Commit 5938b227 authored by David S. Miller's avatar David S. Miller

Merge branch 'z85230-cleanups'

Peng Li says:

====================
net: z85230: clean up some code style issues

This patchset clean up some code style issues.

---
Change Log:
V1 -> V2:
1, fix the comments from Andrew, add commit message to [patch 04/11]
   about remove volatile.
====================
Signed-off-by: default avatarDavid S. Miller <davem@davemloft.net>
parents 0dca2c74 2b28b711
// SPDX-License-Identifier: GPL-2.0-or-later // SPDX-License-Identifier: GPL-2.0-or-later
/* /* (c) Copyright 1998 Alan Cox <alan@lxorguk.ukuu.org.uk>
*
* (c) Copyright 1998 Alan Cox <alan@lxorguk.ukuu.org.uk>
* (c) Copyright 2000, 2001 Red Hat Inc * (c) Copyright 2000, 2001 Red Hat Inc
* *
* Development of this driver was funded by Equiinet Ltd * Development of this driver was funded by Equiinet Ltd
...@@ -55,7 +53,6 @@ ...@@ -55,7 +53,6 @@
#include "z85230.h" #include "z85230.h"
/** /**
* z8530_read_port - Architecture specific interface function * z8530_read_port - Architecture specific interface function
* @p: port to read * @p: port to read
...@@ -74,8 +71,9 @@ ...@@ -74,8 +71,9 @@
static inline int z8530_read_port(unsigned long p) static inline int z8530_read_port(unsigned long p)
{ {
u8 r=inb(Z8530_PORT_OF(p)); u8 r = inb(Z8530_PORT_OF(p));
if(p&Z8530_PORT_SLEEP) /* gcc should figure this out efficiently ! */
if (p & Z8530_PORT_SLEEP) /* gcc should figure this out efficiently ! */
udelay(5); udelay(5);
return r; return r;
} }
...@@ -95,20 +93,16 @@ static inline int z8530_read_port(unsigned long p) ...@@ -95,20 +93,16 @@ static inline int z8530_read_port(unsigned long p)
* dread 5uS sanity delay. * dread 5uS sanity delay.
*/ */
static inline void z8530_write_port(unsigned long p, u8 d) static inline void z8530_write_port(unsigned long p, u8 d)
{ {
outb(d,Z8530_PORT_OF(p)); outb(d, Z8530_PORT_OF(p));
if(p&Z8530_PORT_SLEEP) if (p & Z8530_PORT_SLEEP)
udelay(5); udelay(5);
} }
static void z8530_rx_done(struct z8530_channel *c); static void z8530_rx_done(struct z8530_channel *c);
static void z8530_tx_done(struct z8530_channel *c); static void z8530_tx_done(struct z8530_channel *c);
/** /**
* read_zsreg - Read a register from a Z85230 * read_zsreg - Read a register from a Z85230
* @c: Z8530 channel to read from (2 per chip) * @c: Z8530 channel to read from (2 per chip)
...@@ -122,7 +116,7 @@ static void z8530_tx_done(struct z8530_channel *c); ...@@ -122,7 +116,7 @@ static void z8530_tx_done(struct z8530_channel *c);
static inline u8 read_zsreg(struct z8530_channel *c, u8 reg) static inline u8 read_zsreg(struct z8530_channel *c, u8 reg)
{ {
if(reg) if (reg)
z8530_write_port(c->ctrlio, reg); z8530_write_port(c->ctrlio, reg);
return z8530_read_port(c->ctrlio); return z8530_read_port(c->ctrlio);
} }
...@@ -138,7 +132,8 @@ static inline u8 read_zsreg(struct z8530_channel *c, u8 reg) ...@@ -138,7 +132,8 @@ static inline u8 read_zsreg(struct z8530_channel *c, u8 reg)
static inline u8 read_zsdata(struct z8530_channel *c) static inline u8 read_zsdata(struct z8530_channel *c)
{ {
u8 r; u8 r;
r=z8530_read_port(c->dataio);
r = z8530_read_port(c->dataio);
return r; return r;
} }
...@@ -156,10 +151,9 @@ static inline u8 read_zsdata(struct z8530_channel *c) ...@@ -156,10 +151,9 @@ static inline u8 read_zsdata(struct z8530_channel *c)
*/ */
static inline void write_zsreg(struct z8530_channel *c, u8 reg, u8 val) static inline void write_zsreg(struct z8530_channel *c, u8 reg, u8 val)
{ {
if(reg) if (reg)
z8530_write_port(c->ctrlio, reg); z8530_write_port(c->ctrlio, reg);
z8530_write_port(c->ctrlio, val); z8530_write_port(c->ctrlio, val);
} }
/** /**
...@@ -182,80 +176,67 @@ static inline void write_zsctrl(struct z8530_channel *c, u8 val) ...@@ -182,80 +176,67 @@ static inline void write_zsctrl(struct z8530_channel *c, u8 val)
* *
* Write directly to the data register on the Z8530 * Write directly to the data register on the Z8530
*/ */
static inline void write_zsdata(struct z8530_channel *c, u8 val) static inline void write_zsdata(struct z8530_channel *c, u8 val)
{ {
z8530_write_port(c->dataio, val); z8530_write_port(c->dataio, val);
} }
/* /* Register loading parameters for a dead port
* Register loading parameters for a dead port
*/ */
u8 z8530_dead_port[]= u8 z8530_dead_port[] = {
{
255 255
}; };
EXPORT_SYMBOL(z8530_dead_port); EXPORT_SYMBOL(z8530_dead_port);
/* /* Register loading parameters for currently supported circuit types
* Register loading parameters for currently supported circuit types
*/ */
/* Data clocked by telco end. This is the correct data for the UK
/*
* Data clocked by telco end. This is the correct data for the UK
* "kilostream" service, and most other similar services. * "kilostream" service, and most other similar services.
*/ */
u8 z8530_hdlc_kilostream[]= u8 z8530_hdlc_kilostream[] = {
{ 4, SYNC_ENAB | SDLC | X1CLK,
4, SYNC_ENAB|SDLC|X1CLK,
2, 0, /* No vector */ 2, 0, /* No vector */
1, 0, 1, 0,
3, ENT_HM|RxCRC_ENAB|Rx8, 3, ENT_HM | RxCRC_ENAB | Rx8,
5, TxCRC_ENAB|RTS|TxENAB|Tx8|DTR, 5, TxCRC_ENAB | RTS | TxENAB | Tx8 | DTR,
9, 0, /* Disable interrupts */ 9, 0, /* Disable interrupts */
6, 0xFF, 6, 0xFF,
7, FLAG, 7, FLAG,
10, ABUNDER|NRZ|CRCPS,/*MARKIDLE ??*/ 10, ABUNDER | NRZ | CRCPS,/*MARKIDLE ??*/
11, TCTRxCP, 11, TCTRxCP,
14, DISDPLL, 14, DISDPLL,
15, DCDIE|SYNCIE|CTSIE|TxUIE|BRKIE, 15, DCDIE | SYNCIE | CTSIE | TxUIE | BRKIE,
1, EXT_INT_ENAB|TxINT_ENAB|INT_ALL_Rx, 1, EXT_INT_ENAB | TxINT_ENAB | INT_ALL_Rx,
9, NV|MIE|NORESET, 9, NV | MIE | NORESET,
255 255
}; };
EXPORT_SYMBOL(z8530_hdlc_kilostream); EXPORT_SYMBOL(z8530_hdlc_kilostream);
/* /* As above but for enhanced chips.
* As above but for enhanced chips.
*/ */
u8 z8530_hdlc_kilostream_85230[]= u8 z8530_hdlc_kilostream_85230[] = {
{ 4, SYNC_ENAB | SDLC | X1CLK,
4, SYNC_ENAB|SDLC|X1CLK,
2, 0, /* No vector */ 2, 0, /* No vector */
1, 0, 1, 0,
3, ENT_HM|RxCRC_ENAB|Rx8, 3, ENT_HM | RxCRC_ENAB | Rx8,
5, TxCRC_ENAB|RTS|TxENAB|Tx8|DTR, 5, TxCRC_ENAB | RTS | TxENAB | Tx8 | DTR,
9, 0, /* Disable interrupts */ 9, 0, /* Disable interrupts */
6, 0xFF, 6, 0xFF,
7, FLAG, 7, FLAG,
10, ABUNDER|NRZ|CRCPS, /* MARKIDLE?? */ 10, ABUNDER | NRZ | CRCPS, /* MARKIDLE?? */
11, TCTRxCP, 11, TCTRxCP,
14, DISDPLL, 14, DISDPLL,
15, DCDIE|SYNCIE|CTSIE|TxUIE|BRKIE, 15, DCDIE | SYNCIE | CTSIE | TxUIE | BRKIE,
1, EXT_INT_ENAB|TxINT_ENAB|INT_ALL_Rx, 1, EXT_INT_ENAB | TxINT_ENAB | INT_ALL_Rx,
9, NV|MIE|NORESET, 9, NV | MIE | NORESET,
23, 3, /* Extended mode AUTO TX and EOM*/ 23, 3, /* Extended mode AUTO TX and EOM*/
255 255
}; };
EXPORT_SYMBOL(z8530_hdlc_kilostream_85230); EXPORT_SYMBOL(z8530_hdlc_kilostream_85230);
/** /**
...@@ -276,8 +257,7 @@ static void z8530_flush_fifo(struct z8530_channel *c) ...@@ -276,8 +257,7 @@ static void z8530_flush_fifo(struct z8530_channel *c)
read_zsreg(c, R1); read_zsreg(c, R1);
read_zsreg(c, R1); read_zsreg(c, R1);
read_zsreg(c, R1); read_zsreg(c, R1);
if(c->dev->type==Z85230) if (c->dev->type == Z85230) {
{
read_zsreg(c, R1); read_zsreg(c, R1);
read_zsreg(c, R1); read_zsreg(c, R1);
read_zsreg(c, R1); read_zsreg(c, R1);
...@@ -331,53 +311,41 @@ static void z8530_rtsdtr(struct z8530_channel *c, int set) ...@@ -331,53 +311,41 @@ static void z8530_rtsdtr(struct z8530_channel *c, int set)
static void z8530_rx(struct z8530_channel *c) static void z8530_rx(struct z8530_channel *c)
{ {
u8 ch,stat; u8 ch, stat;
while(1) while (1) {
{
/* FIFO empty ? */ /* FIFO empty ? */
if(!(read_zsreg(c, R0)&1)) if (!(read_zsreg(c, R0) & 1))
break; break;
ch=read_zsdata(c); ch = read_zsdata(c);
stat=read_zsreg(c, R1); stat = read_zsreg(c, R1);
/* /* Overrun ?
* Overrun ?
*/ */
if(c->count < c->max) if (c->count < c->max) {
{ *c->dptr++ = ch;
*c->dptr++=ch;
c->count++; c->count++;
} }
if(stat&END_FR) if (stat & END_FR) {
{ /* Error ?
/*
* Error ?
*/ */
if(stat&(Rx_OVR|CRC_ERR)) if (stat & (Rx_OVR | CRC_ERR)) {
{
/* Rewind the buffer and return */ /* Rewind the buffer and return */
if(c->skb) if (c->skb)
c->dptr=c->skb->data; c->dptr = c->skb->data;
c->count=0; c->count = 0;
if(stat&Rx_OVR) if (stat & Rx_OVR) {
{
pr_warn("%s: overrun\n", c->dev->name); pr_warn("%s: overrun\n", c->dev->name);
c->rx_overrun++; c->rx_overrun++;
} }
if(stat&CRC_ERR) if (stat & CRC_ERR) {
{
c->rx_crc_err++; c->rx_crc_err++;
/* printk("crc error\n"); */ /* printk("crc error\n"); */
} }
/* Shove the frame upstream */ /* Shove the frame upstream */
} } else {
else /* Drop the lock for RX processing, or
{
/*
* Drop the lock for RX processing, or
* there are deadlocks * there are deadlocks
*/ */
z8530_rx_done(c); z8530_rx_done(c);
...@@ -385,14 +353,12 @@ static void z8530_rx(struct z8530_channel *c) ...@@ -385,14 +353,12 @@ static void z8530_rx(struct z8530_channel *c)
} }
} }
} }
/* /* Clear irq
* Clear irq
*/ */
write_zsctrl(c, ERR_RES); write_zsctrl(c, ERR_RES);
write_zsctrl(c, RES_H_IUS); write_zsctrl(c, RES_H_IUS);
} }
/** /**
* z8530_tx - Handle a PIO transmit event * z8530_tx - Handle a PIO transmit event
* @c: Z8530 channel to process * @c: Z8530 channel to process
...@@ -405,27 +371,23 @@ static void z8530_rx(struct z8530_channel *c) ...@@ -405,27 +371,23 @@ static void z8530_rx(struct z8530_channel *c)
static void z8530_tx(struct z8530_channel *c) static void z8530_tx(struct z8530_channel *c)
{ {
while(c->txcount) { while (c->txcount) {
/* FIFO full ? */ /* FIFO full ? */
if(!(read_zsreg(c, R0)&4)) if (!(read_zsreg(c, R0) & 4))
return; return;
c->txcount--; c->txcount--;
/* /* Shovel out the byte
* Shovel out the byte
*/ */
write_zsreg(c, R8, *c->tx_ptr++); write_zsreg(c, R8, *c->tx_ptr++);
write_zsctrl(c, RES_H_IUS); write_zsctrl(c, RES_H_IUS);
/* We are about to underflow */ /* We are about to underflow */
if(c->txcount==0) if (c->txcount == 0) {
{
write_zsctrl(c, RES_EOM_L); write_zsctrl(c, RES_EOM_L);
write_zsreg(c, R10, c->regs[10]&~ABUNDER); write_zsreg(c, R10, c->regs[10] & ~ABUNDER);
} }
} }
/* End of frame TX - fire another one
/*
* End of frame TX - fire another one
*/ */
write_zsctrl(c, RES_Tx_P); write_zsctrl(c, RES_Tx_P);
...@@ -460,8 +422,7 @@ static void z8530_status(struct z8530_channel *chan) ...@@ -460,8 +422,7 @@ static void z8530_status(struct z8530_channel *chan)
z8530_tx_done(chan); z8530_tx_done(chan);
} }
if (altered & chan->dcdcheck) if (altered & chan->dcdcheck) {
{
if (status & chan->dcdcheck) { if (status & chan->dcdcheck) {
pr_info("%s: DCD raised\n", chan->dev->name); pr_info("%s: DCD raised\n", chan->dev->name);
write_zsreg(chan, R3, chan->regs[3] | RxENABLE); write_zsreg(chan, R3, chan->regs[3] | RxENABLE);
...@@ -474,7 +435,6 @@ static void z8530_status(struct z8530_channel *chan) ...@@ -474,7 +435,6 @@ static void z8530_status(struct z8530_channel *chan)
if (chan->netdevice) if (chan->netdevice)
netif_carrier_off(chan->netdevice); netif_carrier_off(chan->netdevice);
} }
} }
write_zsctrl(chan, RES_EXT_INT); write_zsctrl(chan, RES_EXT_INT);
write_zsctrl(chan, RES_H_IUS); write_zsctrl(chan, RES_H_IUS);
...@@ -485,7 +445,6 @@ struct z8530_irqhandler z8530_sync = { ...@@ -485,7 +445,6 @@ struct z8530_irqhandler z8530_sync = {
.tx = z8530_tx, .tx = z8530_tx,
.status = z8530_status, .status = z8530_status,
}; };
EXPORT_SYMBOL(z8530_sync); EXPORT_SYMBOL(z8530_sync);
/** /**
...@@ -500,25 +459,21 @@ EXPORT_SYMBOL(z8530_sync); ...@@ -500,25 +459,21 @@ EXPORT_SYMBOL(z8530_sync);
static void z8530_dma_rx(struct z8530_channel *chan) static void z8530_dma_rx(struct z8530_channel *chan)
{ {
if(chan->rxdma_on) if (chan->rxdma_on) {
{
/* Special condition check only */ /* Special condition check only */
u8 status; u8 status;
read_zsreg(chan, R7); read_zsreg(chan, R7);
read_zsreg(chan, R6); read_zsreg(chan, R6);
status=read_zsreg(chan, R1); status = read_zsreg(chan, R1);
if(status&END_FR) if (status & END_FR)
{
z8530_rx_done(chan); /* Fire up the next one */ z8530_rx_done(chan); /* Fire up the next one */
}
write_zsctrl(chan, ERR_RES); write_zsctrl(chan, ERR_RES);
write_zsctrl(chan, RES_H_IUS); write_zsctrl(chan, RES_H_IUS);
} } else {
else
{
/* DMA is off right now, drain the slow way */ /* DMA is off right now, drain the slow way */
z8530_rx(chan); z8530_rx(chan);
} }
...@@ -531,11 +486,9 @@ static void z8530_dma_rx(struct z8530_channel *chan) ...@@ -531,11 +486,9 @@ static void z8530_dma_rx(struct z8530_channel *chan)
* We have received an interrupt while doing DMA transmissions. It * We have received an interrupt while doing DMA transmissions. It
* shouldn't happen. Scream loudly if it does. * shouldn't happen. Scream loudly if it does.
*/ */
static void z8530_dma_tx(struct z8530_channel *chan) static void z8530_dma_tx(struct z8530_channel *chan)
{ {
if(!chan->dma_tx) if (!chan->dma_tx) {
{
pr_warn("Hey who turned the DMA off?\n"); pr_warn("Hey who turned the DMA off?\n");
z8530_tx(chan); z8530_tx(chan);
return; return;
...@@ -554,34 +507,29 @@ static void z8530_dma_tx(struct z8530_channel *chan) ...@@ -554,34 +507,29 @@ static void z8530_dma_tx(struct z8530_channel *chan)
* and kick the next packet out. Secondly we may see a DCD change. * and kick the next packet out. Secondly we may see a DCD change.
* *
*/ */
static void z8530_dma_status(struct z8530_channel *chan) static void z8530_dma_status(struct z8530_channel *chan)
{ {
u8 status, altered; u8 status, altered;
status=read_zsreg(chan, R0); status = read_zsreg(chan, R0);
altered=chan->status^status; altered = chan->status ^ status;
chan->status=status;
chan->status = status;
if(chan->dma_tx) if (chan->dma_tx) {
{ if (status & TxEOM) {
if(status&TxEOM)
{
unsigned long flags; unsigned long flags;
flags=claim_dma_lock(); flags = claim_dma_lock();
disable_dma(chan->txdma); disable_dma(chan->txdma);
clear_dma_ff(chan->txdma); clear_dma_ff(chan->txdma);
chan->txdma_on=0; chan->txdma_on = 0;
release_dma_lock(flags); release_dma_lock(flags);
z8530_tx_done(chan); z8530_tx_done(chan);
} }
} }
if (altered & chan->dcdcheck) if (altered & chan->dcdcheck) {
{
if (status & chan->dcdcheck) { if (status & chan->dcdcheck) {
pr_info("%s: DCD raised\n", chan->dev->name); pr_info("%s: DCD raised\n", chan->dev->name);
write_zsreg(chan, R3, chan->regs[3] | RxENABLE); write_zsreg(chan, R3, chan->regs[3] | RxENABLE);
...@@ -621,21 +569,18 @@ static struct z8530_irqhandler z8530_txdma_sync = { ...@@ -621,21 +569,18 @@ static struct z8530_irqhandler z8530_txdma_sync = {
* (eg the MacII) we must clear the interrupt cause or die. * (eg the MacII) we must clear the interrupt cause or die.
*/ */
static void z8530_rx_clear(struct z8530_channel *c) static void z8530_rx_clear(struct z8530_channel *c)
{ {
/* /* Data and status bytes
* Data and status bytes
*/ */
u8 stat; u8 stat;
read_zsdata(c); read_zsdata(c);
stat=read_zsreg(c, R1); stat = read_zsreg(c, R1);
if(stat&END_FR) if (stat & END_FR)
write_zsctrl(c, RES_Rx_CRC); write_zsctrl(c, RES_Rx_CRC);
/* /* Clear irq
* Clear irq
*/ */
write_zsctrl(c, ERR_RES); write_zsctrl(c, ERR_RES);
write_zsctrl(c, RES_H_IUS); write_zsctrl(c, RES_H_IUS);
...@@ -667,8 +612,9 @@ static void z8530_tx_clear(struct z8530_channel *c) ...@@ -667,8 +612,9 @@ static void z8530_tx_clear(struct z8530_channel *c)
static void z8530_status_clear(struct z8530_channel *chan) static void z8530_status_clear(struct z8530_channel *chan)
{ {
u8 status=read_zsreg(chan, R0); u8 status = read_zsreg(chan, R0);
if(status&TxEOM)
if (status & TxEOM)
write_zsctrl(chan, ERR_RES); write_zsctrl(chan, ERR_RES);
write_zsctrl(chan, RES_EXT_INT); write_zsctrl(chan, RES_EXT_INT);
write_zsctrl(chan, RES_H_IUS); write_zsctrl(chan, RES_H_IUS);
...@@ -679,8 +625,6 @@ struct z8530_irqhandler z8530_nop = { ...@@ -679,8 +625,6 @@ struct z8530_irqhandler z8530_nop = {
.tx = z8530_tx_clear, .tx = z8530_tx_clear,
.status = z8530_status_clear, .status = z8530_status_clear,
}; };
EXPORT_SYMBOL(z8530_nop); EXPORT_SYMBOL(z8530_nop);
/** /**
...@@ -701,78 +645,73 @@ EXPORT_SYMBOL(z8530_nop); ...@@ -701,78 +645,73 @@ EXPORT_SYMBOL(z8530_nop);
irqreturn_t z8530_interrupt(int irq, void *dev_id) irqreturn_t z8530_interrupt(int irq, void *dev_id)
{ {
struct z8530_dev *dev=dev_id; struct z8530_dev *dev = dev_id;
u8 intr; u8 intr;
static volatile int locker=0; static volatile int locker=0;
int work=0; int work = 0;
struct z8530_irqhandler *irqs; struct z8530_irqhandler *irqs;
if(locker) if (locker) {
{
pr_err("IRQ re-enter\n"); pr_err("IRQ re-enter\n");
return IRQ_NONE; return IRQ_NONE;
} }
locker=1; locker = 1;
spin_lock(&dev->lock); spin_lock(&dev->lock);
while(++work<5000) while (++work < 5000) {
{
intr = read_zsreg(&dev->chanA, R3); intr = read_zsreg(&dev->chanA, R3);
if(!(intr & (CHARxIP|CHATxIP|CHAEXT|CHBRxIP|CHBTxIP|CHBEXT))) if (!(intr &
(CHARxIP | CHATxIP | CHAEXT | CHBRxIP | CHBTxIP | CHBEXT)))
break; break;
/* This holds the IRQ status. On the 8530 you must read it from chan /* This holds the IRQ status. On the 8530 you must read it
A even though it applies to the whole chip */ * from chan A even though it applies to the whole chip
*/
/* Now walk the chip and see what it is wanting - it may be /* Now walk the chip and see what it is wanting - it may be
an IRQ for someone else remember */ * an IRQ for someone else remember
*/
irqs=dev->chanA.irqs; irqs = dev->chanA.irqs;
if(intr & (CHARxIP|CHATxIP|CHAEXT)) if (intr & (CHARxIP | CHATxIP | CHAEXT)) {
{ if (intr & CHARxIP)
if(intr&CHARxIP)
irqs->rx(&dev->chanA); irqs->rx(&dev->chanA);
if(intr&CHATxIP) if (intr & CHATxIP)
irqs->tx(&dev->chanA); irqs->tx(&dev->chanA);
if(intr&CHAEXT) if (intr & CHAEXT)
irqs->status(&dev->chanA); irqs->status(&dev->chanA);
} }
irqs=dev->chanB.irqs; irqs = dev->chanB.irqs;
if(intr & (CHBRxIP|CHBTxIP|CHBEXT)) if (intr & (CHBRxIP | CHBTxIP | CHBEXT)) {
{ if (intr & CHBRxIP)
if(intr&CHBRxIP)
irqs->rx(&dev->chanB); irqs->rx(&dev->chanB);
if(intr&CHBTxIP) if (intr & CHBTxIP)
irqs->tx(&dev->chanB); irqs->tx(&dev->chanB);
if(intr&CHBEXT) if (intr & CHBEXT)
irqs->status(&dev->chanB); irqs->status(&dev->chanB);
} }
} }
spin_unlock(&dev->lock); spin_unlock(&dev->lock);
if(work==5000) if (work == 5000)
pr_err("%s: interrupt jammed - abort(0x%X)!\n", pr_err("%s: interrupt jammed - abort(0x%X)!\n",
dev->name, intr); dev->name, intr);
/* Ok all done */ /* Ok all done */
locker=0; locker = 0;
return IRQ_HANDLED; return IRQ_HANDLED;
} }
EXPORT_SYMBOL(z8530_interrupt); EXPORT_SYMBOL(z8530_interrupt);
static const u8 reg_init[16]= static const u8 reg_init[16] = {
{ 0, 0, 0, 0,
0,0,0,0, 0, 0, 0, 0,
0,0,0,0, 0, 0, 0, 0,
0,0,0,0, 0x55, 0, 0, 0
0x55,0,0,0
}; };
/** /**
* z8530_sync_open - Open a Z8530 channel for PIO * z8530_sync_open - Open a Z8530 channel for PIO
* @dev: The network interface we are using * @dev: The network interface we are using
...@@ -781,7 +720,6 @@ static const u8 reg_init[16]= ...@@ -781,7 +720,6 @@ static const u8 reg_init[16]=
* Switch a Z8530 into synchronous mode without DMA assist. We * Switch a Z8530 into synchronous mode without DMA assist. We
* raise the RTS/DTR and commence network operation. * raise the RTS/DTR and commence network operation.
*/ */
int z8530_sync_open(struct net_device *dev, struct z8530_channel *c) int z8530_sync_open(struct net_device *dev, struct z8530_channel *c)
{ {
unsigned long flags; unsigned long flags;
...@@ -789,7 +727,7 @@ int z8530_sync_open(struct net_device *dev, struct z8530_channel *c) ...@@ -789,7 +727,7 @@ int z8530_sync_open(struct net_device *dev, struct z8530_channel *c)
spin_lock_irqsave(c->lock, flags); spin_lock_irqsave(c->lock, flags);
c->sync = 1; c->sync = 1;
c->mtu = dev->mtu+64; c->mtu = dev->mtu + 64;
c->count = 0; c->count = 0;
c->skb = NULL; c->skb = NULL;
c->skb2 = NULL; c->skb2 = NULL;
...@@ -798,17 +736,15 @@ int z8530_sync_open(struct net_device *dev, struct z8530_channel *c) ...@@ -798,17 +736,15 @@ int z8530_sync_open(struct net_device *dev, struct z8530_channel *c)
/* This loads the double buffer up */ /* This loads the double buffer up */
z8530_rx_done(c); /* Load the frame ring */ z8530_rx_done(c); /* Load the frame ring */
z8530_rx_done(c); /* Load the backup frame */ z8530_rx_done(c); /* Load the backup frame */
z8530_rtsdtr(c,1); z8530_rtsdtr(c, 1);
c->dma_tx = 0; c->dma_tx = 0;
c->regs[R1]|=TxINT_ENAB; c->regs[R1] |= TxINT_ENAB;
write_zsreg(c, R1, c->regs[R1]); write_zsreg(c, R1, c->regs[R1]);
write_zsreg(c, R3, c->regs[R3]|RxENABLE); write_zsreg(c, R3, c->regs[R3] | RxENABLE);
spin_unlock_irqrestore(c->lock, flags); spin_unlock_irqrestore(c->lock, flags);
return 0; return 0;
} }
EXPORT_SYMBOL(z8530_sync_open); EXPORT_SYMBOL(z8530_sync_open);
/** /**
...@@ -819,7 +755,6 @@ EXPORT_SYMBOL(z8530_sync_open); ...@@ -819,7 +755,6 @@ EXPORT_SYMBOL(z8530_sync_open);
* Close down a Z8530 interface and switch its interrupt handlers * Close down a Z8530 interface and switch its interrupt handlers
* to discard future events. * to discard future events.
*/ */
int z8530_sync_close(struct net_device *dev, struct z8530_channel *c) int z8530_sync_close(struct net_device *dev, struct z8530_channel *c)
{ {
u8 chk; u8 chk;
...@@ -830,14 +765,13 @@ int z8530_sync_close(struct net_device *dev, struct z8530_channel *c) ...@@ -830,14 +765,13 @@ int z8530_sync_close(struct net_device *dev, struct z8530_channel *c)
c->max = 0; c->max = 0;
c->sync = 0; c->sync = 0;
chk=read_zsreg(c,R0); chk = read_zsreg(c, R0);
write_zsreg(c, R3, c->regs[R3]); write_zsreg(c, R3, c->regs[R3]);
z8530_rtsdtr(c,0); z8530_rtsdtr(c, 0);
spin_unlock_irqrestore(c->lock, flags); spin_unlock_irqrestore(c->lock, flags);
return 0; return 0;
} }
EXPORT_SYMBOL(z8530_sync_close); EXPORT_SYMBOL(z8530_sync_close);
/** /**
...@@ -849,91 +783,83 @@ EXPORT_SYMBOL(z8530_sync_close); ...@@ -849,91 +783,83 @@ EXPORT_SYMBOL(z8530_sync_close);
* ISA DMA channels must be available for this to work. We assume ISA * ISA DMA channels must be available for this to work. We assume ISA
* DMA driven I/O and PC limits on access. * DMA driven I/O and PC limits on access.
*/ */
int z8530_sync_dma_open(struct net_device *dev, struct z8530_channel *c) int z8530_sync_dma_open(struct net_device *dev, struct z8530_channel *c)
{ {
unsigned long cflags, dflags; unsigned long cflags, dflags;
c->sync = 1; c->sync = 1;
c->mtu = dev->mtu+64; c->mtu = dev->mtu + 64;
c->count = 0; c->count = 0;
c->skb = NULL; c->skb = NULL;
c->skb2 = NULL; c->skb2 = NULL;
/*
* Load the DMA interfaces up /* Load the DMA interfaces up
*/ */
c->rxdma_on = 0; c->rxdma_on = 0;
c->txdma_on = 0; c->txdma_on = 0;
/* /* Allocate the DMA flip buffers. Limit by page size.
* Allocate the DMA flip buffers. Limit by page size.
* Everyone runs 1500 mtu or less on wan links so this * Everyone runs 1500 mtu or less on wan links so this
* should be fine. * should be fine.
*/ */
if(c->mtu > PAGE_SIZE/2) if (c->mtu > PAGE_SIZE / 2)
return -EMSGSIZE; return -EMSGSIZE;
c->rx_buf[0]=(void *)get_zeroed_page(GFP_KERNEL|GFP_DMA); c->rx_buf[0] = (void *)get_zeroed_page(GFP_KERNEL | GFP_DMA);
if(c->rx_buf[0]==NULL) if (!c->rx_buf[0])
return -ENOBUFS; return -ENOBUFS;
c->rx_buf[1]=c->rx_buf[0]+PAGE_SIZE/2; c->rx_buf[1] = c->rx_buf[0] + PAGE_SIZE / 2;
c->tx_dma_buf[0]=(void *)get_zeroed_page(GFP_KERNEL|GFP_DMA); c->tx_dma_buf[0] = (void *)get_zeroed_page(GFP_KERNEL | GFP_DMA);
if(c->tx_dma_buf[0]==NULL) if (!c->tx_dma_buf[0]) {
{
free_page((unsigned long)c->rx_buf[0]); free_page((unsigned long)c->rx_buf[0]);
c->rx_buf[0]=NULL; c->rx_buf[0] = NULL;
return -ENOBUFS; return -ENOBUFS;
} }
c->tx_dma_buf[1]=c->tx_dma_buf[0]+PAGE_SIZE/2; c->tx_dma_buf[1] = c->tx_dma_buf[0] + PAGE_SIZE / 2;
c->tx_dma_used=0; c->tx_dma_used = 0;
c->dma_tx = 1; c->dma_tx = 1;
c->dma_num=0; c->dma_num = 0;
c->dma_ready=1; c->dma_ready = 1;
/* /* Enable DMA control mode
* Enable DMA control mode
*/ */
spin_lock_irqsave(c->lock, cflags); spin_lock_irqsave(c->lock, cflags);
/* /* TX DMA via DIR/REQ
* TX DMA via DIR/REQ
*/ */
c->regs[R14]|= DTRREQ; c->regs[R14] |= DTRREQ;
write_zsreg(c, R14, c->regs[R14]); write_zsreg(c, R14, c->regs[R14]);
c->regs[R1]&= ~TxINT_ENAB; c->regs[R1] &= ~TxINT_ENAB;
write_zsreg(c, R1, c->regs[R1]); write_zsreg(c, R1, c->regs[R1]);
/* /* RX DMA via W/Req
* RX DMA via W/Req
*/ */
c->regs[R1]|= WT_FN_RDYFN; c->regs[R1] |= WT_FN_RDYFN;
c->regs[R1]|= WT_RDY_RT; c->regs[R1] |= WT_RDY_RT;
c->regs[R1]|= INT_ERR_Rx; c->regs[R1] |= INT_ERR_Rx;
c->regs[R1]&= ~TxINT_ENAB; c->regs[R1] &= ~TxINT_ENAB;
write_zsreg(c, R1, c->regs[R1]); write_zsreg(c, R1, c->regs[R1]);
c->regs[R1]|= WT_RDY_ENAB; c->regs[R1] |= WT_RDY_ENAB;
write_zsreg(c, R1, c->regs[R1]); write_zsreg(c, R1, c->regs[R1]);
/* /* DMA interrupts
* DMA interrupts
*/ */
/* /* Set up the DMA configuration
* Set up the DMA configuration
*/ */
dflags=claim_dma_lock(); dflags = claim_dma_lock();
disable_dma(c->rxdma); disable_dma(c->rxdma);
clear_dma_ff(c->rxdma); clear_dma_ff(c->rxdma);
set_dma_mode(c->rxdma, DMA_MODE_READ|0x10); set_dma_mode(c->rxdma, DMA_MODE_READ | 0x10);
set_dma_addr(c->rxdma, virt_to_bus(c->rx_buf[0])); set_dma_addr(c->rxdma, virt_to_bus(c->rx_buf[0]));
set_dma_count(c->rxdma, c->mtu); set_dma_count(c->rxdma, c->mtu);
enable_dma(c->rxdma); enable_dma(c->rxdma);
...@@ -945,8 +871,7 @@ int z8530_sync_dma_open(struct net_device *dev, struct z8530_channel *c) ...@@ -945,8 +871,7 @@ int z8530_sync_dma_open(struct net_device *dev, struct z8530_channel *c)
release_dma_lock(dflags); release_dma_lock(dflags);
/* /* Select the DMA interrupt handlers
* Select the DMA interrupt handlers
*/ */
c->rxdma_on = 1; c->rxdma_on = 1;
...@@ -954,14 +879,13 @@ int z8530_sync_dma_open(struct net_device *dev, struct z8530_channel *c) ...@@ -954,14 +879,13 @@ int z8530_sync_dma_open(struct net_device *dev, struct z8530_channel *c)
c->tx_dma_used = 1; c->tx_dma_used = 1;
c->irqs = &z8530_dma_sync; c->irqs = &z8530_dma_sync;
z8530_rtsdtr(c,1); z8530_rtsdtr(c, 1);
write_zsreg(c, R3, c->regs[R3]|RxENABLE); write_zsreg(c, R3, c->regs[R3] | RxENABLE);
spin_unlock_irqrestore(c->lock, cflags); spin_unlock_irqrestore(c->lock, cflags);
return 0; return 0;
} }
EXPORT_SYMBOL(z8530_sync_dma_open); EXPORT_SYMBOL(z8530_sync_dma_open);
/** /**
...@@ -972,7 +896,6 @@ EXPORT_SYMBOL(z8530_sync_dma_open); ...@@ -972,7 +896,6 @@ EXPORT_SYMBOL(z8530_sync_dma_open);
* Shut down a DMA mode synchronous interface. Halt the DMA, and * Shut down a DMA mode synchronous interface. Halt the DMA, and
* free the buffers. * free the buffers.
*/ */
int z8530_sync_dma_close(struct net_device *dev, struct z8530_channel *c) int z8530_sync_dma_close(struct net_device *dev, struct z8530_channel *c)
{ {
u8 chk; u8 chk;
...@@ -982,11 +905,10 @@ int z8530_sync_dma_close(struct net_device *dev, struct z8530_channel *c) ...@@ -982,11 +905,10 @@ int z8530_sync_dma_close(struct net_device *dev, struct z8530_channel *c)
c->max = 0; c->max = 0;
c->sync = 0; c->sync = 0;
/* /* Disable the PC DMA channels
* Disable the PC DMA channels
*/ */
flags=claim_dma_lock(); flags = claim_dma_lock();
disable_dma(c->rxdma); disable_dma(c->rxdma);
clear_dma_ff(c->rxdma); clear_dma_ff(c->rxdma);
...@@ -1001,37 +923,33 @@ int z8530_sync_dma_close(struct net_device *dev, struct z8530_channel *c) ...@@ -1001,37 +923,33 @@ int z8530_sync_dma_close(struct net_device *dev, struct z8530_channel *c)
spin_lock_irqsave(c->lock, flags); spin_lock_irqsave(c->lock, flags);
/* /* Disable DMA control mode
* Disable DMA control mode
*/ */
c->regs[R1]&= ~WT_RDY_ENAB; c->regs[R1] &= ~WT_RDY_ENAB;
write_zsreg(c, R1, c->regs[R1]); write_zsreg(c, R1, c->regs[R1]);
c->regs[R1]&= ~(WT_RDY_RT|WT_FN_RDYFN|INT_ERR_Rx); c->regs[R1] &= ~(WT_RDY_RT | WT_FN_RDYFN | INT_ERR_Rx);
c->regs[R1]|= INT_ALL_Rx; c->regs[R1] |= INT_ALL_Rx;
write_zsreg(c, R1, c->regs[R1]); write_zsreg(c, R1, c->regs[R1]);
c->regs[R14]&= ~DTRREQ; c->regs[R14] &= ~DTRREQ;
write_zsreg(c, R14, c->regs[R14]); write_zsreg(c, R14, c->regs[R14]);
if(c->rx_buf[0]) if (c->rx_buf[0]) {
{
free_page((unsigned long)c->rx_buf[0]); free_page((unsigned long)c->rx_buf[0]);
c->rx_buf[0]=NULL; c->rx_buf[0] = NULL;
} }
if(c->tx_dma_buf[0]) if (c->tx_dma_buf[0]) {
{
free_page((unsigned long)c->tx_dma_buf[0]); free_page((unsigned long)c->tx_dma_buf[0]);
c->tx_dma_buf[0]=NULL; c->tx_dma_buf[0] = NULL;
} }
chk=read_zsreg(c,R0); chk = read_zsreg(c, R0);
write_zsreg(c, R3, c->regs[R3]); write_zsreg(c, R3, c->regs[R3]);
z8530_rtsdtr(c,0); z8530_rtsdtr(c, 0);
spin_unlock_irqrestore(c->lock, flags); spin_unlock_irqrestore(c->lock, flags);
return 0; return 0;
} }
EXPORT_SYMBOL(z8530_sync_dma_close); EXPORT_SYMBOL(z8530_sync_dma_close);
/** /**
...@@ -1050,63 +968,56 @@ int z8530_sync_txdma_open(struct net_device *dev, struct z8530_channel *c) ...@@ -1050,63 +968,56 @@ int z8530_sync_txdma_open(struct net_device *dev, struct z8530_channel *c)
printk("Opening sync interface for TX-DMA\n"); printk("Opening sync interface for TX-DMA\n");
c->sync = 1; c->sync = 1;
c->mtu = dev->mtu+64; c->mtu = dev->mtu + 64;
c->count = 0; c->count = 0;
c->skb = NULL; c->skb = NULL;
c->skb2 = NULL; c->skb2 = NULL;
/* /* Allocate the DMA flip buffers. Limit by page size.
* Allocate the DMA flip buffers. Limit by page size.
* Everyone runs 1500 mtu or less on wan links so this * Everyone runs 1500 mtu or less on wan links so this
* should be fine. * should be fine.
*/ */
if(c->mtu > PAGE_SIZE/2) if (c->mtu > PAGE_SIZE / 2)
return -EMSGSIZE; return -EMSGSIZE;
c->tx_dma_buf[0]=(void *)get_zeroed_page(GFP_KERNEL|GFP_DMA); c->tx_dma_buf[0] = (void *)get_zeroed_page(GFP_KERNEL | GFP_DMA);
if(c->tx_dma_buf[0]==NULL) if (!c->tx_dma_buf[0])
return -ENOBUFS; return -ENOBUFS;
c->tx_dma_buf[1] = c->tx_dma_buf[0] + PAGE_SIZE/2; c->tx_dma_buf[1] = c->tx_dma_buf[0] + PAGE_SIZE / 2;
spin_lock_irqsave(c->lock, cflags); spin_lock_irqsave(c->lock, cflags);
/* /* Load the PIO receive ring
* Load the PIO receive ring
*/ */
z8530_rx_done(c); z8530_rx_done(c);
z8530_rx_done(c); z8530_rx_done(c);
/* /* Load the DMA interfaces up
* Load the DMA interfaces up
*/ */
c->rxdma_on = 0; c->rxdma_on = 0;
c->txdma_on = 0; c->txdma_on = 0;
c->tx_dma_used=0; c->tx_dma_used = 0;
c->dma_num=0; c->dma_num = 0;
c->dma_ready=1; c->dma_ready = 1;
c->dma_tx = 1; c->dma_tx = 1;
/* /* Enable DMA control mode
* Enable DMA control mode
*/ */
/* /* TX DMA via DIR/REQ
* TX DMA via DIR/REQ
*/ */
c->regs[R14]|= DTRREQ; c->regs[R14] |= DTRREQ;
write_zsreg(c, R14, c->regs[R14]); write_zsreg(c, R14, c->regs[R14]);
c->regs[R1]&= ~TxINT_ENAB; c->regs[R1] &= ~TxINT_ENAB;
write_zsreg(c, R1, c->regs[R1]); write_zsreg(c, R1, c->regs[R1]);
/* /* Set up the DMA configuration
* Set up the DMA configuration
*/ */
dflags = claim_dma_lock(); dflags = claim_dma_lock();
...@@ -1118,8 +1029,7 @@ int z8530_sync_txdma_open(struct net_device *dev, struct z8530_channel *c) ...@@ -1118,8 +1029,7 @@ int z8530_sync_txdma_open(struct net_device *dev, struct z8530_channel *c)
release_dma_lock(dflags); release_dma_lock(dflags);
/* /* Select the DMA interrupt handlers
* Select the DMA interrupt handlers
*/ */
c->rxdma_on = 0; c->rxdma_on = 0;
...@@ -1127,13 +1037,12 @@ int z8530_sync_txdma_open(struct net_device *dev, struct z8530_channel *c) ...@@ -1127,13 +1037,12 @@ int z8530_sync_txdma_open(struct net_device *dev, struct z8530_channel *c)
c->tx_dma_used = 1; c->tx_dma_used = 1;
c->irqs = &z8530_txdma_sync; c->irqs = &z8530_txdma_sync;
z8530_rtsdtr(c,1); z8530_rtsdtr(c, 1);
write_zsreg(c, R3, c->regs[R3]|RxENABLE); write_zsreg(c, R3, c->regs[R3] | RxENABLE);
spin_unlock_irqrestore(c->lock, cflags); spin_unlock_irqrestore(c->lock, cflags);
return 0; return 0;
} }
EXPORT_SYMBOL(z8530_sync_txdma_open); EXPORT_SYMBOL(z8530_sync_txdma_open);
/** /**
...@@ -1150,15 +1059,13 @@ int z8530_sync_txdma_close(struct net_device *dev, struct z8530_channel *c) ...@@ -1150,15 +1059,13 @@ int z8530_sync_txdma_close(struct net_device *dev, struct z8530_channel *c)
unsigned long dflags, cflags; unsigned long dflags, cflags;
u8 chk; u8 chk;
spin_lock_irqsave(c->lock, cflags); spin_lock_irqsave(c->lock, cflags);
c->irqs = &z8530_nop; c->irqs = &z8530_nop;
c->max = 0; c->max = 0;
c->sync = 0; c->sync = 0;
/* /* Disable the PC DMA channels
* Disable the PC DMA channels
*/ */
dflags = claim_dma_lock(); dflags = claim_dma_lock();
...@@ -1170,41 +1077,34 @@ int z8530_sync_txdma_close(struct net_device *dev, struct z8530_channel *c) ...@@ -1170,41 +1077,34 @@ int z8530_sync_txdma_close(struct net_device *dev, struct z8530_channel *c)
release_dma_lock(dflags); release_dma_lock(dflags);
/* /* Disable DMA control mode
* Disable DMA control mode
*/ */
c->regs[R1]&= ~WT_RDY_ENAB; c->regs[R1] &= ~WT_RDY_ENAB;
write_zsreg(c, R1, c->regs[R1]); write_zsreg(c, R1, c->regs[R1]);
c->regs[R1]&= ~(WT_RDY_RT|WT_FN_RDYFN|INT_ERR_Rx); c->regs[R1] &= ~(WT_RDY_RT | WT_FN_RDYFN | INT_ERR_Rx);
c->regs[R1]|= INT_ALL_Rx; c->regs[R1] |= INT_ALL_Rx;
write_zsreg(c, R1, c->regs[R1]); write_zsreg(c, R1, c->regs[R1]);
c->regs[R14]&= ~DTRREQ; c->regs[R14] &= ~DTRREQ;
write_zsreg(c, R14, c->regs[R14]); write_zsreg(c, R14, c->regs[R14]);
if(c->tx_dma_buf[0]) if (c->tx_dma_buf[0]) {
{
free_page((unsigned long)c->tx_dma_buf[0]); free_page((unsigned long)c->tx_dma_buf[0]);
c->tx_dma_buf[0]=NULL; c->tx_dma_buf[0] = NULL;
} }
chk=read_zsreg(c,R0); chk = read_zsreg(c, R0);
write_zsreg(c, R3, c->regs[R3]); write_zsreg(c, R3, c->regs[R3]);
z8530_rtsdtr(c,0); z8530_rtsdtr(c, 0);
spin_unlock_irqrestore(c->lock, cflags); spin_unlock_irqrestore(c->lock, cflags);
return 0; return 0;
} }
EXPORT_SYMBOL(z8530_sync_txdma_close); EXPORT_SYMBOL(z8530_sync_txdma_close);
/* Name strings for Z8530 chips. SGI claim to have a 130, Zilog deny
/*
* Name strings for Z8530 chips. SGI claim to have a 130, Zilog deny
* it exists... * it exists...
*/ */
static const char * const z8530_type_name[] = {
static const char *z8530_type_name[]={
"Z8530", "Z8530",
"Z85C30", "Z85C30",
"Z85230" "Z85230"
...@@ -1230,71 +1130,64 @@ void z8530_describe(struct z8530_dev *dev, char *mapping, unsigned long io) ...@@ -1230,71 +1130,64 @@ void z8530_describe(struct z8530_dev *dev, char *mapping, unsigned long io)
Z8530_PORT_OF(io), Z8530_PORT_OF(io),
dev->irq); dev->irq);
} }
EXPORT_SYMBOL(z8530_describe); EXPORT_SYMBOL(z8530_describe);
/* /* Locked operation part of the z8530 init code
* Locked operation part of the z8530 init code
*/ */
static inline int do_z8530_init(struct z8530_dev *dev) static inline int do_z8530_init(struct z8530_dev *dev)
{ {
/* NOP the interrupt handlers first - we might get a /* NOP the interrupt handlers first - we might get a
floating IRQ transition when we reset the chip */ * floating IRQ transition when we reset the chip
dev->chanA.irqs=&z8530_nop; */
dev->chanB.irqs=&z8530_nop; dev->chanA.irqs = &z8530_nop;
dev->chanA.dcdcheck=DCD; dev->chanB.irqs = &z8530_nop;
dev->chanB.dcdcheck=DCD; dev->chanA.dcdcheck = DCD;
dev->chanB.dcdcheck = DCD;
/* Reset the chip */ /* Reset the chip */
write_zsreg(&dev->chanA, R9, 0xC0); write_zsreg(&dev->chanA, R9, 0xC0);
udelay(200); udelay(200);
/* Now check its valid */ /* Now check its valid */
write_zsreg(&dev->chanA, R12, 0xAA); write_zsreg(&dev->chanA, R12, 0xAA);
if(read_zsreg(&dev->chanA, R12)!=0xAA) if (read_zsreg(&dev->chanA, R12) != 0xAA)
return -ENODEV; return -ENODEV;
write_zsreg(&dev->chanA, R12, 0x55); write_zsreg(&dev->chanA, R12, 0x55);
if(read_zsreg(&dev->chanA, R12)!=0x55) if (read_zsreg(&dev->chanA, R12) != 0x55)
return -ENODEV; return -ENODEV;
dev->type=Z8530; dev->type = Z8530;
/* /* See the application note.
* See the application note.
*/ */
write_zsreg(&dev->chanA, R15, 0x01); write_zsreg(&dev->chanA, R15, 0x01);
/* /* If we can set the low bit of R15 then
* If we can set the low bit of R15 then
* the chip is enhanced. * the chip is enhanced.
*/ */
if(read_zsreg(&dev->chanA, R15)==0x01) if (read_zsreg(&dev->chanA, R15) == 0x01) {
{
/* This C30 versus 230 detect is from Klaus Kudielka's dmascc */ /* This C30 versus 230 detect is from Klaus Kudielka's dmascc */
/* Put a char in the fifo */ /* Put a char in the fifo */
write_zsreg(&dev->chanA, R8, 0); write_zsreg(&dev->chanA, R8, 0);
if(read_zsreg(&dev->chanA, R0)&Tx_BUF_EMP) if (read_zsreg(&dev->chanA, R0) & Tx_BUF_EMP)
dev->type = Z85230; /* Has a FIFO */ dev->type = Z85230; /* Has a FIFO */
else else
dev->type = Z85C30; /* Z85C30, 1 byte FIFO */ dev->type = Z85C30; /* Z85C30, 1 byte FIFO */
} }
/* /* The code assumes R7' and friends are
* The code assumes R7' and friends are
* off. Use write_zsext() for these and keep * off. Use write_zsext() for these and keep
* this bit clear. * this bit clear.
*/ */
write_zsreg(&dev->chanA, R15, 0); write_zsreg(&dev->chanA, R15, 0);
/* /* At this point it looks like the chip is behaving
* At this point it looks like the chip is behaving
*/ */
memcpy(dev->chanA.regs, reg_init, 16); memcpy(dev->chanA.regs, reg_init, 16);
memcpy(dev->chanB.regs, reg_init ,16); memcpy(dev->chanB.regs, reg_init, 16);
return 0; return 0;
} }
...@@ -1332,8 +1225,6 @@ int z8530_init(struct z8530_dev *dev) ...@@ -1332,8 +1225,6 @@ int z8530_init(struct z8530_dev *dev)
return ret; return ret;
} }
EXPORT_SYMBOL(z8530_init); EXPORT_SYMBOL(z8530_init);
/** /**
...@@ -1346,22 +1237,20 @@ EXPORT_SYMBOL(z8530_init); ...@@ -1346,22 +1237,20 @@ EXPORT_SYMBOL(z8530_init);
* *
* This is called without the lock held * This is called without the lock held
*/ */
int z8530_shutdown(struct z8530_dev *dev) int z8530_shutdown(struct z8530_dev *dev)
{ {
unsigned long flags; unsigned long flags;
/* Reset the chip */ /* Reset the chip */
spin_lock_irqsave(&dev->lock, flags); spin_lock_irqsave(&dev->lock, flags);
dev->chanA.irqs=&z8530_nop; dev->chanA.irqs = &z8530_nop;
dev->chanB.irqs=&z8530_nop; dev->chanB.irqs = &z8530_nop;
write_zsreg(&dev->chanA, R9, 0xC0); write_zsreg(&dev->chanA, R9, 0xC0);
/* We must lock the udelay, the chip is offlimits here */ /* We must lock the udelay, the chip is offlimits here */
udelay(100); udelay(100);
spin_unlock_irqrestore(&dev->lock, flags); spin_unlock_irqrestore(&dev->lock, flags);
return 0; return 0;
} }
EXPORT_SYMBOL(z8530_shutdown); EXPORT_SYMBOL(z8530_shutdown);
/** /**
...@@ -1381,34 +1270,32 @@ int z8530_channel_load(struct z8530_channel *c, u8 *rtable) ...@@ -1381,34 +1270,32 @@ int z8530_channel_load(struct z8530_channel *c, u8 *rtable)
spin_lock_irqsave(c->lock, flags); spin_lock_irqsave(c->lock, flags);
while(*rtable!=255) while (*rtable != 255) {
{ int reg = *rtable++;
int reg=*rtable++;
if(reg>0x0F) if (reg > 0x0F)
write_zsreg(c, R15, c->regs[15]|1); write_zsreg(c, R15, c->regs[15] | 1);
write_zsreg(c, reg&0x0F, *rtable); write_zsreg(c, reg & 0x0F, *rtable);
if(reg>0x0F) if (reg > 0x0F)
write_zsreg(c, R15, c->regs[15]&~1); write_zsreg(c, R15, c->regs[15] & ~1);
c->regs[reg]=*rtable++; c->regs[reg] = *rtable++;
} }
c->rx_function=z8530_null_rx; c->rx_function = z8530_null_rx;
c->skb=NULL; c->skb = NULL;
c->tx_skb=NULL; c->tx_skb = NULL;
c->tx_next_skb=NULL; c->tx_next_skb = NULL;
c->mtu=1500; c->mtu = 1500;
c->max=0; c->max = 0;
c->count=0; c->count = 0;
c->status=read_zsreg(c, R0); c->status = read_zsreg(c, R0);
c->sync=1; c->sync = 1;
write_zsreg(c, R3, c->regs[R3]|RxENABLE); write_zsreg(c, R3, c->regs[R3] | RxENABLE);
spin_unlock_irqrestore(c->lock, flags); spin_unlock_irqrestore(c->lock, flags);
return 0; return 0;
} }
EXPORT_SYMBOL(z8530_channel_load); EXPORT_SYMBOL(z8530_channel_load);
/** /**
* z8530_tx_begin - Begin packet transmission * z8530_tx_begin - Begin packet transmission
* @c: The Z8530 channel to kick * @c: The Z8530 channel to kick
...@@ -1426,85 +1313,68 @@ EXPORT_SYMBOL(z8530_channel_load); ...@@ -1426,85 +1313,68 @@ EXPORT_SYMBOL(z8530_channel_load);
static void z8530_tx_begin(struct z8530_channel *c) static void z8530_tx_begin(struct z8530_channel *c)
{ {
unsigned long flags; unsigned long flags;
if(c->tx_skb)
if (c->tx_skb)
return; return;
c->tx_skb=c->tx_next_skb; c->tx_skb = c->tx_next_skb;
c->tx_next_skb=NULL; c->tx_next_skb = NULL;
c->tx_ptr=c->tx_next_ptr; c->tx_ptr = c->tx_next_ptr;
if(c->tx_skb==NULL) if (!c->tx_skb) {
{
/* Idle on */ /* Idle on */
if(c->dma_tx) if (c->dma_tx) {
{ flags = claim_dma_lock();
flags=claim_dma_lock();
disable_dma(c->txdma); disable_dma(c->txdma);
/* /* Check if we crapped out.
* Check if we crapped out.
*/ */
if (get_dma_residue(c->txdma)) if (get_dma_residue(c->txdma)) {
{
c->netdevice->stats.tx_dropped++; c->netdevice->stats.tx_dropped++;
c->netdevice->stats.tx_fifo_errors++; c->netdevice->stats.tx_fifo_errors++;
} }
release_dma_lock(flags); release_dma_lock(flags);
} }
c->txcount=0; c->txcount = 0;
} } else {
else c->txcount = c->tx_skb->len;
{
c->txcount=c->tx_skb->len;
if(c->dma_tx) if (c->dma_tx) {
{ /* FIXME. DMA is broken for the original 8530,
/*
* FIXME. DMA is broken for the original 8530,
* on the older parts we need to set a flag and * on the older parts we need to set a flag and
* wait for a further TX interrupt to fire this * wait for a further TX interrupt to fire this
* stage off * stage off
*/ */
flags=claim_dma_lock(); flags = claim_dma_lock();
disable_dma(c->txdma); disable_dma(c->txdma);
/* /* These two are needed by the 8530/85C30
* These two are needed by the 8530/85C30
* and must be issued when idling. * and must be issued when idling.
*/ */
if (c->dev->type != Z85230) {
if(c->dev->type!=Z85230)
{
write_zsctrl(c, RES_Tx_CRC); write_zsctrl(c, RES_Tx_CRC);
write_zsctrl(c, RES_EOM_L); write_zsctrl(c, RES_EOM_L);
} }
write_zsreg(c, R10, c->regs[10]&~ABUNDER); write_zsreg(c, R10, c->regs[10] & ~ABUNDER);
clear_dma_ff(c->txdma); clear_dma_ff(c->txdma);
set_dma_addr(c->txdma, virt_to_bus(c->tx_ptr)); set_dma_addr(c->txdma, virt_to_bus(c->tx_ptr));
set_dma_count(c->txdma, c->txcount); set_dma_count(c->txdma, c->txcount);
enable_dma(c->txdma); enable_dma(c->txdma);
release_dma_lock(flags); release_dma_lock(flags);
write_zsctrl(c, RES_EOM_L); write_zsctrl(c, RES_EOM_L);
write_zsreg(c, R5, c->regs[R5]|TxENAB); write_zsreg(c, R5, c->regs[R5] | TxENAB);
} } else {
else
{
/* ABUNDER off */ /* ABUNDER off */
write_zsreg(c, R10, c->regs[10]); write_zsreg(c, R10, c->regs[10]);
write_zsctrl(c, RES_Tx_CRC); write_zsctrl(c, RES_Tx_CRC);
while(c->txcount && (read_zsreg(c,R0)&Tx_BUF_EMP)) while (c->txcount && (read_zsreg(c, R0) & Tx_BUF_EMP)) {
{
write_zsreg(c, R8, *c->tx_ptr++); write_zsreg(c, R8, *c->tx_ptr++);
c->txcount--; c->txcount--;
} }
} }
} }
/* /* Since we emptied tx_skb we can ask for more
* Since we emptied tx_skb we can ask for more
*/ */
netif_wake_queue(c->netdevice); netif_wake_queue(c->netdevice);
} }
...@@ -1525,7 +1395,7 @@ static void z8530_tx_done(struct z8530_channel *c) ...@@ -1525,7 +1395,7 @@ static void z8530_tx_done(struct z8530_channel *c)
struct sk_buff *skb; struct sk_buff *skb;
/* Actually this can happen.*/ /* Actually this can happen.*/
if (c->tx_skb == NULL) if (!c->tx_skb)
return; return;
skb = c->tx_skb; skb = c->tx_skb;
...@@ -1544,12 +1414,10 @@ static void z8530_tx_done(struct z8530_channel *c) ...@@ -1544,12 +1414,10 @@ static void z8530_tx_done(struct z8530_channel *c)
* We point the receive handler at this function when idle. Instead * We point the receive handler at this function when idle. Instead
* of processing the frames we get to throw them away. * of processing the frames we get to throw them away.
*/ */
void z8530_null_rx(struct z8530_channel *c, struct sk_buff *skb) void z8530_null_rx(struct z8530_channel *c, struct sk_buff *skb)
{ {
dev_kfree_skb_any(skb); dev_kfree_skb_any(skb);
} }
EXPORT_SYMBOL(z8530_null_rx); EXPORT_SYMBOL(z8530_null_rx);
/** /**
...@@ -1564,67 +1432,58 @@ EXPORT_SYMBOL(z8530_null_rx); ...@@ -1564,67 +1432,58 @@ EXPORT_SYMBOL(z8530_null_rx);
* *
* Called with the lock held * Called with the lock held
*/ */
static void z8530_rx_done(struct z8530_channel *c) static void z8530_rx_done(struct z8530_channel *c)
{ {
struct sk_buff *skb; struct sk_buff *skb;
int ct; int ct;
/* /* Is our receive engine in DMA mode
* Is our receive engine in DMA mode
*/ */
if (c->rxdma_on) {
if(c->rxdma_on) /* Save the ready state and the buffer currently
{
/*
* Save the ready state and the buffer currently
* being used as the DMA target * being used as the DMA target
*/ */
int ready = c->dma_ready;
int ready=c->dma_ready; unsigned char *rxb = c->rx_buf[c->dma_num];
unsigned char *rxb=c->rx_buf[c->dma_num];
unsigned long flags; unsigned long flags;
/* /* Complete this DMA. Necessary to find the length
* Complete this DMA. Necessary to find the length
*/ */
flags = claim_dma_lock();
flags=claim_dma_lock();
disable_dma(c->rxdma); disable_dma(c->rxdma);
clear_dma_ff(c->rxdma); clear_dma_ff(c->rxdma);
c->rxdma_on=0; c->rxdma_on = 0;
ct=c->mtu-get_dma_residue(c->rxdma); ct = c->mtu - get_dma_residue(c->rxdma);
if(ct<0) if (ct < 0)
ct=2; /* Shit happens.. */ ct = 2; /* Shit happens.. */
c->dma_ready=0; c->dma_ready = 0;
/* /* Normal case: the other slot is free, start the next DMA
* Normal case: the other slot is free, start the next DMA
* into it immediately. * into it immediately.
*/ */
if(ready) if (ready) {
{ c->dma_num ^= 1;
c->dma_num^=1; set_dma_mode(c->rxdma, DMA_MODE_READ | 0x10);
set_dma_mode(c->rxdma, DMA_MODE_READ|0x10);
set_dma_addr(c->rxdma, virt_to_bus(c->rx_buf[c->dma_num])); set_dma_addr(c->rxdma, virt_to_bus(c->rx_buf[c->dma_num]));
set_dma_count(c->rxdma, c->mtu); set_dma_count(c->rxdma, c->mtu);
c->rxdma_on = 1; c->rxdma_on = 1;
enable_dma(c->rxdma); enable_dma(c->rxdma);
/* Stop any frames that we missed the head of /* Stop any frames that we missed the head of
from passing */ * from passing
*/
write_zsreg(c, R0, RES_Rx_CRC); write_zsreg(c, R0, RES_Rx_CRC);
} } else {
else
/* Can't occur as we dont reenable the DMA irq until /* Can't occur as we dont reenable the DMA irq until
after the flip is done */ * after the flip is done
*/
netdev_warn(c->netdevice, "DMA flip overrun!\n"); netdev_warn(c->netdevice, "DMA flip overrun!\n");
}
release_dma_lock(flags); release_dma_lock(flags);
/* /* Shove the old buffer into an sk_buff. We can't DMA
* Shove the old buffer into an sk_buff. We can't DMA
* directly into one on a PC - it might be above the 16Mb * directly into one on a PC - it might be above the 16Mb
* boundary. Optimisation - we could check to see if we * boundary. Optimisation - we could check to see if we
* can avoid the copy. Optimisation 2 - make the memcpy * can avoid the copy. Optimisation 2 - make the memcpy
...@@ -1632,7 +1491,7 @@ static void z8530_rx_done(struct z8530_channel *c) ...@@ -1632,7 +1491,7 @@ static void z8530_rx_done(struct z8530_channel *c)
*/ */
skb = dev_alloc_skb(ct); skb = dev_alloc_skb(ct);
if (skb == NULL) { if (!skb) {
c->netdevice->stats.rx_dropped++; c->netdevice->stats.rx_dropped++;
netdev_warn(c->netdevice, "Memory squeeze\n"); netdev_warn(c->netdevice, "Memory squeeze\n");
} else { } else {
...@@ -1646,8 +1505,7 @@ static void z8530_rx_done(struct z8530_channel *c) ...@@ -1646,8 +1505,7 @@ static void z8530_rx_done(struct z8530_channel *c)
RT_LOCK; RT_LOCK;
skb = c->skb; skb = c->skb;
/* /* The game we play for non DMA is similar. We want to
* The game we play for non DMA is similar. We want to
* get the controller set up for the next packet as fast * get the controller set up for the next packet as fast
* as possible. We potentially only have one byte + the * as possible. We potentially only have one byte + the
* fifo length for this. Thus we want to flip to the new * fifo length for this. Thus we want to flip to the new
...@@ -1658,7 +1516,7 @@ static void z8530_rx_done(struct z8530_channel *c) ...@@ -1658,7 +1516,7 @@ static void z8530_rx_done(struct z8530_channel *c)
* sync IRQ for the RT_LOCK area. * sync IRQ for the RT_LOCK area.
* *
*/ */
ct=c->count; ct = c->count;
c->skb = c->skb2; c->skb = c->skb2;
c->count = 0; c->count = 0;
...@@ -1673,15 +1531,13 @@ static void z8530_rx_done(struct z8530_channel *c) ...@@ -1673,15 +1531,13 @@ static void z8530_rx_done(struct z8530_channel *c)
RT_UNLOCK; RT_UNLOCK;
c->skb2 = dev_alloc_skb(c->mtu); c->skb2 = dev_alloc_skb(c->mtu);
if (c->skb2 == NULL) if (c->skb2)
netdev_warn(c->netdevice, "memory squeeze\n");
else
skb_put(c->skb2, c->mtu); skb_put(c->skb2, c->mtu);
c->netdevice->stats.rx_packets++; c->netdevice->stats.rx_packets++;
c->netdevice->stats.rx_bytes += ct; c->netdevice->stats.rx_bytes += ct;
} }
/* /* If we received a frame we must now process it.
* If we received a frame we must now process it.
*/ */
if (skb) { if (skb) {
skb_trim(skb, ct); skb_trim(skb, ct);
...@@ -1702,9 +1558,10 @@ static void z8530_rx_done(struct z8530_channel *c) ...@@ -1702,9 +1558,10 @@ static void z8530_rx_done(struct z8530_channel *c)
static inline int spans_boundary(struct sk_buff *skb) static inline int spans_boundary(struct sk_buff *skb)
{ {
unsigned long a=(unsigned long)skb->data; unsigned long a = (unsigned long)skb->data;
a^=(a+skb->len);
if(a&0x00010000) /* If the 64K bit is different.. */ a ^= (a + skb->len);
if (a & 0x00010000) /* If the 64K bit is different.. */
return 1; return 1;
return 0; return 0;
} }
...@@ -1722,40 +1579,36 @@ static inline int spans_boundary(struct sk_buff *skb) ...@@ -1722,40 +1579,36 @@ static inline int spans_boundary(struct sk_buff *skb)
* Called from the network code. The lock is not held at this * Called from the network code. The lock is not held at this
* point. * point.
*/ */
netdev_tx_t z8530_queue_xmit(struct z8530_channel *c, struct sk_buff *skb) netdev_tx_t z8530_queue_xmit(struct z8530_channel *c, struct sk_buff *skb)
{ {
unsigned long flags; unsigned long flags;
netif_stop_queue(c->netdevice); netif_stop_queue(c->netdevice);
if(c->tx_next_skb) if (c->tx_next_skb)
return NETDEV_TX_BUSY; return NETDEV_TX_BUSY;
/* PC SPECIFIC - DMA limits */ /* PC SPECIFIC - DMA limits */
/* If we will DMA the transmit and its gone over the ISA bus
/*
* If we will DMA the transmit and its gone over the ISA bus
* limit, then copy to the flip buffer * limit, then copy to the flip buffer
*/ */
if(c->dma_tx && ((unsigned long)(virt_to_bus(skb->data+skb->len))>=16*1024*1024 || spans_boundary(skb))) if (c->dma_tx &&
{ ((unsigned long)(virt_to_bus(skb->data + skb->len)) >=
/* 16 * 1024 * 1024 || spans_boundary(skb))) {
* Send the flip buffer, and flip the flippy bit. /* Send the flip buffer, and flip the flippy bit.
* We don't care which is used when just so long as * We don't care which is used when just so long as
* we never use the same buffer twice in a row. Since * we never use the same buffer twice in a row. Since
* only one buffer can be going out at a time the other * only one buffer can be going out at a time the other
* has to be safe. * has to be safe.
*/ */
c->tx_next_ptr=c->tx_dma_buf[c->tx_dma_used]; c->tx_next_ptr = c->tx_dma_buf[c->tx_dma_used];
c->tx_dma_used^=1; /* Flip temp buffer */ c->tx_dma_used ^= 1; /* Flip temp buffer */
skb_copy_from_linear_data(skb, c->tx_next_ptr, skb->len); skb_copy_from_linear_data(skb, c->tx_next_ptr, skb->len);
} else {
c->tx_next_ptr = skb->data;
} }
else
c->tx_next_ptr=skb->data;
RT_LOCK; RT_LOCK;
c->tx_next_skb=skb; c->tx_next_skb = skb;
RT_UNLOCK; RT_UNLOCK;
spin_lock_irqsave(c->lock, flags); spin_lock_irqsave(c->lock, flags);
...@@ -1764,11 +1617,9 @@ netdev_tx_t z8530_queue_xmit(struct z8530_channel *c, struct sk_buff *skb) ...@@ -1764,11 +1617,9 @@ netdev_tx_t z8530_queue_xmit(struct z8530_channel *c, struct sk_buff *skb)
return NETDEV_TX_OK; return NETDEV_TX_OK;
} }
EXPORT_SYMBOL(z8530_queue_xmit); EXPORT_SYMBOL(z8530_queue_xmit);
/* /* Module support
* Module support
*/ */
static const char banner[] __initconst = static const char banner[] __initconst =
KERN_INFO "Generic Z85C30/Z85230 interface driver v0.02\n"; KERN_INFO "Generic Z85C30/Z85230 interface driver v0.02\n";
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment