Commit 48b4800a authored by Minchan Kim's avatar Minchan Kim Committed by Linus Torvalds

zsmalloc: page migration support

This patch introduces run-time migration feature for zspage.

For migration, VM uses page.lru field so it would be better to not use
page.next field which is unified with page.lru for own purpose.  For
that, firstly, we can get first object offset of the page via runtime
calculation instead of using page.index so we can use page.index as link
for page chaining instead of page.next.

In case of huge object, it stores handle to page.index instead of next
link of page chaining because huge object doesn't need to next link for
page chaining.  So get_next_page need to identify huge object to return
NULL.  For it, this patch uses PG_owner_priv_1 flag of the page flag.

For migration, it supports three functions

* zs_page_isolate

It isolates a zspage which includes a subpage VM want to migrate from
class so anyone cannot allocate new object from the zspage.

We could try to isolate a zspage by the number of subpage so subsequent
isolation trial of other subpage of the zpsage shouldn't fail.  For
that, we introduce zspage.isolated count.  With that, zs_page_isolate
can know whether zspage is already isolated or not for migration so if
it is isolated for migration, subsequent isolation trial can be
successful without trying further isolation.

* zs_page_migrate

First of all, it holds write-side zspage->lock to prevent migrate other
subpage in zspage.  Then, lock all objects in the page VM want to
migrate.  The reason we should lock all objects in the page is due to
race between zs_map_object and zs_page_migrate.

  zs_map_object				zs_page_migrate

  pin_tag(handle)
  obj = handle_to_obj(handle)
  obj_to_location(obj, &page, &obj_idx);

					write_lock(&zspage->lock)
					if (!trypin_tag(handle))
						goto unpin_object

  zspage = get_zspage(page);
  read_lock(&zspage->lock);

If zs_page_migrate doesn't do trypin_tag, zs_map_object's page can be
stale by migration so it goes crash.

If it locks all of objects successfully, it copies content from old page
to new one, finally, create new zspage chain with new page.  And if it's
last isolated subpage in the zspage, put the zspage back to class.

* zs_page_putback

It returns isolated zspage to right fullness_group list if it fails to
migrate a page.  If it find a zspage is ZS_EMPTY, it queues zspage
freeing to workqueue.  See below about async zspage freeing.

This patch introduces asynchronous zspage free.  The reason to need it
is we need page_lock to clear PG_movable but unfortunately, zs_free path
should be atomic so the apporach is try to grab page_lock.  If it got
page_lock of all of pages successfully, it can free zspage immediately.
Otherwise, it queues free request and free zspage via workqueue in
process context.

If zs_free finds the zspage is isolated when it try to free zspage, it
delays the freeing until zs_page_putback finds it so it will free free
the zspage finally.

In this patch, we expand fullness_list from ZS_EMPTY to ZS_FULL.  First
of all, it will use ZS_EMPTY list for delay freeing.  And with adding
ZS_FULL list, it makes to identify whether zspage is isolated or not via
list_empty(&zspage->list) test.

[minchan@kernel.org: zsmalloc: keep first object offset in struct page]
  Link: http://lkml.kernel.org/r/1465788015-23195-1-git-send-email-minchan@kernel.org
[minchan@kernel.org: zsmalloc: zspage sanity check]
  Link: http://lkml.kernel.org/r/20160603010129.GC3304@bbox
Link: http://lkml.kernel.org/r/1464736881-24886-12-git-send-email-minchan@kernel.orgSigned-off-by: default avatarMinchan Kim <minchan@kernel.org>
Cc: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: default avatarAndrew Morton <akpm@linux-foundation.org>
Signed-off-by: default avatarLinus Torvalds <torvalds@linux-foundation.org>
parent bfd093f5
...@@ -81,5 +81,6 @@ ...@@ -81,5 +81,6 @@
/* Since UDF 2.01 is ISO 13346 based... */ /* Since UDF 2.01 is ISO 13346 based... */
#define UDF_SUPER_MAGIC 0x15013346 #define UDF_SUPER_MAGIC 0x15013346
#define BALLOON_KVM_MAGIC 0x13661366 #define BALLOON_KVM_MAGIC 0x13661366
#define ZSMALLOC_MAGIC 0x58295829
#endif /* __LINUX_MAGIC_H__ */ #endif /* __LINUX_MAGIC_H__ */
...@@ -17,14 +17,14 @@ ...@@ -17,14 +17,14 @@
* *
* Usage of struct page fields: * Usage of struct page fields:
* page->private: points to zspage * page->private: points to zspage
* page->index: offset of the first object starting in this page. * page->freelist(index): links together all component pages of a zspage
* For the first page, this is always 0, so we use this field * For the huge page, this is always 0, so we use this field
* to store handle for huge object. * to store handle.
* page->next: links together all component pages of a zspage
* *
* Usage of struct page flags: * Usage of struct page flags:
* PG_private: identifies the first component page * PG_private: identifies the first component page
* PG_private2: identifies the last component page * PG_private2: identifies the last component page
* PG_owner_priv_1: indentifies the huge component page
* *
*/ */
...@@ -49,6 +49,11 @@ ...@@ -49,6 +49,11 @@
#include <linux/debugfs.h> #include <linux/debugfs.h>
#include <linux/zsmalloc.h> #include <linux/zsmalloc.h>
#include <linux/zpool.h> #include <linux/zpool.h>
#include <linux/mount.h>
#include <linux/compaction.h>
#include <linux/pagemap.h>
#define ZSPAGE_MAGIC 0x58
/* /*
* This must be power of 2 and greater than of equal to sizeof(link_free). * This must be power of 2 and greater than of equal to sizeof(link_free).
...@@ -136,25 +141,23 @@ ...@@ -136,25 +141,23 @@
* We do not maintain any list for completely empty or full pages * We do not maintain any list for completely empty or full pages
*/ */
enum fullness_group { enum fullness_group {
ZS_ALMOST_FULL,
ZS_ALMOST_EMPTY,
ZS_EMPTY, ZS_EMPTY,
ZS_FULL ZS_ALMOST_EMPTY,
ZS_ALMOST_FULL,
ZS_FULL,
NR_ZS_FULLNESS,
}; };
enum zs_stat_type { enum zs_stat_type {
CLASS_EMPTY,
CLASS_ALMOST_EMPTY,
CLASS_ALMOST_FULL,
CLASS_FULL,
OBJ_ALLOCATED, OBJ_ALLOCATED,
OBJ_USED, OBJ_USED,
CLASS_ALMOST_FULL, NR_ZS_STAT_TYPE,
CLASS_ALMOST_EMPTY,
}; };
#ifdef CONFIG_ZSMALLOC_STAT
#define NR_ZS_STAT_TYPE (CLASS_ALMOST_EMPTY + 1)
#else
#define NR_ZS_STAT_TYPE (OBJ_USED + 1)
#endif
struct zs_size_stat { struct zs_size_stat {
unsigned long objs[NR_ZS_STAT_TYPE]; unsigned long objs[NR_ZS_STAT_TYPE];
}; };
...@@ -163,6 +166,10 @@ struct zs_size_stat { ...@@ -163,6 +166,10 @@ struct zs_size_stat {
static struct dentry *zs_stat_root; static struct dentry *zs_stat_root;
#endif #endif
#ifdef CONFIG_COMPACTION
static struct vfsmount *zsmalloc_mnt;
#endif
/* /*
* number of size_classes * number of size_classes
*/ */
...@@ -186,23 +193,36 @@ static const int fullness_threshold_frac = 4; ...@@ -186,23 +193,36 @@ static const int fullness_threshold_frac = 4;
struct size_class { struct size_class {
spinlock_t lock; spinlock_t lock;
struct list_head fullness_list[2]; struct list_head fullness_list[NR_ZS_FULLNESS];
/* /*
* Size of objects stored in this class. Must be multiple * Size of objects stored in this class. Must be multiple
* of ZS_ALIGN. * of ZS_ALIGN.
*/ */
int size; int size;
int objs_per_zspage; int objs_per_zspage;
unsigned int index;
struct zs_size_stat stats;
/* Number of PAGE_SIZE sized pages to combine to form a 'zspage' */ /* Number of PAGE_SIZE sized pages to combine to form a 'zspage' */
int pages_per_zspage; int pages_per_zspage;
/* huge object: pages_per_zspage == 1 && maxobj_per_zspage == 1 */
bool huge; unsigned int index;
struct zs_size_stat stats;
}; };
/* huge object: pages_per_zspage == 1 && maxobj_per_zspage == 1 */
static void SetPageHugeObject(struct page *page)
{
SetPageOwnerPriv1(page);
}
static void ClearPageHugeObject(struct page *page)
{
ClearPageOwnerPriv1(page);
}
static int PageHugeObject(struct page *page)
{
return PageOwnerPriv1(page);
}
/* /*
* Placed within free objects to form a singly linked list. * Placed within free objects to form a singly linked list.
* For every zspage, zspage->freeobj gives head of this list. * For every zspage, zspage->freeobj gives head of this list.
...@@ -244,6 +264,10 @@ struct zs_pool { ...@@ -244,6 +264,10 @@ struct zs_pool {
#ifdef CONFIG_ZSMALLOC_STAT #ifdef CONFIG_ZSMALLOC_STAT
struct dentry *stat_dentry; struct dentry *stat_dentry;
#endif #endif
#ifdef CONFIG_COMPACTION
struct inode *inode;
struct work_struct free_work;
#endif
}; };
/* /*
...@@ -252,16 +276,23 @@ struct zs_pool { ...@@ -252,16 +276,23 @@ struct zs_pool {
*/ */
#define FULLNESS_BITS 2 #define FULLNESS_BITS 2
#define CLASS_BITS 8 #define CLASS_BITS 8
#define ISOLATED_BITS 3
#define MAGIC_VAL_BITS 8
struct zspage { struct zspage {
struct { struct {
unsigned int fullness:FULLNESS_BITS; unsigned int fullness:FULLNESS_BITS;
unsigned int class:CLASS_BITS; unsigned int class:CLASS_BITS;
unsigned int isolated:ISOLATED_BITS;
unsigned int magic:MAGIC_VAL_BITS;
}; };
unsigned int inuse; unsigned int inuse;
unsigned int freeobj; unsigned int freeobj;
struct page *first_page; struct page *first_page;
struct list_head list; /* fullness list */ struct list_head list; /* fullness list */
#ifdef CONFIG_COMPACTION
rwlock_t lock;
#endif
}; };
struct mapping_area { struct mapping_area {
...@@ -274,6 +305,28 @@ struct mapping_area { ...@@ -274,6 +305,28 @@ struct mapping_area {
enum zs_mapmode vm_mm; /* mapping mode */ enum zs_mapmode vm_mm; /* mapping mode */
}; };
#ifdef CONFIG_COMPACTION
static int zs_register_migration(struct zs_pool *pool);
static void zs_unregister_migration(struct zs_pool *pool);
static void migrate_lock_init(struct zspage *zspage);
static void migrate_read_lock(struct zspage *zspage);
static void migrate_read_unlock(struct zspage *zspage);
static void kick_deferred_free(struct zs_pool *pool);
static void init_deferred_free(struct zs_pool *pool);
static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage);
#else
static int zsmalloc_mount(void) { return 0; }
static void zsmalloc_unmount(void) {}
static int zs_register_migration(struct zs_pool *pool) { return 0; }
static void zs_unregister_migration(struct zs_pool *pool) {}
static void migrate_lock_init(struct zspage *zspage) {}
static void migrate_read_lock(struct zspage *zspage) {}
static void migrate_read_unlock(struct zspage *zspage) {}
static void kick_deferred_free(struct zs_pool *pool) {}
static void init_deferred_free(struct zs_pool *pool) {}
static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage) {}
#endif
static int create_cache(struct zs_pool *pool) static int create_cache(struct zs_pool *pool)
{ {
pool->handle_cachep = kmem_cache_create("zs_handle", ZS_HANDLE_SIZE, pool->handle_cachep = kmem_cache_create("zs_handle", ZS_HANDLE_SIZE,
...@@ -301,7 +354,7 @@ static void destroy_cache(struct zs_pool *pool) ...@@ -301,7 +354,7 @@ static void destroy_cache(struct zs_pool *pool)
static unsigned long cache_alloc_handle(struct zs_pool *pool, gfp_t gfp) static unsigned long cache_alloc_handle(struct zs_pool *pool, gfp_t gfp)
{ {
return (unsigned long)kmem_cache_alloc(pool->handle_cachep, return (unsigned long)kmem_cache_alloc(pool->handle_cachep,
gfp & ~__GFP_HIGHMEM); gfp & ~(__GFP_HIGHMEM|__GFP_MOVABLE));
} }
static void cache_free_handle(struct zs_pool *pool, unsigned long handle) static void cache_free_handle(struct zs_pool *pool, unsigned long handle)
...@@ -311,7 +364,8 @@ static void cache_free_handle(struct zs_pool *pool, unsigned long handle) ...@@ -311,7 +364,8 @@ static void cache_free_handle(struct zs_pool *pool, unsigned long handle)
static struct zspage *cache_alloc_zspage(struct zs_pool *pool, gfp_t flags) static struct zspage *cache_alloc_zspage(struct zs_pool *pool, gfp_t flags)
{ {
return kmem_cache_alloc(pool->zspage_cachep, flags & ~__GFP_HIGHMEM); return kmem_cache_alloc(pool->zspage_cachep,
flags & ~(__GFP_HIGHMEM|__GFP_MOVABLE));
}; };
static void cache_free_zspage(struct zs_pool *pool, struct zspage *zspage) static void cache_free_zspage(struct zs_pool *pool, struct zspage *zspage)
...@@ -421,11 +475,17 @@ static unsigned int get_maxobj_per_zspage(int size, int pages_per_zspage) ...@@ -421,11 +475,17 @@ static unsigned int get_maxobj_per_zspage(int size, int pages_per_zspage)
/* per-cpu VM mapping areas for zspage accesses that cross page boundaries */ /* per-cpu VM mapping areas for zspage accesses that cross page boundaries */
static DEFINE_PER_CPU(struct mapping_area, zs_map_area); static DEFINE_PER_CPU(struct mapping_area, zs_map_area);
static bool is_zspage_isolated(struct zspage *zspage)
{
return zspage->isolated;
}
static int is_first_page(struct page *page) static int is_first_page(struct page *page)
{ {
return PagePrivate(page); return PagePrivate(page);
} }
/* Protected by class->lock */
static inline int get_zspage_inuse(struct zspage *zspage) static inline int get_zspage_inuse(struct zspage *zspage)
{ {
return zspage->inuse; return zspage->inuse;
...@@ -441,20 +501,22 @@ static inline void mod_zspage_inuse(struct zspage *zspage, int val) ...@@ -441,20 +501,22 @@ static inline void mod_zspage_inuse(struct zspage *zspage, int val)
zspage->inuse += val; zspage->inuse += val;
} }
static inline int get_first_obj_offset(struct page *page) static inline struct page *get_first_page(struct zspage *zspage)
{ {
if (is_first_page(page)) struct page *first_page = zspage->first_page;
return 0;
return page->index; VM_BUG_ON_PAGE(!is_first_page(first_page), first_page);
return first_page;
} }
static inline void set_first_obj_offset(struct page *page, int offset) static inline int get_first_obj_offset(struct page *page)
{ {
if (is_first_page(page)) return page->units;
return; }
page->index = offset; static inline void set_first_obj_offset(struct page *page, int offset)
{
page->units = offset;
} }
static inline unsigned int get_freeobj(struct zspage *zspage) static inline unsigned int get_freeobj(struct zspage *zspage)
...@@ -471,6 +533,8 @@ static void get_zspage_mapping(struct zspage *zspage, ...@@ -471,6 +533,8 @@ static void get_zspage_mapping(struct zspage *zspage,
unsigned int *class_idx, unsigned int *class_idx,
enum fullness_group *fullness) enum fullness_group *fullness)
{ {
BUG_ON(zspage->magic != ZSPAGE_MAGIC);
*fullness = zspage->fullness; *fullness = zspage->fullness;
*class_idx = zspage->class; *class_idx = zspage->class;
} }
...@@ -504,23 +568,19 @@ static int get_size_class_index(int size) ...@@ -504,23 +568,19 @@ static int get_size_class_index(int size)
static inline void zs_stat_inc(struct size_class *class, static inline void zs_stat_inc(struct size_class *class,
enum zs_stat_type type, unsigned long cnt) enum zs_stat_type type, unsigned long cnt)
{ {
if (type < NR_ZS_STAT_TYPE)
class->stats.objs[type] += cnt; class->stats.objs[type] += cnt;
} }
static inline void zs_stat_dec(struct size_class *class, static inline void zs_stat_dec(struct size_class *class,
enum zs_stat_type type, unsigned long cnt) enum zs_stat_type type, unsigned long cnt)
{ {
if (type < NR_ZS_STAT_TYPE)
class->stats.objs[type] -= cnt; class->stats.objs[type] -= cnt;
} }
static inline unsigned long zs_stat_get(struct size_class *class, static inline unsigned long zs_stat_get(struct size_class *class,
enum zs_stat_type type) enum zs_stat_type type)
{ {
if (type < NR_ZS_STAT_TYPE)
return class->stats.objs[type]; return class->stats.objs[type];
return 0;
} }
#ifdef CONFIG_ZSMALLOC_STAT #ifdef CONFIG_ZSMALLOC_STAT
...@@ -664,6 +724,7 @@ static inline void zs_pool_stat_destroy(struct zs_pool *pool) ...@@ -664,6 +724,7 @@ static inline void zs_pool_stat_destroy(struct zs_pool *pool)
} }
#endif #endif
/* /*
* For each size class, zspages are divided into different groups * For each size class, zspages are divided into different groups
* depending on how "full" they are. This was done so that we could * depending on how "full" they are. This was done so that we could
...@@ -704,15 +765,9 @@ static void insert_zspage(struct size_class *class, ...@@ -704,15 +765,9 @@ static void insert_zspage(struct size_class *class,
{ {
struct zspage *head; struct zspage *head;
if (fullness >= ZS_EMPTY) zs_stat_inc(class, fullness, 1);
return;
head = list_first_entry_or_null(&class->fullness_list[fullness], head = list_first_entry_or_null(&class->fullness_list[fullness],
struct zspage, list); struct zspage, list);
zs_stat_inc(class, fullness == ZS_ALMOST_EMPTY ?
CLASS_ALMOST_EMPTY : CLASS_ALMOST_FULL, 1);
/* /*
* We want to see more ZS_FULL pages and less almost empty/full. * We want to see more ZS_FULL pages and less almost empty/full.
* Put pages with higher ->inuse first. * Put pages with higher ->inuse first.
...@@ -734,14 +789,11 @@ static void remove_zspage(struct size_class *class, ...@@ -734,14 +789,11 @@ static void remove_zspage(struct size_class *class,
struct zspage *zspage, struct zspage *zspage,
enum fullness_group fullness) enum fullness_group fullness)
{ {
if (fullness >= ZS_EMPTY)
return;
VM_BUG_ON(list_empty(&class->fullness_list[fullness])); VM_BUG_ON(list_empty(&class->fullness_list[fullness]));
VM_BUG_ON(is_zspage_isolated(zspage));
list_del_init(&zspage->list); list_del_init(&zspage->list);
zs_stat_dec(class, fullness == ZS_ALMOST_EMPTY ? zs_stat_dec(class, fullness, 1);
CLASS_ALMOST_EMPTY : CLASS_ALMOST_FULL, 1);
} }
/* /*
...@@ -764,8 +816,11 @@ static enum fullness_group fix_fullness_group(struct size_class *class, ...@@ -764,8 +816,11 @@ static enum fullness_group fix_fullness_group(struct size_class *class,
if (newfg == currfg) if (newfg == currfg)
goto out; goto out;
if (!is_zspage_isolated(zspage)) {
remove_zspage(class, zspage, currfg); remove_zspage(class, zspage, currfg);
insert_zspage(class, zspage, newfg); insert_zspage(class, zspage, newfg);
}
set_zspage_mapping(zspage, class_idx, newfg); set_zspage_mapping(zspage, class_idx, newfg);
out: out:
...@@ -808,19 +863,20 @@ static int get_pages_per_zspage(int class_size) ...@@ -808,19 +863,20 @@ static int get_pages_per_zspage(int class_size)
return max_usedpc_order; return max_usedpc_order;
} }
static struct page *get_first_page(struct zspage *zspage)
{
return zspage->first_page;
}
static struct zspage *get_zspage(struct page *page) static struct zspage *get_zspage(struct page *page)
{ {
return (struct zspage *)page->private; struct zspage *zspage = (struct zspage *)page->private;
BUG_ON(zspage->magic != ZSPAGE_MAGIC);
return zspage;
} }
static struct page *get_next_page(struct page *page) static struct page *get_next_page(struct page *page)
{ {
return page->next; if (unlikely(PageHugeObject(page)))
return NULL;
return page->freelist;
} }
/** /**
...@@ -857,16 +913,20 @@ static unsigned long handle_to_obj(unsigned long handle) ...@@ -857,16 +913,20 @@ static unsigned long handle_to_obj(unsigned long handle)
return *(unsigned long *)handle; return *(unsigned long *)handle;
} }
static unsigned long obj_to_head(struct size_class *class, struct page *page, static unsigned long obj_to_head(struct page *page, void *obj)
void *obj)
{ {
if (class->huge) { if (unlikely(PageHugeObject(page))) {
VM_BUG_ON_PAGE(!is_first_page(page), page); VM_BUG_ON_PAGE(!is_first_page(page), page);
return page->index; return page->index;
} else } else
return *(unsigned long *)obj; return *(unsigned long *)obj;
} }
static inline int testpin_tag(unsigned long handle)
{
return bit_spin_is_locked(HANDLE_PIN_BIT, (unsigned long *)handle);
}
static inline int trypin_tag(unsigned long handle) static inline int trypin_tag(unsigned long handle)
{ {
return bit_spin_trylock(HANDLE_PIN_BIT, (unsigned long *)handle); return bit_spin_trylock(HANDLE_PIN_BIT, (unsigned long *)handle);
...@@ -884,27 +944,94 @@ static void unpin_tag(unsigned long handle) ...@@ -884,27 +944,94 @@ static void unpin_tag(unsigned long handle)
static void reset_page(struct page *page) static void reset_page(struct page *page)
{ {
__ClearPageMovable(page);
clear_bit(PG_private, &page->flags); clear_bit(PG_private, &page->flags);
clear_bit(PG_private_2, &page->flags); clear_bit(PG_private_2, &page->flags);
set_page_private(page, 0); set_page_private(page, 0);
page->index = 0; page_mapcount_reset(page);
ClearPageHugeObject(page);
page->freelist = NULL;
}
/*
* To prevent zspage destroy during migration, zspage freeing should
* hold locks of all pages in the zspage.
*/
void lock_zspage(struct zspage *zspage)
{
struct page *page = get_first_page(zspage);
do {
lock_page(page);
} while ((page = get_next_page(page)) != NULL);
}
int trylock_zspage(struct zspage *zspage)
{
struct page *cursor, *fail;
for (cursor = get_first_page(zspage); cursor != NULL; cursor =
get_next_page(cursor)) {
if (!trylock_page(cursor)) {
fail = cursor;
goto unlock;
}
}
return 1;
unlock:
for (cursor = get_first_page(zspage); cursor != fail; cursor =
get_next_page(cursor))
unlock_page(cursor);
return 0;
} }
static void free_zspage(struct zs_pool *pool, struct zspage *zspage) static void __free_zspage(struct zs_pool *pool, struct size_class *class,
struct zspage *zspage)
{ {
struct page *page, *next; struct page *page, *next;
enum fullness_group fg;
unsigned int class_idx;
get_zspage_mapping(zspage, &class_idx, &fg);
assert_spin_locked(&class->lock);
VM_BUG_ON(get_zspage_inuse(zspage)); VM_BUG_ON(get_zspage_inuse(zspage));
VM_BUG_ON(fg != ZS_EMPTY);
next = page = zspage->first_page; next = page = get_first_page(zspage);
do { do {
next = page->next; VM_BUG_ON_PAGE(!PageLocked(page), page);
next = get_next_page(page);
reset_page(page); reset_page(page);
unlock_page(page);
put_page(page); put_page(page);
page = next; page = next;
} while (page != NULL); } while (page != NULL);
cache_free_zspage(pool, zspage); cache_free_zspage(pool, zspage);
zs_stat_dec(class, OBJ_ALLOCATED, get_maxobj_per_zspage(
class->size, class->pages_per_zspage));
atomic_long_sub(class->pages_per_zspage,
&pool->pages_allocated);
}
static void free_zspage(struct zs_pool *pool, struct size_class *class,
struct zspage *zspage)
{
VM_BUG_ON(get_zspage_inuse(zspage));
VM_BUG_ON(list_empty(&zspage->list));
if (!trylock_zspage(zspage)) {
kick_deferred_free(pool);
return;
}
remove_zspage(class, zspage, ZS_EMPTY);
__free_zspage(pool, class, zspage);
} }
/* Initialize a newly allocated zspage */ /* Initialize a newly allocated zspage */
...@@ -912,7 +1039,7 @@ static void init_zspage(struct size_class *class, struct zspage *zspage) ...@@ -912,7 +1039,7 @@ static void init_zspage(struct size_class *class, struct zspage *zspage)
{ {
unsigned int freeobj = 1; unsigned int freeobj = 1;
unsigned long off = 0; unsigned long off = 0;
struct page *page = zspage->first_page; struct page *page = get_first_page(zspage);
while (page) { while (page) {
struct page *next_page; struct page *next_page;
...@@ -952,16 +1079,17 @@ static void init_zspage(struct size_class *class, struct zspage *zspage) ...@@ -952,16 +1079,17 @@ static void init_zspage(struct size_class *class, struct zspage *zspage)
set_freeobj(zspage, 0); set_freeobj(zspage, 0);
} }
static void create_page_chain(struct zspage *zspage, struct page *pages[], static void create_page_chain(struct size_class *class, struct zspage *zspage,
int nr_pages) struct page *pages[])
{ {
int i; int i;
struct page *page; struct page *page;
struct page *prev_page = NULL; struct page *prev_page = NULL;
int nr_pages = class->pages_per_zspage;
/* /*
* Allocate individual pages and link them together as: * Allocate individual pages and link them together as:
* 1. all pages are linked together using page->next * 1. all pages are linked together using page->freelist
* 2. each sub-page point to zspage using page->private * 2. each sub-page point to zspage using page->private
* *
* we set PG_private to identify the first page (i.e. no other sub-page * we set PG_private to identify the first page (i.e. no other sub-page
...@@ -970,16 +1098,18 @@ static void create_page_chain(struct zspage *zspage, struct page *pages[], ...@@ -970,16 +1098,18 @@ static void create_page_chain(struct zspage *zspage, struct page *pages[],
for (i = 0; i < nr_pages; i++) { for (i = 0; i < nr_pages; i++) {
page = pages[i]; page = pages[i];
set_page_private(page, (unsigned long)zspage); set_page_private(page, (unsigned long)zspage);
page->freelist = NULL;
if (i == 0) { if (i == 0) {
zspage->first_page = page; zspage->first_page = page;
SetPagePrivate(page); SetPagePrivate(page);
if (unlikely(class->objs_per_zspage == 1 &&
class->pages_per_zspage == 1))
SetPageHugeObject(page);
} else { } else {
prev_page->next = page; prev_page->freelist = page;
} }
if (i == nr_pages - 1) { if (i == nr_pages - 1)
SetPagePrivate2(page); SetPagePrivate2(page);
page->next = NULL;
}
prev_page = page; prev_page = page;
} }
} }
...@@ -999,6 +1129,8 @@ static struct zspage *alloc_zspage(struct zs_pool *pool, ...@@ -999,6 +1129,8 @@ static struct zspage *alloc_zspage(struct zs_pool *pool,
return NULL; return NULL;
memset(zspage, 0, sizeof(struct zspage)); memset(zspage, 0, sizeof(struct zspage));
zspage->magic = ZSPAGE_MAGIC;
migrate_lock_init(zspage);
for (i = 0; i < class->pages_per_zspage; i++) { for (i = 0; i < class->pages_per_zspage; i++) {
struct page *page; struct page *page;
...@@ -1013,7 +1145,7 @@ static struct zspage *alloc_zspage(struct zs_pool *pool, ...@@ -1013,7 +1145,7 @@ static struct zspage *alloc_zspage(struct zs_pool *pool,
pages[i] = page; pages[i] = page;
} }
create_page_chain(zspage, pages, class->pages_per_zspage); create_page_chain(class, zspage, pages);
init_zspage(class, zspage); init_zspage(class, zspage);
return zspage; return zspage;
...@@ -1024,7 +1156,7 @@ static struct zspage *find_get_zspage(struct size_class *class) ...@@ -1024,7 +1156,7 @@ static struct zspage *find_get_zspage(struct size_class *class)
int i; int i;
struct zspage *zspage; struct zspage *zspage;
for (i = ZS_ALMOST_FULL; i <= ZS_ALMOST_EMPTY; i++) { for (i = ZS_ALMOST_FULL; i >= ZS_EMPTY; i--) {
zspage = list_first_entry_or_null(&class->fullness_list[i], zspage = list_first_entry_or_null(&class->fullness_list[i],
struct zspage, list); struct zspage, list);
if (zspage) if (zspage)
...@@ -1289,6 +1421,10 @@ void *zs_map_object(struct zs_pool *pool, unsigned long handle, ...@@ -1289,6 +1421,10 @@ void *zs_map_object(struct zs_pool *pool, unsigned long handle,
obj = handle_to_obj(handle); obj = handle_to_obj(handle);
obj_to_location(obj, &page, &obj_idx); obj_to_location(obj, &page, &obj_idx);
zspage = get_zspage(page); zspage = get_zspage(page);
/* migration cannot move any subpage in this zspage */
migrate_read_lock(zspage);
get_zspage_mapping(zspage, &class_idx, &fg); get_zspage_mapping(zspage, &class_idx, &fg);
class = pool->size_class[class_idx]; class = pool->size_class[class_idx];
off = (class->size * obj_idx) & ~PAGE_MASK; off = (class->size * obj_idx) & ~PAGE_MASK;
...@@ -1309,7 +1445,7 @@ void *zs_map_object(struct zs_pool *pool, unsigned long handle, ...@@ -1309,7 +1445,7 @@ void *zs_map_object(struct zs_pool *pool, unsigned long handle,
ret = __zs_map_object(area, pages, off, class->size); ret = __zs_map_object(area, pages, off, class->size);
out: out:
if (!class->huge) if (likely(!PageHugeObject(page)))
ret += ZS_HANDLE_SIZE; ret += ZS_HANDLE_SIZE;
return ret; return ret;
...@@ -1348,6 +1484,8 @@ void zs_unmap_object(struct zs_pool *pool, unsigned long handle) ...@@ -1348,6 +1484,8 @@ void zs_unmap_object(struct zs_pool *pool, unsigned long handle)
__zs_unmap_object(area, pages, off, class->size); __zs_unmap_object(area, pages, off, class->size);
} }
put_cpu_var(zs_map_area); put_cpu_var(zs_map_area);
migrate_read_unlock(zspage);
unpin_tag(handle); unpin_tag(handle);
} }
EXPORT_SYMBOL_GPL(zs_unmap_object); EXPORT_SYMBOL_GPL(zs_unmap_object);
...@@ -1377,7 +1515,7 @@ static unsigned long obj_malloc(struct size_class *class, ...@@ -1377,7 +1515,7 @@ static unsigned long obj_malloc(struct size_class *class,
vaddr = kmap_atomic(m_page); vaddr = kmap_atomic(m_page);
link = (struct link_free *)vaddr + m_offset / sizeof(*link); link = (struct link_free *)vaddr + m_offset / sizeof(*link);
set_freeobj(zspage, link->next >> OBJ_ALLOCATED_TAG); set_freeobj(zspage, link->next >> OBJ_ALLOCATED_TAG);
if (!class->huge) if (likely(!PageHugeObject(m_page)))
/* record handle in the header of allocated chunk */ /* record handle in the header of allocated chunk */
link->handle = handle; link->handle = handle;
else else
...@@ -1407,6 +1545,7 @@ unsigned long zs_malloc(struct zs_pool *pool, size_t size, gfp_t gfp) ...@@ -1407,6 +1545,7 @@ unsigned long zs_malloc(struct zs_pool *pool, size_t size, gfp_t gfp)
{ {
unsigned long handle, obj; unsigned long handle, obj;
struct size_class *class; struct size_class *class;
enum fullness_group newfg;
struct zspage *zspage; struct zspage *zspage;
if (unlikely(!size || size > ZS_MAX_ALLOC_SIZE)) if (unlikely(!size || size > ZS_MAX_ALLOC_SIZE))
...@@ -1422,28 +1561,37 @@ unsigned long zs_malloc(struct zs_pool *pool, size_t size, gfp_t gfp) ...@@ -1422,28 +1561,37 @@ unsigned long zs_malloc(struct zs_pool *pool, size_t size, gfp_t gfp)
spin_lock(&class->lock); spin_lock(&class->lock);
zspage = find_get_zspage(class); zspage = find_get_zspage(class);
if (likely(zspage)) {
obj = obj_malloc(class, zspage, handle);
/* Now move the zspage to another fullness group, if required */
fix_fullness_group(class, zspage);
record_obj(handle, obj);
spin_unlock(&class->lock);
return handle;
}
if (!zspage) {
spin_unlock(&class->lock); spin_unlock(&class->lock);
zspage = alloc_zspage(pool, class, gfp); zspage = alloc_zspage(pool, class, gfp);
if (unlikely(!zspage)) { if (!zspage) {
cache_free_handle(pool, handle); cache_free_handle(pool, handle);
return 0; return 0;
} }
set_zspage_mapping(zspage, class->index, ZS_EMPTY); spin_lock(&class->lock);
obj = obj_malloc(class, zspage, handle);
newfg = get_fullness_group(class, zspage);
insert_zspage(class, zspage, newfg);
set_zspage_mapping(zspage, class->index, newfg);
record_obj(handle, obj);
atomic_long_add(class->pages_per_zspage, atomic_long_add(class->pages_per_zspage,
&pool->pages_allocated); &pool->pages_allocated);
spin_lock(&class->lock);
zs_stat_inc(class, OBJ_ALLOCATED, get_maxobj_per_zspage( zs_stat_inc(class, OBJ_ALLOCATED, get_maxobj_per_zspage(
class->size, class->pages_per_zspage)); class->size, class->pages_per_zspage));
}
obj = obj_malloc(class, zspage, handle); /* We completely set up zspage so mark them as movable */
/* Now move the zspage to another fullness group, if required */ SetZsPageMovable(pool, zspage);
fix_fullness_group(class, zspage);
record_obj(handle, obj);
spin_unlock(&class->lock); spin_unlock(&class->lock);
return handle; return handle;
...@@ -1484,6 +1632,7 @@ void zs_free(struct zs_pool *pool, unsigned long handle) ...@@ -1484,6 +1632,7 @@ void zs_free(struct zs_pool *pool, unsigned long handle)
int class_idx; int class_idx;
struct size_class *class; struct size_class *class;
enum fullness_group fullness; enum fullness_group fullness;
bool isolated;
if (unlikely(!handle)) if (unlikely(!handle))
return; return;
...@@ -1493,22 +1642,28 @@ void zs_free(struct zs_pool *pool, unsigned long handle) ...@@ -1493,22 +1642,28 @@ void zs_free(struct zs_pool *pool, unsigned long handle)
obj_to_location(obj, &f_page, &f_objidx); obj_to_location(obj, &f_page, &f_objidx);
zspage = get_zspage(f_page); zspage = get_zspage(f_page);
migrate_read_lock(zspage);
get_zspage_mapping(zspage, &class_idx, &fullness); get_zspage_mapping(zspage, &class_idx, &fullness);
class = pool->size_class[class_idx]; class = pool->size_class[class_idx];
spin_lock(&class->lock); spin_lock(&class->lock);
obj_free(class, obj); obj_free(class, obj);
fullness = fix_fullness_group(class, zspage); fullness = fix_fullness_group(class, zspage);
if (fullness == ZS_EMPTY) { if (fullness != ZS_EMPTY) {
zs_stat_dec(class, OBJ_ALLOCATED, get_maxobj_per_zspage( migrate_read_unlock(zspage);
class->size, class->pages_per_zspage)); goto out;
atomic_long_sub(class->pages_per_zspage,
&pool->pages_allocated);
free_zspage(pool, zspage);
} }
isolated = is_zspage_isolated(zspage);
migrate_read_unlock(zspage);
/* If zspage is isolated, zs_page_putback will free the zspage */
if (likely(!isolated))
free_zspage(pool, class, zspage);
out:
spin_unlock(&class->lock); spin_unlock(&class->lock);
unpin_tag(handle); unpin_tag(handle);
cache_free_handle(pool, handle); cache_free_handle(pool, handle);
} }
EXPORT_SYMBOL_GPL(zs_free); EXPORT_SYMBOL_GPL(zs_free);
...@@ -1592,7 +1747,7 @@ static unsigned long find_alloced_obj(struct size_class *class, ...@@ -1592,7 +1747,7 @@ static unsigned long find_alloced_obj(struct size_class *class,
offset += class->size * index; offset += class->size * index;
while (offset < PAGE_SIZE) { while (offset < PAGE_SIZE) {
head = obj_to_head(class, page, addr + offset); head = obj_to_head(page, addr + offset);
if (head & OBJ_ALLOCATED_TAG) { if (head & OBJ_ALLOCATED_TAG) {
handle = head & ~OBJ_ALLOCATED_TAG; handle = head & ~OBJ_ALLOCATED_TAG;
if (trypin_tag(handle)) if (trypin_tag(handle))
...@@ -1684,6 +1839,7 @@ static struct zspage *isolate_zspage(struct size_class *class, bool source) ...@@ -1684,6 +1839,7 @@ static struct zspage *isolate_zspage(struct size_class *class, bool source)
zspage = list_first_entry_or_null(&class->fullness_list[fg[i]], zspage = list_first_entry_or_null(&class->fullness_list[fg[i]],
struct zspage, list); struct zspage, list);
if (zspage) { if (zspage) {
VM_BUG_ON(is_zspage_isolated(zspage));
remove_zspage(class, zspage, fg[i]); remove_zspage(class, zspage, fg[i]);
return zspage; return zspage;
} }
...@@ -1704,6 +1860,8 @@ static enum fullness_group putback_zspage(struct size_class *class, ...@@ -1704,6 +1860,8 @@ static enum fullness_group putback_zspage(struct size_class *class,
{ {
enum fullness_group fullness; enum fullness_group fullness;
VM_BUG_ON(is_zspage_isolated(zspage));
fullness = get_fullness_group(class, zspage); fullness = get_fullness_group(class, zspage);
insert_zspage(class, zspage, fullness); insert_zspage(class, zspage, fullness);
set_zspage_mapping(zspage, class->index, fullness); set_zspage_mapping(zspage, class->index, fullness);
...@@ -1711,6 +1869,378 @@ static enum fullness_group putback_zspage(struct size_class *class, ...@@ -1711,6 +1869,378 @@ static enum fullness_group putback_zspage(struct size_class *class,
return fullness; return fullness;
} }
#ifdef CONFIG_COMPACTION
static struct dentry *zs_mount(struct file_system_type *fs_type,
int flags, const char *dev_name, void *data)
{
static const struct dentry_operations ops = {
.d_dname = simple_dname,
};
return mount_pseudo(fs_type, "zsmalloc:", NULL, &ops, ZSMALLOC_MAGIC);
}
static struct file_system_type zsmalloc_fs = {
.name = "zsmalloc",
.mount = zs_mount,
.kill_sb = kill_anon_super,
};
static int zsmalloc_mount(void)
{
int ret = 0;
zsmalloc_mnt = kern_mount(&zsmalloc_fs);
if (IS_ERR(zsmalloc_mnt))
ret = PTR_ERR(zsmalloc_mnt);
return ret;
}
static void zsmalloc_unmount(void)
{
kern_unmount(zsmalloc_mnt);
}
static void migrate_lock_init(struct zspage *zspage)
{
rwlock_init(&zspage->lock);
}
static void migrate_read_lock(struct zspage *zspage)
{
read_lock(&zspage->lock);
}
static void migrate_read_unlock(struct zspage *zspage)
{
read_unlock(&zspage->lock);
}
static void migrate_write_lock(struct zspage *zspage)
{
write_lock(&zspage->lock);
}
static void migrate_write_unlock(struct zspage *zspage)
{
write_unlock(&zspage->lock);
}
/* Number of isolated subpage for *page migration* in this zspage */
static void inc_zspage_isolation(struct zspage *zspage)
{
zspage->isolated++;
}
static void dec_zspage_isolation(struct zspage *zspage)
{
zspage->isolated--;
}
static void replace_sub_page(struct size_class *class, struct zspage *zspage,
struct page *newpage, struct page *oldpage)
{
struct page *page;
struct page *pages[ZS_MAX_PAGES_PER_ZSPAGE] = {NULL, };
int idx = 0;
page = get_first_page(zspage);
do {
if (page == oldpage)
pages[idx] = newpage;
else
pages[idx] = page;
idx++;
} while ((page = get_next_page(page)) != NULL);
create_page_chain(class, zspage, pages);
set_first_obj_offset(newpage, get_first_obj_offset(oldpage));
if (unlikely(PageHugeObject(oldpage)))
newpage->index = oldpage->index;
__SetPageMovable(newpage, page_mapping(oldpage));
}
bool zs_page_isolate(struct page *page, isolate_mode_t mode)
{
struct zs_pool *pool;
struct size_class *class;
int class_idx;
enum fullness_group fullness;
struct zspage *zspage;
struct address_space *mapping;
/*
* Page is locked so zspage couldn't be destroyed. For detail, look at
* lock_zspage in free_zspage.
*/
VM_BUG_ON_PAGE(!PageMovable(page), page);
VM_BUG_ON_PAGE(PageIsolated(page), page);
zspage = get_zspage(page);
/*
* Without class lock, fullness could be stale while class_idx is okay
* because class_idx is constant unless page is freed so we should get
* fullness again under class lock.
*/
get_zspage_mapping(zspage, &class_idx, &fullness);
mapping = page_mapping(page);
pool = mapping->private_data;
class = pool->size_class[class_idx];
spin_lock(&class->lock);
if (get_zspage_inuse(zspage) == 0) {
spin_unlock(&class->lock);
return false;
}
/* zspage is isolated for object migration */
if (list_empty(&zspage->list) && !is_zspage_isolated(zspage)) {
spin_unlock(&class->lock);
return false;
}
/*
* If this is first time isolation for the zspage, isolate zspage from
* size_class to prevent further object allocation from the zspage.
*/
if (!list_empty(&zspage->list) && !is_zspage_isolated(zspage)) {
get_zspage_mapping(zspage, &class_idx, &fullness);
remove_zspage(class, zspage, fullness);
}
inc_zspage_isolation(zspage);
spin_unlock(&class->lock);
return true;
}
int zs_page_migrate(struct address_space *mapping, struct page *newpage,
struct page *page, enum migrate_mode mode)
{
struct zs_pool *pool;
struct size_class *class;
int class_idx;
enum fullness_group fullness;
struct zspage *zspage;
struct page *dummy;
void *s_addr, *d_addr, *addr;
int offset, pos;
unsigned long handle, head;
unsigned long old_obj, new_obj;
unsigned int obj_idx;
int ret = -EAGAIN;
VM_BUG_ON_PAGE(!PageMovable(page), page);
VM_BUG_ON_PAGE(!PageIsolated(page), page);
zspage = get_zspage(page);
/* Concurrent compactor cannot migrate any subpage in zspage */
migrate_write_lock(zspage);
get_zspage_mapping(zspage, &class_idx, &fullness);
pool = mapping->private_data;
class = pool->size_class[class_idx];
offset = get_first_obj_offset(page);
spin_lock(&class->lock);
if (!get_zspage_inuse(zspage)) {
ret = -EBUSY;
goto unlock_class;
}
pos = offset;
s_addr = kmap_atomic(page);
while (pos < PAGE_SIZE) {
head = obj_to_head(page, s_addr + pos);
if (head & OBJ_ALLOCATED_TAG) {
handle = head & ~OBJ_ALLOCATED_TAG;
if (!trypin_tag(handle))
goto unpin_objects;
}
pos += class->size;
}
/*
* Here, any user cannot access all objects in the zspage so let's move.
*/
d_addr = kmap_atomic(newpage);
memcpy(d_addr, s_addr, PAGE_SIZE);
kunmap_atomic(d_addr);
for (addr = s_addr + offset; addr < s_addr + pos;
addr += class->size) {
head = obj_to_head(page, addr);
if (head & OBJ_ALLOCATED_TAG) {
handle = head & ~OBJ_ALLOCATED_TAG;
if (!testpin_tag(handle))
BUG();
old_obj = handle_to_obj(handle);
obj_to_location(old_obj, &dummy, &obj_idx);
new_obj = (unsigned long)location_to_obj(newpage,
obj_idx);
new_obj |= BIT(HANDLE_PIN_BIT);
record_obj(handle, new_obj);
}
}
replace_sub_page(class, zspage, newpage, page);
get_page(newpage);
dec_zspage_isolation(zspage);
/*
* Page migration is done so let's putback isolated zspage to
* the list if @page is final isolated subpage in the zspage.
*/
if (!is_zspage_isolated(zspage))
putback_zspage(class, zspage);
reset_page(page);
put_page(page);
page = newpage;
ret = 0;
unpin_objects:
for (addr = s_addr + offset; addr < s_addr + pos;
addr += class->size) {
head = obj_to_head(page, addr);
if (head & OBJ_ALLOCATED_TAG) {
handle = head & ~OBJ_ALLOCATED_TAG;
if (!testpin_tag(handle))
BUG();
unpin_tag(handle);
}
}
kunmap_atomic(s_addr);
unlock_class:
spin_unlock(&class->lock);
migrate_write_unlock(zspage);
return ret;
}
void zs_page_putback(struct page *page)
{
struct zs_pool *pool;
struct size_class *class;
int class_idx;
enum fullness_group fg;
struct address_space *mapping;
struct zspage *zspage;
VM_BUG_ON_PAGE(!PageMovable(page), page);
VM_BUG_ON_PAGE(!PageIsolated(page), page);
zspage = get_zspage(page);
get_zspage_mapping(zspage, &class_idx, &fg);
mapping = page_mapping(page);
pool = mapping->private_data;
class = pool->size_class[class_idx];
spin_lock(&class->lock);
dec_zspage_isolation(zspage);
if (!is_zspage_isolated(zspage)) {
fg = putback_zspage(class, zspage);
/*
* Due to page_lock, we cannot free zspage immediately
* so let's defer.
*/
if (fg == ZS_EMPTY)
schedule_work(&pool->free_work);
}
spin_unlock(&class->lock);
}
const struct address_space_operations zsmalloc_aops = {
.isolate_page = zs_page_isolate,
.migratepage = zs_page_migrate,
.putback_page = zs_page_putback,
};
static int zs_register_migration(struct zs_pool *pool)
{
pool->inode = alloc_anon_inode(zsmalloc_mnt->mnt_sb);
if (IS_ERR(pool->inode)) {
pool->inode = NULL;
return 1;
}
pool->inode->i_mapping->private_data = pool;
pool->inode->i_mapping->a_ops = &zsmalloc_aops;
return 0;
}
static void zs_unregister_migration(struct zs_pool *pool)
{
flush_work(&pool->free_work);
if (pool->inode)
iput(pool->inode);
}
/*
* Caller should hold page_lock of all pages in the zspage
* In here, we cannot use zspage meta data.
*/
static void async_free_zspage(struct work_struct *work)
{
int i;
struct size_class *class;
unsigned int class_idx;
enum fullness_group fullness;
struct zspage *zspage, *tmp;
LIST_HEAD(free_pages);
struct zs_pool *pool = container_of(work, struct zs_pool,
free_work);
for (i = 0; i < zs_size_classes; i++) {
class = pool->size_class[i];
if (class->index != i)
continue;
spin_lock(&class->lock);
list_splice_init(&class->fullness_list[ZS_EMPTY], &free_pages);
spin_unlock(&class->lock);
}
list_for_each_entry_safe(zspage, tmp, &free_pages, list) {
list_del(&zspage->list);
lock_zspage(zspage);
get_zspage_mapping(zspage, &class_idx, &fullness);
VM_BUG_ON(fullness != ZS_EMPTY);
class = pool->size_class[class_idx];
spin_lock(&class->lock);
__free_zspage(pool, pool->size_class[class_idx], zspage);
spin_unlock(&class->lock);
}
};
static void kick_deferred_free(struct zs_pool *pool)
{
schedule_work(&pool->free_work);
}
static void init_deferred_free(struct zs_pool *pool)
{
INIT_WORK(&pool->free_work, async_free_zspage);
}
static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage)
{
struct page *page = get_first_page(zspage);
do {
WARN_ON(!trylock_page(page));
__SetPageMovable(page, pool->inode->i_mapping);
unlock_page(page);
} while ((page = get_next_page(page)) != NULL);
}
#endif
/* /*
* *
* Based on the number of unused allocated objects calculate * Based on the number of unused allocated objects calculate
...@@ -1745,10 +2275,10 @@ static void __zs_compact(struct zs_pool *pool, struct size_class *class) ...@@ -1745,10 +2275,10 @@ static void __zs_compact(struct zs_pool *pool, struct size_class *class)
break; break;
cc.index = 0; cc.index = 0;
cc.s_page = src_zspage->first_page; cc.s_page = get_first_page(src_zspage);
while ((dst_zspage = isolate_zspage(class, false))) { while ((dst_zspage = isolate_zspage(class, false))) {
cc.d_page = dst_zspage->first_page; cc.d_page = get_first_page(dst_zspage);
/* /*
* If there is no more space in dst_page, resched * If there is no more space in dst_page, resched
* and see if anyone had allocated another zspage. * and see if anyone had allocated another zspage.
...@@ -1765,11 +2295,7 @@ static void __zs_compact(struct zs_pool *pool, struct size_class *class) ...@@ -1765,11 +2295,7 @@ static void __zs_compact(struct zs_pool *pool, struct size_class *class)
putback_zspage(class, dst_zspage); putback_zspage(class, dst_zspage);
if (putback_zspage(class, src_zspage) == ZS_EMPTY) { if (putback_zspage(class, src_zspage) == ZS_EMPTY) {
zs_stat_dec(class, OBJ_ALLOCATED, get_maxobj_per_zspage( free_zspage(pool, class, src_zspage);
class->size, class->pages_per_zspage));
atomic_long_sub(class->pages_per_zspage,
&pool->pages_allocated);
free_zspage(pool, src_zspage);
pool->stats.pages_compacted += class->pages_per_zspage; pool->stats.pages_compacted += class->pages_per_zspage;
} }
spin_unlock(&class->lock); spin_unlock(&class->lock);
...@@ -1885,6 +2411,7 @@ struct zs_pool *zs_create_pool(const char *name) ...@@ -1885,6 +2411,7 @@ struct zs_pool *zs_create_pool(const char *name)
if (!pool) if (!pool)
return NULL; return NULL;
init_deferred_free(pool);
pool->size_class = kcalloc(zs_size_classes, sizeof(struct size_class *), pool->size_class = kcalloc(zs_size_classes, sizeof(struct size_class *),
GFP_KERNEL); GFP_KERNEL);
if (!pool->size_class) { if (!pool->size_class) {
...@@ -1939,11 +2466,9 @@ struct zs_pool *zs_create_pool(const char *name) ...@@ -1939,11 +2466,9 @@ struct zs_pool *zs_create_pool(const char *name)
class->pages_per_zspage = pages_per_zspage; class->pages_per_zspage = pages_per_zspage;
class->objs_per_zspage = class->pages_per_zspage * class->objs_per_zspage = class->pages_per_zspage *
PAGE_SIZE / class->size; PAGE_SIZE / class->size;
if (pages_per_zspage == 1 && class->objs_per_zspage == 1)
class->huge = true;
spin_lock_init(&class->lock); spin_lock_init(&class->lock);
pool->size_class[i] = class; pool->size_class[i] = class;
for (fullness = ZS_ALMOST_FULL; fullness <= ZS_ALMOST_EMPTY; for (fullness = ZS_EMPTY; fullness < NR_ZS_FULLNESS;
fullness++) fullness++)
INIT_LIST_HEAD(&class->fullness_list[fullness]); INIT_LIST_HEAD(&class->fullness_list[fullness]);
...@@ -1953,6 +2478,9 @@ struct zs_pool *zs_create_pool(const char *name) ...@@ -1953,6 +2478,9 @@ struct zs_pool *zs_create_pool(const char *name)
/* debug only, don't abort if it fails */ /* debug only, don't abort if it fails */
zs_pool_stat_create(pool, name); zs_pool_stat_create(pool, name);
if (zs_register_migration(pool))
goto err;
/* /*
* Not critical, we still can use the pool * Not critical, we still can use the pool
* and user can trigger compaction manually. * and user can trigger compaction manually.
...@@ -1972,6 +2500,7 @@ void zs_destroy_pool(struct zs_pool *pool) ...@@ -1972,6 +2500,7 @@ void zs_destroy_pool(struct zs_pool *pool)
int i; int i;
zs_unregister_shrinker(pool); zs_unregister_shrinker(pool);
zs_unregister_migration(pool);
zs_pool_stat_destroy(pool); zs_pool_stat_destroy(pool);
for (i = 0; i < zs_size_classes; i++) { for (i = 0; i < zs_size_classes; i++) {
...@@ -1984,7 +2513,7 @@ void zs_destroy_pool(struct zs_pool *pool) ...@@ -1984,7 +2513,7 @@ void zs_destroy_pool(struct zs_pool *pool)
if (class->index != i) if (class->index != i)
continue; continue;
for (fg = ZS_ALMOST_FULL; fg <= ZS_ALMOST_EMPTY; fg++) { for (fg = ZS_EMPTY; fg < NR_ZS_FULLNESS; fg++) {
if (!list_empty(&class->fullness_list[fg])) { if (!list_empty(&class->fullness_list[fg])) {
pr_info("Freeing non-empty class with size %db, fullness group %d\n", pr_info("Freeing non-empty class with size %db, fullness group %d\n",
class->size, fg); class->size, fg);
...@@ -2002,7 +2531,13 @@ EXPORT_SYMBOL_GPL(zs_destroy_pool); ...@@ -2002,7 +2531,13 @@ EXPORT_SYMBOL_GPL(zs_destroy_pool);
static int __init zs_init(void) static int __init zs_init(void)
{ {
int ret = zs_register_cpu_notifier(); int ret;
ret = zsmalloc_mount();
if (ret)
goto out;
ret = zs_register_cpu_notifier();
if (ret) if (ret)
goto notifier_fail; goto notifier_fail;
...@@ -2019,7 +2554,8 @@ static int __init zs_init(void) ...@@ -2019,7 +2554,8 @@ static int __init zs_init(void)
notifier_fail: notifier_fail:
zs_unregister_cpu_notifier(); zs_unregister_cpu_notifier();
zsmalloc_unmount();
out:
return ret; return ret;
} }
...@@ -2028,6 +2564,7 @@ static void __exit zs_exit(void) ...@@ -2028,6 +2564,7 @@ static void __exit zs_exit(void)
#ifdef CONFIG_ZPOOL #ifdef CONFIG_ZPOOL
zpool_unregister_driver(&zs_zpool_driver); zpool_unregister_driver(&zs_zpool_driver);
#endif #endif
zsmalloc_unmount();
zs_unregister_cpu_notifier(); zs_unregister_cpu_notifier();
zs_stat_exit(); zs_stat_exit();
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment