Commit 4e9436fb authored by Mark Brown's avatar Mark Brown

Merge branch 'topic/iio' of...

Merge branch 'topic/iio' of https://git.kernel.org/pub/scm/linux/kernel/git/broonie/sound into asoc-st-dfsdm
parents 9cee7972 9ae148f8
What: /sys/bus/iio/devices/iio:deviceX/in_voltage_spi_clk_freq
KernelVersion: 4.14
Contact: arnaud.pouliquen@st.com
Description:
For audio purpose only.
Used by audio driver to set/get the spi input frequency.
This is mandatory if DFSDM is slave on SPI bus, to
provide information on the SPI clock frequency during runtime
Notice that the SPI frequency should be a multiple of sample
frequency to ensure the precision.
if DFSDM input is SPI master
Reading SPI clkout frequency,
error on writing
If DFSDM input is SPI Slave:
Reading returns value previously set.
Writing value before starting conversions.
\ No newline at end of file
Device-Tree bindings for sigma delta modulator
Required properties:
- compatible: should be "ads1201", "sd-modulator". "sd-modulator" can be use
as a generic SD modulator if modulator not specified in compatible list.
- #io-channel-cells = <1>: See the IIO bindings section "IIO consumers".
Example node:
ads1202: adc@0 {
compatible = "sd-modulator";
#io-channel-cells = <1>;
};
STMicroelectronics STM32 DFSDM ADC device driver
STM32 DFSDM ADC is a sigma delta analog-to-digital converter dedicated to
interface external sigma delta modulators to STM32 micro controllers.
It is mainly targeted for:
- Sigma delta modulators (motor control, metering...)
- PDM microphones (audio digital microphone)
It features up to 8 serial digital interfaces (SPI or Manchester) and
up to 4 filters on stm32h7.
Each child node match with a filter instance.
Contents of a STM32 DFSDM root node:
------------------------------------
Required properties:
- compatible: Should be "st,stm32h7-dfsdm".
- reg: Offset and length of the DFSDM block register set.
- clocks: IP and serial interfaces clocking. Should be set according
to rcc clock ID and "clock-names".
- clock-names: Input clock name "dfsdm" must be defined,
"audio" is optional. If defined CLKOUT is based on the audio
clock, else "dfsdm" is used.
- #interrupt-cells = <1>;
- #address-cells = <1>;
- #size-cells = <0>;
Optional properties:
- spi-max-frequency: Requested only for SPI master mode.
SPI clock OUT frequency (Hz). This clock must be set according
to "clock" property. Frequency must be a multiple of the rcc
clock frequency. If not, SPI CLKOUT frequency will not be
accurate.
Contents of a STM32 DFSDM child nodes:
--------------------------------------
Required properties:
- compatible: Must be:
"st,stm32-dfsdm-adc" for sigma delta ADCs
"st,stm32-dfsdm-dmic" for audio digital microphone.
- reg: Specifies the DFSDM filter instance used.
- interrupts: IRQ lines connected to each DFSDM filter instance.
- st,adc-channels: List of single-ended channels muxed for this ADC.
valid values:
"st,stm32h7-dfsdm" compatibility: 0 to 7.
- st,adc-channel-names: List of single-ended channel names.
- st,filter-order: SinC filter order from 0 to 5.
0: FastSinC
[1-5]: order 1 to 5.
For audio purpose it is recommended to use order 3 to 5.
- #io-channel-cells = <1>: See the IIO bindings section "IIO consumers".
Required properties for "st,stm32-dfsdm-adc" compatibility:
- io-channels: From common IIO binding. Used to pipe external sigma delta
modulator or internal ADC output to DFSDM channel.
This is not required for "st,stm32-dfsdm-pdm" compatibility as
PDM microphone is binded in Audio DT node.
Required properties for "st,stm32-dfsdm-pdm" compatibility:
- #sound-dai-cells: Must be set to 0.
- dma: DMA controller phandle and DMA request line associated to the
filter instance (specified by the field "reg")
- dma-names: Must be "rx"
Optional properties:
- st,adc-channel-types: Single-ended channel input type.
- "SPI_R": SPI with data on rising edge (default)
- "SPI_F": SPI with data on falling edge
- "MANCH_R": manchester codec, rising edge = logic 0
- "MANCH_F": manchester codec, falling edge = logic 1
- st,adc-channel-clk-src: Conversion clock source.
- "CLKIN": external SPI clock (CLKIN x)
- "CLKOUT": internal SPI clock (CLKOUT) (default)
- "CLKOUT_F": internal SPI clock divided by 2 (falling edge).
- "CLKOUT_R": internal SPI clock divided by 2 (rising edge).
- st,adc-alt-channel: Must be defined if two sigma delta modulator are
connected on same SPI input.
If not set, channel n is connected to SPI input n.
If set, channel n is connected to SPI input n + 1.
- st,filter0-sync: Set to 1 to synchronize with DFSDM filter instance 0.
Used for multi microphones synchronization.
Example of a sigma delta adc connected on DFSDM SPI port 0
and a pdm microphone connected on DFSDM SPI port 1:
ads1202: simple_sd_adc@0 {
compatible = "ads1202";
#io-channel-cells = <1>;
};
dfsdm: dfsdm@40017000 {
compatible = "st,stm32h7-dfsdm";
reg = <0x40017000 0x400>;
clocks = <&rcc DFSDM1_CK>;
clock-names = "dfsdm";
#interrupt-cells = <1>;
#address-cells = <1>;
#size-cells = <0>;
dfsdm_adc0: filter@0 {
compatible = "st,stm32-dfsdm-adc";
#io-channel-cells = <1>;
reg = <0>;
interrupts = <110>;
st,adc-channels = <0>;
st,adc-channel-names = "sd_adc0";
st,adc-channel-types = "SPI_F";
st,adc-channel-clk-src = "CLKOUT";
io-channels = <&ads1202 0>;
st,filter-order = <3>;
};
dfsdm_pdm1: filter@1 {
compatible = "st,stm32-dfsdm-dmic";
reg = <1>;
interrupts = <111>;
dmas = <&dmamux1 102 0x400 0x00>;
dma-names = "rx";
st,adc-channels = <1>;
st,adc-channel-names = "dmic1";
st,adc-channel-types = "SPI_R";
st,adc-channel-clk-src = "CLKOUT";
st,filter-order = <5>;
};
}
===========
HW consumer
===========
An IIO device can be directly connected to another device in hardware. in this
case the buffers between IIO provider and IIO consumer are handled by hardware.
The Industrial I/O HW consumer offers a way to bond these IIO devices without
software buffer for data. The implementation can be found under
:file:`drivers/iio/buffer/hw-consumer.c`
* struct :c:type:`iio_hw_consumer` — Hardware consumer structure
* :c:func:`iio_hw_consumer_alloc` — Allocate IIO hardware consumer
* :c:func:`iio_hw_consumer_free` — Free IIO hardware consumer
* :c:func:`iio_hw_consumer_enable` — Enable IIO hardware consumer
* :c:func:`iio_hw_consumer_disable` — Disable IIO hardware consumer
HW consumer setup
=================
As standard IIO device the implementation is based on IIO provider/consumer.
A typical IIO HW consumer setup looks like this::
static struct iio_hw_consumer *hwc;
static const struct iio_info adc_info = {
.read_raw = adc_read_raw,
};
static int adc_read_raw(struct iio_dev *indio_dev,
struct iio_chan_spec const *chan, int *val,
int *val2, long mask)
{
ret = iio_hw_consumer_enable(hwc);
/* Acquire data */
ret = iio_hw_consumer_disable(hwc);
}
static int adc_probe(struct platform_device *pdev)
{
hwc = devm_iio_hw_consumer_alloc(&iio->dev);
}
More details
============
.. kernel-doc:: include/linux/iio/hw-consumer.h
.. kernel-doc:: drivers/iio/buffer/industrialio-hw-consumer.c
:export:
...@@ -15,3 +15,4 @@ Contents: ...@@ -15,3 +15,4 @@ Contents:
buffers buffers
triggers triggers
triggered-buffers triggered-buffers
hw-consumer
...@@ -629,6 +629,18 @@ config SPEAR_ADC ...@@ -629,6 +629,18 @@ config SPEAR_ADC
To compile this driver as a module, choose M here: the To compile this driver as a module, choose M here: the
module will be called spear_adc. module will be called spear_adc.
config SD_ADC_MODULATOR
tristate "Generic sigma delta modulator"
depends on OF
select IIO_BUFFER
select IIO_TRIGGERED_BUFFER
help
Select this option to enables sigma delta modulator. This driver can
support generic sigma delta modulators.
This driver can also be built as a module. If so, the module
will be called sd_adc_modulator.
config STM32_ADC_CORE config STM32_ADC_CORE
tristate "STMicroelectronics STM32 adc core" tristate "STMicroelectronics STM32 adc core"
depends on ARCH_STM32 || COMPILE_TEST depends on ARCH_STM32 || COMPILE_TEST
...@@ -656,6 +668,31 @@ config STM32_ADC ...@@ -656,6 +668,31 @@ config STM32_ADC
This driver can also be built as a module. If so, the module This driver can also be built as a module. If so, the module
will be called stm32-adc. will be called stm32-adc.
config STM32_DFSDM_CORE
tristate "STMicroelectronics STM32 DFSDM core"
depends on (ARCH_STM32 && OF) || COMPILE_TEST
select REGMAP
select REGMAP_MMIO
help
Select this option to enable the driver for STMicroelectronics
STM32 digital filter for sigma delta converter.
This driver can also be built as a module. If so, the module
will be called stm32-dfsdm-core.
config STM32_DFSDM_ADC
tristate "STMicroelectronics STM32 dfsdm adc"
depends on (ARCH_STM32 && OF) || COMPILE_TEST
select STM32_DFSDM_CORE
select REGMAP_MMIO
select IIO_BUFFER_HW_CONSUMER
help
Select this option to support ADCSigma delta modulator for
STMicroelectronics STM32 digital filter for sigma delta converter.
This driver can also be built as a module. If so, the module
will be called stm32-dfsdm-adc.
config STX104 config STX104
tristate "Apex Embedded Systems STX104 driver" tristate "Apex Embedded Systems STX104 driver"
depends on PC104 && X86 && ISA_BUS_API depends on PC104 && X86 && ISA_BUS_API
......
...@@ -64,6 +64,8 @@ obj-$(CONFIG_STX104) += stx104.o ...@@ -64,6 +64,8 @@ obj-$(CONFIG_STX104) += stx104.o
obj-$(CONFIG_SUN4I_GPADC) += sun4i-gpadc-iio.o obj-$(CONFIG_SUN4I_GPADC) += sun4i-gpadc-iio.o
obj-$(CONFIG_STM32_ADC_CORE) += stm32-adc-core.o obj-$(CONFIG_STM32_ADC_CORE) += stm32-adc-core.o
obj-$(CONFIG_STM32_ADC) += stm32-adc.o obj-$(CONFIG_STM32_ADC) += stm32-adc.o
obj-$(CONFIG_STM32_DFSDM_CORE) += stm32-dfsdm-core.o
obj-$(CONFIG_STM32_DFSDM_ADC) += stm32-dfsdm-adc.o
obj-$(CONFIG_TI_ADC081C) += ti-adc081c.o obj-$(CONFIG_TI_ADC081C) += ti-adc081c.o
obj-$(CONFIG_TI_ADC0832) += ti-adc0832.o obj-$(CONFIG_TI_ADC0832) += ti-adc0832.o
obj-$(CONFIG_TI_ADC084S021) += ti-adc084s021.o obj-$(CONFIG_TI_ADC084S021) += ti-adc084s021.o
...@@ -82,3 +84,4 @@ obj-$(CONFIG_VF610_ADC) += vf610_adc.o ...@@ -82,3 +84,4 @@ obj-$(CONFIG_VF610_ADC) += vf610_adc.o
obj-$(CONFIG_VIPERBOARD_ADC) += viperboard_adc.o obj-$(CONFIG_VIPERBOARD_ADC) += viperboard_adc.o
xilinx-xadc-y := xilinx-xadc-core.o xilinx-xadc-events.o xilinx-xadc-y := xilinx-xadc-core.o xilinx-xadc-events.o
obj-$(CONFIG_XILINX_XADC) += xilinx-xadc.o obj-$(CONFIG_XILINX_XADC) += xilinx-xadc.o
obj-$(CONFIG_SD_ADC_MODULATOR) += sd_adc_modulator.o
// SPDX-License-Identifier: GPL-2.0
/*
* Generic sigma delta modulator driver
*
* Copyright (C) 2017, STMicroelectronics - All Rights Reserved
* Author: Arnaud Pouliquen <arnaud.pouliquen@st.com>.
*/
#include <linux/iio/iio.h>
#include <linux/iio/triggered_buffer.h>
#include <linux/module.h>
#include <linux/of_device.h>
static const struct iio_info iio_sd_mod_iio_info;
static const struct iio_chan_spec iio_sd_mod_ch = {
.type = IIO_VOLTAGE,
.indexed = 1,
.scan_type = {
.sign = 'u',
.realbits = 1,
.shift = 0,
},
};
static int iio_sd_mod_probe(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
struct iio_dev *iio;
iio = devm_iio_device_alloc(dev, 0);
if (!iio)
return -ENOMEM;
iio->dev.parent = dev;
iio->dev.of_node = dev->of_node;
iio->name = dev_name(dev);
iio->info = &iio_sd_mod_iio_info;
iio->modes = INDIO_BUFFER_HARDWARE;
iio->num_channels = 1;
iio->channels = &iio_sd_mod_ch;
platform_set_drvdata(pdev, iio);
return devm_iio_device_register(&pdev->dev, iio);
}
static const struct of_device_id sd_adc_of_match[] = {
{ .compatible = "sd-modulator" },
{ .compatible = "ads1201" },
{ }
};
MODULE_DEVICE_TABLE(of, sd_adc_of_match);
static struct platform_driver iio_sd_mod_adc = {
.driver = {
.name = "iio_sd_adc_mod",
.of_match_table = of_match_ptr(sd_adc_of_match),
},
.probe = iio_sd_mod_probe,
};
module_platform_driver(iio_sd_mod_adc);
MODULE_DESCRIPTION("Basic sigma delta modulator");
MODULE_AUTHOR("Arnaud Pouliquen <arnaud.pouliquen@st.com>");
MODULE_LICENSE("GPL v2");
// SPDX-License-Identifier: GPL-2.0
/*
* This file is the ADC part of the STM32 DFSDM driver
*
* Copyright (C) 2017, STMicroelectronics - All Rights Reserved
* Author: Arnaud Pouliquen <arnaud.pouliquen@st.com>.
*/
#include <linux/dmaengine.h>
#include <linux/dma-mapping.h>
#include <linux/interrupt.h>
#include <linux/iio/buffer.h>
#include <linux/iio/hw-consumer.h>
#include <linux/iio/iio.h>
#include <linux/iio/sysfs.h>
#include <linux/module.h>
#include <linux/of_device.h>
#include <linux/platform_device.h>
#include <linux/regmap.h>
#include <linux/slab.h>
#include "stm32-dfsdm.h"
#define DFSDM_DMA_BUFFER_SIZE (4 * PAGE_SIZE)
/* Conversion timeout */
#define DFSDM_TIMEOUT_US 100000
#define DFSDM_TIMEOUT (msecs_to_jiffies(DFSDM_TIMEOUT_US / 1000))
/* Oversampling attribute default */
#define DFSDM_DEFAULT_OVERSAMPLING 100
/* Oversampling max values */
#define DFSDM_MAX_INT_OVERSAMPLING 256
#define DFSDM_MAX_FL_OVERSAMPLING 1024
/* Max sample resolutions */
#define DFSDM_MAX_RES BIT(31)
#define DFSDM_DATA_RES BIT(23)
enum sd_converter_type {
DFSDM_AUDIO,
DFSDM_IIO,
};
struct stm32_dfsdm_dev_data {
int type;
int (*init)(struct iio_dev *indio_dev);
unsigned int num_channels;
const struct regmap_config *regmap_cfg;
};
struct stm32_dfsdm_adc {
struct stm32_dfsdm *dfsdm;
const struct stm32_dfsdm_dev_data *dev_data;
unsigned int fl_id;
unsigned int ch_id;
/* ADC specific */
unsigned int oversamp;
struct iio_hw_consumer *hwc;
struct completion completion;
u32 *buffer;
/* Audio specific */
unsigned int spi_freq; /* SPI bus clock frequency */
unsigned int sample_freq; /* Sample frequency after filter decimation */
int (*cb)(const void *data, size_t size, void *cb_priv);
void *cb_priv;
/* DMA */
u8 *rx_buf;
unsigned int bufi; /* Buffer current position */
unsigned int buf_sz; /* Buffer size */
struct dma_chan *dma_chan;
dma_addr_t dma_buf;
};
struct stm32_dfsdm_str2field {
const char *name;
unsigned int val;
};
/* DFSDM channel serial interface type */
static const struct stm32_dfsdm_str2field stm32_dfsdm_chan_type[] = {
{ "SPI_R", 0 }, /* SPI with data on rising edge */
{ "SPI_F", 1 }, /* SPI with data on falling edge */
{ "MANCH_R", 2 }, /* Manchester codec, rising edge = logic 0 */
{ "MANCH_F", 3 }, /* Manchester codec, falling edge = logic 1 */
{},
};
/* DFSDM channel clock source */
static const struct stm32_dfsdm_str2field stm32_dfsdm_chan_src[] = {
/* External SPI clock (CLKIN x) */
{ "CLKIN", DFSDM_CHANNEL_SPI_CLOCK_EXTERNAL },
/* Internal SPI clock (CLKOUT) */
{ "CLKOUT", DFSDM_CHANNEL_SPI_CLOCK_INTERNAL },
/* Internal SPI clock divided by 2 (falling edge) */
{ "CLKOUT_F", DFSDM_CHANNEL_SPI_CLOCK_INTERNAL_DIV2_FALLING },
/* Internal SPI clock divided by 2 (falling edge) */
{ "CLKOUT_R", DFSDM_CHANNEL_SPI_CLOCK_INTERNAL_DIV2_RISING },
{},
};
static int stm32_dfsdm_str2val(const char *str,
const struct stm32_dfsdm_str2field *list)
{
const struct stm32_dfsdm_str2field *p = list;
for (p = list; p && p->name; p++)
if (!strcmp(p->name, str))
return p->val;
return -EINVAL;
}
static int stm32_dfsdm_set_osrs(struct stm32_dfsdm_filter *fl,
unsigned int fast, unsigned int oversamp)
{
unsigned int i, d, fosr, iosr;
u64 res;
s64 delta;
unsigned int m = 1; /* multiplication factor */
unsigned int p = fl->ford; /* filter order (ford) */
pr_debug("%s: Requested oversampling: %d\n", __func__, oversamp);
/*
* This function tries to compute filter oversampling and integrator
* oversampling, base on oversampling ratio requested by user.
*
* Decimation d depends on the filter order and the oversampling ratios.
* ford: filter order
* fosr: filter over sampling ratio
* iosr: integrator over sampling ratio
*/
if (fl->ford == DFSDM_FASTSINC_ORDER) {
m = 2;
p = 2;
}
/*
* Look for filter and integrator oversampling ratios which allows
* to reach 24 bits data output resolution.
* Leave as soon as if exact resolution if reached.
* Otherwise the higher resolution below 32 bits is kept.
*/
for (fosr = 1; fosr <= DFSDM_MAX_FL_OVERSAMPLING; fosr++) {
for (iosr = 1; iosr <= DFSDM_MAX_INT_OVERSAMPLING; iosr++) {
if (fast)
d = fosr * iosr;
else if (fl->ford == DFSDM_FASTSINC_ORDER)
d = fosr * (iosr + 3) + 2;
else
d = fosr * (iosr - 1 + p) + p;
if (d > oversamp)
break;
else if (d != oversamp)
continue;
/*
* Check resolution (limited to signed 32 bits)
* res <= 2^31
* Sincx filters:
* res = m * fosr^p x iosr (with m=1, p=ford)
* FastSinc filter
* res = m * fosr^p x iosr (with m=2, p=2)
*/
res = fosr;
for (i = p - 1; i > 0; i--) {
res = res * (u64)fosr;
if (res > DFSDM_MAX_RES)
break;
}
if (res > DFSDM_MAX_RES)
continue;
res = res * (u64)m * (u64)iosr;
if (res > DFSDM_MAX_RES)
continue;
delta = res - DFSDM_DATA_RES;
if (res >= fl->res) {
fl->res = res;
fl->fosr = fosr;
fl->iosr = iosr;
fl->fast = fast;
pr_debug("%s: fosr = %d, iosr = %d\n",
__func__, fl->fosr, fl->iosr);
}
if (!delta)
return 0;
}
}
if (!fl->fosr)
return -EINVAL;
return 0;
}
static int stm32_dfsdm_start_channel(struct stm32_dfsdm *dfsdm,
unsigned int ch_id)
{
return regmap_update_bits(dfsdm->regmap, DFSDM_CHCFGR1(ch_id),
DFSDM_CHCFGR1_CHEN_MASK,
DFSDM_CHCFGR1_CHEN(1));
}
static void stm32_dfsdm_stop_channel(struct stm32_dfsdm *dfsdm,
unsigned int ch_id)
{
regmap_update_bits(dfsdm->regmap, DFSDM_CHCFGR1(ch_id),
DFSDM_CHCFGR1_CHEN_MASK, DFSDM_CHCFGR1_CHEN(0));
}
static int stm32_dfsdm_chan_configure(struct stm32_dfsdm *dfsdm,
struct stm32_dfsdm_channel *ch)
{
unsigned int id = ch->id;
struct regmap *regmap = dfsdm->regmap;
int ret;
ret = regmap_update_bits(regmap, DFSDM_CHCFGR1(id),
DFSDM_CHCFGR1_SITP_MASK,
DFSDM_CHCFGR1_SITP(ch->type));
if (ret < 0)
return ret;
ret = regmap_update_bits(regmap, DFSDM_CHCFGR1(id),
DFSDM_CHCFGR1_SPICKSEL_MASK,
DFSDM_CHCFGR1_SPICKSEL(ch->src));
if (ret < 0)
return ret;
return regmap_update_bits(regmap, DFSDM_CHCFGR1(id),
DFSDM_CHCFGR1_CHINSEL_MASK,
DFSDM_CHCFGR1_CHINSEL(ch->alt_si));
}
static int stm32_dfsdm_start_filter(struct stm32_dfsdm *dfsdm,
unsigned int fl_id)
{
int ret;
/* Enable filter */
ret = regmap_update_bits(dfsdm->regmap, DFSDM_CR1(fl_id),
DFSDM_CR1_DFEN_MASK, DFSDM_CR1_DFEN(1));
if (ret < 0)
return ret;
/* Start conversion */
return regmap_update_bits(dfsdm->regmap, DFSDM_CR1(fl_id),
DFSDM_CR1_RSWSTART_MASK,
DFSDM_CR1_RSWSTART(1));
}
static void stm32_dfsdm_stop_filter(struct stm32_dfsdm *dfsdm, unsigned int fl_id)
{
/* Disable conversion */
regmap_update_bits(dfsdm->regmap, DFSDM_CR1(fl_id),
DFSDM_CR1_DFEN_MASK, DFSDM_CR1_DFEN(0));
}
static int stm32_dfsdm_filter_configure(struct stm32_dfsdm *dfsdm,
unsigned int fl_id, unsigned int ch_id)
{
struct regmap *regmap = dfsdm->regmap;
struct stm32_dfsdm_filter *fl = &dfsdm->fl_list[fl_id];
int ret;
/* Average integrator oversampling */
ret = regmap_update_bits(regmap, DFSDM_FCR(fl_id), DFSDM_FCR_IOSR_MASK,
DFSDM_FCR_IOSR(fl->iosr - 1));
if (ret)
return ret;
/* Filter order and Oversampling */
ret = regmap_update_bits(regmap, DFSDM_FCR(fl_id), DFSDM_FCR_FOSR_MASK,
DFSDM_FCR_FOSR(fl->fosr - 1));
if (ret)
return ret;
ret = regmap_update_bits(regmap, DFSDM_FCR(fl_id), DFSDM_FCR_FORD_MASK,
DFSDM_FCR_FORD(fl->ford));
if (ret)
return ret;
/* No scan mode supported for the moment */
ret = regmap_update_bits(regmap, DFSDM_CR1(fl_id), DFSDM_CR1_RCH_MASK,
DFSDM_CR1_RCH(ch_id));
if (ret)
return ret;
return regmap_update_bits(regmap, DFSDM_CR1(fl_id),
DFSDM_CR1_RSYNC_MASK,
DFSDM_CR1_RSYNC(fl->sync_mode));
}
static int stm32_dfsdm_channel_parse_of(struct stm32_dfsdm *dfsdm,
struct iio_dev *indio_dev,
struct iio_chan_spec *ch)
{
struct stm32_dfsdm_channel *df_ch;
const char *of_str;
int chan_idx = ch->scan_index;
int ret, val;
ret = of_property_read_u32_index(indio_dev->dev.of_node,
"st,adc-channels", chan_idx,
&ch->channel);
if (ret < 0) {
dev_err(&indio_dev->dev,
" Error parsing 'st,adc-channels' for idx %d\n",
chan_idx);
return ret;
}
if (ch->channel >= dfsdm->num_chs) {
dev_err(&indio_dev->dev,
" Error bad channel number %d (max = %d)\n",
ch->channel, dfsdm->num_chs);
return -EINVAL;
}
ret = of_property_read_string_index(indio_dev->dev.of_node,
"st,adc-channel-names", chan_idx,
&ch->datasheet_name);
if (ret < 0) {
dev_err(&indio_dev->dev,
" Error parsing 'st,adc-channel-names' for idx %d\n",
chan_idx);
return ret;
}
df_ch = &dfsdm->ch_list[ch->channel];
df_ch->id = ch->channel;
ret = of_property_read_string_index(indio_dev->dev.of_node,
"st,adc-channel-types", chan_idx,
&of_str);
if (!ret) {
val = stm32_dfsdm_str2val(of_str, stm32_dfsdm_chan_type);
if (val < 0)
return val;
} else {
val = 0;
}
df_ch->type = val;
ret = of_property_read_string_index(indio_dev->dev.of_node,
"st,adc-channel-clk-src", chan_idx,
&of_str);
if (!ret) {
val = stm32_dfsdm_str2val(of_str, stm32_dfsdm_chan_src);
if (val < 0)
return val;
} else {
val = 0;
}
df_ch->src = val;
ret = of_property_read_u32_index(indio_dev->dev.of_node,
"st,adc-alt-channel", chan_idx,
&df_ch->alt_si);
if (ret < 0)
df_ch->alt_si = 0;
return 0;
}
static ssize_t dfsdm_adc_audio_get_spiclk(struct iio_dev *indio_dev,
uintptr_t priv,
const struct iio_chan_spec *chan,
char *buf)
{
struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
return snprintf(buf, PAGE_SIZE, "%d\n", adc->spi_freq);
}
static ssize_t dfsdm_adc_audio_set_spiclk(struct iio_dev *indio_dev,
uintptr_t priv,
const struct iio_chan_spec *chan,
const char *buf, size_t len)
{
struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
struct stm32_dfsdm_filter *fl = &adc->dfsdm->fl_list[adc->fl_id];
struct stm32_dfsdm_channel *ch = &adc->dfsdm->ch_list[adc->ch_id];
unsigned int sample_freq = adc->sample_freq;
unsigned int spi_freq;
int ret;
dev_err(&indio_dev->dev, "enter %s\n", __func__);
/* If DFSDM is master on SPI, SPI freq can not be updated */
if (ch->src != DFSDM_CHANNEL_SPI_CLOCK_EXTERNAL)
return -EPERM;
ret = kstrtoint(buf, 0, &spi_freq);
if (ret)
return ret;
if (!spi_freq)
return -EINVAL;
if (sample_freq) {
if (spi_freq % sample_freq)
dev_warn(&indio_dev->dev,
"Sampling rate not accurate (%d)\n",
spi_freq / (spi_freq / sample_freq));
ret = stm32_dfsdm_set_osrs(fl, 0, (spi_freq / sample_freq));
if (ret < 0) {
dev_err(&indio_dev->dev,
"No filter parameters that match!\n");
return ret;
}
}
adc->spi_freq = spi_freq;
return len;
}
static int stm32_dfsdm_start_conv(struct stm32_dfsdm_adc *adc, bool dma)
{
struct regmap *regmap = adc->dfsdm->regmap;
int ret;
unsigned int dma_en = 0, cont_en = 0;
ret = stm32_dfsdm_start_channel(adc->dfsdm, adc->ch_id);
if (ret < 0)
return ret;
ret = stm32_dfsdm_filter_configure(adc->dfsdm, adc->fl_id,
adc->ch_id);
if (ret < 0)
goto stop_channels;
if (dma) {
/* Enable DMA transfer*/
dma_en = DFSDM_CR1_RDMAEN(1);
/* Enable conversion triggered by SPI clock*/
cont_en = DFSDM_CR1_RCONT(1);
}
/* Enable DMA transfer*/
ret = regmap_update_bits(regmap, DFSDM_CR1(adc->fl_id),
DFSDM_CR1_RDMAEN_MASK, dma_en);
if (ret < 0)
goto stop_channels;
/* Enable conversion triggered by SPI clock*/
ret = regmap_update_bits(regmap, DFSDM_CR1(adc->fl_id),
DFSDM_CR1_RCONT_MASK, cont_en);
if (ret < 0)
goto stop_channels;
ret = stm32_dfsdm_start_filter(adc->dfsdm, adc->fl_id);
if (ret < 0)
goto stop_channels;
return 0;
stop_channels:
regmap_update_bits(regmap, DFSDM_CR1(adc->fl_id),
DFSDM_CR1_RDMAEN_MASK, 0);
regmap_update_bits(regmap, DFSDM_CR1(adc->fl_id),
DFSDM_CR1_RCONT_MASK, 0);
stm32_dfsdm_stop_channel(adc->dfsdm, adc->fl_id);
return ret;
}
static void stm32_dfsdm_stop_conv(struct stm32_dfsdm_adc *adc)
{
struct regmap *regmap = adc->dfsdm->regmap;
stm32_dfsdm_stop_filter(adc->dfsdm, adc->fl_id);
/* Clean conversion options */
regmap_update_bits(regmap, DFSDM_CR1(adc->fl_id),
DFSDM_CR1_RDMAEN_MASK, 0);
regmap_update_bits(regmap, DFSDM_CR1(adc->fl_id),
DFSDM_CR1_RCONT_MASK, 0);
stm32_dfsdm_stop_channel(adc->dfsdm, adc->ch_id);
}
static int stm32_dfsdm_set_watermark(struct iio_dev *indio_dev,
unsigned int val)
{
struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
unsigned int watermark = DFSDM_DMA_BUFFER_SIZE / 2;
/*
* DMA cyclic transfers are used, buffer is split into two periods.
* There should be :
* - always one buffer (period) DMA is working on
* - one buffer (period) driver pushed to ASoC side.
*/
watermark = min(watermark, val * (unsigned int)(sizeof(u32)));
adc->buf_sz = watermark * 2;
return 0;
}
static unsigned int stm32_dfsdm_adc_dma_residue(struct stm32_dfsdm_adc *adc)
{
struct dma_tx_state state;
enum dma_status status;
status = dmaengine_tx_status(adc->dma_chan,
adc->dma_chan->cookie,
&state);
if (status == DMA_IN_PROGRESS) {
/* Residue is size in bytes from end of buffer */
unsigned int i = adc->buf_sz - state.residue;
unsigned int size;
/* Return available bytes */
if (i >= adc->bufi)
size = i - adc->bufi;
else
size = adc->buf_sz + i - adc->bufi;
return size;
}
return 0;
}
static void stm32_dfsdm_audio_dma_buffer_done(void *data)
{
struct iio_dev *indio_dev = data;
struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
int available = stm32_dfsdm_adc_dma_residue(adc);
size_t old_pos;
/*
* FIXME: In Kernel interface does not support cyclic DMA buffer,and
* offers only an interface to push data samples per samples.
* For this reason IIO buffer interface is not used and interface is
* bypassed using a private callback registered by ASoC.
* This should be a temporary solution waiting a cyclic DMA engine
* support in IIO.
*/
dev_dbg(&indio_dev->dev, "%s: pos = %d, available = %d\n", __func__,
adc->bufi, available);
old_pos = adc->bufi;
while (available >= indio_dev->scan_bytes) {
u32 *buffer = (u32 *)&adc->rx_buf[adc->bufi];
/* Mask 8 LSB that contains the channel ID */
*buffer = (*buffer & 0xFFFFFF00) << 8;
available -= indio_dev->scan_bytes;
adc->bufi += indio_dev->scan_bytes;
if (adc->bufi >= adc->buf_sz) {
if (adc->cb)
adc->cb(&adc->rx_buf[old_pos],
adc->buf_sz - old_pos, adc->cb_priv);
adc->bufi = 0;
old_pos = 0;
}
}
if (adc->cb)
adc->cb(&adc->rx_buf[old_pos], adc->bufi - old_pos,
adc->cb_priv);
}
static int stm32_dfsdm_adc_dma_start(struct iio_dev *indio_dev)
{
struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
struct dma_async_tx_descriptor *desc;
dma_cookie_t cookie;
int ret;
if (!adc->dma_chan)
return -EINVAL;
dev_dbg(&indio_dev->dev, "%s size=%d watermark=%d\n", __func__,
adc->buf_sz, adc->buf_sz / 2);
/* Prepare a DMA cyclic transaction */
desc = dmaengine_prep_dma_cyclic(adc->dma_chan,
adc->dma_buf,
adc->buf_sz, adc->buf_sz / 2,
DMA_DEV_TO_MEM,
DMA_PREP_INTERRUPT);
if (!desc)
return -EBUSY;
desc->callback = stm32_dfsdm_audio_dma_buffer_done;
desc->callback_param = indio_dev;
cookie = dmaengine_submit(desc);
ret = dma_submit_error(cookie);
if (ret) {
dmaengine_terminate_all(adc->dma_chan);
return ret;
}
/* Issue pending DMA requests */
dma_async_issue_pending(adc->dma_chan);
return 0;
}
static int stm32_dfsdm_postenable(struct iio_dev *indio_dev)
{
struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
int ret;
/* Reset adc buffer index */
adc->bufi = 0;
ret = stm32_dfsdm_start_dfsdm(adc->dfsdm);
if (ret < 0)
return ret;
ret = stm32_dfsdm_start_conv(adc, true);
if (ret) {
dev_err(&indio_dev->dev, "Can't start conversion\n");
goto stop_dfsdm;
}
if (adc->dma_chan) {
ret = stm32_dfsdm_adc_dma_start(indio_dev);
if (ret) {
dev_err(&indio_dev->dev, "Can't start DMA\n");
goto err_stop_conv;
}
}
return 0;
err_stop_conv:
stm32_dfsdm_stop_conv(adc);
stop_dfsdm:
stm32_dfsdm_stop_dfsdm(adc->dfsdm);
return ret;
}
static int stm32_dfsdm_predisable(struct iio_dev *indio_dev)
{
struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
if (adc->dma_chan)
dmaengine_terminate_all(adc->dma_chan);
stm32_dfsdm_stop_conv(adc);
stm32_dfsdm_stop_dfsdm(adc->dfsdm);
return 0;
}
static const struct iio_buffer_setup_ops stm32_dfsdm_buffer_setup_ops = {
.postenable = &stm32_dfsdm_postenable,
.predisable = &stm32_dfsdm_predisable,
};
/**
* stm32_dfsdm_get_buff_cb() - register a callback that will be called when
* DMA transfer period is achieved.
*
* @iio_dev: Handle to IIO device.
* @cb: Pointer to callback function:
* - data: pointer to data buffer
* - size: size in byte of the data buffer
* - private: pointer to consumer private structure.
* @private: Pointer to consumer private structure.
*/
int stm32_dfsdm_get_buff_cb(struct iio_dev *iio_dev,
int (*cb)(const void *data, size_t size,
void *private),
void *private)
{
struct stm32_dfsdm_adc *adc;
if (!iio_dev)
return -EINVAL;
adc = iio_priv(iio_dev);
adc->cb = cb;
adc->cb_priv = private;
return 0;
}
EXPORT_SYMBOL_GPL(stm32_dfsdm_get_buff_cb);
/**
* stm32_dfsdm_release_buff_cb - unregister buffer callback
*
* @iio_dev: Handle to IIO device.
*/
int stm32_dfsdm_release_buff_cb(struct iio_dev *iio_dev)
{
struct stm32_dfsdm_adc *adc;
if (!iio_dev)
return -EINVAL;
adc = iio_priv(iio_dev);
adc->cb = NULL;
adc->cb_priv = NULL;
return 0;
}
EXPORT_SYMBOL_GPL(stm32_dfsdm_release_buff_cb);
static int stm32_dfsdm_single_conv(struct iio_dev *indio_dev,
const struct iio_chan_spec *chan, int *res)
{
struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
long timeout;
int ret;
reinit_completion(&adc->completion);
adc->buffer = res;
ret = stm32_dfsdm_start_dfsdm(adc->dfsdm);
if (ret < 0)
return ret;
ret = regmap_update_bits(adc->dfsdm->regmap, DFSDM_CR2(adc->fl_id),
DFSDM_CR2_REOCIE_MASK, DFSDM_CR2_REOCIE(1));
if (ret < 0)
goto stop_dfsdm;
ret = stm32_dfsdm_start_conv(adc, false);
if (ret < 0) {
regmap_update_bits(adc->dfsdm->regmap, DFSDM_CR2(adc->fl_id),
DFSDM_CR2_REOCIE_MASK, DFSDM_CR2_REOCIE(0));
goto stop_dfsdm;
}
timeout = wait_for_completion_interruptible_timeout(&adc->completion,
DFSDM_TIMEOUT);
/* Mask IRQ for regular conversion achievement*/
regmap_update_bits(adc->dfsdm->regmap, DFSDM_CR2(adc->fl_id),
DFSDM_CR2_REOCIE_MASK, DFSDM_CR2_REOCIE(0));
if (timeout == 0)
ret = -ETIMEDOUT;
else if (timeout < 0)
ret = timeout;
else
ret = IIO_VAL_INT;
stm32_dfsdm_stop_conv(adc);
stop_dfsdm:
stm32_dfsdm_stop_dfsdm(adc->dfsdm);
return ret;
}
static int stm32_dfsdm_write_raw(struct iio_dev *indio_dev,
struct iio_chan_spec const *chan,
int val, int val2, long mask)
{
struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
struct stm32_dfsdm_filter *fl = &adc->dfsdm->fl_list[adc->fl_id];
struct stm32_dfsdm_channel *ch = &adc->dfsdm->ch_list[adc->ch_id];
unsigned int spi_freq = adc->spi_freq;
int ret = -EINVAL;
switch (mask) {
case IIO_CHAN_INFO_OVERSAMPLING_RATIO:
ret = stm32_dfsdm_set_osrs(fl, 0, val);
if (!ret)
adc->oversamp = val;
return ret;
case IIO_CHAN_INFO_SAMP_FREQ:
if (!val)
return -EINVAL;
if (ch->src != DFSDM_CHANNEL_SPI_CLOCK_EXTERNAL)
spi_freq = adc->dfsdm->spi_master_freq;
if (spi_freq % val)
dev_warn(&indio_dev->dev,
"Sampling rate not accurate (%d)\n",
spi_freq / (spi_freq / val));
ret = stm32_dfsdm_set_osrs(fl, 0, (spi_freq / val));
if (ret < 0) {
dev_err(&indio_dev->dev,
"Not able to find parameter that match!\n");
return ret;
}
adc->sample_freq = val;
return 0;
}
return -EINVAL;
}
static int stm32_dfsdm_read_raw(struct iio_dev *indio_dev,
struct iio_chan_spec const *chan, int *val,
int *val2, long mask)
{
struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
int ret;
switch (mask) {
case IIO_CHAN_INFO_RAW:
ret = iio_hw_consumer_enable(adc->hwc);
if (ret < 0) {
dev_err(&indio_dev->dev,
"%s: IIO enable failed (channel %d)\n",
__func__, chan->channel);
return ret;
}
ret = stm32_dfsdm_single_conv(indio_dev, chan, val);
iio_hw_consumer_disable(adc->hwc);
if (ret < 0) {
dev_err(&indio_dev->dev,
"%s: Conversion failed (channel %d)\n",
__func__, chan->channel);
return ret;
}
return IIO_VAL_INT;
case IIO_CHAN_INFO_OVERSAMPLING_RATIO:
*val = adc->oversamp;
return IIO_VAL_INT;
case IIO_CHAN_INFO_SAMP_FREQ:
*val = adc->sample_freq;
return IIO_VAL_INT;
}
return -EINVAL;
}
static const struct iio_info stm32_dfsdm_info_audio = {
.hwfifo_set_watermark = stm32_dfsdm_set_watermark,
.read_raw = stm32_dfsdm_read_raw,
.write_raw = stm32_dfsdm_write_raw,
};
static const struct iio_info stm32_dfsdm_info_adc = {
.read_raw = stm32_dfsdm_read_raw,
.write_raw = stm32_dfsdm_write_raw,
};
static irqreturn_t stm32_dfsdm_irq(int irq, void *arg)
{
struct stm32_dfsdm_adc *adc = arg;
struct iio_dev *indio_dev = iio_priv_to_dev(adc);
struct regmap *regmap = adc->dfsdm->regmap;
unsigned int status, int_en;
regmap_read(regmap, DFSDM_ISR(adc->fl_id), &status);
regmap_read(regmap, DFSDM_CR2(adc->fl_id), &int_en);
if (status & DFSDM_ISR_REOCF_MASK) {
/* Read the data register clean the IRQ status */
regmap_read(regmap, DFSDM_RDATAR(adc->fl_id), adc->buffer);
complete(&adc->completion);
}
if (status & DFSDM_ISR_ROVRF_MASK) {
if (int_en & DFSDM_CR2_ROVRIE_MASK)
dev_warn(&indio_dev->dev, "Overrun detected\n");
regmap_update_bits(regmap, DFSDM_ICR(adc->fl_id),
DFSDM_ICR_CLRROVRF_MASK,
DFSDM_ICR_CLRROVRF_MASK);
}
return IRQ_HANDLED;
}
/*
* Define external info for SPI Frequency and audio sampling rate that can be
* configured by ASoC driver through consumer.h API
*/
static const struct iio_chan_spec_ext_info dfsdm_adc_audio_ext_info[] = {
/* spi_clk_freq : clock freq on SPI/manchester bus used by channel */
{
.name = "spi_clk_freq",
.shared = IIO_SHARED_BY_TYPE,
.read = dfsdm_adc_audio_get_spiclk,
.write = dfsdm_adc_audio_set_spiclk,
},
{},
};
static void stm32_dfsdm_dma_release(struct iio_dev *indio_dev)
{
struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
if (adc->dma_chan) {
dma_free_coherent(adc->dma_chan->device->dev,
DFSDM_DMA_BUFFER_SIZE,
adc->rx_buf, adc->dma_buf);
dma_release_channel(adc->dma_chan);
}
}
static int stm32_dfsdm_dma_request(struct iio_dev *indio_dev)
{
struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
struct dma_slave_config config = {
.src_addr = (dma_addr_t)adc->dfsdm->phys_base +
DFSDM_RDATAR(adc->fl_id),
.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
};
int ret;
adc->dma_chan = dma_request_slave_channel(&indio_dev->dev, "rx");
if (!adc->dma_chan)
return -EINVAL;
adc->rx_buf = dma_alloc_coherent(adc->dma_chan->device->dev,
DFSDM_DMA_BUFFER_SIZE,
&adc->dma_buf, GFP_KERNEL);
if (!adc->rx_buf) {
ret = -ENOMEM;
goto err_release;
}
ret = dmaengine_slave_config(adc->dma_chan, &config);
if (ret)
goto err_free;
return 0;
err_free:
dma_free_coherent(adc->dma_chan->device->dev, DFSDM_DMA_BUFFER_SIZE,
adc->rx_buf, adc->dma_buf);
err_release:
dma_release_channel(adc->dma_chan);
return ret;
}
static int stm32_dfsdm_adc_chan_init_one(struct iio_dev *indio_dev,
struct iio_chan_spec *ch)
{
struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
int ret;
ret = stm32_dfsdm_channel_parse_of(adc->dfsdm, indio_dev, ch);
if (ret < 0)
return ret;
ch->type = IIO_VOLTAGE;
ch->indexed = 1;
/*
* IIO_CHAN_INFO_RAW: used to compute regular conversion
* IIO_CHAN_INFO_OVERSAMPLING_RATIO: used to set oversampling
*/
ch->info_mask_separate = BIT(IIO_CHAN_INFO_RAW);
ch->info_mask_shared_by_all = BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO);
if (adc->dev_data->type == DFSDM_AUDIO) {
ch->scan_type.sign = 's';
ch->ext_info = dfsdm_adc_audio_ext_info;
} else {
ch->scan_type.sign = 'u';
}
ch->scan_type.realbits = 24;
ch->scan_type.storagebits = 32;
adc->ch_id = ch->channel;
return stm32_dfsdm_chan_configure(adc->dfsdm,
&adc->dfsdm->ch_list[ch->channel]);
}
static int stm32_dfsdm_audio_init(struct iio_dev *indio_dev)
{
struct iio_chan_spec *ch;
struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
struct stm32_dfsdm_channel *d_ch;
int ret;
indio_dev->modes |= INDIO_BUFFER_SOFTWARE;
indio_dev->setup_ops = &stm32_dfsdm_buffer_setup_ops;
ch = devm_kzalloc(&indio_dev->dev, sizeof(*ch), GFP_KERNEL);
if (!ch)
return -ENOMEM;
ch->scan_index = 0;
ret = stm32_dfsdm_adc_chan_init_one(indio_dev, ch);
if (ret < 0) {
dev_err(&indio_dev->dev, "Channels init failed\n");
return ret;
}
ch->info_mask_separate = BIT(IIO_CHAN_INFO_SAMP_FREQ);
d_ch = &adc->dfsdm->ch_list[adc->ch_id];
if (d_ch->src != DFSDM_CHANNEL_SPI_CLOCK_EXTERNAL)
adc->spi_freq = adc->dfsdm->spi_master_freq;
indio_dev->num_channels = 1;
indio_dev->channels = ch;
return stm32_dfsdm_dma_request(indio_dev);
}
static int stm32_dfsdm_adc_init(struct iio_dev *indio_dev)
{
struct iio_chan_spec *ch;
struct stm32_dfsdm_adc *adc = iio_priv(indio_dev);
int num_ch;
int ret, chan_idx;
adc->oversamp = DFSDM_DEFAULT_OVERSAMPLING;
ret = stm32_dfsdm_set_osrs(&adc->dfsdm->fl_list[adc->fl_id], 0,
adc->oversamp);
if (ret < 0)
return ret;
num_ch = of_property_count_u32_elems(indio_dev->dev.of_node,
"st,adc-channels");
if (num_ch < 0 || num_ch > adc->dfsdm->num_chs) {
dev_err(&indio_dev->dev, "Bad st,adc-channels\n");
return num_ch < 0 ? num_ch : -EINVAL;
}
/* Bind to SD modulator IIO device */
adc->hwc = devm_iio_hw_consumer_alloc(&indio_dev->dev);
if (IS_ERR(adc->hwc))
return -EPROBE_DEFER;
ch = devm_kcalloc(&indio_dev->dev, num_ch, sizeof(*ch),
GFP_KERNEL);
if (!ch)
return -ENOMEM;
for (chan_idx = 0; chan_idx < num_ch; chan_idx++) {
ch->scan_index = chan_idx;
ret = stm32_dfsdm_adc_chan_init_one(indio_dev, ch);
if (ret < 0) {
dev_err(&indio_dev->dev, "Channels init failed\n");
return ret;
}
}
indio_dev->num_channels = num_ch;
indio_dev->channels = ch;
init_completion(&adc->completion);
return 0;
}
static const struct stm32_dfsdm_dev_data stm32h7_dfsdm_adc_data = {
.type = DFSDM_IIO,
.init = stm32_dfsdm_adc_init,
};
static const struct stm32_dfsdm_dev_data stm32h7_dfsdm_audio_data = {
.type = DFSDM_AUDIO,
.init = stm32_dfsdm_audio_init,
};
static const struct of_device_id stm32_dfsdm_adc_match[] = {
{
.compatible = "st,stm32-dfsdm-adc",
.data = &stm32h7_dfsdm_adc_data,
},
{
.compatible = "st,stm32-dfsdm-dmic",
.data = &stm32h7_dfsdm_audio_data,
},
{}
};
static int stm32_dfsdm_adc_probe(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
struct stm32_dfsdm_adc *adc;
struct device_node *np = dev->of_node;
const struct stm32_dfsdm_dev_data *dev_data;
struct iio_dev *iio;
const struct of_device_id *of_id;
char *name;
int ret, irq, val;
of_id = of_match_node(stm32_dfsdm_adc_match, np);
if (!of_id->data) {
dev_err(&pdev->dev, "Data associated to device is missing\n");
return -EINVAL;
}
dev_data = (const struct stm32_dfsdm_dev_data *)of_id->data;
iio = devm_iio_device_alloc(dev, sizeof(*adc));
if (IS_ERR(iio)) {
dev_err(dev, "%s: Failed to allocate IIO\n", __func__);
return PTR_ERR(iio);
}
adc = iio_priv(iio);
if (IS_ERR(adc)) {
dev_err(dev, "%s: Failed to allocate ADC\n", __func__);
return PTR_ERR(adc);
}
adc->dfsdm = dev_get_drvdata(dev->parent);
iio->dev.parent = dev;
iio->dev.of_node = np;
iio->modes = INDIO_DIRECT_MODE | INDIO_BUFFER_SOFTWARE;
platform_set_drvdata(pdev, adc);
ret = of_property_read_u32(dev->of_node, "reg", &adc->fl_id);
if (ret != 0) {
dev_err(dev, "Missing reg property\n");
return -EINVAL;
}
name = devm_kzalloc(dev, sizeof("dfsdm-adc0"), GFP_KERNEL);
if (!name)
return -ENOMEM;
if (dev_data->type == DFSDM_AUDIO) {
iio->info = &stm32_dfsdm_info_audio;
snprintf(name, sizeof("dfsdm-pdm0"), "dfsdm-pdm%d", adc->fl_id);
} else {
iio->info = &stm32_dfsdm_info_adc;
snprintf(name, sizeof("dfsdm-adc0"), "dfsdm-adc%d", adc->fl_id);
}
iio->name = name;
/*
* In a first step IRQs generated for channels are not treated.
* So IRQ associated to filter instance 0 is dedicated to the Filter 0.
*/
irq = platform_get_irq(pdev, 0);
ret = devm_request_irq(dev, irq, stm32_dfsdm_irq,
0, pdev->name, adc);
if (ret < 0) {
dev_err(dev, "Failed to request IRQ\n");
return ret;
}
ret = of_property_read_u32(dev->of_node, "st,filter-order", &val);
if (ret < 0) {
dev_err(dev, "Failed to set filter order\n");
return ret;
}
adc->dfsdm->fl_list[adc->fl_id].ford = val;
ret = of_property_read_u32(dev->of_node, "st,filter0-sync", &val);
if (!ret)
adc->dfsdm->fl_list[adc->fl_id].sync_mode = val;
adc->dev_data = dev_data;
ret = dev_data->init(iio);
if (ret < 0)
return ret;
ret = iio_device_register(iio);
if (ret < 0)
goto err_cleanup;
dev_err(dev, "of_platform_populate\n");
if (dev_data->type == DFSDM_AUDIO) {
ret = of_platform_populate(np, NULL, NULL, dev);
if (ret < 0) {
dev_err(dev, "Failed to find an audio DAI\n");
goto err_unregister;
}
}
return 0;
err_unregister:
iio_device_unregister(iio);
err_cleanup:
stm32_dfsdm_dma_release(iio);
return ret;
}
static int stm32_dfsdm_adc_remove(struct platform_device *pdev)
{
struct stm32_dfsdm_adc *adc = platform_get_drvdata(pdev);
struct iio_dev *indio_dev = iio_priv_to_dev(adc);
if (adc->dev_data->type == DFSDM_AUDIO)
of_platform_depopulate(&pdev->dev);
iio_device_unregister(indio_dev);
stm32_dfsdm_dma_release(indio_dev);
return 0;
}
static struct platform_driver stm32_dfsdm_adc_driver = {
.driver = {
.name = "stm32-dfsdm-adc",
.of_match_table = stm32_dfsdm_adc_match,
},
.probe = stm32_dfsdm_adc_probe,
.remove = stm32_dfsdm_adc_remove,
};
module_platform_driver(stm32_dfsdm_adc_driver);
MODULE_DESCRIPTION("STM32 sigma delta ADC");
MODULE_AUTHOR("Arnaud Pouliquen <arnaud.pouliquen@st.com>");
MODULE_LICENSE("GPL v2");
// SPDX-License-Identifier: GPL-2.0
/*
* This file is part the core part STM32 DFSDM driver
*
* Copyright (C) 2017, STMicroelectronics - All Rights Reserved
* Author(s): Arnaud Pouliquen <arnaud.pouliquen@st.com> for STMicroelectronics.
*/
#include <linux/clk.h>
#include <linux/iio/iio.h>
#include <linux/iio/sysfs.h>
#include <linux/interrupt.h>
#include <linux/module.h>
#include <linux/of_device.h>
#include <linux/regmap.h>
#include <linux/slab.h>
#include "stm32-dfsdm.h"
struct stm32_dfsdm_dev_data {
unsigned int num_filters;
unsigned int num_channels;
const struct regmap_config *regmap_cfg;
};
#define STM32H7_DFSDM_NUM_FILTERS 4
#define STM32H7_DFSDM_NUM_CHANNELS 8
static bool stm32_dfsdm_volatile_reg(struct device *dev, unsigned int reg)
{
if (reg < DFSDM_FILTER_BASE_ADR)
return false;
/*
* Mask is done on register to avoid to list registers of all
* filter instances.
*/
switch (reg & DFSDM_FILTER_REG_MASK) {
case DFSDM_CR1(0) & DFSDM_FILTER_REG_MASK:
case DFSDM_ISR(0) & DFSDM_FILTER_REG_MASK:
case DFSDM_JDATAR(0) & DFSDM_FILTER_REG_MASK:
case DFSDM_RDATAR(0) & DFSDM_FILTER_REG_MASK:
return true;
}
return false;
}
static const struct regmap_config stm32h7_dfsdm_regmap_cfg = {
.reg_bits = 32,
.val_bits = 32,
.reg_stride = sizeof(u32),
.max_register = 0x2B8,
.volatile_reg = stm32_dfsdm_volatile_reg,
.fast_io = true,
};
static const struct stm32_dfsdm_dev_data stm32h7_dfsdm_data = {
.num_filters = STM32H7_DFSDM_NUM_FILTERS,
.num_channels = STM32H7_DFSDM_NUM_CHANNELS,
.regmap_cfg = &stm32h7_dfsdm_regmap_cfg,
};
struct dfsdm_priv {
struct platform_device *pdev; /* platform device */
struct stm32_dfsdm dfsdm; /* common data exported for all instances */
unsigned int spi_clk_out_div; /* SPI clkout divider value */
atomic_t n_active_ch; /* number of current active channels */
struct clk *clk; /* DFSDM clock */
struct clk *aclk; /* audio clock */
};
/**
* stm32_dfsdm_start_dfsdm - start global dfsdm interface.
*
* Enable interface if n_active_ch is not null.
* @dfsdm: Handle used to retrieve dfsdm context.
*/
int stm32_dfsdm_start_dfsdm(struct stm32_dfsdm *dfsdm)
{
struct dfsdm_priv *priv = container_of(dfsdm, struct dfsdm_priv, dfsdm);
struct device *dev = &priv->pdev->dev;
unsigned int clk_div = priv->spi_clk_out_div;
int ret;
if (atomic_inc_return(&priv->n_active_ch) == 1) {
ret = clk_prepare_enable(priv->clk);
if (ret < 0) {
dev_err(dev, "Failed to start clock\n");
goto error_ret;
}
if (priv->aclk) {
ret = clk_prepare_enable(priv->aclk);
if (ret < 0) {
dev_err(dev, "Failed to start audio clock\n");
goto disable_clk;
}
}
/* Output the SPI CLKOUT (if clk_div == 0 clock if OFF) */
ret = regmap_update_bits(dfsdm->regmap, DFSDM_CHCFGR1(0),
DFSDM_CHCFGR1_CKOUTDIV_MASK,
DFSDM_CHCFGR1_CKOUTDIV(clk_div));
if (ret < 0)
goto disable_aclk;
/* Global enable of DFSDM interface */
ret = regmap_update_bits(dfsdm->regmap, DFSDM_CHCFGR1(0),
DFSDM_CHCFGR1_DFSDMEN_MASK,
DFSDM_CHCFGR1_DFSDMEN(1));
if (ret < 0)
goto disable_aclk;
}
dev_dbg(dev, "%s: n_active_ch %d\n", __func__,
atomic_read(&priv->n_active_ch));
return 0;
disable_aclk:
clk_disable_unprepare(priv->aclk);
disable_clk:
clk_disable_unprepare(priv->clk);
error_ret:
atomic_dec(&priv->n_active_ch);
return ret;
}
EXPORT_SYMBOL_GPL(stm32_dfsdm_start_dfsdm);
/**
* stm32_dfsdm_stop_dfsdm - stop global DFSDM interface.
*
* Disable interface if n_active_ch is null
* @dfsdm: Handle used to retrieve dfsdm context.
*/
int stm32_dfsdm_stop_dfsdm(struct stm32_dfsdm *dfsdm)
{
struct dfsdm_priv *priv = container_of(dfsdm, struct dfsdm_priv, dfsdm);
int ret;
if (atomic_dec_and_test(&priv->n_active_ch)) {
/* Global disable of DFSDM interface */
ret = regmap_update_bits(dfsdm->regmap, DFSDM_CHCFGR1(0),
DFSDM_CHCFGR1_DFSDMEN_MASK,
DFSDM_CHCFGR1_DFSDMEN(0));
if (ret < 0)
return ret;
/* Stop SPI CLKOUT */
ret = regmap_update_bits(dfsdm->regmap, DFSDM_CHCFGR1(0),
DFSDM_CHCFGR1_CKOUTDIV_MASK,
DFSDM_CHCFGR1_CKOUTDIV(0));
if (ret < 0)
return ret;
clk_disable_unprepare(priv->clk);
if (priv->aclk)
clk_disable_unprepare(priv->aclk);
}
dev_dbg(&priv->pdev->dev, "%s: n_active_ch %d\n", __func__,
atomic_read(&priv->n_active_ch));
return 0;
}
EXPORT_SYMBOL_GPL(stm32_dfsdm_stop_dfsdm);
static int stm32_dfsdm_parse_of(struct platform_device *pdev,
struct dfsdm_priv *priv)
{
struct device_node *node = pdev->dev.of_node;
struct resource *res;
unsigned long clk_freq;
unsigned int spi_freq, rem;
int ret;
if (!node)
return -EINVAL;
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
if (!res) {
dev_err(&pdev->dev, "Failed to get memory resource\n");
return -ENODEV;
}
priv->dfsdm.phys_base = res->start;
priv->dfsdm.base = devm_ioremap_resource(&pdev->dev, res);
/*
* "dfsdm" clock is mandatory for DFSDM peripheral clocking.
* "dfsdm" or "audio" clocks can be used as source clock for
* the SPI clock out signal and internal processing, depending
* on use case.
*/
priv->clk = devm_clk_get(&pdev->dev, "dfsdm");
if (IS_ERR(priv->clk)) {
dev_err(&pdev->dev, "No stm32_dfsdm_clk clock found\n");
return -EINVAL;
}
priv->aclk = devm_clk_get(&pdev->dev, "audio");
if (IS_ERR(priv->aclk))
priv->aclk = NULL;
if (priv->aclk)
clk_freq = clk_get_rate(priv->aclk);
else
clk_freq = clk_get_rate(priv->clk);
/* SPI clock out frequency */
ret = of_property_read_u32(pdev->dev.of_node, "spi-max-frequency",
&spi_freq);
if (ret < 0) {
/* No SPI master mode */
return 0;
}
priv->spi_clk_out_div = div_u64_rem(clk_freq, spi_freq, &rem) - 1;
priv->dfsdm.spi_master_freq = spi_freq;
if (rem) {
dev_warn(&pdev->dev, "SPI clock not accurate\n");
dev_warn(&pdev->dev, "%ld = %d * %d + %d\n",
clk_freq, spi_freq, priv->spi_clk_out_div + 1, rem);
}
return 0;
};
static const struct of_device_id stm32_dfsdm_of_match[] = {
{
.compatible = "st,stm32h7-dfsdm",
.data = &stm32h7_dfsdm_data,
},
{}
};
MODULE_DEVICE_TABLE(of, stm32_dfsdm_of_match);
static int stm32_dfsdm_probe(struct platform_device *pdev)
{
struct dfsdm_priv *priv;
struct device_node *pnode = pdev->dev.of_node;
const struct of_device_id *of_id;
const struct stm32_dfsdm_dev_data *dev_data;
struct stm32_dfsdm *dfsdm;
int ret;
priv = devm_kzalloc(&pdev->dev, sizeof(*priv), GFP_KERNEL);
if (!priv)
return -ENOMEM;
priv->pdev = pdev;
of_id = of_match_node(stm32_dfsdm_of_match, pnode);
if (!of_id->data) {
dev_err(&pdev->dev, "Data associated to device is missing\n");
return -EINVAL;
}
dev_data = (const struct stm32_dfsdm_dev_data *)of_id->data;
dfsdm = &priv->dfsdm;
dfsdm->fl_list = devm_kcalloc(&pdev->dev, dev_data->num_filters,
sizeof(*dfsdm->fl_list), GFP_KERNEL);
if (!dfsdm->fl_list)
return -ENOMEM;
dfsdm->num_fls = dev_data->num_filters;
dfsdm->ch_list = devm_kcalloc(&pdev->dev, dev_data->num_channels,
sizeof(*dfsdm->ch_list),
GFP_KERNEL);
if (!dfsdm->ch_list)
return -ENOMEM;
dfsdm->num_chs = dev_data->num_channels;
ret = stm32_dfsdm_parse_of(pdev, priv);
if (ret < 0)
return ret;
dfsdm->regmap = devm_regmap_init_mmio_clk(&pdev->dev, "dfsdm",
dfsdm->base,
&stm32h7_dfsdm_regmap_cfg);
if (IS_ERR(dfsdm->regmap)) {
ret = PTR_ERR(dfsdm->regmap);
dev_err(&pdev->dev, "%s: Failed to allocate regmap: %d\n",
__func__, ret);
return ret;
}
platform_set_drvdata(pdev, dfsdm);
return devm_of_platform_populate(&pdev->dev);
}
static struct platform_driver stm32_dfsdm_driver = {
.probe = stm32_dfsdm_probe,
.driver = {
.name = "stm32-dfsdm",
.of_match_table = stm32_dfsdm_of_match,
},
};
module_platform_driver(stm32_dfsdm_driver);
MODULE_AUTHOR("Arnaud Pouliquen <arnaud.pouliquen@st.com>");
MODULE_DESCRIPTION("STMicroelectronics STM32 dfsdm driver");
MODULE_LICENSE("GPL v2");
/* SPDX-License-Identifier: GPL-2.0 */
/*
* This file is part of STM32 DFSDM driver
*
* Copyright (C) 2017, STMicroelectronics - All Rights Reserved
* Author(s): Arnaud Pouliquen <arnaud.pouliquen@st.com>.
*/
#ifndef MDF_STM32_DFSDM__H
#define MDF_STM32_DFSDM__H
#include <linux/bitfield.h>
/*
* STM32 DFSDM - global register map
* ________________________________________________________
* | Offset | Registers block |
* --------------------------------------------------------
* | 0x000 | CHANNEL 0 + COMMON CHANNEL FIELDS |
* --------------------------------------------------------
* | 0x020 | CHANNEL 1 |
* --------------------------------------------------------
* | ... | ..... |
* --------------------------------------------------------
* | 0x0E0 | CHANNEL 7 |
* --------------------------------------------------------
* | 0x100 | FILTER 0 + COMMON FILTER FIELDs |
* --------------------------------------------------------
* | 0x200 | FILTER 1 |
* --------------------------------------------------------
* | 0x300 | FILTER 2 |
* --------------------------------------------------------
* | 0x400 | FILTER 3 |
* --------------------------------------------------------
*/
/*
* Channels register definitions
*/
#define DFSDM_CHCFGR1(y) ((y) * 0x20 + 0x00)
#define DFSDM_CHCFGR2(y) ((y) * 0x20 + 0x04)
#define DFSDM_AWSCDR(y) ((y) * 0x20 + 0x08)
#define DFSDM_CHWDATR(y) ((y) * 0x20 + 0x0C)
#define DFSDM_CHDATINR(y) ((y) * 0x20 + 0x10)
/* CHCFGR1: Channel configuration register 1 */
#define DFSDM_CHCFGR1_SITP_MASK GENMASK(1, 0)
#define DFSDM_CHCFGR1_SITP(v) FIELD_PREP(DFSDM_CHCFGR1_SITP_MASK, v)
#define DFSDM_CHCFGR1_SPICKSEL_MASK GENMASK(3, 2)
#define DFSDM_CHCFGR1_SPICKSEL(v) FIELD_PREP(DFSDM_CHCFGR1_SPICKSEL_MASK, v)
#define DFSDM_CHCFGR1_SCDEN_MASK BIT(5)
#define DFSDM_CHCFGR1_SCDEN(v) FIELD_PREP(DFSDM_CHCFGR1_SCDEN_MASK, v)
#define DFSDM_CHCFGR1_CKABEN_MASK BIT(6)
#define DFSDM_CHCFGR1_CKABEN(v) FIELD_PREP(DFSDM_CHCFGR1_CKABEN_MASK, v)
#define DFSDM_CHCFGR1_CHEN_MASK BIT(7)
#define DFSDM_CHCFGR1_CHEN(v) FIELD_PREP(DFSDM_CHCFGR1_CHEN_MASK, v)
#define DFSDM_CHCFGR1_CHINSEL_MASK BIT(8)
#define DFSDM_CHCFGR1_CHINSEL(v) FIELD_PREP(DFSDM_CHCFGR1_CHINSEL_MASK, v)
#define DFSDM_CHCFGR1_DATMPX_MASK GENMASK(13, 12)
#define DFSDM_CHCFGR1_DATMPX(v) FIELD_PREP(DFSDM_CHCFGR1_DATMPX_MASK, v)
#define DFSDM_CHCFGR1_DATPACK_MASK GENMASK(15, 14)
#define DFSDM_CHCFGR1_DATPACK(v) FIELD_PREP(DFSDM_CHCFGR1_DATPACK_MASK, v)
#define DFSDM_CHCFGR1_CKOUTDIV_MASK GENMASK(23, 16)
#define DFSDM_CHCFGR1_CKOUTDIV(v) FIELD_PREP(DFSDM_CHCFGR1_CKOUTDIV_MASK, v)
#define DFSDM_CHCFGR1_CKOUTSRC_MASK BIT(30)
#define DFSDM_CHCFGR1_CKOUTSRC(v) FIELD_PREP(DFSDM_CHCFGR1_CKOUTSRC_MASK, v)
#define DFSDM_CHCFGR1_DFSDMEN_MASK BIT(31)
#define DFSDM_CHCFGR1_DFSDMEN(v) FIELD_PREP(DFSDM_CHCFGR1_DFSDMEN_MASK, v)
/* CHCFGR2: Channel configuration register 2 */
#define DFSDM_CHCFGR2_DTRBS_MASK GENMASK(7, 3)
#define DFSDM_CHCFGR2_DTRBS(v) FIELD_PREP(DFSDM_CHCFGR2_DTRBS_MASK, v)
#define DFSDM_CHCFGR2_OFFSET_MASK GENMASK(31, 8)
#define DFSDM_CHCFGR2_OFFSET(v) FIELD_PREP(DFSDM_CHCFGR2_OFFSET_MASK, v)
/* AWSCDR: Channel analog watchdog and short circuit detector */
#define DFSDM_AWSCDR_SCDT_MASK GENMASK(7, 0)
#define DFSDM_AWSCDR_SCDT(v) FIELD_PREP(DFSDM_AWSCDR_SCDT_MASK, v)
#define DFSDM_AWSCDR_BKSCD_MASK GENMASK(15, 12)
#define DFSDM_AWSCDR_BKSCD(v) FIELD_PREP(DFSDM_AWSCDR_BKSCD_MASK, v)
#define DFSDM_AWSCDR_AWFOSR_MASK GENMASK(20, 16)
#define DFSDM_AWSCDR_AWFOSR(v) FIELD_PREP(DFSDM_AWSCDR_AWFOSR_MASK, v)
#define DFSDM_AWSCDR_AWFORD_MASK GENMASK(23, 22)
#define DFSDM_AWSCDR_AWFORD(v) FIELD_PREP(DFSDM_AWSCDR_AWFORD_MASK, v)
/*
* Filters register definitions
*/
#define DFSDM_FILTER_BASE_ADR 0x100
#define DFSDM_FILTER_REG_MASK 0x7F
#define DFSDM_FILTER_X_BASE_ADR(x) ((x) * 0x80 + DFSDM_FILTER_BASE_ADR)
#define DFSDM_CR1(x) (DFSDM_FILTER_X_BASE_ADR(x) + 0x00)
#define DFSDM_CR2(x) (DFSDM_FILTER_X_BASE_ADR(x) + 0x04)
#define DFSDM_ISR(x) (DFSDM_FILTER_X_BASE_ADR(x) + 0x08)
#define DFSDM_ICR(x) (DFSDM_FILTER_X_BASE_ADR(x) + 0x0C)
#define DFSDM_JCHGR(x) (DFSDM_FILTER_X_BASE_ADR(x) + 0x10)
#define DFSDM_FCR(x) (DFSDM_FILTER_X_BASE_ADR(x) + 0x14)
#define DFSDM_JDATAR(x) (DFSDM_FILTER_X_BASE_ADR(x) + 0x18)
#define DFSDM_RDATAR(x) (DFSDM_FILTER_X_BASE_ADR(x) + 0x1C)
#define DFSDM_AWHTR(x) (DFSDM_FILTER_X_BASE_ADR(x) + 0x20)
#define DFSDM_AWLTR(x) (DFSDM_FILTER_X_BASE_ADR(x) + 0x24)
#define DFSDM_AWSR(x) (DFSDM_FILTER_X_BASE_ADR(x) + 0x28)
#define DFSDM_AWCFR(x) (DFSDM_FILTER_X_BASE_ADR(x) + 0x2C)
#define DFSDM_EXMAX(x) (DFSDM_FILTER_X_BASE_ADR(x) + 0x30)
#define DFSDM_EXMIN(x) (DFSDM_FILTER_X_BASE_ADR(x) + 0x34)
#define DFSDM_CNVTIMR(x) (DFSDM_FILTER_X_BASE_ADR(x) + 0x38)
/* CR1 Control register 1 */
#define DFSDM_CR1_DFEN_MASK BIT(0)
#define DFSDM_CR1_DFEN(v) FIELD_PREP(DFSDM_CR1_DFEN_MASK, v)
#define DFSDM_CR1_JSWSTART_MASK BIT(1)
#define DFSDM_CR1_JSWSTART(v) FIELD_PREP(DFSDM_CR1_JSWSTART_MASK, v)
#define DFSDM_CR1_JSYNC_MASK BIT(3)
#define DFSDM_CR1_JSYNC(v) FIELD_PREP(DFSDM_CR1_JSYNC_MASK, v)
#define DFSDM_CR1_JSCAN_MASK BIT(4)
#define DFSDM_CR1_JSCAN(v) FIELD_PREP(DFSDM_CR1_JSCAN_MASK, v)
#define DFSDM_CR1_JDMAEN_MASK BIT(5)
#define DFSDM_CR1_JDMAEN(v) FIELD_PREP(DFSDM_CR1_JDMAEN_MASK, v)
#define DFSDM_CR1_JEXTSEL_MASK GENMASK(12, 8)
#define DFSDM_CR1_JEXTSEL(v) FIELD_PREP(DFSDM_CR1_JEXTSEL_MASK, v)
#define DFSDM_CR1_JEXTEN_MASK GENMASK(14, 13)
#define DFSDM_CR1_JEXTEN(v) FIELD_PREP(DFSDM_CR1_JEXTEN_MASK, v)
#define DFSDM_CR1_RSWSTART_MASK BIT(17)
#define DFSDM_CR1_RSWSTART(v) FIELD_PREP(DFSDM_CR1_RSWSTART_MASK, v)
#define DFSDM_CR1_RCONT_MASK BIT(18)
#define DFSDM_CR1_RCONT(v) FIELD_PREP(DFSDM_CR1_RCONT_MASK, v)
#define DFSDM_CR1_RSYNC_MASK BIT(19)
#define DFSDM_CR1_RSYNC(v) FIELD_PREP(DFSDM_CR1_RSYNC_MASK, v)
#define DFSDM_CR1_RDMAEN_MASK BIT(21)
#define DFSDM_CR1_RDMAEN(v) FIELD_PREP(DFSDM_CR1_RDMAEN_MASK, v)
#define DFSDM_CR1_RCH_MASK GENMASK(26, 24)
#define DFSDM_CR1_RCH(v) FIELD_PREP(DFSDM_CR1_RCH_MASK, v)
#define DFSDM_CR1_FAST_MASK BIT(29)
#define DFSDM_CR1_FAST(v) FIELD_PREP(DFSDM_CR1_FAST_MASK, v)
#define DFSDM_CR1_AWFSEL_MASK BIT(30)
#define DFSDM_CR1_AWFSEL(v) FIELD_PREP(DFSDM_CR1_AWFSEL_MASK, v)
/* CR2: Control register 2 */
#define DFSDM_CR2_IE_MASK GENMASK(6, 0)
#define DFSDM_CR2_IE(v) FIELD_PREP(DFSDM_CR2_IE_MASK, v)
#define DFSDM_CR2_JEOCIE_MASK BIT(0)
#define DFSDM_CR2_JEOCIE(v) FIELD_PREP(DFSDM_CR2_JEOCIE_MASK, v)
#define DFSDM_CR2_REOCIE_MASK BIT(1)
#define DFSDM_CR2_REOCIE(v) FIELD_PREP(DFSDM_CR2_REOCIE_MASK, v)
#define DFSDM_CR2_JOVRIE_MASK BIT(2)
#define DFSDM_CR2_JOVRIE(v) FIELD_PREP(DFSDM_CR2_JOVRIE_MASK, v)
#define DFSDM_CR2_ROVRIE_MASK BIT(3)
#define DFSDM_CR2_ROVRIE(v) FIELD_PREP(DFSDM_CR2_ROVRIE_MASK, v)
#define DFSDM_CR2_AWDIE_MASK BIT(4)
#define DFSDM_CR2_AWDIE(v) FIELD_PREP(DFSDM_CR2_AWDIE_MASK, v)
#define DFSDM_CR2_SCDIE_MASK BIT(5)
#define DFSDM_CR2_SCDIE(v) FIELD_PREP(DFSDM_CR2_SCDIE_MASK, v)
#define DFSDM_CR2_CKABIE_MASK BIT(6)
#define DFSDM_CR2_CKABIE(v) FIELD_PREP(DFSDM_CR2_CKABIE_MASK, v)
#define DFSDM_CR2_EXCH_MASK GENMASK(15, 8)
#define DFSDM_CR2_EXCH(v) FIELD_PREP(DFSDM_CR2_EXCH_MASK, v)
#define DFSDM_CR2_AWDCH_MASK GENMASK(23, 16)
#define DFSDM_CR2_AWDCH(v) FIELD_PREP(DFSDM_CR2_AWDCH_MASK, v)
/* ISR: Interrupt status register */
#define DFSDM_ISR_JEOCF_MASK BIT(0)
#define DFSDM_ISR_JEOCF(v) FIELD_PREP(DFSDM_ISR_JEOCF_MASK, v)
#define DFSDM_ISR_REOCF_MASK BIT(1)
#define DFSDM_ISR_REOCF(v) FIELD_PREP(DFSDM_ISR_REOCF_MASK, v)
#define DFSDM_ISR_JOVRF_MASK BIT(2)
#define DFSDM_ISR_JOVRF(v) FIELD_PREP(DFSDM_ISR_JOVRF_MASK, v)
#define DFSDM_ISR_ROVRF_MASK BIT(3)
#define DFSDM_ISR_ROVRF(v) FIELD_PREP(DFSDM_ISR_ROVRF_MASK, v)
#define DFSDM_ISR_AWDF_MASK BIT(4)
#define DFSDM_ISR_AWDF(v) FIELD_PREP(DFSDM_ISR_AWDF_MASK, v)
#define DFSDM_ISR_JCIP_MASK BIT(13)
#define DFSDM_ISR_JCIP(v) FIELD_PREP(DFSDM_ISR_JCIP_MASK, v)
#define DFSDM_ISR_RCIP_MASK BIT(14)
#define DFSDM_ISR_RCIP(v) FIELD_PREP(DFSDM_ISR_RCIP, v)
#define DFSDM_ISR_CKABF_MASK GENMASK(23, 16)
#define DFSDM_ISR_CKABF(v) FIELD_PREP(DFSDM_ISR_CKABF_MASK, v)
#define DFSDM_ISR_SCDF_MASK GENMASK(31, 24)
#define DFSDM_ISR_SCDF(v) FIELD_PREP(DFSDM_ISR_SCDF_MASK, v)
/* ICR: Interrupt flag clear register */
#define DFSDM_ICR_CLRJOVRF_MASK BIT(2)
#define DFSDM_ICR_CLRJOVRF(v) FIELD_PREP(DFSDM_ICR_CLRJOVRF_MASK, v)
#define DFSDM_ICR_CLRROVRF_MASK BIT(3)
#define DFSDM_ICR_CLRROVRF(v) FIELD_PREP(DFSDM_ICR_CLRROVRF_MASK, v)
#define DFSDM_ICR_CLRCKABF_MASK GENMASK(23, 16)
#define DFSDM_ICR_CLRCKABF(v) FIELD_PREP(DFSDM_ICR_CLRCKABF_MASK, v)
#define DFSDM_ICR_CLRCKABF_CH_MASK(y) BIT(16 + (y))
#define DFSDM_ICR_CLRCKABF_CH(v, y) \
(((v) << (16 + (y))) & DFSDM_ICR_CLRCKABF_CH_MASK(y))
#define DFSDM_ICR_CLRSCDF_MASK GENMASK(31, 24)
#define DFSDM_ICR_CLRSCDF(v) FIELD_PREP(DFSDM_ICR_CLRSCDF_MASK, v)
#define DFSDM_ICR_CLRSCDF_CH_MASK(y) BIT(24 + (y))
#define DFSDM_ICR_CLRSCDF_CH(v, y) \
(((v) << (24 + (y))) & DFSDM_ICR_CLRSCDF_MASK(y))
/* FCR: Filter control register */
#define DFSDM_FCR_IOSR_MASK GENMASK(7, 0)
#define DFSDM_FCR_IOSR(v) FIELD_PREP(DFSDM_FCR_IOSR_MASK, v)
#define DFSDM_FCR_FOSR_MASK GENMASK(25, 16)
#define DFSDM_FCR_FOSR(v) FIELD_PREP(DFSDM_FCR_FOSR_MASK, v)
#define DFSDM_FCR_FORD_MASK GENMASK(31, 29)
#define DFSDM_FCR_FORD(v) FIELD_PREP(DFSDM_FCR_FORD_MASK, v)
/* RDATAR: Filter data register for regular channel */
#define DFSDM_DATAR_CH_MASK GENMASK(2, 0)
#define DFSDM_DATAR_DATA_OFFSET 8
#define DFSDM_DATAR_DATA_MASK GENMASK(31, DFSDM_DATAR_DATA_OFFSET)
/* AWLTR: Filter analog watchdog low threshold register */
#define DFSDM_AWLTR_BKAWL_MASK GENMASK(3, 0)
#define DFSDM_AWLTR_BKAWL(v) FIELD_PREP(DFSDM_AWLTR_BKAWL_MASK, v)
#define DFSDM_AWLTR_AWLT_MASK GENMASK(31, 8)
#define DFSDM_AWLTR_AWLT(v) FIELD_PREP(DFSDM_AWLTR_AWLT_MASK, v)
/* AWHTR: Filter analog watchdog low threshold register */
#define DFSDM_AWHTR_BKAWH_MASK GENMASK(3, 0)
#define DFSDM_AWHTR_BKAWH(v) FIELD_PREP(DFSDM_AWHTR_BKAWH_MASK, v)
#define DFSDM_AWHTR_AWHT_MASK GENMASK(31, 8)
#define DFSDM_AWHTR_AWHT(v) FIELD_PREP(DFSDM_AWHTR_AWHT_MASK, v)
/* AWSR: Filter watchdog status register */
#define DFSDM_AWSR_AWLTF_MASK GENMASK(7, 0)
#define DFSDM_AWSR_AWLTF(v) FIELD_PREP(DFSDM_AWSR_AWLTF_MASK, v)
#define DFSDM_AWSR_AWHTF_MASK GENMASK(15, 8)
#define DFSDM_AWSR_AWHTF(v) FIELD_PREP(DFSDM_AWSR_AWHTF_MASK, v)
/* AWCFR: Filter watchdog status register */
#define DFSDM_AWCFR_AWLTF_MASK GENMASK(7, 0)
#define DFSDM_AWCFR_AWLTF(v) FIELD_PREP(DFSDM_AWCFR_AWLTF_MASK, v)
#define DFSDM_AWCFR_AWHTF_MASK GENMASK(15, 8)
#define DFSDM_AWCFR_AWHTF(v) FIELD_PREP(DFSDM_AWCFR_AWHTF_MASK, v)
/* DFSDM filter order */
enum stm32_dfsdm_sinc_order {
DFSDM_FASTSINC_ORDER, /* FastSinc filter type */
DFSDM_SINC1_ORDER, /* Sinc 1 filter type */
DFSDM_SINC2_ORDER, /* Sinc 2 filter type */
DFSDM_SINC3_ORDER, /* Sinc 3 filter type */
DFSDM_SINC4_ORDER, /* Sinc 4 filter type (N.A. for watchdog) */
DFSDM_SINC5_ORDER, /* Sinc 5 filter type (N.A. for watchdog) */
DFSDM_NB_SINC_ORDER,
};
/**
* struct stm32_dfsdm_filter - structure relative to stm32 FDSDM filter
* @iosr: integrator oversampling
* @fosr: filter oversampling
* @ford: filter order
* @res: output sample resolution
* @sync_mode: filter synchronized with filter 0
* @fast: filter fast mode
*/
struct stm32_dfsdm_filter {
unsigned int iosr;
unsigned int fosr;
enum stm32_dfsdm_sinc_order ford;
u64 res;
unsigned int sync_mode;
unsigned int fast;
};
/**
* struct stm32_dfsdm_channel - structure relative to stm32 FDSDM channel
* @id: id of the channel
* @type: interface type linked to stm32_dfsdm_chan_type
* @src: interface type linked to stm32_dfsdm_chan_src
* @alt_si: alternative serial input interface
*/
struct stm32_dfsdm_channel {
unsigned int id;
unsigned int type;
unsigned int src;
unsigned int alt_si;
};
/**
* struct stm32_dfsdm - stm32 FDSDM driver common data (for all instances)
* @base: control registers base cpu addr
* @phys_base: DFSDM IP register physical address
* @regmap: regmap for register read/write
* @fl_list: filter resources list
* @num_fls: number of filter resources available
* @ch_list: channel resources list
* @num_chs: number of channel resources available
* @spi_master_freq: SPI clock out frequency
*/
struct stm32_dfsdm {
void __iomem *base;
phys_addr_t phys_base;
struct regmap *regmap;
struct stm32_dfsdm_filter *fl_list;
unsigned int num_fls;
struct stm32_dfsdm_channel *ch_list;
unsigned int num_chs;
unsigned int spi_master_freq;
};
/* DFSDM channel serial spi clock source */
enum stm32_dfsdm_spi_clk_src {
DFSDM_CHANNEL_SPI_CLOCK_EXTERNAL,
DFSDM_CHANNEL_SPI_CLOCK_INTERNAL,
DFSDM_CHANNEL_SPI_CLOCK_INTERNAL_DIV2_FALLING,
DFSDM_CHANNEL_SPI_CLOCK_INTERNAL_DIV2_RISING
};
int stm32_dfsdm_start_dfsdm(struct stm32_dfsdm *dfsdm);
int stm32_dfsdm_stop_dfsdm(struct stm32_dfsdm *dfsdm);
#endif
...@@ -29,6 +29,16 @@ config IIO_BUFFER_DMAENGINE ...@@ -29,6 +29,16 @@ config IIO_BUFFER_DMAENGINE
Should be selected by drivers that want to use this functionality. Should be selected by drivers that want to use this functionality.
config IIO_BUFFER_HW_CONSUMER
tristate "Industrial I/O HW buffering"
help
Provides a way to bonding when an IIO device has a direct connection
to another device in hardware. In this case buffers for data transfers
are handled by hardware.
Should be selected by drivers that want to use the generic Hw consumer
interface.
config IIO_KFIFO_BUF config IIO_KFIFO_BUF
tristate "Industrial I/O buffering based on kfifo" tristate "Industrial I/O buffering based on kfifo"
help help
......
...@@ -7,5 +7,6 @@ ...@@ -7,5 +7,6 @@
obj-$(CONFIG_IIO_BUFFER_CB) += industrialio-buffer-cb.o obj-$(CONFIG_IIO_BUFFER_CB) += industrialio-buffer-cb.o
obj-$(CONFIG_IIO_BUFFER_DMA) += industrialio-buffer-dma.o obj-$(CONFIG_IIO_BUFFER_DMA) += industrialio-buffer-dma.o
obj-$(CONFIG_IIO_BUFFER_DMAENGINE) += industrialio-buffer-dmaengine.o obj-$(CONFIG_IIO_BUFFER_DMAENGINE) += industrialio-buffer-dmaengine.o
obj-$(CONFIG_IIO_BUFFER_HW_CONSUMER) += industrialio-hw-consumer.o
obj-$(CONFIG_IIO_TRIGGERED_BUFFER) += industrialio-triggered-buffer.o obj-$(CONFIG_IIO_TRIGGERED_BUFFER) += industrialio-triggered-buffer.o
obj-$(CONFIG_IIO_KFIFO_BUF) += kfifo_buf.o obj-$(CONFIG_IIO_KFIFO_BUF) += kfifo_buf.o
...@@ -104,6 +104,17 @@ struct iio_cb_buffer *iio_channel_get_all_cb(struct device *dev, ...@@ -104,6 +104,17 @@ struct iio_cb_buffer *iio_channel_get_all_cb(struct device *dev,
} }
EXPORT_SYMBOL_GPL(iio_channel_get_all_cb); EXPORT_SYMBOL_GPL(iio_channel_get_all_cb);
int iio_channel_cb_set_buffer_watermark(struct iio_cb_buffer *cb_buff,
size_t watermark)
{
if (!watermark)
return -EINVAL;
cb_buff->buffer.watermark = watermark;
return 0;
}
EXPORT_SYMBOL_GPL(iio_channel_cb_set_buffer_watermark);
int iio_channel_start_all_cb(struct iio_cb_buffer *cb_buff) int iio_channel_start_all_cb(struct iio_cb_buffer *cb_buff)
{ {
return iio_update_buffers(cb_buff->indio_dev, &cb_buff->buffer, return iio_update_buffers(cb_buff->indio_dev, &cb_buff->buffer,
......
// SPDX-License-Identifier: GPL-2.0
/*
* Copyright 2017 Analog Devices Inc.
* Author: Lars-Peter Clausen <lars@metafoo.de>
*/
#include <linux/err.h>
#include <linux/export.h>
#include <linux/slab.h>
#include <linux/module.h>
#include <linux/iio/iio.h>
#include <linux/iio/consumer.h>
#include <linux/iio/hw-consumer.h>
#include <linux/iio/buffer_impl.h>
/**
* struct iio_hw_consumer - IIO hw consumer block
* @buffers: hardware buffers list head.
* @channels: IIO provider channels.
*/
struct iio_hw_consumer {
struct list_head buffers;
struct iio_channel *channels;
};
struct hw_consumer_buffer {
struct list_head head;
struct iio_dev *indio_dev;
struct iio_buffer buffer;
long scan_mask[];
};
static struct hw_consumer_buffer *iio_buffer_to_hw_consumer_buffer(
struct iio_buffer *buffer)
{
return container_of(buffer, struct hw_consumer_buffer, buffer);
}
static void iio_hw_buf_release(struct iio_buffer *buffer)
{
struct hw_consumer_buffer *hw_buf =
iio_buffer_to_hw_consumer_buffer(buffer);
kfree(hw_buf);
}
static const struct iio_buffer_access_funcs iio_hw_buf_access = {
.release = &iio_hw_buf_release,
.modes = INDIO_BUFFER_HARDWARE,
};
static struct hw_consumer_buffer *iio_hw_consumer_get_buffer(
struct iio_hw_consumer *hwc, struct iio_dev *indio_dev)
{
size_t mask_size = BITS_TO_LONGS(indio_dev->masklength) * sizeof(long);
struct hw_consumer_buffer *buf;
list_for_each_entry(buf, &hwc->buffers, head) {
if (buf->indio_dev == indio_dev)
return buf;
}
buf = kzalloc(sizeof(*buf) + mask_size, GFP_KERNEL);
if (!buf)
return NULL;
buf->buffer.access = &iio_hw_buf_access;
buf->indio_dev = indio_dev;
buf->buffer.scan_mask = buf->scan_mask;
iio_buffer_init(&buf->buffer);
list_add_tail(&buf->head, &hwc->buffers);
return buf;
}
/**
* iio_hw_consumer_alloc() - Allocate IIO hardware consumer
* @dev: Pointer to consumer device.
*
* Returns a valid iio_hw_consumer on success or a ERR_PTR() on failure.
*/
struct iio_hw_consumer *iio_hw_consumer_alloc(struct device *dev)
{
struct hw_consumer_buffer *buf;
struct iio_hw_consumer *hwc;
struct iio_channel *chan;
int ret;
hwc = kzalloc(sizeof(*hwc), GFP_KERNEL);
if (!hwc)
return ERR_PTR(-ENOMEM);
INIT_LIST_HEAD(&hwc->buffers);
hwc->channels = iio_channel_get_all(dev);
if (IS_ERR(hwc->channels)) {
ret = PTR_ERR(hwc->channels);
goto err_free_hwc;
}
chan = &hwc->channels[0];
while (chan->indio_dev) {
buf = iio_hw_consumer_get_buffer(hwc, chan->indio_dev);
if (!buf) {
ret = -ENOMEM;
goto err_put_buffers;
}
set_bit(chan->channel->scan_index, buf->buffer.scan_mask);
chan++;
}
return hwc;
err_put_buffers:
list_for_each_entry(buf, &hwc->buffers, head)
iio_buffer_put(&buf->buffer);
iio_channel_release_all(hwc->channels);
err_free_hwc:
kfree(hwc);
return ERR_PTR(ret);
}
EXPORT_SYMBOL_GPL(iio_hw_consumer_alloc);
/**
* iio_hw_consumer_free() - Free IIO hardware consumer
* @hwc: hw consumer to free.
*/
void iio_hw_consumer_free(struct iio_hw_consumer *hwc)
{
struct hw_consumer_buffer *buf, *n;
iio_channel_release_all(hwc->channels);
list_for_each_entry_safe(buf, n, &hwc->buffers, head)
iio_buffer_put(&buf->buffer);
kfree(hwc);
}
EXPORT_SYMBOL_GPL(iio_hw_consumer_free);
static void devm_iio_hw_consumer_release(struct device *dev, void *res)
{
iio_hw_consumer_free(*(struct iio_hw_consumer **)res);
}
static int devm_iio_hw_consumer_match(struct device *dev, void *res, void *data)
{
struct iio_hw_consumer **r = res;
if (!r || !*r) {
WARN_ON(!r || !*r);
return 0;
}
return *r == data;
}
/**
* devm_iio_hw_consumer_alloc - Resource-managed iio_hw_consumer_alloc()
* @dev: Pointer to consumer device.
*
* Managed iio_hw_consumer_alloc. iio_hw_consumer allocated with this function
* is automatically freed on driver detach.
*
* If an iio_hw_consumer allocated with this function needs to be freed
* separately, devm_iio_hw_consumer_free() must be used.
*
* returns pointer to allocated iio_hw_consumer on success, NULL on failure.
*/
struct iio_hw_consumer *devm_iio_hw_consumer_alloc(struct device *dev)
{
struct iio_hw_consumer **ptr, *iio_hwc;
ptr = devres_alloc(devm_iio_hw_consumer_release, sizeof(*ptr),
GFP_KERNEL);
if (!ptr)
return NULL;
iio_hwc = iio_hw_consumer_alloc(dev);
if (IS_ERR(iio_hwc)) {
devres_free(ptr);
} else {
*ptr = iio_hwc;
devres_add(dev, ptr);
}
return iio_hwc;
}
EXPORT_SYMBOL_GPL(devm_iio_hw_consumer_alloc);
/**
* devm_iio_hw_consumer_free - Resource-managed iio_hw_consumer_free()
* @dev: Pointer to consumer device.
* @hwc: iio_hw_consumer to free.
*
* Free iio_hw_consumer allocated with devm_iio_hw_consumer_alloc().
*/
void devm_iio_hw_consumer_free(struct device *dev, struct iio_hw_consumer *hwc)
{
int rc;
rc = devres_release(dev, devm_iio_hw_consumer_release,
devm_iio_hw_consumer_match, hwc);
WARN_ON(rc);
}
EXPORT_SYMBOL_GPL(devm_iio_hw_consumer_free);
/**
* iio_hw_consumer_enable() - Enable IIO hardware consumer
* @hwc: iio_hw_consumer to enable.
*
* Returns 0 on success.
*/
int iio_hw_consumer_enable(struct iio_hw_consumer *hwc)
{
struct hw_consumer_buffer *buf;
int ret;
list_for_each_entry(buf, &hwc->buffers, head) {
ret = iio_update_buffers(buf->indio_dev, &buf->buffer, NULL);
if (ret)
goto err_disable_buffers;
}
return 0;
err_disable_buffers:
list_for_each_entry_continue_reverse(buf, &hwc->buffers, head)
iio_update_buffers(buf->indio_dev, NULL, &buf->buffer);
return ret;
}
EXPORT_SYMBOL_GPL(iio_hw_consumer_enable);
/**
* iio_hw_consumer_disable() - Disable IIO hardware consumer
* @hwc: iio_hw_consumer to disable.
*/
void iio_hw_consumer_disable(struct iio_hw_consumer *hwc)
{
struct hw_consumer_buffer *buf;
list_for_each_entry(buf, &hwc->buffers, head)
iio_update_buffers(buf->indio_dev, NULL, &buf->buffer);
}
EXPORT_SYMBOL_GPL(iio_hw_consumer_disable);
MODULE_AUTHOR("Lars-Peter Clausen <lars@metafoo.de>");
MODULE_DESCRIPTION("Hardware consumer buffer the IIO framework");
MODULE_LICENSE("GPL v2");
...@@ -664,9 +664,8 @@ int iio_convert_raw_to_processed(struct iio_channel *chan, int raw, ...@@ -664,9 +664,8 @@ int iio_convert_raw_to_processed(struct iio_channel *chan, int raw,
} }
EXPORT_SYMBOL_GPL(iio_convert_raw_to_processed); EXPORT_SYMBOL_GPL(iio_convert_raw_to_processed);
static int iio_read_channel_attribute(struct iio_channel *chan, int iio_read_channel_attribute(struct iio_channel *chan, int *val, int *val2,
int *val, int *val2, enum iio_chan_info_enum attribute)
enum iio_chan_info_enum attribute)
{ {
int ret; int ret;
...@@ -682,6 +681,7 @@ static int iio_read_channel_attribute(struct iio_channel *chan, ...@@ -682,6 +681,7 @@ static int iio_read_channel_attribute(struct iio_channel *chan,
return ret; return ret;
} }
EXPORT_SYMBOL_GPL(iio_read_channel_attribute);
int iio_read_channel_offset(struct iio_channel *chan, int *val, int *val2) int iio_read_channel_offset(struct iio_channel *chan, int *val, int *val2)
{ {
...@@ -850,7 +850,8 @@ static int iio_channel_write(struct iio_channel *chan, int val, int val2, ...@@ -850,7 +850,8 @@ static int iio_channel_write(struct iio_channel *chan, int val, int val2,
chan->channel, val, val2, info); chan->channel, val, val2, info);
} }
int iio_write_channel_raw(struct iio_channel *chan, int val) int iio_write_channel_attribute(struct iio_channel *chan, int val, int val2,
enum iio_chan_info_enum attribute)
{ {
int ret; int ret;
...@@ -860,12 +861,18 @@ int iio_write_channel_raw(struct iio_channel *chan, int val) ...@@ -860,12 +861,18 @@ int iio_write_channel_raw(struct iio_channel *chan, int val)
goto err_unlock; goto err_unlock;
} }
ret = iio_channel_write(chan, val, 0, IIO_CHAN_INFO_RAW); ret = iio_channel_write(chan, val, val2, attribute);
err_unlock: err_unlock:
mutex_unlock(&chan->indio_dev->info_exist_lock); mutex_unlock(&chan->indio_dev->info_exist_lock);
return ret; return ret;
} }
EXPORT_SYMBOL_GPL(iio_write_channel_attribute);
int iio_write_channel_raw(struct iio_channel *chan, int val)
{
return iio_write_channel_attribute(chan, val, 0, IIO_CHAN_INFO_RAW);
}
EXPORT_SYMBOL_GPL(iio_write_channel_raw); EXPORT_SYMBOL_GPL(iio_write_channel_raw);
unsigned int iio_get_channel_ext_info_count(struct iio_channel *chan) unsigned int iio_get_channel_ext_info_count(struct iio_channel *chan)
......
/* SPDX-License-Identifier: GPL-2.0 */
/*
* This file discribe the STM32 DFSDM IIO driver API for audio part
*
* Copyright (C) 2017, STMicroelectronics - All Rights Reserved
* Author(s): Arnaud Pouliquen <arnaud.pouliquen@st.com>.
*/
#ifndef STM32_DFSDM_ADC_H
#define STM32_DFSDM_ADC_H
int stm32_dfsdm_get_buff_cb(struct iio_dev *iio_dev,
int (*cb)(const void *data, size_t size,
void *private),
void *private);
int stm32_dfsdm_release_buff_cb(struct iio_dev *iio_dev);
#endif
...@@ -133,6 +133,17 @@ struct iio_cb_buffer *iio_channel_get_all_cb(struct device *dev, ...@@ -133,6 +133,17 @@ struct iio_cb_buffer *iio_channel_get_all_cb(struct device *dev,
int (*cb)(const void *data, int (*cb)(const void *data,
void *private), void *private),
void *private); void *private);
/**
* iio_channel_cb_set_buffer_watermark() - set the buffer watermark.
* @cb_buffer: The callback buffer from whom we want the channel
* information.
* @watermark: buffer watermark in bytes.
*
* This function allows to configure the buffer watermark.
*/
int iio_channel_cb_set_buffer_watermark(struct iio_cb_buffer *cb_buffer,
size_t watermark);
/** /**
* iio_channel_release_all_cb() - release and unregister the callback. * iio_channel_release_all_cb() - release and unregister the callback.
* @cb_buffer: The callback buffer that was allocated. * @cb_buffer: The callback buffer that was allocated.
...@@ -215,6 +226,32 @@ int iio_read_channel_average_raw(struct iio_channel *chan, int *val); ...@@ -215,6 +226,32 @@ int iio_read_channel_average_raw(struct iio_channel *chan, int *val);
*/ */
int iio_read_channel_processed(struct iio_channel *chan, int *val); int iio_read_channel_processed(struct iio_channel *chan, int *val);
/**
* iio_write_channel_attribute() - Write values to the device attribute.
* @chan: The channel being queried.
* @val: Value being written.
* @val2: Value being written.val2 use depends on attribute type.
* @attribute: info attribute to be read.
*
* Returns an error code or 0.
*/
int iio_write_channel_attribute(struct iio_channel *chan, int val,
int val2, enum iio_chan_info_enum attribute);
/**
* iio_read_channel_attribute() - Read values from the device attribute.
* @chan: The channel being queried.
* @val: Value being written.
* @val2: Value being written.Val2 use depends on attribute type.
* @attribute: info attribute to be written.
*
* Returns an error code if failed. Else returns a description of what is in val
* and val2, such as IIO_VAL_INT_PLUS_MICRO telling us we have a value of val
* + val2/1e6
*/
int iio_read_channel_attribute(struct iio_channel *chan, int *val,
int *val2, enum iio_chan_info_enum attribute);
/** /**
* iio_write_channel_raw() - write to a given channel * iio_write_channel_raw() - write to a given channel
* @chan: The channel being queried. * @chan: The channel being queried.
......
/* SPDX-License-Identifier: GPL-2.0 */
/*
* Industrial I/O in kernel hardware consumer interface
*
* Copyright 2017 Analog Devices Inc.
* Author: Lars-Peter Clausen <lars@metafoo.de>
*/
#ifndef LINUX_IIO_HW_CONSUMER_H
#define LINUX_IIO_HW_CONSUMER_H
struct iio_hw_consumer;
struct iio_hw_consumer *iio_hw_consumer_alloc(struct device *dev);
void iio_hw_consumer_free(struct iio_hw_consumer *hwc);
struct iio_hw_consumer *devm_iio_hw_consumer_alloc(struct device *dev);
void devm_iio_hw_consumer_free(struct device *dev, struct iio_hw_consumer *hwc);
int iio_hw_consumer_enable(struct iio_hw_consumer *hwc);
void iio_hw_consumer_disable(struct iio_hw_consumer *hwc);
#endif
...@@ -20,34 +20,6 @@ ...@@ -20,34 +20,6 @@
* Currently assumes nano seconds. * Currently assumes nano seconds.
*/ */
enum iio_chan_info_enum {
IIO_CHAN_INFO_RAW = 0,
IIO_CHAN_INFO_PROCESSED,
IIO_CHAN_INFO_SCALE,
IIO_CHAN_INFO_OFFSET,
IIO_CHAN_INFO_CALIBSCALE,
IIO_CHAN_INFO_CALIBBIAS,
IIO_CHAN_INFO_PEAK,
IIO_CHAN_INFO_PEAK_SCALE,
IIO_CHAN_INFO_QUADRATURE_CORRECTION_RAW,
IIO_CHAN_INFO_AVERAGE_RAW,
IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY,
IIO_CHAN_INFO_HIGH_PASS_FILTER_3DB_FREQUENCY,
IIO_CHAN_INFO_SAMP_FREQ,
IIO_CHAN_INFO_FREQUENCY,
IIO_CHAN_INFO_PHASE,
IIO_CHAN_INFO_HARDWAREGAIN,
IIO_CHAN_INFO_HYSTERESIS,
IIO_CHAN_INFO_INT_TIME,
IIO_CHAN_INFO_ENABLE,
IIO_CHAN_INFO_CALIBHEIGHT,
IIO_CHAN_INFO_CALIBWEIGHT,
IIO_CHAN_INFO_DEBOUNCE_COUNT,
IIO_CHAN_INFO_DEBOUNCE_TIME,
IIO_CHAN_INFO_CALIBEMISSIVITY,
IIO_CHAN_INFO_OVERSAMPLING_RATIO,
};
enum iio_shared_by { enum iio_shared_by {
IIO_SEPARATE, IIO_SEPARATE,
IIO_SHARED_BY_TYPE, IIO_SHARED_BY_TYPE,
......
...@@ -34,4 +34,32 @@ enum iio_available_type { ...@@ -34,4 +34,32 @@ enum iio_available_type {
IIO_AVAIL_RANGE, IIO_AVAIL_RANGE,
}; };
enum iio_chan_info_enum {
IIO_CHAN_INFO_RAW = 0,
IIO_CHAN_INFO_PROCESSED,
IIO_CHAN_INFO_SCALE,
IIO_CHAN_INFO_OFFSET,
IIO_CHAN_INFO_CALIBSCALE,
IIO_CHAN_INFO_CALIBBIAS,
IIO_CHAN_INFO_PEAK,
IIO_CHAN_INFO_PEAK_SCALE,
IIO_CHAN_INFO_QUADRATURE_CORRECTION_RAW,
IIO_CHAN_INFO_AVERAGE_RAW,
IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY,
IIO_CHAN_INFO_HIGH_PASS_FILTER_3DB_FREQUENCY,
IIO_CHAN_INFO_SAMP_FREQ,
IIO_CHAN_INFO_FREQUENCY,
IIO_CHAN_INFO_PHASE,
IIO_CHAN_INFO_HARDWAREGAIN,
IIO_CHAN_INFO_HYSTERESIS,
IIO_CHAN_INFO_INT_TIME,
IIO_CHAN_INFO_ENABLE,
IIO_CHAN_INFO_CALIBHEIGHT,
IIO_CHAN_INFO_CALIBWEIGHT,
IIO_CHAN_INFO_DEBOUNCE_COUNT,
IIO_CHAN_INFO_DEBOUNCE_TIME,
IIO_CHAN_INFO_CALIBEMISSIVITY,
IIO_CHAN_INFO_OVERSAMPLING_RATIO,
};
#endif /* _IIO_TYPES_H_ */ #endif /* _IIO_TYPES_H_ */
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment