,
"TMO operation single bank error\n");
break;
case 4:
dev_err(edac_dev->dev, "Stage 2 UTB error\n");
break;
case 5:
dev_err(edac_dev->dev, "Stage 2 UTB miss error\n");
break;
case 6:
dev_err(edac_dev->dev, "Stage 2 UTB allocate error\n");
break;
case 7:
dev_err(edac_dev->dev,
"TMO operation multiple bank error\n");
break;
}
/* Clear any HW errors */
writel(val, pg_f + MEMERR_CPU_MMUESR_PAGE_OFFSET);
edac_device_handle_ce(edac_dev, 0, 0, edac_dev->ctl_name);
}
}
static void xgene_edac_pmd_l2_check(struct edac_device_ctl_info *edac_dev)
{
struct xgene_edac_pmd_ctx *ctx = edac_dev->pvt_info;
void __iomem *pg_d;
void __iomem *pg_e;
u32 val_hi;
u32 val_lo;
u32 val;
/* Check L2 */
pg_e = ctx->pmd_csr + CPU_MEMERR_L2C_PAGE;
val = readl(pg_e + MEMERR_L2C_L2ESR_PAGE_OFFSET);
if (val) {
val_lo = readl(pg_e + MEMERR_L2C_L2EALR_PAGE_OFFSET);
val_hi = readl(pg_e + MEMERR_L2C_L2EAHR_PAGE_OFFSET);
dev_err(edac_dev->dev,
"PMD%d memory error L2C L2ESR 0x%08X @ 0x%08X.%08X\n",
ctx->pmd, val, val_hi, val_lo);
dev_err(edac_dev->dev,
"ErrSyndrome 0x%02X ErrWay 0x%02X ErrCpu %d ErrGroup 0x%02X ErrAction 0x%02X\n",
MEMERR_L2C_L2ESR_ERRSYN_RD(val),
MEMERR_L2C_L2ESR_ERRWAY_RD(val),
MEMERR_L2C_L2ESR_ERRCPU_RD(val),
MEMERR_L2C_L2ESR_ERRGROUP_RD(val),
MEMERR_L2C_L2ESR_ERRACTION_RD(val));
if (val & MEMERR_L2C_L2ESR_ERR_MASK)
dev_err(edac_dev->dev,
"One or more correctable error\n");
if (val & MEMERR_L2C_L2ESR_MULTICERR_MASK)
dev_err(edac_dev->dev, "Multiple correctable error\n");
if (val & MEMERR_L2C_L2ESR_UCERR_MASK)
dev_err(edac_dev->dev,
"One or more uncorrectable error\n");
if (val & MEMERR_L2C_L2ESR_MULTUCERR_MASK)
dev_err(edac_dev->dev,
"Multiple uncorrectable error\n");
switch (MEMERR_L2C_L2ESR_ERRTYPE_RD(val)) {
case 0:
dev_err(edac_dev->dev, "Outbound SDB parity error\n");
break;
case 1:
dev_err(edac_dev->dev, "Inbound SDB parity error\n");
break;
case 2:
dev_err(edac_dev->dev, "Tag ECC error\n");
break;
case 3:
dev_err(edac_dev->dev, "Data ECC error\n");
break;
}
/* Clear any HW errors */
writel(val, pg_e + MEMERR_L2C_L2ESR_PAGE_OFFSET);
if (val & (MEMERR_L2C_L2ESR_ERR_MASK |
MEMERR_L2C_L2ESR_MULTICERR_MASK))
edac_device_handle_ce(edac_dev, 0, 0,
edac_dev->ctl_name);
if (val & (MEMERR_L2C_L2ESR_UCERR_MASK |
MEMERR_L2C_L2ESR_MULTUCERR_MASK))
edac_device_handle_ue(edac_dev, 0, 0,
edac_dev->ctl_name);
}
/* Check if any memory request timed out on L2 cache */
pg_d = ctx->pmd_csr + CPU_L2C_PAGE;
val = readl(pg_d + CPUX_L2C_L2RTOSR_PAGE_OFFSET);
if (val) {
val_lo = readl(pg_d + CPUX_L2C_L2RTOALR_PAGE_OFFSET);
val_hi = readl(pg_d + CPUX_L2C_L2RTOAHR_PAGE_OFFSET);
dev_err(edac_dev->dev,
"PMD%d L2C error L2C RTOSR 0x%08X @ 0x%08X.%08X\n",
ctx->pmd, val, val_hi, val_lo);
writel(val, pg_d + CPUX_L2C_L2RTOSR_PAGE_OFFSET);
}
}
static void xgene_edac_pmd_check(struct edac_device_ctl_info *edac_dev)
{
struct xgene_edac_pmd_ctx *ctx = edac_dev->pvt_info;
unsigned int pcp_hp_stat;
int i;
xgene_edac_pcp_rd(ctx->edac, PCPHPERRINTSTS, &pcp_hp_stat);
if (!((PMD0_MERR_MASK << ctx->pmd) & pcp_hp_stat))
return;
/* Check CPU L1 error */
for (i = 0; i < MAX_CPU_PER_PMD; i++)
xgene_edac_pmd_l1_check(edac_dev, i);
/* Check CPU L2 error */
xgene_edac_pmd_l2_check(edac_dev);
}
static void xgene_edac_pmd_cpu_hw_cfg(struct edac_device_ctl_info *edac_dev,
int cpu)
{
struct xgene_edac_pmd_ctx *ctx = edac_dev->pvt_info;
void __iomem *pg_f = ctx->pmd_csr + cpu * CPU_CSR_STRIDE +
CPU_MEMERR_CPU_PAGE;
/*
* Enable CPU memory error:
* MEMERR_CPU_ICFESRA, MEMERR_CPU_LSUESRA, and MEMERR_CPU_MMUESRA
*/
writel(0x00000301, pg_f + MEMERR_CPU_ICFECR_PAGE_OFFSET);
writel(0x00000301, pg_f + MEMERR_CPU_LSUECR_PAGE_OFFSET);
writel(0x00000101, pg_f + MEMERR_CPU_MMUECR_PAGE_OFFSET);
}
static void xgene_edac_pmd_hw_cfg(struct edac_device_ctl_info *edac_dev)
{
struct xgene_edac_pmd_ctx *ctx = edac_dev->pvt_info;
void __iomem *pg_d = ctx->pmd_csr + CPU_L2C_PAGE;
void __iomem *pg_e = ctx->pmd_csr + CPU_MEMERR_L2C_PAGE;
/* Enable PMD memory error - MEMERR_L2C_L2ECR and L2C_L2RTOCR */
writel(0x00000703, pg_e + MEMERR_L2C_L2ECR_PAGE_OFFSET);
/* Configure L2C HW request time out feature if supported */
if (ctx->version > 1)
writel(0x00000119, pg_d + CPUX_L2C_L2RTOCR_PAGE_OFFSET);
}
static void xgene_edac_pmd_hw_ctl(struct edac_device_ctl_info *edac_dev,
bool enable)
{
struct xgene_edac_pmd_ctx *ctx = edac_dev->pvt_info;
int i;
/* Enable PMD error interrupt */
if (edac_dev->op_state == OP_RUNNING_INTERRUPT) {
if (enable)
xgene_edac_pcp_clrbits(ctx->edac, PCPHPERRINTMSK,
PMD0_MERR_MASK << ctx->pmd);
else
xgene_edac_pcp_setbits(ctx->edac, PCPHPERRINTMSK,
PMD0_MERR_MASK << ctx->pmd);
}
if (enable) {
xgene_edac_pmd_hw_cfg(edac_dev);
/* Two CPUs per a PMD */
for (i = 0; i < MAX_CPU_PER_PMD; i++)
xgene_edac_pmd_cpu_hw_cfg(edac_dev, i);
}
}
static ssize_t xgene_edac_pmd_l1_inject_ctrl_write(struct file *file,
const char __user *data,
size_t count, loff_t *ppos)
{
struct edac_device_ctl_info *edac_dev = file->private_data;
struct xgene_edac_pmd_ctx *ctx = edac_dev->pvt_info;
void __iomem *cpux_pg_f;
int i;
for (i = 0; i < MAX_CPU_PER_PMD; i++) {
cpux_pg_f = ctx->pmd_csr + i * CPU_CSR_STRIDE +
CPU_MEMERR_CPU_PAGE;
writel(MEMERR_CPU_ICFESR_MULTCERR_MASK |
MEMERR_CPU_ICFESR_CERR_MASK,
cpux_pg_f + MEMERR_CPU_ICFESRA_PAGE_OFFSET);
writel(MEMERR_CPU_LSUESR_MULTCERR_MASK |
MEMERR_CPU_LSUESR_CERR_MASK,
cpux_pg_f + MEMERR_CPU_LSUESRA_PAGE_OFFSET);
writel(MEMERR_CPU_MMUESR_MULTCERR_MASK |
MEMERR_CPU_MMUESR_CERR_MASK,
cpux_pg_f + MEMERR_CPU_MMUESRA_PAGE_OFFSET);
}
return count;
}
static ssize_t xgene_edac_pmd_l2_inject_ctrl_write(struct file *file,
const char __user *data,
size_t count, loff_t *ppos)
{
struct edac_device_ctl_info *edac_dev = file->private_data;
struct xgene_edac_pmd_ctx *ctx = edac_dev->pvt_info;
void __iomem *pg_e = ctx->pmd_csr + CPU_MEMERR_L2C_PAGE;
writel(MEMERR_L2C_L2ESR_MULTUCERR_MASK |
MEMERR_L2C_L2ESR_MULTICERR_MASK |
MEMERR_L2C_L2ESR_UCERR_MASK |
MEMERR_L2C_L2ESR_ERR_MASK,
pg_e + MEMERR_L2C_L2ESRA_PAGE_OFFSET);
return count;
}
static const struct file_operations xgene_edac_pmd_debug_inject_fops[] = {
{
.open = simple_open,
.write = xgene_edac_pmd_l1_inject_ctrl_write,
.llseek = generic_file_llseek, },
{
.open = simple_open,
.write = xgene_edac_pmd_l2_inject_ctrl_write,
.llseek = generic_file_llseek, },
{ }
};
static void xgene_edac_pmd_create_debugfs_nodes(
struct edac_device_ctl_info *edac_dev)
{
struct xgene_edac_pmd_ctx *ctx = edac_dev->pvt_info;
struct dentry *edac_debugfs;
char name[30];
if (!IS_ENABLED(CONFIG_EDAC_DEBUG))
return;
/*
* Todo: Switch to common EDAC debug file system for edac device
* when available.
*/
if (!ctx->edac->dfs) {
ctx->edac->dfs = debugfs_create_dir(edac_dev->dev->kobj.name,
NULL);
if (!ctx->edac->dfs)
return;
}
sprintf(name, "PMD%d", ctx->pmd);
edac_debugfs = debugfs_create_dir(name, ctx->edac->dfs);
if (!edac_debugfs)
return;
debugfs_create_file("l1_inject_ctrl", S_IWUSR, edac_debugfs, edac_dev,
&xgene_edac_pmd_debug_inject_fops[0]);
debugfs_create_file("l2_inject_ctrl", S_IWUSR, edac_debugfs, edac_dev,
&xgene_edac_pmd_debug_inject_fops[1]);
}
static int xgene_edac_pmd_available(u32 efuse, int pmd)
{
return (efuse & (1 << pmd)) ? 0 : 1;
}
static int xgene_edac_pmd_add(struct xgene_edac *edac, struct device_node *np,
int version)
{
struct edac_device_ctl_info *edac_dev;
struct xgene_edac_pmd_ctx *ctx;
struct resource res;
char edac_name[10];
u32 pmd;
int rc;
u32 val;
if (!devres_open_group(edac->dev, xgene_edac_pmd_add, GFP_KERNEL))
return -ENOMEM;
/* Determine if this PMD is disabled */
if (of_property_read_u32(np, "pmd-controller", &pmd)) {
dev_err(edac->dev, "no pmd-controller property\n");
rc = -ENODEV;
goto err_group;
}
rc = regmap_read(edac->efuse_map, 0, &val);
if (rc)
goto err_group;
if (!xgene_edac_pmd_available(val, pmd)) {
rc = -ENODEV;
goto err_group;
}
sprintf(edac_name, "l2c%d", pmd);
edac_dev = edac_device_alloc_ctl_info(sizeof(*ctx),
edac_name, 1, "l2c", 1, 2, NULL,
0, edac_device_alloc_index());
if (!edac_dev) {
rc = -ENOMEM;
goto err_group;
}
ctx = edac_dev->pvt_info;
ctx->name = "xgene_pmd_err";
ctx->pmd = pmd;
ctx->edac = edac;
ctx->edac_dev = edac_dev;
ctx->ddev = *edac->dev;
ctx->version = version;
edac_dev->dev = &ctx->ddev;
edac_dev->ctl_name = ctx->name;
edac_dev->dev_name = ctx->name;
edac_dev->mod_name = EDAC_MOD_STR;
rc = of_address_to_resource(np, 0, &res);
if (rc < 0) {
dev_err(edac->dev, "no PMD resource address\n");
goto err_free;
}
ctx->pmd_csr = devm_ioremap_resource(edac->dev, &res);
if (IS_ERR(ctx->pmd_csr)) {
dev_err(edac->dev,
"devm_ioremap_resource failed for PMD resource address\n");
rc = PTR_ERR(ctx->pmd_csr);
goto err_free;
}
if (edac_op_state == EDAC_OPSTATE_POLL)
edac_dev->edac_check = xgene_edac_pmd_check;
xgene_edac_pmd_create_debugfs_nodes(edac_dev);
rc = edac_device_add_device(edac_dev);
if (rc > 0) {
dev_err(edac->dev, "edac_device_add_device failed\n");
rc = -ENOMEM;
goto err_free;
}
if (edac_op_state == EDAC_OPSTATE_INT)
edac_dev->op_state = OP_RUNNING_INTERRUPT;
list_add(&ctx->next, &edac->pmds);
xgene_edac_pmd_hw_ctl(edac_dev, 1);
devres_remove_group(edac->dev, xgene_edac_pmd_add);
dev_info(edac->dev, "X-Gene EDAC PMD%d registered\n", ctx->pmd);
return 0;
err_free:
edac_device_free_ctl_info(edac_dev);
err_group:
devres_release_group(edac->dev, xgene_edac_pmd_add);
return rc;
}
static int xgene_edac_pmd_remove(struct xgene_edac_pmd_ctx *pmd)
{
struct edac_device_ctl_info *edac_dev = pmd->edac_dev;
xgene_edac_pmd_hw_ctl(edac_dev, 0);
edac_device_del_device(edac_dev->dev);
edac_device_free_ctl_info(edac_dev);
return 0;
}
static irqreturn_t xgene_edac_isr(int irq, void *dev_id)
{
struct xgene_edac *ctx = dev_id;
struct xgene_edac_pmd_ctx *pmd;
unsigned int pcp_hp_stat;
unsigned int pcp_lp_stat;
xgene_edac_pcp_rd(ctx, PCPHPERRINTSTS, &pcp_hp_stat);
xgene_edac_pcp_rd(ctx, PCPLPERRINTSTS, &pcp_lp_stat);
if ((MCU_UNCORR_ERR_MASK & pcp_hp_stat) ||
(MCU_CTL_ERR_MASK & pcp_hp_stat) ||
(MCU_CORR_ERR_MASK & pcp_lp_stat)) {
struct xgene_edac_mc_ctx *mcu;
list_for_each_entry(mcu, &ctx->mcus, next) {
xgene_edac_mc_check(mcu->mci);
}
}
list_for_each_entry(pmd, &ctx->pmds, next) {
if ((PMD0_MERR_MASK << pmd->pmd) & pcp_hp_stat)
xgene_edac_pmd_check(pmd->edac_dev);
}
return IRQ_HANDLED;
}
static int xgene_edac_probe(struct platform_device *pdev)
{
struct xgene_edac *edac;
struct device_node *child;
struct resource *res;
int rc;
edac = devm_kzalloc(&pdev->dev, sizeof(*edac), GFP_KERNEL);
if (!edac)
return -ENOMEM;
edac->dev = &pdev->dev;
platform_set_drvdata(pdev, edac);
INIT_LIST_HEAD(&edac->mcus);
INIT_LIST_HEAD(&edac->pmds);
spin_lock_init(&edac->lock);
mutex_init(&edac->mc_lock);
edac->csw_map = syscon_regmap_lookup_by_phandle(pdev->dev.of_node,
"regmap-csw");
if (IS_ERR(edac->csw_map)) {
dev_err(edac->dev, "unable to get syscon regmap csw\n");
rc = PTR_ERR(edac->csw_map);
goto out_err;
}
edac->mcba_map = syscon_regmap_lookup_by_phandle(pdev->dev.of_node,
"regmap-mcba");
if (IS_ERR(edac->mcba_map)) {
dev_err(edac->dev, "unable to get syscon regmap mcba\n");
rc = PTR_ERR(edac->mcba_map);
goto out_err;
}
edac->mcbb_map = syscon_regmap_lookup_by_phandle(pdev->dev.of_node,
"regmap-mcbb");
if (IS_ERR(edac->mcbb_map)) {
dev_err(edac->dev, "unable to get syscon regmap mcbb\n");
rc = PTR_ERR(edac->mcbb_map);
goto out_err;
}
edac->efuse_map = syscon_regmap_lookup_by_phandle(pdev->dev.of_node,
"regmap-efuse");
if (IS_ERR(edac->efuse_map)) {
dev_err(edac->dev, "unable to get syscon regmap efuse\n");
rc = PTR_ERR(edac->efuse_map);
goto out_err;
}
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
edac->pcp_csr = devm_ioremap_resource(&pdev->dev, res);
if (IS_ERR(edac->pcp_csr)) {
dev_err(&pdev->dev, "no PCP resource address\n");
rc = PTR_ERR(edac->pcp_csr);
goto out_err;
}
if (edac_op_state == EDAC_OPSTATE_INT) {
int irq;
int i;
for (i = 0; i < 3; i++) {
irq = platform_get_irq(pdev, i);
if (irq < 0) {
dev_err(&pdev->dev, "No IRQ resource\n");
rc = -EINVAL;
goto out_err;
}
rc = devm_request_irq(&pdev->dev, irq,
xgene_edac_isr, IRQF_SHARED,
dev_name(&pdev->dev), edac);
if (rc) {
dev_err(&pdev->dev,
"Could not request IRQ %d\n", irq);
goto out_err;
}
}
}
for_each_child_of_node(pdev->dev.of_node, child) {
if (!of_device_is_available(child))
continue;
if (of_device_is_compatible(child, "apm,xgene-edac-mc"))
xgene_edac_mc_add(edac, child);
if (of_device_is_compatible(child, "apm,xgene-edac-pmd"))
xgene_edac_pmd_add(edac, child, 1);
if (of_device_is_compatible(child, "apm,xgene-edac-pmd-v2"))
xgene_edac_pmd_add(edac, child, 2);
}
return 0;
out_err:
return rc;
}
static int xgene_edac_remove(struct platform_device *pdev)
{
struct xgene_edac *edac = dev_get_drvdata(&pdev->dev);
struct xgene_edac_mc_ctx *mcu;
struct xgene_edac_mc_ctx *temp_mcu;
struct xgene_edac_pmd_ctx *pmd;
struct xgene_edac_pmd_ctx *temp_pmd;
list_for_each_entry_safe(mcu, temp_mcu, &edac->mcus, next) {
xgene_edac_mc_remove(mcu);
}
list_for_each_entry_safe(pmd, temp_pmd, &edac->pmds, next) {
xgene_edac_pmd_remove(pmd);
}
return 0;
}
static const struct of_device_id xgene_edac_of_match[] = {
{ .compatible = "apm,xgene-edac" },
{},
};
MODULE_DEVICE_TABLE(of, xgene_edac_of_match);
static struct platform_driver xgene_edac_driver = {
.probe = xgene_edac_probe,
.remove = xgene_edac_remove,
.driver = {
.name = "xgene-edac",
.owner = THIS_MODULE,
.of_match_table = xgene_edac_of_match,
},
};
static int __init xgene_edac_init(void)
{
int rc;
/* Make sure error reporting method is sane */
switch (edac_op_state) {
case EDAC_OPSTATE_POLL:
case EDAC_OPSTATE_INT:
break;
default:
edac_op_state = EDAC_OPSTATE_INT;
break;
}
rc = platform_driver_register(&xgene_edac_driver);
if (rc) {
edac_printk(KERN_ERR, EDAC_MOD_STR,
"EDAC fails to register\n");
goto reg_failed;
}
return 0;
reg_failed:
return rc;
}
module_init(xgene_edac_init);
static void __exit xgene_edac_exit(void)
{
platform_driver_unregister(&xgene_edac_driver);
}
module_exit(xgene_edac_exit);
MODULE_LICENSE("GPL");
MODULE_AUTHOR("Feng Kan <fkan@apm.com>");
MODULE_DESCRIPTION("APM X-Gene EDAC driver");
module_param(edac_op_state, int, 0444);
MODULE_PARM_DESC(edac_op_state,
"EDAC error reporting state: 0=Poll, 2=Interrupt");
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment