Commit 5420f320 authored by Alexei Starovoitov's avatar Alexei Starovoitov

Merge branch 'btf2c-converter'

Andrii Nakryiko says:

====================
This patch set adds BTF-to-C dumping APIs to libbpf, allowing to output
a subset of BTF types as a compilable C type definitions. This is useful by
itself, as raw BTF output is not easy to inspect and comprehend. But it's also
a big part of BPF CO-RE (compile once - run everywhere) initiative aimed at
allowing to write relocatable BPF programs, that won't require on-the-host
kernel headers (and would be able to inspect internal kernel structures, not
exposed through kernel headers).

This patch set consists of three groups of patches and one pre-patch, with the
BTF-to-C dumper API depending on the first two groups.

Pre-patch #1 fixes issue with libbpf_internal.h.

btf__parse_elf() API patches:
- patch #2 adds btf__parse_elf() API to libbpf, allowing to load BTF and/or
  BTF.ext from ELF file;
- patch #3 utilizies btf__parse_elf() from bpftool for `btf dump file` command;
- patch #4 switches test_btf.c to use btf__parse_elf() to check for presence
  of BTF data in object file.

libbpf's internal hashmap patches:
- patch #5 adds resizeable non-thread safe generic hashmap to libbpf;
- patch #6 adds tests for that hashmap;
- patch #7 migrates btf_dedup()'s dedup_table to use hashmap w/ APPEND.

BTF-to-C dumper API patches:
- patch #8 adds btf_dump APIs with all the logic for laying out type
  definitions in correct order and emitting C syntax for them;
- patch #9 adds lots of tests for common and quirky parts of C type system;
- patch #10 adds support for C-syntax btf dumping to bpftool;
- patch #11 updates bpftool documentation to mention C-syntax dump option;
- patch #12 update bash-completion for btf dump sub-command.

v2->v3:
- fix bpftool-btf.rst formatting (Quentin);
- simplify bash autocompletion script (Quentin);
- better error message in btf dump (Quentin);

v1->v2:
- removed unuseful file header (Jakub);
- removed inlines in .c (Jakub);
- added 'format {c|raw}' keyword/option (Jakub);
- re-use i var for iteration in btf_dump_c() (Jakub);
- bumped libbpf version to 0.0.4;

v0->v1:
- fix bug in hashmap__for_each_bucket_entry() not handling empty hashmap;
- removed `btf dump`-specific libbpf logging hook up (Quentin has more generic
  patchset);
- change btf__parse_elf() to always load .BTF and return it as a result, with
  .BTF.ext being optional and returned through struct btf_ext** arg (Alexei);
- endianness check to use __BYTE_ORDER__ (Alexei);
- bool:1 to __u8:1 in type_aux_state (Alexei);
- added HASHMAP_APPEND strategy to hashmap, changed
  hashmap__for_each_key_entry() to also check for key equality during
  iteration (multimap iteration for key);
- added new tests for empty hashmap and hashmap as a multimap;
- tried to clarify weak/strong dependency ordering comments (Alexei)
- btf dump test's expected output - support better commenting aproach (Alexei);
- added bash-completion for a new "c" option (Alexei).
====================
Signed-off-by: default avatarAlexei Starovoitov <ast@kernel.org>
parents c87f60a7 90eea408
...@@ -19,10 +19,11 @@ SYNOPSIS ...@@ -19,10 +19,11 @@ SYNOPSIS
BTF COMMANDS BTF COMMANDS
============= =============
| **bpftool** **btf dump** *BTF_SRC* | **bpftool** **btf dump** *BTF_SRC* [**format** *FORMAT*]
| **bpftool** **btf help** | **bpftool** **btf help**
| |
| *BTF_SRC* := { **id** *BTF_ID* | **prog** *PROG* | **map** *MAP* [{**key** | **value** | **kv** | **all**}] | **file** *FILE* } | *BTF_SRC* := { **id** *BTF_ID* | **prog** *PROG* | **map** *MAP* [{**key** | **value** | **kv** | **all**}] | **file** *FILE* }
| *FORMAT* := { **raw** | **c** }
| *MAP* := { **id** *MAP_ID* | **pinned** *FILE* } | *MAP* := { **id** *MAP_ID* | **pinned** *FILE* }
| *PROG* := { **id** *PROG_ID* | **pinned** *FILE* | **tag** *PROG_TAG* } | *PROG* := { **id** *PROG_ID* | **pinned** *FILE* | **tag** *PROG_TAG* }
...@@ -31,23 +32,27 @@ DESCRIPTION ...@@ -31,23 +32,27 @@ DESCRIPTION
**bpftool btf dump** *BTF_SRC* **bpftool btf dump** *BTF_SRC*
Dump BTF entries from a given *BTF_SRC*. Dump BTF entries from a given *BTF_SRC*.
When **id** is specified, BTF object with that ID will be When **id** is specified, BTF object with that ID will be
loaded and all its BTF types emitted. loaded and all its BTF types emitted.
When **map** is provided, it's expected that map has When **map** is provided, it's expected that map has
associated BTF object with BTF types describing key and associated BTF object with BTF types describing key and
value. It's possible to select whether to dump only BTF value. It's possible to select whether to dump only BTF
type(s) associated with key (**key**), value (**value**), type(s) associated with key (**key**), value (**value**),
both key and value (**kv**), or all BTF types present in both key and value (**kv**), or all BTF types present in
associated BTF object (**all**). If not specified, **kv** associated BTF object (**all**). If not specified, **kv**
is assumed. is assumed.
When **prog** is provided, it's expected that program has When **prog** is provided, it's expected that program has
associated BTF object with BTF types. associated BTF object with BTF types.
When specifying *FILE*, an ELF file is expected, containing When specifying *FILE*, an ELF file is expected, containing
.BTF section with well-defined BTF binary format data, .BTF section with well-defined BTF binary format data,
typically produced by clang or pahole. typically produced by clang or pahole.
**format** option can be used to override default (raw)
output format. Raw (**raw**) or C-syntax (**c**) output
formats are supported.
**bpftool btf help** **bpftool btf help**
Print short help message. Print short help message.
......
...@@ -638,11 +638,24 @@ _bpftool() ...@@ -638,11 +638,24 @@ _bpftool()
esac esac
return 0 return 0
;; ;;
format)
COMPREPLY=( $( compgen -W "c raw" -- "$cur" ) )
;;
*) *)
if [[ $cword == 6 ]] && [[ ${words[3]} == "map" ]]; then # emit extra options
COMPREPLY+=( $( compgen -W 'key value kv all' -- \ case ${words[3]} in
"$cur" ) ) id|file)
fi _bpftool_once_attr 'format'
;;
map|prog)
if [[ ${words[3]} == "map" ]] && [[ $cword == 6 ]]; then
COMPREPLY+=( $( compgen -W "key value kv all" -- "$cur" ) )
fi
_bpftool_once_attr 'format'
;;
*)
;;
esac
return 0 return 0
;; ;;
esac esac
......
...@@ -8,8 +8,8 @@ ...@@ -8,8 +8,8 @@
#include <stdio.h> #include <stdio.h>
#include <string.h> #include <string.h>
#include <unistd.h> #include <unistd.h>
#include <gelf.h>
#include <bpf.h> #include <bpf.h>
#include <libbpf.h>
#include <linux/btf.h> #include <linux/btf.h>
#include "btf.h" #include "btf.h"
...@@ -340,109 +340,40 @@ static int dump_btf_raw(const struct btf *btf, ...@@ -340,109 +340,40 @@ static int dump_btf_raw(const struct btf *btf,
return 0; return 0;
} }
static bool check_btf_endianness(GElf_Ehdr *ehdr) static void __printf(2, 0) btf_dump_printf(void *ctx,
const char *fmt, va_list args)
{ {
static unsigned int const endian = 1; vfprintf(stdout, fmt, args);
switch (ehdr->e_ident[EI_DATA]) {
case ELFDATA2LSB:
return *(unsigned char const *)&endian == 1;
case ELFDATA2MSB:
return *(unsigned char const *)&endian == 0;
default:
return 0;
}
} }
static int btf_load_from_elf(const char *path, struct btf **btf) static int dump_btf_c(const struct btf *btf,
__u32 *root_type_ids, int root_type_cnt)
{ {
int err = -1, fd = -1, idx = 0; struct btf_dump *d;
Elf_Data *btf_data = NULL; int err = 0, i;
Elf_Scn *scn = NULL;
Elf *elf = NULL;
GElf_Ehdr ehdr;
if (elf_version(EV_CURRENT) == EV_NONE) {
p_err("failed to init libelf for %s", path);
return -1;
}
fd = open(path, O_RDONLY);
if (fd < 0) {
p_err("failed to open %s: %s", path, strerror(errno));
return -1;
}
elf = elf_begin(fd, ELF_C_READ, NULL);
if (!elf) {
p_err("failed to open %s as ELF file", path);
goto done;
}
if (!gelf_getehdr(elf, &ehdr)) {
p_err("failed to get EHDR from %s", path);
goto done;
}
if (!check_btf_endianness(&ehdr)) {
p_err("non-native ELF endianness is not supported");
goto done;
}
if (!elf_rawdata(elf_getscn(elf, ehdr.e_shstrndx), NULL)) {
p_err("failed to get e_shstrndx from %s\n", path);
goto done;
}
while ((scn = elf_nextscn(elf, scn)) != NULL) { d = btf_dump__new(btf, NULL, NULL, btf_dump_printf);
GElf_Shdr sh; if (IS_ERR(d))
char *name; return PTR_ERR(d);
idx++; if (root_type_cnt) {
if (gelf_getshdr(scn, &sh) != &sh) { for (i = 0; i < root_type_cnt; i++) {
p_err("failed to get section(%d) header from %s", err = btf_dump__dump_type(d, root_type_ids[i]);
idx, path); if (err)
goto done;
}
name = elf_strptr(elf, ehdr.e_shstrndx, sh.sh_name);
if (!name) {
p_err("failed to get section(%d) name from %s",
idx, path);
goto done;
}
if (strcmp(name, BTF_ELF_SEC) == 0) {
btf_data = elf_getdata(scn, 0);
if (!btf_data) {
p_err("failed to get section(%d, %s) data from %s",
idx, name, path);
goto done; goto done;
}
break;
} }
} } else {
int cnt = btf__get_nr_types(btf);
if (!btf_data) {
p_err("%s ELF section not found in %s", BTF_ELF_SEC, path);
goto done;
}
*btf = btf__new(btf_data->d_buf, btf_data->d_size); for (i = 1; i <= cnt; i++) {
if (IS_ERR(*btf)) { err = btf_dump__dump_type(d, i);
err = PTR_ERR(*btf); if (err)
*btf = NULL; goto done;
p_err("failed to load BTF data from %s: %s", }
path, strerror(err));
goto done;
} }
err = 0;
done: done:
if (err) { btf_dump__free(d);
if (*btf) {
btf__free(*btf);
*btf = NULL;
}
}
if (elf)
elf_end(elf);
close(fd);
return err; return err;
} }
...@@ -451,6 +382,7 @@ static int do_dump(int argc, char **argv) ...@@ -451,6 +382,7 @@ static int do_dump(int argc, char **argv)
struct btf *btf = NULL; struct btf *btf = NULL;
__u32 root_type_ids[2]; __u32 root_type_ids[2];
int root_type_cnt = 0; int root_type_cnt = 0;
bool dump_c = false;
__u32 btf_id = -1; __u32 btf_id = -1;
const char *src; const char *src;
int fd = -1; int fd = -1;
...@@ -522,9 +454,14 @@ static int do_dump(int argc, char **argv) ...@@ -522,9 +454,14 @@ static int do_dump(int argc, char **argv)
} }
NEXT_ARG(); NEXT_ARG();
} else if (is_prefix(src, "file")) { } else if (is_prefix(src, "file")) {
err = btf_load_from_elf(*argv, &btf); btf = btf__parse_elf(*argv, NULL);
if (err) if (IS_ERR(btf)) {
err = PTR_ERR(btf);
btf = NULL;
p_err("failed to load BTF from %s: %s",
*argv, strerror(err));
goto done; goto done;
}
NEXT_ARG(); NEXT_ARG();
} else { } else {
err = -1; err = -1;
...@@ -532,6 +469,29 @@ static int do_dump(int argc, char **argv) ...@@ -532,6 +469,29 @@ static int do_dump(int argc, char **argv)
goto done; goto done;
} }
while (argc) {
if (is_prefix(*argv, "format")) {
NEXT_ARG();
if (argc < 1) {
p_err("expecting value for 'format' option\n");
goto done;
}
if (strcmp(*argv, "c") == 0) {
dump_c = true;
} else if (strcmp(*argv, "raw") == 0) {
dump_c = false;
} else {
p_err("unrecognized format specifier: '%s', possible values: raw, c",
*argv);
goto done;
}
NEXT_ARG();
} else {
p_err("unrecognized option: '%s'", *argv);
goto done;
}
}
if (!btf) { if (!btf) {
err = btf__get_from_id(btf_id, &btf); err = btf__get_from_id(btf_id, &btf);
if (err) { if (err) {
...@@ -545,7 +505,16 @@ static int do_dump(int argc, char **argv) ...@@ -545,7 +505,16 @@ static int do_dump(int argc, char **argv)
} }
} }
dump_btf_raw(btf, root_type_ids, root_type_cnt); if (dump_c) {
if (json_output) {
p_err("JSON output for C-syntax dump is not supported");
err = -ENOTSUP;
goto done;
}
err = dump_btf_c(btf, root_type_ids, root_type_cnt);
} else {
err = dump_btf_raw(btf, root_type_ids, root_type_cnt);
}
done: done:
close(fd); close(fd);
...@@ -561,10 +530,11 @@ static int do_help(int argc, char **argv) ...@@ -561,10 +530,11 @@ static int do_help(int argc, char **argv)
} }
fprintf(stderr, fprintf(stderr,
"Usage: %s btf dump BTF_SRC\n" "Usage: %s btf dump BTF_SRC [format FORMAT]\n"
" %s btf help\n" " %s btf help\n"
"\n" "\n"
" BTF_SRC := { id BTF_ID | prog PROG | map MAP [{key | value | kv | all}] | file FILE }\n" " BTF_SRC := { id BTF_ID | prog PROG | map MAP [{key | value | kv | all}] | file FILE }\n"
" FORMAT := { raw | c }\n"
" " HELP_SPEC_MAP "\n" " " HELP_SPEC_MAP "\n"
" " HELP_SPEC_PROGRAM "\n" " " HELP_SPEC_PROGRAM "\n"
" " HELP_SPEC_OPTIONS "\n" " " HELP_SPEC_OPTIONS "\n"
......
libbpf-y := libbpf.o bpf.o nlattr.o btf.o libbpf_errno.o str_error.o netlink.o bpf_prog_linfo.o libbpf_probes.o xsk.o libbpf-y := libbpf.o bpf.o nlattr.o btf.o libbpf_errno.o str_error.o \
netlink.o bpf_prog_linfo.o libbpf_probes.o xsk.o hashmap.o \
btf_dump.o
...@@ -4,14 +4,17 @@ ...@@ -4,14 +4,17 @@
#include <stdio.h> #include <stdio.h>
#include <stdlib.h> #include <stdlib.h>
#include <string.h> #include <string.h>
#include <fcntl.h>
#include <unistd.h> #include <unistd.h>
#include <errno.h> #include <errno.h>
#include <linux/err.h> #include <linux/err.h>
#include <linux/btf.h> #include <linux/btf.h>
#include <gelf.h>
#include "btf.h" #include "btf.h"
#include "bpf.h" #include "bpf.h"
#include "libbpf.h" #include "libbpf.h"
#include "libbpf_internal.h" #include "libbpf_internal.h"
#include "hashmap.h"
#define max(a, b) ((a) > (b) ? (a) : (b)) #define max(a, b) ((a) > (b) ? (a) : (b))
#define min(a, b) ((a) < (b) ? (a) : (b)) #define min(a, b) ((a) < (b) ? (a) : (b))
...@@ -417,6 +420,132 @@ struct btf *btf__new(__u8 *data, __u32 size) ...@@ -417,6 +420,132 @@ struct btf *btf__new(__u8 *data, __u32 size)
return btf; return btf;
} }
static bool btf_check_endianness(const GElf_Ehdr *ehdr)
{
#if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
return ehdr->e_ident[EI_DATA] == ELFDATA2LSB;
#elif __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
return ehdr->e_ident[EI_DATA] == ELFDATA2MSB;
#else
# error "Unrecognized __BYTE_ORDER__"
#endif
}
struct btf *btf__parse_elf(const char *path, struct btf_ext **btf_ext)
{
Elf_Data *btf_data = NULL, *btf_ext_data = NULL;
int err = 0, fd = -1, idx = 0;
struct btf *btf = NULL;
Elf_Scn *scn = NULL;
Elf *elf = NULL;
GElf_Ehdr ehdr;
if (elf_version(EV_CURRENT) == EV_NONE) {
pr_warning("failed to init libelf for %s\n", path);
return ERR_PTR(-LIBBPF_ERRNO__LIBELF);
}
fd = open(path, O_RDONLY);
if (fd < 0) {
err = -errno;
pr_warning("failed to open %s: %s\n", path, strerror(errno));
return ERR_PTR(err);
}
err = -LIBBPF_ERRNO__FORMAT;
elf = elf_begin(fd, ELF_C_READ, NULL);
if (!elf) {
pr_warning("failed to open %s as ELF file\n", path);
goto done;
}
if (!gelf_getehdr(elf, &ehdr)) {
pr_warning("failed to get EHDR from %s\n", path);
goto done;
}
if (!btf_check_endianness(&ehdr)) {
pr_warning("non-native ELF endianness is not supported\n");
goto done;
}
if (!elf_rawdata(elf_getscn(elf, ehdr.e_shstrndx), NULL)) {
pr_warning("failed to get e_shstrndx from %s\n", path);
goto done;
}
while ((scn = elf_nextscn(elf, scn)) != NULL) {
GElf_Shdr sh;
char *name;
idx++;
if (gelf_getshdr(scn, &sh) != &sh) {
pr_warning("failed to get section(%d) header from %s\n",
idx, path);
goto done;
}
name = elf_strptr(elf, ehdr.e_shstrndx, sh.sh_name);
if (!name) {
pr_warning("failed to get section(%d) name from %s\n",
idx, path);
goto done;
}
if (strcmp(name, BTF_ELF_SEC) == 0) {
btf_data = elf_getdata(scn, 0);
if (!btf_data) {
pr_warning("failed to get section(%d, %s) data from %s\n",
idx, name, path);
goto done;
}
continue;
} else if (btf_ext && strcmp(name, BTF_EXT_ELF_SEC) == 0) {
btf_ext_data = elf_getdata(scn, 0);
if (!btf_ext_data) {
pr_warning("failed to get section(%d, %s) data from %s\n",
idx, name, path);
goto done;
}
continue;
}
}
err = 0;
if (!btf_data) {
err = -ENOENT;
goto done;
}
btf = btf__new(btf_data->d_buf, btf_data->d_size);
if (IS_ERR(btf))
goto done;
if (btf_ext && btf_ext_data) {
*btf_ext = btf_ext__new(btf_ext_data->d_buf,
btf_ext_data->d_size);
if (IS_ERR(*btf_ext))
goto done;
} else if (btf_ext) {
*btf_ext = NULL;
}
done:
if (elf)
elf_end(elf);
close(fd);
if (err)
return ERR_PTR(err);
/*
* btf is always parsed before btf_ext, so no need to clean up
* btf_ext, if btf loading failed
*/
if (IS_ERR(btf))
return btf;
if (btf_ext && IS_ERR(*btf_ext)) {
btf__free(btf);
err = PTR_ERR(*btf_ext);
return ERR_PTR(err);
}
return btf;
}
static int compare_vsi_off(const void *_a, const void *_b) static int compare_vsi_off(const void *_a, const void *_b)
{ {
const struct btf_var_secinfo *a = _a; const struct btf_var_secinfo *a = _a;
...@@ -1165,16 +1294,9 @@ int btf__dedup(struct btf *btf, struct btf_ext *btf_ext, ...@@ -1165,16 +1294,9 @@ int btf__dedup(struct btf *btf, struct btf_ext *btf_ext,
return err; return err;
} }
#define BTF_DEDUP_TABLE_DEFAULT_SIZE (1 << 14)
#define BTF_DEDUP_TABLE_MAX_SIZE_LOG 31
#define BTF_UNPROCESSED_ID ((__u32)-1) #define BTF_UNPROCESSED_ID ((__u32)-1)
#define BTF_IN_PROGRESS_ID ((__u32)-2) #define BTF_IN_PROGRESS_ID ((__u32)-2)
struct btf_dedup_node {
struct btf_dedup_node *next;
__u32 type_id;
};
struct btf_dedup { struct btf_dedup {
/* .BTF section to be deduped in-place */ /* .BTF section to be deduped in-place */
struct btf *btf; struct btf *btf;
...@@ -1190,7 +1312,7 @@ struct btf_dedup { ...@@ -1190,7 +1312,7 @@ struct btf_dedup {
* candidates, which is fine because we rely on subsequent * candidates, which is fine because we rely on subsequent
* btf_xxx_equal() checks to authoritatively verify type equality. * btf_xxx_equal() checks to authoritatively verify type equality.
*/ */
struct btf_dedup_node **dedup_table; struct hashmap *dedup_table;
/* Canonical types map */ /* Canonical types map */
__u32 *map; __u32 *map;
/* Hypothetical mapping, used during type graph equivalence checks */ /* Hypothetical mapping, used during type graph equivalence checks */
...@@ -1215,30 +1337,18 @@ struct btf_str_ptrs { ...@@ -1215,30 +1337,18 @@ struct btf_str_ptrs {
__u32 cap; __u32 cap;
}; };
static inline __u32 hash_combine(__u32 h, __u32 value) static long hash_combine(long h, long value)
{ {
/* 2^31 + 2^29 - 2^25 + 2^22 - 2^19 - 2^16 + 1 */ return h * 31 + value;
#define GOLDEN_RATIO_PRIME 0x9e370001UL
return h * 37 + value * GOLDEN_RATIO_PRIME;
#undef GOLDEN_RATIO_PRIME
} }
#define for_each_dedup_cand(d, hash, node) \ #define for_each_dedup_cand(d, node, hash) \
for (node = d->dedup_table[hash & (d->opts.dedup_table_size - 1)]; \ hashmap__for_each_key_entry(d->dedup_table, node, (void *)hash)
node; \
node = node->next)
static int btf_dedup_table_add(struct btf_dedup *d, __u32 hash, __u32 type_id) static int btf_dedup_table_add(struct btf_dedup *d, long hash, __u32 type_id)
{ {
struct btf_dedup_node *node = malloc(sizeof(struct btf_dedup_node)); return hashmap__append(d->dedup_table,
int bucket = hash & (d->opts.dedup_table_size - 1); (void *)hash, (void *)(long)type_id);
if (!node)
return -ENOMEM;
node->type_id = type_id;
node->next = d->dedup_table[bucket];
d->dedup_table[bucket] = node;
return 0;
} }
static int btf_dedup_hypot_map_add(struct btf_dedup *d, static int btf_dedup_hypot_map_add(struct btf_dedup *d,
...@@ -1267,36 +1377,10 @@ static void btf_dedup_clear_hypot_map(struct btf_dedup *d) ...@@ -1267,36 +1377,10 @@ static void btf_dedup_clear_hypot_map(struct btf_dedup *d)
d->hypot_cnt = 0; d->hypot_cnt = 0;
} }
static void btf_dedup_table_free(struct btf_dedup *d)
{
struct btf_dedup_node *head, *tmp;
int i;
if (!d->dedup_table)
return;
for (i = 0; i < d->opts.dedup_table_size; i++) {
while (d->dedup_table[i]) {
tmp = d->dedup_table[i];
d->dedup_table[i] = tmp->next;
free(tmp);
}
head = d->dedup_table[i];
while (head) {
tmp = head;
head = head->next;
free(tmp);
}
}
free(d->dedup_table);
d->dedup_table = NULL;
}
static void btf_dedup_free(struct btf_dedup *d) static void btf_dedup_free(struct btf_dedup *d)
{ {
btf_dedup_table_free(d); hashmap__free(d->dedup_table);
d->dedup_table = NULL;
free(d->map); free(d->map);
d->map = NULL; d->map = NULL;
...@@ -1310,40 +1394,43 @@ static void btf_dedup_free(struct btf_dedup *d) ...@@ -1310,40 +1394,43 @@ static void btf_dedup_free(struct btf_dedup *d)
free(d); free(d);
} }
/* Find closest power of two >= to size, capped at 2^max_size_log */ static size_t btf_dedup_identity_hash_fn(const void *key, void *ctx)
static __u32 roundup_pow2_max(__u32 size, int max_size_log)
{ {
int i; return (size_t)key;
}
for (i = 0; i < max_size_log && (1U << i) < size; i++) static size_t btf_dedup_collision_hash_fn(const void *key, void *ctx)
; {
return 1U << i; return 0;
} }
static bool btf_dedup_equal_fn(const void *k1, const void *k2, void *ctx)
{
return k1 == k2;
}
static struct btf_dedup *btf_dedup_new(struct btf *btf, struct btf_ext *btf_ext, static struct btf_dedup *btf_dedup_new(struct btf *btf, struct btf_ext *btf_ext,
const struct btf_dedup_opts *opts) const struct btf_dedup_opts *opts)
{ {
struct btf_dedup *d = calloc(1, sizeof(struct btf_dedup)); struct btf_dedup *d = calloc(1, sizeof(struct btf_dedup));
hashmap_hash_fn hash_fn = btf_dedup_identity_hash_fn;
int i, err = 0; int i, err = 0;
__u32 sz;
if (!d) if (!d)
return ERR_PTR(-ENOMEM); return ERR_PTR(-ENOMEM);
d->opts.dont_resolve_fwds = opts && opts->dont_resolve_fwds; d->opts.dont_resolve_fwds = opts && opts->dont_resolve_fwds;
sz = opts && opts->dedup_table_size ? opts->dedup_table_size /* dedup_table_size is now used only to force collisions in tests */
: BTF_DEDUP_TABLE_DEFAULT_SIZE; if (opts && opts->dedup_table_size == 1)
sz = roundup_pow2_max(sz, BTF_DEDUP_TABLE_MAX_SIZE_LOG); hash_fn = btf_dedup_collision_hash_fn;
d->opts.dedup_table_size = sz;
d->btf = btf; d->btf = btf;
d->btf_ext = btf_ext; d->btf_ext = btf_ext;
d->dedup_table = calloc(d->opts.dedup_table_size, d->dedup_table = hashmap__new(hash_fn, btf_dedup_equal_fn, NULL);
sizeof(struct btf_dedup_node *)); if (IS_ERR(d->dedup_table)) {
if (!d->dedup_table) { err = PTR_ERR(d->dedup_table);
err = -ENOMEM; d->dedup_table = NULL;
goto done; goto done;
} }
...@@ -1662,9 +1749,9 @@ static int btf_dedup_strings(struct btf_dedup *d) ...@@ -1662,9 +1749,9 @@ static int btf_dedup_strings(struct btf_dedup *d)
return err; return err;
} }
static __u32 btf_hash_common(struct btf_type *t) static long btf_hash_common(struct btf_type *t)
{ {
__u32 h; long h;
h = hash_combine(0, t->name_off); h = hash_combine(0, t->name_off);
h = hash_combine(h, t->info); h = hash_combine(h, t->info);
...@@ -1680,10 +1767,10 @@ static bool btf_equal_common(struct btf_type *t1, struct btf_type *t2) ...@@ -1680,10 +1767,10 @@ static bool btf_equal_common(struct btf_type *t1, struct btf_type *t2)
} }
/* Calculate type signature hash of INT. */ /* Calculate type signature hash of INT. */
static __u32 btf_hash_int(struct btf_type *t) static long btf_hash_int(struct btf_type *t)
{ {
__u32 info = *(__u32 *)(t + 1); __u32 info = *(__u32 *)(t + 1);
__u32 h; long h;
h = btf_hash_common(t); h = btf_hash_common(t);
h = hash_combine(h, info); h = hash_combine(h, info);
...@@ -1703,9 +1790,9 @@ static bool btf_equal_int(struct btf_type *t1, struct btf_type *t2) ...@@ -1703,9 +1790,9 @@ static bool btf_equal_int(struct btf_type *t1, struct btf_type *t2)
} }
/* Calculate type signature hash of ENUM. */ /* Calculate type signature hash of ENUM. */
static __u32 btf_hash_enum(struct btf_type *t) static long btf_hash_enum(struct btf_type *t)
{ {
__u32 h; long h;
/* don't hash vlen and enum members to support enum fwd resolving */ /* don't hash vlen and enum members to support enum fwd resolving */
h = hash_combine(0, t->name_off); h = hash_combine(0, t->name_off);
...@@ -1757,11 +1844,11 @@ static bool btf_compat_enum(struct btf_type *t1, struct btf_type *t2) ...@@ -1757,11 +1844,11 @@ static bool btf_compat_enum(struct btf_type *t1, struct btf_type *t2)
* as referenced type IDs equivalence is established separately during type * as referenced type IDs equivalence is established separately during type
* graph equivalence check algorithm. * graph equivalence check algorithm.
*/ */
static __u32 btf_hash_struct(struct btf_type *t) static long btf_hash_struct(struct btf_type *t)
{ {
struct btf_member *member = (struct btf_member *)(t + 1); struct btf_member *member = (struct btf_member *)(t + 1);
__u32 vlen = BTF_INFO_VLEN(t->info); __u32 vlen = BTF_INFO_VLEN(t->info);
__u32 h = btf_hash_common(t); long h = btf_hash_common(t);
int i; int i;
for (i = 0; i < vlen; i++) { for (i = 0; i < vlen; i++) {
...@@ -1804,10 +1891,10 @@ static bool btf_shallow_equal_struct(struct btf_type *t1, struct btf_type *t2) ...@@ -1804,10 +1891,10 @@ static bool btf_shallow_equal_struct(struct btf_type *t1, struct btf_type *t2)
* under assumption that they were already resolved to canonical type IDs and * under assumption that they were already resolved to canonical type IDs and
* are not going to change. * are not going to change.
*/ */
static __u32 btf_hash_array(struct btf_type *t) static long btf_hash_array(struct btf_type *t)
{ {
struct btf_array *info = (struct btf_array *)(t + 1); struct btf_array *info = (struct btf_array *)(t + 1);
__u32 h = btf_hash_common(t); long h = btf_hash_common(t);
h = hash_combine(h, info->type); h = hash_combine(h, info->type);
h = hash_combine(h, info->index_type); h = hash_combine(h, info->index_type);
...@@ -1858,11 +1945,11 @@ static bool btf_compat_array(struct btf_type *t1, struct btf_type *t2) ...@@ -1858,11 +1945,11 @@ static bool btf_compat_array(struct btf_type *t1, struct btf_type *t2)
* under assumption that they were already resolved to canonical type IDs and * under assumption that they were already resolved to canonical type IDs and
* are not going to change. * are not going to change.
*/ */
static inline __u32 btf_hash_fnproto(struct btf_type *t) static long btf_hash_fnproto(struct btf_type *t)
{ {
struct btf_param *member = (struct btf_param *)(t + 1); struct btf_param *member = (struct btf_param *)(t + 1);
__u16 vlen = BTF_INFO_VLEN(t->info); __u16 vlen = BTF_INFO_VLEN(t->info);
__u32 h = btf_hash_common(t); long h = btf_hash_common(t);
int i; int i;
for (i = 0; i < vlen; i++) { for (i = 0; i < vlen; i++) {
...@@ -1880,7 +1967,7 @@ static inline __u32 btf_hash_fnproto(struct btf_type *t) ...@@ -1880,7 +1967,7 @@ static inline __u32 btf_hash_fnproto(struct btf_type *t)
* This function is called during reference types deduplication to compare * This function is called during reference types deduplication to compare
* FUNC_PROTO to potential canonical representative. * FUNC_PROTO to potential canonical representative.
*/ */
static inline bool btf_equal_fnproto(struct btf_type *t1, struct btf_type *t2) static bool btf_equal_fnproto(struct btf_type *t1, struct btf_type *t2)
{ {
struct btf_param *m1, *m2; struct btf_param *m1, *m2;
__u16 vlen; __u16 vlen;
...@@ -1906,7 +1993,7 @@ static inline bool btf_equal_fnproto(struct btf_type *t1, struct btf_type *t2) ...@@ -1906,7 +1993,7 @@ static inline bool btf_equal_fnproto(struct btf_type *t1, struct btf_type *t2)
* IDs. This check is performed during type graph equivalence check and * IDs. This check is performed during type graph equivalence check and
* referenced types equivalence is checked separately. * referenced types equivalence is checked separately.
*/ */
static inline bool btf_compat_fnproto(struct btf_type *t1, struct btf_type *t2) static bool btf_compat_fnproto(struct btf_type *t1, struct btf_type *t2)
{ {
struct btf_param *m1, *m2; struct btf_param *m1, *m2;
__u16 vlen; __u16 vlen;
...@@ -1937,11 +2024,12 @@ static inline bool btf_compat_fnproto(struct btf_type *t1, struct btf_type *t2) ...@@ -1937,11 +2024,12 @@ static inline bool btf_compat_fnproto(struct btf_type *t1, struct btf_type *t2)
static int btf_dedup_prim_type(struct btf_dedup *d, __u32 type_id) static int btf_dedup_prim_type(struct btf_dedup *d, __u32 type_id)
{ {
struct btf_type *t = d->btf->types[type_id]; struct btf_type *t = d->btf->types[type_id];
struct hashmap_entry *hash_entry;
struct btf_type *cand; struct btf_type *cand;
struct btf_dedup_node *cand_node;
/* if we don't find equivalent type, then we are canonical */ /* if we don't find equivalent type, then we are canonical */
__u32 new_id = type_id; __u32 new_id = type_id;
__u32 h; __u32 cand_id;
long h;
switch (BTF_INFO_KIND(t->info)) { switch (BTF_INFO_KIND(t->info)) {
case BTF_KIND_CONST: case BTF_KIND_CONST:
...@@ -1960,10 +2048,11 @@ static int btf_dedup_prim_type(struct btf_dedup *d, __u32 type_id) ...@@ -1960,10 +2048,11 @@ static int btf_dedup_prim_type(struct btf_dedup *d, __u32 type_id)
case BTF_KIND_INT: case BTF_KIND_INT:
h = btf_hash_int(t); h = btf_hash_int(t);
for_each_dedup_cand(d, h, cand_node) { for_each_dedup_cand(d, hash_entry, h) {
cand = d->btf->types[cand_node->type_id]; cand_id = (__u32)(long)hash_entry->value;
cand = d->btf->types[cand_id];
if (btf_equal_int(t, cand)) { if (btf_equal_int(t, cand)) {
new_id = cand_node->type_id; new_id = cand_id;
break; break;
} }
} }
...@@ -1971,10 +2060,11 @@ static int btf_dedup_prim_type(struct btf_dedup *d, __u32 type_id) ...@@ -1971,10 +2060,11 @@ static int btf_dedup_prim_type(struct btf_dedup *d, __u32 type_id)
case BTF_KIND_ENUM: case BTF_KIND_ENUM:
h = btf_hash_enum(t); h = btf_hash_enum(t);
for_each_dedup_cand(d, h, cand_node) { for_each_dedup_cand(d, hash_entry, h) {
cand = d->btf->types[cand_node->type_id]; cand_id = (__u32)(long)hash_entry->value;
cand = d->btf->types[cand_id];
if (btf_equal_enum(t, cand)) { if (btf_equal_enum(t, cand)) {
new_id = cand_node->type_id; new_id = cand_id;
break; break;
} }
if (d->opts.dont_resolve_fwds) if (d->opts.dont_resolve_fwds)
...@@ -1982,21 +2072,22 @@ static int btf_dedup_prim_type(struct btf_dedup *d, __u32 type_id) ...@@ -1982,21 +2072,22 @@ static int btf_dedup_prim_type(struct btf_dedup *d, __u32 type_id)
if (btf_compat_enum(t, cand)) { if (btf_compat_enum(t, cand)) {
if (btf_is_enum_fwd(t)) { if (btf_is_enum_fwd(t)) {
/* resolve fwd to full enum */ /* resolve fwd to full enum */
new_id = cand_node->type_id; new_id = cand_id;
break; break;
} }
/* resolve canonical enum fwd to full enum */ /* resolve canonical enum fwd to full enum */
d->map[cand_node->type_id] = type_id; d->map[cand_id] = type_id;
} }
} }
break; break;
case BTF_KIND_FWD: case BTF_KIND_FWD:
h = btf_hash_common(t); h = btf_hash_common(t);
for_each_dedup_cand(d, h, cand_node) { for_each_dedup_cand(d, hash_entry, h) {
cand = d->btf->types[cand_node->type_id]; cand_id = (__u32)(long)hash_entry->value;
cand = d->btf->types[cand_id];
if (btf_equal_common(t, cand)) { if (btf_equal_common(t, cand)) {
new_id = cand_node->type_id; new_id = cand_id;
break; break;
} }
} }
...@@ -2397,12 +2488,12 @@ static void btf_dedup_merge_hypot_map(struct btf_dedup *d) ...@@ -2397,12 +2488,12 @@ static void btf_dedup_merge_hypot_map(struct btf_dedup *d)
*/ */
static int btf_dedup_struct_type(struct btf_dedup *d, __u32 type_id) static int btf_dedup_struct_type(struct btf_dedup *d, __u32 type_id)
{ {
struct btf_dedup_node *cand_node;
struct btf_type *cand_type, *t; struct btf_type *cand_type, *t;
struct hashmap_entry *hash_entry;
/* if we don't find equivalent type, then we are canonical */ /* if we don't find equivalent type, then we are canonical */
__u32 new_id = type_id; __u32 new_id = type_id;
__u16 kind; __u16 kind;
__u32 h; long h;
/* already deduped or is in process of deduping (loop detected) */ /* already deduped or is in process of deduping (loop detected) */
if (d->map[type_id] <= BTF_MAX_NR_TYPES) if (d->map[type_id] <= BTF_MAX_NR_TYPES)
...@@ -2415,7 +2506,8 @@ static int btf_dedup_struct_type(struct btf_dedup *d, __u32 type_id) ...@@ -2415,7 +2506,8 @@ static int btf_dedup_struct_type(struct btf_dedup *d, __u32 type_id)
return 0; return 0;
h = btf_hash_struct(t); h = btf_hash_struct(t);
for_each_dedup_cand(d, h, cand_node) { for_each_dedup_cand(d, hash_entry, h) {
__u32 cand_id = (__u32)(long)hash_entry->value;
int eq; int eq;
/* /*
...@@ -2428,17 +2520,17 @@ static int btf_dedup_struct_type(struct btf_dedup *d, __u32 type_id) ...@@ -2428,17 +2520,17 @@ static int btf_dedup_struct_type(struct btf_dedup *d, __u32 type_id)
* creating a loop (FWD -> STRUCT and STRUCT -> FWD), because * creating a loop (FWD -> STRUCT and STRUCT -> FWD), because
* FWD and compatible STRUCT/UNION are considered equivalent. * FWD and compatible STRUCT/UNION are considered equivalent.
*/ */
cand_type = d->btf->types[cand_node->type_id]; cand_type = d->btf->types[cand_id];
if (!btf_shallow_equal_struct(t, cand_type)) if (!btf_shallow_equal_struct(t, cand_type))
continue; continue;
btf_dedup_clear_hypot_map(d); btf_dedup_clear_hypot_map(d);
eq = btf_dedup_is_equiv(d, type_id, cand_node->type_id); eq = btf_dedup_is_equiv(d, type_id, cand_id);
if (eq < 0) if (eq < 0)
return eq; return eq;
if (!eq) if (!eq)
continue; continue;
new_id = cand_node->type_id; new_id = cand_id;
btf_dedup_merge_hypot_map(d); btf_dedup_merge_hypot_map(d);
break; break;
} }
...@@ -2488,12 +2580,12 @@ static int btf_dedup_struct_types(struct btf_dedup *d) ...@@ -2488,12 +2580,12 @@ static int btf_dedup_struct_types(struct btf_dedup *d)
*/ */
static int btf_dedup_ref_type(struct btf_dedup *d, __u32 type_id) static int btf_dedup_ref_type(struct btf_dedup *d, __u32 type_id)
{ {
struct btf_dedup_node *cand_node; struct hashmap_entry *hash_entry;
__u32 new_id = type_id, cand_id;
struct btf_type *t, *cand; struct btf_type *t, *cand;
/* if we don't find equivalent type, then we are representative type */ /* if we don't find equivalent type, then we are representative type */
__u32 new_id = type_id;
int ref_type_id; int ref_type_id;
__u32 h; long h;
if (d->map[type_id] == BTF_IN_PROGRESS_ID) if (d->map[type_id] == BTF_IN_PROGRESS_ID)
return -ELOOP; return -ELOOP;
...@@ -2516,10 +2608,11 @@ static int btf_dedup_ref_type(struct btf_dedup *d, __u32 type_id) ...@@ -2516,10 +2608,11 @@ static int btf_dedup_ref_type(struct btf_dedup *d, __u32 type_id)
t->type = ref_type_id; t->type = ref_type_id;
h = btf_hash_common(t); h = btf_hash_common(t);
for_each_dedup_cand(d, h, cand_node) { for_each_dedup_cand(d, hash_entry, h) {
cand = d->btf->types[cand_node->type_id]; cand_id = (__u32)(long)hash_entry->value;
cand = d->btf->types[cand_id];
if (btf_equal_common(t, cand)) { if (btf_equal_common(t, cand)) {
new_id = cand_node->type_id; new_id = cand_id;
break; break;
} }
} }
...@@ -2539,10 +2632,11 @@ static int btf_dedup_ref_type(struct btf_dedup *d, __u32 type_id) ...@@ -2539,10 +2632,11 @@ static int btf_dedup_ref_type(struct btf_dedup *d, __u32 type_id)
info->index_type = ref_type_id; info->index_type = ref_type_id;
h = btf_hash_array(t); h = btf_hash_array(t);
for_each_dedup_cand(d, h, cand_node) { for_each_dedup_cand(d, hash_entry, h) {
cand = d->btf->types[cand_node->type_id]; cand_id = (__u32)(long)hash_entry->value;
cand = d->btf->types[cand_id];
if (btf_equal_array(t, cand)) { if (btf_equal_array(t, cand)) {
new_id = cand_node->type_id; new_id = cand_id;
break; break;
} }
} }
...@@ -2570,10 +2664,11 @@ static int btf_dedup_ref_type(struct btf_dedup *d, __u32 type_id) ...@@ -2570,10 +2664,11 @@ static int btf_dedup_ref_type(struct btf_dedup *d, __u32 type_id)
} }
h = btf_hash_fnproto(t); h = btf_hash_fnproto(t);
for_each_dedup_cand(d, h, cand_node) { for_each_dedup_cand(d, hash_entry, h) {
cand = d->btf->types[cand_node->type_id]; cand_id = (__u32)(long)hash_entry->value;
cand = d->btf->types[cand_id];
if (btf_equal_fnproto(t, cand)) { if (btf_equal_fnproto(t, cand)) {
new_id = cand_node->type_id; new_id = cand_id;
break; break;
} }
} }
...@@ -2600,7 +2695,9 @@ static int btf_dedup_ref_types(struct btf_dedup *d) ...@@ -2600,7 +2695,9 @@ static int btf_dedup_ref_types(struct btf_dedup *d)
if (err < 0) if (err < 0)
return err; return err;
} }
btf_dedup_table_free(d); /* we won't need d->dedup_table anymore */
hashmap__free(d->dedup_table);
d->dedup_table = NULL;
return 0; return 0;
} }
......
...@@ -4,6 +4,7 @@ ...@@ -4,6 +4,7 @@
#ifndef __LIBBPF_BTF_H #ifndef __LIBBPF_BTF_H
#define __LIBBPF_BTF_H #define __LIBBPF_BTF_H
#include <stdarg.h>
#include <linux/types.h> #include <linux/types.h>
#ifdef __cplusplus #ifdef __cplusplus
...@@ -59,6 +60,8 @@ struct btf_ext_header { ...@@ -59,6 +60,8 @@ struct btf_ext_header {
LIBBPF_API void btf__free(struct btf *btf); LIBBPF_API void btf__free(struct btf *btf);
LIBBPF_API struct btf *btf__new(__u8 *data, __u32 size); LIBBPF_API struct btf *btf__new(__u8 *data, __u32 size);
LIBBPF_API struct btf *btf__parse_elf(const char *path,
struct btf_ext **btf_ext);
LIBBPF_API int btf__finalize_data(struct bpf_object *obj, struct btf *btf); LIBBPF_API int btf__finalize_data(struct bpf_object *obj, struct btf *btf);
LIBBPF_API int btf__load(struct btf *btf); LIBBPF_API int btf__load(struct btf *btf);
LIBBPF_API __s32 btf__find_by_name(const struct btf *btf, LIBBPF_API __s32 btf__find_by_name(const struct btf *btf,
...@@ -100,6 +103,22 @@ struct btf_dedup_opts { ...@@ -100,6 +103,22 @@ struct btf_dedup_opts {
LIBBPF_API int btf__dedup(struct btf *btf, struct btf_ext *btf_ext, LIBBPF_API int btf__dedup(struct btf *btf, struct btf_ext *btf_ext,
const struct btf_dedup_opts *opts); const struct btf_dedup_opts *opts);
struct btf_dump;
struct btf_dump_opts {
void *ctx;
};
typedef void (*btf_dump_printf_fn_t)(void *ctx, const char *fmt, va_list args);
LIBBPF_API struct btf_dump *btf_dump__new(const struct btf *btf,
const struct btf_ext *btf_ext,
const struct btf_dump_opts *opts,
btf_dump_printf_fn_t printf_fn);
LIBBPF_API void btf_dump__free(struct btf_dump *d);
LIBBPF_API int btf_dump__dump_type(struct btf_dump *d, __u32 id);
#ifdef __cplusplus #ifdef __cplusplus
} /* extern "C" */ } /* extern "C" */
#endif #endif
......
// SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause)
/*
* BTF-to-C type converter.
*
* Copyright (c) 2019 Facebook
*/
#include <stdbool.h>
#include <stddef.h>
#include <stdlib.h>
#include <string.h>
#include <errno.h>
#include <linux/err.h>
#include <linux/btf.h>
#include "btf.h"
#include "hashmap.h"
#include "libbpf.h"
#include "libbpf_internal.h"
#define min(x, y) ((x) < (y) ? (x) : (y))
#define max(x, y) ((x) < (y) ? (y) : (x))
static const char PREFIXES[] = "\t\t\t\t\t\t\t\t\t\t\t\t\t";
static const size_t PREFIX_CNT = sizeof(PREFIXES) - 1;
static const char *pfx(int lvl)
{
return lvl >= PREFIX_CNT ? PREFIXES : &PREFIXES[PREFIX_CNT - lvl];
}
enum btf_dump_type_order_state {
NOT_ORDERED,
ORDERING,
ORDERED,
};
enum btf_dump_type_emit_state {
NOT_EMITTED,
EMITTING,
EMITTED,
};
/* per-type auxiliary state */
struct btf_dump_type_aux_state {
/* topological sorting state */
enum btf_dump_type_order_state order_state: 2;
/* emitting state used to determine the need for forward declaration */
enum btf_dump_type_emit_state emit_state: 2;
/* whether forward declaration was already emitted */
__u8 fwd_emitted: 1;
/* whether unique non-duplicate name was already assigned */
__u8 name_resolved: 1;
};
struct btf_dump {
const struct btf *btf;
const struct btf_ext *btf_ext;
btf_dump_printf_fn_t printf_fn;
struct btf_dump_opts opts;
/* per-type auxiliary state */
struct btf_dump_type_aux_state *type_states;
/* per-type optional cached unique name, must be freed, if present */
const char **cached_names;
/* topo-sorted list of dependent type definitions */
__u32 *emit_queue;
int emit_queue_cap;
int emit_queue_cnt;
/*
* stack of type declarations (e.g., chain of modifiers, arrays,
* funcs, etc)
*/
__u32 *decl_stack;
int decl_stack_cap;
int decl_stack_cnt;
/* maps struct/union/enum name to a number of name occurrences */
struct hashmap *type_names;
/*
* maps typedef identifiers and enum value names to a number of such
* name occurrences
*/
struct hashmap *ident_names;
};
static size_t str_hash_fn(const void *key, void *ctx)
{
const char *s = key;
size_t h = 0;
while (*s) {
h = h * 31 + *s;
s++;
}
return h;
}
static bool str_equal_fn(const void *a, const void *b, void *ctx)
{
return strcmp(a, b) == 0;
}
static __u16 btf_kind_of(const struct btf_type *t)
{
return BTF_INFO_KIND(t->info);
}
static __u16 btf_vlen_of(const struct btf_type *t)
{
return BTF_INFO_VLEN(t->info);
}
static bool btf_kflag_of(const struct btf_type *t)
{
return BTF_INFO_KFLAG(t->info);
}
static const char *btf_name_of(const struct btf_dump *d, __u32 name_off)
{
return btf__name_by_offset(d->btf, name_off);
}
static void btf_dump_printf(const struct btf_dump *d, const char *fmt, ...)
{
va_list args;
va_start(args, fmt);
d->printf_fn(d->opts.ctx, fmt, args);
va_end(args);
}
struct btf_dump *btf_dump__new(const struct btf *btf,
const struct btf_ext *btf_ext,
const struct btf_dump_opts *opts,
btf_dump_printf_fn_t printf_fn)
{
struct btf_dump *d;
int err;
d = calloc(1, sizeof(struct btf_dump));
if (!d)
return ERR_PTR(-ENOMEM);
d->btf = btf;
d->btf_ext = btf_ext;
d->printf_fn = printf_fn;
d->opts.ctx = opts ? opts->ctx : NULL;
d->type_names = hashmap__new(str_hash_fn, str_equal_fn, NULL);
if (IS_ERR(d->type_names)) {
err = PTR_ERR(d->type_names);
d->type_names = NULL;
btf_dump__free(d);
return ERR_PTR(err);
}
d->ident_names = hashmap__new(str_hash_fn, str_equal_fn, NULL);
if (IS_ERR(d->ident_names)) {
err = PTR_ERR(d->ident_names);
d->ident_names = NULL;
btf_dump__free(d);
return ERR_PTR(err);
}
return d;
}
void btf_dump__free(struct btf_dump *d)
{
int i, cnt;
if (!d)
return;
free(d->type_states);
if (d->cached_names) {
/* any set cached name is owned by us and should be freed */
for (i = 0, cnt = btf__get_nr_types(d->btf); i <= cnt; i++) {
if (d->cached_names[i])
free((void *)d->cached_names[i]);
}
}
free(d->cached_names);
free(d->emit_queue);
free(d->decl_stack);
hashmap__free(d->type_names);
hashmap__free(d->ident_names);
free(d);
}
static int btf_dump_order_type(struct btf_dump *d, __u32 id, bool through_ptr);
static void btf_dump_emit_type(struct btf_dump *d, __u32 id, __u32 cont_id);
/*
* Dump BTF type in a compilable C syntax, including all the necessary
* dependent types, necessary for compilation. If some of the dependent types
* were already emitted as part of previous btf_dump__dump_type() invocation
* for another type, they won't be emitted again. This API allows callers to
* filter out BTF types according to user-defined criterias and emitted only
* minimal subset of types, necessary to compile everything. Full struct/union
* definitions will still be emitted, even if the only usage is through
* pointer and could be satisfied with just a forward declaration.
*
* Dumping is done in two high-level passes:
* 1. Topologically sort type definitions to satisfy C rules of compilation.
* 2. Emit type definitions in C syntax.
*
* Returns 0 on success; <0, otherwise.
*/
int btf_dump__dump_type(struct btf_dump *d, __u32 id)
{
int err, i;
if (id > btf__get_nr_types(d->btf))
return -EINVAL;
/* type states are lazily allocated, as they might not be needed */
if (!d->type_states) {
d->type_states = calloc(1 + btf__get_nr_types(d->btf),
sizeof(d->type_states[0]));
if (!d->type_states)
return -ENOMEM;
d->cached_names = calloc(1 + btf__get_nr_types(d->btf),
sizeof(d->cached_names[0]));
if (!d->cached_names)
return -ENOMEM;
/* VOID is special */
d->type_states[0].order_state = ORDERED;
d->type_states[0].emit_state = EMITTED;
}
d->emit_queue_cnt = 0;
err = btf_dump_order_type(d, id, false);
if (err < 0)
return err;
for (i = 0; i < d->emit_queue_cnt; i++)
btf_dump_emit_type(d, d->emit_queue[i], 0 /*top-level*/);
return 0;
}
static int btf_dump_add_emit_queue_id(struct btf_dump *d, __u32 id)
{
__u32 *new_queue;
size_t new_cap;
if (d->emit_queue_cnt >= d->emit_queue_cap) {
new_cap = max(16, d->emit_queue_cap * 3 / 2);
new_queue = realloc(d->emit_queue,
new_cap * sizeof(new_queue[0]));
if (!new_queue)
return -ENOMEM;
d->emit_queue = new_queue;
d->emit_queue_cap = new_cap;
}
d->emit_queue[d->emit_queue_cnt++] = id;
return 0;
}
/*
* Determine order of emitting dependent types and specified type to satisfy
* C compilation rules. This is done through topological sorting with an
* additional complication which comes from C rules. The main idea for C is
* that if some type is "embedded" into a struct/union, it's size needs to be
* known at the time of definition of containing type. E.g., for:
*
* struct A {};
* struct B { struct A x; }
*
* struct A *HAS* to be defined before struct B, because it's "embedded",
* i.e., it is part of struct B layout. But in the following case:
*
* struct A;
* struct B { struct A *x; }
* struct A {};
*
* it's enough to just have a forward declaration of struct A at the time of
* struct B definition, as struct B has a pointer to struct A, so the size of
* field x is known without knowing struct A size: it's sizeof(void *).
*
* Unfortunately, there are some trickier cases we need to handle, e.g.:
*
* struct A {}; // if this was forward-declaration: compilation error
* struct B {
* struct { // anonymous struct
* struct A y;
* } *x;
* };
*
* In this case, struct B's field x is a pointer, so it's size is known
* regardless of the size of (anonymous) struct it points to. But because this
* struct is anonymous and thus defined inline inside struct B, *and* it
* embeds struct A, compiler requires full definition of struct A to be known
* before struct B can be defined. This creates a transitive dependency
* between struct A and struct B. If struct A was forward-declared before
* struct B definition and fully defined after struct B definition, that would
* trigger compilation error.
*
* All this means that while we are doing topological sorting on BTF type
* graph, we need to determine relationships between different types (graph
* nodes):
* - weak link (relationship) between X and Y, if Y *CAN* be
* forward-declared at the point of X definition;
* - strong link, if Y *HAS* to be fully-defined before X can be defined.
*
* The rule is as follows. Given a chain of BTF types from X to Y, if there is
* BTF_KIND_PTR type in the chain and at least one non-anonymous type
* Z (excluding X, including Y), then link is weak. Otherwise, it's strong.
* Weak/strong relationship is determined recursively during DFS traversal and
* is returned as a result from btf_dump_order_type().
*
* btf_dump_order_type() is trying to avoid unnecessary forward declarations,
* but it is not guaranteeing that no extraneous forward declarations will be
* emitted.
*
* To avoid extra work, algorithm marks some of BTF types as ORDERED, when
* it's done with them, but not for all (e.g., VOLATILE, CONST, RESTRICT,
* ARRAY, FUNC_PROTO), as weak/strong semantics for those depends on the
* entire graph path, so depending where from one came to that BTF type, it
* might cause weak or strong ordering. For types like STRUCT/UNION/INT/ENUM,
* once they are processed, there is no need to do it again, so they are
* marked as ORDERED. We can mark PTR as ORDERED as well, as it semi-forces
* weak link, unless subsequent referenced STRUCT/UNION/ENUM is anonymous. But
* in any case, once those are processed, no need to do it again, as the
* result won't change.
*
* Returns:
* - 1, if type is part of strong link (so there is strong topological
* ordering requirements);
* - 0, if type is part of weak link (so can be satisfied through forward
* declaration);
* - <0, on error (e.g., unsatisfiable type loop detected).
*/
static int btf_dump_order_type(struct btf_dump *d, __u32 id, bool through_ptr)
{
/*
* Order state is used to detect strong link cycles, but only for BTF
* kinds that are or could be an independent definition (i.e.,
* stand-alone fwd decl, enum, typedef, struct, union). Ptrs, arrays,
* func_protos, modifiers are just means to get to these definitions.
* Int/void don't need definitions, they are assumed to be always
* properly defined. We also ignore datasec, var, and funcs for now.
* So for all non-defining kinds, we never even set ordering state,
* for defining kinds we set ORDERING and subsequently ORDERED if it
* forms a strong link.
*/
struct btf_dump_type_aux_state *tstate = &d->type_states[id];
const struct btf_type *t;
__u16 kind, vlen;
int err, i;
/* return true, letting typedefs know that it's ok to be emitted */
if (tstate->order_state == ORDERED)
return 1;
t = btf__type_by_id(d->btf, id);
kind = btf_kind_of(t);
if (tstate->order_state == ORDERING) {
/* type loop, but resolvable through fwd declaration */
if ((kind == BTF_KIND_STRUCT || kind == BTF_KIND_UNION) &&
through_ptr && t->name_off != 0)
return 0;
pr_warning("unsatisfiable type cycle, id:[%u]\n", id);
return -ELOOP;
}
switch (kind) {
case BTF_KIND_INT:
tstate->order_state = ORDERED;
return 0;
case BTF_KIND_PTR:
err = btf_dump_order_type(d, t->type, true);
tstate->order_state = ORDERED;
return err;
case BTF_KIND_ARRAY: {
const struct btf_array *a = (void *)(t + 1);
return btf_dump_order_type(d, a->type, through_ptr);
}
case BTF_KIND_STRUCT:
case BTF_KIND_UNION: {
const struct btf_member *m = (void *)(t + 1);
/*
* struct/union is part of strong link, only if it's embedded
* (so no ptr in a path) or it's anonymous (so has to be
* defined inline, even if declared through ptr)
*/
if (through_ptr && t->name_off != 0)
return 0;
tstate->order_state = ORDERING;
vlen = btf_vlen_of(t);
for (i = 0; i < vlen; i++, m++) {
err = btf_dump_order_type(d, m->type, false);
if (err < 0)
return err;
}
if (t->name_off != 0) {
err = btf_dump_add_emit_queue_id(d, id);
if (err < 0)
return err;
}
tstate->order_state = ORDERED;
return 1;
}
case BTF_KIND_ENUM:
case BTF_KIND_FWD:
if (t->name_off != 0) {
err = btf_dump_add_emit_queue_id(d, id);
if (err)
return err;
}
tstate->order_state = ORDERED;
return 1;
case BTF_KIND_TYPEDEF: {
int is_strong;
is_strong = btf_dump_order_type(d, t->type, through_ptr);
if (is_strong < 0)
return is_strong;
/* typedef is similar to struct/union w.r.t. fwd-decls */
if (through_ptr && !is_strong)
return 0;
/* typedef is always a named definition */
err = btf_dump_add_emit_queue_id(d, id);
if (err)
return err;
d->type_states[id].order_state = ORDERED;
return 1;
}
case BTF_KIND_VOLATILE:
case BTF_KIND_CONST:
case BTF_KIND_RESTRICT:
return btf_dump_order_type(d, t->type, through_ptr);
case BTF_KIND_FUNC_PROTO: {
const struct btf_param *p = (void *)(t + 1);
bool is_strong;
err = btf_dump_order_type(d, t->type, through_ptr);
if (err < 0)
return err;
is_strong = err > 0;
vlen = btf_vlen_of(t);
for (i = 0; i < vlen; i++, p++) {
err = btf_dump_order_type(d, p->type, through_ptr);
if (err < 0)
return err;
if (err > 0)
is_strong = true;
}
return is_strong;
}
case BTF_KIND_FUNC:
case BTF_KIND_VAR:
case BTF_KIND_DATASEC:
d->type_states[id].order_state = ORDERED;
return 0;
default:
return -EINVAL;
}
}
static void btf_dump_emit_struct_fwd(struct btf_dump *d, __u32 id,
const struct btf_type *t);
static void btf_dump_emit_struct_def(struct btf_dump *d, __u32 id,
const struct btf_type *t, int lvl);
static void btf_dump_emit_enum_fwd(struct btf_dump *d, __u32 id,
const struct btf_type *t);
static void btf_dump_emit_enum_def(struct btf_dump *d, __u32 id,
const struct btf_type *t, int lvl);
static void btf_dump_emit_fwd_def(struct btf_dump *d, __u32 id,
const struct btf_type *t);
static void btf_dump_emit_typedef_def(struct btf_dump *d, __u32 id,
const struct btf_type *t, int lvl);
/* a local view into a shared stack */
struct id_stack {
const __u32 *ids;
int cnt;
};
static void btf_dump_emit_type_decl(struct btf_dump *d, __u32 id,
const char *fname, int lvl);
static void btf_dump_emit_type_chain(struct btf_dump *d,
struct id_stack *decl_stack,
const char *fname, int lvl);
static const char *btf_dump_type_name(struct btf_dump *d, __u32 id);
static const char *btf_dump_ident_name(struct btf_dump *d, __u32 id);
static size_t btf_dump_name_dups(struct btf_dump *d, struct hashmap *name_map,
const char *orig_name);
static bool btf_dump_is_blacklisted(struct btf_dump *d, __u32 id)
{
const struct btf_type *t = btf__type_by_id(d->btf, id);
/* __builtin_va_list is a compiler built-in, which causes compilation
* errors, when compiling w/ different compiler, then used to compile
* original code (e.g., GCC to compile kernel, Clang to use generated
* C header from BTF). As it is built-in, it should be already defined
* properly internally in compiler.
*/
if (t->name_off == 0)
return false;
return strcmp(btf_name_of(d, t->name_off), "__builtin_va_list") == 0;
}
/*
* Emit C-syntax definitions of types from chains of BTF types.
*
* High-level handling of determining necessary forward declarations are handled
* by btf_dump_emit_type() itself, but all nitty-gritty details of emitting type
* declarations/definitions in C syntax are handled by a combo of
* btf_dump_emit_type_decl()/btf_dump_emit_type_chain() w/ delegation to
* corresponding btf_dump_emit_*_{def,fwd}() functions.
*
* We also keep track of "containing struct/union type ID" to determine when
* we reference it from inside and thus can avoid emitting unnecessary forward
* declaration.
*
* This algorithm is designed in such a way, that even if some error occurs
* (either technical, e.g., out of memory, or logical, i.e., malformed BTF
* that doesn't comply to C rules completely), algorithm will try to proceed
* and produce as much meaningful output as possible.
*/
static void btf_dump_emit_type(struct btf_dump *d, __u32 id, __u32 cont_id)
{
struct btf_dump_type_aux_state *tstate = &d->type_states[id];
bool top_level_def = cont_id == 0;
const struct btf_type *t;
__u16 kind;
if (tstate->emit_state == EMITTED)
return;
t = btf__type_by_id(d->btf, id);
kind = btf_kind_of(t);
if (top_level_def && t->name_off == 0) {
pr_warning("unexpected nameless definition, id:[%u]\n", id);
return;
}
if (tstate->emit_state == EMITTING) {
if (tstate->fwd_emitted)
return;
switch (kind) {
case BTF_KIND_STRUCT:
case BTF_KIND_UNION:
/*
* if we are referencing a struct/union that we are
* part of - then no need for fwd declaration
*/
if (id == cont_id)
return;
if (t->name_off == 0) {
pr_warning("anonymous struct/union loop, id:[%u]\n",
id);
return;
}
btf_dump_emit_struct_fwd(d, id, t);
btf_dump_printf(d, ";\n\n");
tstate->fwd_emitted = 1;
break;
case BTF_KIND_TYPEDEF:
/*
* for typedef fwd_emitted means typedef definition
* was emitted, but it can be used only for "weak"
* references through pointer only, not for embedding
*/
if (!btf_dump_is_blacklisted(d, id)) {
btf_dump_emit_typedef_def(d, id, t, 0);
btf_dump_printf(d, ";\n\n");
};
tstate->fwd_emitted = 1;
break;
default:
break;
}
return;
}
switch (kind) {
case BTF_KIND_INT:
tstate->emit_state = EMITTED;
break;
case BTF_KIND_ENUM:
if (top_level_def) {
btf_dump_emit_enum_def(d, id, t, 0);
btf_dump_printf(d, ";\n\n");
}
tstate->emit_state = EMITTED;
break;
case BTF_KIND_PTR:
case BTF_KIND_VOLATILE:
case BTF_KIND_CONST:
case BTF_KIND_RESTRICT:
btf_dump_emit_type(d, t->type, cont_id);
break;
case BTF_KIND_ARRAY: {
const struct btf_array *a = (void *)(t + 1);
btf_dump_emit_type(d, a->type, cont_id);
break;
}
case BTF_KIND_FWD:
btf_dump_emit_fwd_def(d, id, t);
btf_dump_printf(d, ";\n\n");
tstate->emit_state = EMITTED;
break;
case BTF_KIND_TYPEDEF:
tstate->emit_state = EMITTING;
btf_dump_emit_type(d, t->type, id);
/*
* typedef can server as both definition and forward
* declaration; at this stage someone depends on
* typedef as a forward declaration (refers to it
* through pointer), so unless we already did it,
* emit typedef as a forward declaration
*/
if (!tstate->fwd_emitted && !btf_dump_is_blacklisted(d, id)) {
btf_dump_emit_typedef_def(d, id, t, 0);
btf_dump_printf(d, ";\n\n");
}
tstate->emit_state = EMITTED;
break;
case BTF_KIND_STRUCT:
case BTF_KIND_UNION:
tstate->emit_state = EMITTING;
/* if it's a top-level struct/union definition or struct/union
* is anonymous, then in C we'll be emitting all fields and
* their types (as opposed to just `struct X`), so we need to
* make sure that all types, referenced from struct/union
* members have necessary forward-declarations, where
* applicable
*/
if (top_level_def || t->name_off == 0) {
const struct btf_member *m = (void *)(t + 1);
__u16 vlen = btf_vlen_of(t);
int i, new_cont_id;
new_cont_id = t->name_off == 0 ? cont_id : id;
for (i = 0; i < vlen; i++, m++)
btf_dump_emit_type(d, m->type, new_cont_id);
} else if (!tstate->fwd_emitted && id != cont_id) {
btf_dump_emit_struct_fwd(d, id, t);
btf_dump_printf(d, ";\n\n");
tstate->fwd_emitted = 1;
}
if (top_level_def) {
btf_dump_emit_struct_def(d, id, t, 0);
btf_dump_printf(d, ";\n\n");
tstate->emit_state = EMITTED;
} else {
tstate->emit_state = NOT_EMITTED;
}
break;
case BTF_KIND_FUNC_PROTO: {
const struct btf_param *p = (void *)(t + 1);
__u16 vlen = btf_vlen_of(t);
int i;
btf_dump_emit_type(d, t->type, cont_id);
for (i = 0; i < vlen; i++, p++)
btf_dump_emit_type(d, p->type, cont_id);
break;
}
default:
break;
}
}
static int btf_align_of(const struct btf *btf, __u32 id)
{
const struct btf_type *t = btf__type_by_id(btf, id);
__u16 kind = btf_kind_of(t);
switch (kind) {
case BTF_KIND_INT:
case BTF_KIND_ENUM:
return min(sizeof(void *), t->size);
case BTF_KIND_PTR:
return sizeof(void *);
case BTF_KIND_TYPEDEF:
case BTF_KIND_VOLATILE:
case BTF_KIND_CONST:
case BTF_KIND_RESTRICT:
return btf_align_of(btf, t->type);
case BTF_KIND_ARRAY: {
const struct btf_array *a = (void *)(t + 1);
return btf_align_of(btf, a->type);
}
case BTF_KIND_STRUCT:
case BTF_KIND_UNION: {
const struct btf_member *m = (void *)(t + 1);
__u16 vlen = btf_vlen_of(t);
int i, align = 1;
for (i = 0; i < vlen; i++, m++)
align = max(align, btf_align_of(btf, m->type));
return align;
}
default:
pr_warning("unsupported BTF_KIND:%u\n", btf_kind_of(t));
return 1;
}
}
static bool btf_is_struct_packed(const struct btf *btf, __u32 id,
const struct btf_type *t)
{
const struct btf_member *m;
int align, i, bit_sz;
__u16 vlen;
bool kflag;
align = btf_align_of(btf, id);
/* size of a non-packed struct has to be a multiple of its alignment*/
if (t->size % align)
return true;
m = (void *)(t + 1);
kflag = btf_kflag_of(t);
vlen = btf_vlen_of(t);
/* all non-bitfield fields have to be naturally aligned */
for (i = 0; i < vlen; i++, m++) {
align = btf_align_of(btf, m->type);
bit_sz = kflag ? BTF_MEMBER_BITFIELD_SIZE(m->offset) : 0;
if (bit_sz == 0 && m->offset % (8 * align) != 0)
return true;
}
/*
* if original struct was marked as packed, but its layout is
* naturally aligned, we'll detect that it's not packed
*/
return false;
}
static int chip_away_bits(int total, int at_most)
{
return total % at_most ? : at_most;
}
static void btf_dump_emit_bit_padding(const struct btf_dump *d,
int cur_off, int m_off, int m_bit_sz,
int align, int lvl)
{
int off_diff = m_off - cur_off;
int ptr_bits = sizeof(void *) * 8;
if (off_diff <= 0)
/* no gap */
return;
if (m_bit_sz == 0 && off_diff < align * 8)
/* natural padding will take care of a gap */
return;
while (off_diff > 0) {
const char *pad_type;
int pad_bits;
if (ptr_bits > 32 && off_diff > 32) {
pad_type = "long";
pad_bits = chip_away_bits(off_diff, ptr_bits);
} else if (off_diff > 16) {
pad_type = "int";
pad_bits = chip_away_bits(off_diff, 32);
} else if (off_diff > 8) {
pad_type = "short";
pad_bits = chip_away_bits(off_diff, 16);
} else {
pad_type = "char";
pad_bits = chip_away_bits(off_diff, 8);
}
btf_dump_printf(d, "\n%s%s: %d;", pfx(lvl), pad_type, pad_bits);
off_diff -= pad_bits;
}
}
static void btf_dump_emit_struct_fwd(struct btf_dump *d, __u32 id,
const struct btf_type *t)
{
btf_dump_printf(d, "%s %s",
btf_kind_of(t) == BTF_KIND_STRUCT ? "struct" : "union",
btf_dump_type_name(d, id));
}
static void btf_dump_emit_struct_def(struct btf_dump *d,
__u32 id,
const struct btf_type *t,
int lvl)
{
const struct btf_member *m = (void *)(t + 1);
bool kflag = btf_kflag_of(t), is_struct;
int align, i, packed, off = 0;
__u16 vlen = btf_vlen_of(t);
is_struct = btf_kind_of(t) == BTF_KIND_STRUCT;
packed = is_struct ? btf_is_struct_packed(d->btf, id, t) : 0;
align = packed ? 1 : btf_align_of(d->btf, id);
btf_dump_printf(d, "%s%s%s {",
is_struct ? "struct" : "union",
t->name_off ? " " : "",
btf_dump_type_name(d, id));
for (i = 0; i < vlen; i++, m++) {
const char *fname;
int m_off, m_sz;
fname = btf_name_of(d, m->name_off);
m_sz = kflag ? BTF_MEMBER_BITFIELD_SIZE(m->offset) : 0;
m_off = kflag ? BTF_MEMBER_BIT_OFFSET(m->offset) : m->offset;
align = packed ? 1 : btf_align_of(d->btf, m->type);
btf_dump_emit_bit_padding(d, off, m_off, m_sz, align, lvl + 1);
btf_dump_printf(d, "\n%s", pfx(lvl + 1));
btf_dump_emit_type_decl(d, m->type, fname, lvl + 1);
if (m_sz) {
btf_dump_printf(d, ": %d", m_sz);
off = m_off + m_sz;
} else {
m_sz = max(0, btf__resolve_size(d->btf, m->type));
off = m_off + m_sz * 8;
}
btf_dump_printf(d, ";");
}
if (vlen)
btf_dump_printf(d, "\n");
btf_dump_printf(d, "%s}", pfx(lvl));
if (packed)
btf_dump_printf(d, " __attribute__((packed))");
}
static void btf_dump_emit_enum_fwd(struct btf_dump *d, __u32 id,
const struct btf_type *t)
{
btf_dump_printf(d, "enum %s", btf_dump_type_name(d, id));
}
static void btf_dump_emit_enum_def(struct btf_dump *d, __u32 id,
const struct btf_type *t,
int lvl)
{
const struct btf_enum *v = (void *)(t+1);
__u16 vlen = btf_vlen_of(t);
const char *name;
size_t dup_cnt;
int i;
btf_dump_printf(d, "enum%s%s",
t->name_off ? " " : "",
btf_dump_type_name(d, id));
if (vlen) {
btf_dump_printf(d, " {");
for (i = 0; i < vlen; i++, v++) {
name = btf_name_of(d, v->name_off);
/* enumerators share namespace with typedef idents */
dup_cnt = btf_dump_name_dups(d, d->ident_names, name);
if (dup_cnt > 1) {
btf_dump_printf(d, "\n%s%s___%zu = %d,",
pfx(lvl + 1), name, dup_cnt,
(__s32)v->val);
} else {
btf_dump_printf(d, "\n%s%s = %d,",
pfx(lvl + 1), name,
(__s32)v->val);
}
}
btf_dump_printf(d, "\n%s}", pfx(lvl));
}
}
static void btf_dump_emit_fwd_def(struct btf_dump *d, __u32 id,
const struct btf_type *t)
{
const char *name = btf_dump_type_name(d, id);
if (btf_kflag_of(t))
btf_dump_printf(d, "union %s", name);
else
btf_dump_printf(d, "struct %s", name);
}
static void btf_dump_emit_typedef_def(struct btf_dump *d, __u32 id,
const struct btf_type *t, int lvl)
{
const char *name = btf_dump_ident_name(d, id);
btf_dump_printf(d, "typedef ");
btf_dump_emit_type_decl(d, t->type, name, lvl);
}
static int btf_dump_push_decl_stack_id(struct btf_dump *d, __u32 id)
{
__u32 *new_stack;
size_t new_cap;
if (d->decl_stack_cnt >= d->decl_stack_cap) {
new_cap = max(16, d->decl_stack_cap * 3 / 2);
new_stack = realloc(d->decl_stack,
new_cap * sizeof(new_stack[0]));
if (!new_stack)
return -ENOMEM;
d->decl_stack = new_stack;
d->decl_stack_cap = new_cap;
}
d->decl_stack[d->decl_stack_cnt++] = id;
return 0;
}
/*
* Emit type declaration (e.g., field type declaration in a struct or argument
* declaration in function prototype) in correct C syntax.
*
* For most types it's trivial, but there are few quirky type declaration
* cases worth mentioning:
* - function prototypes (especially nesting of function prototypes);
* - arrays;
* - const/volatile/restrict for pointers vs other types.
*
* For a good discussion of *PARSING* C syntax (as a human), see
* Peter van der Linden's "Expert C Programming: Deep C Secrets",
* Ch.3 "Unscrambling Declarations in C".
*
* It won't help with BTF to C conversion much, though, as it's an opposite
* problem. So we came up with this algorithm in reverse to van der Linden's
* parsing algorithm. It goes from structured BTF representation of type
* declaration to a valid compilable C syntax.
*
* For instance, consider this C typedef:
* typedef const int * const * arr[10] arr_t;
* It will be represented in BTF with this chain of BTF types:
* [typedef] -> [array] -> [ptr] -> [const] -> [ptr] -> [const] -> [int]
*
* Notice how [const] modifier always goes before type it modifies in BTF type
* graph, but in C syntax, const/volatile/restrict modifiers are written to
* the right of pointers, but to the left of other types. There are also other
* quirks, like function pointers, arrays of them, functions returning other
* functions, etc.
*
* We handle that by pushing all the types to a stack, until we hit "terminal"
* type (int/enum/struct/union/fwd). Then depending on the kind of a type on
* top of a stack, modifiers are handled differently. Array/function pointers
* have also wildly different syntax and how nesting of them are done. See
* code for authoritative definition.
*
* To avoid allocating new stack for each independent chain of BTF types, we
* share one bigger stack, with each chain working only on its own local view
* of a stack frame. Some care is required to "pop" stack frames after
* processing type declaration chain.
*/
static void btf_dump_emit_type_decl(struct btf_dump *d, __u32 id,
const char *fname, int lvl)
{
struct id_stack decl_stack;
const struct btf_type *t;
int err, stack_start;
__u16 kind;
stack_start = d->decl_stack_cnt;
for (;;) {
err = btf_dump_push_decl_stack_id(d, id);
if (err < 0) {
/*
* if we don't have enough memory for entire type decl
* chain, restore stack, emit warning, and try to
* proceed nevertheless
*/
pr_warning("not enough memory for decl stack:%d", err);
d->decl_stack_cnt = stack_start;
return;
}
/* VOID */
if (id == 0)
break;
t = btf__type_by_id(d->btf, id);
kind = btf_kind_of(t);
switch (kind) {
case BTF_KIND_PTR:
case BTF_KIND_VOLATILE:
case BTF_KIND_CONST:
case BTF_KIND_RESTRICT:
case BTF_KIND_FUNC_PROTO:
id = t->type;
break;
case BTF_KIND_ARRAY: {
const struct btf_array *a = (void *)(t + 1);
id = a->type;
break;
}
case BTF_KIND_INT:
case BTF_KIND_ENUM:
case BTF_KIND_FWD:
case BTF_KIND_STRUCT:
case BTF_KIND_UNION:
case BTF_KIND_TYPEDEF:
goto done;
default:
pr_warning("unexpected type in decl chain, kind:%u, id:[%u]\n",
kind, id);
goto done;
}
}
done:
/*
* We might be inside a chain of declarations (e.g., array of function
* pointers returning anonymous (so inlined) structs, having another
* array field). Each of those needs its own "stack frame" to handle
* emitting of declarations. Those stack frames are non-overlapping
* portions of shared btf_dump->decl_stack. To make it a bit nicer to
* handle this set of nested stacks, we create a view corresponding to
* our own "stack frame" and work with it as an independent stack.
* We'll need to clean up after emit_type_chain() returns, though.
*/
decl_stack.ids = d->decl_stack + stack_start;
decl_stack.cnt = d->decl_stack_cnt - stack_start;
btf_dump_emit_type_chain(d, &decl_stack, fname, lvl);
/*
* emit_type_chain() guarantees that it will pop its entire decl_stack
* frame before returning. But it works with a read-only view into
* decl_stack, so it doesn't actually pop anything from the
* perspective of shared btf_dump->decl_stack, per se. We need to
* reset decl_stack state to how it was before us to avoid it growing
* all the time.
*/
d->decl_stack_cnt = stack_start;
}
static void btf_dump_emit_mods(struct btf_dump *d, struct id_stack *decl_stack)
{
const struct btf_type *t;
__u32 id;
while (decl_stack->cnt) {
id = decl_stack->ids[decl_stack->cnt - 1];
t = btf__type_by_id(d->btf, id);
switch (btf_kind_of(t)) {
case BTF_KIND_VOLATILE:
btf_dump_printf(d, "volatile ");
break;
case BTF_KIND_CONST:
btf_dump_printf(d, "const ");
break;
case BTF_KIND_RESTRICT:
btf_dump_printf(d, "restrict ");
break;
default:
return;
}
decl_stack->cnt--;
}
}
static bool btf_is_mod_kind(const struct btf *btf, __u32 id)
{
const struct btf_type *t = btf__type_by_id(btf, id);
switch (btf_kind_of(t)) {
case BTF_KIND_VOLATILE:
case BTF_KIND_CONST:
case BTF_KIND_RESTRICT:
return true;
default:
return false;
}
}
static void btf_dump_emit_name(const struct btf_dump *d,
const char *name, bool last_was_ptr)
{
bool separate = name[0] && !last_was_ptr;
btf_dump_printf(d, "%s%s", separate ? " " : "", name);
}
static void btf_dump_emit_type_chain(struct btf_dump *d,
struct id_stack *decls,
const char *fname, int lvl)
{
/*
* last_was_ptr is used to determine if we need to separate pointer
* asterisk (*) from previous part of type signature with space, so
* that we get `int ***`, instead of `int * * *`. We default to true
* for cases where we have single pointer in a chain. E.g., in ptr ->
* func_proto case. func_proto will start a new emit_type_chain call
* with just ptr, which should be emitted as (*) or (*<fname>), so we
* don't want to prepend space for that last pointer.
*/
bool last_was_ptr = true;
const struct btf_type *t;
const char *name;
__u16 kind;
__u32 id;
while (decls->cnt) {
id = decls->ids[--decls->cnt];
if (id == 0) {
/* VOID is a special snowflake */
btf_dump_emit_mods(d, decls);
btf_dump_printf(d, "void");
last_was_ptr = false;
continue;
}
t = btf__type_by_id(d->btf, id);
kind = btf_kind_of(t);
switch (kind) {
case BTF_KIND_INT:
btf_dump_emit_mods(d, decls);
name = btf_name_of(d, t->name_off);
btf_dump_printf(d, "%s", name);
break;
case BTF_KIND_STRUCT:
case BTF_KIND_UNION:
btf_dump_emit_mods(d, decls);
/* inline anonymous struct/union */
if (t->name_off == 0)
btf_dump_emit_struct_def(d, id, t, lvl);
else
btf_dump_emit_struct_fwd(d, id, t);
break;
case BTF_KIND_ENUM:
btf_dump_emit_mods(d, decls);
/* inline anonymous enum */
if (t->name_off == 0)
btf_dump_emit_enum_def(d, id, t, lvl);
else
btf_dump_emit_enum_fwd(d, id, t);
break;
case BTF_KIND_FWD:
btf_dump_emit_mods(d, decls);
btf_dump_emit_fwd_def(d, id, t);
break;
case BTF_KIND_TYPEDEF:
btf_dump_emit_mods(d, decls);
btf_dump_printf(d, "%s", btf_dump_ident_name(d, id));
break;
case BTF_KIND_PTR:
btf_dump_printf(d, "%s", last_was_ptr ? "*" : " *");
break;
case BTF_KIND_VOLATILE:
btf_dump_printf(d, " volatile");
break;
case BTF_KIND_CONST:
btf_dump_printf(d, " const");
break;
case BTF_KIND_RESTRICT:
btf_dump_printf(d, " restrict");
break;
case BTF_KIND_ARRAY: {
const struct btf_array *a = (void *)(t + 1);
const struct btf_type *next_t;
__u32 next_id;
bool multidim;
/*
* GCC has a bug
* (https://gcc.gnu.org/bugzilla/show_bug.cgi?id=8354)
* which causes it to emit extra const/volatile
* modifiers for an array, if array's element type has
* const/volatile modifiers. Clang doesn't do that.
* In general, it doesn't seem very meaningful to have
* a const/volatile modifier for array, so we are
* going to silently skip them here.
*/
while (decls->cnt) {
next_id = decls->ids[decls->cnt - 1];
if (btf_is_mod_kind(d->btf, next_id))
decls->cnt--;
else
break;
}
if (decls->cnt == 0) {
btf_dump_emit_name(d, fname, last_was_ptr);
btf_dump_printf(d, "[%u]", a->nelems);
return;
}
next_t = btf__type_by_id(d->btf, next_id);
multidim = btf_kind_of(next_t) == BTF_KIND_ARRAY;
/* we need space if we have named non-pointer */
if (fname[0] && !last_was_ptr)
btf_dump_printf(d, " ");
/* no parentheses for multi-dimensional array */
if (!multidim)
btf_dump_printf(d, "(");
btf_dump_emit_type_chain(d, decls, fname, lvl);
if (!multidim)
btf_dump_printf(d, ")");
btf_dump_printf(d, "[%u]", a->nelems);
return;
}
case BTF_KIND_FUNC_PROTO: {
const struct btf_param *p = (void *)(t + 1);
__u16 vlen = btf_vlen_of(t);
int i;
btf_dump_emit_mods(d, decls);
if (decls->cnt) {
btf_dump_printf(d, " (");
btf_dump_emit_type_chain(d, decls, fname, lvl);
btf_dump_printf(d, ")");
} else {
btf_dump_emit_name(d, fname, last_was_ptr);
}
btf_dump_printf(d, "(");
/*
* Clang for BPF target generates func_proto with no
* args as a func_proto with a single void arg (e.g.,
* `int (*f)(void)` vs just `int (*f)()`). We are
* going to pretend there are no args for such case.
*/
if (vlen == 1 && p->type == 0) {
btf_dump_printf(d, ")");
return;
}
for (i = 0; i < vlen; i++, p++) {
if (i > 0)
btf_dump_printf(d, ", ");
/* last arg of type void is vararg */
if (i == vlen - 1 && p->type == 0) {
btf_dump_printf(d, "...");
break;
}
name = btf_name_of(d, p->name_off);
btf_dump_emit_type_decl(d, p->type, name, lvl);
}
btf_dump_printf(d, ")");
return;
}
default:
pr_warning("unexpected type in decl chain, kind:%u, id:[%u]\n",
kind, id);
return;
}
last_was_ptr = kind == BTF_KIND_PTR;
}
btf_dump_emit_name(d, fname, last_was_ptr);
}
/* return number of duplicates (occurrences) of a given name */
static size_t btf_dump_name_dups(struct btf_dump *d, struct hashmap *name_map,
const char *orig_name)
{
size_t dup_cnt = 0;
hashmap__find(name_map, orig_name, (void **)&dup_cnt);
dup_cnt++;
hashmap__set(name_map, orig_name, (void *)dup_cnt, NULL, NULL);
return dup_cnt;
}
static const char *btf_dump_resolve_name(struct btf_dump *d, __u32 id,
struct hashmap *name_map)
{
struct btf_dump_type_aux_state *s = &d->type_states[id];
const struct btf_type *t = btf__type_by_id(d->btf, id);
const char *orig_name = btf_name_of(d, t->name_off);
const char **cached_name = &d->cached_names[id];
size_t dup_cnt;
if (t->name_off == 0)
return "";
if (s->name_resolved)
return *cached_name ? *cached_name : orig_name;
dup_cnt = btf_dump_name_dups(d, name_map, orig_name);
if (dup_cnt > 1) {
const size_t max_len = 256;
char new_name[max_len];
snprintf(new_name, max_len, "%s___%zu", orig_name, dup_cnt);
*cached_name = strdup(new_name);
}
s->name_resolved = 1;
return *cached_name ? *cached_name : orig_name;
}
static const char *btf_dump_type_name(struct btf_dump *d, __u32 id)
{
return btf_dump_resolve_name(d, id, d->type_names);
}
static const char *btf_dump_ident_name(struct btf_dump *d, __u32 id)
{
return btf_dump_resolve_name(d, id, d->ident_names);
}
// SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause)
/*
* Generic non-thread safe hash map implementation.
*
* Copyright (c) 2019 Facebook
*/
#include <stdint.h>
#include <stdlib.h>
#include <stdio.h>
#include <errno.h>
#include <linux/err.h>
#include "hashmap.h"
/* start with 4 buckets */
#define HASHMAP_MIN_CAP_BITS 2
static void hashmap_add_entry(struct hashmap_entry **pprev,
struct hashmap_entry *entry)
{
entry->next = *pprev;
*pprev = entry;
}
static void hashmap_del_entry(struct hashmap_entry **pprev,
struct hashmap_entry *entry)
{
*pprev = entry->next;
entry->next = NULL;
}
void hashmap__init(struct hashmap *map, hashmap_hash_fn hash_fn,
hashmap_equal_fn equal_fn, void *ctx)
{
map->hash_fn = hash_fn;
map->equal_fn = equal_fn;
map->ctx = ctx;
map->buckets = NULL;
map->cap = 0;
map->cap_bits = 0;
map->sz = 0;
}
struct hashmap *hashmap__new(hashmap_hash_fn hash_fn,
hashmap_equal_fn equal_fn,
void *ctx)
{
struct hashmap *map = malloc(sizeof(struct hashmap));
if (!map)
return ERR_PTR(-ENOMEM);
hashmap__init(map, hash_fn, equal_fn, ctx);
return map;
}
void hashmap__clear(struct hashmap *map)
{
free(map->buckets);
map->cap = map->cap_bits = map->sz = 0;
}
void hashmap__free(struct hashmap *map)
{
if (!map)
return;
hashmap__clear(map);
free(map);
}
size_t hashmap__size(const struct hashmap *map)
{
return map->sz;
}
size_t hashmap__capacity(const struct hashmap *map)
{
return map->cap;
}
static bool hashmap_needs_to_grow(struct hashmap *map)
{
/* grow if empty or more than 75% filled */
return (map->cap == 0) || ((map->sz + 1) * 4 / 3 > map->cap);
}
static int hashmap_grow(struct hashmap *map)
{
struct hashmap_entry **new_buckets;
struct hashmap_entry *cur, *tmp;
size_t new_cap_bits, new_cap;
size_t h;
int bkt;
new_cap_bits = map->cap_bits + 1;
if (new_cap_bits < HASHMAP_MIN_CAP_BITS)
new_cap_bits = HASHMAP_MIN_CAP_BITS;
new_cap = 1UL << new_cap_bits;
new_buckets = calloc(new_cap, sizeof(new_buckets[0]));
if (!new_buckets)
return -ENOMEM;
hashmap__for_each_entry_safe(map, cur, tmp, bkt) {
h = hash_bits(map->hash_fn(cur->key, map->ctx), new_cap_bits);
hashmap_add_entry(&new_buckets[h], cur);
}
map->cap = new_cap;
map->cap_bits = new_cap_bits;
free(map->buckets);
map->buckets = new_buckets;
return 0;
}
static bool hashmap_find_entry(const struct hashmap *map,
const void *key, size_t hash,
struct hashmap_entry ***pprev,
struct hashmap_entry **entry)
{
struct hashmap_entry *cur, **prev_ptr;
if (!map->buckets)
return false;
for (prev_ptr = &map->buckets[hash], cur = *prev_ptr;
cur;
prev_ptr = &cur->next, cur = cur->next) {
if (map->equal_fn(cur->key, key, map->ctx)) {
if (pprev)
*pprev = prev_ptr;
*entry = cur;
return true;
}
}
return false;
}
int hashmap__insert(struct hashmap *map, const void *key, void *value,
enum hashmap_insert_strategy strategy,
const void **old_key, void **old_value)
{
struct hashmap_entry *entry;
size_t h;
int err;
if (old_key)
*old_key = NULL;
if (old_value)
*old_value = NULL;
h = hash_bits(map->hash_fn(key, map->ctx), map->cap_bits);
if (strategy != HASHMAP_APPEND &&
hashmap_find_entry(map, key, h, NULL, &entry)) {
if (old_key)
*old_key = entry->key;
if (old_value)
*old_value = entry->value;
if (strategy == HASHMAP_SET || strategy == HASHMAP_UPDATE) {
entry->key = key;
entry->value = value;
return 0;
} else if (strategy == HASHMAP_ADD) {
return -EEXIST;
}
}
if (strategy == HASHMAP_UPDATE)
return -ENOENT;
if (hashmap_needs_to_grow(map)) {
err = hashmap_grow(map);
if (err)
return err;
h = hash_bits(map->hash_fn(key, map->ctx), map->cap_bits);
}
entry = malloc(sizeof(struct hashmap_entry));
if (!entry)
return -ENOMEM;
entry->key = key;
entry->value = value;
hashmap_add_entry(&map->buckets[h], entry);
map->sz++;
return 0;
}
bool hashmap__find(const struct hashmap *map, const void *key, void **value)
{
struct hashmap_entry *entry;
size_t h;
h = hash_bits(map->hash_fn(key, map->ctx), map->cap_bits);
if (!hashmap_find_entry(map, key, h, NULL, &entry))
return false;
if (value)
*value = entry->value;
return true;
}
bool hashmap__delete(struct hashmap *map, const void *key,
const void **old_key, void **old_value)
{
struct hashmap_entry **pprev, *entry;
size_t h;
h = hash_bits(map->hash_fn(key, map->ctx), map->cap_bits);
if (!hashmap_find_entry(map, key, h, &pprev, &entry))
return false;
if (old_key)
*old_key = entry->key;
if (old_value)
*old_value = entry->value;
hashmap_del_entry(pprev, entry);
free(entry);
map->sz--;
return true;
}
/* SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause) */
/*
* Generic non-thread safe hash map implementation.
*
* Copyright (c) 2019 Facebook
*/
#ifndef __LIBBPF_HASHMAP_H
#define __LIBBPF_HASHMAP_H
#include <stdbool.h>
#include <stddef.h>
#include "libbpf_internal.h"
static inline size_t hash_bits(size_t h, int bits)
{
/* shuffle bits and return requested number of upper bits */
return (h * 11400714819323198485llu) >> (__WORDSIZE - bits);
}
typedef size_t (*hashmap_hash_fn)(const void *key, void *ctx);
typedef bool (*hashmap_equal_fn)(const void *key1, const void *key2, void *ctx);
struct hashmap_entry {
const void *key;
void *value;
struct hashmap_entry *next;
};
struct hashmap {
hashmap_hash_fn hash_fn;
hashmap_equal_fn equal_fn;
void *ctx;
struct hashmap_entry **buckets;
size_t cap;
size_t cap_bits;
size_t sz;
};
#define HASHMAP_INIT(hash_fn, equal_fn, ctx) { \
.hash_fn = (hash_fn), \
.equal_fn = (equal_fn), \
.ctx = (ctx), \
.buckets = NULL, \
.cap = 0, \
.cap_bits = 0, \
.sz = 0, \
}
void hashmap__init(struct hashmap *map, hashmap_hash_fn hash_fn,
hashmap_equal_fn equal_fn, void *ctx);
struct hashmap *hashmap__new(hashmap_hash_fn hash_fn,
hashmap_equal_fn equal_fn,
void *ctx);
void hashmap__clear(struct hashmap *map);
void hashmap__free(struct hashmap *map);
size_t hashmap__size(const struct hashmap *map);
size_t hashmap__capacity(const struct hashmap *map);
/*
* Hashmap insertion strategy:
* - HASHMAP_ADD - only add key/value if key doesn't exist yet;
* - HASHMAP_SET - add key/value pair if key doesn't exist yet; otherwise,
* update value;
* - HASHMAP_UPDATE - update value, if key already exists; otherwise, do
* nothing and return -ENOENT;
* - HASHMAP_APPEND - always add key/value pair, even if key already exists.
* This turns hashmap into a multimap by allowing multiple values to be
* associated with the same key. Most useful read API for such hashmap is
* hashmap__for_each_key_entry() iteration. If hashmap__find() is still
* used, it will return last inserted key/value entry (first in a bucket
* chain).
*/
enum hashmap_insert_strategy {
HASHMAP_ADD,
HASHMAP_SET,
HASHMAP_UPDATE,
HASHMAP_APPEND,
};
/*
* hashmap__insert() adds key/value entry w/ various semantics, depending on
* provided strategy value. If a given key/value pair replaced already
* existing key/value pair, both old key and old value will be returned
* through old_key and old_value to allow calling code do proper memory
* management.
*/
int hashmap__insert(struct hashmap *map, const void *key, void *value,
enum hashmap_insert_strategy strategy,
const void **old_key, void **old_value);
static inline int hashmap__add(struct hashmap *map,
const void *key, void *value)
{
return hashmap__insert(map, key, value, HASHMAP_ADD, NULL, NULL);
}
static inline int hashmap__set(struct hashmap *map,
const void *key, void *value,
const void **old_key, void **old_value)
{
return hashmap__insert(map, key, value, HASHMAP_SET,
old_key, old_value);
}
static inline int hashmap__update(struct hashmap *map,
const void *key, void *value,
const void **old_key, void **old_value)
{
return hashmap__insert(map, key, value, HASHMAP_UPDATE,
old_key, old_value);
}
static inline int hashmap__append(struct hashmap *map,
const void *key, void *value)
{
return hashmap__insert(map, key, value, HASHMAP_APPEND, NULL, NULL);
}
bool hashmap__delete(struct hashmap *map, const void *key,
const void **old_key, void **old_value);
bool hashmap__find(const struct hashmap *map, const void *key, void **value);
/*
* hashmap__for_each_entry - iterate over all entries in hashmap
* @map: hashmap to iterate
* @cur: struct hashmap_entry * used as a loop cursor
* @bkt: integer used as a bucket loop cursor
*/
#define hashmap__for_each_entry(map, cur, bkt) \
for (bkt = 0; bkt < map->cap; bkt++) \
for (cur = map->buckets[bkt]; cur; cur = cur->next)
/*
* hashmap__for_each_entry_safe - iterate over all entries in hashmap, safe
* against removals
* @map: hashmap to iterate
* @cur: struct hashmap_entry * used as a loop cursor
* @tmp: struct hashmap_entry * used as a temporary next cursor storage
* @bkt: integer used as a bucket loop cursor
*/
#define hashmap__for_each_entry_safe(map, cur, tmp, bkt) \
for (bkt = 0; bkt < map->cap; bkt++) \
for (cur = map->buckets[bkt]; \
cur && ({tmp = cur->next; true; }); \
cur = tmp)
/*
* hashmap__for_each_key_entry - iterate over entries associated with given key
* @map: hashmap to iterate
* @cur: struct hashmap_entry * used as a loop cursor
* @key: key to iterate entries for
*/
#define hashmap__for_each_key_entry(map, cur, _key) \
for (cur = ({ size_t bkt = hash_bits(map->hash_fn((_key), map->ctx),\
map->cap_bits); \
map->buckets ? map->buckets[bkt] : NULL; }); \
cur; \
cur = cur->next) \
if (map->equal_fn(cur->key, (_key), map->ctx))
#define hashmap__for_each_key_entry_safe(map, cur, tmp, _key) \
for (cur = ({ size_t bkt = hash_bits(map->hash_fn((_key), map->ctx),\
map->cap_bits); \
cur = map->buckets ? map->buckets[bkt] : NULL; }); \
cur && ({ tmp = cur->next; true; }); \
cur = tmp) \
if (map->equal_fn(cur->key, (_key), map->ctx))
#endif /* __LIBBPF_HASHMAP_H */
...@@ -164,3 +164,11 @@ LIBBPF_0.0.3 { ...@@ -164,3 +164,11 @@ LIBBPF_0.0.3 {
bpf_map_freeze; bpf_map_freeze;
btf__finalize_data; btf__finalize_data;
} LIBBPF_0.0.2; } LIBBPF_0.0.2;
LIBBPF_0.0.4 {
global:
btf_dump__dump_type;
btf_dump__free;
btf_dump__new;
btf__parse_elf;
} LIBBPF_0.0.3;
...@@ -9,6 +9,8 @@ ...@@ -9,6 +9,8 @@
#ifndef __LIBBPF_LIBBPF_INTERNAL_H #ifndef __LIBBPF_LIBBPF_INTERNAL_H
#define __LIBBPF_LIBBPF_INTERNAL_H #define __LIBBPF_LIBBPF_INTERNAL_H
#include "libbpf.h"
#define BTF_INFO_ENC(kind, kind_flag, vlen) \ #define BTF_INFO_ENC(kind, kind_flag, vlen) \
((!!(kind_flag) << 31) | ((kind) << 24) | ((vlen) & BTF_MAX_VLEN)) ((!!(kind_flag) << 31) | ((kind) << 24) | ((vlen) & BTF_MAX_VLEN))
#define BTF_TYPE_ENC(name, info, size_or_type) (name), (info), (size_or_type) #define BTF_TYPE_ENC(name, info, size_or_type) (name), (info), (size_or_type)
......
...@@ -35,3 +35,5 @@ test_sysctl ...@@ -35,3 +35,5 @@ test_sysctl
alu32 alu32
libbpf.pc libbpf.pc
libbpf.so.* libbpf.so.*
test_hashmap
test_btf_dump
...@@ -23,7 +23,8 @@ TEST_GEN_PROGS = test_verifier test_tag test_maps test_lru_map test_lpm_map test ...@@ -23,7 +23,8 @@ TEST_GEN_PROGS = test_verifier test_tag test_maps test_lru_map test_lpm_map test
test_align test_verifier_log test_dev_cgroup test_tcpbpf_user \ test_align test_verifier_log test_dev_cgroup test_tcpbpf_user \
test_sock test_btf test_sockmap test_lirc_mode2_user get_cgroup_id_user \ test_sock test_btf test_sockmap test_lirc_mode2_user get_cgroup_id_user \
test_socket_cookie test_cgroup_storage test_select_reuseport test_section_names \ test_socket_cookie test_cgroup_storage test_select_reuseport test_section_names \
test_netcnt test_tcpnotify_user test_sock_fields test_sysctl test_netcnt test_tcpnotify_user test_sock_fields test_sysctl test_hashmap \
test_btf_dump
BPF_OBJ_FILES = $(patsubst %.c,%.o, $(notdir $(wildcard progs/*.c))) BPF_OBJ_FILES = $(patsubst %.c,%.o, $(notdir $(wildcard progs/*.c)))
TEST_GEN_FILES = $(BPF_OBJ_FILES) TEST_GEN_FILES = $(BPF_OBJ_FILES)
......
// SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause)
/*
* BTF-to-C dumper tests for bitfield.
*
* Copyright (c) 2019 Facebook
*/
#include <stdbool.h>
/* ----- START-EXPECTED-OUTPUT ----- */
/*
*struct bitfields_only_mixed_types {
* int a: 3;
* long int b: 2;
* _Bool c: 1;
* enum {
* A = 0,
* B = 1,
* } d: 1;
* short e: 5;
* int: 20;
* unsigned int f: 30;
*};
*
*/
/* ------ END-EXPECTED-OUTPUT ------ */
struct bitfields_only_mixed_types {
int a: 3;
long int b: 2;
bool c: 1; /* it's really a _Bool type */
enum {
A, /* A = 0, dumper is very explicit */
B, /* B = 1, same */
} d: 1;
short e: 5;
/* 20-bit padding here */
unsigned f: 30; /* this gets aligned on 4-byte boundary */
};
/* ----- START-EXPECTED-OUTPUT ----- */
/*
*struct bitfield_mixed_with_others {
* char: 4;
* int a: 4;
* short b;
* long int c;
* long int d: 8;
* int e;
* int f;
*};
*
*/
/* ------ END-EXPECTED-OUTPUT ------ */
struct bitfield_mixed_with_others {
long: 4; /* char is enough as a backing field */
int a: 4;
/* 8-bit implicit padding */
short b; /* combined with previous bitfield */
/* 4 more bytes of implicit padding */
long c;
long d: 8;
/* 24 bits implicit padding */
int e; /* combined with previous bitfield */
int f;
/* 4 bytes of padding */
};
/* ----- START-EXPECTED-OUTPUT ----- */
/*
*struct bitfield_flushed {
* int a: 4;
* long: 60;
* long int b: 16;
*};
*
*/
/* ------ END-EXPECTED-OUTPUT ------ */
struct bitfield_flushed {
int a: 4;
long: 0; /* flush until next natural alignment boundary */
long b: 16;
};
int f(struct {
struct bitfields_only_mixed_types _1;
struct bitfield_mixed_with_others _2;
struct bitfield_flushed _3;
} *_)
{
return 0;
}
// SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause)
/*
* BTF-to-C dumper test for multi-dimensional array output.
*
* Copyright (c) 2019 Facebook
*/
/* ----- START-EXPECTED-OUTPUT ----- */
typedef int arr_t[2];
typedef int multiarr_t[3][4][5];
typedef int *ptr_arr_t[6];
typedef int *ptr_multiarr_t[7][8][9][10];
typedef int * (*fn_ptr_arr_t[11])();
typedef int * (*fn_ptr_multiarr_t[12][13])();
struct root_struct {
arr_t _1;
multiarr_t _2;
ptr_arr_t _3;
ptr_multiarr_t _4;
fn_ptr_arr_t _5;
fn_ptr_multiarr_t _6;
};
/* ------ END-EXPECTED-OUTPUT ------ */
int f(struct root_struct *s)
{
return 0;
}
// SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause)
/*
* BTF-to-C dumper test validating no name versioning happens between
* independent C namespaces (struct/union/enum vs typedef/enum values).
*
* Copyright (c) 2019 Facebook
*/
/* ----- START-EXPECTED-OUTPUT ----- */
struct S {
int S;
int U;
};
typedef struct S S;
union U {
int S;
int U;
};
typedef union U U;
enum E {
V = 0,
};
typedef enum E E;
struct A {};
union B {};
enum C {
A = 1,
B = 2,
C = 3,
};
struct X {};
union Y {};
enum Z;
typedef int X;
typedef int Y;
typedef int Z;
/*------ END-EXPECTED-OUTPUT ------ */
int f(struct {
struct S _1;
S _2;
union U _3;
U _4;
enum E _5;
E _6;
struct A a;
union B b;
enum C c;
struct X x;
union Y y;
enum Z *z;
X xx;
Y yy;
Z zz;
} *_)
{
return 0;
}
// SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause)
/*
* BTF-to-C dumper test for topological sorting of dependent structs.
*
* Copyright (c) 2019 Facebook
*/
/* ----- START-EXPECTED-OUTPUT ----- */
struct s1 {};
struct s3;
struct s4;
struct s2 {
struct s2 *s2;
struct s3 *s3;
struct s4 *s4;
};
struct s3 {
struct s1 s1;
struct s2 s2;
};
struct s4 {
struct s1 s1;
struct s3 s3;
};
struct list_head {
struct list_head *next;
struct list_head *prev;
};
struct hlist_node {
struct hlist_node *next;
struct hlist_node **pprev;
};
struct hlist_head {
struct hlist_node *first;
};
struct callback_head {
struct callback_head *next;
void (*func)(struct callback_head *);
};
struct root_struct {
struct s4 s4;
struct list_head l;
struct hlist_node n;
struct hlist_head h;
struct callback_head cb;
};
/*------ END-EXPECTED-OUTPUT ------ */
int f(struct root_struct *root)
{
return 0;
}
// SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause)
/*
* BTF-to-C dumper tests for struct packing determination.
*
* Copyright (c) 2019 Facebook
*/
/* ----- START-EXPECTED-OUTPUT ----- */
struct packed_trailing_space {
int a;
short b;
} __attribute__((packed));
struct non_packed_trailing_space {
int a;
short b;
};
struct packed_fields {
short a;
int b;
} __attribute__((packed));
struct non_packed_fields {
short a;
int b;
};
struct nested_packed {
char: 4;
int a: 4;
long int b;
struct {
char c;
int d;
} __attribute__((packed)) e;
} __attribute__((packed));
union union_is_never_packed {
int a: 4;
char b;
char c: 1;
};
union union_does_not_need_packing {
struct {
long int a;
int b;
} __attribute__((packed));
int c;
};
union jump_code_union {
char code[5];
struct {
char jump;
int offset;
} __attribute__((packed));
};
/*------ END-EXPECTED-OUTPUT ------ */
int f(struct {
struct packed_trailing_space _1;
struct non_packed_trailing_space _2;
struct packed_fields _3;
struct non_packed_fields _4;
struct nested_packed _5;
union union_is_never_packed _6;
union union_does_not_need_packing _7;
union jump_code_union _8;
} *_)
{
return 0;
}
// SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause)
/*
* BTF-to-C dumper tests for implicit and explicit padding between fields and
* at the end of a struct.
*
* Copyright (c) 2019 Facebook
*/
/* ----- START-EXPECTED-OUTPUT ----- */
struct padded_implicitly {
int a;
long int b;
char c;
};
/* ------ END-EXPECTED-OUTPUT ------ */
/* ----- START-EXPECTED-OUTPUT ----- */
/*
*struct padded_explicitly {
* int a;
* int: 32;
* int b;
*};
*
*/
/* ------ END-EXPECTED-OUTPUT ------ */
struct padded_explicitly {
int a;
int: 1; /* algo will explicitly pad with full 32 bits here */
int b;
};
/* ----- START-EXPECTED-OUTPUT ----- */
/*
*struct padded_a_lot {
* int a;
* long: 32;
* long: 64;
* long: 64;
* int b;
*};
*
*/
/* ------ END-EXPECTED-OUTPUT ------ */
struct padded_a_lot {
int a;
/* 32 bit of implicit padding here, which algo will make explicit */
long: 64;
long: 64;
int b;
};
/* ----- START-EXPECTED-OUTPUT ----- */
/*
*struct padded_cache_line {
* int a;
* long: 32;
* long: 64;
* long: 64;
* long: 64;
* int b;
*};
*
*/
/* ------ END-EXPECTED-OUTPUT ------ */
struct padded_cache_line {
int a;
int b __attribute__((aligned(32)));
};
/* ----- START-EXPECTED-OUTPUT ----- */
/*
*struct zone_padding {
* char x[0];
*};
*
*struct zone {
* int a;
* short b;
* short: 16;
* struct zone_padding __pad__;
*};
*
*/
/* ------ END-EXPECTED-OUTPUT ------ */
struct zone_padding {
char x[0];
} __attribute__((__aligned__(8)));
struct zone {
int a;
short b;
short: 16;
struct zone_padding __pad__;
};
int f(struct {
struct padded_implicitly _1;
struct padded_explicitly _2;
struct padded_a_lot _3;
struct padded_cache_line _4;
struct zone _5;
} *_)
{
return 0;
}
// SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause)
/*
* BTF-to-C dumper test for majority of C syntax quirks.
*
* Copyright (c) 2019 Facebook
*/
/* ----- START-EXPECTED-OUTPUT ----- */
enum e1 {
A = 0,
B = 1,
};
enum e2 {
C = 100,
D = -100,
E = 0,
};
typedef enum e2 e2_t;
typedef enum {
F = 0,
G = 1,
H = 2,
} e3_t;
typedef int int_t;
typedef volatile const int * volatile const crazy_ptr_t;
typedef int *****we_need_to_go_deeper_ptr_t;
typedef volatile const we_need_to_go_deeper_ptr_t * restrict * volatile * const * restrict volatile * restrict const * volatile const * restrict volatile const how_about_this_ptr_t;
typedef int *ptr_arr_t[10];
typedef void (*fn_ptr1_t)(int);
typedef void (*printf_fn_t)(const char *, ...);
/* ------ END-EXPECTED-OUTPUT ------ */
/*
* While previous function pointers are pretty trivial (C-syntax-level
* trivial), the following are deciphered here for future generations:
*
* - `fn_ptr2_t`: function, taking anonymous struct as a first arg and pointer
* to a function, that takes int and returns int, as a second arg; returning
* a pointer to a const pointer to a char. Equivalent to:
* typedef struct { int a; } s_t;
* typedef int (*fn_t)(int);
* typedef char * const * (*fn_ptr2_t)(s_t, fn_t);
*
* - `fn_complext_t`: pointer to a function returning struct and accepting
* union and struct. All structs and enum are anonymous and defined inline.
*
* - `signal_t: pointer to a function accepting a pointer to a function as an
* argument and returning pointer to a function as a result. Sane equivalent:
* typedef void (*signal_handler_t)(int);
* typedef signal_handler_t (*signal_ptr_t)(int, signal_handler_t);
*
* - fn_ptr_arr1_t: array of pointers to a function accepting pointer to
* a pointer to an int and returning pointer to a char. Easy.
*
* - fn_ptr_arr2_t: array of const pointers to a function taking no arguments
* and returning a const pointer to a function, that takes pointer to a
* `int -> char *` function and returns pointer to a char. Equivalent:
* typedef char * (*fn_input_t)(int);
* typedef char * (*fn_output_outer_t)(fn_input_t);
* typedef const fn_output_outer_t (* fn_output_inner_t)();
* typedef const fn_output_inner_t fn_ptr_arr2_t[5];
*/
/* ----- START-EXPECTED-OUTPUT ----- */
typedef char * const * (*fn_ptr2_t)(struct {
int a;
}, int (*)(int));
typedef struct {
int a;
void (*b)(int, struct {
int c;
}, union {
char d;
int e[5];
});
} (*fn_complex_t)(union {
void *f;
char g[16];
}, struct {
int h;
});
typedef void (* (*signal_t)(int, void (*)(int)))(int);
typedef char * (*fn_ptr_arr1_t[10])(int **);
typedef char * (* const (* const fn_ptr_arr2_t[5])())(char * (*)(int));
struct struct_w_typedefs {
int_t a;
crazy_ptr_t b;
we_need_to_go_deeper_ptr_t c;
how_about_this_ptr_t d;
ptr_arr_t e;
fn_ptr1_t f;
printf_fn_t g;
fn_ptr2_t h;
fn_complex_t i;
signal_t j;
fn_ptr_arr1_t k;
fn_ptr_arr2_t l;
};
typedef struct {
int x;
int y;
int z;
} anon_struct_t;
struct struct_fwd;
typedef struct struct_fwd struct_fwd_t;
typedef struct struct_fwd *struct_fwd_ptr_t;
union union_fwd;
typedef union union_fwd union_fwd_t;
typedef union union_fwd *union_fwd_ptr_t;
struct struct_empty {};
struct struct_simple {
int a;
char b;
const int_t *p;
struct struct_empty s;
enum e2 e;
enum {
ANON_VAL1 = 1,
ANON_VAL2 = 2,
} f;
int arr1[13];
enum e2 arr2[5];
};
union union_empty {};
union union_simple {
void *ptr;
int num;
int_t num2;
union union_empty u;
};
struct struct_in_struct {
struct struct_simple simple;
union union_simple also_simple;
struct {
int a;
} not_so_hard_as_well;
union {
int b;
int c;
} anon_union_is_good;
struct {
int d;
int e;
};
union {
int f;
int g;
};
};
struct struct_with_embedded_stuff {
int a;
struct {
int b;
struct {
struct struct_with_embedded_stuff *c;
const char *d;
} e;
union {
volatile long int f;
void * restrict g;
};
};
union {
const int_t *h;
void (*i)(char, int, void *);
} j;
enum {
K = 100,
L = 200,
} m;
char n[16];
struct {
char o;
int p;
void (*q)(int);
} r[5];
struct struct_in_struct s[10];
int t[11];
};
struct root_struct {
enum e1 _1;
enum e2 _2;
e2_t _2_1;
e3_t _2_2;
struct struct_w_typedefs _3;
anon_struct_t _7;
struct struct_fwd *_8;
struct_fwd_t *_9;
struct_fwd_ptr_t _10;
union union_fwd *_11;
union_fwd_t *_12;
union_fwd_ptr_t _13;
struct struct_with_embedded_stuff _14;
};
/* ------ END-EXPECTED-OUTPUT ------ */
int f(struct root_struct *s)
{
return 0;
}
...@@ -4025,62 +4025,13 @@ static struct btf_file_test file_tests[] = { ...@@ -4025,62 +4025,13 @@ static struct btf_file_test file_tests[] = {
}, },
}; };
static int file_has_btf_elf(const char *fn, bool *has_btf_ext)
{
Elf_Scn *scn = NULL;
GElf_Ehdr ehdr;
int ret = 0;
int elf_fd;
Elf *elf;
if (CHECK(elf_version(EV_CURRENT) == EV_NONE,
"elf_version(EV_CURRENT) == EV_NONE"))
return -1;
elf_fd = open(fn, O_RDONLY);
if (CHECK(elf_fd == -1, "open(%s): errno:%d", fn, errno))
return -1;
elf = elf_begin(elf_fd, ELF_C_READ, NULL);
if (CHECK(!elf, "elf_begin(%s): %s", fn, elf_errmsg(elf_errno()))) {
ret = -1;
goto done;
}
if (CHECK(!gelf_getehdr(elf, &ehdr), "!gelf_getehdr(%s)", fn)) {
ret = -1;
goto done;
}
while ((scn = elf_nextscn(elf, scn))) {
const char *sh_name;
GElf_Shdr sh;
if (CHECK(gelf_getshdr(scn, &sh) != &sh,
"file:%s gelf_getshdr != &sh", fn)) {
ret = -1;
goto done;
}
sh_name = elf_strptr(elf, ehdr.e_shstrndx, sh.sh_name);
if (!strcmp(sh_name, BTF_ELF_SEC))
ret = 1;
if (!strcmp(sh_name, BTF_EXT_ELF_SEC))
*has_btf_ext = true;
}
done:
close(elf_fd);
elf_end(elf);
return ret;
}
static int do_test_file(unsigned int test_num) static int do_test_file(unsigned int test_num)
{ {
const struct btf_file_test *test = &file_tests[test_num - 1]; const struct btf_file_test *test = &file_tests[test_num - 1];
const char *expected_fnames[] = {"_dummy_tracepoint", const char *expected_fnames[] = {"_dummy_tracepoint",
"test_long_fname_1", "test_long_fname_1",
"test_long_fname_2"}; "test_long_fname_2"};
struct btf_ext *btf_ext = NULL;
struct bpf_prog_info info = {}; struct bpf_prog_info info = {};
struct bpf_object *obj = NULL; struct bpf_object *obj = NULL;
struct bpf_func_info *finfo; struct bpf_func_info *finfo;
...@@ -4095,15 +4046,19 @@ static int do_test_file(unsigned int test_num) ...@@ -4095,15 +4046,19 @@ static int do_test_file(unsigned int test_num)
fprintf(stderr, "BTF libbpf test[%u] (%s): ", test_num, fprintf(stderr, "BTF libbpf test[%u] (%s): ", test_num,
test->file); test->file);
err = file_has_btf_elf(test->file, &has_btf_ext); btf = btf__parse_elf(test->file, &btf_ext);
if (err == -1) if (IS_ERR(btf)) {
return err; if (PTR_ERR(btf) == -ENOENT) {
fprintf(stderr, "SKIP. No ELF %s found", BTF_ELF_SEC);
if (err == 0) { skip_cnt++;
fprintf(stderr, "SKIP. No ELF %s found", BTF_ELF_SEC); return 0;
skip_cnt++; }
return 0; return PTR_ERR(btf);
} }
btf__free(btf);
has_btf_ext = btf_ext != NULL;
btf_ext__free(btf_ext);
obj = bpf_object__open(test->file); obj = bpf_object__open(test->file);
if (CHECK(IS_ERR(obj), "obj: %ld", PTR_ERR(obj))) if (CHECK(IS_ERR(obj), "obj: %ld", PTR_ERR(obj)))
......
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <errno.h>
#include <linux/err.h>
#include <btf.h>
#define CHECK(condition, format...) ({ \
int __ret = !!(condition); \
if (__ret) { \
fprintf(stderr, "%s:%d:FAIL ", __func__, __LINE__); \
fprintf(stderr, format); \
} \
__ret; \
})
void btf_dump_printf(void *ctx, const char *fmt, va_list args)
{
vfprintf(ctx, fmt, args);
}
struct btf_dump_test_case {
const char *name;
struct btf_dump_opts opts;
} btf_dump_test_cases[] = {
{.name = "btf_dump_test_case_syntax", .opts = {}},
{.name = "btf_dump_test_case_ordering", .opts = {}},
{.name = "btf_dump_test_case_padding", .opts = {}},
{.name = "btf_dump_test_case_packing", .opts = {}},
{.name = "btf_dump_test_case_bitfields", .opts = {}},
{.name = "btf_dump_test_case_multidim", .opts = {}},
{.name = "btf_dump_test_case_namespacing", .opts = {}},
};
static int btf_dump_all_types(const struct btf *btf,
const struct btf_dump_opts *opts)
{
size_t type_cnt = btf__get_nr_types(btf);
struct btf_dump *d;
int err = 0, id;
d = btf_dump__new(btf, NULL, opts, btf_dump_printf);
if (IS_ERR(d))
return PTR_ERR(d);
for (id = 1; id <= type_cnt; id++) {
err = btf_dump__dump_type(d, id);
if (err)
goto done;
}
done:
btf_dump__free(d);
return err;
}
int test_btf_dump_case(int n, struct btf_dump_test_case *test_case)
{
char test_file[256], out_file[256], diff_cmd[1024];
struct btf *btf = NULL;
int err = 0, fd = -1;
FILE *f = NULL;
fprintf(stderr, "Test case #%d (%s): ", n, test_case->name);
snprintf(test_file, sizeof(test_file), "%s.o", test_case->name);
btf = btf__parse_elf(test_file, NULL);
if (CHECK(IS_ERR(btf),
"failed to load test BTF: %ld\n", PTR_ERR(btf))) {
err = -PTR_ERR(btf);
btf = NULL;
goto done;
}
snprintf(out_file, sizeof(out_file),
"/tmp/%s.output.XXXXXX", test_case->name);
fd = mkstemp(out_file);
if (CHECK(fd < 0, "failed to create temp output file: %d\n", fd)) {
err = fd;
goto done;
}
f = fdopen(fd, "w");
if (CHECK(f == NULL, "failed to open temp output file: %s(%d)\n",
strerror(errno), errno)) {
close(fd);
goto done;
}
test_case->opts.ctx = f;
err = btf_dump_all_types(btf, &test_case->opts);
fclose(f);
close(fd);
if (CHECK(err, "failure during C dumping: %d\n", err)) {
goto done;
}
snprintf(test_file, sizeof(test_file), "progs/%s.c", test_case->name);
/*
* Diff test output and expected test output, contained between
* START-EXPECTED-OUTPUT and END-EXPECTED-OUTPUT lines in test case.
* For expected output lines, everything before '*' is stripped out.
* Also lines containing comment start and comment end markers are
* ignored.
*/
snprintf(diff_cmd, sizeof(diff_cmd),
"awk '/START-EXPECTED-OUTPUT/{out=1;next} "
"/END-EXPECTED-OUTPUT/{out=0} "
"/\\/\\*|\\*\\//{next} " /* ignore comment start/end lines */
"out {sub(/^[ \\t]*\\*/, \"\"); print}' '%s' | diff -u - '%s'",
test_file, out_file);
err = system(diff_cmd);
if (CHECK(err,
"differing test output, output=%s, err=%d, diff cmd:\n%s\n",
out_file, err, diff_cmd))
goto done;
remove(out_file);
fprintf(stderr, "OK\n");
done:
btf__free(btf);
return err;
}
int main() {
int test_case_cnt, i, err, failed = 0;
test_case_cnt = sizeof(btf_dump_test_cases) /
sizeof(btf_dump_test_cases[0]);
for (i = 0; i < test_case_cnt; i++) {
err = test_btf_dump_case(i, &btf_dump_test_cases[i]);
if (err)
failed++;
}
fprintf(stderr, "%d tests succeeded, %d tests failed.\n",
test_case_cnt - failed, failed);
return failed;
}
// SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause)
/*
* Tests for libbpf's hashmap.
*
* Copyright (c) 2019 Facebook
*/
#include <stdio.h>
#include <errno.h>
#include <linux/err.h>
#include "hashmap.h"
#define CHECK(condition, format...) ({ \
int __ret = !!(condition); \
if (__ret) { \
fprintf(stderr, "%s:%d:FAIL ", __func__, __LINE__); \
fprintf(stderr, format); \
} \
__ret; \
})
size_t hash_fn(const void *k, void *ctx)
{
return (long)k;
}
bool equal_fn(const void *a, const void *b, void *ctx)
{
return (long)a == (long)b;
}
static inline size_t next_pow_2(size_t n)
{
size_t r = 1;
while (r < n)
r <<= 1;
return r;
}
static inline size_t exp_cap(size_t sz)
{
size_t r = next_pow_2(sz);
if (sz * 4 / 3 > r)
r <<= 1;
return r;
}
#define ELEM_CNT 62
int test_hashmap_generic(void)
{
struct hashmap_entry *entry, *tmp;
int err, bkt, found_cnt, i;
long long found_msk;
struct hashmap *map;
fprintf(stderr, "%s: ", __func__);
map = hashmap__new(hash_fn, equal_fn, NULL);
if (CHECK(IS_ERR(map), "failed to create map: %ld\n", PTR_ERR(map)))
return 1;
for (i = 0; i < ELEM_CNT; i++) {
const void *oldk, *k = (const void *)(long)i;
void *oldv, *v = (void *)(long)(1024 + i);
err = hashmap__update(map, k, v, &oldk, &oldv);
if (CHECK(err != -ENOENT, "unexpected result: %d\n", err))
return 1;
if (i % 2) {
err = hashmap__add(map, k, v);
} else {
err = hashmap__set(map, k, v, &oldk, &oldv);
if (CHECK(oldk != NULL || oldv != NULL,
"unexpected k/v: %p=%p\n", oldk, oldv))
return 1;
}
if (CHECK(err, "failed to add k/v %ld = %ld: %d\n",
(long)k, (long)v, err))
return 1;
if (CHECK(!hashmap__find(map, k, &oldv),
"failed to find key %ld\n", (long)k))
return 1;
if (CHECK(oldv != v, "found value is wrong: %ld\n", (long)oldv))
return 1;
}
if (CHECK(hashmap__size(map) != ELEM_CNT,
"invalid map size: %zu\n", hashmap__size(map)))
return 1;
if (CHECK(hashmap__capacity(map) != exp_cap(hashmap__size(map)),
"unexpected map capacity: %zu\n", hashmap__capacity(map)))
return 1;
found_msk = 0;
hashmap__for_each_entry(map, entry, bkt) {
long k = (long)entry->key;
long v = (long)entry->value;
found_msk |= 1ULL << k;
if (CHECK(v - k != 1024, "invalid k/v pair: %ld = %ld\n", k, v))
return 1;
}
if (CHECK(found_msk != (1ULL << ELEM_CNT) - 1,
"not all keys iterated: %llx\n", found_msk))
return 1;
for (i = 0; i < ELEM_CNT; i++) {
const void *oldk, *k = (const void *)(long)i;
void *oldv, *v = (void *)(long)(256 + i);
err = hashmap__add(map, k, v);
if (CHECK(err != -EEXIST, "unexpected add result: %d\n", err))
return 1;
if (i % 2)
err = hashmap__update(map, k, v, &oldk, &oldv);
else
err = hashmap__set(map, k, v, &oldk, &oldv);
if (CHECK(err, "failed to update k/v %ld = %ld: %d\n",
(long)k, (long)v, err))
return 1;
if (CHECK(!hashmap__find(map, k, &oldv),
"failed to find key %ld\n", (long)k))
return 1;
if (CHECK(oldv != v, "found value is wrong: %ld\n", (long)oldv))
return 1;
}
if (CHECK(hashmap__size(map) != ELEM_CNT,
"invalid updated map size: %zu\n", hashmap__size(map)))
return 1;
if (CHECK(hashmap__capacity(map) != exp_cap(hashmap__size(map)),
"unexpected map capacity: %zu\n", hashmap__capacity(map)))
return 1;
found_msk = 0;
hashmap__for_each_entry_safe(map, entry, tmp, bkt) {
long k = (long)entry->key;
long v = (long)entry->value;
found_msk |= 1ULL << k;
if (CHECK(v - k != 256,
"invalid updated k/v pair: %ld = %ld\n", k, v))
return 1;
}
if (CHECK(found_msk != (1ULL << ELEM_CNT) - 1,
"not all keys iterated after update: %llx\n", found_msk))
return 1;
found_cnt = 0;
hashmap__for_each_key_entry(map, entry, (void *)0) {
found_cnt++;
}
if (CHECK(!found_cnt, "didn't find any entries for key 0\n"))
return 1;
found_msk = 0;
found_cnt = 0;
hashmap__for_each_key_entry_safe(map, entry, tmp, (void *)0) {
const void *oldk, *k;
void *oldv, *v;
k = entry->key;
v = entry->value;
found_cnt++;
found_msk |= 1ULL << (long)k;
if (CHECK(!hashmap__delete(map, k, &oldk, &oldv),
"failed to delete k/v %ld = %ld\n",
(long)k, (long)v))
return 1;
if (CHECK(oldk != k || oldv != v,
"invalid deleted k/v: expected %ld = %ld, got %ld = %ld\n",
(long)k, (long)v, (long)oldk, (long)oldv))
return 1;
if (CHECK(hashmap__delete(map, k, &oldk, &oldv),
"unexpectedly deleted k/v %ld = %ld\n",
(long)oldk, (long)oldv))
return 1;
}
if (CHECK(!found_cnt || !found_msk,
"didn't delete any key entries\n"))
return 1;
if (CHECK(hashmap__size(map) != ELEM_CNT - found_cnt,
"invalid updated map size (already deleted: %d): %zu\n",
found_cnt, hashmap__size(map)))
return 1;
if (CHECK(hashmap__capacity(map) != exp_cap(hashmap__size(map)),
"unexpected map capacity: %zu\n", hashmap__capacity(map)))
return 1;
hashmap__for_each_entry_safe(map, entry, tmp, bkt) {
const void *oldk, *k;
void *oldv, *v;
k = entry->key;
v = entry->value;
found_cnt++;
found_msk |= 1ULL << (long)k;
if (CHECK(!hashmap__delete(map, k, &oldk, &oldv),
"failed to delete k/v %ld = %ld\n",
(long)k, (long)v))
return 1;
if (CHECK(oldk != k || oldv != v,
"invalid old k/v: expect %ld = %ld, got %ld = %ld\n",
(long)k, (long)v, (long)oldk, (long)oldv))
return 1;
if (CHECK(hashmap__delete(map, k, &oldk, &oldv),
"unexpectedly deleted k/v %ld = %ld\n",
(long)k, (long)v))
return 1;
}
if (CHECK(found_cnt != ELEM_CNT || found_msk != (1ULL << ELEM_CNT) - 1,
"not all keys were deleted: found_cnt:%d, found_msk:%llx\n",
found_cnt, found_msk))
return 1;
if (CHECK(hashmap__size(map) != 0,
"invalid updated map size (already deleted: %d): %zu\n",
found_cnt, hashmap__size(map)))
return 1;
found_cnt = 0;
hashmap__for_each_entry(map, entry, bkt) {
CHECK(false, "unexpected map entries left: %ld = %ld\n",
(long)entry->key, (long)entry->value);
return 1;
}
hashmap__free(map);
hashmap__for_each_entry(map, entry, bkt) {
CHECK(false, "unexpected map entries left: %ld = %ld\n",
(long)entry->key, (long)entry->value);
return 1;
}
fprintf(stderr, "OK\n");
return 0;
}
size_t collision_hash_fn(const void *k, void *ctx)
{
return 0;
}
int test_hashmap_multimap(void)
{
void *k1 = (void *)0, *k2 = (void *)1;
struct hashmap_entry *entry;
struct hashmap *map;
long found_msk;
int err, bkt;
fprintf(stderr, "%s: ", __func__);
/* force collisions */
map = hashmap__new(collision_hash_fn, equal_fn, NULL);
if (CHECK(IS_ERR(map), "failed to create map: %ld\n", PTR_ERR(map)))
return 1;
/* set up multimap:
* [0] -> 1, 2, 4;
* [1] -> 8, 16, 32;
*/
err = hashmap__append(map, k1, (void *)1);
if (CHECK(err, "failed to add k/v: %d\n", err))
return 1;
err = hashmap__append(map, k1, (void *)2);
if (CHECK(err, "failed to add k/v: %d\n", err))
return 1;
err = hashmap__append(map, k1, (void *)4);
if (CHECK(err, "failed to add k/v: %d\n", err))
return 1;
err = hashmap__append(map, k2, (void *)8);
if (CHECK(err, "failed to add k/v: %d\n", err))
return 1;
err = hashmap__append(map, k2, (void *)16);
if (CHECK(err, "failed to add k/v: %d\n", err))
return 1;
err = hashmap__append(map, k2, (void *)32);
if (CHECK(err, "failed to add k/v: %d\n", err))
return 1;
if (CHECK(hashmap__size(map) != 6,
"invalid map size: %zu\n", hashmap__size(map)))
return 1;
/* verify global iteration still works and sees all values */
found_msk = 0;
hashmap__for_each_entry(map, entry, bkt) {
found_msk |= (long)entry->value;
}
if (CHECK(found_msk != (1 << 6) - 1,
"not all keys iterated: %lx\n", found_msk))
return 1;
/* iterate values for key 1 */
found_msk = 0;
hashmap__for_each_key_entry(map, entry, k1) {
found_msk |= (long)entry->value;
}
if (CHECK(found_msk != (1 | 2 | 4),
"invalid k1 values: %lx\n", found_msk))
return 1;
/* iterate values for key 2 */
found_msk = 0;
hashmap__for_each_key_entry(map, entry, k2) {
found_msk |= (long)entry->value;
}
if (CHECK(found_msk != (8 | 16 | 32),
"invalid k2 values: %lx\n", found_msk))
return 1;
fprintf(stderr, "OK\n");
return 0;
}
int test_hashmap_empty()
{
struct hashmap_entry *entry;
int bkt;
struct hashmap *map;
void *k = (void *)0;
fprintf(stderr, "%s: ", __func__);
/* force collisions */
map = hashmap__new(hash_fn, equal_fn, NULL);
if (CHECK(IS_ERR(map), "failed to create map: %ld\n", PTR_ERR(map)))
return 1;
if (CHECK(hashmap__size(map) != 0,
"invalid map size: %zu\n", hashmap__size(map)))
return 1;
if (CHECK(hashmap__capacity(map) != 0,
"invalid map capacity: %zu\n", hashmap__capacity(map)))
return 1;
if (CHECK(hashmap__find(map, k, NULL), "unexpected find\n"))
return 1;
if (CHECK(hashmap__delete(map, k, NULL, NULL), "unexpected delete\n"))
return 1;
hashmap__for_each_entry(map, entry, bkt) {
CHECK(false, "unexpected iterated entry\n");
return 1;
}
hashmap__for_each_key_entry(map, entry, k) {
CHECK(false, "unexpected key entry\n");
return 1;
}
fprintf(stderr, "OK\n");
return 0;
}
int main(int argc, char **argv)
{
bool failed = false;
if (test_hashmap_generic())
failed = true;
if (test_hashmap_multimap())
failed = true;
if (test_hashmap_empty())
failed = true;
return failed;
}
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment