Commit 4cbe60cf authored by Souradeep Chowdhury's avatar Souradeep Chowdhury Committed by Bjorn Andersson

soc: qcom: dcc: Add driver support for Data Capture and Compare unit(DCC)

The DCC is a DMA Engine designed to capture and store data
during system crash or software triggers. The DCC operates
based on user inputs via the debugfs interface. The user gives
addresses as inputs and these addresses are stored in the
dcc sram. In case of a system crash or a manual software
trigger by the user through the debugfs interface,
the dcc captures and stores the values at these addresses.
This patch contains the driver which has all the methods
pertaining to the debugfs interface, auxiliary functions to
support all the four fundamental operations of dcc namely
read, write, read/modify/write and loop. The probe method
here instantiates all the resources necessary for dcc to
operate mainly the dedicated dcc sram where it stores the
values. The DCC driver can be used for debugging purposes
without going for a reboot since it can perform software
triggers as well based on user inputs.

Also add the documentation for debugfs entries which explains
the functionalities of each debugfs file that has been created
for dcc.

The following is the justification of using debugfs interface
over the other alternatives like sysfs/ioctls

i) As can be seen from the debugfs attribute descriptions,
some of the debugfs attribute files here contains multiple
arguments which needs to be accepted from the user. This goes
against the design style of sysfs.

ii) The user input patterns have been made simple and convenient
in this case with the use of debugfs interface as user doesn't
need to shuffle between different files to execute one instruction
as was the case on using other alternatives.
Signed-off-by: default avatarSouradeep Chowdhury <quic_schowdhu@quicinc.com>
Reviewed-by: default avatarAlex Elder <elder@linaro.org>
[bjorn: Fixed up a few indents and line wraps]
Signed-off-by: default avatarBjorn Andersson <andersson@kernel.org>
Link: https://lore.kernel.org/r/644b4f66a358492a8a6738454035c3b120092fe7.1672148732.git.quic_schowdhu@quicinc.com
parent 417091dc
What: /sys/kernel/debug/dcc/.../ready
Date: December 2022
Contact: Souradeep Chowdhury <quic_schowdhu@quicinc.com>
Description:
This file is used to check the status of the dcc
hardware if it's ready to take the inputs. A 'Y'
here indicates dcc is in a ready condition.
Example:
cat /sys/kernel/debug/dcc/.../ready
What: /sys/kernel/debug/dcc/.../trigger
Date: December 2022
Contact: Souradeep Chowdhury <quic_schowdhu@quicinc.com>
Description:
This is the debugfs interface for manual software
triggers. The user can simply enter a 1 against
the debugfs file and enable a manual trigger.
Example:
echo 1 > /sys/kernel/debug/dcc/.../trigger
What: /sys/kernel/debug/dcc/.../config_reset
Date: December 2022
Contact: Souradeep Chowdhury <quic_schowdhu@quicinc.com>
Description:
This file is used to reset the configuration of
a dcc driver to the default configuration. This
means that all the previous addresses stored in
the driver gets removed and user needs to enter
the address values from the start.
Example:
echo 1 > /sys/kernel/debug/dcc/../config_reset
What: /sys/kernel/debug/dcc/.../[list-number]/config
Date: December 2022
Contact: Souradeep Chowdhury <quic_schowdhu@quicinc.com>
Description:
This stores the addresses of the registers which
should be read in case of a hardware crash or
manual software triggers. The addresses entered here
are considered under all the 4 types of dcc
instructions Read type, Write type, Read Modify Write
type and Loop type. The lists need to be configured
sequentially and not in a overlapping manner. As an
example user can jump to list x only after list y is
configured and enabled. The format for entering all
types of instructions are explained in examples as
follows.
Example:
i)Read Type Instruction
echo R <1> <2> <3> >/sys/kernel/debug/dcc/../[list-number]/config
1->Address to be considered for reading the value.
2->The word count of the addresses, read n words
starting from address <1>. Each word is of 32 bits.
If not entered 1 is considered.
3->Can be 'apb' or 'ahb' which indicates if it is apb or ahb
bus respectively. If not entered ahb is considered.
ii)Write Type Instruction
echo W <1> <2> <3> > /sys/kernel/debug/dcc/../[list-number]/config
1->Address to be considered for writing the value.
2->The value that needs to be written at the location.
3->Can be a 'apb' or 'ahb' which indicates if it is apb or ahb
but respectively.
iii)Read Modify Write type instruction
echo RW <1> <2> <3> > /sys/kernel/debug/dcc/../[list-number]/config
1->The address which needs to be considered for read then write.
2->The value that needs to be written on the address.
3->The mask of the value to be written.
iv)Loop Type Instruction
echo L <1> <2> <3> > /sys/kernel/debug/dcc/../[list-number]/config
1->The loop count, the number of times the value of the addresses will be
captured.
2->The address count, total number of addresses to be entered in this
instruction.
3->The series of addresses to be entered separated by a space like <addr1>
<addr2>... and so on.
What: /sys/kernel/debug/dcc/.../[list-number]/enable
Date: December 2022
Contact: Souradeep Chowdhury <quic_schowdhu@quicinc.com>
Description:
This debugfs interface is used for enabling the
the dcc hardware. Enable file is kept under the
directory list number for which the user wants
to enable it. For example if the user wants to
enable list 1, then he should go for
echo 1 > /sys/kernel/debug/dcc/.../1/enable.
On enabling the dcc, all the addresses entered
by the user for the corresponding list is written
into dcc sram which is read by the dcc hardware
on manual or crash induced triggers. Lists should
be enabled sequentially.For example after configuring
addresses for list 1 and enabling it, a user can
proceed to enable list 2 or vice versa.
Example:
echo 0 > /sys/kernel/debug/dcc/.../[list-number]/enable
(disable dcc for the corresponding list number)
echo 1 > /sys/kernel/debug/dcc/.../[list-number]/enable
(enable dcc for the corresponding list number)
......@@ -70,6 +70,14 @@ config QCOM_LLCC
SDM845. This provides interfaces to clients that use the LLCC.
Say yes here to enable LLCC slice driver.
config QCOM_DCC
tristate "Qualcomm Technologies, Inc. Data Capture and Compare(DCC) engine driver"
depends on ARCH_QCOM || COMPILE_TEST
help
This option enables driver for Data Capture and Compare engine. DCC
driver provides interface to configure DCC block and read back
captured data from DCC's internal SRAM.
config QCOM_KRYO_L2_ACCESSORS
bool
depends on ARCH_QCOM && ARM64 || COMPILE_TEST
......
......@@ -4,6 +4,7 @@ obj-$(CONFIG_QCOM_AOSS_QMP) += qcom_aoss.o
obj-$(CONFIG_QCOM_GENI_SE) += qcom-geni-se.o
obj-$(CONFIG_QCOM_COMMAND_DB) += cmd-db.o
obj-$(CONFIG_QCOM_CPR) += cpr.o
obj-$(CONFIG_QCOM_DCC) += dcc.o
obj-$(CONFIG_QCOM_GSBI) += qcom_gsbi.o
obj-$(CONFIG_QCOM_MDT_LOADER) += mdt_loader.o
obj-$(CONFIG_QCOM_OCMEM) += ocmem.o
......
// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (c) 2015-2021, The Linux Foundation. All rights reserved.
* Copyright (c) 2022, Qualcomm Innovation Center, Inc. All rights reserved.
*/
#include <linux/bitfield.h>
#include <linux/bitops.h>
#include <linux/debugfs.h>
#include <linux/delay.h>
#include <linux/fs.h>
#include <linux/io.h>
#include <linux/iopoll.h>
#include <linux/miscdevice.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/of_device.h>
#include <linux/platform_device.h>
#include <linux/slab.h>
#include <linux/uaccess.h>
#define STATUS_READY_TIMEOUT 5000 /* microseconds */
#define DCC_SRAM_NODE "dcc_sram"
/* DCC registers */
#define DCC_HW_INFO 0x04
#define DCC_LL_NUM_INFO 0x10
#define DCC_STATUS(vers) ((vers) == 1 ? 0x0c : 0x1c)
#define DCC_LL_LOCK 0x00
#define DCC_LL_CFG 0x04
#define DCC_LL_BASE 0x08
#define DCC_FD_BASE 0x0c
#define DCC_LL_TIMEOUT 0x10
#define DCC_LL_INT_ENABLE 0x18
#define DCC_LL_INT_STATUS 0x1c
#define DCC_LL_SW_TRIGGER 0x2c
#define DCC_LL_BUS_ACCESS_STATUS 0x30
/* Default value used if a bit 6 in the HW_INFO register is set. */
#define DCC_FIX_LOOP_OFFSET 16
/* Mask to find version info from HW_Info register */
#define DCC_VER_INFO_MASK BIT(9)
#define MAX_DCC_OFFSET GENMASK(9, 2)
#define MAX_DCC_LEN GENMASK(6, 0)
#define MAX_LOOP_CNT GENMASK(7, 0)
#define MAX_LOOP_ADDR 10
#define DCC_ADDR_DESCRIPTOR 0x00
#define DCC_ADDR_LIMIT 27
#define DCC_WORD_SIZE sizeof(u32)
#define DCC_ADDR_RANGE_MASK GENMASK(31, 4)
#define DCC_LOOP_DESCRIPTOR BIT(30)
#define DCC_RD_MOD_WR_DESCRIPTOR BIT(31)
#define DCC_LINK_DESCRIPTOR GENMASK(31, 30)
#define DCC_STATUS_MASK GENMASK(1, 0)
#define DCC_LOCK_MASK BIT(0)
#define DCC_LOOP_OFFSET_MASK BIT(6)
#define DCC_TRIGGER_MASK BIT(9)
#define DCC_WRITE_MASK BIT(15)
#define DCC_WRITE_OFF_MASK GENMASK(7, 0)
#define DCC_WRITE_LEN_MASK GENMASK(14, 8)
#define DCC_READ_IND 0x00
#define DCC_WRITE_IND (BIT(28))
#define DCC_AHB_IND 0x00
#define DCC_APB_IND BIT(29)
#define DCC_MAX_LINK_LIST 8
#define DCC_VER_MASK2 GENMASK(5, 0)
#define DCC_SRAM_WORD_LENGTH 4
#define DCC_RD_MOD_WR_ADDR 0xc105e
enum dcc_descriptor_type {
DCC_READ_TYPE,
DCC_LOOP_TYPE,
DCC_READ_WRITE_TYPE,
DCC_WRITE_TYPE
};
struct dcc_config_entry {
u32 base;
u32 offset;
u32 len;
u32 loop_cnt;
u32 write_val;
u32 mask;
bool apb_bus;
enum dcc_descriptor_type desc_type;
struct list_head list;
};
/**
* struct dcc_drvdata - configuration information related to a dcc device
* @base: Base Address of the dcc device
* @dev: The device attached to the driver data
* @mutex: Lock to protect access and manipulation of dcc_drvdata
* @ram_base: Base address for the SRAM dedicated for the dcc device
* @ram_size: Total size of the SRAM dedicated for the dcc device
* @ram_offset: Offset to the SRAM dedicated for dcc device
* @mem_map_ver: Memory map version of DCC hardware
* @ram_cfg: Used for address limit calculation for dcc
* @ram_start: Starting address of DCC SRAM
* @sram_dev: Miscellaneous device equivalent of dcc SRAM
* @cfg_head: Points to the head of the linked list of addresses
* @dbg_dir: The dcc debugfs directory under which all the debugfs files are placed
* @nr_link_list: Total number of linkedlists supported by the DCC configuration
* @loop_shift: Loop offset bits range for the addresses
* @enable_bitmap: Bitmap to capture the enabled status of each linked list of addresses
*/
struct dcc_drvdata {
void __iomem *base;
void __iomem *ram_base;
struct device *dev;
struct mutex mutex;
size_t ram_size;
size_t ram_offset;
int mem_map_ver;
unsigned int ram_cfg;
unsigned int ram_start;
struct miscdevice sram_dev;
struct list_head *cfg_head;
struct dentry *dbg_dir;
size_t nr_link_list;
u8 loop_shift;
unsigned long *enable_bitmap;
};
struct dcc_cfg_attr {
u32 addr;
u32 prev_addr;
u32 prev_off;
u32 link;
u32 sram_offset;
};
struct dcc_cfg_loop_attr {
u32 loop_cnt;
u32 loop_len;
u32 loop_off;
bool loop_start;
};
static inline u32 dcc_list_offset(int version)
{
return version == 1 ? 0x1c : version == 2 ? 0x2c : 0x34;
}
static inline void dcc_list_writel(struct dcc_drvdata *drvdata,
u32 ll, u32 val, u32 off)
{
u32 offset = dcc_list_offset(drvdata->mem_map_ver) + off;
writel(val, drvdata->base + ll * 0x80 + offset);
}
static inline u32 dcc_list_readl(struct dcc_drvdata *drvdata, u32 ll, u32 off)
{
u32 offset = dcc_list_offset(drvdata->mem_map_ver) + off;
return readl(drvdata->base + ll * 0x80 + offset);
}
static void dcc_sram_write_auto(struct dcc_drvdata *drvdata,
u32 val, u32 *off)
{
/* If the overflow condition is met increment the offset
* and return to indicate that overflow has occurred
*/
if (unlikely(*off > drvdata->ram_size - 4)) {
*off += 4;
return;
}
writel(val, drvdata->ram_base + *off);
*off += 4;
}
static int dcc_sw_trigger(struct dcc_drvdata *drvdata)
{
void __iomem *addr;
int ret = 0;
int i;
u32 status;
u32 ll_cfg;
u32 tmp_ll_cfg;
u32 val;
mutex_lock(&drvdata->mutex);
for (i = 0; i < drvdata->nr_link_list; i++) {
if (!test_bit(i, drvdata->enable_bitmap))
continue;
ll_cfg = dcc_list_readl(drvdata, i, DCC_LL_CFG);
tmp_ll_cfg = ll_cfg & ~DCC_TRIGGER_MASK;
dcc_list_writel(drvdata, tmp_ll_cfg, i, DCC_LL_CFG);
dcc_list_writel(drvdata, 1, i, DCC_LL_SW_TRIGGER);
dcc_list_writel(drvdata, ll_cfg, i, DCC_LL_CFG);
}
addr = drvdata->base + DCC_STATUS(drvdata->mem_map_ver);
if (readl_poll_timeout(addr, val, !FIELD_GET(DCC_STATUS_MASK, val),
1, STATUS_READY_TIMEOUT)) {
dev_err(drvdata->dev, "DCC is busy after receiving sw trigger\n");
ret = -EBUSY;
goto out_unlock;
}
for (i = 0; i < drvdata->nr_link_list; i++) {
if (!test_bit(i, drvdata->enable_bitmap))
continue;
status = dcc_list_readl(drvdata, i, DCC_LL_BUS_ACCESS_STATUS);
if (!status)
continue;
dev_err(drvdata->dev, "Read access error for list %d err: 0x%x\n",
i, status);
ll_cfg = dcc_list_readl(drvdata, i, DCC_LL_CFG);
tmp_ll_cfg = ll_cfg & ~DCC_TRIGGER_MASK;
dcc_list_writel(drvdata, tmp_ll_cfg, i, DCC_LL_CFG);
dcc_list_writel(drvdata, DCC_STATUS_MASK, i, DCC_LL_BUS_ACCESS_STATUS);
dcc_list_writel(drvdata, ll_cfg, i, DCC_LL_CFG);
ret = -ENODATA;
break;
}
out_unlock:
mutex_unlock(&drvdata->mutex);
return ret;
}
static void dcc_ll_cfg_reset_link(struct dcc_cfg_attr *cfg)
{
cfg->addr = 0x00;
cfg->link = 0;
cfg->prev_off = 0;
cfg->prev_addr = cfg->addr;
}
static void dcc_emit_read_write(struct dcc_drvdata *drvdata,
struct dcc_config_entry *entry,
struct dcc_cfg_attr *cfg)
{
if (cfg->link) {
/*
* write new offset = 1 to continue
* processing the list
*/
dcc_sram_write_auto(drvdata, cfg->link, &cfg->sram_offset);
/* Reset link and prev_off */
dcc_ll_cfg_reset_link(cfg);
}
cfg->addr = DCC_RD_MOD_WR_DESCRIPTOR;
dcc_sram_write_auto(drvdata, cfg->addr, &cfg->sram_offset);
dcc_sram_write_auto(drvdata, entry->mask, &cfg->sram_offset);
dcc_sram_write_auto(drvdata, entry->write_val, &cfg->sram_offset);
cfg->addr = 0;
}
static void dcc_emit_loop(struct dcc_drvdata *drvdata, struct dcc_config_entry *entry,
struct dcc_cfg_attr *cfg,
struct dcc_cfg_loop_attr *cfg_loop,
u32 *total_len)
{
int loop;
/* Check if we need to write link of prev entry */
if (cfg->link)
dcc_sram_write_auto(drvdata, cfg->link, &cfg->sram_offset);
if (cfg_loop->loop_start) {
loop = (cfg->sram_offset - cfg_loop->loop_off) / 4;
loop |= (cfg_loop->loop_cnt << drvdata->loop_shift) &
GENMASK(DCC_ADDR_LIMIT, drvdata->loop_shift);
loop |= DCC_LOOP_DESCRIPTOR;
*total_len += (*total_len - cfg_loop->loop_len) * cfg_loop->loop_cnt;
dcc_sram_write_auto(drvdata, loop, &cfg->sram_offset);
cfg_loop->loop_start = false;
cfg_loop->loop_len = 0;
cfg_loop->loop_off = 0;
} else {
cfg_loop->loop_start = true;
cfg_loop->loop_cnt = entry->loop_cnt - 1;
cfg_loop->loop_len = *total_len;
cfg_loop->loop_off = cfg->sram_offset;
}
/* Reset link and prev_off */
dcc_ll_cfg_reset_link(cfg);
}
static void dcc_emit_write(struct dcc_drvdata *drvdata,
struct dcc_config_entry *entry,
struct dcc_cfg_attr *cfg)
{
u32 off;
if (cfg->link) {
/*
* write new offset = 1 to continue
* processing the list
*/
dcc_sram_write_auto(drvdata, cfg->link, &cfg->sram_offset);
/* Reset link and prev_off */
cfg->addr = 0x00;
cfg->prev_off = 0;
cfg->prev_addr = cfg->addr;
}
off = entry->offset / 4;
/* write new offset-length pair to correct position */
cfg->link |= ((off & DCC_WRITE_OFF_MASK) | DCC_WRITE_MASK |
FIELD_PREP(DCC_WRITE_LEN_MASK, entry->len));
cfg->link |= DCC_LINK_DESCRIPTOR;
/* Address type */
cfg->addr = (entry->base >> 4) & GENMASK(DCC_ADDR_LIMIT, 0);
if (entry->apb_bus)
cfg->addr |= DCC_ADDR_DESCRIPTOR | DCC_WRITE_IND | DCC_APB_IND;
else
cfg->addr |= DCC_ADDR_DESCRIPTOR | DCC_WRITE_IND | DCC_AHB_IND;
dcc_sram_write_auto(drvdata, cfg->addr, &cfg->sram_offset);
dcc_sram_write_auto(drvdata, cfg->link, &cfg->sram_offset);
dcc_sram_write_auto(drvdata, entry->write_val, &cfg->sram_offset);
cfg->addr = 0x00;
cfg->link = 0;
}
static int dcc_emit_read(struct dcc_drvdata *drvdata,
struct dcc_config_entry *entry,
struct dcc_cfg_attr *cfg,
u32 *pos, u32 *total_len)
{
u32 off;
u32 temp_off;
cfg->addr = (entry->base >> 4) & GENMASK(27, 0);
if (entry->apb_bus)
cfg->addr |= DCC_ADDR_DESCRIPTOR | DCC_READ_IND | DCC_APB_IND;
else
cfg->addr |= DCC_ADDR_DESCRIPTOR | DCC_READ_IND | DCC_AHB_IND;
off = entry->offset / 4;
*total_len += entry->len * 4;
if (!cfg->prev_addr || cfg->prev_addr != cfg->addr || cfg->prev_off > off) {
/* Check if we need to write prev link entry */
if (cfg->link)
dcc_sram_write_auto(drvdata, cfg->link, &cfg->sram_offset);
dev_dbg(drvdata->dev, "DCC: sram address 0x%x\n", cfg->sram_offset);
/* Write address */
dcc_sram_write_auto(drvdata, cfg->addr, &cfg->sram_offset);
/* Reset link and prev_off */
cfg->link = 0;
cfg->prev_off = 0;
}
if ((off - cfg->prev_off) > 0xff || entry->len > MAX_DCC_LEN) {
dev_err(drvdata->dev, "DCC: Programming error Base: 0x%x, offset 0x%x\n",
entry->base, entry->offset);
return -EINVAL;
}
if (cfg->link) {
/*
* link already has one offset-length so new
* offset-length needs to be placed at
* bits [29:15]
*/
*pos = 15;
/* Clear bits [31:16] */
cfg->link &= GENMASK(14, 0);
} else {
/*
* link is empty, so new offset-length needs
* to be placed at bits [15:0]
*/
*pos = 0;
cfg->link = 1 << 15;
}
/* write new offset-length pair to correct position */
temp_off = (off - cfg->prev_off) & GENMASK(7, 0);
cfg->link |= temp_off | ((entry->len << 8) & GENMASK(14, 8)) << *pos;
cfg->link |= DCC_LINK_DESCRIPTOR;
if (*pos) {
dcc_sram_write_auto(drvdata, cfg->link, &cfg->sram_offset);
cfg->link = 0;
}
cfg->prev_off = off + entry->len - 1;
cfg->prev_addr = cfg->addr;
return 0;
}
static int dcc_emit_config(struct dcc_drvdata *drvdata, unsigned int curr_list)
{
int ret;
u32 total_len, pos;
struct dcc_config_entry *entry;
struct dcc_cfg_attr cfg;
struct dcc_cfg_loop_attr cfg_loop;
memset(&cfg, 0, sizeof(cfg));
memset(&cfg_loop, 0, sizeof(cfg_loop));
cfg.sram_offset = drvdata->ram_cfg * 4;
total_len = 0;
list_for_each_entry(entry, &drvdata->cfg_head[curr_list], list) {
switch (entry->desc_type) {
case DCC_READ_WRITE_TYPE:
dcc_emit_read_write(drvdata, entry, &cfg);
break;
case DCC_LOOP_TYPE:
dcc_emit_loop(drvdata, entry, &cfg, &cfg_loop, &total_len);
break;
case DCC_WRITE_TYPE:
dcc_emit_write(drvdata, entry, &cfg);
break;
case DCC_READ_TYPE:
ret = dcc_emit_read(drvdata, entry, &cfg, &pos, &total_len);
if (ret)
goto err;
break;
}
}
if (cfg.link)
dcc_sram_write_auto(drvdata, cfg.link, &cfg.sram_offset);
if (cfg_loop.loop_start) {
dev_err(drvdata->dev, "DCC: Programming error: Loop unterminated\n");
ret = -EINVAL;
goto err;
}
/* Handling special case of list ending with a rd_mod_wr */
if (cfg.addr == DCC_RD_MOD_WR_DESCRIPTOR) {
cfg.addr = (DCC_RD_MOD_WR_ADDR) & GENMASK(27, 0);
cfg.addr |= DCC_ADDR_DESCRIPTOR;
dcc_sram_write_auto(drvdata, cfg.addr, &cfg.sram_offset);
}
/* Setting zero to indicate end of the list */
cfg.link = DCC_LINK_DESCRIPTOR;
dcc_sram_write_auto(drvdata, cfg.link, &cfg.sram_offset);
/* Check if sram offset exceeds the ram size */
if (cfg.sram_offset > drvdata->ram_size)
goto overstep;
/* Update ram_cfg and check if the data will overstep */
drvdata->ram_cfg = (cfg.sram_offset + total_len) / 4;
if (cfg.sram_offset + total_len > drvdata->ram_size) {
cfg.sram_offset += total_len;
goto overstep;
}
drvdata->ram_start = cfg.sram_offset / 4;
return 0;
overstep:
ret = -EINVAL;
memset_io(drvdata->ram_base, 0, drvdata->ram_size);
err:
return ret;
}
static bool dcc_valid_list(struct dcc_drvdata *drvdata, unsigned int curr_list)
{
u32 lock_reg;
if (list_empty(&drvdata->cfg_head[curr_list]))
return false;
if (test_bit(curr_list, drvdata->enable_bitmap)) {
dev_err(drvdata->dev, "List %d is already enabled\n", curr_list);
return false;
}
lock_reg = dcc_list_readl(drvdata, curr_list, DCC_LL_LOCK);
if (lock_reg & DCC_LOCK_MASK) {
dev_err(drvdata->dev, "List %d is already locked\n", curr_list);
return false;
}
return true;
}
static bool is_dcc_enabled(struct dcc_drvdata *drvdata)
{
int list;
for (list = 0; list < drvdata->nr_link_list; list++)
if (test_bit(list, drvdata->enable_bitmap))
return true;
return false;
}
static int dcc_enable(struct dcc_drvdata *drvdata, unsigned int curr_list)
{
int ret;
u32 ram_cfg_base;
mutex_lock(&drvdata->mutex);
if (!dcc_valid_list(drvdata, curr_list)) {
ret = -EINVAL;
goto out_unlock;
}
/* Fill dcc sram with the poison value.
* This helps in understanding bus
* hang from registers returning a zero
*/
if (!is_dcc_enabled(drvdata))
memset_io(drvdata->ram_base, 0xde, drvdata->ram_size);
/* 1. Take ownership of the list */
dcc_list_writel(drvdata, DCC_LOCK_MASK, curr_list, DCC_LL_LOCK);
/* 2. Program linked-list in the SRAM */
ram_cfg_base = drvdata->ram_cfg;
ret = dcc_emit_config(drvdata, curr_list);
if (ret) {
dcc_list_writel(drvdata, 0, curr_list, DCC_LL_LOCK);
goto out_unlock;
}
/* 3. Program DCC_RAM_CFG reg */
dcc_list_writel(drvdata, ram_cfg_base +
drvdata->ram_offset / 4, curr_list, DCC_LL_BASE);
dcc_list_writel(drvdata, drvdata->ram_start +
drvdata->ram_offset / 4, curr_list, DCC_FD_BASE);
dcc_list_writel(drvdata, 0xFFF, curr_list, DCC_LL_TIMEOUT);
/* 4. Clears interrupt status register */
dcc_list_writel(drvdata, 0, curr_list, DCC_LL_INT_ENABLE);
dcc_list_writel(drvdata, (BIT(0) | BIT(1) | BIT(2)),
curr_list, DCC_LL_INT_STATUS);
set_bit(curr_list, drvdata->enable_bitmap);
/* 5. Configure trigger */
dcc_list_writel(drvdata, DCC_TRIGGER_MASK,
curr_list, DCC_LL_CFG);
out_unlock:
mutex_unlock(&drvdata->mutex);
return ret;
}
static void dcc_disable(struct dcc_drvdata *drvdata, int curr_list)
{
mutex_lock(&drvdata->mutex);
if (!test_bit(curr_list, drvdata->enable_bitmap))
goto out_unlock;
dcc_list_writel(drvdata, 0, curr_list, DCC_LL_CFG);
dcc_list_writel(drvdata, 0, curr_list, DCC_LL_BASE);
dcc_list_writel(drvdata, 0, curr_list, DCC_FD_BASE);
dcc_list_writel(drvdata, 0, curr_list, DCC_LL_LOCK);
clear_bit(curr_list, drvdata->enable_bitmap);
out_unlock:
mutex_unlock(&drvdata->mutex);
}
static u32 dcc_filp_curr_list(const struct file *filp)
{
struct dentry *dentry = file_dentry(filp);
int curr_list, ret;
ret = kstrtoint(dentry->d_parent->d_name.name, 0, &curr_list);
if (ret)
return ret;
return curr_list;
}
static ssize_t enable_read(struct file *filp, char __user *userbuf,
size_t count, loff_t *ppos)
{
char *buf;
struct dcc_drvdata *drvdata = filp->private_data;
mutex_lock(&drvdata->mutex);
if (is_dcc_enabled(drvdata))
buf = "Y\n";
else
buf = "N\n";
mutex_unlock(&drvdata->mutex);
return simple_read_from_buffer(userbuf, count, ppos, buf, strlen(buf));
}
static ssize_t enable_write(struct file *filp, const char __user *userbuf,
size_t count, loff_t *ppos)
{
int ret = 0, curr_list;
bool val;
struct dcc_drvdata *drvdata = filp->private_data;
curr_list = dcc_filp_curr_list(filp);
if (curr_list < 0)
return curr_list;
ret = kstrtobool_from_user(userbuf, count, &val);
if (ret < 0)
return ret;
if (val) {
ret = dcc_enable(drvdata, curr_list);
if (ret)
return ret;
} else {
dcc_disable(drvdata, curr_list);
}
return count;
}
static const struct file_operations enable_fops = {
.read = enable_read,
.write = enable_write,
.open = simple_open,
.llseek = generic_file_llseek,
};
static ssize_t trigger_write(struct file *filp,
const char __user *user_buf, size_t count,
loff_t *ppos)
{
int ret;
unsigned int val;
struct dcc_drvdata *drvdata = filp->private_data;
ret = kstrtouint_from_user(user_buf, count, 0, &val);
if (ret < 0)
return ret;
if (val != 1)
return -EINVAL;
ret = dcc_sw_trigger(drvdata);
if (ret < 0)
return ret;
return count;
}
static const struct file_operations trigger_fops = {
.write = trigger_write,
.open = simple_open,
.llseek = generic_file_llseek,
};
static int dcc_config_add(struct dcc_drvdata *drvdata, unsigned int addr,
unsigned int len, bool apb_bus, int curr_list)
{
int ret = 0;
struct dcc_config_entry *entry, *pentry;
unsigned int base, offset;
mutex_lock(&drvdata->mutex);
if (!len || len > drvdata->ram_size / DCC_WORD_SIZE) {
dev_err(drvdata->dev, "DCC: Invalid length\n");
ret = -EINVAL;
goto out_unlock;
}
base = addr & DCC_ADDR_RANGE_MASK;
if (!list_empty(&drvdata->cfg_head[curr_list])) {
pentry = list_last_entry(&drvdata->cfg_head[curr_list],
struct dcc_config_entry, list);
if (pentry->desc_type == DCC_READ_TYPE &&
addr >= (pentry->base + pentry->offset) &&
addr <= (pentry->base + pentry->offset + MAX_DCC_OFFSET)) {
/* Re-use base address from last entry */
base = pentry->base;
if ((pentry->len * 4 + pentry->base + pentry->offset)
== addr) {
len += pentry->len;
if (len > MAX_DCC_LEN)
pentry->len = MAX_DCC_LEN;
else
pentry->len = len;
addr = pentry->base + pentry->offset +
pentry->len * 4;
len -= pentry->len;
}
}
}
offset = addr - base;
while (len) {
entry = kzalloc(sizeof(*entry), GFP_KERNEL);
if (!entry) {
ret = -ENOMEM;
goto out_unlock;
}
entry->base = base;
entry->offset = offset;
entry->len = min_t(u32, len, MAX_DCC_LEN);
entry->desc_type = DCC_READ_TYPE;
entry->apb_bus = apb_bus;
INIT_LIST_HEAD(&entry->list);
list_add_tail(&entry->list, &drvdata->cfg_head[curr_list]);
len -= entry->len;
offset += MAX_DCC_LEN * 4;
}
out_unlock:
mutex_unlock(&drvdata->mutex);
return ret;
}
static ssize_t dcc_config_add_read(struct dcc_drvdata *drvdata, char *buf, int curr_list)
{
bool bus;
int len, nval;
unsigned int base;
char apb_bus[4];
nval = sscanf(buf, "%x %i %3s", &base, &len, apb_bus);
if (nval <= 0 || nval > 3)
return -EINVAL;
if (nval == 1) {
len = 1;
bus = false;
} else if (nval == 2) {
bus = false;
} else if (!strcmp("apb", apb_bus)) {
bus = true;
} else if (!strcmp("ahb", apb_bus)) {
bus = false;
} else {
return -EINVAL;
}
return dcc_config_add(drvdata, base, len, bus, curr_list);
}
static void dcc_config_reset(struct dcc_drvdata *drvdata)
{
struct dcc_config_entry *entry, *temp;
int curr_list;
mutex_lock(&drvdata->mutex);
for (curr_list = 0; curr_list < drvdata->nr_link_list; curr_list++) {
list_for_each_entry_safe(entry, temp,
&drvdata->cfg_head[curr_list], list) {
list_del(&entry->list);
kfree(entry);
}
}
drvdata->ram_start = 0;
drvdata->ram_cfg = 0;
mutex_unlock(&drvdata->mutex);
}
static ssize_t config_reset_write(struct file *filp,
const char __user *user_buf, size_t count,
loff_t *ppos)
{
unsigned int val, ret;
struct dcc_drvdata *drvdata = filp->private_data;
ret = kstrtouint_from_user(user_buf, count, 0, &val);
if (ret < 0)
return ret;
if (val)
dcc_config_reset(drvdata);
return count;
}
static const struct file_operations config_reset_fops = {
.write = config_reset_write,
.open = simple_open,
.llseek = generic_file_llseek,
};
static ssize_t ready_read(struct file *filp, char __user *userbuf,
size_t count, loff_t *ppos)
{
int ret = 0;
char *buf;
struct dcc_drvdata *drvdata = filp->private_data;
mutex_lock(&drvdata->mutex);
if (!is_dcc_enabled(drvdata)) {
ret = -EINVAL;
goto out_unlock;
}
if (!FIELD_GET(BIT(1), readl(drvdata->base + DCC_STATUS(drvdata->mem_map_ver))))
buf = "Y\n";
else
buf = "N\n";
out_unlock:
mutex_unlock(&drvdata->mutex);
if (ret < 0)
return -EINVAL;
else
return simple_read_from_buffer(userbuf, count, ppos, buf, strlen(buf) + 1);
}
static const struct file_operations ready_fops = {
.read = ready_read,
.open = simple_open,
.llseek = generic_file_llseek,
};
static int dcc_add_loop(struct dcc_drvdata *drvdata, unsigned long loop_cnt, int curr_list)
{
struct dcc_config_entry *entry;
entry = kzalloc(sizeof(*entry), GFP_KERNEL);
if (!entry)
return -ENOMEM;
entry->loop_cnt = min_t(u32, loop_cnt, MAX_LOOP_CNT);
entry->desc_type = DCC_LOOP_TYPE;
INIT_LIST_HEAD(&entry->list);
list_add_tail(&entry->list, &drvdata->cfg_head[curr_list]);
return 0;
}
static ssize_t dcc_config_add_loop(struct dcc_drvdata *drvdata, char *buf, int curr_list)
{
int ret, i = 0;
char *token, *input;
char delim[2] = " ";
unsigned int val[MAX_LOOP_ADDR];
input = buf;
while ((token = strsep(&input, delim)) && i < MAX_LOOP_ADDR) {
ret = kstrtoint(token, 0, &val[i++]);
if (ret)
return ret;
}
if (token) {
dev_err(drvdata->dev, "Max limit %u of loop address exceeded",
MAX_LOOP_ADDR);
return -EINVAL;
}
if (val[1] < 1 || val[1] > 8)
return -EINVAL;
ret = dcc_add_loop(drvdata, val[0], curr_list);
if (ret)
return ret;
for (i = 0; i < val[1]; i++)
dcc_config_add(drvdata, val[i + 2], 1, false, curr_list);
return dcc_add_loop(drvdata, 1, curr_list);
}
static int dcc_rd_mod_wr_add(struct dcc_drvdata *drvdata, unsigned int mask,
unsigned int val, int curr_list)
{
int ret = 0;
struct dcc_config_entry *entry;
mutex_lock(&drvdata->mutex);
if (list_empty(&drvdata->cfg_head[curr_list])) {
dev_err(drvdata->dev, "DCC: No read address programmed\n");
ret = -EPERM;
goto out_unlock;
}
entry = devm_kzalloc(drvdata->dev, sizeof(*entry), GFP_KERNEL);
if (!entry) {
ret = -ENOMEM;
goto out_unlock;
}
entry->desc_type = DCC_READ_WRITE_TYPE;
entry->mask = mask;
entry->write_val = val;
list_add_tail(&entry->list, &drvdata->cfg_head[curr_list]);
out_unlock:
mutex_unlock(&drvdata->mutex);
return ret;
}
static ssize_t dcc_config_add_read_write(struct dcc_drvdata *drvdata, char *buf, int curr_list)
{
int ret;
int nval;
unsigned int addr, mask, val;
nval = sscanf(buf, "%x %x %x", &addr, &mask, &val);
if (nval <= 1 || nval > 3)
return -EINVAL;
ret = dcc_config_add(drvdata, addr, 1, false, curr_list);
if (ret)
return ret;
return dcc_rd_mod_wr_add(drvdata, mask, val, curr_list);
}
static int dcc_add_write(struct dcc_drvdata *drvdata, unsigned int addr,
unsigned int write_val, int apb_bus, int curr_list)
{
struct dcc_config_entry *entry;
entry = devm_kzalloc(drvdata->dev, sizeof(*entry), GFP_KERNEL);
if (!entry)
return -ENOMEM;
entry->desc_type = DCC_WRITE_TYPE;
entry->base = addr & GENMASK(31, 4);
entry->offset = addr - entry->base;
entry->write_val = write_val;
entry->len = 1;
entry->apb_bus = apb_bus;
list_add_tail(&entry->list, &drvdata->cfg_head[curr_list]);
return 0;
}
static ssize_t dcc_config_add_write(struct dcc_drvdata *drvdata, char *buf, int curr_list)
{
bool bus;
int nval;
unsigned int addr, write_val;
char apb_bus[4];
nval = sscanf(buf, "%x %x %3s", &addr, &write_val, apb_bus);
if (nval <= 1 || nval > 3)
return -EINVAL;
if (nval == 2)
bus = true;
if (nval == 3) {
if (!strcmp("apb", apb_bus))
bus = true;
else if (!strcmp("ahb", apb_bus))
bus = false;
else
return -EINVAL;
}
return dcc_add_write(drvdata, addr, write_val, bus, curr_list);
}
static int config_show(struct seq_file *m, void *data)
{
struct dcc_drvdata *drvdata = m->private;
struct dcc_config_entry *entry;
int index = 0, curr_list;
curr_list = dcc_filp_curr_list(m->file);
if (curr_list < 0)
return curr_list;
mutex_lock(&drvdata->mutex);
list_for_each_entry(entry, &drvdata->cfg_head[curr_list], list) {
index++;
switch (entry->desc_type) {
case DCC_READ_WRITE_TYPE:
seq_printf(m, "RW mask: 0x%x, val: 0x%x\n index: 0x%x\n",
entry->mask, entry->write_val, index);
break;
case DCC_LOOP_TYPE:
seq_printf(m, "L index: 0x%x Loop: %d\n", index, entry->loop_cnt);
break;
case DCC_WRITE_TYPE:
seq_printf(m, "W Base:0x%x, Offset: 0x%x, val: 0x%x, APB: %d\n, Index: 0x%x\n",
entry->base, entry->offset, entry->write_val, entry->apb_bus,
index);
break;
case DCC_READ_TYPE:
seq_printf(m, "R Base:0x%x, Offset: 0x%x, len: 0x%x, APB: %d\n, Index: 0x%x\n",
entry->base, entry->offset, entry->len, entry->apb_bus, index);
}
}
mutex_unlock(&drvdata->mutex);
return 0;
}
static int config_open(struct inode *inode, struct file *file)
{
struct dcc_drvdata *drvdata = inode->i_private;
return single_open(file, config_show, drvdata);
}
static ssize_t config_write(struct file *filp,
const char __user *user_buf, size_t count,
loff_t *ppos)
{
int ret, curr_list;
char *token, buf[50];
char *bufp = buf;
char *delim = " ";
struct dcc_drvdata *drvdata = filp->private_data;
if (count > sizeof(buf) || count == 0)
return -EINVAL;
ret = copy_from_user(buf, user_buf, count);
if (ret)
return -EFAULT;
curr_list = dcc_filp_curr_list(filp);
if (curr_list < 0)
return curr_list;
if (buf[count - 1] == '\n')
buf[count - 1] = '\0';
else
return -EINVAL;
token = strsep(&bufp, delim);
if (!strcmp("R", token)) {
ret = dcc_config_add_read(drvdata, bufp, curr_list);
} else if (!strcmp("W", token)) {
ret = dcc_config_add_write(drvdata, bufp, curr_list);
} else if (!strcmp("RW", token)) {
ret = dcc_config_add_read_write(drvdata, bufp, curr_list);
} else if (!strcmp("L", token)) {
ret = dcc_config_add_loop(drvdata, bufp, curr_list);
} else {
dev_err(drvdata->dev, "%s is not a correct input\n", token);
return -EINVAL;
}
if (ret)
return ret;
return count;
}
static const struct file_operations config_fops = {
.open = config_open,
.read = seq_read,
.write = config_write,
.llseek = seq_lseek,
.release = single_release,
};
static void dcc_delete_debug_dir(struct dcc_drvdata *drvdata)
{
debugfs_remove_recursive(drvdata->dbg_dir);
};
static void dcc_create_debug_dir(struct dcc_drvdata *drvdata)
{
int i;
char list_num[10];
struct dentry *list;
struct device *dev = drvdata->dev;
drvdata->dbg_dir = debugfs_create_dir(dev_name(dev), NULL);
if (IS_ERR(drvdata->dbg_dir)) {
pr_err("can't create debugfs dir\n");
return;
}
for (i = 0; i <= drvdata->nr_link_list; i++) {
sprintf(list_num, "%d", i);
list = debugfs_create_dir(list_num, drvdata->dbg_dir);
debugfs_create_file("enable", 0600, list, drvdata, &enable_fops);
debugfs_create_file("config", 0600, list, drvdata, &config_fops);
}
debugfs_create_file("trigger", 0200, drvdata->dbg_dir, drvdata, &trigger_fops);
debugfs_create_file("ready", 0400, drvdata->dbg_dir, drvdata, &ready_fops);
debugfs_create_file("config_reset", 0200, drvdata->dbg_dir,
drvdata, &config_reset_fops);
}
static ssize_t dcc_sram_read(struct file *file, char __user *data,
size_t len, loff_t *ppos)
{
struct dcc_drvdata *drvdata = container_of(file->private_data, struct dcc_drvdata, sram_dev);
unsigned char *buf;
/* EOF check */
if (*ppos >= drvdata->ram_size)
return 0;
if ((*ppos + len) > drvdata->ram_size)
len = (drvdata->ram_size - *ppos);
buf = kzalloc(len, GFP_KERNEL);
if (!buf)
return -ENOMEM;
memcpy_fromio(buf, drvdata->ram_base + *ppos, len);
if (copy_to_user(data, buf, len)) {
kfree(buf);
return -EFAULT;
}
*ppos += len;
kfree(buf);
return len;
}
static const struct file_operations dcc_sram_fops = {
.owner = THIS_MODULE,
.read = dcc_sram_read,
.llseek = no_llseek,
};
static int dcc_sram_dev_init(struct dcc_drvdata *drvdata)
{
drvdata->sram_dev.minor = MISC_DYNAMIC_MINOR;
drvdata->sram_dev.name = DCC_SRAM_NODE;
drvdata->sram_dev.fops = &dcc_sram_fops;
return misc_register(&drvdata->sram_dev);
}
static void dcc_sram_dev_exit(struct dcc_drvdata *drvdata)
{
misc_deregister(&drvdata->sram_dev);
}
static int dcc_probe(struct platform_device *pdev)
{
u32 val;
int ret = 0, i;
struct device *dev = &pdev->dev;
struct dcc_drvdata *drvdata;
struct resource *res;
drvdata = devm_kzalloc(dev, sizeof(*drvdata), GFP_KERNEL);
if (!drvdata)
return -ENOMEM;
drvdata->dev = &pdev->dev;
platform_set_drvdata(pdev, drvdata);
drvdata->base = devm_platform_ioremap_resource(pdev, 0);
if (IS_ERR(drvdata->base))
return PTR_ERR(drvdata->base);
drvdata->ram_base = devm_platform_get_and_ioremap_resource(pdev, 1, &res);
if (IS_ERR(drvdata->ram_base))
return PTR_ERR(drvdata->ram_base);
drvdata->ram_size = resource_size(res);
drvdata->ram_offset = (size_t)of_device_get_match_data(&pdev->dev);
val = readl(drvdata->base + DCC_HW_INFO);
if (FIELD_GET(DCC_VER_INFO_MASK, val)) {
drvdata->mem_map_ver = 3;
drvdata->nr_link_list = readl(drvdata->base + DCC_LL_NUM_INFO);
if (!drvdata->nr_link_list)
return -EINVAL;
} else if ((val & DCC_VER_MASK2) == DCC_VER_MASK2) {
drvdata->mem_map_ver = 2;
drvdata->nr_link_list = readl(drvdata->base + DCC_LL_NUM_INFO);
if (!drvdata->nr_link_list)
return -EINVAL;
} else {
drvdata->mem_map_ver = 1;
drvdata->nr_link_list = DCC_MAX_LINK_LIST;
}
/* Either set the fixed loop offset or calculate
* it from the total number of words in dcc_sram.
* Max consecutive addresses dcc can loop is
* equivalent to the words in dcc_sram.
*/
if (val & DCC_LOOP_OFFSET_MASK)
drvdata->loop_shift = DCC_FIX_LOOP_OFFSET;
else
drvdata->loop_shift = get_bitmask_order((drvdata->ram_offset +
drvdata->ram_size) / DCC_SRAM_WORD_LENGTH - 1);
mutex_init(&drvdata->mutex);
drvdata->enable_bitmap = devm_kcalloc(dev, BITS_TO_LONGS(drvdata->nr_link_list),
sizeof(*drvdata->enable_bitmap), GFP_KERNEL);
if (!drvdata->enable_bitmap)
return -ENOMEM;
drvdata->cfg_head = devm_kcalloc(dev, drvdata->nr_link_list,
sizeof(*drvdata->cfg_head), GFP_KERNEL);
if (!drvdata->cfg_head)
return -ENOMEM;
for (i = 0; i < drvdata->nr_link_list; i++)
INIT_LIST_HEAD(&drvdata->cfg_head[i]);
ret = dcc_sram_dev_init(drvdata);
if (ret) {
dev_err(drvdata->dev, "DCC: sram node not registered.\n");
return ret;
}
dcc_create_debug_dir(drvdata);
return 0;
}
static int dcc_remove(struct platform_device *pdev)
{
struct dcc_drvdata *drvdata = platform_get_drvdata(pdev);
dcc_delete_debug_dir(drvdata);
dcc_sram_dev_exit(drvdata);
dcc_config_reset(drvdata);
return 0;
}
static const struct of_device_id dcc_match_table[] = {
{ .compatible = "qcom,sc7180-dcc", .data = (void *)0x6000 },
{ .compatible = "qcom,sc7280-dcc", .data = (void *)0x12000 },
{ .compatible = "qcom,sdm845-dcc", .data = (void *)0x6000 },
{ .compatible = "qcom,sm8150-dcc", .data = (void *)0x5000 },
{ }
};
MODULE_DEVICE_TABLE(of, dcc_match_table);
static struct platform_driver dcc_driver = {
.probe = dcc_probe,
.remove = dcc_remove,
.driver = {
.name = "qcom-dcc",
.of_match_table = dcc_match_table,
},
};
module_platform_driver(dcc_driver);
MODULE_LICENSE("GPL");
MODULE_DESCRIPTION("Qualcomm Technologies Inc. DCC driver");
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment