Commit 4fefd69d authored by Alex Williamson's avatar Alex Williamson

Merge branch 'vfio' of...

Merge branch 'vfio' of https://git.kernel.org/pub/scm/linux/kernel/git/herbert/cryptodev-2.6 into v6.10/vfio/qat-v7
parents 848e447e f0bbfc39
...@@ -10,12 +10,14 @@ ...@@ -10,12 +10,14 @@
#include <adf_fw_config.h> #include <adf_fw_config.h>
#include <adf_gen4_config.h> #include <adf_gen4_config.h>
#include <adf_gen4_dc.h> #include <adf_gen4_dc.h>
#include <adf_gen4_hw_csr_data.h>
#include <adf_gen4_hw_data.h> #include <adf_gen4_hw_data.h>
#include <adf_gen4_pfvf.h> #include <adf_gen4_pfvf.h>
#include <adf_gen4_pm.h> #include <adf_gen4_pm.h>
#include <adf_gen4_ras.h> #include <adf_gen4_ras.h>
#include <adf_gen4_timer.h> #include <adf_gen4_timer.h>
#include <adf_gen4_tl.h> #include <adf_gen4_tl.h>
#include <adf_gen4_vf_mig.h>
#include "adf_420xx_hw_data.h" #include "adf_420xx_hw_data.h"
#include "icp_qat_hw.h" #include "icp_qat_hw.h"
...@@ -487,6 +489,7 @@ void adf_init_hw_data_420xx(struct adf_hw_device_data *hw_data, u32 dev_id) ...@@ -487,6 +489,7 @@ void adf_init_hw_data_420xx(struct adf_hw_device_data *hw_data, u32 dev_id)
adf_gen4_init_dc_ops(&hw_data->dc_ops); adf_gen4_init_dc_ops(&hw_data->dc_ops);
adf_gen4_init_ras_ops(&hw_data->ras_ops); adf_gen4_init_ras_ops(&hw_data->ras_ops);
adf_gen4_init_tl_data(&hw_data->tl_data); adf_gen4_init_tl_data(&hw_data->tl_data);
adf_gen4_init_vf_mig_ops(&hw_data->vfmig_ops);
adf_init_rl_data(&hw_data->rl_data); adf_init_rl_data(&hw_data->rl_data);
} }
......
...@@ -10,12 +10,14 @@ ...@@ -10,12 +10,14 @@
#include <adf_fw_config.h> #include <adf_fw_config.h>
#include <adf_gen4_config.h> #include <adf_gen4_config.h>
#include <adf_gen4_dc.h> #include <adf_gen4_dc.h>
#include <adf_gen4_hw_csr_data.h>
#include <adf_gen4_hw_data.h> #include <adf_gen4_hw_data.h>
#include <adf_gen4_pfvf.h> #include <adf_gen4_pfvf.h>
#include <adf_gen4_pm.h> #include <adf_gen4_pm.h>
#include "adf_gen4_ras.h" #include "adf_gen4_ras.h"
#include <adf_gen4_timer.h> #include <adf_gen4_timer.h>
#include <adf_gen4_tl.h> #include <adf_gen4_tl.h>
#include <adf_gen4_vf_mig.h>
#include "adf_4xxx_hw_data.h" #include "adf_4xxx_hw_data.h"
#include "icp_qat_hw.h" #include "icp_qat_hw.h"
...@@ -454,6 +456,8 @@ void adf_init_hw_data_4xxx(struct adf_hw_device_data *hw_data, u32 dev_id) ...@@ -454,6 +456,8 @@ void adf_init_hw_data_4xxx(struct adf_hw_device_data *hw_data, u32 dev_id)
hw_data->get_ring_to_svc_map = adf_gen4_get_ring_to_svc_map; hw_data->get_ring_to_svc_map = adf_gen4_get_ring_to_svc_map;
hw_data->disable_iov = adf_disable_sriov; hw_data->disable_iov = adf_disable_sriov;
hw_data->ring_pair_reset = adf_gen4_ring_pair_reset; hw_data->ring_pair_reset = adf_gen4_ring_pair_reset;
hw_data->bank_state_save = adf_gen4_bank_state_save;
hw_data->bank_state_restore = adf_gen4_bank_state_restore;
hw_data->enable_pm = adf_gen4_enable_pm; hw_data->enable_pm = adf_gen4_enable_pm;
hw_data->handle_pm_interrupt = adf_gen4_handle_pm_interrupt; hw_data->handle_pm_interrupt = adf_gen4_handle_pm_interrupt;
hw_data->dev_config = adf_gen4_dev_config; hw_data->dev_config = adf_gen4_dev_config;
...@@ -469,6 +473,7 @@ void adf_init_hw_data_4xxx(struct adf_hw_device_data *hw_data, u32 dev_id) ...@@ -469,6 +473,7 @@ void adf_init_hw_data_4xxx(struct adf_hw_device_data *hw_data, u32 dev_id)
adf_gen4_init_dc_ops(&hw_data->dc_ops); adf_gen4_init_dc_ops(&hw_data->dc_ops);
adf_gen4_init_ras_ops(&hw_data->ras_ops); adf_gen4_init_ras_ops(&hw_data->ras_ops);
adf_gen4_init_tl_data(&hw_data->tl_data); adf_gen4_init_tl_data(&hw_data->tl_data);
adf_gen4_init_vf_mig_ops(&hw_data->vfmig_ops);
adf_init_rl_data(&hw_data->rl_data); adf_init_rl_data(&hw_data->rl_data);
} }
......
...@@ -6,6 +6,7 @@ ...@@ -6,6 +6,7 @@
#include <adf_common_drv.h> #include <adf_common_drv.h>
#include <adf_gen2_config.h> #include <adf_gen2_config.h>
#include <adf_gen2_dc.h> #include <adf_gen2_dc.h>
#include <adf_gen2_hw_csr_data.h>
#include <adf_gen2_hw_data.h> #include <adf_gen2_hw_data.h>
#include <adf_gen2_pfvf.h> #include <adf_gen2_pfvf.h>
#include "adf_c3xxx_hw_data.h" #include "adf_c3xxx_hw_data.h"
......
...@@ -4,6 +4,7 @@ ...@@ -4,6 +4,7 @@
#include <adf_common_drv.h> #include <adf_common_drv.h>
#include <adf_gen2_config.h> #include <adf_gen2_config.h>
#include <adf_gen2_dc.h> #include <adf_gen2_dc.h>
#include <adf_gen2_hw_csr_data.h>
#include <adf_gen2_hw_data.h> #include <adf_gen2_hw_data.h>
#include <adf_gen2_pfvf.h> #include <adf_gen2_pfvf.h>
#include <adf_pfvf_vf_msg.h> #include <adf_pfvf_vf_msg.h>
......
...@@ -6,6 +6,7 @@ ...@@ -6,6 +6,7 @@
#include <adf_common_drv.h> #include <adf_common_drv.h>
#include <adf_gen2_config.h> #include <adf_gen2_config.h>
#include <adf_gen2_dc.h> #include <adf_gen2_dc.h>
#include <adf_gen2_hw_csr_data.h>
#include <adf_gen2_hw_data.h> #include <adf_gen2_hw_data.h>
#include <adf_gen2_pfvf.h> #include <adf_gen2_pfvf.h>
#include "adf_c62x_hw_data.h" #include "adf_c62x_hw_data.h"
......
...@@ -4,6 +4,7 @@ ...@@ -4,6 +4,7 @@
#include <adf_common_drv.h> #include <adf_common_drv.h>
#include <adf_gen2_config.h> #include <adf_gen2_config.h>
#include <adf_gen2_dc.h> #include <adf_gen2_dc.h>
#include <adf_gen2_hw_csr_data.h>
#include <adf_gen2_hw_data.h> #include <adf_gen2_hw_data.h>
#include <adf_gen2_pfvf.h> #include <adf_gen2_pfvf.h>
#include <adf_pfvf_vf_msg.h> #include <adf_pfvf_vf_msg.h>
......
...@@ -14,16 +14,20 @@ intel_qat-objs := adf_cfg.o \ ...@@ -14,16 +14,20 @@ intel_qat-objs := adf_cfg.o \
adf_hw_arbiter.o \ adf_hw_arbiter.o \
adf_sysfs.o \ adf_sysfs.o \
adf_sysfs_ras_counters.o \ adf_sysfs_ras_counters.o \
adf_gen2_hw_csr_data.o \
adf_gen2_hw_data.o \ adf_gen2_hw_data.o \
adf_gen2_config.o \ adf_gen2_config.o \
adf_gen4_config.o \ adf_gen4_config.o \
adf_gen4_hw_csr_data.o \
adf_gen4_hw_data.o \ adf_gen4_hw_data.o \
adf_gen4_vf_mig.o \
adf_gen4_pm.o \ adf_gen4_pm.o \
adf_gen2_dc.o \ adf_gen2_dc.o \
adf_gen4_dc.o \ adf_gen4_dc.o \
adf_gen4_ras.o \ adf_gen4_ras.o \
adf_gen4_timer.o \ adf_gen4_timer.o \
adf_clock.o \ adf_clock.o \
adf_mstate_mgr.o \
qat_crypto.o \ qat_crypto.o \
qat_compression.o \ qat_compression.o \
qat_comp_algs.o \ qat_comp_algs.o \
...@@ -52,6 +56,6 @@ intel_qat-$(CONFIG_DEBUG_FS) += adf_transport_debug.o \ ...@@ -52,6 +56,6 @@ intel_qat-$(CONFIG_DEBUG_FS) += adf_transport_debug.o \
intel_qat-$(CONFIG_PCI_IOV) += adf_sriov.o adf_vf_isr.o adf_pfvf_utils.o \ intel_qat-$(CONFIG_PCI_IOV) += adf_sriov.o adf_vf_isr.o adf_pfvf_utils.o \
adf_pfvf_pf_msg.o adf_pfvf_pf_proto.o \ adf_pfvf_pf_msg.o adf_pfvf_pf_proto.o \
adf_pfvf_vf_msg.o adf_pfvf_vf_proto.o \ adf_pfvf_vf_msg.o adf_pfvf_vf_proto.o \
adf_gen2_pfvf.o adf_gen4_pfvf.o adf_gen2_pfvf.o adf_gen4_pfvf.o qat_mig_dev.o
intel_qat-$(CONFIG_CRYPTO_DEV_QAT_ERROR_INJECTION) += adf_heartbeat_inject.o intel_qat-$(CONFIG_CRYPTO_DEV_QAT_ERROR_INJECTION) += adf_heartbeat_inject.o
...@@ -9,6 +9,7 @@ ...@@ -9,6 +9,7 @@
#include <linux/pci.h> #include <linux/pci.h>
#include <linux/ratelimit.h> #include <linux/ratelimit.h>
#include <linux/types.h> #include <linux/types.h>
#include <linux/qat/qat_mig_dev.h>
#include "adf_cfg_common.h" #include "adf_cfg_common.h"
#include "adf_rl.h" #include "adf_rl.h"
#include "adf_telemetry.h" #include "adf_telemetry.h"
...@@ -140,6 +141,40 @@ struct admin_info { ...@@ -140,6 +141,40 @@ struct admin_info {
u32 mailbox_offset; u32 mailbox_offset;
}; };
struct ring_config {
u64 base;
u32 config;
u32 head;
u32 tail;
u32 reserved0;
};
struct bank_state {
u32 ringstat0;
u32 ringstat1;
u32 ringuostat;
u32 ringestat;
u32 ringnestat;
u32 ringnfstat;
u32 ringfstat;
u32 ringcstat0;
u32 ringcstat1;
u32 ringcstat2;
u32 ringcstat3;
u32 iaintflagen;
u32 iaintflagreg;
u32 iaintflagsrcsel0;
u32 iaintflagsrcsel1;
u32 iaintcolen;
u32 iaintcolctl;
u32 iaintflagandcolen;
u32 ringexpstat;
u32 ringexpintenable;
u32 ringsrvarben;
u32 reserved0;
struct ring_config rings[ADF_ETR_MAX_RINGS_PER_BANK];
};
struct adf_hw_csr_ops { struct adf_hw_csr_ops {
u64 (*build_csr_ring_base_addr)(dma_addr_t addr, u32 size); u64 (*build_csr_ring_base_addr)(dma_addr_t addr, u32 size);
u32 (*read_csr_ring_head)(void __iomem *csr_base_addr, u32 bank, u32 (*read_csr_ring_head)(void __iomem *csr_base_addr, u32 bank,
...@@ -150,22 +185,49 @@ struct adf_hw_csr_ops { ...@@ -150,22 +185,49 @@ struct adf_hw_csr_ops {
u32 ring); u32 ring);
void (*write_csr_ring_tail)(void __iomem *csr_base_addr, u32 bank, void (*write_csr_ring_tail)(void __iomem *csr_base_addr, u32 bank,
u32 ring, u32 value); u32 ring, u32 value);
u32 (*read_csr_stat)(void __iomem *csr_base_addr, u32 bank);
u32 (*read_csr_uo_stat)(void __iomem *csr_base_addr, u32 bank);
u32 (*read_csr_e_stat)(void __iomem *csr_base_addr, u32 bank); u32 (*read_csr_e_stat)(void __iomem *csr_base_addr, u32 bank);
u32 (*read_csr_ne_stat)(void __iomem *csr_base_addr, u32 bank);
u32 (*read_csr_nf_stat)(void __iomem *csr_base_addr, u32 bank);
u32 (*read_csr_f_stat)(void __iomem *csr_base_addr, u32 bank);
u32 (*read_csr_c_stat)(void __iomem *csr_base_addr, u32 bank);
u32 (*read_csr_exp_stat)(void __iomem *csr_base_addr, u32 bank);
u32 (*read_csr_exp_int_en)(void __iomem *csr_base_addr, u32 bank);
void (*write_csr_exp_int_en)(void __iomem *csr_base_addr, u32 bank,
u32 value);
u32 (*read_csr_ring_config)(void __iomem *csr_base_addr, u32 bank,
u32 ring);
void (*write_csr_ring_config)(void __iomem *csr_base_addr, u32 bank, void (*write_csr_ring_config)(void __iomem *csr_base_addr, u32 bank,
u32 ring, u32 value); u32 ring, u32 value);
dma_addr_t (*read_csr_ring_base)(void __iomem *csr_base_addr, u32 bank,
u32 ring);
void (*write_csr_ring_base)(void __iomem *csr_base_addr, u32 bank, void (*write_csr_ring_base)(void __iomem *csr_base_addr, u32 bank,
u32 ring, dma_addr_t addr); u32 ring, dma_addr_t addr);
u32 (*read_csr_int_en)(void __iomem *csr_base_addr, u32 bank);
void (*write_csr_int_en)(void __iomem *csr_base_addr, u32 bank,
u32 value);
u32 (*read_csr_int_flag)(void __iomem *csr_base_addr, u32 bank);
void (*write_csr_int_flag)(void __iomem *csr_base_addr, u32 bank, void (*write_csr_int_flag)(void __iomem *csr_base_addr, u32 bank,
u32 value); u32 value);
u32 (*read_csr_int_srcsel)(void __iomem *csr_base_addr, u32 bank);
void (*write_csr_int_srcsel)(void __iomem *csr_base_addr, u32 bank); void (*write_csr_int_srcsel)(void __iomem *csr_base_addr, u32 bank);
void (*write_csr_int_srcsel_w_val)(void __iomem *csr_base_addr,
u32 bank, u32 value);
u32 (*read_csr_int_col_en)(void __iomem *csr_base_addr, u32 bank);
void (*write_csr_int_col_en)(void __iomem *csr_base_addr, u32 bank, void (*write_csr_int_col_en)(void __iomem *csr_base_addr, u32 bank,
u32 value); u32 value);
u32 (*read_csr_int_col_ctl)(void __iomem *csr_base_addr, u32 bank);
void (*write_csr_int_col_ctl)(void __iomem *csr_base_addr, u32 bank, void (*write_csr_int_col_ctl)(void __iomem *csr_base_addr, u32 bank,
u32 value); u32 value);
u32 (*read_csr_int_flag_and_col)(void __iomem *csr_base_addr,
u32 bank);
void (*write_csr_int_flag_and_col)(void __iomem *csr_base_addr, void (*write_csr_int_flag_and_col)(void __iomem *csr_base_addr,
u32 bank, u32 value); u32 bank, u32 value);
u32 (*read_csr_ring_srv_arb_en)(void __iomem *csr_base_addr, u32 bank);
void (*write_csr_ring_srv_arb_en)(void __iomem *csr_base_addr, u32 bank, void (*write_csr_ring_srv_arb_en)(void __iomem *csr_base_addr, u32 bank,
u32 value); u32 value);
u32 (*get_int_col_ctl_enable_mask)(void);
}; };
struct adf_cfg_device_data; struct adf_cfg_device_data;
...@@ -197,6 +259,20 @@ struct adf_dc_ops { ...@@ -197,6 +259,20 @@ struct adf_dc_ops {
void (*build_deflate_ctx)(void *ctx); void (*build_deflate_ctx)(void *ctx);
}; };
struct qat_migdev_ops {
int (*init)(struct qat_mig_dev *mdev);
void (*cleanup)(struct qat_mig_dev *mdev);
void (*reset)(struct qat_mig_dev *mdev);
int (*open)(struct qat_mig_dev *mdev);
void (*close)(struct qat_mig_dev *mdev);
int (*suspend)(struct qat_mig_dev *mdev);
int (*resume)(struct qat_mig_dev *mdev);
int (*save_state)(struct qat_mig_dev *mdev);
int (*save_setup)(struct qat_mig_dev *mdev);
int (*load_state)(struct qat_mig_dev *mdev);
int (*load_setup)(struct qat_mig_dev *mdev, int size);
};
struct adf_dev_err_mask { struct adf_dev_err_mask {
u32 cppagentcmdpar_mask; u32 cppagentcmdpar_mask;
u32 parerr_ath_cph_mask; u32 parerr_ath_cph_mask;
...@@ -244,6 +320,10 @@ struct adf_hw_device_data { ...@@ -244,6 +320,10 @@ struct adf_hw_device_data {
void (*enable_ints)(struct adf_accel_dev *accel_dev); void (*enable_ints)(struct adf_accel_dev *accel_dev);
void (*set_ssm_wdtimer)(struct adf_accel_dev *accel_dev); void (*set_ssm_wdtimer)(struct adf_accel_dev *accel_dev);
int (*ring_pair_reset)(struct adf_accel_dev *accel_dev, u32 bank_nr); int (*ring_pair_reset)(struct adf_accel_dev *accel_dev, u32 bank_nr);
int (*bank_state_save)(struct adf_accel_dev *accel_dev, u32 bank_number,
struct bank_state *state);
int (*bank_state_restore)(struct adf_accel_dev *accel_dev,
u32 bank_number, struct bank_state *state);
void (*reset_device)(struct adf_accel_dev *accel_dev); void (*reset_device)(struct adf_accel_dev *accel_dev);
void (*set_msix_rttable)(struct adf_accel_dev *accel_dev); void (*set_msix_rttable)(struct adf_accel_dev *accel_dev);
const char *(*uof_get_name)(struct adf_accel_dev *accel_dev, u32 obj_num); const char *(*uof_get_name)(struct adf_accel_dev *accel_dev, u32 obj_num);
...@@ -260,6 +340,7 @@ struct adf_hw_device_data { ...@@ -260,6 +340,7 @@ struct adf_hw_device_data {
struct adf_dev_err_mask dev_err_mask; struct adf_dev_err_mask dev_err_mask;
struct adf_rl_hw_data rl_data; struct adf_rl_hw_data rl_data;
struct adf_tl_hw_data tl_data; struct adf_tl_hw_data tl_data;
struct qat_migdev_ops vfmig_ops;
const char *fw_name; const char *fw_name;
const char *fw_mmp_name; const char *fw_mmp_name;
u32 fuses; u32 fuses;
...@@ -316,6 +397,7 @@ struct adf_hw_device_data { ...@@ -316,6 +397,7 @@ struct adf_hw_device_data {
#define GET_CSR_OPS(accel_dev) (&(accel_dev)->hw_device->csr_ops) #define GET_CSR_OPS(accel_dev) (&(accel_dev)->hw_device->csr_ops)
#define GET_PFVF_OPS(accel_dev) (&(accel_dev)->hw_device->pfvf_ops) #define GET_PFVF_OPS(accel_dev) (&(accel_dev)->hw_device->pfvf_ops)
#define GET_DC_OPS(accel_dev) (&(accel_dev)->hw_device->dc_ops) #define GET_DC_OPS(accel_dev) (&(accel_dev)->hw_device->dc_ops)
#define GET_VFMIG_OPS(accel_dev) (&(accel_dev)->hw_device->vfmig_ops)
#define GET_TL_DATA(accel_dev) GET_HW_DATA(accel_dev)->tl_data #define GET_TL_DATA(accel_dev) GET_HW_DATA(accel_dev)->tl_data
#define accel_to_pci_dev(accel_ptr) accel_ptr->accel_pci_dev.pci_dev #define accel_to_pci_dev(accel_ptr) accel_ptr->accel_pci_dev.pci_dev
...@@ -330,11 +412,17 @@ struct adf_fw_loader_data { ...@@ -330,11 +412,17 @@ struct adf_fw_loader_data {
struct adf_accel_vf_info { struct adf_accel_vf_info {
struct adf_accel_dev *accel_dev; struct adf_accel_dev *accel_dev;
struct mutex pf2vf_lock; /* protect CSR access for PF2VF messages */ struct mutex pf2vf_lock; /* protect CSR access for PF2VF messages */
struct mutex pfvf_mig_lock; /* protects PFVF state for migration */
struct ratelimit_state vf2pf_ratelimit; struct ratelimit_state vf2pf_ratelimit;
u32 vf_nr; u32 vf_nr;
bool init; bool init;
bool restarting; bool restarting;
u8 vf_compat_ver; u8 vf_compat_ver;
/*
* Private area used for device migration.
* Memory allocation and free is managed by migration driver.
*/
void *mig_priv;
}; };
struct adf_dc_data { struct adf_dc_data {
......
...@@ -248,6 +248,16 @@ static inline void __iomem *adf_get_pmisc_base(struct adf_accel_dev *accel_dev) ...@@ -248,6 +248,16 @@ static inline void __iomem *adf_get_pmisc_base(struct adf_accel_dev *accel_dev)
return pmisc->virt_addr; return pmisc->virt_addr;
} }
static inline void __iomem *adf_get_etr_base(struct adf_accel_dev *accel_dev)
{
struct adf_hw_device_data *hw_data = accel_dev->hw_device;
struct adf_bar *etr;
etr = &GET_BARS(accel_dev)[hw_data->get_etr_bar_id(hw_data)];
return etr->virt_addr;
}
static inline void __iomem *adf_get_aram_base(struct adf_accel_dev *accel_dev) static inline void __iomem *adf_get_aram_base(struct adf_accel_dev *accel_dev)
{ {
struct adf_hw_device_data *hw_data = accel_dev->hw_device; struct adf_hw_device_data *hw_data = accel_dev->hw_device;
......
// SPDX-License-Identifier: GPL-2.0-only
/* Copyright(c) 2024 Intel Corporation */
#include <linux/types.h>
#include "adf_gen2_hw_csr_data.h"
static u64 build_csr_ring_base_addr(dma_addr_t addr, u32 size)
{
return BUILD_RING_BASE_ADDR(addr, size);
}
static u32 read_csr_ring_head(void __iomem *csr_base_addr, u32 bank, u32 ring)
{
return READ_CSR_RING_HEAD(csr_base_addr, bank, ring);
}
static void write_csr_ring_head(void __iomem *csr_base_addr, u32 bank, u32 ring,
u32 value)
{
WRITE_CSR_RING_HEAD(csr_base_addr, bank, ring, value);
}
static u32 read_csr_ring_tail(void __iomem *csr_base_addr, u32 bank, u32 ring)
{
return READ_CSR_RING_TAIL(csr_base_addr, bank, ring);
}
static void write_csr_ring_tail(void __iomem *csr_base_addr, u32 bank, u32 ring,
u32 value)
{
WRITE_CSR_RING_TAIL(csr_base_addr, bank, ring, value);
}
static u32 read_csr_e_stat(void __iomem *csr_base_addr, u32 bank)
{
return READ_CSR_E_STAT(csr_base_addr, bank);
}
static void write_csr_ring_config(void __iomem *csr_base_addr, u32 bank,
u32 ring, u32 value)
{
WRITE_CSR_RING_CONFIG(csr_base_addr, bank, ring, value);
}
static void write_csr_ring_base(void __iomem *csr_base_addr, u32 bank, u32 ring,
dma_addr_t addr)
{
WRITE_CSR_RING_BASE(csr_base_addr, bank, ring, addr);
}
static void write_csr_int_flag(void __iomem *csr_base_addr, u32 bank, u32 value)
{
WRITE_CSR_INT_FLAG(csr_base_addr, bank, value);
}
static void write_csr_int_srcsel(void __iomem *csr_base_addr, u32 bank)
{
WRITE_CSR_INT_SRCSEL(csr_base_addr, bank);
}
static void write_csr_int_col_en(void __iomem *csr_base_addr, u32 bank,
u32 value)
{
WRITE_CSR_INT_COL_EN(csr_base_addr, bank, value);
}
static void write_csr_int_col_ctl(void __iomem *csr_base_addr, u32 bank,
u32 value)
{
WRITE_CSR_INT_COL_CTL(csr_base_addr, bank, value);
}
static void write_csr_int_flag_and_col(void __iomem *csr_base_addr, u32 bank,
u32 value)
{
WRITE_CSR_INT_FLAG_AND_COL(csr_base_addr, bank, value);
}
static void write_csr_ring_srv_arb_en(void __iomem *csr_base_addr, u32 bank,
u32 value)
{
WRITE_CSR_RING_SRV_ARB_EN(csr_base_addr, bank, value);
}
void adf_gen2_init_hw_csr_ops(struct adf_hw_csr_ops *csr_ops)
{
csr_ops->build_csr_ring_base_addr = build_csr_ring_base_addr;
csr_ops->read_csr_ring_head = read_csr_ring_head;
csr_ops->write_csr_ring_head = write_csr_ring_head;
csr_ops->read_csr_ring_tail = read_csr_ring_tail;
csr_ops->write_csr_ring_tail = write_csr_ring_tail;
csr_ops->read_csr_e_stat = read_csr_e_stat;
csr_ops->write_csr_ring_config = write_csr_ring_config;
csr_ops->write_csr_ring_base = write_csr_ring_base;
csr_ops->write_csr_int_flag = write_csr_int_flag;
csr_ops->write_csr_int_srcsel = write_csr_int_srcsel;
csr_ops->write_csr_int_col_en = write_csr_int_col_en;
csr_ops->write_csr_int_col_ctl = write_csr_int_col_ctl;
csr_ops->write_csr_int_flag_and_col = write_csr_int_flag_and_col;
csr_ops->write_csr_ring_srv_arb_en = write_csr_ring_srv_arb_en;
}
EXPORT_SYMBOL_GPL(adf_gen2_init_hw_csr_ops);
/* SPDX-License-Identifier: GPL-2.0-only */
/* Copyright(c) 2024 Intel Corporation */
#ifndef ADF_GEN2_HW_CSR_DATA_H_
#define ADF_GEN2_HW_CSR_DATA_H_
#include <linux/bitops.h>
#include "adf_accel_devices.h"
#define ADF_BANK_INT_SRC_SEL_MASK_0 0x4444444CUL
#define ADF_BANK_INT_SRC_SEL_MASK_X 0x44444444UL
#define ADF_RING_CSR_RING_CONFIG 0x000
#define ADF_RING_CSR_RING_LBASE 0x040
#define ADF_RING_CSR_RING_UBASE 0x080
#define ADF_RING_CSR_RING_HEAD 0x0C0
#define ADF_RING_CSR_RING_TAIL 0x100
#define ADF_RING_CSR_E_STAT 0x14C
#define ADF_RING_CSR_INT_FLAG 0x170
#define ADF_RING_CSR_INT_SRCSEL 0x174
#define ADF_RING_CSR_INT_SRCSEL_2 0x178
#define ADF_RING_CSR_INT_COL_EN 0x17C
#define ADF_RING_CSR_INT_COL_CTL 0x180
#define ADF_RING_CSR_INT_FLAG_AND_COL 0x184
#define ADF_RING_CSR_INT_COL_CTL_ENABLE 0x80000000
#define ADF_RING_BUNDLE_SIZE 0x1000
#define ADF_ARB_REG_SLOT 0x1000
#define ADF_ARB_RINGSRVARBEN_OFFSET 0x19C
#define BUILD_RING_BASE_ADDR(addr, size) \
(((addr) >> 6) & (GENMASK_ULL(63, 0) << (size)))
#define READ_CSR_RING_HEAD(csr_base_addr, bank, ring) \
ADF_CSR_RD(csr_base_addr, (ADF_RING_BUNDLE_SIZE * (bank)) + \
ADF_RING_CSR_RING_HEAD + ((ring) << 2))
#define READ_CSR_RING_TAIL(csr_base_addr, bank, ring) \
ADF_CSR_RD(csr_base_addr, (ADF_RING_BUNDLE_SIZE * (bank)) + \
ADF_RING_CSR_RING_TAIL + ((ring) << 2))
#define READ_CSR_E_STAT(csr_base_addr, bank) \
ADF_CSR_RD(csr_base_addr, (ADF_RING_BUNDLE_SIZE * (bank)) + \
ADF_RING_CSR_E_STAT)
#define WRITE_CSR_RING_CONFIG(csr_base_addr, bank, ring, value) \
ADF_CSR_WR(csr_base_addr, (ADF_RING_BUNDLE_SIZE * (bank)) + \
ADF_RING_CSR_RING_CONFIG + ((ring) << 2), value)
#define WRITE_CSR_RING_BASE(csr_base_addr, bank, ring, value) \
do { \
u32 l_base = 0, u_base = 0; \
l_base = (u32)((value) & 0xFFFFFFFF); \
u_base = (u32)(((value) & 0xFFFFFFFF00000000ULL) >> 32); \
ADF_CSR_WR(csr_base_addr, (ADF_RING_BUNDLE_SIZE * (bank)) + \
ADF_RING_CSR_RING_LBASE + ((ring) << 2), l_base); \
ADF_CSR_WR(csr_base_addr, (ADF_RING_BUNDLE_SIZE * (bank)) + \
ADF_RING_CSR_RING_UBASE + ((ring) << 2), u_base); \
} while (0)
#define WRITE_CSR_RING_HEAD(csr_base_addr, bank, ring, value) \
ADF_CSR_WR(csr_base_addr, (ADF_RING_BUNDLE_SIZE * (bank)) + \
ADF_RING_CSR_RING_HEAD + ((ring) << 2), value)
#define WRITE_CSR_RING_TAIL(csr_base_addr, bank, ring, value) \
ADF_CSR_WR(csr_base_addr, (ADF_RING_BUNDLE_SIZE * (bank)) + \
ADF_RING_CSR_RING_TAIL + ((ring) << 2), value)
#define WRITE_CSR_INT_FLAG(csr_base_addr, bank, value) \
ADF_CSR_WR(csr_base_addr, (ADF_RING_BUNDLE_SIZE * (bank)) + \
ADF_RING_CSR_INT_FLAG, value)
#define WRITE_CSR_INT_SRCSEL(csr_base_addr, bank) \
do { \
ADF_CSR_WR(csr_base_addr, (ADF_RING_BUNDLE_SIZE * (bank)) + \
ADF_RING_CSR_INT_SRCSEL, ADF_BANK_INT_SRC_SEL_MASK_0); \
ADF_CSR_WR(csr_base_addr, (ADF_RING_BUNDLE_SIZE * (bank)) + \
ADF_RING_CSR_INT_SRCSEL_2, ADF_BANK_INT_SRC_SEL_MASK_X); \
} while (0)
#define WRITE_CSR_INT_COL_EN(csr_base_addr, bank, value) \
ADF_CSR_WR(csr_base_addr, (ADF_RING_BUNDLE_SIZE * (bank)) + \
ADF_RING_CSR_INT_COL_EN, value)
#define WRITE_CSR_INT_COL_CTL(csr_base_addr, bank, value) \
ADF_CSR_WR(csr_base_addr, (ADF_RING_BUNDLE_SIZE * (bank)) + \
ADF_RING_CSR_INT_COL_CTL, \
ADF_RING_CSR_INT_COL_CTL_ENABLE | (value))
#define WRITE_CSR_INT_FLAG_AND_COL(csr_base_addr, bank, value) \
ADF_CSR_WR(csr_base_addr, (ADF_RING_BUNDLE_SIZE * (bank)) + \
ADF_RING_CSR_INT_FLAG_AND_COL, value)
#define WRITE_CSR_RING_SRV_ARB_EN(csr_addr, index, value) \
ADF_CSR_WR(csr_addr, ADF_ARB_RINGSRVARBEN_OFFSET + \
(ADF_ARB_REG_SLOT * (index)), value)
void adf_gen2_init_hw_csr_ops(struct adf_hw_csr_ops *csr_ops);
#endif
...@@ -111,103 +111,6 @@ void adf_gen2_enable_ints(struct adf_accel_dev *accel_dev) ...@@ -111,103 +111,6 @@ void adf_gen2_enable_ints(struct adf_accel_dev *accel_dev)
} }
EXPORT_SYMBOL_GPL(adf_gen2_enable_ints); EXPORT_SYMBOL_GPL(adf_gen2_enable_ints);
static u64 build_csr_ring_base_addr(dma_addr_t addr, u32 size)
{
return BUILD_RING_BASE_ADDR(addr, size);
}
static u32 read_csr_ring_head(void __iomem *csr_base_addr, u32 bank, u32 ring)
{
return READ_CSR_RING_HEAD(csr_base_addr, bank, ring);
}
static void write_csr_ring_head(void __iomem *csr_base_addr, u32 bank, u32 ring,
u32 value)
{
WRITE_CSR_RING_HEAD(csr_base_addr, bank, ring, value);
}
static u32 read_csr_ring_tail(void __iomem *csr_base_addr, u32 bank, u32 ring)
{
return READ_CSR_RING_TAIL(csr_base_addr, bank, ring);
}
static void write_csr_ring_tail(void __iomem *csr_base_addr, u32 bank, u32 ring,
u32 value)
{
WRITE_CSR_RING_TAIL(csr_base_addr, bank, ring, value);
}
static u32 read_csr_e_stat(void __iomem *csr_base_addr, u32 bank)
{
return READ_CSR_E_STAT(csr_base_addr, bank);
}
static void write_csr_ring_config(void __iomem *csr_base_addr, u32 bank,
u32 ring, u32 value)
{
WRITE_CSR_RING_CONFIG(csr_base_addr, bank, ring, value);
}
static void write_csr_ring_base(void __iomem *csr_base_addr, u32 bank, u32 ring,
dma_addr_t addr)
{
WRITE_CSR_RING_BASE(csr_base_addr, bank, ring, addr);
}
static void write_csr_int_flag(void __iomem *csr_base_addr, u32 bank, u32 value)
{
WRITE_CSR_INT_FLAG(csr_base_addr, bank, value);
}
static void write_csr_int_srcsel(void __iomem *csr_base_addr, u32 bank)
{
WRITE_CSR_INT_SRCSEL(csr_base_addr, bank);
}
static void write_csr_int_col_en(void __iomem *csr_base_addr, u32 bank,
u32 value)
{
WRITE_CSR_INT_COL_EN(csr_base_addr, bank, value);
}
static void write_csr_int_col_ctl(void __iomem *csr_base_addr, u32 bank,
u32 value)
{
WRITE_CSR_INT_COL_CTL(csr_base_addr, bank, value);
}
static void write_csr_int_flag_and_col(void __iomem *csr_base_addr, u32 bank,
u32 value)
{
WRITE_CSR_INT_FLAG_AND_COL(csr_base_addr, bank, value);
}
static void write_csr_ring_srv_arb_en(void __iomem *csr_base_addr, u32 bank,
u32 value)
{
WRITE_CSR_RING_SRV_ARB_EN(csr_base_addr, bank, value);
}
void adf_gen2_init_hw_csr_ops(struct adf_hw_csr_ops *csr_ops)
{
csr_ops->build_csr_ring_base_addr = build_csr_ring_base_addr;
csr_ops->read_csr_ring_head = read_csr_ring_head;
csr_ops->write_csr_ring_head = write_csr_ring_head;
csr_ops->read_csr_ring_tail = read_csr_ring_tail;
csr_ops->write_csr_ring_tail = write_csr_ring_tail;
csr_ops->read_csr_e_stat = read_csr_e_stat;
csr_ops->write_csr_ring_config = write_csr_ring_config;
csr_ops->write_csr_ring_base = write_csr_ring_base;
csr_ops->write_csr_int_flag = write_csr_int_flag;
csr_ops->write_csr_int_srcsel = write_csr_int_srcsel;
csr_ops->write_csr_int_col_en = write_csr_int_col_en;
csr_ops->write_csr_int_col_ctl = write_csr_int_col_ctl;
csr_ops->write_csr_int_flag_and_col = write_csr_int_flag_and_col;
csr_ops->write_csr_ring_srv_arb_en = write_csr_ring_srv_arb_en;
}
EXPORT_SYMBOL_GPL(adf_gen2_init_hw_csr_ops);
u32 adf_gen2_get_accel_cap(struct adf_accel_dev *accel_dev) u32 adf_gen2_get_accel_cap(struct adf_accel_dev *accel_dev)
{ {
struct adf_hw_device_data *hw_data = accel_dev->hw_device; struct adf_hw_device_data *hw_data = accel_dev->hw_device;
......
...@@ -6,78 +6,9 @@ ...@@ -6,78 +6,9 @@
#include "adf_accel_devices.h" #include "adf_accel_devices.h"
#include "adf_cfg_common.h" #include "adf_cfg_common.h"
/* Transport access */
#define ADF_BANK_INT_SRC_SEL_MASK_0 0x4444444CUL
#define ADF_BANK_INT_SRC_SEL_MASK_X 0x44444444UL
#define ADF_RING_CSR_RING_CONFIG 0x000
#define ADF_RING_CSR_RING_LBASE 0x040
#define ADF_RING_CSR_RING_UBASE 0x080
#define ADF_RING_CSR_RING_HEAD 0x0C0
#define ADF_RING_CSR_RING_TAIL 0x100
#define ADF_RING_CSR_E_STAT 0x14C
#define ADF_RING_CSR_INT_FLAG 0x170
#define ADF_RING_CSR_INT_SRCSEL 0x174
#define ADF_RING_CSR_INT_SRCSEL_2 0x178
#define ADF_RING_CSR_INT_COL_EN 0x17C
#define ADF_RING_CSR_INT_COL_CTL 0x180
#define ADF_RING_CSR_INT_FLAG_AND_COL 0x184
#define ADF_RING_CSR_INT_COL_CTL_ENABLE 0x80000000
#define ADF_RING_BUNDLE_SIZE 0x1000
#define ADF_GEN2_RX_RINGS_OFFSET 8 #define ADF_GEN2_RX_RINGS_OFFSET 8
#define ADF_GEN2_TX_RINGS_MASK 0xFF #define ADF_GEN2_TX_RINGS_MASK 0xFF
#define BUILD_RING_BASE_ADDR(addr, size) \
(((addr) >> 6) & (GENMASK_ULL(63, 0) << (size)))
#define READ_CSR_RING_HEAD(csr_base_addr, bank, ring) \
ADF_CSR_RD(csr_base_addr, (ADF_RING_BUNDLE_SIZE * (bank)) + \
ADF_RING_CSR_RING_HEAD + ((ring) << 2))
#define READ_CSR_RING_TAIL(csr_base_addr, bank, ring) \
ADF_CSR_RD(csr_base_addr, (ADF_RING_BUNDLE_SIZE * (bank)) + \
ADF_RING_CSR_RING_TAIL + ((ring) << 2))
#define READ_CSR_E_STAT(csr_base_addr, bank) \
ADF_CSR_RD(csr_base_addr, (ADF_RING_BUNDLE_SIZE * (bank)) + \
ADF_RING_CSR_E_STAT)
#define WRITE_CSR_RING_CONFIG(csr_base_addr, bank, ring, value) \
ADF_CSR_WR(csr_base_addr, (ADF_RING_BUNDLE_SIZE * (bank)) + \
ADF_RING_CSR_RING_CONFIG + ((ring) << 2), value)
#define WRITE_CSR_RING_BASE(csr_base_addr, bank, ring, value) \
do { \
u32 l_base = 0, u_base = 0; \
l_base = (u32)((value) & 0xFFFFFFFF); \
u_base = (u32)(((value) & 0xFFFFFFFF00000000ULL) >> 32); \
ADF_CSR_WR(csr_base_addr, (ADF_RING_BUNDLE_SIZE * (bank)) + \
ADF_RING_CSR_RING_LBASE + ((ring) << 2), l_base); \
ADF_CSR_WR(csr_base_addr, (ADF_RING_BUNDLE_SIZE * (bank)) + \
ADF_RING_CSR_RING_UBASE + ((ring) << 2), u_base); \
} while (0)
#define WRITE_CSR_RING_HEAD(csr_base_addr, bank, ring, value) \
ADF_CSR_WR(csr_base_addr, (ADF_RING_BUNDLE_SIZE * (bank)) + \
ADF_RING_CSR_RING_HEAD + ((ring) << 2), value)
#define WRITE_CSR_RING_TAIL(csr_base_addr, bank, ring, value) \
ADF_CSR_WR(csr_base_addr, (ADF_RING_BUNDLE_SIZE * (bank)) + \
ADF_RING_CSR_RING_TAIL + ((ring) << 2), value)
#define WRITE_CSR_INT_FLAG(csr_base_addr, bank, value) \
ADF_CSR_WR(csr_base_addr, (ADF_RING_BUNDLE_SIZE * (bank)) + \
ADF_RING_CSR_INT_FLAG, value)
#define WRITE_CSR_INT_SRCSEL(csr_base_addr, bank) \
do { \
ADF_CSR_WR(csr_base_addr, (ADF_RING_BUNDLE_SIZE * (bank)) + \
ADF_RING_CSR_INT_SRCSEL, ADF_BANK_INT_SRC_SEL_MASK_0); \
ADF_CSR_WR(csr_base_addr, (ADF_RING_BUNDLE_SIZE * (bank)) + \
ADF_RING_CSR_INT_SRCSEL_2, ADF_BANK_INT_SRC_SEL_MASK_X); \
} while (0)
#define WRITE_CSR_INT_COL_EN(csr_base_addr, bank, value) \
ADF_CSR_WR(csr_base_addr, (ADF_RING_BUNDLE_SIZE * (bank)) + \
ADF_RING_CSR_INT_COL_EN, value)
#define WRITE_CSR_INT_COL_CTL(csr_base_addr, bank, value) \
ADF_CSR_WR(csr_base_addr, (ADF_RING_BUNDLE_SIZE * (bank)) + \
ADF_RING_CSR_INT_COL_CTL, \
ADF_RING_CSR_INT_COL_CTL_ENABLE | (value))
#define WRITE_CSR_INT_FLAG_AND_COL(csr_base_addr, bank, value) \
ADF_CSR_WR(csr_base_addr, (ADF_RING_BUNDLE_SIZE * (bank)) + \
ADF_RING_CSR_INT_FLAG_AND_COL, value)
/* AE to function map */ /* AE to function map */
#define AE2FUNCTION_MAP_A_OFFSET (0x3A400 + 0x190) #define AE2FUNCTION_MAP_A_OFFSET (0x3A400 + 0x190)
#define AE2FUNCTION_MAP_B_OFFSET (0x3A400 + 0x310) #define AE2FUNCTION_MAP_B_OFFSET (0x3A400 + 0x310)
...@@ -106,12 +37,6 @@ do { \ ...@@ -106,12 +37,6 @@ do { \
#define ADF_ARB_OFFSET 0x30000 #define ADF_ARB_OFFSET 0x30000
#define ADF_ARB_WRK_2_SER_MAP_OFFSET 0x180 #define ADF_ARB_WRK_2_SER_MAP_OFFSET 0x180
#define ADF_ARB_CONFIG (BIT(31) | BIT(6) | BIT(0)) #define ADF_ARB_CONFIG (BIT(31) | BIT(6) | BIT(0))
#define ADF_ARB_REG_SLOT 0x1000
#define ADF_ARB_RINGSRVARBEN_OFFSET 0x19C
#define WRITE_CSR_RING_SRV_ARB_EN(csr_addr, index, value) \
ADF_CSR_WR(csr_addr, ADF_ARB_RINGSRVARBEN_OFFSET + \
(ADF_ARB_REG_SLOT * (index)), value)
/* Power gating */ /* Power gating */
#define ADF_POWERGATE_DC BIT(23) #define ADF_POWERGATE_DC BIT(23)
...@@ -158,7 +83,6 @@ u32 adf_gen2_get_num_aes(struct adf_hw_device_data *self); ...@@ -158,7 +83,6 @@ u32 adf_gen2_get_num_aes(struct adf_hw_device_data *self);
void adf_gen2_enable_error_correction(struct adf_accel_dev *accel_dev); void adf_gen2_enable_error_correction(struct adf_accel_dev *accel_dev);
void adf_gen2_cfg_iov_thds(struct adf_accel_dev *accel_dev, bool enable, void adf_gen2_cfg_iov_thds(struct adf_accel_dev *accel_dev, bool enable,
int num_a_regs, int num_b_regs); int num_a_regs, int num_b_regs);
void adf_gen2_init_hw_csr_ops(struct adf_hw_csr_ops *csr_ops);
void adf_gen2_get_admin_info(struct admin_info *admin_csrs_info); void adf_gen2_get_admin_info(struct admin_info *admin_csrs_info);
void adf_gen2_get_arb_info(struct arb_info *arb_info); void adf_gen2_get_arb_info(struct arb_info *arb_info);
void adf_gen2_enable_ints(struct adf_accel_dev *accel_dev); void adf_gen2_enable_ints(struct adf_accel_dev *accel_dev);
......
// SPDX-License-Identifier: GPL-2.0-only
/* Copyright(c) 2024 Intel Corporation */
#include <linux/types.h>
#include "adf_gen4_hw_csr_data.h"
static u64 build_csr_ring_base_addr(dma_addr_t addr, u32 size)
{
return BUILD_RING_BASE_ADDR(addr, size);
}
static u32 read_csr_ring_head(void __iomem *csr_base_addr, u32 bank, u32 ring)
{
return READ_CSR_RING_HEAD(csr_base_addr, bank, ring);
}
static void write_csr_ring_head(void __iomem *csr_base_addr, u32 bank, u32 ring,
u32 value)
{
WRITE_CSR_RING_HEAD(csr_base_addr, bank, ring, value);
}
static u32 read_csr_ring_tail(void __iomem *csr_base_addr, u32 bank, u32 ring)
{
return READ_CSR_RING_TAIL(csr_base_addr, bank, ring);
}
static void write_csr_ring_tail(void __iomem *csr_base_addr, u32 bank, u32 ring,
u32 value)
{
WRITE_CSR_RING_TAIL(csr_base_addr, bank, ring, value);
}
static u32 read_csr_stat(void __iomem *csr_base_addr, u32 bank)
{
return READ_CSR_STAT(csr_base_addr, bank);
}
static u32 read_csr_uo_stat(void __iomem *csr_base_addr, u32 bank)
{
return READ_CSR_UO_STAT(csr_base_addr, bank);
}
static u32 read_csr_e_stat(void __iomem *csr_base_addr, u32 bank)
{
return READ_CSR_E_STAT(csr_base_addr, bank);
}
static u32 read_csr_ne_stat(void __iomem *csr_base_addr, u32 bank)
{
return READ_CSR_NE_STAT(csr_base_addr, bank);
}
static u32 read_csr_nf_stat(void __iomem *csr_base_addr, u32 bank)
{
return READ_CSR_NF_STAT(csr_base_addr, bank);
}
static u32 read_csr_f_stat(void __iomem *csr_base_addr, u32 bank)
{
return READ_CSR_F_STAT(csr_base_addr, bank);
}
static u32 read_csr_c_stat(void __iomem *csr_base_addr, u32 bank)
{
return READ_CSR_C_STAT(csr_base_addr, bank);
}
static u32 read_csr_exp_stat(void __iomem *csr_base_addr, u32 bank)
{
return READ_CSR_EXP_STAT(csr_base_addr, bank);
}
static u32 read_csr_exp_int_en(void __iomem *csr_base_addr, u32 bank)
{
return READ_CSR_EXP_INT_EN(csr_base_addr, bank);
}
static void write_csr_exp_int_en(void __iomem *csr_base_addr, u32 bank,
u32 value)
{
WRITE_CSR_EXP_INT_EN(csr_base_addr, bank, value);
}
static u32 read_csr_ring_config(void __iomem *csr_base_addr, u32 bank,
u32 ring)
{
return READ_CSR_RING_CONFIG(csr_base_addr, bank, ring);
}
static void write_csr_ring_config(void __iomem *csr_base_addr, u32 bank, u32 ring,
u32 value)
{
WRITE_CSR_RING_CONFIG(csr_base_addr, bank, ring, value);
}
static dma_addr_t read_csr_ring_base(void __iomem *csr_base_addr, u32 bank,
u32 ring)
{
return READ_CSR_RING_BASE(csr_base_addr, bank, ring);
}
static void write_csr_ring_base(void __iomem *csr_base_addr, u32 bank, u32 ring,
dma_addr_t addr)
{
WRITE_CSR_RING_BASE(csr_base_addr, bank, ring, addr);
}
static u32 read_csr_int_en(void __iomem *csr_base_addr, u32 bank)
{
return READ_CSR_INT_EN(csr_base_addr, bank);
}
static void write_csr_int_en(void __iomem *csr_base_addr, u32 bank, u32 value)
{
WRITE_CSR_INT_EN(csr_base_addr, bank, value);
}
static u32 read_csr_int_flag(void __iomem *csr_base_addr, u32 bank)
{
return READ_CSR_INT_FLAG(csr_base_addr, bank);
}
static void write_csr_int_flag(void __iomem *csr_base_addr, u32 bank,
u32 value)
{
WRITE_CSR_INT_FLAG(csr_base_addr, bank, value);
}
static u32 read_csr_int_srcsel(void __iomem *csr_base_addr, u32 bank)
{
return READ_CSR_INT_SRCSEL(csr_base_addr, bank);
}
static void write_csr_int_srcsel(void __iomem *csr_base_addr, u32 bank)
{
WRITE_CSR_INT_SRCSEL(csr_base_addr, bank);
}
static void write_csr_int_srcsel_w_val(void __iomem *csr_base_addr, u32 bank,
u32 value)
{
WRITE_CSR_INT_SRCSEL_W_VAL(csr_base_addr, bank, value);
}
static u32 read_csr_int_col_en(void __iomem *csr_base_addr, u32 bank)
{
return READ_CSR_INT_COL_EN(csr_base_addr, bank);
}
static void write_csr_int_col_en(void __iomem *csr_base_addr, u32 bank, u32 value)
{
WRITE_CSR_INT_COL_EN(csr_base_addr, bank, value);
}
static u32 read_csr_int_col_ctl(void __iomem *csr_base_addr, u32 bank)
{
return READ_CSR_INT_COL_CTL(csr_base_addr, bank);
}
static void write_csr_int_col_ctl(void __iomem *csr_base_addr, u32 bank,
u32 value)
{
WRITE_CSR_INT_COL_CTL(csr_base_addr, bank, value);
}
static u32 read_csr_int_flag_and_col(void __iomem *csr_base_addr, u32 bank)
{
return READ_CSR_INT_FLAG_AND_COL(csr_base_addr, bank);
}
static void write_csr_int_flag_and_col(void __iomem *csr_base_addr, u32 bank,
u32 value)
{
WRITE_CSR_INT_FLAG_AND_COL(csr_base_addr, bank, value);
}
static u32 read_csr_ring_srv_arb_en(void __iomem *csr_base_addr, u32 bank)
{
return READ_CSR_RING_SRV_ARB_EN(csr_base_addr, bank);
}
static void write_csr_ring_srv_arb_en(void __iomem *csr_base_addr, u32 bank,
u32 value)
{
WRITE_CSR_RING_SRV_ARB_EN(csr_base_addr, bank, value);
}
static u32 get_int_col_ctl_enable_mask(void)
{
return ADF_RING_CSR_INT_COL_CTL_ENABLE;
}
void adf_gen4_init_hw_csr_ops(struct adf_hw_csr_ops *csr_ops)
{
csr_ops->build_csr_ring_base_addr = build_csr_ring_base_addr;
csr_ops->read_csr_ring_head = read_csr_ring_head;
csr_ops->write_csr_ring_head = write_csr_ring_head;
csr_ops->read_csr_ring_tail = read_csr_ring_tail;
csr_ops->write_csr_ring_tail = write_csr_ring_tail;
csr_ops->read_csr_stat = read_csr_stat;
csr_ops->read_csr_uo_stat = read_csr_uo_stat;
csr_ops->read_csr_e_stat = read_csr_e_stat;
csr_ops->read_csr_ne_stat = read_csr_ne_stat;
csr_ops->read_csr_nf_stat = read_csr_nf_stat;
csr_ops->read_csr_f_stat = read_csr_f_stat;
csr_ops->read_csr_c_stat = read_csr_c_stat;
csr_ops->read_csr_exp_stat = read_csr_exp_stat;
csr_ops->read_csr_exp_int_en = read_csr_exp_int_en;
csr_ops->write_csr_exp_int_en = write_csr_exp_int_en;
csr_ops->read_csr_ring_config = read_csr_ring_config;
csr_ops->write_csr_ring_config = write_csr_ring_config;
csr_ops->read_csr_ring_base = read_csr_ring_base;
csr_ops->write_csr_ring_base = write_csr_ring_base;
csr_ops->read_csr_int_en = read_csr_int_en;
csr_ops->write_csr_int_en = write_csr_int_en;
csr_ops->read_csr_int_flag = read_csr_int_flag;
csr_ops->write_csr_int_flag = write_csr_int_flag;
csr_ops->read_csr_int_srcsel = read_csr_int_srcsel;
csr_ops->write_csr_int_srcsel = write_csr_int_srcsel;
csr_ops->write_csr_int_srcsel_w_val = write_csr_int_srcsel_w_val;
csr_ops->read_csr_int_col_en = read_csr_int_col_en;
csr_ops->write_csr_int_col_en = write_csr_int_col_en;
csr_ops->read_csr_int_col_ctl = read_csr_int_col_ctl;
csr_ops->write_csr_int_col_ctl = write_csr_int_col_ctl;
csr_ops->read_csr_int_flag_and_col = read_csr_int_flag_and_col;
csr_ops->write_csr_int_flag_and_col = write_csr_int_flag_and_col;
csr_ops->read_csr_ring_srv_arb_en = read_csr_ring_srv_arb_en;
csr_ops->write_csr_ring_srv_arb_en = write_csr_ring_srv_arb_en;
csr_ops->get_int_col_ctl_enable_mask = get_int_col_ctl_enable_mask;
}
EXPORT_SYMBOL_GPL(adf_gen4_init_hw_csr_ops);
/* SPDX-License-Identifier: GPL-2.0-only */
/* Copyright(c) 2024 Intel Corporation */
#ifndef ADF_GEN4_HW_CSR_DATA_H_
#define ADF_GEN4_HW_CSR_DATA_H_
#include <linux/bitops.h>
#include "adf_accel_devices.h"
#define ADF_BANK_INT_SRC_SEL_MASK 0x44UL
#define ADF_RING_CSR_RING_CONFIG 0x1000
#define ADF_RING_CSR_RING_LBASE 0x1040
#define ADF_RING_CSR_RING_UBASE 0x1080
#define ADF_RING_CSR_RING_HEAD 0x0C0
#define ADF_RING_CSR_RING_TAIL 0x100
#define ADF_RING_CSR_STAT 0x140
#define ADF_RING_CSR_UO_STAT 0x148
#define ADF_RING_CSR_E_STAT 0x14C
#define ADF_RING_CSR_NE_STAT 0x150
#define ADF_RING_CSR_NF_STAT 0x154
#define ADF_RING_CSR_F_STAT 0x158
#define ADF_RING_CSR_C_STAT 0x15C
#define ADF_RING_CSR_INT_FLAG_EN 0x16C
#define ADF_RING_CSR_INT_FLAG 0x170
#define ADF_RING_CSR_INT_SRCSEL 0x174
#define ADF_RING_CSR_INT_COL_EN 0x17C
#define ADF_RING_CSR_INT_COL_CTL 0x180
#define ADF_RING_CSR_INT_FLAG_AND_COL 0x184
#define ADF_RING_CSR_EXP_STAT 0x188
#define ADF_RING_CSR_EXP_INT_EN 0x18C
#define ADF_RING_CSR_INT_COL_CTL_ENABLE 0x80000000
#define ADF_RING_CSR_ADDR_OFFSET 0x100000
#define ADF_RING_BUNDLE_SIZE 0x2000
#define ADF_RING_CSR_RING_SRV_ARB_EN 0x19C
#define BUILD_RING_BASE_ADDR(addr, size) \
((((addr) >> 6) & (GENMASK_ULL(63, 0) << (size))) << 6)
#define READ_CSR_RING_HEAD(csr_base_addr, bank, ring) \
ADF_CSR_RD((csr_base_addr) + ADF_RING_CSR_ADDR_OFFSET, \
ADF_RING_BUNDLE_SIZE * (bank) + \
ADF_RING_CSR_RING_HEAD + ((ring) << 2))
#define READ_CSR_RING_TAIL(csr_base_addr, bank, ring) \
ADF_CSR_RD((csr_base_addr) + ADF_RING_CSR_ADDR_OFFSET, \
ADF_RING_BUNDLE_SIZE * (bank) + \
ADF_RING_CSR_RING_TAIL + ((ring) << 2))
#define READ_CSR_STAT(csr_base_addr, bank) \
ADF_CSR_RD((csr_base_addr) + ADF_RING_CSR_ADDR_OFFSET, \
ADF_RING_BUNDLE_SIZE * (bank) + ADF_RING_CSR_STAT)
#define READ_CSR_UO_STAT(csr_base_addr, bank) \
ADF_CSR_RD((csr_base_addr) + ADF_RING_CSR_ADDR_OFFSET, \
ADF_RING_BUNDLE_SIZE * (bank) + ADF_RING_CSR_UO_STAT)
#define READ_CSR_E_STAT(csr_base_addr, bank) \
ADF_CSR_RD((csr_base_addr) + ADF_RING_CSR_ADDR_OFFSET, \
ADF_RING_BUNDLE_SIZE * (bank) + ADF_RING_CSR_E_STAT)
#define READ_CSR_NE_STAT(csr_base_addr, bank) \
ADF_CSR_RD((csr_base_addr) + ADF_RING_CSR_ADDR_OFFSET, \
ADF_RING_BUNDLE_SIZE * (bank) + ADF_RING_CSR_NE_STAT)
#define READ_CSR_NF_STAT(csr_base_addr, bank) \
ADF_CSR_RD((csr_base_addr) + ADF_RING_CSR_ADDR_OFFSET, \
ADF_RING_BUNDLE_SIZE * (bank) + ADF_RING_CSR_NF_STAT)
#define READ_CSR_F_STAT(csr_base_addr, bank) \
ADF_CSR_RD((csr_base_addr) + ADF_RING_CSR_ADDR_OFFSET, \
ADF_RING_BUNDLE_SIZE * (bank) + ADF_RING_CSR_F_STAT)
#define READ_CSR_C_STAT(csr_base_addr, bank) \
ADF_CSR_RD((csr_base_addr) + ADF_RING_CSR_ADDR_OFFSET, \
ADF_RING_BUNDLE_SIZE * (bank) + ADF_RING_CSR_C_STAT)
#define READ_CSR_EXP_STAT(csr_base_addr, bank) \
ADF_CSR_RD((csr_base_addr) + ADF_RING_CSR_ADDR_OFFSET, \
ADF_RING_BUNDLE_SIZE * (bank) + ADF_RING_CSR_EXP_STAT)
#define READ_CSR_EXP_INT_EN(csr_base_addr, bank) \
ADF_CSR_RD((csr_base_addr) + ADF_RING_CSR_ADDR_OFFSET, \
ADF_RING_BUNDLE_SIZE * (bank) + ADF_RING_CSR_EXP_INT_EN)
#define WRITE_CSR_EXP_INT_EN(csr_base_addr, bank, value) \
ADF_CSR_WR((csr_base_addr) + ADF_RING_CSR_ADDR_OFFSET, \
ADF_RING_BUNDLE_SIZE * (bank) + \
ADF_RING_CSR_EXP_INT_EN, value)
#define READ_CSR_RING_CONFIG(csr_base_addr, bank, ring) \
ADF_CSR_RD((csr_base_addr) + ADF_RING_CSR_ADDR_OFFSET, \
ADF_RING_BUNDLE_SIZE * (bank) + \
ADF_RING_CSR_RING_CONFIG + ((ring) << 2))
#define WRITE_CSR_RING_CONFIG(csr_base_addr, bank, ring, value) \
ADF_CSR_WR((csr_base_addr) + ADF_RING_CSR_ADDR_OFFSET, \
ADF_RING_BUNDLE_SIZE * (bank) + \
ADF_RING_CSR_RING_CONFIG + ((ring) << 2), value)
#define WRITE_CSR_RING_BASE(csr_base_addr, bank, ring, value) \
do { \
void __iomem *_csr_base_addr = csr_base_addr; \
u32 _bank = bank; \
u32 _ring = ring; \
dma_addr_t _value = value; \
u32 l_base = 0, u_base = 0; \
l_base = lower_32_bits(_value); \
u_base = upper_32_bits(_value); \
ADF_CSR_WR((_csr_base_addr) + ADF_RING_CSR_ADDR_OFFSET, \
ADF_RING_BUNDLE_SIZE * (_bank) + \
ADF_RING_CSR_RING_LBASE + ((_ring) << 2), l_base); \
ADF_CSR_WR((_csr_base_addr) + ADF_RING_CSR_ADDR_OFFSET, \
ADF_RING_BUNDLE_SIZE * (_bank) + \
ADF_RING_CSR_RING_UBASE + ((_ring) << 2), u_base); \
} while (0)
static inline u64 read_base(void __iomem *csr_base_addr, u32 bank, u32 ring)
{
u32 l_base, u_base;
/*
* Use special IO wrapper for ring base as LBASE and UBASE are
* not physically contigious
*/
l_base = ADF_CSR_RD(csr_base_addr, (ADF_RING_BUNDLE_SIZE * bank) +
ADF_RING_CSR_RING_LBASE + (ring << 2));
u_base = ADF_CSR_RD(csr_base_addr, (ADF_RING_BUNDLE_SIZE * bank) +
ADF_RING_CSR_RING_UBASE + (ring << 2));
return (u64)u_base << 32 | (u64)l_base;
}
#define READ_CSR_RING_BASE(csr_base_addr, bank, ring) \
read_base((csr_base_addr) + ADF_RING_CSR_ADDR_OFFSET, (bank), (ring))
#define WRITE_CSR_RING_HEAD(csr_base_addr, bank, ring, value) \
ADF_CSR_WR((csr_base_addr) + ADF_RING_CSR_ADDR_OFFSET, \
ADF_RING_BUNDLE_SIZE * (bank) + \
ADF_RING_CSR_RING_HEAD + ((ring) << 2), value)
#define WRITE_CSR_RING_TAIL(csr_base_addr, bank, ring, value) \
ADF_CSR_WR((csr_base_addr) + ADF_RING_CSR_ADDR_OFFSET, \
ADF_RING_BUNDLE_SIZE * (bank) + \
ADF_RING_CSR_RING_TAIL + ((ring) << 2), value)
#define READ_CSR_INT_EN(csr_base_addr, bank) \
ADF_CSR_RD((csr_base_addr) + ADF_RING_CSR_ADDR_OFFSET, \
ADF_RING_BUNDLE_SIZE * (bank) + ADF_RING_CSR_INT_FLAG_EN)
#define WRITE_CSR_INT_EN(csr_base_addr, bank, value) \
ADF_CSR_WR((csr_base_addr) + ADF_RING_CSR_ADDR_OFFSET, \
ADF_RING_BUNDLE_SIZE * (bank) + \
ADF_RING_CSR_INT_FLAG_EN, (value))
#define READ_CSR_INT_FLAG(csr_base_addr, bank) \
ADF_CSR_RD((csr_base_addr) + ADF_RING_CSR_ADDR_OFFSET, \
ADF_RING_BUNDLE_SIZE * (bank) + ADF_RING_CSR_INT_FLAG)
#define WRITE_CSR_INT_FLAG(csr_base_addr, bank, value) \
ADF_CSR_WR((csr_base_addr) + ADF_RING_CSR_ADDR_OFFSET, \
ADF_RING_BUNDLE_SIZE * (bank) + \
ADF_RING_CSR_INT_FLAG, (value))
#define READ_CSR_INT_SRCSEL(csr_base_addr, bank) \
ADF_CSR_RD((csr_base_addr) + ADF_RING_CSR_ADDR_OFFSET, \
ADF_RING_BUNDLE_SIZE * (bank) + ADF_RING_CSR_INT_SRCSEL)
#define WRITE_CSR_INT_SRCSEL(csr_base_addr, bank) \
ADF_CSR_WR((csr_base_addr) + ADF_RING_CSR_ADDR_OFFSET, \
ADF_RING_BUNDLE_SIZE * (bank) + \
ADF_RING_CSR_INT_SRCSEL, ADF_BANK_INT_SRC_SEL_MASK)
#define WRITE_CSR_INT_SRCSEL_W_VAL(csr_base_addr, bank, value) \
ADF_CSR_WR((csr_base_addr) + ADF_RING_CSR_ADDR_OFFSET, \
ADF_RING_BUNDLE_SIZE * (bank) + \
ADF_RING_CSR_INT_SRCSEL, (value))
#define READ_CSR_INT_COL_EN(csr_base_addr, bank) \
ADF_CSR_RD((csr_base_addr) + ADF_RING_CSR_ADDR_OFFSET, \
ADF_RING_BUNDLE_SIZE * (bank) + ADF_RING_CSR_INT_COL_EN)
#define WRITE_CSR_INT_COL_EN(csr_base_addr, bank, value) \
ADF_CSR_WR((csr_base_addr) + ADF_RING_CSR_ADDR_OFFSET, \
ADF_RING_BUNDLE_SIZE * (bank) + \
ADF_RING_CSR_INT_COL_EN, (value))
#define READ_CSR_INT_COL_CTL(csr_base_addr, bank) \
ADF_CSR_RD((csr_base_addr) + ADF_RING_CSR_ADDR_OFFSET, \
ADF_RING_BUNDLE_SIZE * (bank) + ADF_RING_CSR_INT_COL_CTL)
#define WRITE_CSR_INT_COL_CTL(csr_base_addr, bank, value) \
ADF_CSR_WR((csr_base_addr) + ADF_RING_CSR_ADDR_OFFSET, \
ADF_RING_BUNDLE_SIZE * (bank) + \
ADF_RING_CSR_INT_COL_CTL, \
ADF_RING_CSR_INT_COL_CTL_ENABLE | (value))
#define READ_CSR_INT_FLAG_AND_COL(csr_base_addr, bank) \
ADF_CSR_RD((csr_base_addr) + ADF_RING_CSR_ADDR_OFFSET, \
ADF_RING_BUNDLE_SIZE * (bank) + \
ADF_RING_CSR_INT_FLAG_AND_COL)
#define WRITE_CSR_INT_FLAG_AND_COL(csr_base_addr, bank, value) \
ADF_CSR_WR((csr_base_addr) + ADF_RING_CSR_ADDR_OFFSET, \
ADF_RING_BUNDLE_SIZE * (bank) + \
ADF_RING_CSR_INT_FLAG_AND_COL, (value))
#define READ_CSR_RING_SRV_ARB_EN(csr_base_addr, bank) \
ADF_CSR_RD((csr_base_addr) + ADF_RING_CSR_ADDR_OFFSET, \
ADF_RING_BUNDLE_SIZE * (bank) + \
ADF_RING_CSR_RING_SRV_ARB_EN)
#define WRITE_CSR_RING_SRV_ARB_EN(csr_base_addr, bank, value) \
ADF_CSR_WR((csr_base_addr) + ADF_RING_CSR_ADDR_OFFSET, \
ADF_RING_BUNDLE_SIZE * (bank) + \
ADF_RING_CSR_RING_SRV_ARB_EN, (value))
void adf_gen4_init_hw_csr_ops(struct adf_hw_csr_ops *csr_ops);
#endif
// SPDX-License-Identifier: (BSD-3-Clause OR GPL-2.0-only) // SPDX-License-Identifier: (BSD-3-Clause OR GPL-2.0-only)
/* Copyright(c) 2020 Intel Corporation */ /* Copyright(c) 2020 Intel Corporation */
#include <linux/iopoll.h> #include <linux/iopoll.h>
#include <asm/div64.h>
#include "adf_accel_devices.h" #include "adf_accel_devices.h"
#include "adf_cfg_services.h" #include "adf_cfg_services.h"
#include "adf_common_drv.h" #include "adf_common_drv.h"
...@@ -8,103 +9,6 @@ ...@@ -8,103 +9,6 @@
#include "adf_gen4_hw_data.h" #include "adf_gen4_hw_data.h"
#include "adf_gen4_pm.h" #include "adf_gen4_pm.h"
static u64 build_csr_ring_base_addr(dma_addr_t addr, u32 size)
{
return BUILD_RING_BASE_ADDR(addr, size);
}
static u32 read_csr_ring_head(void __iomem *csr_base_addr, u32 bank, u32 ring)
{
return READ_CSR_RING_HEAD(csr_base_addr, bank, ring);
}
static void write_csr_ring_head(void __iomem *csr_base_addr, u32 bank, u32 ring,
u32 value)
{
WRITE_CSR_RING_HEAD(csr_base_addr, bank, ring, value);
}
static u32 read_csr_ring_tail(void __iomem *csr_base_addr, u32 bank, u32 ring)
{
return READ_CSR_RING_TAIL(csr_base_addr, bank, ring);
}
static void write_csr_ring_tail(void __iomem *csr_base_addr, u32 bank, u32 ring,
u32 value)
{
WRITE_CSR_RING_TAIL(csr_base_addr, bank, ring, value);
}
static u32 read_csr_e_stat(void __iomem *csr_base_addr, u32 bank)
{
return READ_CSR_E_STAT(csr_base_addr, bank);
}
static void write_csr_ring_config(void __iomem *csr_base_addr, u32 bank, u32 ring,
u32 value)
{
WRITE_CSR_RING_CONFIG(csr_base_addr, bank, ring, value);
}
static void write_csr_ring_base(void __iomem *csr_base_addr, u32 bank, u32 ring,
dma_addr_t addr)
{
WRITE_CSR_RING_BASE(csr_base_addr, bank, ring, addr);
}
static void write_csr_int_flag(void __iomem *csr_base_addr, u32 bank,
u32 value)
{
WRITE_CSR_INT_FLAG(csr_base_addr, bank, value);
}
static void write_csr_int_srcsel(void __iomem *csr_base_addr, u32 bank)
{
WRITE_CSR_INT_SRCSEL(csr_base_addr, bank);
}
static void write_csr_int_col_en(void __iomem *csr_base_addr, u32 bank, u32 value)
{
WRITE_CSR_INT_COL_EN(csr_base_addr, bank, value);
}
static void write_csr_int_col_ctl(void __iomem *csr_base_addr, u32 bank,
u32 value)
{
WRITE_CSR_INT_COL_CTL(csr_base_addr, bank, value);
}
static void write_csr_int_flag_and_col(void __iomem *csr_base_addr, u32 bank,
u32 value)
{
WRITE_CSR_INT_FLAG_AND_COL(csr_base_addr, bank, value);
}
static void write_csr_ring_srv_arb_en(void __iomem *csr_base_addr, u32 bank,
u32 value)
{
WRITE_CSR_RING_SRV_ARB_EN(csr_base_addr, bank, value);
}
void adf_gen4_init_hw_csr_ops(struct adf_hw_csr_ops *csr_ops)
{
csr_ops->build_csr_ring_base_addr = build_csr_ring_base_addr;
csr_ops->read_csr_ring_head = read_csr_ring_head;
csr_ops->write_csr_ring_head = write_csr_ring_head;
csr_ops->read_csr_ring_tail = read_csr_ring_tail;
csr_ops->write_csr_ring_tail = write_csr_ring_tail;
csr_ops->read_csr_e_stat = read_csr_e_stat;
csr_ops->write_csr_ring_config = write_csr_ring_config;
csr_ops->write_csr_ring_base = write_csr_ring_base;
csr_ops->write_csr_int_flag = write_csr_int_flag;
csr_ops->write_csr_int_srcsel = write_csr_int_srcsel;
csr_ops->write_csr_int_col_en = write_csr_int_col_en;
csr_ops->write_csr_int_col_ctl = write_csr_int_col_ctl;
csr_ops->write_csr_int_flag_and_col = write_csr_int_flag_and_col;
csr_ops->write_csr_ring_srv_arb_en = write_csr_ring_srv_arb_en;
}
EXPORT_SYMBOL_GPL(adf_gen4_init_hw_csr_ops);
u32 adf_gen4_get_accel_mask(struct adf_hw_device_data *self) u32 adf_gen4_get_accel_mask(struct adf_hw_device_data *self)
{ {
return ADF_GEN4_ACCELERATORS_MASK; return ADF_GEN4_ACCELERATORS_MASK;
...@@ -321,8 +225,7 @@ static int reset_ring_pair(void __iomem *csr, u32 bank_number) ...@@ -321,8 +225,7 @@ static int reset_ring_pair(void __iomem *csr, u32 bank_number)
int adf_gen4_ring_pair_reset(struct adf_accel_dev *accel_dev, u32 bank_number) int adf_gen4_ring_pair_reset(struct adf_accel_dev *accel_dev, u32 bank_number)
{ {
struct adf_hw_device_data *hw_data = accel_dev->hw_device; struct adf_hw_device_data *hw_data = accel_dev->hw_device;
u32 etr_bar_id = hw_data->get_etr_bar_id(hw_data); void __iomem *csr = adf_get_etr_base(accel_dev);
void __iomem *csr;
int ret; int ret;
if (bank_number >= hw_data->num_banks) if (bank_number >= hw_data->num_banks)
...@@ -331,7 +234,6 @@ int adf_gen4_ring_pair_reset(struct adf_accel_dev *accel_dev, u32 bank_number) ...@@ -331,7 +234,6 @@ int adf_gen4_ring_pair_reset(struct adf_accel_dev *accel_dev, u32 bank_number)
dev_dbg(&GET_DEV(accel_dev), dev_dbg(&GET_DEV(accel_dev),
"ring pair reset for bank:%d\n", bank_number); "ring pair reset for bank:%d\n", bank_number);
csr = (&GET_BARS(accel_dev)[etr_bar_id])->virt_addr;
ret = reset_ring_pair(csr, bank_number); ret = reset_ring_pair(csr, bank_number);
if (ret) if (ret)
dev_err(&GET_DEV(accel_dev), dev_err(&GET_DEV(accel_dev),
...@@ -489,3 +391,281 @@ u16 adf_gen4_get_ring_to_svc_map(struct adf_accel_dev *accel_dev) ...@@ -489,3 +391,281 @@ u16 adf_gen4_get_ring_to_svc_map(struct adf_accel_dev *accel_dev)
return ring_to_svc_map; return ring_to_svc_map;
} }
EXPORT_SYMBOL_GPL(adf_gen4_get_ring_to_svc_map); EXPORT_SYMBOL_GPL(adf_gen4_get_ring_to_svc_map);
/*
* adf_gen4_bank_quiesce_coal_timer() - quiesce bank coalesced interrupt timer
* @accel_dev: Pointer to the device structure
* @bank_idx: Offset to the bank within this device
* @timeout_ms: Timeout in milliseconds for the operation
*
* This function tries to quiesce the coalesced interrupt timer of a bank if
* it has been enabled and triggered.
*
* Returns 0 on success, error code otherwise
*
*/
int adf_gen4_bank_quiesce_coal_timer(struct adf_accel_dev *accel_dev,
u32 bank_idx, int timeout_ms)
{
struct adf_hw_device_data *hw_data = GET_HW_DATA(accel_dev);
struct adf_hw_csr_ops *csr_ops = GET_CSR_OPS(accel_dev);
void __iomem *csr_misc = adf_get_pmisc_base(accel_dev);
void __iomem *csr_etr = adf_get_etr_base(accel_dev);
u32 int_col_ctl, int_col_mask, int_col_en;
u32 e_stat, intsrc;
u64 wait_us;
int ret;
if (timeout_ms < 0)
return -EINVAL;
int_col_ctl = csr_ops->read_csr_int_col_ctl(csr_etr, bank_idx);
int_col_mask = csr_ops->get_int_col_ctl_enable_mask();
if (!(int_col_ctl & int_col_mask))
return 0;
int_col_en = csr_ops->read_csr_int_col_en(csr_etr, bank_idx);
int_col_en &= BIT(ADF_WQM_CSR_RP_IDX_RX);
e_stat = csr_ops->read_csr_e_stat(csr_etr, bank_idx);
if (!(~e_stat & int_col_en))
return 0;
wait_us = 2 * ((int_col_ctl & ~int_col_mask) << 8) * USEC_PER_SEC;
do_div(wait_us, hw_data->clock_frequency);
wait_us = min(wait_us, (u64)timeout_ms * USEC_PER_MSEC);
dev_dbg(&GET_DEV(accel_dev),
"wait for bank %d - coalesced timer expires in %llu us (max=%u ms estat=0x%x intcolen=0x%x)\n",
bank_idx, wait_us, timeout_ms, e_stat, int_col_en);
ret = read_poll_timeout(ADF_CSR_RD, intsrc, intsrc,
ADF_COALESCED_POLL_DELAY_US, wait_us, true,
csr_misc, ADF_WQM_CSR_RPINTSOU(bank_idx));
if (ret)
dev_warn(&GET_DEV(accel_dev),
"coalesced timer for bank %d expired (%llu us)\n",
bank_idx, wait_us);
return ret;
}
EXPORT_SYMBOL_GPL(adf_gen4_bank_quiesce_coal_timer);
static int drain_bank(void __iomem *csr, u32 bank_number, int timeout_us)
{
u32 status;
ADF_CSR_WR(csr, ADF_WQM_CSR_RPRESETCTL(bank_number),
ADF_WQM_CSR_RPRESETCTL_DRAIN);
return read_poll_timeout(ADF_CSR_RD, status,
status & ADF_WQM_CSR_RPRESETSTS_STATUS,
ADF_RPRESET_POLL_DELAY_US, timeout_us, true,
csr, ADF_WQM_CSR_RPRESETSTS(bank_number));
}
void adf_gen4_bank_drain_finish(struct adf_accel_dev *accel_dev,
u32 bank_number)
{
void __iomem *csr = adf_get_etr_base(accel_dev);
ADF_CSR_WR(csr, ADF_WQM_CSR_RPRESETSTS(bank_number),
ADF_WQM_CSR_RPRESETSTS_STATUS);
}
int adf_gen4_bank_drain_start(struct adf_accel_dev *accel_dev,
u32 bank_number, int timeout_us)
{
void __iomem *csr = adf_get_etr_base(accel_dev);
int ret;
dev_dbg(&GET_DEV(accel_dev), "Drain bank %d\n", bank_number);
ret = drain_bank(csr, bank_number, timeout_us);
if (ret)
dev_err(&GET_DEV(accel_dev), "Bank drain failed (timeout)\n");
else
dev_dbg(&GET_DEV(accel_dev), "Bank drain successful\n");
return ret;
}
static void bank_state_save(struct adf_hw_csr_ops *ops, void __iomem *base,
u32 bank, struct bank_state *state, u32 num_rings)
{
u32 i;
state->ringstat0 = ops->read_csr_stat(base, bank);
state->ringuostat = ops->read_csr_uo_stat(base, bank);
state->ringestat = ops->read_csr_e_stat(base, bank);
state->ringnestat = ops->read_csr_ne_stat(base, bank);
state->ringnfstat = ops->read_csr_nf_stat(base, bank);
state->ringfstat = ops->read_csr_f_stat(base, bank);
state->ringcstat0 = ops->read_csr_c_stat(base, bank);
state->iaintflagen = ops->read_csr_int_en(base, bank);
state->iaintflagreg = ops->read_csr_int_flag(base, bank);
state->iaintflagsrcsel0 = ops->read_csr_int_srcsel(base, bank);
state->iaintcolen = ops->read_csr_int_col_en(base, bank);
state->iaintcolctl = ops->read_csr_int_col_ctl(base, bank);
state->iaintflagandcolen = ops->read_csr_int_flag_and_col(base, bank);
state->ringexpstat = ops->read_csr_exp_stat(base, bank);
state->ringexpintenable = ops->read_csr_exp_int_en(base, bank);
state->ringsrvarben = ops->read_csr_ring_srv_arb_en(base, bank);
for (i = 0; i < num_rings; i++) {
state->rings[i].head = ops->read_csr_ring_head(base, bank, i);
state->rings[i].tail = ops->read_csr_ring_tail(base, bank, i);
state->rings[i].config = ops->read_csr_ring_config(base, bank, i);
state->rings[i].base = ops->read_csr_ring_base(base, bank, i);
}
}
#define CHECK_STAT(op, expect_val, name, args...) \
({ \
u32 __expect_val = (expect_val); \
u32 actual_val = op(args); \
(__expect_val == actual_val) ? 0 : \
(pr_err("QAT: Fail to restore %s register. Expected 0x%x, actual 0x%x\n", \
name, __expect_val, actual_val), -EINVAL); \
})
static int bank_state_restore(struct adf_hw_csr_ops *ops, void __iomem *base,
u32 bank, struct bank_state *state, u32 num_rings,
int tx_rx_gap)
{
u32 val, tmp_val, i;
int ret;
for (i = 0; i < num_rings; i++)
ops->write_csr_ring_base(base, bank, i, state->rings[i].base);
for (i = 0; i < num_rings; i++)
ops->write_csr_ring_config(base, bank, i, state->rings[i].config);
for (i = 0; i < num_rings / 2; i++) {
int tx = i * (tx_rx_gap + 1);
int rx = tx + tx_rx_gap;
ops->write_csr_ring_head(base, bank, tx, state->rings[tx].head);
ops->write_csr_ring_tail(base, bank, tx, state->rings[tx].tail);
/*
* The TX ring head needs to be updated again to make sure that
* the HW will not consider the ring as full when it is empty
* and the correct state flags are set to match the recovered state.
*/
if (state->ringestat & BIT(tx)) {
val = ops->read_csr_int_srcsel(base, bank);
val |= ADF_RP_INT_SRC_SEL_F_RISE_MASK;
ops->write_csr_int_srcsel_w_val(base, bank, val);
ops->write_csr_ring_head(base, bank, tx, state->rings[tx].head);
}
ops->write_csr_ring_tail(base, bank, rx, state->rings[rx].tail);
val = ops->read_csr_int_srcsel(base, bank);
val |= ADF_RP_INT_SRC_SEL_F_RISE_MASK << ADF_RP_INT_SRC_SEL_RANGE_WIDTH;
ops->write_csr_int_srcsel_w_val(base, bank, val);
ops->write_csr_ring_head(base, bank, rx, state->rings[rx].head);
val = ops->read_csr_int_srcsel(base, bank);
val |= ADF_RP_INT_SRC_SEL_F_FALL_MASK << ADF_RP_INT_SRC_SEL_RANGE_WIDTH;
ops->write_csr_int_srcsel_w_val(base, bank, val);
/*
* The RX ring tail needs to be updated again to make sure that
* the HW will not consider the ring as empty when it is full
* and the correct state flags are set to match the recovered state.
*/
if (state->ringfstat & BIT(rx))
ops->write_csr_ring_tail(base, bank, rx, state->rings[rx].tail);
}
ops->write_csr_int_flag_and_col(base, bank, state->iaintflagandcolen);
ops->write_csr_int_en(base, bank, state->iaintflagen);
ops->write_csr_int_col_en(base, bank, state->iaintcolen);
ops->write_csr_int_srcsel_w_val(base, bank, state->iaintflagsrcsel0);
ops->write_csr_exp_int_en(base, bank, state->ringexpintenable);
ops->write_csr_int_col_ctl(base, bank, state->iaintcolctl);
ops->write_csr_ring_srv_arb_en(base, bank, state->ringsrvarben);
/* Check that all ring statuses match the saved state. */
ret = CHECK_STAT(ops->read_csr_stat, state->ringstat0, "ringstat",
base, bank);
if (ret)
return ret;
ret = CHECK_STAT(ops->read_csr_e_stat, state->ringestat, "ringestat",
base, bank);
if (ret)
return ret;
ret = CHECK_STAT(ops->read_csr_ne_stat, state->ringnestat, "ringnestat",
base, bank);
if (ret)
return ret;
ret = CHECK_STAT(ops->read_csr_nf_stat, state->ringnfstat, "ringnfstat",
base, bank);
if (ret)
return ret;
ret = CHECK_STAT(ops->read_csr_f_stat, state->ringfstat, "ringfstat",
base, bank);
if (ret)
return ret;
ret = CHECK_STAT(ops->read_csr_c_stat, state->ringcstat0, "ringcstat",
base, bank);
if (ret)
return ret;
tmp_val = ops->read_csr_exp_stat(base, bank);
val = state->ringexpstat;
if (tmp_val && !val) {
pr_err("QAT: Bank was restored with exception: 0x%x\n", val);
return -EINVAL;
}
return 0;
}
int adf_gen4_bank_state_save(struct adf_accel_dev *accel_dev, u32 bank_number,
struct bank_state *state)
{
struct adf_hw_device_data *hw_data = GET_HW_DATA(accel_dev);
struct adf_hw_csr_ops *csr_ops = GET_CSR_OPS(accel_dev);
void __iomem *csr_base = adf_get_etr_base(accel_dev);
if (bank_number >= hw_data->num_banks || !state)
return -EINVAL;
dev_dbg(&GET_DEV(accel_dev), "Saving state of bank %d\n", bank_number);
bank_state_save(csr_ops, csr_base, bank_number, state,
hw_data->num_rings_per_bank);
return 0;
}
EXPORT_SYMBOL_GPL(adf_gen4_bank_state_save);
int adf_gen4_bank_state_restore(struct adf_accel_dev *accel_dev, u32 bank_number,
struct bank_state *state)
{
struct adf_hw_device_data *hw_data = GET_HW_DATA(accel_dev);
struct adf_hw_csr_ops *csr_ops = GET_CSR_OPS(accel_dev);
void __iomem *csr_base = adf_get_etr_base(accel_dev);
int ret;
if (bank_number >= hw_data->num_banks || !state)
return -EINVAL;
dev_dbg(&GET_DEV(accel_dev), "Restoring state of bank %d\n", bank_number);
ret = bank_state_restore(csr_ops, csr_base, bank_number, state,
hw_data->num_rings_per_bank, hw_data->tx_rx_gap);
if (ret)
dev_err(&GET_DEV(accel_dev),
"Unable to restore state of bank %d\n", bank_number);
return ret;
}
EXPORT_SYMBOL_GPL(adf_gen4_bank_state_restore);
/* SPDX-License-Identifier: (BSD-3-Clause OR GPL-2.0-only) */ /* SPDX-License-Identifier: (BSD-3-Clause OR GPL-2.0-only) */
/* Copyright(c) 2020 Intel Corporation */ /* Copyright(c) 2020 Intel Corporation */
#ifndef ADF_GEN4_HW_CSR_DATA_H_ #ifndef ADF_GEN4_HW_DATA_H_
#define ADF_GEN4_HW_CSR_DATA_H_ #define ADF_GEN4_HW_DATA_H_
#include <linux/units.h> #include <linux/units.h>
...@@ -54,95 +54,6 @@ ...@@ -54,95 +54,6 @@
#define ADF_GEN4_ADMINMSGLR_OFFSET 0x500578 #define ADF_GEN4_ADMINMSGLR_OFFSET 0x500578
#define ADF_GEN4_MAILBOX_BASE_OFFSET 0x600970 #define ADF_GEN4_MAILBOX_BASE_OFFSET 0x600970
/* Transport access */
#define ADF_BANK_INT_SRC_SEL_MASK 0x44UL
#define ADF_RING_CSR_RING_CONFIG 0x1000
#define ADF_RING_CSR_RING_LBASE 0x1040
#define ADF_RING_CSR_RING_UBASE 0x1080
#define ADF_RING_CSR_RING_HEAD 0x0C0
#define ADF_RING_CSR_RING_TAIL 0x100
#define ADF_RING_CSR_E_STAT 0x14C
#define ADF_RING_CSR_INT_FLAG 0x170
#define ADF_RING_CSR_INT_SRCSEL 0x174
#define ADF_RING_CSR_INT_COL_CTL 0x180
#define ADF_RING_CSR_INT_FLAG_AND_COL 0x184
#define ADF_RING_CSR_INT_COL_CTL_ENABLE 0x80000000
#define ADF_RING_CSR_INT_COL_EN 0x17C
#define ADF_RING_CSR_ADDR_OFFSET 0x100000
#define ADF_RING_BUNDLE_SIZE 0x2000
#define BUILD_RING_BASE_ADDR(addr, size) \
((((addr) >> 6) & (GENMASK_ULL(63, 0) << (size))) << 6)
#define READ_CSR_RING_HEAD(csr_base_addr, bank, ring) \
ADF_CSR_RD((csr_base_addr) + ADF_RING_CSR_ADDR_OFFSET, \
ADF_RING_BUNDLE_SIZE * (bank) + \
ADF_RING_CSR_RING_HEAD + ((ring) << 2))
#define READ_CSR_RING_TAIL(csr_base_addr, bank, ring) \
ADF_CSR_RD((csr_base_addr) + ADF_RING_CSR_ADDR_OFFSET, \
ADF_RING_BUNDLE_SIZE * (bank) + \
ADF_RING_CSR_RING_TAIL + ((ring) << 2))
#define READ_CSR_E_STAT(csr_base_addr, bank) \
ADF_CSR_RD((csr_base_addr) + ADF_RING_CSR_ADDR_OFFSET, \
ADF_RING_BUNDLE_SIZE * (bank) + ADF_RING_CSR_E_STAT)
#define WRITE_CSR_RING_CONFIG(csr_base_addr, bank, ring, value) \
ADF_CSR_WR((csr_base_addr) + ADF_RING_CSR_ADDR_OFFSET, \
ADF_RING_BUNDLE_SIZE * (bank) + \
ADF_RING_CSR_RING_CONFIG + ((ring) << 2), value)
#define WRITE_CSR_RING_BASE(csr_base_addr, bank, ring, value) \
do { \
void __iomem *_csr_base_addr = csr_base_addr; \
u32 _bank = bank; \
u32 _ring = ring; \
dma_addr_t _value = value; \
u32 l_base = 0, u_base = 0; \
l_base = lower_32_bits(_value); \
u_base = upper_32_bits(_value); \
ADF_CSR_WR((_csr_base_addr) + ADF_RING_CSR_ADDR_OFFSET, \
ADF_RING_BUNDLE_SIZE * (_bank) + \
ADF_RING_CSR_RING_LBASE + ((_ring) << 2), l_base); \
ADF_CSR_WR((_csr_base_addr) + ADF_RING_CSR_ADDR_OFFSET, \
ADF_RING_BUNDLE_SIZE * (_bank) + \
ADF_RING_CSR_RING_UBASE + ((_ring) << 2), u_base); \
} while (0)
#define WRITE_CSR_RING_HEAD(csr_base_addr, bank, ring, value) \
ADF_CSR_WR((csr_base_addr) + ADF_RING_CSR_ADDR_OFFSET, \
ADF_RING_BUNDLE_SIZE * (bank) + \
ADF_RING_CSR_RING_HEAD + ((ring) << 2), value)
#define WRITE_CSR_RING_TAIL(csr_base_addr, bank, ring, value) \
ADF_CSR_WR((csr_base_addr) + ADF_RING_CSR_ADDR_OFFSET, \
ADF_RING_BUNDLE_SIZE * (bank) + \
ADF_RING_CSR_RING_TAIL + ((ring) << 2), value)
#define WRITE_CSR_INT_FLAG(csr_base_addr, bank, value) \
ADF_CSR_WR((csr_base_addr) + ADF_RING_CSR_ADDR_OFFSET, \
ADF_RING_BUNDLE_SIZE * (bank) + \
ADF_RING_CSR_INT_FLAG, (value))
#define WRITE_CSR_INT_SRCSEL(csr_base_addr, bank) \
ADF_CSR_WR((csr_base_addr) + ADF_RING_CSR_ADDR_OFFSET, \
ADF_RING_BUNDLE_SIZE * (bank) + \
ADF_RING_CSR_INT_SRCSEL, ADF_BANK_INT_SRC_SEL_MASK)
#define WRITE_CSR_INT_COL_EN(csr_base_addr, bank, value) \
ADF_CSR_WR((csr_base_addr) + ADF_RING_CSR_ADDR_OFFSET, \
ADF_RING_BUNDLE_SIZE * (bank) + \
ADF_RING_CSR_INT_COL_EN, (value))
#define WRITE_CSR_INT_COL_CTL(csr_base_addr, bank, value) \
ADF_CSR_WR((csr_base_addr) + ADF_RING_CSR_ADDR_OFFSET, \
ADF_RING_BUNDLE_SIZE * (bank) + \
ADF_RING_CSR_INT_COL_CTL, \
ADF_RING_CSR_INT_COL_CTL_ENABLE | (value))
#define WRITE_CSR_INT_FLAG_AND_COL(csr_base_addr, bank, value) \
ADF_CSR_WR((csr_base_addr) + ADF_RING_CSR_ADDR_OFFSET, \
ADF_RING_BUNDLE_SIZE * (bank) + \
ADF_RING_CSR_INT_FLAG_AND_COL, (value))
/* Arbiter configuration */
#define ADF_RING_CSR_RING_SRV_ARB_EN 0x19C
#define WRITE_CSR_RING_SRV_ARB_EN(csr_base_addr, bank, value) \
ADF_CSR_WR((csr_base_addr) + ADF_RING_CSR_ADDR_OFFSET, \
ADF_RING_BUNDLE_SIZE * (bank) + \
ADF_RING_CSR_RING_SRV_ARB_EN, (value))
/* Default ring mapping */ /* Default ring mapping */
#define ADF_GEN4_DEFAULT_RING_TO_SRV_MAP \ #define ADF_GEN4_DEFAULT_RING_TO_SRV_MAP \
(ASYM << ADF_CFG_SERV_RING_PAIR_0_SHIFT | \ (ASYM << ADF_CFG_SERV_RING_PAIR_0_SHIFT | \
...@@ -166,10 +77,20 @@ do { \ ...@@ -166,10 +77,20 @@ do { \
#define ADF_RPRESET_POLL_TIMEOUT_US (5 * USEC_PER_SEC) #define ADF_RPRESET_POLL_TIMEOUT_US (5 * USEC_PER_SEC)
#define ADF_RPRESET_POLL_DELAY_US 20 #define ADF_RPRESET_POLL_DELAY_US 20
#define ADF_WQM_CSR_RPRESETCTL_RESET BIT(0) #define ADF_WQM_CSR_RPRESETCTL_RESET BIT(0)
#define ADF_WQM_CSR_RPRESETCTL_DRAIN BIT(2)
#define ADF_WQM_CSR_RPRESETCTL(bank) (0x6000 + ((bank) << 3)) #define ADF_WQM_CSR_RPRESETCTL(bank) (0x6000 + ((bank) << 3))
#define ADF_WQM_CSR_RPRESETSTS_STATUS BIT(0) #define ADF_WQM_CSR_RPRESETSTS_STATUS BIT(0)
#define ADF_WQM_CSR_RPRESETSTS(bank) (ADF_WQM_CSR_RPRESETCTL(bank) + 4) #define ADF_WQM_CSR_RPRESETSTS(bank) (ADF_WQM_CSR_RPRESETCTL(bank) + 4)
/* Ring interrupt */
#define ADF_RP_INT_SRC_SEL_F_RISE_MASK BIT(2)
#define ADF_RP_INT_SRC_SEL_F_FALL_MASK GENMASK(2, 0)
#define ADF_RP_INT_SRC_SEL_RANGE_WIDTH 4
#define ADF_COALESCED_POLL_TIMEOUT_US (1 * USEC_PER_SEC)
#define ADF_COALESCED_POLL_DELAY_US 1000
#define ADF_WQM_CSR_RPINTSOU(bank) (0x200000 + ((bank) << 12))
#define ADF_WQM_CSR_RP_IDX_RX 1
/* Error source registers */ /* Error source registers */
#define ADF_GEN4_ERRSOU0 (0x41A200) #define ADF_GEN4_ERRSOU0 (0x41A200)
#define ADF_GEN4_ERRSOU1 (0x41A204) #define ADF_GEN4_ERRSOU1 (0x41A204)
...@@ -197,6 +118,19 @@ do { \ ...@@ -197,6 +118,19 @@ do { \
/* Arbiter threads mask with error value */ /* Arbiter threads mask with error value */
#define ADF_GEN4_ENA_THD_MASK_ERROR GENMASK(ADF_NUM_THREADS_PER_AE, 0) #define ADF_GEN4_ENA_THD_MASK_ERROR GENMASK(ADF_NUM_THREADS_PER_AE, 0)
/* PF2VM communication channel */
#define ADF_GEN4_PF2VM_OFFSET(i) (0x40B010 + (i) * 0x20)
#define ADF_GEN4_VM2PF_OFFSET(i) (0x40B014 + (i) * 0x20)
#define ADF_GEN4_VINTMSKPF2VM_OFFSET(i) (0x40B00C + (i) * 0x20)
#define ADF_GEN4_VINTSOUPF2VM_OFFSET(i) (0x40B008 + (i) * 0x20)
#define ADF_GEN4_VINTMSK_OFFSET(i) (0x40B004 + (i) * 0x20)
#define ADF_GEN4_VINTSOU_OFFSET(i) (0x40B000 + (i) * 0x20)
struct adf_gen4_vfmig {
struct adf_mstate_mgr *mstate_mgr;
bool bank_stopped[ADF_GEN4_NUM_BANKS_PER_VF];
};
void adf_gen4_set_ssm_wdtimer(struct adf_accel_dev *accel_dev); void adf_gen4_set_ssm_wdtimer(struct adf_accel_dev *accel_dev);
enum icp_qat_gen4_slice_mask { enum icp_qat_gen4_slice_mask {
...@@ -230,11 +164,20 @@ u32 adf_gen4_get_num_aes(struct adf_hw_device_data *self); ...@@ -230,11 +164,20 @@ u32 adf_gen4_get_num_aes(struct adf_hw_device_data *self);
enum dev_sku_info adf_gen4_get_sku(struct adf_hw_device_data *self); enum dev_sku_info adf_gen4_get_sku(struct adf_hw_device_data *self);
u32 adf_gen4_get_sram_bar_id(struct adf_hw_device_data *self); u32 adf_gen4_get_sram_bar_id(struct adf_hw_device_data *self);
int adf_gen4_init_device(struct adf_accel_dev *accel_dev); int adf_gen4_init_device(struct adf_accel_dev *accel_dev);
void adf_gen4_init_hw_csr_ops(struct adf_hw_csr_ops *csr_ops);
int adf_gen4_ring_pair_reset(struct adf_accel_dev *accel_dev, u32 bank_number); int adf_gen4_ring_pair_reset(struct adf_accel_dev *accel_dev, u32 bank_number);
void adf_gen4_set_msix_default_rttable(struct adf_accel_dev *accel_dev); void adf_gen4_set_msix_default_rttable(struct adf_accel_dev *accel_dev);
void adf_gen4_set_ssm_wdtimer(struct adf_accel_dev *accel_dev); void adf_gen4_set_ssm_wdtimer(struct adf_accel_dev *accel_dev);
int adf_gen4_init_thd2arb_map(struct adf_accel_dev *accel_dev); int adf_gen4_init_thd2arb_map(struct adf_accel_dev *accel_dev);
u16 adf_gen4_get_ring_to_svc_map(struct adf_accel_dev *accel_dev); u16 adf_gen4_get_ring_to_svc_map(struct adf_accel_dev *accel_dev);
int adf_gen4_bank_quiesce_coal_timer(struct adf_accel_dev *accel_dev,
u32 bank_idx, int timeout_ms);
int adf_gen4_bank_drain_start(struct adf_accel_dev *accel_dev,
u32 bank_number, int timeout_us);
void adf_gen4_bank_drain_finish(struct adf_accel_dev *accel_dev,
u32 bank_number);
int adf_gen4_bank_state_save(struct adf_accel_dev *accel_dev, u32 bank_number,
struct bank_state *state);
int adf_gen4_bank_state_restore(struct adf_accel_dev *accel_dev,
u32 bank_number, struct bank_state *state);
#endif #endif
...@@ -6,12 +6,10 @@ ...@@ -6,12 +6,10 @@
#include "adf_accel_devices.h" #include "adf_accel_devices.h"
#include "adf_common_drv.h" #include "adf_common_drv.h"
#include "adf_gen4_pfvf.h" #include "adf_gen4_pfvf.h"
#include "adf_gen4_hw_data.h"
#include "adf_pfvf_pf_proto.h" #include "adf_pfvf_pf_proto.h"
#include "adf_pfvf_utils.h" #include "adf_pfvf_utils.h"
#define ADF_4XXX_PF2VM_OFFSET(i) (0x40B010 + ((i) * 0x20))
#define ADF_4XXX_VM2PF_OFFSET(i) (0x40B014 + ((i) * 0x20))
/* VF2PF interrupt source registers */ /* VF2PF interrupt source registers */
#define ADF_4XXX_VM2PF_SOU 0x41A180 #define ADF_4XXX_VM2PF_SOU 0x41A180
#define ADF_4XXX_VM2PF_MSK 0x41A1C0 #define ADF_4XXX_VM2PF_MSK 0x41A1C0
...@@ -29,12 +27,12 @@ static const struct pfvf_csr_format csr_gen4_fmt = { ...@@ -29,12 +27,12 @@ static const struct pfvf_csr_format csr_gen4_fmt = {
static u32 adf_gen4_pf_get_pf2vf_offset(u32 i) static u32 adf_gen4_pf_get_pf2vf_offset(u32 i)
{ {
return ADF_4XXX_PF2VM_OFFSET(i); return ADF_GEN4_PF2VM_OFFSET(i);
} }
static u32 adf_gen4_pf_get_vf2pf_offset(u32 i) static u32 adf_gen4_pf_get_vf2pf_offset(u32 i)
{ {
return ADF_4XXX_VM2PF_OFFSET(i); return ADF_GEN4_VM2PF_OFFSET(i);
} }
static void adf_gen4_enable_vf2pf_interrupts(void __iomem *pmisc_addr, u32 vf_mask) static void adf_gen4_enable_vf2pf_interrupts(void __iomem *pmisc_addr, u32 vf_mask)
......
// SPDX-License-Identifier: GPL-2.0-only
/* Copyright(c) 2024 Intel Corporation */
#include <linux/delay.h>
#include <linux/dev_printk.h>
#include <linux/kernel.h>
#include <linux/slab.h>
#include <linux/string.h>
#include <linux/types.h>
#include <asm/errno.h>
#include "adf_accel_devices.h"
#include "adf_common_drv.h"
#include "adf_gen4_hw_data.h"
#include "adf_gen4_pfvf.h"
#include "adf_pfvf_utils.h"
#include "adf_mstate_mgr.h"
#include "adf_gen4_vf_mig.h"
#define ADF_GEN4_VF_MSTATE_SIZE 4096
#define ADF_GEN4_PFVF_RSP_TIMEOUT_US 5000
static int adf_gen4_vfmig_save_setup(struct qat_mig_dev *mdev);
static int adf_gen4_vfmig_load_setup(struct qat_mig_dev *mdev, int len);
static int adf_gen4_vfmig_init_device(struct qat_mig_dev *mdev)
{
u8 *state;
state = kmalloc(ADF_GEN4_VF_MSTATE_SIZE, GFP_KERNEL);
if (!state)
return -ENOMEM;
mdev->state = state;
mdev->state_size = ADF_GEN4_VF_MSTATE_SIZE;
mdev->setup_size = 0;
mdev->remote_setup_size = 0;
return 0;
}
static void adf_gen4_vfmig_cleanup_device(struct qat_mig_dev *mdev)
{
kfree(mdev->state);
mdev->state = NULL;
}
static void adf_gen4_vfmig_reset_device(struct qat_mig_dev *mdev)
{
mdev->setup_size = 0;
mdev->remote_setup_size = 0;
}
static int adf_gen4_vfmig_open_device(struct qat_mig_dev *mdev)
{
struct adf_accel_dev *accel_dev = mdev->parent_accel_dev;
struct adf_accel_vf_info *vf_info;
struct adf_gen4_vfmig *vfmig;
vf_info = &accel_dev->pf.vf_info[mdev->vf_id];
vfmig = kzalloc(sizeof(*vfmig), GFP_KERNEL);
if (!vfmig)
return -ENOMEM;
vfmig->mstate_mgr = adf_mstate_mgr_new(mdev->state, mdev->state_size);
if (!vfmig->mstate_mgr) {
kfree(vfmig);
return -ENOMEM;
}
vf_info->mig_priv = vfmig;
mdev->setup_size = 0;
mdev->remote_setup_size = 0;
return 0;
}
static void adf_gen4_vfmig_close_device(struct qat_mig_dev *mdev)
{
struct adf_accel_dev *accel_dev = mdev->parent_accel_dev;
struct adf_accel_vf_info *vf_info;
struct adf_gen4_vfmig *vfmig;
vf_info = &accel_dev->pf.vf_info[mdev->vf_id];
if (vf_info->mig_priv) {
vfmig = vf_info->mig_priv;
adf_mstate_mgr_destroy(vfmig->mstate_mgr);
kfree(vfmig);
vf_info->mig_priv = NULL;
}
}
static int adf_gen4_vfmig_suspend_device(struct qat_mig_dev *mdev)
{
struct adf_accel_dev *accel_dev = mdev->parent_accel_dev;
struct adf_hw_device_data *hw_data = accel_dev->hw_device;
struct adf_accel_vf_info *vf_info;
struct adf_gen4_vfmig *vf_mig;
u32 vf_nr = mdev->vf_id;
int ret, i;
vf_info = &accel_dev->pf.vf_info[vf_nr];
vf_mig = vf_info->mig_priv;
/* Stop all inflight jobs */
for (i = 0; i < hw_data->num_banks_per_vf; i++) {
u32 pf_bank_nr = i + vf_nr * hw_data->num_banks_per_vf;
ret = adf_gen4_bank_drain_start(accel_dev, pf_bank_nr,
ADF_RPRESET_POLL_TIMEOUT_US);
if (ret) {
dev_err(&GET_DEV(accel_dev),
"Failed to drain bank %d for vf_nr %d\n", i,
vf_nr);
return ret;
}
vf_mig->bank_stopped[i] = true;
adf_gen4_bank_quiesce_coal_timer(accel_dev, pf_bank_nr,
ADF_COALESCED_POLL_TIMEOUT_US);
}
return 0;
}
static int adf_gen4_vfmig_resume_device(struct qat_mig_dev *mdev)
{
struct adf_accel_dev *accel_dev = mdev->parent_accel_dev;
struct adf_hw_device_data *hw_data = accel_dev->hw_device;
struct adf_accel_vf_info *vf_info;
struct adf_gen4_vfmig *vf_mig;
u32 vf_nr = mdev->vf_id;
int i;
vf_info = &accel_dev->pf.vf_info[vf_nr];
vf_mig = vf_info->mig_priv;
for (i = 0; i < hw_data->num_banks_per_vf; i++) {
u32 pf_bank_nr = i + vf_nr * hw_data->num_banks_per_vf;
if (vf_mig->bank_stopped[i]) {
adf_gen4_bank_drain_finish(accel_dev, pf_bank_nr);
vf_mig->bank_stopped[i] = false;
}
}
return 0;
}
struct adf_vf_bank_info {
struct adf_accel_dev *accel_dev;
u32 vf_nr;
u32 bank_nr;
};
struct mig_user_sla {
enum adf_base_services srv;
u64 rp_mask;
u32 cir;
u32 pir;
};
static int adf_mstate_sla_check(struct adf_mstate_mgr *sub_mgr, u8 *src_buf,
u32 src_size, void *opaque)
{
struct adf_mstate_vreginfo _sinfo = { src_buf, src_size };
struct adf_mstate_vreginfo *sinfo = &_sinfo, *dinfo = opaque;
u32 src_sla_cnt = sinfo->size / sizeof(struct mig_user_sla);
u32 dst_sla_cnt = dinfo->size / sizeof(struct mig_user_sla);
struct mig_user_sla *src_slas = sinfo->addr;
struct mig_user_sla *dst_slas = dinfo->addr;
int i, j;
for (i = 0; i < src_sla_cnt; i++) {
for (j = 0; j < dst_sla_cnt; j++) {
if (src_slas[i].srv != dst_slas[j].srv ||
src_slas[i].rp_mask != dst_slas[j].rp_mask)
continue;
if (src_slas[i].cir > dst_slas[j].cir ||
src_slas[i].pir > dst_slas[j].pir) {
pr_err("QAT: DST VF rate limiting mismatch.\n");
return -EINVAL;
}
break;
}
if (j == dst_sla_cnt) {
pr_err("QAT: SRC VF rate limiting mismatch - SRC srv %d and rp_mask 0x%llx.\n",
src_slas[i].srv, src_slas[i].rp_mask);
return -EINVAL;
}
}
return 0;
}
static inline int adf_mstate_check_cap_size(u32 src_sz, u32 dst_sz, u32 max_sz)
{
if (src_sz > max_sz || dst_sz > max_sz)
return -EINVAL;
else
return 0;
}
static int adf_mstate_compatver_check(struct adf_mstate_mgr *sub_mgr,
u8 *src_buf, u32 src_sz, void *opaque)
{
struct adf_mstate_vreginfo *info = opaque;
u8 compat = 0;
u8 *pcompat;
if (src_sz != info->size) {
pr_debug("QAT: State mismatch (compat version size), current %u, expected %u\n",
src_sz, info->size);
return -EINVAL;
}
memcpy(info->addr, src_buf, info->size);
pcompat = info->addr;
if (*pcompat == 0) {
pr_warn("QAT: Unable to determine the version of VF\n");
return 0;
}
compat = adf_vf_compat_checker(*pcompat);
if (compat == ADF_PF2VF_VF_INCOMPATIBLE) {
pr_debug("QAT: SRC VF driver (ver=%u) is incompatible with DST PF driver (ver=%u)\n",
*pcompat, ADF_PFVF_COMPAT_THIS_VERSION);
return -EINVAL;
}
if (compat == ADF_PF2VF_VF_COMPAT_UNKNOWN)
pr_debug("QAT: SRC VF driver (ver=%u) is newer than DST PF driver (ver=%u)\n",
*pcompat, ADF_PFVF_COMPAT_THIS_VERSION);
return 0;
}
/*
* adf_mstate_capmask_compare() - compare QAT device capability mask
* @sinfo: Pointer to source capability info
* @dinfo: Pointer to target capability info
*
* This function compares the capability mask between source VF and target VF
*
* Returns: 0 if target capability mask is identical to source capability mask,
* 1 if target mask can represent all the capabilities represented by source mask,
* -1 if target mask can't represent all the capabilities represented by source
* mask.
*/
static int adf_mstate_capmask_compare(struct adf_mstate_vreginfo *sinfo,
struct adf_mstate_vreginfo *dinfo)
{
u64 src = 0, dst = 0;
if (adf_mstate_check_cap_size(sinfo->size, dinfo->size, sizeof(u64))) {
pr_debug("QAT: Unexpected capability size %u %u %zu\n",
sinfo->size, dinfo->size, sizeof(u64));
return -1;
}
memcpy(&src, sinfo->addr, sinfo->size);
memcpy(&dst, dinfo->addr, dinfo->size);
pr_debug("QAT: Check cap compatibility of cap %llu %llu\n", src, dst);
if (src == dst)
return 0;
if ((src | dst) == dst)
return 1;
return -1;
}
static int adf_mstate_capmask_superset(struct adf_mstate_mgr *sub_mgr, u8 *buf,
u32 size, void *opa)
{
struct adf_mstate_vreginfo sinfo = { buf, size };
if (adf_mstate_capmask_compare(&sinfo, opa) >= 0)
return 0;
return -EINVAL;
}
static int adf_mstate_capmask_equal(struct adf_mstate_mgr *sub_mgr, u8 *buf,
u32 size, void *opa)
{
struct adf_mstate_vreginfo sinfo = { buf, size };
if (adf_mstate_capmask_compare(&sinfo, opa) == 0)
return 0;
return -EINVAL;
}
static int adf_mstate_set_vreg(struct adf_mstate_mgr *sub_mgr, u8 *buf,
u32 size, void *opa)
{
struct adf_mstate_vreginfo *info = opa;
if (size != info->size) {
pr_debug("QAT: Unexpected cap size %u %u\n", size, info->size);
return -EINVAL;
}
memcpy(info->addr, buf, info->size);
return 0;
}
static u32 adf_gen4_vfmig_get_slas(struct adf_accel_dev *accel_dev, u32 vf_nr,
struct mig_user_sla *pmig_slas)
{
struct adf_hw_device_data *hw_data = accel_dev->hw_device;
struct adf_rl *rl_data = accel_dev->rate_limiting;
struct rl_sla **sla_type_arr = NULL;
u64 rp_mask, rp_index;
u32 max_num_sla;
u32 sla_cnt = 0;
int i, j;
if (!accel_dev->rate_limiting)
return 0;
rp_index = vf_nr * hw_data->num_banks_per_vf;
max_num_sla = adf_rl_get_sla_arr_of_type(rl_data, RL_LEAF, &sla_type_arr);
for (i = 0; i < max_num_sla; i++) {
if (!sla_type_arr[i])
continue;
rp_mask = 0;
for (j = 0; j < sla_type_arr[i]->ring_pairs_cnt; j++)
rp_mask |= BIT(sla_type_arr[i]->ring_pairs_ids[j]);
if (rp_mask & GENMASK_ULL(rp_index + 3, rp_index)) {
pmig_slas->rp_mask = rp_mask;
pmig_slas->cir = sla_type_arr[i]->cir;
pmig_slas->pir = sla_type_arr[i]->pir;
pmig_slas->srv = sla_type_arr[i]->srv;
pmig_slas++;
sla_cnt++;
}
}
return sla_cnt;
}
static int adf_gen4_vfmig_load_etr_regs(struct adf_mstate_mgr *sub_mgr,
u8 *state, u32 size, void *opa)
{
struct adf_vf_bank_info *vf_bank_info = opa;
struct adf_accel_dev *accel_dev = vf_bank_info->accel_dev;
struct adf_hw_device_data *hw_data = accel_dev->hw_device;
u32 pf_bank_nr;
int ret;
pf_bank_nr = vf_bank_info->bank_nr + vf_bank_info->vf_nr * hw_data->num_banks_per_vf;
ret = hw_data->bank_state_restore(accel_dev, pf_bank_nr,
(struct bank_state *)state);
if (ret) {
dev_err(&GET_DEV(accel_dev),
"Failed to load regs for vf%d bank%d\n",
vf_bank_info->vf_nr, vf_bank_info->bank_nr);
return ret;
}
return 0;
}
static int adf_gen4_vfmig_load_etr_bank(struct adf_accel_dev *accel_dev,
u32 vf_nr, u32 bank_nr,
struct adf_mstate_mgr *mstate_mgr)
{
struct adf_vf_bank_info vf_bank_info = {accel_dev, vf_nr, bank_nr};
struct adf_mstate_sect_h *subsec, *l2_subsec;
struct adf_mstate_mgr sub_sects_mgr;
char bank_ids[ADF_MSTATE_ID_LEN];
snprintf(bank_ids, sizeof(bank_ids), ADF_MSTATE_BANK_IDX_IDS "%x", bank_nr);
subsec = adf_mstate_sect_lookup(mstate_mgr, bank_ids, NULL, NULL);
if (!subsec) {
dev_err(&GET_DEV(accel_dev),
"Failed to lookup sec %s for vf%d bank%d\n",
ADF_MSTATE_BANK_IDX_IDS, vf_nr, bank_nr);
return -EINVAL;
}
adf_mstate_mgr_init_from_psect(&sub_sects_mgr, subsec);
l2_subsec = adf_mstate_sect_lookup(&sub_sects_mgr, ADF_MSTATE_ETR_REGS_IDS,
adf_gen4_vfmig_load_etr_regs,
&vf_bank_info);
if (!l2_subsec) {
dev_err(&GET_DEV(accel_dev),
"Failed to add sec %s for vf%d bank%d\n",
ADF_MSTATE_ETR_REGS_IDS, vf_nr, bank_nr);
return -EINVAL;
}
return 0;
}
static int adf_gen4_vfmig_load_etr(struct adf_accel_dev *accel_dev, u32 vf_nr)
{
struct adf_accel_vf_info *vf_info = &accel_dev->pf.vf_info[vf_nr];
struct adf_hw_device_data *hw_data = accel_dev->hw_device;
struct adf_gen4_vfmig *vfmig = vf_info->mig_priv;
struct adf_mstate_mgr *mstate_mgr = vfmig->mstate_mgr;
struct adf_mstate_mgr sub_sects_mgr;
struct adf_mstate_sect_h *subsec;
int ret, i;
subsec = adf_mstate_sect_lookup(mstate_mgr, ADF_MSTATE_ETRB_IDS, NULL,
NULL);
if (!subsec) {
dev_err(&GET_DEV(accel_dev), "Failed to load sec %s\n",
ADF_MSTATE_ETRB_IDS);
return -EINVAL;
}
adf_mstate_mgr_init_from_psect(&sub_sects_mgr, subsec);
for (i = 0; i < hw_data->num_banks_per_vf; i++) {
ret = adf_gen4_vfmig_load_etr_bank(accel_dev, vf_nr, i,
&sub_sects_mgr);
if (ret)
return ret;
}
return 0;
}
static int adf_gen4_vfmig_load_misc(struct adf_accel_dev *accel_dev, u32 vf_nr)
{
struct adf_accel_vf_info *vf_info = &accel_dev->pf.vf_info[vf_nr];
struct adf_gen4_vfmig *vfmig = vf_info->mig_priv;
void __iomem *csr = adf_get_pmisc_base(accel_dev);
struct adf_mstate_mgr *mstate_mgr = vfmig->mstate_mgr;
struct adf_mstate_sect_h *subsec, *l2_subsec;
struct adf_mstate_mgr sub_sects_mgr;
struct {
char *id;
u64 ofs;
} misc_states[] = {
{ADF_MSTATE_VINTMSK_IDS, ADF_GEN4_VINTMSK_OFFSET(vf_nr)},
{ADF_MSTATE_VINTMSK_PF2VM_IDS, ADF_GEN4_VINTMSKPF2VM_OFFSET(vf_nr)},
{ADF_MSTATE_PF2VM_IDS, ADF_GEN4_PF2VM_OFFSET(vf_nr)},
{ADF_MSTATE_VM2PF_IDS, ADF_GEN4_VM2PF_OFFSET(vf_nr)},
};
int i;
subsec = adf_mstate_sect_lookup(mstate_mgr, ADF_MSTATE_MISCB_IDS, NULL,
NULL);
if (!subsec) {
dev_err(&GET_DEV(accel_dev), "Failed to load sec %s\n",
ADF_MSTATE_MISCB_IDS);
return -EINVAL;
}
adf_mstate_mgr_init_from_psect(&sub_sects_mgr, subsec);
for (i = 0; i < ARRAY_SIZE(misc_states); i++) {
struct adf_mstate_vreginfo info;
u32 regv;
info.addr = &regv;
info.size = sizeof(regv);
l2_subsec = adf_mstate_sect_lookup(&sub_sects_mgr,
misc_states[i].id,
adf_mstate_set_vreg,
&info);
if (!l2_subsec) {
dev_err(&GET_DEV(accel_dev),
"Failed to load sec %s\n", misc_states[i].id);
return -EINVAL;
}
ADF_CSR_WR(csr, misc_states[i].ofs, regv);
}
return 0;
}
static int adf_gen4_vfmig_load_generic(struct adf_accel_dev *accel_dev, u32 vf_nr)
{
struct adf_accel_vf_info *vf_info = &accel_dev->pf.vf_info[vf_nr];
struct mig_user_sla dst_slas[RL_RP_CNT_PER_LEAF_MAX] = { };
struct adf_gen4_vfmig *vfmig = vf_info->mig_priv;
struct adf_mstate_mgr *mstate_mgr = vfmig->mstate_mgr;
struct adf_mstate_sect_h *subsec, *l2_subsec;
struct adf_mstate_mgr sub_sects_mgr;
u32 dst_sla_cnt;
struct {
char *id;
int (*action)(struct adf_mstate_mgr *sub_mgr, u8 *buf, u32 size, void *opa);
struct adf_mstate_vreginfo info;
} gen_states[] = {
{ADF_MSTATE_IOV_INIT_IDS, adf_mstate_set_vreg,
{&vf_info->init, sizeof(vf_info->init)}},
{ADF_MSTATE_COMPAT_VER_IDS, adf_mstate_compatver_check,
{&vf_info->vf_compat_ver, sizeof(vf_info->vf_compat_ver)}},
{ADF_MSTATE_SLA_IDS, adf_mstate_sla_check, {dst_slas, 0}},
};
int i;
subsec = adf_mstate_sect_lookup(mstate_mgr, ADF_MSTATE_GEN_IDS, NULL, NULL);
if (!subsec) {
dev_err(&GET_DEV(accel_dev), "Failed to load sec %s\n",
ADF_MSTATE_GEN_IDS);
return -EINVAL;
}
adf_mstate_mgr_init_from_psect(&sub_sects_mgr, subsec);
for (i = 0; i < ARRAY_SIZE(gen_states); i++) {
if (gen_states[i].info.addr == dst_slas) {
dst_sla_cnt = adf_gen4_vfmig_get_slas(accel_dev, vf_nr, dst_slas);
gen_states[i].info.size = dst_sla_cnt * sizeof(struct mig_user_sla);
}
l2_subsec = adf_mstate_sect_lookup(&sub_sects_mgr,
gen_states[i].id,
gen_states[i].action,
&gen_states[i].info);
if (!l2_subsec) {
dev_err(&GET_DEV(accel_dev), "Failed to load sec %s\n",
gen_states[i].id);
return -EINVAL;
}
}
return 0;
}
static int adf_gen4_vfmig_load_config(struct adf_accel_dev *accel_dev, u32 vf_nr)
{
struct adf_accel_vf_info *vf_info = &accel_dev->pf.vf_info[vf_nr];
struct adf_hw_device_data *hw_data = accel_dev->hw_device;
struct adf_gen4_vfmig *vfmig = vf_info->mig_priv;
struct adf_mstate_mgr *mstate_mgr = vfmig->mstate_mgr;
struct adf_mstate_sect_h *subsec, *l2_subsec;
struct adf_mstate_mgr sub_sects_mgr;
struct {
char *id;
int (*action)(struct adf_mstate_mgr *sub_mgr, u8 *buf, u32 size, void *opa);
struct adf_mstate_vreginfo info;
} setups[] = {
{ADF_MSTATE_GEN_CAP_IDS, adf_mstate_capmask_superset,
{&hw_data->accel_capabilities_mask, sizeof(hw_data->accel_capabilities_mask)}},
{ADF_MSTATE_GEN_SVCMAP_IDS, adf_mstate_capmask_equal,
{&hw_data->ring_to_svc_map, sizeof(hw_data->ring_to_svc_map)}},
{ADF_MSTATE_GEN_EXTDC_IDS, adf_mstate_capmask_superset,
{&hw_data->extended_dc_capabilities, sizeof(hw_data->extended_dc_capabilities)}},
};
int i;
subsec = adf_mstate_sect_lookup(mstate_mgr, ADF_MSTATE_CONFIG_IDS, NULL, NULL);
if (!subsec) {
dev_err(&GET_DEV(accel_dev), "Failed to load sec %s\n",
ADF_MSTATE_CONFIG_IDS);
return -EINVAL;
}
adf_mstate_mgr_init_from_psect(&sub_sects_mgr, subsec);
for (i = 0; i < ARRAY_SIZE(setups); i++) {
l2_subsec = adf_mstate_sect_lookup(&sub_sects_mgr, setups[i].id,
setups[i].action, &setups[i].info);
if (!l2_subsec) {
dev_err(&GET_DEV(accel_dev), "Failed to load sec %s\n",
setups[i].id);
return -EINVAL;
}
}
return 0;
}
static int adf_gen4_vfmig_save_etr_regs(struct adf_mstate_mgr *subs, u8 *state,
u32 size, void *opa)
{
struct adf_vf_bank_info *vf_bank_info = opa;
struct adf_accel_dev *accel_dev = vf_bank_info->accel_dev;
struct adf_hw_device_data *hw_data = accel_dev->hw_device;
u32 pf_bank_nr;
int ret;
pf_bank_nr = vf_bank_info->bank_nr;
pf_bank_nr += vf_bank_info->vf_nr * hw_data->num_banks_per_vf;
ret = hw_data->bank_state_save(accel_dev, pf_bank_nr,
(struct bank_state *)state);
if (ret) {
dev_err(&GET_DEV(accel_dev),
"Failed to save regs for vf%d bank%d\n",
vf_bank_info->vf_nr, vf_bank_info->bank_nr);
return ret;
}
return sizeof(struct bank_state);
}
static int adf_gen4_vfmig_save_etr_bank(struct adf_accel_dev *accel_dev,
u32 vf_nr, u32 bank_nr,
struct adf_mstate_mgr *mstate_mgr)
{
struct adf_mstate_sect_h *subsec, *l2_subsec;
struct adf_vf_bank_info vf_bank_info;
struct adf_mstate_mgr sub_sects_mgr;
char bank_ids[ADF_MSTATE_ID_LEN];
snprintf(bank_ids, sizeof(bank_ids), ADF_MSTATE_BANK_IDX_IDS "%x", bank_nr);
subsec = adf_mstate_sect_add(mstate_mgr, bank_ids, NULL, NULL);
if (!subsec) {
dev_err(&GET_DEV(accel_dev),
"Failed to add sec %s for vf%d bank%d\n",
ADF_MSTATE_BANK_IDX_IDS, vf_nr, bank_nr);
return -EINVAL;
}
adf_mstate_mgr_init_from_parent(&sub_sects_mgr, mstate_mgr);
vf_bank_info.accel_dev = accel_dev;
vf_bank_info.vf_nr = vf_nr;
vf_bank_info.bank_nr = bank_nr;
l2_subsec = adf_mstate_sect_add(&sub_sects_mgr, ADF_MSTATE_ETR_REGS_IDS,
adf_gen4_vfmig_save_etr_regs,
&vf_bank_info);
if (!l2_subsec) {
dev_err(&GET_DEV(accel_dev),
"Failed to add sec %s for vf%d bank%d\n",
ADF_MSTATE_ETR_REGS_IDS, vf_nr, bank_nr);
return -EINVAL;
}
adf_mstate_sect_update(mstate_mgr, &sub_sects_mgr, subsec);
return 0;
}
static int adf_gen4_vfmig_save_etr(struct adf_accel_dev *accel_dev, u32 vf_nr)
{
struct adf_accel_vf_info *vf_info = &accel_dev->pf.vf_info[vf_nr];
struct adf_hw_device_data *hw_data = accel_dev->hw_device;
struct adf_gen4_vfmig *vfmig = vf_info->mig_priv;
struct adf_mstate_mgr *mstate_mgr = vfmig->mstate_mgr;
struct adf_mstate_mgr sub_sects_mgr;
struct adf_mstate_sect_h *subsec;
int ret, i;
subsec = adf_mstate_sect_add(mstate_mgr, ADF_MSTATE_ETRB_IDS, NULL, NULL);
if (!subsec) {
dev_err(&GET_DEV(accel_dev), "Failed to add sec %s\n",
ADF_MSTATE_ETRB_IDS);
return -EINVAL;
}
adf_mstate_mgr_init_from_parent(&sub_sects_mgr, mstate_mgr);
for (i = 0; i < hw_data->num_banks_per_vf; i++) {
ret = adf_gen4_vfmig_save_etr_bank(accel_dev, vf_nr, i,
&sub_sects_mgr);
if (ret)
return ret;
}
adf_mstate_sect_update(mstate_mgr, &sub_sects_mgr, subsec);
return 0;
}
static int adf_gen4_vfmig_save_misc(struct adf_accel_dev *accel_dev, u32 vf_nr)
{
struct adf_accel_vf_info *vf_info = &accel_dev->pf.vf_info[vf_nr];
struct adf_gen4_vfmig *vfmig = vf_info->mig_priv;
struct adf_mstate_mgr *mstate_mgr = vfmig->mstate_mgr;
void __iomem *csr = adf_get_pmisc_base(accel_dev);
struct adf_mstate_sect_h *subsec, *l2_subsec;
struct adf_mstate_mgr sub_sects_mgr;
struct {
char *id;
u64 offset;
} misc_states[] = {
{ADF_MSTATE_VINTSRC_IDS, ADF_GEN4_VINTSOU_OFFSET(vf_nr)},
{ADF_MSTATE_VINTMSK_IDS, ADF_GEN4_VINTMSK_OFFSET(vf_nr)},
{ADF_MSTATE_VINTSRC_PF2VM_IDS, ADF_GEN4_VINTSOUPF2VM_OFFSET(vf_nr)},
{ADF_MSTATE_VINTMSK_PF2VM_IDS, ADF_GEN4_VINTMSKPF2VM_OFFSET(vf_nr)},
{ADF_MSTATE_PF2VM_IDS, ADF_GEN4_PF2VM_OFFSET(vf_nr)},
{ADF_MSTATE_VM2PF_IDS, ADF_GEN4_VM2PF_OFFSET(vf_nr)},
};
ktime_t time_exp;
int i;
subsec = adf_mstate_sect_add(mstate_mgr, ADF_MSTATE_MISCB_IDS, NULL, NULL);
if (!subsec) {
dev_err(&GET_DEV(accel_dev), "Failed to add sec %s\n",
ADF_MSTATE_MISCB_IDS);
return -EINVAL;
}
time_exp = ktime_add_us(ktime_get(), ADF_GEN4_PFVF_RSP_TIMEOUT_US);
while (!mutex_trylock(&vf_info->pfvf_mig_lock)) {
if (ktime_after(ktime_get(), time_exp)) {
dev_err(&GET_DEV(accel_dev), "Failed to get pfvf mig lock\n");
return -ETIMEDOUT;
}
usleep_range(500, 1000);
}
adf_mstate_mgr_init_from_parent(&sub_sects_mgr, mstate_mgr);
for (i = 0; i < ARRAY_SIZE(misc_states); i++) {
struct adf_mstate_vreginfo info;
u32 regv;
info.addr = &regv;
info.size = sizeof(regv);
regv = ADF_CSR_RD(csr, misc_states[i].offset);
l2_subsec = adf_mstate_sect_add_vreg(&sub_sects_mgr,
misc_states[i].id,
&info);
if (!l2_subsec) {
dev_err(&GET_DEV(accel_dev), "Failed to add sec %s\n",
misc_states[i].id);
mutex_unlock(&vf_info->pfvf_mig_lock);
return -EINVAL;
}
}
mutex_unlock(&vf_info->pfvf_mig_lock);
adf_mstate_sect_update(mstate_mgr, &sub_sects_mgr, subsec);
return 0;
}
static int adf_gen4_vfmig_save_generic(struct adf_accel_dev *accel_dev, u32 vf_nr)
{
struct adf_accel_vf_info *vf_info = &accel_dev->pf.vf_info[vf_nr];
struct adf_gen4_vfmig *vfmig = vf_info->mig_priv;
struct adf_mstate_mgr *mstate_mgr = vfmig->mstate_mgr;
struct adf_mstate_mgr sub_sects_mgr;
struct adf_mstate_sect_h *subsec, *l2_subsec;
struct mig_user_sla src_slas[RL_RP_CNT_PER_LEAF_MAX] = { };
u32 src_sla_cnt;
struct {
char *id;
struct adf_mstate_vreginfo info;
} gen_states[] = {
{ADF_MSTATE_IOV_INIT_IDS,
{&vf_info->init, sizeof(vf_info->init)}},
{ADF_MSTATE_COMPAT_VER_IDS,
{&vf_info->vf_compat_ver, sizeof(vf_info->vf_compat_ver)}},
{ADF_MSTATE_SLA_IDS, {src_slas, 0}},
};
int i;
subsec = adf_mstate_sect_add(mstate_mgr, ADF_MSTATE_GEN_IDS, NULL, NULL);
if (!subsec) {
dev_err(&GET_DEV(accel_dev), "Failed to add sec %s\n",
ADF_MSTATE_GEN_IDS);
return -EINVAL;
}
adf_mstate_mgr_init_from_parent(&sub_sects_mgr, mstate_mgr);
for (i = 0; i < ARRAY_SIZE(gen_states); i++) {
if (gen_states[i].info.addr == src_slas) {
src_sla_cnt = adf_gen4_vfmig_get_slas(accel_dev, vf_nr, src_slas);
gen_states[i].info.size = src_sla_cnt * sizeof(struct mig_user_sla);
}
l2_subsec = adf_mstate_sect_add_vreg(&sub_sects_mgr,
gen_states[i].id,
&gen_states[i].info);
if (!l2_subsec) {
dev_err(&GET_DEV(accel_dev), "Failed to add sec %s\n",
gen_states[i].id);
return -EINVAL;
}
}
adf_mstate_sect_update(mstate_mgr, &sub_sects_mgr, subsec);
return 0;
}
static int adf_gen4_vfmig_save_config(struct adf_accel_dev *accel_dev, u32 vf_nr)
{
struct adf_accel_vf_info *vf_info = &accel_dev->pf.vf_info[vf_nr];
struct adf_hw_device_data *hw_data = accel_dev->hw_device;
struct adf_gen4_vfmig *vfmig = vf_info->mig_priv;
struct adf_mstate_mgr *mstate_mgr = vfmig->mstate_mgr;
struct adf_mstate_mgr sub_sects_mgr;
struct adf_mstate_sect_h *subsec, *l2_subsec;
struct {
char *id;
struct adf_mstate_vreginfo info;
} setups[] = {
{ADF_MSTATE_GEN_CAP_IDS,
{&hw_data->accel_capabilities_mask, sizeof(hw_data->accel_capabilities_mask)}},
{ADF_MSTATE_GEN_SVCMAP_IDS,
{&hw_data->ring_to_svc_map, sizeof(hw_data->ring_to_svc_map)}},
{ADF_MSTATE_GEN_EXTDC_IDS,
{&hw_data->extended_dc_capabilities, sizeof(hw_data->extended_dc_capabilities)}},
};
int i;
subsec = adf_mstate_sect_add(mstate_mgr, ADF_MSTATE_CONFIG_IDS, NULL, NULL);
if (!subsec) {
dev_err(&GET_DEV(accel_dev), "Failed to add sec %s\n",
ADF_MSTATE_CONFIG_IDS);
return -EINVAL;
}
adf_mstate_mgr_init_from_parent(&sub_sects_mgr, mstate_mgr);
for (i = 0; i < ARRAY_SIZE(setups); i++) {
l2_subsec = adf_mstate_sect_add_vreg(&sub_sects_mgr, setups[i].id,
&setups[i].info);
if (!l2_subsec) {
dev_err(&GET_DEV(accel_dev), "Failed to add sec %s\n",
setups[i].id);
return -EINVAL;
}
}
adf_mstate_sect_update(mstate_mgr, &sub_sects_mgr, subsec);
return 0;
}
static int adf_gen4_vfmig_save_state(struct qat_mig_dev *mdev)
{
struct adf_accel_dev *accel_dev = mdev->parent_accel_dev;
struct adf_accel_vf_info *vf_info;
struct adf_gen4_vfmig *vfmig;
u32 vf_nr = mdev->vf_id;
int ret;
vf_info = &accel_dev->pf.vf_info[vf_nr];
vfmig = vf_info->mig_priv;
ret = adf_gen4_vfmig_save_setup(mdev);
if (ret) {
dev_err(&GET_DEV(accel_dev),
"Failed to save setup for vf_nr %d\n", vf_nr);
return ret;
}
adf_mstate_mgr_init(vfmig->mstate_mgr, mdev->state + mdev->setup_size,
mdev->state_size - mdev->setup_size);
if (!adf_mstate_preamble_add(vfmig->mstate_mgr))
return -EINVAL;
ret = adf_gen4_vfmig_save_generic(accel_dev, vf_nr);
if (ret) {
dev_err(&GET_DEV(accel_dev),
"Failed to save generic state for vf_nr %d\n", vf_nr);
return ret;
}
ret = adf_gen4_vfmig_save_misc(accel_dev, vf_nr);
if (ret) {
dev_err(&GET_DEV(accel_dev),
"Failed to save misc bar state for vf_nr %d\n", vf_nr);
return ret;
}
ret = adf_gen4_vfmig_save_etr(accel_dev, vf_nr);
if (ret) {
dev_err(&GET_DEV(accel_dev),
"Failed to save etr bar state for vf_nr %d\n", vf_nr);
return ret;
}
adf_mstate_preamble_update(vfmig->mstate_mgr);
return 0;
}
static int adf_gen4_vfmig_load_state(struct qat_mig_dev *mdev)
{
struct adf_accel_dev *accel_dev = mdev->parent_accel_dev;
struct adf_accel_vf_info *vf_info;
struct adf_gen4_vfmig *vfmig;
u32 vf_nr = mdev->vf_id;
int ret;
vf_info = &accel_dev->pf.vf_info[vf_nr];
vfmig = vf_info->mig_priv;
ret = adf_gen4_vfmig_load_setup(mdev, mdev->state_size);
if (ret) {
dev_err(&GET_DEV(accel_dev), "Failed to load setup for vf_nr %d\n",
vf_nr);
return ret;
}
ret = adf_mstate_mgr_init_from_remote(vfmig->mstate_mgr,
mdev->state + mdev->remote_setup_size,
mdev->state_size - mdev->remote_setup_size,
NULL, NULL);
if (ret) {
dev_err(&GET_DEV(accel_dev), "Invalid state for vf_nr %d\n",
vf_nr);
return ret;
}
ret = adf_gen4_vfmig_load_generic(accel_dev, vf_nr);
if (ret) {
dev_err(&GET_DEV(accel_dev),
"Failed to load general state for vf_nr %d\n", vf_nr);
return ret;
}
ret = adf_gen4_vfmig_load_misc(accel_dev, vf_nr);
if (ret) {
dev_err(&GET_DEV(accel_dev),
"Failed to load misc bar state for vf_nr %d\n", vf_nr);
return ret;
}
ret = adf_gen4_vfmig_load_etr(accel_dev, vf_nr);
if (ret) {
dev_err(&GET_DEV(accel_dev),
"Failed to load etr bar state for vf_nr %d\n", vf_nr);
return ret;
}
return 0;
}
static int adf_gen4_vfmig_save_setup(struct qat_mig_dev *mdev)
{
struct adf_accel_dev *accel_dev = mdev->parent_accel_dev;
struct adf_accel_vf_info *vf_info;
struct adf_gen4_vfmig *vfmig;
u32 vf_nr = mdev->vf_id;
int ret;
vf_info = &accel_dev->pf.vf_info[vf_nr];
vfmig = vf_info->mig_priv;
if (mdev->setup_size)
return 0;
adf_mstate_mgr_init(vfmig->mstate_mgr, mdev->state, mdev->state_size);
if (!adf_mstate_preamble_add(vfmig->mstate_mgr))
return -EINVAL;
ret = adf_gen4_vfmig_save_config(accel_dev, mdev->vf_id);
if (ret)
return ret;
adf_mstate_preamble_update(vfmig->mstate_mgr);
mdev->setup_size = adf_mstate_state_size(vfmig->mstate_mgr);
return 0;
}
static int adf_gen4_vfmig_load_setup(struct qat_mig_dev *mdev, int len)
{
struct adf_accel_dev *accel_dev = mdev->parent_accel_dev;
struct adf_accel_vf_info *vf_info;
struct adf_gen4_vfmig *vfmig;
u32 vf_nr = mdev->vf_id;
u32 setup_size;
int ret;
vf_info = &accel_dev->pf.vf_info[vf_nr];
vfmig = vf_info->mig_priv;
if (mdev->remote_setup_size)
return 0;
if (len < sizeof(struct adf_mstate_preh))
return -EAGAIN;
adf_mstate_mgr_init(vfmig->mstate_mgr, mdev->state, mdev->state_size);
setup_size = adf_mstate_state_size_from_remote(vfmig->mstate_mgr);
if (setup_size > mdev->state_size)
return -EINVAL;
if (len < setup_size)
return -EAGAIN;
ret = adf_mstate_mgr_init_from_remote(vfmig->mstate_mgr, mdev->state,
setup_size, NULL, NULL);
if (ret) {
dev_err(&GET_DEV(accel_dev), "Invalide setup for vf_nr %d\n",
vf_nr);
return ret;
}
mdev->remote_setup_size = setup_size;
ret = adf_gen4_vfmig_load_config(accel_dev, vf_nr);
if (ret) {
dev_err(&GET_DEV(accel_dev),
"Failed to load config for vf_nr %d\n", vf_nr);
return ret;
}
return 0;
}
void adf_gen4_init_vf_mig_ops(struct qat_migdev_ops *vfmig_ops)
{
vfmig_ops->init = adf_gen4_vfmig_init_device;
vfmig_ops->cleanup = adf_gen4_vfmig_cleanup_device;
vfmig_ops->reset = adf_gen4_vfmig_reset_device;
vfmig_ops->open = adf_gen4_vfmig_open_device;
vfmig_ops->close = adf_gen4_vfmig_close_device;
vfmig_ops->suspend = adf_gen4_vfmig_suspend_device;
vfmig_ops->resume = adf_gen4_vfmig_resume_device;
vfmig_ops->save_state = adf_gen4_vfmig_save_state;
vfmig_ops->load_state = adf_gen4_vfmig_load_state;
vfmig_ops->load_setup = adf_gen4_vfmig_load_setup;
vfmig_ops->save_setup = adf_gen4_vfmig_save_setup;
}
EXPORT_SYMBOL_GPL(adf_gen4_init_vf_mig_ops);
/* SPDX-License-Identifier: GPL-2.0-only */
/* Copyright(c) 2024 Intel Corporation */
#ifndef ADF_GEN4_VF_MIG_H_
#define ADF_GEN4_VF_MIG_H_
#include "adf_accel_devices.h"
void adf_gen4_init_vf_mig_ops(struct qat_migdev_ops *vfmig_ops);
#endif
// SPDX-License-Identifier: GPL-2.0-only
/* Copyright(c) 2024 Intel Corporation */
#include <linux/slab.h>
#include <linux/types.h>
#include "adf_mstate_mgr.h"
#define ADF_MSTATE_MAGIC 0xADF5CAEA
#define ADF_MSTATE_VERSION 0x1
struct adf_mstate_sect_h {
u8 id[ADF_MSTATE_ID_LEN];
u32 size;
u32 sub_sects;
u8 state[];
};
u32 adf_mstate_state_size(struct adf_mstate_mgr *mgr)
{
return mgr->state - mgr->buf;
}
static inline u32 adf_mstate_avail_room(struct adf_mstate_mgr *mgr)
{
return mgr->buf + mgr->size - mgr->state;
}
void adf_mstate_mgr_init(struct adf_mstate_mgr *mgr, u8 *buf, u32 size)
{
mgr->buf = buf;
mgr->state = buf;
mgr->size = size;
mgr->n_sects = 0;
};
struct adf_mstate_mgr *adf_mstate_mgr_new(u8 *buf, u32 size)
{
struct adf_mstate_mgr *mgr;
mgr = kzalloc(sizeof(*mgr), GFP_KERNEL);
if (!mgr)
return NULL;
adf_mstate_mgr_init(mgr, buf, size);
return mgr;
}
void adf_mstate_mgr_destroy(struct adf_mstate_mgr *mgr)
{
kfree(mgr);
}
void adf_mstate_mgr_init_from_parent(struct adf_mstate_mgr *mgr,
struct adf_mstate_mgr *p_mgr)
{
adf_mstate_mgr_init(mgr, p_mgr->state,
p_mgr->size - adf_mstate_state_size(p_mgr));
}
void adf_mstate_mgr_init_from_psect(struct adf_mstate_mgr *mgr,
struct adf_mstate_sect_h *p_sect)
{
adf_mstate_mgr_init(mgr, p_sect->state, p_sect->size);
mgr->n_sects = p_sect->sub_sects;
}
static void adf_mstate_preamble_init(struct adf_mstate_preh *preamble)
{
preamble->magic = ADF_MSTATE_MAGIC;
preamble->version = ADF_MSTATE_VERSION;
preamble->preh_len = sizeof(*preamble);
preamble->size = 0;
preamble->n_sects = 0;
}
/* default preambles checker */
static int adf_mstate_preamble_def_checker(struct adf_mstate_preh *preamble,
void *opaque)
{
struct adf_mstate_mgr *mgr = opaque;
if (preamble->magic != ADF_MSTATE_MAGIC ||
preamble->version > ADF_MSTATE_VERSION ||
preamble->preh_len > mgr->size) {
pr_debug("QAT: LM - Invalid state (magic=%#x, version=%#x, hlen=%u), state_size=%u\n",
preamble->magic, preamble->version, preamble->preh_len,
mgr->size);
return -EINVAL;
}
return 0;
}
struct adf_mstate_preh *adf_mstate_preamble_add(struct adf_mstate_mgr *mgr)
{
struct adf_mstate_preh *pre = (struct adf_mstate_preh *)mgr->buf;
if (adf_mstate_avail_room(mgr) < sizeof(*pre)) {
pr_err("QAT: LM - Not enough space for preamble\n");
return NULL;
}
adf_mstate_preamble_init(pre);
mgr->state += pre->preh_len;
return pre;
}
int adf_mstate_preamble_update(struct adf_mstate_mgr *mgr)
{
struct adf_mstate_preh *preamble = (struct adf_mstate_preh *)mgr->buf;
preamble->size = adf_mstate_state_size(mgr) - preamble->preh_len;
preamble->n_sects = mgr->n_sects;
return 0;
}
static void adf_mstate_dump_sect(struct adf_mstate_sect_h *sect,
const char *prefix)
{
pr_debug("QAT: LM - %s QAT state section %s\n", prefix, sect->id);
print_hex_dump_debug("h-", DUMP_PREFIX_OFFSET, 16, 2, sect,
sizeof(*sect), true);
print_hex_dump_debug("s-", DUMP_PREFIX_OFFSET, 16, 2, sect->state,
sect->size, true);
}
static inline void __adf_mstate_sect_update(struct adf_mstate_mgr *mgr,
struct adf_mstate_sect_h *sect,
u32 size,
u32 n_subsects)
{
sect->size += size;
sect->sub_sects += n_subsects;
mgr->n_sects++;
mgr->state += sect->size;
adf_mstate_dump_sect(sect, "Add");
}
void adf_mstate_sect_update(struct adf_mstate_mgr *p_mgr,
struct adf_mstate_mgr *curr_mgr,
struct adf_mstate_sect_h *sect)
{
__adf_mstate_sect_update(p_mgr, sect, adf_mstate_state_size(curr_mgr),
curr_mgr->n_sects);
}
static struct adf_mstate_sect_h *adf_mstate_sect_add_header(struct adf_mstate_mgr *mgr,
const char *id)
{
struct adf_mstate_sect_h *sect = (struct adf_mstate_sect_h *)(mgr->state);
if (adf_mstate_avail_room(mgr) < sizeof(*sect)) {
pr_debug("QAT: LM - Not enough space for header of QAT state sect %s\n", id);
return NULL;
}
strscpy(sect->id, id, sizeof(sect->id));
sect->size = 0;
sect->sub_sects = 0;
mgr->state += sizeof(*sect);
return sect;
}
struct adf_mstate_sect_h *adf_mstate_sect_add_vreg(struct adf_mstate_mgr *mgr,
const char *id,
struct adf_mstate_vreginfo *info)
{
struct adf_mstate_sect_h *sect;
sect = adf_mstate_sect_add_header(mgr, id);
if (!sect)
return NULL;
if (adf_mstate_avail_room(mgr) < info->size) {
pr_debug("QAT: LM - Not enough space for QAT state sect %s, requires %u\n",
id, info->size);
return NULL;
}
memcpy(sect->state, info->addr, info->size);
__adf_mstate_sect_update(mgr, sect, info->size, 0);
return sect;
}
struct adf_mstate_sect_h *adf_mstate_sect_add(struct adf_mstate_mgr *mgr,
const char *id,
adf_mstate_populate populate,
void *opaque)
{
struct adf_mstate_mgr sub_sects_mgr;
struct adf_mstate_sect_h *sect;
int avail_room, size;
sect = adf_mstate_sect_add_header(mgr, id);
if (!sect)
return NULL;
if (!populate)
return sect;
avail_room = adf_mstate_avail_room(mgr);
adf_mstate_mgr_init_from_parent(&sub_sects_mgr, mgr);
size = (*populate)(&sub_sects_mgr, sect->state, avail_room, opaque);
if (size < 0)
return NULL;
size += adf_mstate_state_size(&sub_sects_mgr);
if (avail_room < size) {
pr_debug("QAT: LM - Not enough space for QAT state sect %s, requires %u\n",
id, size);
return NULL;
}
__adf_mstate_sect_update(mgr, sect, size, sub_sects_mgr.n_sects);
return sect;
}
static int adf_mstate_sect_validate(struct adf_mstate_mgr *mgr)
{
struct adf_mstate_sect_h *start = (struct adf_mstate_sect_h *)mgr->state;
struct adf_mstate_sect_h *sect = start;
u64 end;
int i;
end = (uintptr_t)mgr->buf + mgr->size;
for (i = 0; i < mgr->n_sects; i++) {
uintptr_t s_start = (uintptr_t)sect->state;
uintptr_t s_end = s_start + sect->size;
if (s_end < s_start || s_end > end) {
pr_debug("QAT: LM - Corrupted state section (index=%u, size=%u) in state_mgr (size=%u, secs=%u)\n",
i, sect->size, mgr->size, mgr->n_sects);
return -EINVAL;
}
sect = (struct adf_mstate_sect_h *)s_end;
}
pr_debug("QAT: LM - Scanned section (last child=%s, size=%lu) in state_mgr (size=%u, secs=%u)\n",
start->id, sizeof(struct adf_mstate_sect_h) * (ulong)(sect - start),
mgr->size, mgr->n_sects);
return 0;
}
u32 adf_mstate_state_size_from_remote(struct adf_mstate_mgr *mgr)
{
struct adf_mstate_preh *preh = (struct adf_mstate_preh *)mgr->buf;
return preh->preh_len + preh->size;
}
int adf_mstate_mgr_init_from_remote(struct adf_mstate_mgr *mgr, u8 *buf, u32 size,
adf_mstate_preamble_checker pre_checker,
void *opaque)
{
struct adf_mstate_preh *pre;
int ret;
adf_mstate_mgr_init(mgr, buf, size);
pre = (struct adf_mstate_preh *)(mgr->buf);
pr_debug("QAT: LM - Dump state preambles\n");
print_hex_dump_debug("", DUMP_PREFIX_OFFSET, 16, 2, pre, pre->preh_len, 0);
if (pre_checker)
ret = (*pre_checker)(pre, opaque);
else
ret = adf_mstate_preamble_def_checker(pre, mgr);
if (ret)
return ret;
mgr->state = mgr->buf + pre->preh_len;
mgr->n_sects = pre->n_sects;
return adf_mstate_sect_validate(mgr);
}
struct adf_mstate_sect_h *adf_mstate_sect_lookup(struct adf_mstate_mgr *mgr,
const char *id,
adf_mstate_action action,
void *opaque)
{
struct adf_mstate_sect_h *sect = (struct adf_mstate_sect_h *)mgr->state;
struct adf_mstate_mgr sub_sects_mgr;
int i, ret;
for (i = 0; i < mgr->n_sects; i++) {
if (!strncmp(sect->id, id, sizeof(sect->id)))
goto found;
sect = (struct adf_mstate_sect_h *)(sect->state + sect->size);
}
return NULL;
found:
adf_mstate_dump_sect(sect, "Found");
adf_mstate_mgr_init_from_psect(&sub_sects_mgr, sect);
if (sect->sub_sects && adf_mstate_sect_validate(&sub_sects_mgr))
return NULL;
if (!action)
return sect;
ret = (*action)(&sub_sects_mgr, sect->state, sect->size, opaque);
if (ret)
return NULL;
return sect;
}
/* SPDX-License-Identifier: GPL-2.0-only */
/* Copyright(c) 2024 Intel Corporation */
#ifndef ADF_MSTATE_MGR_H
#define ADF_MSTATE_MGR_H
#define ADF_MSTATE_ID_LEN 8
#define ADF_MSTATE_ETRB_IDS "ETRBAR"
#define ADF_MSTATE_MISCB_IDS "MISCBAR"
#define ADF_MSTATE_EXTB_IDS "EXTBAR"
#define ADF_MSTATE_GEN_IDS "GENER"
#define ADF_MSTATE_CONFIG_IDS "CONFIG"
#define ADF_MSTATE_SECTION_NUM 5
#define ADF_MSTATE_BANK_IDX_IDS "bnk"
#define ADF_MSTATE_ETR_REGS_IDS "mregs"
#define ADF_MSTATE_VINTSRC_IDS "visrc"
#define ADF_MSTATE_VINTMSK_IDS "vimsk"
#define ADF_MSTATE_SLA_IDS "sla"
#define ADF_MSTATE_IOV_INIT_IDS "iovinit"
#define ADF_MSTATE_COMPAT_VER_IDS "compver"
#define ADF_MSTATE_GEN_CAP_IDS "gencap"
#define ADF_MSTATE_GEN_SVCMAP_IDS "svcmap"
#define ADF_MSTATE_GEN_EXTDC_IDS "extdc"
#define ADF_MSTATE_VINTSRC_PF2VM_IDS "vispv"
#define ADF_MSTATE_VINTMSK_PF2VM_IDS "vimpv"
#define ADF_MSTATE_VM2PF_IDS "vm2pf"
#define ADF_MSTATE_PF2VM_IDS "pf2vm"
struct adf_mstate_mgr {
u8 *buf;
u8 *state;
u32 size;
u32 n_sects;
};
struct adf_mstate_preh {
u32 magic;
u32 version;
u16 preh_len;
u16 n_sects;
u32 size;
};
struct adf_mstate_vreginfo {
void *addr;
u32 size;
};
struct adf_mstate_sect_h;
typedef int (*adf_mstate_preamble_checker)(struct adf_mstate_preh *preamble, void *opa);
typedef int (*adf_mstate_populate)(struct adf_mstate_mgr *sub_mgr, u8 *buf,
u32 size, void *opa);
typedef int (*adf_mstate_action)(struct adf_mstate_mgr *sub_mgr, u8 *buf, u32 size,
void *opa);
struct adf_mstate_mgr *adf_mstate_mgr_new(u8 *buf, u32 size);
void adf_mstate_mgr_destroy(struct adf_mstate_mgr *mgr);
void adf_mstate_mgr_init(struct adf_mstate_mgr *mgr, u8 *buf, u32 size);
void adf_mstate_mgr_init_from_parent(struct adf_mstate_mgr *mgr,
struct adf_mstate_mgr *p_mgr);
void adf_mstate_mgr_init_from_psect(struct adf_mstate_mgr *mgr,
struct adf_mstate_sect_h *p_sect);
int adf_mstate_mgr_init_from_remote(struct adf_mstate_mgr *mgr,
u8 *buf, u32 size,
adf_mstate_preamble_checker checker,
void *opaque);
struct adf_mstate_preh *adf_mstate_preamble_add(struct adf_mstate_mgr *mgr);
int adf_mstate_preamble_update(struct adf_mstate_mgr *mgr);
u32 adf_mstate_state_size(struct adf_mstate_mgr *mgr);
u32 adf_mstate_state_size_from_remote(struct adf_mstate_mgr *mgr);
void adf_mstate_sect_update(struct adf_mstate_mgr *p_mgr,
struct adf_mstate_mgr *curr_mgr,
struct adf_mstate_sect_h *sect);
struct adf_mstate_sect_h *adf_mstate_sect_add_vreg(struct adf_mstate_mgr *mgr,
const char *id,
struct adf_mstate_vreginfo *info);
struct adf_mstate_sect_h *adf_mstate_sect_add(struct adf_mstate_mgr *mgr,
const char *id,
adf_mstate_populate populate,
void *opaque);
struct adf_mstate_sect_h *adf_mstate_sect_lookup(struct adf_mstate_mgr *mgr,
const char *id,
adf_mstate_action action,
void *opaque);
#endif
...@@ -242,13 +242,7 @@ static int adf_handle_vf2pf_msg(struct adf_accel_dev *accel_dev, u8 vf_nr, ...@@ -242,13 +242,7 @@ static int adf_handle_vf2pf_msg(struct adf_accel_dev *accel_dev, u8 vf_nr,
"VersionRequest received from VF%d (vers %d) to PF (vers %d)\n", "VersionRequest received from VF%d (vers %d) to PF (vers %d)\n",
vf_nr, vf_compat_ver, ADF_PFVF_COMPAT_THIS_VERSION); vf_nr, vf_compat_ver, ADF_PFVF_COMPAT_THIS_VERSION);
if (vf_compat_ver == 0) compat = adf_vf_compat_checker(vf_compat_ver);
compat = ADF_PF2VF_VF_INCOMPATIBLE;
else if (vf_compat_ver <= ADF_PFVF_COMPAT_THIS_VERSION)
compat = ADF_PF2VF_VF_COMPATIBLE;
else
compat = ADF_PF2VF_VF_COMPAT_UNKNOWN;
vf_info->vf_compat_ver = vf_compat_ver; vf_info->vf_compat_ver = vf_compat_ver;
resp->type = ADF_PF2VF_MSGTYPE_VERSION_RESP; resp->type = ADF_PF2VF_MSGTYPE_VERSION_RESP;
......
...@@ -28,4 +28,15 @@ u32 adf_pfvf_csr_msg_of(struct adf_accel_dev *accel_dev, struct pfvf_message msg ...@@ -28,4 +28,15 @@ u32 adf_pfvf_csr_msg_of(struct adf_accel_dev *accel_dev, struct pfvf_message msg
struct pfvf_message adf_pfvf_message_of(struct adf_accel_dev *accel_dev, u32 raw_msg, struct pfvf_message adf_pfvf_message_of(struct adf_accel_dev *accel_dev, u32 raw_msg,
const struct pfvf_csr_format *fmt); const struct pfvf_csr_format *fmt);
static inline u8 adf_vf_compat_checker(u8 vf_compat_ver)
{
if (vf_compat_ver == 0)
return ADF_PF2VF_VF_INCOMPATIBLE;
if (vf_compat_ver <= ADF_PFVF_COMPAT_THIS_VERSION)
return ADF_PF2VF_VF_COMPATIBLE;
return ADF_PF2VF_VF_COMPAT_UNKNOWN;
}
#endif /* ADF_PFVF_UTILS_H */ #endif /* ADF_PFVF_UTILS_H */
...@@ -183,14 +183,14 @@ static enum adf_cfg_service_type srv_to_cfg_svc_type(enum adf_base_services rl_s ...@@ -183,14 +183,14 @@ static enum adf_cfg_service_type srv_to_cfg_svc_type(enum adf_base_services rl_s
} }
/** /**
* get_sla_arr_of_type() - Returns a pointer to SLA type specific array * adf_rl_get_sla_arr_of_type() - Returns a pointer to SLA type specific array
* @rl_data: pointer to ratelimiting data * @rl_data: pointer to ratelimiting data
* @type: SLA type * @type: SLA type
* @sla_arr: pointer to variable where requested pointer will be stored * @sla_arr: pointer to variable where requested pointer will be stored
* *
* Return: Max number of elements allowed for the returned array * Return: Max number of elements allowed for the returned array
*/ */
static u32 get_sla_arr_of_type(struct adf_rl *rl_data, enum rl_node_type type, u32 adf_rl_get_sla_arr_of_type(struct adf_rl *rl_data, enum rl_node_type type,
struct rl_sla ***sla_arr) struct rl_sla ***sla_arr)
{ {
switch (type) { switch (type) {
...@@ -778,7 +778,7 @@ static void clear_sla(struct adf_rl *rl_data, struct rl_sla *sla) ...@@ -778,7 +778,7 @@ static void clear_sla(struct adf_rl *rl_data, struct rl_sla *sla)
rp_in_use[sla->ring_pairs_ids[i]] = false; rp_in_use[sla->ring_pairs_ids[i]] = false;
update_budget(sla, old_cir, true); update_budget(sla, old_cir, true);
get_sla_arr_of_type(rl_data, sla->type, &sla_type_arr); adf_rl_get_sla_arr_of_type(rl_data, sla->type, &sla_type_arr);
assign_node_to_parent(rl_data->accel_dev, sla, true); assign_node_to_parent(rl_data->accel_dev, sla, true);
adf_rl_send_admin_delete_msg(rl_data->accel_dev, node_id, sla->type); adf_rl_send_admin_delete_msg(rl_data->accel_dev, node_id, sla->type);
mark_rps_usage(sla, rl_data->rp_in_use, false); mark_rps_usage(sla, rl_data->rp_in_use, false);
...@@ -875,7 +875,7 @@ static int add_update_sla(struct adf_accel_dev *accel_dev, ...@@ -875,7 +875,7 @@ static int add_update_sla(struct adf_accel_dev *accel_dev,
if (!is_update) { if (!is_update) {
mark_rps_usage(sla, rl_data->rp_in_use, true); mark_rps_usage(sla, rl_data->rp_in_use, true);
get_sla_arr_of_type(rl_data, sla->type, &sla_type_arr); adf_rl_get_sla_arr_of_type(rl_data, sla->type, &sla_type_arr);
sla_type_arr[sla->node_id] = sla; sla_type_arr[sla->node_id] = sla;
rl_data->sla[sla->sla_id] = sla; rl_data->sla[sla->sla_id] = sla;
} }
...@@ -1065,7 +1065,7 @@ void adf_rl_remove_sla_all(struct adf_accel_dev *accel_dev, bool incl_default) ...@@ -1065,7 +1065,7 @@ void adf_rl_remove_sla_all(struct adf_accel_dev *accel_dev, bool incl_default)
/* Unregister and remove all SLAs */ /* Unregister and remove all SLAs */
for (j = RL_LEAF; j >= end_type; j--) { for (j = RL_LEAF; j >= end_type; j--) {
max_id = get_sla_arr_of_type(rl_data, j, &sla_type_arr); max_id = adf_rl_get_sla_arr_of_type(rl_data, j, &sla_type_arr);
for (i = 0; i < max_id; i++) { for (i = 0; i < max_id; i++) {
if (!sla_type_arr[i]) if (!sla_type_arr[i])
......
...@@ -151,6 +151,8 @@ struct rl_sla { ...@@ -151,6 +151,8 @@ struct rl_sla {
u16 ring_pairs_cnt; u16 ring_pairs_cnt;
}; };
u32 adf_rl_get_sla_arr_of_type(struct adf_rl *rl_data, enum rl_node_type type,
struct rl_sla ***sla_arr);
int adf_rl_add_sla(struct adf_accel_dev *accel_dev, int adf_rl_add_sla(struct adf_accel_dev *accel_dev,
struct adf_rl_sla_input_data *sla_in); struct adf_rl_sla_input_data *sla_in);
int adf_rl_update_sla(struct adf_accel_dev *accel_dev, int adf_rl_update_sla(struct adf_accel_dev *accel_dev,
......
...@@ -26,10 +26,12 @@ static void adf_iov_send_resp(struct work_struct *work) ...@@ -26,10 +26,12 @@ static void adf_iov_send_resp(struct work_struct *work)
u32 vf_nr = vf_info->vf_nr; u32 vf_nr = vf_info->vf_nr;
bool ret; bool ret;
mutex_lock(&vf_info->pfvf_mig_lock);
ret = adf_recv_and_handle_vf2pf_msg(accel_dev, vf_nr); ret = adf_recv_and_handle_vf2pf_msg(accel_dev, vf_nr);
if (ret) if (ret)
/* re-enable interrupt on PF from this VF */ /* re-enable interrupt on PF from this VF */
adf_enable_vf2pf_interrupts(accel_dev, 1 << vf_nr); adf_enable_vf2pf_interrupts(accel_dev, 1 << vf_nr);
mutex_unlock(&vf_info->pfvf_mig_lock);
kfree(pf2vf_resp); kfree(pf2vf_resp);
} }
...@@ -62,6 +64,7 @@ static int adf_enable_sriov(struct adf_accel_dev *accel_dev) ...@@ -62,6 +64,7 @@ static int adf_enable_sriov(struct adf_accel_dev *accel_dev)
vf_info->vf_nr = i; vf_info->vf_nr = i;
mutex_init(&vf_info->pf2vf_lock); mutex_init(&vf_info->pf2vf_lock);
mutex_init(&vf_info->pfvf_mig_lock);
ratelimit_state_init(&vf_info->vf2pf_ratelimit, ratelimit_state_init(&vf_info->vf2pf_ratelimit,
ADF_VF2PF_RATELIMIT_INTERVAL, ADF_VF2PF_RATELIMIT_INTERVAL,
ADF_VF2PF_RATELIMIT_BURST); ADF_VF2PF_RATELIMIT_BURST);
...@@ -138,8 +141,10 @@ void adf_disable_sriov(struct adf_accel_dev *accel_dev) ...@@ -138,8 +141,10 @@ void adf_disable_sriov(struct adf_accel_dev *accel_dev)
if (hw_data->configure_iov_threads) if (hw_data->configure_iov_threads)
hw_data->configure_iov_threads(accel_dev, false); hw_data->configure_iov_threads(accel_dev, false);
for (i = 0, vf = accel_dev->pf.vf_info; i < totalvfs; i++, vf++) for (i = 0, vf = accel_dev->pf.vf_info; i < totalvfs; i++, vf++) {
mutex_destroy(&vf->pf2vf_lock); mutex_destroy(&vf->pf2vf_lock);
mutex_destroy(&vf->pfvf_mig_lock);
}
if (!test_bit(ADF_STATUS_RESTARTING, &accel_dev->status)) { if (!test_bit(ADF_STATUS_RESTARTING, &accel_dev->status)) {
kfree(accel_dev->pf.vf_info); kfree(accel_dev->pf.vf_info);
......
...@@ -474,7 +474,6 @@ static int adf_init_bank(struct adf_accel_dev *accel_dev, ...@@ -474,7 +474,6 @@ static int adf_init_bank(struct adf_accel_dev *accel_dev,
int adf_init_etr_data(struct adf_accel_dev *accel_dev) int adf_init_etr_data(struct adf_accel_dev *accel_dev)
{ {
struct adf_etr_data *etr_data; struct adf_etr_data *etr_data;
struct adf_hw_device_data *hw_data = accel_dev->hw_device;
void __iomem *csr_addr; void __iomem *csr_addr;
u32 size; u32 size;
u32 num_banks = 0; u32 num_banks = 0;
...@@ -495,8 +494,7 @@ int adf_init_etr_data(struct adf_accel_dev *accel_dev) ...@@ -495,8 +494,7 @@ int adf_init_etr_data(struct adf_accel_dev *accel_dev)
} }
accel_dev->transport = etr_data; accel_dev->transport = etr_data;
i = hw_data->get_etr_bar_id(hw_data); csr_addr = adf_get_etr_base(accel_dev);
csr_addr = accel_dev->accel_pci_dev.pci_bars[i].virt_addr;
/* accel_dev->debugfs_dir should always be non-NULL here */ /* accel_dev->debugfs_dir should always be non-NULL here */
etr_data->debug = debugfs_create_dir("transport", etr_data->debug = debugfs_create_dir("transport",
......
// SPDX-License-Identifier: GPL-2.0-only
/* Copyright(c) 2024 Intel Corporation */
#include <linux/dev_printk.h>
#include <linux/export.h>
#include <linux/pci.h>
#include <linux/types.h>
#include <linux/qat/qat_mig_dev.h>
#include "adf_accel_devices.h"
#include "adf_common_drv.h"
struct qat_mig_dev *qat_vfmig_create(struct pci_dev *pdev, int vf_id)
{
struct adf_accel_dev *accel_dev;
struct qat_migdev_ops *ops;
struct qat_mig_dev *mdev;
accel_dev = adf_devmgr_pci_to_accel_dev(pdev);
if (!accel_dev)
return ERR_PTR(-ENODEV);
ops = GET_VFMIG_OPS(accel_dev);
if (!ops || !ops->init || !ops->cleanup || !ops->reset || !ops->open ||
!ops->close || !ops->suspend || !ops->resume || !ops->save_state ||
!ops->load_state || !ops->save_setup || !ops->load_setup)
return ERR_PTR(-EINVAL);
mdev = kmalloc(sizeof(*mdev), GFP_KERNEL);
if (!mdev)
return ERR_PTR(-ENOMEM);
mdev->vf_id = vf_id;
mdev->parent_accel_dev = accel_dev;
return mdev;
}
EXPORT_SYMBOL_GPL(qat_vfmig_create);
int qat_vfmig_init(struct qat_mig_dev *mdev)
{
struct adf_accel_dev *accel_dev = mdev->parent_accel_dev;
return GET_VFMIG_OPS(accel_dev)->init(mdev);
}
EXPORT_SYMBOL_GPL(qat_vfmig_init);
void qat_vfmig_cleanup(struct qat_mig_dev *mdev)
{
struct adf_accel_dev *accel_dev = mdev->parent_accel_dev;
return GET_VFMIG_OPS(accel_dev)->cleanup(mdev);
}
EXPORT_SYMBOL_GPL(qat_vfmig_cleanup);
void qat_vfmig_reset(struct qat_mig_dev *mdev)
{
struct adf_accel_dev *accel_dev = mdev->parent_accel_dev;
return GET_VFMIG_OPS(accel_dev)->reset(mdev);
}
EXPORT_SYMBOL_GPL(qat_vfmig_reset);
int qat_vfmig_open(struct qat_mig_dev *mdev)
{
struct adf_accel_dev *accel_dev = mdev->parent_accel_dev;
return GET_VFMIG_OPS(accel_dev)->open(mdev);
}
EXPORT_SYMBOL_GPL(qat_vfmig_open);
void qat_vfmig_close(struct qat_mig_dev *mdev)
{
struct adf_accel_dev *accel_dev = mdev->parent_accel_dev;
GET_VFMIG_OPS(accel_dev)->close(mdev);
}
EXPORT_SYMBOL_GPL(qat_vfmig_close);
int qat_vfmig_suspend(struct qat_mig_dev *mdev)
{
struct adf_accel_dev *accel_dev = mdev->parent_accel_dev;
return GET_VFMIG_OPS(accel_dev)->suspend(mdev);
}
EXPORT_SYMBOL_GPL(qat_vfmig_suspend);
int qat_vfmig_resume(struct qat_mig_dev *mdev)
{
struct adf_accel_dev *accel_dev = mdev->parent_accel_dev;
return GET_VFMIG_OPS(accel_dev)->resume(mdev);
}
EXPORT_SYMBOL_GPL(qat_vfmig_resume);
int qat_vfmig_save_state(struct qat_mig_dev *mdev)
{
struct adf_accel_dev *accel_dev = mdev->parent_accel_dev;
return GET_VFMIG_OPS(accel_dev)->save_state(mdev);
}
EXPORT_SYMBOL_GPL(qat_vfmig_save_state);
int qat_vfmig_save_setup(struct qat_mig_dev *mdev)
{
struct adf_accel_dev *accel_dev = mdev->parent_accel_dev;
return GET_VFMIG_OPS(accel_dev)->save_setup(mdev);
}
EXPORT_SYMBOL_GPL(qat_vfmig_save_setup);
int qat_vfmig_load_state(struct qat_mig_dev *mdev)
{
struct adf_accel_dev *accel_dev = mdev->parent_accel_dev;
return GET_VFMIG_OPS(accel_dev)->load_state(mdev);
}
EXPORT_SYMBOL_GPL(qat_vfmig_load_state);
int qat_vfmig_load_setup(struct qat_mig_dev *mdev, int size)
{
struct adf_accel_dev *accel_dev = mdev->parent_accel_dev;
return GET_VFMIG_OPS(accel_dev)->load_setup(mdev, size);
}
EXPORT_SYMBOL_GPL(qat_vfmig_load_setup);
void qat_vfmig_destroy(struct qat_mig_dev *mdev)
{
kfree(mdev);
}
EXPORT_SYMBOL_GPL(qat_vfmig_destroy);
...@@ -5,6 +5,7 @@ ...@@ -5,6 +5,7 @@
#include <adf_common_drv.h> #include <adf_common_drv.h>
#include <adf_gen2_config.h> #include <adf_gen2_config.h>
#include <adf_gen2_dc.h> #include <adf_gen2_dc.h>
#include <adf_gen2_hw_csr_data.h>
#include <adf_gen2_hw_data.h> #include <adf_gen2_hw_data.h>
#include <adf_gen2_pfvf.h> #include <adf_gen2_pfvf.h>
#include "adf_dh895xcc_hw_data.h" #include "adf_dh895xcc_hw_data.h"
......
...@@ -4,6 +4,7 @@ ...@@ -4,6 +4,7 @@
#include <adf_common_drv.h> #include <adf_common_drv.h>
#include <adf_gen2_config.h> #include <adf_gen2_config.h>
#include <adf_gen2_dc.h> #include <adf_gen2_dc.h>
#include <adf_gen2_hw_csr_data.h>
#include <adf_gen2_hw_data.h> #include <adf_gen2_hw_data.h>
#include <adf_gen2_pfvf.h> #include <adf_gen2_pfvf.h>
#include <adf_pfvf_vf_msg.h> #include <adf_pfvf_vf_msg.h>
......
/* SPDX-License-Identifier: GPL-2.0-only */
/* Copyright(c) 2024 Intel Corporation */
#ifndef QAT_MIG_DEV_H_
#define QAT_MIG_DEV_H_
struct pci_dev;
struct qat_mig_dev {
void *parent_accel_dev;
u8 *state;
u32 setup_size;
u32 remote_setup_size;
u32 state_size;
s32 vf_id;
};
struct qat_mig_dev *qat_vfmig_create(struct pci_dev *pdev, int vf_id);
int qat_vfmig_init(struct qat_mig_dev *mdev);
void qat_vfmig_cleanup(struct qat_mig_dev *mdev);
void qat_vfmig_reset(struct qat_mig_dev *mdev);
int qat_vfmig_open(struct qat_mig_dev *mdev);
void qat_vfmig_close(struct qat_mig_dev *mdev);
int qat_vfmig_suspend(struct qat_mig_dev *mdev);
int qat_vfmig_resume(struct qat_mig_dev *mdev);
int qat_vfmig_save_state(struct qat_mig_dev *mdev);
int qat_vfmig_save_setup(struct qat_mig_dev *mdev);
int qat_vfmig_load_state(struct qat_mig_dev *mdev);
int qat_vfmig_load_setup(struct qat_mig_dev *mdev, int size);
void qat_vfmig_destroy(struct qat_mig_dev *mdev);
#endif /*QAT_MIG_DEV_H_*/
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment