Commit 49d2953c authored by Linus Torvalds's avatar Linus Torvalds

Merge branch 'sched-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip

Pull scheduler changes from Ingo Molnar:
 "Major changes:

   - Reworked CPU capacity code, for better SMP load balancing on
     systems with assymetric CPUs. (Vincent Guittot, Morten Rasmussen)

   - Reworked RT task SMP balancing to be push based instead of pull
     based, to reduce latencies on large CPU count systems. (Steven
     Rostedt)

   - SCHED_DEADLINE support updates and fixes. (Juri Lelli)

   - SCHED_DEADLINE task migration support during CPU hotplug. (Wanpeng Li)

   - x86 mwait-idle optimizations and fixes. (Mike Galbraith, Len Brown)

   - sched/numa improvements. (Rik van Riel)

   - various cleanups"

* 'sched-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (28 commits)
  sched/core: Drop debugging leftover trace_printk call
  sched/deadline: Support DL task migration during CPU hotplug
  sched/core: Check for available DL bandwidth in cpuset_cpu_inactive()
  sched/deadline: Always enqueue on previous rq when dl_task_timer() fires
  sched/core: Remove unused argument from init_[rt|dl]_rq()
  sched/deadline: Fix rt runtime corruption when dl fails its global constraints
  sched/deadline: Avoid a superfluous check
  sched: Improve load balancing in the presence of idle CPUs
  sched: Optimize freq invariant accounting
  sched: Move CFS tasks to CPUs with higher capacity
  sched: Add SD_PREFER_SIBLING for SMT level
  sched: Remove unused struct sched_group_capacity::capacity_orig
  sched: Replace capacity_factor by usage
  sched: Calculate CPU's usage statistic and put it into struct sg_lb_stats::group_usage
  sched: Add struct rq::cpu_capacity_orig
  sched: Make scale_rt invariant with frequency
  sched: Make sched entity usage tracking scale-invariant
  sched: Remove frequency scaling from cpu_capacity
  sched: Track group sched_entity usage contributions
  sched: Add sched_avg::utilization_avg_contrib
  ...
parents cc76ee75 62a935b2
...@@ -30,6 +30,14 @@ static inline void __mwait(unsigned long eax, unsigned long ecx) ...@@ -30,6 +30,14 @@ static inline void __mwait(unsigned long eax, unsigned long ecx)
:: "a" (eax), "c" (ecx)); :: "a" (eax), "c" (ecx));
} }
static inline void __sti_mwait(unsigned long eax, unsigned long ecx)
{
trace_hardirqs_on();
/* "mwait %eax, %ecx;" */
asm volatile("sti; .byte 0x0f, 0x01, 0xc9;"
:: "a" (eax), "c" (ecx));
}
/* /*
* This uses new MONITOR/MWAIT instructions on P4 processors with PNI, * This uses new MONITOR/MWAIT instructions on P4 processors with PNI,
* which can obviate IPI to trigger checking of need_resched. * which can obviate IPI to trigger checking of need_resched.
......
...@@ -24,6 +24,7 @@ ...@@ -24,6 +24,7 @@
#include <asm/syscalls.h> #include <asm/syscalls.h>
#include <asm/idle.h> #include <asm/idle.h>
#include <asm/uaccess.h> #include <asm/uaccess.h>
#include <asm/mwait.h>
#include <asm/i387.h> #include <asm/i387.h>
#include <asm/fpu-internal.h> #include <asm/fpu-internal.h>
#include <asm/debugreg.h> #include <asm/debugreg.h>
...@@ -399,6 +400,53 @@ static void amd_e400_idle(void) ...@@ -399,6 +400,53 @@ static void amd_e400_idle(void)
default_idle(); default_idle();
} }
/*
* Intel Core2 and older machines prefer MWAIT over HALT for C1.
* We can't rely on cpuidle installing MWAIT, because it will not load
* on systems that support only C1 -- so the boot default must be MWAIT.
*
* Some AMD machines are the opposite, they depend on using HALT.
*
* So for default C1, which is used during boot until cpuidle loads,
* use MWAIT-C1 on Intel HW that has it, else use HALT.
*/
static int prefer_mwait_c1_over_halt(const struct cpuinfo_x86 *c)
{
if (c->x86_vendor != X86_VENDOR_INTEL)
return 0;
if (!cpu_has(c, X86_FEATURE_MWAIT))
return 0;
return 1;
}
/*
* MONITOR/MWAIT with no hints, used for default default C1 state.
* This invokes MWAIT with interrutps enabled and no flags,
* which is backwards compatible with the original MWAIT implementation.
*/
static void mwait_idle(void)
{
if (!current_set_polling_and_test()) {
if (this_cpu_has(X86_BUG_CLFLUSH_MONITOR)) {
smp_mb(); /* quirk */
clflush((void *)&current_thread_info()->flags);
smp_mb(); /* quirk */
}
__monitor((void *)&current_thread_info()->flags, 0, 0);
if (!need_resched())
__sti_mwait(0, 0);
else
local_irq_enable();
} else {
local_irq_enable();
}
__current_clr_polling();
}
void select_idle_routine(const struct cpuinfo_x86 *c) void select_idle_routine(const struct cpuinfo_x86 *c)
{ {
#ifdef CONFIG_SMP #ifdef CONFIG_SMP
...@@ -412,6 +460,9 @@ void select_idle_routine(const struct cpuinfo_x86 *c) ...@@ -412,6 +460,9 @@ void select_idle_routine(const struct cpuinfo_x86 *c)
/* E400: APIC timer interrupt does not wake up CPU from C1e */ /* E400: APIC timer interrupt does not wake up CPU from C1e */
pr_info("using AMD E400 aware idle routine\n"); pr_info("using AMD E400 aware idle routine\n");
x86_idle = amd_e400_idle; x86_idle = amd_e400_idle;
} else if (prefer_mwait_c1_over_halt(c)) {
pr_info("using mwait in idle threads\n");
x86_idle = mwait_idle;
} else } else
x86_idle = default_idle; x86_idle = default_idle;
} }
......
...@@ -38,16 +38,17 @@ bool irq_work_queue(struct irq_work *work); ...@@ -38,16 +38,17 @@ bool irq_work_queue(struct irq_work *work);
bool irq_work_queue_on(struct irq_work *work, int cpu); bool irq_work_queue_on(struct irq_work *work, int cpu);
#endif #endif
void irq_work_run(void);
void irq_work_tick(void); void irq_work_tick(void);
void irq_work_sync(struct irq_work *work); void irq_work_sync(struct irq_work *work);
#ifdef CONFIG_IRQ_WORK #ifdef CONFIG_IRQ_WORK
#include <asm/irq_work.h> #include <asm/irq_work.h>
void irq_work_run(void);
bool irq_work_needs_cpu(void); bool irq_work_needs_cpu(void);
#else #else
static inline bool irq_work_needs_cpu(void) { return false; } static inline bool irq_work_needs_cpu(void) { return false; }
static inline void irq_work_run(void) { }
#endif #endif
#endif /* _LINUX_IRQ_WORK_H */ #endif /* _LINUX_IRQ_WORK_H */
...@@ -1123,15 +1123,28 @@ struct load_weight { ...@@ -1123,15 +1123,28 @@ struct load_weight {
}; };
struct sched_avg { struct sched_avg {
u64 last_runnable_update;
s64 decay_count;
/*
* utilization_avg_contrib describes the amount of time that a
* sched_entity is running on a CPU. It is based on running_avg_sum
* and is scaled in the range [0..SCHED_LOAD_SCALE].
* load_avg_contrib described the amount of time that a sched_entity
* is runnable on a rq. It is based on both runnable_avg_sum and the
* weight of the task.
*/
unsigned long load_avg_contrib, utilization_avg_contrib;
/* /*
* These sums represent an infinite geometric series and so are bound * These sums represent an infinite geometric series and so are bound
* above by 1024/(1-y). Thus we only need a u32 to store them for all * above by 1024/(1-y). Thus we only need a u32 to store them for all
* choices of y < 1-2^(-32)*1024. * choices of y < 1-2^(-32)*1024.
* running_avg_sum reflects the time that the sched_entity is
* effectively running on the CPU.
* runnable_avg_sum represents the amount of time a sched_entity is on
* a runqueue which includes the running time that is monitored by
* running_avg_sum.
*/ */
u32 runnable_avg_sum, runnable_avg_period; u32 runnable_avg_sum, avg_period, running_avg_sum;
u64 last_runnable_update;
s64 decay_count;
unsigned long load_avg_contrib;
}; };
#ifdef CONFIG_SCHEDSTATS #ifdef CONFIG_SCHEDSTATS
......
...@@ -689,6 +689,23 @@ static inline bool got_nohz_idle_kick(void) ...@@ -689,6 +689,23 @@ static inline bool got_nohz_idle_kick(void)
#ifdef CONFIG_NO_HZ_FULL #ifdef CONFIG_NO_HZ_FULL
bool sched_can_stop_tick(void) bool sched_can_stop_tick(void)
{ {
/*
* FIFO realtime policy runs the highest priority task. Other runnable
* tasks are of a lower priority. The scheduler tick does nothing.
*/
if (current->policy == SCHED_FIFO)
return true;
/*
* Round-robin realtime tasks time slice with other tasks at the same
* realtime priority. Is this task the only one at this priority?
*/
if (current->policy == SCHED_RR) {
struct sched_rt_entity *rt_se = &current->rt;
return rt_se->run_list.prev == rt_se->run_list.next;
}
/* /*
* More than one running task need preemption. * More than one running task need preemption.
* nr_running update is assumed to be visible * nr_running update is assumed to be visible
...@@ -5335,36 +5352,13 @@ static int sched_cpu_active(struct notifier_block *nfb, ...@@ -5335,36 +5352,13 @@ static int sched_cpu_active(struct notifier_block *nfb,
static int sched_cpu_inactive(struct notifier_block *nfb, static int sched_cpu_inactive(struct notifier_block *nfb,
unsigned long action, void *hcpu) unsigned long action, void *hcpu)
{ {
unsigned long flags;
long cpu = (long)hcpu;
struct dl_bw *dl_b;
switch (action & ~CPU_TASKS_FROZEN) { switch (action & ~CPU_TASKS_FROZEN) {
case CPU_DOWN_PREPARE: case CPU_DOWN_PREPARE:
set_cpu_active(cpu, false); set_cpu_active((long)hcpu, false);
/* explicitly allow suspend */
if (!(action & CPU_TASKS_FROZEN)) {
bool overflow;
int cpus;
rcu_read_lock_sched();
dl_b = dl_bw_of(cpu);
raw_spin_lock_irqsave(&dl_b->lock, flags);
cpus = dl_bw_cpus(cpu);
overflow = __dl_overflow(dl_b, cpus, 0, 0);
raw_spin_unlock_irqrestore(&dl_b->lock, flags);
rcu_read_unlock_sched();
if (overflow)
return notifier_from_errno(-EBUSY);
}
return NOTIFY_OK; return NOTIFY_OK;
default:
return NOTIFY_DONE;
} }
return NOTIFY_DONE;
} }
static int __init migration_init(void) static int __init migration_init(void)
...@@ -5445,17 +5439,6 @@ static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level, ...@@ -5445,17 +5439,6 @@ static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
break; break;
} }
/*
* Even though we initialize ->capacity to something semi-sane,
* we leave capacity_orig unset. This allows us to detect if
* domain iteration is still funny without causing /0 traps.
*/
if (!group->sgc->capacity_orig) {
printk(KERN_CONT "\n");
printk(KERN_ERR "ERROR: domain->cpu_capacity not set\n");
break;
}
if (!cpumask_weight(sched_group_cpus(group))) { if (!cpumask_weight(sched_group_cpus(group))) {
printk(KERN_CONT "\n"); printk(KERN_CONT "\n");
printk(KERN_ERR "ERROR: empty group\n"); printk(KERN_ERR "ERROR: empty group\n");
...@@ -5939,7 +5922,6 @@ build_overlap_sched_groups(struct sched_domain *sd, int cpu) ...@@ -5939,7 +5922,6 @@ build_overlap_sched_groups(struct sched_domain *sd, int cpu)
* die on a /0 trap. * die on a /0 trap.
*/ */
sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span); sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span);
sg->sgc->capacity_orig = sg->sgc->capacity;
/* /*
* Make sure the first group of this domain contains the * Make sure the first group of this domain contains the
...@@ -6250,6 +6232,7 @@ sd_init(struct sched_domain_topology_level *tl, int cpu) ...@@ -6250,6 +6232,7 @@ sd_init(struct sched_domain_topology_level *tl, int cpu)
*/ */
if (sd->flags & SD_SHARE_CPUCAPACITY) { if (sd->flags & SD_SHARE_CPUCAPACITY) {
sd->flags |= SD_PREFER_SIBLING;
sd->imbalance_pct = 110; sd->imbalance_pct = 110;
sd->smt_gain = 1178; /* ~15% */ sd->smt_gain = 1178; /* ~15% */
...@@ -7015,7 +6998,6 @@ static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action, ...@@ -7015,7 +6998,6 @@ static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
*/ */
case CPU_ONLINE: case CPU_ONLINE:
case CPU_DOWN_FAILED:
cpuset_update_active_cpus(true); cpuset_update_active_cpus(true);
break; break;
default: default:
...@@ -7027,8 +7009,30 @@ static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action, ...@@ -7027,8 +7009,30 @@ static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action, static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
void *hcpu) void *hcpu)
{ {
switch (action) { unsigned long flags;
long cpu = (long)hcpu;
struct dl_bw *dl_b;
switch (action & ~CPU_TASKS_FROZEN) {
case CPU_DOWN_PREPARE: case CPU_DOWN_PREPARE:
/* explicitly allow suspend */
if (!(action & CPU_TASKS_FROZEN)) {
bool overflow;
int cpus;
rcu_read_lock_sched();
dl_b = dl_bw_of(cpu);
raw_spin_lock_irqsave(&dl_b->lock, flags);
cpus = dl_bw_cpus(cpu);
overflow = __dl_overflow(dl_b, cpus, 0, 0);
raw_spin_unlock_irqrestore(&dl_b->lock, flags);
rcu_read_unlock_sched();
if (overflow)
return notifier_from_errno(-EBUSY);
}
cpuset_update_active_cpus(false); cpuset_update_active_cpus(false);
break; break;
case CPU_DOWN_PREPARE_FROZEN: case CPU_DOWN_PREPARE_FROZEN:
...@@ -7173,8 +7177,8 @@ void __init sched_init(void) ...@@ -7173,8 +7177,8 @@ void __init sched_init(void)
rq->calc_load_active = 0; rq->calc_load_active = 0;
rq->calc_load_update = jiffies + LOAD_FREQ; rq->calc_load_update = jiffies + LOAD_FREQ;
init_cfs_rq(&rq->cfs); init_cfs_rq(&rq->cfs);
init_rt_rq(&rq->rt, rq); init_rt_rq(&rq->rt);
init_dl_rq(&rq->dl, rq); init_dl_rq(&rq->dl);
#ifdef CONFIG_FAIR_GROUP_SCHED #ifdef CONFIG_FAIR_GROUP_SCHED
root_task_group.shares = ROOT_TASK_GROUP_LOAD; root_task_group.shares = ROOT_TASK_GROUP_LOAD;
INIT_LIST_HEAD(&rq->leaf_cfs_rq_list); INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
...@@ -7214,7 +7218,7 @@ void __init sched_init(void) ...@@ -7214,7 +7218,7 @@ void __init sched_init(void)
#ifdef CONFIG_SMP #ifdef CONFIG_SMP
rq->sd = NULL; rq->sd = NULL;
rq->rd = NULL; rq->rd = NULL;
rq->cpu_capacity = SCHED_CAPACITY_SCALE; rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
rq->post_schedule = 0; rq->post_schedule = 0;
rq->active_balance = 0; rq->active_balance = 0;
rq->next_balance = jiffies; rq->next_balance = jiffies;
...@@ -7813,7 +7817,7 @@ static int sched_rt_global_constraints(void) ...@@ -7813,7 +7817,7 @@ static int sched_rt_global_constraints(void)
} }
#endif /* CONFIG_RT_GROUP_SCHED */ #endif /* CONFIG_RT_GROUP_SCHED */
static int sched_dl_global_constraints(void) static int sched_dl_global_validate(void)
{ {
u64 runtime = global_rt_runtime(); u64 runtime = global_rt_runtime();
u64 period = global_rt_period(); u64 period = global_rt_period();
...@@ -7914,11 +7918,11 @@ int sched_rt_handler(struct ctl_table *table, int write, ...@@ -7914,11 +7918,11 @@ int sched_rt_handler(struct ctl_table *table, int write,
if (ret) if (ret)
goto undo; goto undo;
ret = sched_rt_global_constraints(); ret = sched_dl_global_validate();
if (ret) if (ret)
goto undo; goto undo;
ret = sched_dl_global_constraints(); ret = sched_rt_global_constraints();
if (ret) if (ret)
goto undo; goto undo;
......
...@@ -69,7 +69,7 @@ void init_dl_bw(struct dl_bw *dl_b) ...@@ -69,7 +69,7 @@ void init_dl_bw(struct dl_bw *dl_b)
dl_b->total_bw = 0; dl_b->total_bw = 0;
} }
void init_dl_rq(struct dl_rq *dl_rq, struct rq *rq) void init_dl_rq(struct dl_rq *dl_rq)
{ {
dl_rq->rb_root = RB_ROOT; dl_rq->rb_root = RB_ROOT;
...@@ -218,6 +218,52 @@ static inline void set_post_schedule(struct rq *rq) ...@@ -218,6 +218,52 @@ static inline void set_post_schedule(struct rq *rq)
rq->post_schedule = has_pushable_dl_tasks(rq); rq->post_schedule = has_pushable_dl_tasks(rq);
} }
static struct rq *find_lock_later_rq(struct task_struct *task, struct rq *rq);
static void dl_task_offline_migration(struct rq *rq, struct task_struct *p)
{
struct rq *later_rq = NULL;
bool fallback = false;
later_rq = find_lock_later_rq(p, rq);
if (!later_rq) {
int cpu;
/*
* If we cannot preempt any rq, fall back to pick any
* online cpu.
*/
fallback = true;
cpu = cpumask_any_and(cpu_active_mask, tsk_cpus_allowed(p));
if (cpu >= nr_cpu_ids) {
/*
* Fail to find any suitable cpu.
* The task will never come back!
*/
BUG_ON(dl_bandwidth_enabled());
/*
* If admission control is disabled we
* try a little harder to let the task
* run.
*/
cpu = cpumask_any(cpu_active_mask);
}
later_rq = cpu_rq(cpu);
double_lock_balance(rq, later_rq);
}
deactivate_task(rq, p, 0);
set_task_cpu(p, later_rq->cpu);
activate_task(later_rq, p, ENQUEUE_REPLENISH);
if (!fallback)
resched_curr(later_rq);
double_unlock_balance(rq, later_rq);
}
#else #else
static inline static inline
...@@ -514,7 +560,7 @@ static enum hrtimer_restart dl_task_timer(struct hrtimer *timer) ...@@ -514,7 +560,7 @@ static enum hrtimer_restart dl_task_timer(struct hrtimer *timer)
unsigned long flags; unsigned long flags;
struct rq *rq; struct rq *rq;
rq = task_rq_lock(current, &flags); rq = task_rq_lock(p, &flags);
/* /*
* We need to take care of several possible races here: * We need to take care of several possible races here:
...@@ -536,6 +582,17 @@ static enum hrtimer_restart dl_task_timer(struct hrtimer *timer) ...@@ -536,6 +582,17 @@ static enum hrtimer_restart dl_task_timer(struct hrtimer *timer)
sched_clock_tick(); sched_clock_tick();
update_rq_clock(rq); update_rq_clock(rq);
#ifdef CONFIG_SMP
/*
* If we find that the rq the task was on is no longer
* available, we need to select a new rq.
*/
if (unlikely(!rq->online)) {
dl_task_offline_migration(rq, p);
goto unlock;
}
#endif
/* /*
* If the throttle happened during sched-out; like: * If the throttle happened during sched-out; like:
* *
...@@ -569,7 +626,7 @@ static enum hrtimer_restart dl_task_timer(struct hrtimer *timer) ...@@ -569,7 +626,7 @@ static enum hrtimer_restart dl_task_timer(struct hrtimer *timer)
push_dl_task(rq); push_dl_task(rq);
#endif #endif
unlock: unlock:
task_rq_unlock(rq, current, &flags); task_rq_unlock(rq, p, &flags);
return HRTIMER_NORESTART; return HRTIMER_NORESTART;
} }
...@@ -914,6 +971,12 @@ static void yield_task_dl(struct rq *rq) ...@@ -914,6 +971,12 @@ static void yield_task_dl(struct rq *rq)
} }
update_rq_clock(rq); update_rq_clock(rq);
update_curr_dl(rq); update_curr_dl(rq);
/*
* Tell update_rq_clock() that we've just updated,
* so we don't do microscopic update in schedule()
* and double the fastpath cost.
*/
rq_clock_skip_update(rq, true);
} }
#ifdef CONFIG_SMP #ifdef CONFIG_SMP
...@@ -1659,14 +1722,6 @@ static void switched_to_dl(struct rq *rq, struct task_struct *p) ...@@ -1659,14 +1722,6 @@ static void switched_to_dl(struct rq *rq, struct task_struct *p)
{ {
int check_resched = 1; int check_resched = 1;
/*
* If p is throttled, don't consider the possibility
* of preempting rq->curr, the check will be done right
* after its runtime will get replenished.
*/
if (unlikely(p->dl.dl_throttled))
return;
if (task_on_rq_queued(p) && rq->curr != p) { if (task_on_rq_queued(p) && rq->curr != p) {
#ifdef CONFIG_SMP #ifdef CONFIG_SMP
if (p->nr_cpus_allowed > 1 && rq->dl.overloaded && if (p->nr_cpus_allowed > 1 && rq->dl.overloaded &&
......
...@@ -71,7 +71,7 @@ static void print_cfs_group_stats(struct seq_file *m, int cpu, struct task_group ...@@ -71,7 +71,7 @@ static void print_cfs_group_stats(struct seq_file *m, int cpu, struct task_group
if (!se) { if (!se) {
struct sched_avg *avg = &cpu_rq(cpu)->avg; struct sched_avg *avg = &cpu_rq(cpu)->avg;
P(avg->runnable_avg_sum); P(avg->runnable_avg_sum);
P(avg->runnable_avg_period); P(avg->avg_period);
return; return;
} }
...@@ -94,8 +94,10 @@ static void print_cfs_group_stats(struct seq_file *m, int cpu, struct task_group ...@@ -94,8 +94,10 @@ static void print_cfs_group_stats(struct seq_file *m, int cpu, struct task_group
P(se->load.weight); P(se->load.weight);
#ifdef CONFIG_SMP #ifdef CONFIG_SMP
P(se->avg.runnable_avg_sum); P(se->avg.runnable_avg_sum);
P(se->avg.runnable_avg_period); P(se->avg.running_avg_sum);
P(se->avg.avg_period);
P(se->avg.load_avg_contrib); P(se->avg.load_avg_contrib);
P(se->avg.utilization_avg_contrib);
P(se->avg.decay_count); P(se->avg.decay_count);
#endif #endif
#undef PN #undef PN
...@@ -214,6 +216,8 @@ void print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq) ...@@ -214,6 +216,8 @@ void print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq)
cfs_rq->runnable_load_avg); cfs_rq->runnable_load_avg);
SEQ_printf(m, " .%-30s: %ld\n", "blocked_load_avg", SEQ_printf(m, " .%-30s: %ld\n", "blocked_load_avg",
cfs_rq->blocked_load_avg); cfs_rq->blocked_load_avg);
SEQ_printf(m, " .%-30s: %ld\n", "utilization_load_avg",
cfs_rq->utilization_load_avg);
#ifdef CONFIG_FAIR_GROUP_SCHED #ifdef CONFIG_FAIR_GROUP_SCHED
SEQ_printf(m, " .%-30s: %ld\n", "tg_load_contrib", SEQ_printf(m, " .%-30s: %ld\n", "tg_load_contrib",
cfs_rq->tg_load_contrib); cfs_rq->tg_load_contrib);
...@@ -636,8 +640,10 @@ void proc_sched_show_task(struct task_struct *p, struct seq_file *m) ...@@ -636,8 +640,10 @@ void proc_sched_show_task(struct task_struct *p, struct seq_file *m)
P(se.load.weight); P(se.load.weight);
#ifdef CONFIG_SMP #ifdef CONFIG_SMP
P(se.avg.runnable_avg_sum); P(se.avg.runnable_avg_sum);
P(se.avg.runnable_avg_period); P(se.avg.running_avg_sum);
P(se.avg.avg_period);
P(se.avg.load_avg_contrib); P(se.avg.load_avg_contrib);
P(se.avg.utilization_avg_contrib);
P(se.avg.decay_count); P(se.avg.decay_count);
#endif #endif
P(policy); P(policy);
......
...@@ -670,6 +670,7 @@ static int select_idle_sibling(struct task_struct *p, int cpu); ...@@ -670,6 +670,7 @@ static int select_idle_sibling(struct task_struct *p, int cpu);
static unsigned long task_h_load(struct task_struct *p); static unsigned long task_h_load(struct task_struct *p);
static inline void __update_task_entity_contrib(struct sched_entity *se); static inline void __update_task_entity_contrib(struct sched_entity *se);
static inline void __update_task_entity_utilization(struct sched_entity *se);
/* Give new task start runnable values to heavy its load in infant time */ /* Give new task start runnable values to heavy its load in infant time */
void init_task_runnable_average(struct task_struct *p) void init_task_runnable_average(struct task_struct *p)
...@@ -677,9 +678,10 @@ void init_task_runnable_average(struct task_struct *p) ...@@ -677,9 +678,10 @@ void init_task_runnable_average(struct task_struct *p)
u32 slice; u32 slice;
slice = sched_slice(task_cfs_rq(p), &p->se) >> 10; slice = sched_slice(task_cfs_rq(p), &p->se) >> 10;
p->se.avg.runnable_avg_sum = slice; p->se.avg.runnable_avg_sum = p->se.avg.running_avg_sum = slice;
p->se.avg.runnable_avg_period = slice; p->se.avg.avg_period = slice;
__update_task_entity_contrib(&p->se); __update_task_entity_contrib(&p->se);
__update_task_entity_utilization(&p->se);
} }
#else #else
void init_task_runnable_average(struct task_struct *p) void init_task_runnable_average(struct task_struct *p)
...@@ -1196,9 +1198,11 @@ static void task_numa_assign(struct task_numa_env *env, ...@@ -1196,9 +1198,11 @@ static void task_numa_assign(struct task_numa_env *env,
static bool load_too_imbalanced(long src_load, long dst_load, static bool load_too_imbalanced(long src_load, long dst_load,
struct task_numa_env *env) struct task_numa_env *env)
{ {
long imb, old_imb;
long orig_src_load, orig_dst_load;
long src_capacity, dst_capacity; long src_capacity, dst_capacity;
long orig_src_load;
long load_a, load_b;
long moved_load;
long imb;
/* /*
* The load is corrected for the CPU capacity available on each node. * The load is corrected for the CPU capacity available on each node.
...@@ -1211,30 +1215,39 @@ static bool load_too_imbalanced(long src_load, long dst_load, ...@@ -1211,30 +1215,39 @@ static bool load_too_imbalanced(long src_load, long dst_load,
dst_capacity = env->dst_stats.compute_capacity; dst_capacity = env->dst_stats.compute_capacity;
/* We care about the slope of the imbalance, not the direction. */ /* We care about the slope of the imbalance, not the direction. */
if (dst_load < src_load) load_a = dst_load;
swap(dst_load, src_load); load_b = src_load;
if (load_a < load_b)
swap(load_a, load_b);
/* Is the difference below the threshold? */ /* Is the difference below the threshold? */
imb = dst_load * src_capacity * 100 - imb = load_a * src_capacity * 100 -
src_load * dst_capacity * env->imbalance_pct; load_b * dst_capacity * env->imbalance_pct;
if (imb <= 0) if (imb <= 0)
return false; return false;
/* /*
* The imbalance is above the allowed threshold. * The imbalance is above the allowed threshold.
* Compare it with the old imbalance. * Allow a move that brings us closer to a balanced situation,
* without moving things past the point of balance.
*/ */
orig_src_load = env->src_stats.load; orig_src_load = env->src_stats.load;
orig_dst_load = env->dst_stats.load;
if (orig_dst_load < orig_src_load) /*
swap(orig_dst_load, orig_src_load); * In a task swap, there will be one load moving from src to dst,
* and another moving back. This is the net sum of both moves.
old_imb = orig_dst_load * src_capacity * 100 - * A simple task move will always have a positive value.
orig_src_load * dst_capacity * env->imbalance_pct; * Allow the move if it brings the system closer to a balanced
* situation, without crossing over the balance point.
*/
moved_load = orig_src_load - src_load;
/* Would this change make things worse? */ if (moved_load > 0)
return (imb > old_imb); /* Moving src -> dst. Did we overshoot balance? */
return src_load * dst_capacity < dst_load * src_capacity;
else
/* Moving dst -> src. Did we overshoot balance? */
return dst_load * src_capacity < src_load * dst_capacity;
} }
/* /*
...@@ -1675,7 +1688,7 @@ static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period) ...@@ -1675,7 +1688,7 @@ static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
*period = now - p->last_task_numa_placement; *period = now - p->last_task_numa_placement;
} else { } else {
delta = p->se.avg.runnable_avg_sum; delta = p->se.avg.runnable_avg_sum;
*period = p->se.avg.runnable_avg_period; *period = p->se.avg.avg_period;
} }
p->last_sum_exec_runtime = runtime; p->last_sum_exec_runtime = runtime;
...@@ -1765,6 +1778,8 @@ static int preferred_group_nid(struct task_struct *p, int nid) ...@@ -1765,6 +1778,8 @@ static int preferred_group_nid(struct task_struct *p, int nid)
} }
} }
/* Next round, evaluate the nodes within max_group. */ /* Next round, evaluate the nodes within max_group. */
if (!max_faults)
break;
nodes = max_group; nodes = max_group;
} }
return nid; return nid;
...@@ -2503,13 +2518,15 @@ static u32 __compute_runnable_contrib(u64 n) ...@@ -2503,13 +2518,15 @@ static u32 __compute_runnable_contrib(u64 n)
* load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... ) * load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
* = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}] * = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
*/ */
static __always_inline int __update_entity_runnable_avg(u64 now, static __always_inline int __update_entity_runnable_avg(u64 now, int cpu,
struct sched_avg *sa, struct sched_avg *sa,
int runnable) int runnable,
int running)
{ {
u64 delta, periods; u64 delta, periods;
u32 runnable_contrib; u32 runnable_contrib;
int delta_w, decayed = 0; int delta_w, decayed = 0;
unsigned long scale_freq = arch_scale_freq_capacity(NULL, cpu);
delta = now - sa->last_runnable_update; delta = now - sa->last_runnable_update;
/* /*
...@@ -2531,7 +2548,7 @@ static __always_inline int __update_entity_runnable_avg(u64 now, ...@@ -2531,7 +2548,7 @@ static __always_inline int __update_entity_runnable_avg(u64 now,
sa->last_runnable_update = now; sa->last_runnable_update = now;
/* delta_w is the amount already accumulated against our next period */ /* delta_w is the amount already accumulated against our next period */
delta_w = sa->runnable_avg_period % 1024; delta_w = sa->avg_period % 1024;
if (delta + delta_w >= 1024) { if (delta + delta_w >= 1024) {
/* period roll-over */ /* period roll-over */
decayed = 1; decayed = 1;
...@@ -2544,7 +2561,10 @@ static __always_inline int __update_entity_runnable_avg(u64 now, ...@@ -2544,7 +2561,10 @@ static __always_inline int __update_entity_runnable_avg(u64 now,
delta_w = 1024 - delta_w; delta_w = 1024 - delta_w;
if (runnable) if (runnable)
sa->runnable_avg_sum += delta_w; sa->runnable_avg_sum += delta_w;
sa->runnable_avg_period += delta_w; if (running)
sa->running_avg_sum += delta_w * scale_freq
>> SCHED_CAPACITY_SHIFT;
sa->avg_period += delta_w;
delta -= delta_w; delta -= delta_w;
...@@ -2554,20 +2574,28 @@ static __always_inline int __update_entity_runnable_avg(u64 now, ...@@ -2554,20 +2574,28 @@ static __always_inline int __update_entity_runnable_avg(u64 now,
sa->runnable_avg_sum = decay_load(sa->runnable_avg_sum, sa->runnable_avg_sum = decay_load(sa->runnable_avg_sum,
periods + 1); periods + 1);
sa->runnable_avg_period = decay_load(sa->runnable_avg_period, sa->running_avg_sum = decay_load(sa->running_avg_sum,
periods + 1);
sa->avg_period = decay_load(sa->avg_period,
periods + 1); periods + 1);
/* Efficiently calculate \sum (1..n_period) 1024*y^i */ /* Efficiently calculate \sum (1..n_period) 1024*y^i */
runnable_contrib = __compute_runnable_contrib(periods); runnable_contrib = __compute_runnable_contrib(periods);
if (runnable) if (runnable)
sa->runnable_avg_sum += runnable_contrib; sa->runnable_avg_sum += runnable_contrib;
sa->runnable_avg_period += runnable_contrib; if (running)
sa->running_avg_sum += runnable_contrib * scale_freq
>> SCHED_CAPACITY_SHIFT;
sa->avg_period += runnable_contrib;
} }
/* Remainder of delta accrued against u_0` */ /* Remainder of delta accrued against u_0` */
if (runnable) if (runnable)
sa->runnable_avg_sum += delta; sa->runnable_avg_sum += delta;
sa->runnable_avg_period += delta; if (running)
sa->running_avg_sum += delta * scale_freq
>> SCHED_CAPACITY_SHIFT;
sa->avg_period += delta;
return decayed; return decayed;
} }
...@@ -2584,6 +2612,8 @@ static inline u64 __synchronize_entity_decay(struct sched_entity *se) ...@@ -2584,6 +2612,8 @@ static inline u64 __synchronize_entity_decay(struct sched_entity *se)
return 0; return 0;
se->avg.load_avg_contrib = decay_load(se->avg.load_avg_contrib, decays); se->avg.load_avg_contrib = decay_load(se->avg.load_avg_contrib, decays);
se->avg.utilization_avg_contrib =
decay_load(se->avg.utilization_avg_contrib, decays);
return decays; return decays;
} }
...@@ -2619,7 +2649,7 @@ static inline void __update_tg_runnable_avg(struct sched_avg *sa, ...@@ -2619,7 +2649,7 @@ static inline void __update_tg_runnable_avg(struct sched_avg *sa,
/* The fraction of a cpu used by this cfs_rq */ /* The fraction of a cpu used by this cfs_rq */
contrib = div_u64((u64)sa->runnable_avg_sum << NICE_0_SHIFT, contrib = div_u64((u64)sa->runnable_avg_sum << NICE_0_SHIFT,
sa->runnable_avg_period + 1); sa->avg_period + 1);
contrib -= cfs_rq->tg_runnable_contrib; contrib -= cfs_rq->tg_runnable_contrib;
if (abs(contrib) > cfs_rq->tg_runnable_contrib / 64) { if (abs(contrib) > cfs_rq->tg_runnable_contrib / 64) {
...@@ -2672,7 +2702,8 @@ static inline void __update_group_entity_contrib(struct sched_entity *se) ...@@ -2672,7 +2702,8 @@ static inline void __update_group_entity_contrib(struct sched_entity *se)
static inline void update_rq_runnable_avg(struct rq *rq, int runnable) static inline void update_rq_runnable_avg(struct rq *rq, int runnable)
{ {
__update_entity_runnable_avg(rq_clock_task(rq), &rq->avg, runnable); __update_entity_runnable_avg(rq_clock_task(rq), cpu_of(rq), &rq->avg,
runnable, runnable);
__update_tg_runnable_avg(&rq->avg, &rq->cfs); __update_tg_runnable_avg(&rq->avg, &rq->cfs);
} }
#else /* CONFIG_FAIR_GROUP_SCHED */ #else /* CONFIG_FAIR_GROUP_SCHED */
...@@ -2690,7 +2721,7 @@ static inline void __update_task_entity_contrib(struct sched_entity *se) ...@@ -2690,7 +2721,7 @@ static inline void __update_task_entity_contrib(struct sched_entity *se)
/* avoid overflowing a 32-bit type w/ SCHED_LOAD_SCALE */ /* avoid overflowing a 32-bit type w/ SCHED_LOAD_SCALE */
contrib = se->avg.runnable_avg_sum * scale_load_down(se->load.weight); contrib = se->avg.runnable_avg_sum * scale_load_down(se->load.weight);
contrib /= (se->avg.runnable_avg_period + 1); contrib /= (se->avg.avg_period + 1);
se->avg.load_avg_contrib = scale_load(contrib); se->avg.load_avg_contrib = scale_load(contrib);
} }
...@@ -2709,6 +2740,30 @@ static long __update_entity_load_avg_contrib(struct sched_entity *se) ...@@ -2709,6 +2740,30 @@ static long __update_entity_load_avg_contrib(struct sched_entity *se)
return se->avg.load_avg_contrib - old_contrib; return se->avg.load_avg_contrib - old_contrib;
} }
static inline void __update_task_entity_utilization(struct sched_entity *se)
{
u32 contrib;
/* avoid overflowing a 32-bit type w/ SCHED_LOAD_SCALE */
contrib = se->avg.running_avg_sum * scale_load_down(SCHED_LOAD_SCALE);
contrib /= (se->avg.avg_period + 1);
se->avg.utilization_avg_contrib = scale_load(contrib);
}
static long __update_entity_utilization_avg_contrib(struct sched_entity *se)
{
long old_contrib = se->avg.utilization_avg_contrib;
if (entity_is_task(se))
__update_task_entity_utilization(se);
else
se->avg.utilization_avg_contrib =
group_cfs_rq(se)->utilization_load_avg;
return se->avg.utilization_avg_contrib - old_contrib;
}
static inline void subtract_blocked_load_contrib(struct cfs_rq *cfs_rq, static inline void subtract_blocked_load_contrib(struct cfs_rq *cfs_rq,
long load_contrib) long load_contrib)
{ {
...@@ -2725,7 +2780,8 @@ static inline void update_entity_load_avg(struct sched_entity *se, ...@@ -2725,7 +2780,8 @@ static inline void update_entity_load_avg(struct sched_entity *se,
int update_cfs_rq) int update_cfs_rq)
{ {
struct cfs_rq *cfs_rq = cfs_rq_of(se); struct cfs_rq *cfs_rq = cfs_rq_of(se);
long contrib_delta; long contrib_delta, utilization_delta;
int cpu = cpu_of(rq_of(cfs_rq));
u64 now; u64 now;
/* /*
...@@ -2737,18 +2793,22 @@ static inline void update_entity_load_avg(struct sched_entity *se, ...@@ -2737,18 +2793,22 @@ static inline void update_entity_load_avg(struct sched_entity *se,
else else
now = cfs_rq_clock_task(group_cfs_rq(se)); now = cfs_rq_clock_task(group_cfs_rq(se));
if (!__update_entity_runnable_avg(now, &se->avg, se->on_rq)) if (!__update_entity_runnable_avg(now, cpu, &se->avg, se->on_rq,
cfs_rq->curr == se))
return; return;
contrib_delta = __update_entity_load_avg_contrib(se); contrib_delta = __update_entity_load_avg_contrib(se);
utilization_delta = __update_entity_utilization_avg_contrib(se);
if (!update_cfs_rq) if (!update_cfs_rq)
return; return;
if (se->on_rq) if (se->on_rq) {
cfs_rq->runnable_load_avg += contrib_delta; cfs_rq->runnable_load_avg += contrib_delta;
else cfs_rq->utilization_load_avg += utilization_delta;
} else {
subtract_blocked_load_contrib(cfs_rq, -contrib_delta); subtract_blocked_load_contrib(cfs_rq, -contrib_delta);
}
} }
/* /*
...@@ -2823,6 +2883,7 @@ static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq, ...@@ -2823,6 +2883,7 @@ static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
} }
cfs_rq->runnable_load_avg += se->avg.load_avg_contrib; cfs_rq->runnable_load_avg += se->avg.load_avg_contrib;
cfs_rq->utilization_load_avg += se->avg.utilization_avg_contrib;
/* we force update consideration on load-balancer moves */ /* we force update consideration on load-balancer moves */
update_cfs_rq_blocked_load(cfs_rq, !wakeup); update_cfs_rq_blocked_load(cfs_rq, !wakeup);
} }
...@@ -2841,6 +2902,7 @@ static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq, ...@@ -2841,6 +2902,7 @@ static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
update_cfs_rq_blocked_load(cfs_rq, !sleep); update_cfs_rq_blocked_load(cfs_rq, !sleep);
cfs_rq->runnable_load_avg -= se->avg.load_avg_contrib; cfs_rq->runnable_load_avg -= se->avg.load_avg_contrib;
cfs_rq->utilization_load_avg -= se->avg.utilization_avg_contrib;
if (sleep) { if (sleep) {
cfs_rq->blocked_load_avg += se->avg.load_avg_contrib; cfs_rq->blocked_load_avg += se->avg.load_avg_contrib;
se->avg.decay_count = atomic64_read(&cfs_rq->decay_counter); se->avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
...@@ -3178,6 +3240,7 @@ set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) ...@@ -3178,6 +3240,7 @@ set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
*/ */
update_stats_wait_end(cfs_rq, se); update_stats_wait_end(cfs_rq, se);
__dequeue_entity(cfs_rq, se); __dequeue_entity(cfs_rq, se);
update_entity_load_avg(se, 1);
} }
update_stats_curr_start(cfs_rq, se); update_stats_curr_start(cfs_rq, se);
...@@ -4304,6 +4367,11 @@ static unsigned long capacity_of(int cpu) ...@@ -4304,6 +4367,11 @@ static unsigned long capacity_of(int cpu)
return cpu_rq(cpu)->cpu_capacity; return cpu_rq(cpu)->cpu_capacity;
} }
static unsigned long capacity_orig_of(int cpu)
{
return cpu_rq(cpu)->cpu_capacity_orig;
}
static unsigned long cpu_avg_load_per_task(int cpu) static unsigned long cpu_avg_load_per_task(int cpu)
{ {
struct rq *rq = cpu_rq(cpu); struct rq *rq = cpu_rq(cpu);
...@@ -4717,6 +4785,33 @@ static int select_idle_sibling(struct task_struct *p, int target) ...@@ -4717,6 +4785,33 @@ static int select_idle_sibling(struct task_struct *p, int target)
done: done:
return target; return target;
} }
/*
* get_cpu_usage returns the amount of capacity of a CPU that is used by CFS
* tasks. The unit of the return value must be the one of capacity so we can
* compare the usage with the capacity of the CPU that is available for CFS
* task (ie cpu_capacity).
* cfs.utilization_load_avg is the sum of running time of runnable tasks on a
* CPU. It represents the amount of utilization of a CPU in the range
* [0..SCHED_LOAD_SCALE]. The usage of a CPU can't be higher than the full
* capacity of the CPU because it's about the running time on this CPU.
* Nevertheless, cfs.utilization_load_avg can be higher than SCHED_LOAD_SCALE
* because of unfortunate rounding in avg_period and running_load_avg or just
* after migrating tasks until the average stabilizes with the new running
* time. So we need to check that the usage stays into the range
* [0..cpu_capacity_orig] and cap if necessary.
* Without capping the usage, a group could be seen as overloaded (CPU0 usage
* at 121% + CPU1 usage at 80%) whereas CPU1 has 20% of available capacity
*/
static int get_cpu_usage(int cpu)
{
unsigned long usage = cpu_rq(cpu)->cfs.utilization_load_avg;
unsigned long capacity = capacity_orig_of(cpu);
if (usage >= SCHED_LOAD_SCALE)
return capacity;
return (usage * capacity) >> SCHED_LOAD_SHIFT;
}
/* /*
* select_task_rq_fair: Select target runqueue for the waking task in domains * select_task_rq_fair: Select target runqueue for the waking task in domains
...@@ -5843,12 +5938,12 @@ struct sg_lb_stats { ...@@ -5843,12 +5938,12 @@ struct sg_lb_stats {
unsigned long sum_weighted_load; /* Weighted load of group's tasks */ unsigned long sum_weighted_load; /* Weighted load of group's tasks */
unsigned long load_per_task; unsigned long load_per_task;
unsigned long group_capacity; unsigned long group_capacity;
unsigned long group_usage; /* Total usage of the group */
unsigned int sum_nr_running; /* Nr tasks running in the group */ unsigned int sum_nr_running; /* Nr tasks running in the group */
unsigned int group_capacity_factor;
unsigned int idle_cpus; unsigned int idle_cpus;
unsigned int group_weight; unsigned int group_weight;
enum group_type group_type; enum group_type group_type;
int group_has_free_capacity; int group_no_capacity;
#ifdef CONFIG_NUMA_BALANCING #ifdef CONFIG_NUMA_BALANCING
unsigned int nr_numa_running; unsigned int nr_numa_running;
unsigned int nr_preferred_running; unsigned int nr_preferred_running;
...@@ -5919,16 +6014,6 @@ static inline int get_sd_load_idx(struct sched_domain *sd, ...@@ -5919,16 +6014,6 @@ static inline int get_sd_load_idx(struct sched_domain *sd,
return load_idx; return load_idx;
} }
static unsigned long default_scale_capacity(struct sched_domain *sd, int cpu)
{
return SCHED_CAPACITY_SCALE;
}
unsigned long __weak arch_scale_freq_capacity(struct sched_domain *sd, int cpu)
{
return default_scale_capacity(sd, cpu);
}
static unsigned long default_scale_cpu_capacity(struct sched_domain *sd, int cpu) static unsigned long default_scale_cpu_capacity(struct sched_domain *sd, int cpu)
{ {
if ((sd->flags & SD_SHARE_CPUCAPACITY) && (sd->span_weight > 1)) if ((sd->flags & SD_SHARE_CPUCAPACITY) && (sd->span_weight > 1))
...@@ -5945,7 +6030,7 @@ unsigned long __weak arch_scale_cpu_capacity(struct sched_domain *sd, int cpu) ...@@ -5945,7 +6030,7 @@ unsigned long __weak arch_scale_cpu_capacity(struct sched_domain *sd, int cpu)
static unsigned long scale_rt_capacity(int cpu) static unsigned long scale_rt_capacity(int cpu)
{ {
struct rq *rq = cpu_rq(cpu); struct rq *rq = cpu_rq(cpu);
u64 total, available, age_stamp, avg; u64 total, used, age_stamp, avg;
s64 delta; s64 delta;
/* /*
...@@ -5961,19 +6046,12 @@ static unsigned long scale_rt_capacity(int cpu) ...@@ -5961,19 +6046,12 @@ static unsigned long scale_rt_capacity(int cpu)
total = sched_avg_period() + delta; total = sched_avg_period() + delta;
if (unlikely(total < avg)) { used = div_u64(avg, total);
/* Ensures that capacity won't end up being negative */
available = 0;
} else {
available = total - avg;
}
if (unlikely((s64)total < SCHED_CAPACITY_SCALE)) if (likely(used < SCHED_CAPACITY_SCALE))
total = SCHED_CAPACITY_SCALE; return SCHED_CAPACITY_SCALE - used;
total >>= SCHED_CAPACITY_SHIFT; return 1;
return div_u64(available, total);
} }
static void update_cpu_capacity(struct sched_domain *sd, int cpu) static void update_cpu_capacity(struct sched_domain *sd, int cpu)
...@@ -5988,14 +6066,7 @@ static void update_cpu_capacity(struct sched_domain *sd, int cpu) ...@@ -5988,14 +6066,7 @@ static void update_cpu_capacity(struct sched_domain *sd, int cpu)
capacity >>= SCHED_CAPACITY_SHIFT; capacity >>= SCHED_CAPACITY_SHIFT;
sdg->sgc->capacity_orig = capacity; cpu_rq(cpu)->cpu_capacity_orig = capacity;
if (sched_feat(ARCH_CAPACITY))
capacity *= arch_scale_freq_capacity(sd, cpu);
else
capacity *= default_scale_capacity(sd, cpu);
capacity >>= SCHED_CAPACITY_SHIFT;
capacity *= scale_rt_capacity(cpu); capacity *= scale_rt_capacity(cpu);
capacity >>= SCHED_CAPACITY_SHIFT; capacity >>= SCHED_CAPACITY_SHIFT;
...@@ -6011,7 +6082,7 @@ void update_group_capacity(struct sched_domain *sd, int cpu) ...@@ -6011,7 +6082,7 @@ void update_group_capacity(struct sched_domain *sd, int cpu)
{ {
struct sched_domain *child = sd->child; struct sched_domain *child = sd->child;
struct sched_group *group, *sdg = sd->groups; struct sched_group *group, *sdg = sd->groups;
unsigned long capacity, capacity_orig; unsigned long capacity;
unsigned long interval; unsigned long interval;
interval = msecs_to_jiffies(sd->balance_interval); interval = msecs_to_jiffies(sd->balance_interval);
...@@ -6023,7 +6094,7 @@ void update_group_capacity(struct sched_domain *sd, int cpu) ...@@ -6023,7 +6094,7 @@ void update_group_capacity(struct sched_domain *sd, int cpu)
return; return;
} }
capacity_orig = capacity = 0; capacity = 0;
if (child->flags & SD_OVERLAP) { if (child->flags & SD_OVERLAP) {
/* /*
...@@ -6043,19 +6114,15 @@ void update_group_capacity(struct sched_domain *sd, int cpu) ...@@ -6043,19 +6114,15 @@ void update_group_capacity(struct sched_domain *sd, int cpu)
* Use capacity_of(), which is set irrespective of domains * Use capacity_of(), which is set irrespective of domains
* in update_cpu_capacity(). * in update_cpu_capacity().
* *
* This avoids capacity/capacity_orig from being 0 and * This avoids capacity from being 0 and
* causing divide-by-zero issues on boot. * causing divide-by-zero issues on boot.
*
* Runtime updates will correct capacity_orig.
*/ */
if (unlikely(!rq->sd)) { if (unlikely(!rq->sd)) {
capacity_orig += capacity_of(cpu);
capacity += capacity_of(cpu); capacity += capacity_of(cpu);
continue; continue;
} }
sgc = rq->sd->groups->sgc; sgc = rq->sd->groups->sgc;
capacity_orig += sgc->capacity_orig;
capacity += sgc->capacity; capacity += sgc->capacity;
} }
} else { } else {
...@@ -6066,39 +6133,24 @@ void update_group_capacity(struct sched_domain *sd, int cpu) ...@@ -6066,39 +6133,24 @@ void update_group_capacity(struct sched_domain *sd, int cpu)
group = child->groups; group = child->groups;
do { do {
capacity_orig += group->sgc->capacity_orig;
capacity += group->sgc->capacity; capacity += group->sgc->capacity;
group = group->next; group = group->next;
} while (group != child->groups); } while (group != child->groups);
} }
sdg->sgc->capacity_orig = capacity_orig;
sdg->sgc->capacity = capacity; sdg->sgc->capacity = capacity;
} }
/* /*
* Try and fix up capacity for tiny siblings, this is needed when * Check whether the capacity of the rq has been noticeably reduced by side
* things like SD_ASYM_PACKING need f_b_g to select another sibling * activity. The imbalance_pct is used for the threshold.
* which on its own isn't powerful enough. * Return true is the capacity is reduced
*
* See update_sd_pick_busiest() and check_asym_packing().
*/ */
static inline int static inline int
fix_small_capacity(struct sched_domain *sd, struct sched_group *group) check_cpu_capacity(struct rq *rq, struct sched_domain *sd)
{ {
/* return ((rq->cpu_capacity * sd->imbalance_pct) <
* Only siblings can have significantly less than SCHED_CAPACITY_SCALE (rq->cpu_capacity_orig * 100));
*/
if (!(sd->flags & SD_SHARE_CPUCAPACITY))
return 0;
/*
* If ~90% of the cpu_capacity is still there, we're good.
*/
if (group->sgc->capacity * 32 > group->sgc->capacity_orig * 29)
return 1;
return 0;
} }
/* /*
...@@ -6136,37 +6188,56 @@ static inline int sg_imbalanced(struct sched_group *group) ...@@ -6136,37 +6188,56 @@ static inline int sg_imbalanced(struct sched_group *group)
} }
/* /*
* Compute the group capacity factor. * group_has_capacity returns true if the group has spare capacity that could
* * be used by some tasks.
* Avoid the issue where N*frac(smt_capacity) >= 1 creates 'phantom' cores by * We consider that a group has spare capacity if the * number of task is
* first dividing out the smt factor and computing the actual number of cores * smaller than the number of CPUs or if the usage is lower than the available
* and limit unit capacity with that. * capacity for CFS tasks.
* For the latter, we use a threshold to stabilize the state, to take into
* account the variance of the tasks' load and to return true if the available
* capacity in meaningful for the load balancer.
* As an example, an available capacity of 1% can appear but it doesn't make
* any benefit for the load balance.
*/ */
static inline int sg_capacity_factor(struct lb_env *env, struct sched_group *group) static inline bool
group_has_capacity(struct lb_env *env, struct sg_lb_stats *sgs)
{ {
unsigned int capacity_factor, smt, cpus; if (sgs->sum_nr_running < sgs->group_weight)
unsigned int capacity, capacity_orig; return true;
capacity = group->sgc->capacity; if ((sgs->group_capacity * 100) >
capacity_orig = group->sgc->capacity_orig; (sgs->group_usage * env->sd->imbalance_pct))
cpus = group->group_weight; return true;
/* smt := ceil(cpus / capacity), assumes: 1 < smt_capacity < 2 */ return false;
smt = DIV_ROUND_UP(SCHED_CAPACITY_SCALE * cpus, capacity_orig); }
capacity_factor = cpus / smt; /* cores */
/*
* group_is_overloaded returns true if the group has more tasks than it can
* handle.
* group_is_overloaded is not equals to !group_has_capacity because a group
* with the exact right number of tasks, has no more spare capacity but is not
* overloaded so both group_has_capacity and group_is_overloaded return
* false.
*/
static inline bool
group_is_overloaded(struct lb_env *env, struct sg_lb_stats *sgs)
{
if (sgs->sum_nr_running <= sgs->group_weight)
return false;
capacity_factor = min_t(unsigned, if ((sgs->group_capacity * 100) <
capacity_factor, DIV_ROUND_CLOSEST(capacity, SCHED_CAPACITY_SCALE)); (sgs->group_usage * env->sd->imbalance_pct))
if (!capacity_factor) return true;
capacity_factor = fix_small_capacity(env->sd, group);
return capacity_factor; return false;
} }
static enum group_type static enum group_type group_classify(struct lb_env *env,
group_classify(struct sched_group *group, struct sg_lb_stats *sgs) struct sched_group *group,
struct sg_lb_stats *sgs)
{ {
if (sgs->sum_nr_running > sgs->group_capacity_factor) if (sgs->group_no_capacity)
return group_overloaded; return group_overloaded;
if (sg_imbalanced(group)) if (sg_imbalanced(group))
...@@ -6204,6 +6275,7 @@ static inline void update_sg_lb_stats(struct lb_env *env, ...@@ -6204,6 +6275,7 @@ static inline void update_sg_lb_stats(struct lb_env *env,
load = source_load(i, load_idx); load = source_load(i, load_idx);
sgs->group_load += load; sgs->group_load += load;
sgs->group_usage += get_cpu_usage(i);
sgs->sum_nr_running += rq->cfs.h_nr_running; sgs->sum_nr_running += rq->cfs.h_nr_running;
if (rq->nr_running > 1) if (rq->nr_running > 1)
...@@ -6226,11 +6298,9 @@ static inline void update_sg_lb_stats(struct lb_env *env, ...@@ -6226,11 +6298,9 @@ static inline void update_sg_lb_stats(struct lb_env *env,
sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running; sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
sgs->group_weight = group->group_weight; sgs->group_weight = group->group_weight;
sgs->group_capacity_factor = sg_capacity_factor(env, group);
sgs->group_type = group_classify(group, sgs);
if (sgs->group_capacity_factor > sgs->sum_nr_running) sgs->group_no_capacity = group_is_overloaded(env, sgs);
sgs->group_has_free_capacity = 1; sgs->group_type = group_classify(env, group, sgs);
} }
/** /**
...@@ -6352,18 +6422,19 @@ static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sd ...@@ -6352,18 +6422,19 @@ static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sd
/* /*
* In case the child domain prefers tasks go to siblings * In case the child domain prefers tasks go to siblings
* first, lower the sg capacity factor to one so that we'll try * first, lower the sg capacity so that we'll try
* and move all the excess tasks away. We lower the capacity * and move all the excess tasks away. We lower the capacity
* of a group only if the local group has the capacity to fit * of a group only if the local group has the capacity to fit
* these excess tasks, i.e. nr_running < group_capacity_factor. The * these excess tasks. The extra check prevents the case where
* extra check prevents the case where you always pull from the * you always pull from the heaviest group when it is already
* heaviest group when it is already under-utilized (possible * under-utilized (possible with a large weight task outweighs
* with a large weight task outweighs the tasks on the system). * the tasks on the system).
*/ */
if (prefer_sibling && sds->local && if (prefer_sibling && sds->local &&
sds->local_stat.group_has_free_capacity) { group_has_capacity(env, &sds->local_stat) &&
sgs->group_capacity_factor = min(sgs->group_capacity_factor, 1U); (sgs->sum_nr_running > 1)) {
sgs->group_type = group_classify(sg, sgs); sgs->group_no_capacity = 1;
sgs->group_type = group_overloaded;
} }
if (update_sd_pick_busiest(env, sds, sg, sgs)) { if (update_sd_pick_busiest(env, sds, sg, sgs)) {
...@@ -6543,11 +6614,12 @@ static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *s ...@@ -6543,11 +6614,12 @@ static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *s
*/ */
if (busiest->group_type == group_overloaded && if (busiest->group_type == group_overloaded &&
local->group_type == group_overloaded) { local->group_type == group_overloaded) {
load_above_capacity = load_above_capacity = busiest->sum_nr_running *
(busiest->sum_nr_running - busiest->group_capacity_factor); SCHED_LOAD_SCALE;
if (load_above_capacity > busiest->group_capacity)
load_above_capacity *= (SCHED_LOAD_SCALE * SCHED_CAPACITY_SCALE); load_above_capacity -= busiest->group_capacity;
load_above_capacity /= busiest->group_capacity; else
load_above_capacity = ~0UL;
} }
/* /*
...@@ -6610,6 +6682,7 @@ static struct sched_group *find_busiest_group(struct lb_env *env) ...@@ -6610,6 +6682,7 @@ static struct sched_group *find_busiest_group(struct lb_env *env)
local = &sds.local_stat; local = &sds.local_stat;
busiest = &sds.busiest_stat; busiest = &sds.busiest_stat;
/* ASYM feature bypasses nice load balance check */
if ((env->idle == CPU_IDLE || env->idle == CPU_NEWLY_IDLE) && if ((env->idle == CPU_IDLE || env->idle == CPU_NEWLY_IDLE) &&
check_asym_packing(env, &sds)) check_asym_packing(env, &sds))
return sds.busiest; return sds.busiest;
...@@ -6630,8 +6703,8 @@ static struct sched_group *find_busiest_group(struct lb_env *env) ...@@ -6630,8 +6703,8 @@ static struct sched_group *find_busiest_group(struct lb_env *env)
goto force_balance; goto force_balance;
/* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */ /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
if (env->idle == CPU_NEWLY_IDLE && local->group_has_free_capacity && if (env->idle == CPU_NEWLY_IDLE && group_has_capacity(env, local) &&
!busiest->group_has_free_capacity) busiest->group_no_capacity)
goto force_balance; goto force_balance;
/* /*
...@@ -6690,7 +6763,7 @@ static struct rq *find_busiest_queue(struct lb_env *env, ...@@ -6690,7 +6763,7 @@ static struct rq *find_busiest_queue(struct lb_env *env,
int i; int i;
for_each_cpu_and(i, sched_group_cpus(group), env->cpus) { for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
unsigned long capacity, capacity_factor, wl; unsigned long capacity, wl;
enum fbq_type rt; enum fbq_type rt;
rq = cpu_rq(i); rq = cpu_rq(i);
...@@ -6719,9 +6792,6 @@ static struct rq *find_busiest_queue(struct lb_env *env, ...@@ -6719,9 +6792,6 @@ static struct rq *find_busiest_queue(struct lb_env *env,
continue; continue;
capacity = capacity_of(i); capacity = capacity_of(i);
capacity_factor = DIV_ROUND_CLOSEST(capacity, SCHED_CAPACITY_SCALE);
if (!capacity_factor)
capacity_factor = fix_small_capacity(env->sd, group);
wl = weighted_cpuload(i); wl = weighted_cpuload(i);
...@@ -6729,7 +6799,9 @@ static struct rq *find_busiest_queue(struct lb_env *env, ...@@ -6729,7 +6799,9 @@ static struct rq *find_busiest_queue(struct lb_env *env,
* When comparing with imbalance, use weighted_cpuload() * When comparing with imbalance, use weighted_cpuload()
* which is not scaled with the cpu capacity. * which is not scaled with the cpu capacity.
*/ */
if (capacity_factor && rq->nr_running == 1 && wl > env->imbalance)
if (rq->nr_running == 1 && wl > env->imbalance &&
!check_cpu_capacity(rq, env->sd))
continue; continue;
/* /*
...@@ -6777,6 +6849,19 @@ static int need_active_balance(struct lb_env *env) ...@@ -6777,6 +6849,19 @@ static int need_active_balance(struct lb_env *env)
return 1; return 1;
} }
/*
* The dst_cpu is idle and the src_cpu CPU has only 1 CFS task.
* It's worth migrating the task if the src_cpu's capacity is reduced
* because of other sched_class or IRQs if more capacity stays
* available on dst_cpu.
*/
if ((env->idle != CPU_NOT_IDLE) &&
(env->src_rq->cfs.h_nr_running == 1)) {
if ((check_cpu_capacity(env->src_rq, sd)) &&
(capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100))
return 1;
}
return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2); return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
} }
...@@ -6876,6 +6961,9 @@ static int load_balance(int this_cpu, struct rq *this_rq, ...@@ -6876,6 +6961,9 @@ static int load_balance(int this_cpu, struct rq *this_rq,
schedstat_add(sd, lb_imbalance[idle], env.imbalance); schedstat_add(sd, lb_imbalance[idle], env.imbalance);
env.src_cpu = busiest->cpu;
env.src_rq = busiest;
ld_moved = 0; ld_moved = 0;
if (busiest->nr_running > 1) { if (busiest->nr_running > 1) {
/* /*
...@@ -6885,8 +6973,6 @@ static int load_balance(int this_cpu, struct rq *this_rq, ...@@ -6885,8 +6973,6 @@ static int load_balance(int this_cpu, struct rq *this_rq,
* correctly treated as an imbalance. * correctly treated as an imbalance.
*/ */
env.flags |= LBF_ALL_PINNED; env.flags |= LBF_ALL_PINNED;
env.src_cpu = busiest->cpu;
env.src_rq = busiest;
env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running); env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running);
more_balance: more_balance:
...@@ -7586,22 +7672,25 @@ static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) ...@@ -7586,22 +7672,25 @@ static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
/* /*
* Current heuristic for kicking the idle load balancer in the presence * Current heuristic for kicking the idle load balancer in the presence
* of an idle cpu is the system. * of an idle cpu in the system.
* - This rq has more than one task. * - This rq has more than one task.
* - At any scheduler domain level, this cpu's scheduler group has multiple * - This rq has at least one CFS task and the capacity of the CPU is
* busy cpu's exceeding the group's capacity. * significantly reduced because of RT tasks or IRQs.
* - At parent of LLC scheduler domain level, this cpu's scheduler group has
* multiple busy cpu.
* - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler * - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
* domain span are idle. * domain span are idle.
*/ */
static inline int nohz_kick_needed(struct rq *rq) static inline bool nohz_kick_needed(struct rq *rq)
{ {
unsigned long now = jiffies; unsigned long now = jiffies;
struct sched_domain *sd; struct sched_domain *sd;
struct sched_group_capacity *sgc; struct sched_group_capacity *sgc;
int nr_busy, cpu = rq->cpu; int nr_busy, cpu = rq->cpu;
bool kick = false;
if (unlikely(rq->idle_balance)) if (unlikely(rq->idle_balance))
return 0; return false;
/* /*
* We may be recently in ticked or tickless idle mode. At the first * We may be recently in ticked or tickless idle mode. At the first
...@@ -7615,38 +7704,46 @@ static inline int nohz_kick_needed(struct rq *rq) ...@@ -7615,38 +7704,46 @@ static inline int nohz_kick_needed(struct rq *rq)
* balancing. * balancing.
*/ */
if (likely(!atomic_read(&nohz.nr_cpus))) if (likely(!atomic_read(&nohz.nr_cpus)))
return 0; return false;
if (time_before(now, nohz.next_balance)) if (time_before(now, nohz.next_balance))
return 0; return false;
if (rq->nr_running >= 2) if (rq->nr_running >= 2)
goto need_kick; return true;
rcu_read_lock(); rcu_read_lock();
sd = rcu_dereference(per_cpu(sd_busy, cpu)); sd = rcu_dereference(per_cpu(sd_busy, cpu));
if (sd) { if (sd) {
sgc = sd->groups->sgc; sgc = sd->groups->sgc;
nr_busy = atomic_read(&sgc->nr_busy_cpus); nr_busy = atomic_read(&sgc->nr_busy_cpus);
if (nr_busy > 1) if (nr_busy > 1) {
goto need_kick_unlock; kick = true;
goto unlock;
}
} }
sd = rcu_dereference(per_cpu(sd_asym, cpu)); sd = rcu_dereference(rq->sd);
if (sd) {
if ((rq->cfs.h_nr_running >= 1) &&
check_cpu_capacity(rq, sd)) {
kick = true;
goto unlock;
}
}
sd = rcu_dereference(per_cpu(sd_asym, cpu));
if (sd && (cpumask_first_and(nohz.idle_cpus_mask, if (sd && (cpumask_first_and(nohz.idle_cpus_mask,
sched_domain_span(sd)) < cpu)) sched_domain_span(sd)) < cpu)) {
goto need_kick_unlock; kick = true;
goto unlock;
rcu_read_unlock(); }
return 0;
need_kick_unlock: unlock:
rcu_read_unlock(); rcu_read_unlock();
need_kick: return kick;
return 1;
} }
#else #else
static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) { } static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) { }
...@@ -7662,14 +7759,16 @@ static void run_rebalance_domains(struct softirq_action *h) ...@@ -7662,14 +7759,16 @@ static void run_rebalance_domains(struct softirq_action *h)
enum cpu_idle_type idle = this_rq->idle_balance ? enum cpu_idle_type idle = this_rq->idle_balance ?
CPU_IDLE : CPU_NOT_IDLE; CPU_IDLE : CPU_NOT_IDLE;
rebalance_domains(this_rq, idle);
/* /*
* If this cpu has a pending nohz_balance_kick, then do the * If this cpu has a pending nohz_balance_kick, then do the
* balancing on behalf of the other idle cpus whose ticks are * balancing on behalf of the other idle cpus whose ticks are
* stopped. * stopped. Do nohz_idle_balance *before* rebalance_domains to
* give the idle cpus a chance to load balance. Else we may
* load balance only within the local sched_domain hierarchy
* and abort nohz_idle_balance altogether if we pull some load.
*/ */
nohz_idle_balance(this_rq, idle); nohz_idle_balance(this_rq, idle);
rebalance_domains(this_rq, idle);
} }
/* /*
......
...@@ -56,6 +56,19 @@ SCHED_FEAT(NONTASK_CAPACITY, true) ...@@ -56,6 +56,19 @@ SCHED_FEAT(NONTASK_CAPACITY, true)
*/ */
SCHED_FEAT(TTWU_QUEUE, true) SCHED_FEAT(TTWU_QUEUE, true)
#ifdef HAVE_RT_PUSH_IPI
/*
* In order to avoid a thundering herd attack of CPUs that are
* lowering their priorities at the same time, and there being
* a single CPU that has an RT task that can migrate and is waiting
* to run, where the other CPUs will try to take that CPUs
* rq lock and possibly create a large contention, sending an
* IPI to that CPU and let that CPU push the RT task to where
* it should go may be a better scenario.
*/
SCHED_FEAT(RT_PUSH_IPI, true)
#endif
SCHED_FEAT(FORCE_SD_OVERLAP, false) SCHED_FEAT(FORCE_SD_OVERLAP, false)
SCHED_FEAT(RT_RUNTIME_SHARE, true) SCHED_FEAT(RT_RUNTIME_SHARE, true)
SCHED_FEAT(LB_MIN, false) SCHED_FEAT(LB_MIN, false)
......
...@@ -6,6 +6,7 @@ ...@@ -6,6 +6,7 @@
#include "sched.h" #include "sched.h"
#include <linux/slab.h> #include <linux/slab.h>
#include <linux/irq_work.h>
int sched_rr_timeslice = RR_TIMESLICE; int sched_rr_timeslice = RR_TIMESLICE;
...@@ -59,7 +60,11 @@ static void start_rt_bandwidth(struct rt_bandwidth *rt_b) ...@@ -59,7 +60,11 @@ static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
raw_spin_unlock(&rt_b->rt_runtime_lock); raw_spin_unlock(&rt_b->rt_runtime_lock);
} }
void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq) #ifdef CONFIG_SMP
static void push_irq_work_func(struct irq_work *work);
#endif
void init_rt_rq(struct rt_rq *rt_rq)
{ {
struct rt_prio_array *array; struct rt_prio_array *array;
int i; int i;
...@@ -78,7 +83,14 @@ void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq) ...@@ -78,7 +83,14 @@ void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
rt_rq->rt_nr_migratory = 0; rt_rq->rt_nr_migratory = 0;
rt_rq->overloaded = 0; rt_rq->overloaded = 0;
plist_head_init(&rt_rq->pushable_tasks); plist_head_init(&rt_rq->pushable_tasks);
#ifdef HAVE_RT_PUSH_IPI
rt_rq->push_flags = 0;
rt_rq->push_cpu = nr_cpu_ids;
raw_spin_lock_init(&rt_rq->push_lock);
init_irq_work(&rt_rq->push_work, push_irq_work_func);
#endif #endif
#endif /* CONFIG_SMP */
/* We start is dequeued state, because no RT tasks are queued */ /* We start is dequeued state, because no RT tasks are queued */
rt_rq->rt_queued = 0; rt_rq->rt_queued = 0;
...@@ -193,7 +205,7 @@ int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent) ...@@ -193,7 +205,7 @@ int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
if (!rt_se) if (!rt_se)
goto err_free_rq; goto err_free_rq;
init_rt_rq(rt_rq, cpu_rq(i)); init_rt_rq(rt_rq);
rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime; rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
init_tg_rt_entry(tg, rt_rq, rt_se, i, parent->rt_se[i]); init_tg_rt_entry(tg, rt_rq, rt_se, i, parent->rt_se[i]);
} }
...@@ -1778,6 +1790,164 @@ static void push_rt_tasks(struct rq *rq) ...@@ -1778,6 +1790,164 @@ static void push_rt_tasks(struct rq *rq)
; ;
} }
#ifdef HAVE_RT_PUSH_IPI
/*
* The search for the next cpu always starts at rq->cpu and ends
* when we reach rq->cpu again. It will never return rq->cpu.
* This returns the next cpu to check, or nr_cpu_ids if the loop
* is complete.
*
* rq->rt.push_cpu holds the last cpu returned by this function,
* or if this is the first instance, it must hold rq->cpu.
*/
static int rto_next_cpu(struct rq *rq)
{
int prev_cpu = rq->rt.push_cpu;
int cpu;
cpu = cpumask_next(prev_cpu, rq->rd->rto_mask);
/*
* If the previous cpu is less than the rq's CPU, then it already
* passed the end of the mask, and has started from the beginning.
* We end if the next CPU is greater or equal to rq's CPU.
*/
if (prev_cpu < rq->cpu) {
if (cpu >= rq->cpu)
return nr_cpu_ids;
} else if (cpu >= nr_cpu_ids) {
/*
* We passed the end of the mask, start at the beginning.
* If the result is greater or equal to the rq's CPU, then
* the loop is finished.
*/
cpu = cpumask_first(rq->rd->rto_mask);
if (cpu >= rq->cpu)
return nr_cpu_ids;
}
rq->rt.push_cpu = cpu;
/* Return cpu to let the caller know if the loop is finished or not */
return cpu;
}
static int find_next_push_cpu(struct rq *rq)
{
struct rq *next_rq;
int cpu;
while (1) {
cpu = rto_next_cpu(rq);
if (cpu >= nr_cpu_ids)
break;
next_rq = cpu_rq(cpu);
/* Make sure the next rq can push to this rq */
if (next_rq->rt.highest_prio.next < rq->rt.highest_prio.curr)
break;
}
return cpu;
}
#define RT_PUSH_IPI_EXECUTING 1
#define RT_PUSH_IPI_RESTART 2
static void tell_cpu_to_push(struct rq *rq)
{
int cpu;
if (rq->rt.push_flags & RT_PUSH_IPI_EXECUTING) {
raw_spin_lock(&rq->rt.push_lock);
/* Make sure it's still executing */
if (rq->rt.push_flags & RT_PUSH_IPI_EXECUTING) {
/*
* Tell the IPI to restart the loop as things have
* changed since it started.
*/
rq->rt.push_flags |= RT_PUSH_IPI_RESTART;
raw_spin_unlock(&rq->rt.push_lock);
return;
}
raw_spin_unlock(&rq->rt.push_lock);
}
/* When here, there's no IPI going around */
rq->rt.push_cpu = rq->cpu;
cpu = find_next_push_cpu(rq);
if (cpu >= nr_cpu_ids)
return;
rq->rt.push_flags = RT_PUSH_IPI_EXECUTING;
irq_work_queue_on(&rq->rt.push_work, cpu);
}
/* Called from hardirq context */
static void try_to_push_tasks(void *arg)
{
struct rt_rq *rt_rq = arg;
struct rq *rq, *src_rq;
int this_cpu;
int cpu;
this_cpu = rt_rq->push_cpu;
/* Paranoid check */
BUG_ON(this_cpu != smp_processor_id());
rq = cpu_rq(this_cpu);
src_rq = rq_of_rt_rq(rt_rq);
again:
if (has_pushable_tasks(rq)) {
raw_spin_lock(&rq->lock);
push_rt_task(rq);
raw_spin_unlock(&rq->lock);
}
/* Pass the IPI to the next rt overloaded queue */
raw_spin_lock(&rt_rq->push_lock);
/*
* If the source queue changed since the IPI went out,
* we need to restart the search from that CPU again.
*/
if (rt_rq->push_flags & RT_PUSH_IPI_RESTART) {
rt_rq->push_flags &= ~RT_PUSH_IPI_RESTART;
rt_rq->push_cpu = src_rq->cpu;
}
cpu = find_next_push_cpu(src_rq);
if (cpu >= nr_cpu_ids)
rt_rq->push_flags &= ~RT_PUSH_IPI_EXECUTING;
raw_spin_unlock(&rt_rq->push_lock);
if (cpu >= nr_cpu_ids)
return;
/*
* It is possible that a restart caused this CPU to be
* chosen again. Don't bother with an IPI, just see if we
* have more to push.
*/
if (unlikely(cpu == rq->cpu))
goto again;
/* Try the next RT overloaded CPU */
irq_work_queue_on(&rt_rq->push_work, cpu);
}
static void push_irq_work_func(struct irq_work *work)
{
struct rt_rq *rt_rq = container_of(work, struct rt_rq, push_work);
try_to_push_tasks(rt_rq);
}
#endif /* HAVE_RT_PUSH_IPI */
static int pull_rt_task(struct rq *this_rq) static int pull_rt_task(struct rq *this_rq)
{ {
int this_cpu = this_rq->cpu, ret = 0, cpu; int this_cpu = this_rq->cpu, ret = 0, cpu;
...@@ -1793,6 +1963,13 @@ static int pull_rt_task(struct rq *this_rq) ...@@ -1793,6 +1963,13 @@ static int pull_rt_task(struct rq *this_rq)
*/ */
smp_rmb(); smp_rmb();
#ifdef HAVE_RT_PUSH_IPI
if (sched_feat(RT_PUSH_IPI)) {
tell_cpu_to_push(this_rq);
return 0;
}
#endif
for_each_cpu(cpu, this_rq->rd->rto_mask) { for_each_cpu(cpu, this_rq->rd->rto_mask) {
if (this_cpu == cpu) if (this_cpu == cpu)
continue; continue;
......
...@@ -6,6 +6,7 @@ ...@@ -6,6 +6,7 @@
#include <linux/mutex.h> #include <linux/mutex.h>
#include <linux/spinlock.h> #include <linux/spinlock.h>
#include <linux/stop_machine.h> #include <linux/stop_machine.h>
#include <linux/irq_work.h>
#include <linux/tick.h> #include <linux/tick.h>
#include <linux/slab.h> #include <linux/slab.h>
...@@ -362,8 +363,14 @@ struct cfs_rq { ...@@ -362,8 +363,14 @@ struct cfs_rq {
* Under CFS, load is tracked on a per-entity basis and aggregated up. * Under CFS, load is tracked on a per-entity basis and aggregated up.
* This allows for the description of both thread and group usage (in * This allows for the description of both thread and group usage (in
* the FAIR_GROUP_SCHED case). * the FAIR_GROUP_SCHED case).
* runnable_load_avg is the sum of the load_avg_contrib of the
* sched_entities on the rq.
* blocked_load_avg is similar to runnable_load_avg except that its
* the blocked sched_entities on the rq.
* utilization_load_avg is the sum of the average running time of the
* sched_entities on the rq.
*/ */
unsigned long runnable_load_avg, blocked_load_avg; unsigned long runnable_load_avg, blocked_load_avg, utilization_load_avg;
atomic64_t decay_counter; atomic64_t decay_counter;
u64 last_decay; u64 last_decay;
atomic_long_t removed_load; atomic_long_t removed_load;
...@@ -418,6 +425,11 @@ static inline int rt_bandwidth_enabled(void) ...@@ -418,6 +425,11 @@ static inline int rt_bandwidth_enabled(void)
return sysctl_sched_rt_runtime >= 0; return sysctl_sched_rt_runtime >= 0;
} }
/* RT IPI pull logic requires IRQ_WORK */
#ifdef CONFIG_IRQ_WORK
# define HAVE_RT_PUSH_IPI
#endif
/* Real-Time classes' related field in a runqueue: */ /* Real-Time classes' related field in a runqueue: */
struct rt_rq { struct rt_rq {
struct rt_prio_array active; struct rt_prio_array active;
...@@ -435,7 +447,13 @@ struct rt_rq { ...@@ -435,7 +447,13 @@ struct rt_rq {
unsigned long rt_nr_total; unsigned long rt_nr_total;
int overloaded; int overloaded;
struct plist_head pushable_tasks; struct plist_head pushable_tasks;
#ifdef HAVE_RT_PUSH_IPI
int push_flags;
int push_cpu;
struct irq_work push_work;
raw_spinlock_t push_lock;
#endif #endif
#endif /* CONFIG_SMP */
int rt_queued; int rt_queued;
int rt_throttled; int rt_throttled;
...@@ -597,6 +615,7 @@ struct rq { ...@@ -597,6 +615,7 @@ struct rq {
struct sched_domain *sd; struct sched_domain *sd;
unsigned long cpu_capacity; unsigned long cpu_capacity;
unsigned long cpu_capacity_orig;
unsigned char idle_balance; unsigned char idle_balance;
/* For active balancing */ /* For active balancing */
...@@ -807,7 +826,7 @@ struct sched_group_capacity { ...@@ -807,7 +826,7 @@ struct sched_group_capacity {
* CPU capacity of this group, SCHED_LOAD_SCALE being max capacity * CPU capacity of this group, SCHED_LOAD_SCALE being max capacity
* for a single CPU. * for a single CPU.
*/ */
unsigned int capacity, capacity_orig; unsigned int capacity;
unsigned long next_update; unsigned long next_update;
int imbalance; /* XXX unrelated to capacity but shared group state */ int imbalance; /* XXX unrelated to capacity but shared group state */
/* /*
...@@ -1368,9 +1387,18 @@ static inline int hrtick_enabled(struct rq *rq) ...@@ -1368,9 +1387,18 @@ static inline int hrtick_enabled(struct rq *rq)
#ifdef CONFIG_SMP #ifdef CONFIG_SMP
extern void sched_avg_update(struct rq *rq); extern void sched_avg_update(struct rq *rq);
#ifndef arch_scale_freq_capacity
static __always_inline
unsigned long arch_scale_freq_capacity(struct sched_domain *sd, int cpu)
{
return SCHED_CAPACITY_SCALE;
}
#endif
static inline void sched_rt_avg_update(struct rq *rq, u64 rt_delta) static inline void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
{ {
rq->rt_avg += rt_delta; rq->rt_avg += rt_delta * arch_scale_freq_capacity(NULL, cpu_of(rq));
sched_avg_update(rq); sched_avg_update(rq);
} }
#else #else
...@@ -1643,8 +1671,8 @@ extern void print_rt_stats(struct seq_file *m, int cpu); ...@@ -1643,8 +1671,8 @@ extern void print_rt_stats(struct seq_file *m, int cpu);
extern void print_dl_stats(struct seq_file *m, int cpu); extern void print_dl_stats(struct seq_file *m, int cpu);
extern void init_cfs_rq(struct cfs_rq *cfs_rq); extern void init_cfs_rq(struct cfs_rq *cfs_rq);
extern void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq); extern void init_rt_rq(struct rt_rq *rt_rq);
extern void init_dl_rq(struct dl_rq *dl_rq, struct rq *rq); extern void init_dl_rq(struct dl_rq *dl_rq);
extern void cfs_bandwidth_usage_inc(void); extern void cfs_bandwidth_usage_inc(void);
extern void cfs_bandwidth_usage_dec(void); extern void cfs_bandwidth_usage_dec(void);
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment