Commit 6234219d authored by David S. Miller's avatar David S. Miller

Merge branch 'GRO-Toeplitz-selftests'

Coco Li says:

====================
GRO and Toeplitz hash selftests

This patch contains two selftests in net, as well as respective
scripts to run the tests on a single machine in loopback mode.
GRO: tests the Linux kernel GRO behavior
Toeplitz: tests the toeplitz hash implementation
====================
Signed-off-by: default avatarDavid S. Miller <davem@davemloft.net>
parents ab996c42 5ebfb4cc
...@@ -38,8 +38,10 @@ TEST_GEN_FILES += reuseaddr_ports_exhausted ...@@ -38,8 +38,10 @@ TEST_GEN_FILES += reuseaddr_ports_exhausted
TEST_GEN_FILES += hwtstamp_config rxtimestamp timestamping txtimestamp TEST_GEN_FILES += hwtstamp_config rxtimestamp timestamping txtimestamp
TEST_GEN_FILES += ipsec TEST_GEN_FILES += ipsec
TEST_GEN_FILES += ioam6_parser TEST_GEN_FILES += ioam6_parser
TEST_GEN_FILES += gro
TEST_GEN_PROGS = reuseport_bpf reuseport_bpf_cpu reuseport_bpf_numa TEST_GEN_PROGS = reuseport_bpf reuseport_bpf_cpu reuseport_bpf_numa
TEST_GEN_PROGS += reuseport_dualstack reuseaddr_conflict tls TEST_GEN_PROGS += reuseport_dualstack reuseaddr_conflict tls
TEST_GEN_FILES += toeplitz
TEST_FILES := settings TEST_FILES := settings
......
// SPDX-License-Identifier: GPL-2.0
/*
* This testsuite provides conformance testing for GRO coalescing.
*
* Test cases:
* 1.data
* Data packets of the same size and same header setup with correct
* sequence numbers coalesce. The one exception being the last data
* packet coalesced: it can be smaller than the rest and coalesced
* as long as it is in the same flow.
* 2.ack
* Pure ACK does not coalesce.
* 3.flags
* Specific test cases: no packets with PSH, SYN, URG, RST set will
* be coalesced.
* 4.tcp
* Packets with incorrect checksum, non-consecutive seqno and
* different TCP header options shouldn't coalesce. Nit: given that
* some extension headers have paddings, such as timestamp, headers
* that are padding differently would not be coalesced.
* 5.ip:
* Packets with different (ECN, TTL, TOS) header, ip options or
* ip fragments (ipv6) shouldn't coalesce.
* 6.large:
* Packets larger than GRO_MAX_SIZE packets shouldn't coalesce.
*
* MSS is defined as 4096 - header because if it is too small
* (i.e. 1500 MTU - header), it will result in many packets,
* increasing the "large" test case's flakiness. This is because
* due to time sensitivity in the coalescing window, the receiver
* may not coalesce all of the packets.
*
* Note the timing issue applies to all of the test cases, so some
* flakiness is to be expected.
*
*/
#define _GNU_SOURCE
#include <arpa/inet.h>
#include <errno.h>
#include <error.h>
#include <getopt.h>
#include <linux/filter.h>
#include <linux/if_packet.h>
#include <linux/ipv6.h>
#include <net/ethernet.h>
#include <net/if.h>
#include <netinet/in.h>
#include <netinet/ip.h>
#include <netinet/ip6.h>
#include <netinet/tcp.h>
#include <stdbool.h>
#include <stddef.h>
#include <stdio.h>
#include <stdarg.h>
#include <string.h>
#include <unistd.h>
#define DPORT 8000
#define SPORT 1500
#define PAYLOAD_LEN 100
#define ARRAY_SIZE(arr) (sizeof(arr) / sizeof((arr)[0]))
#define NUM_PACKETS 4
#define START_SEQ 100
#define START_ACK 100
#define SIP6 "fdaa::2"
#define DIP6 "fdaa::1"
#define SIP4 "192.168.1.200"
#define DIP4 "192.168.1.100"
#define ETH_P_NONE 0
#define TOTAL_HDR_LEN (ETH_HLEN + sizeof(struct ipv6hdr) + sizeof(struct tcphdr))
#define MSS (4096 - sizeof(struct tcphdr) - sizeof(struct ipv6hdr))
#define MAX_PAYLOAD (IP_MAXPACKET - sizeof(struct tcphdr) - sizeof(struct ipv6hdr))
#define NUM_LARGE_PKT (MAX_PAYLOAD / MSS)
#define MAX_HDR_LEN (ETH_HLEN + sizeof(struct ipv6hdr) + sizeof(struct tcphdr))
static int proto = -1;
static uint8_t src_mac[ETH_ALEN], dst_mac[ETH_ALEN];
static char *testname = "data";
static char *ifname = "eth0";
static char *smac = "aa:00:00:00:00:02";
static char *dmac = "aa:00:00:00:00:01";
static bool verbose;
static bool tx_socket = true;
static int tcp_offset = -1;
static int total_hdr_len = -1;
static int ethhdr_proto = -1;
static void vlog(const char *fmt, ...)
{
va_list args;
if (verbose) {
va_start(args, fmt);
vfprintf(stderr, fmt, args);
va_end(args);
}
}
static void setup_sock_filter(int fd)
{
const int dport_off = tcp_offset + offsetof(struct tcphdr, dest);
const int ethproto_off = offsetof(struct ethhdr, h_proto);
int optlen = 0;
int ipproto_off;
int next_off;
if (proto == PF_INET)
next_off = offsetof(struct iphdr, protocol);
else
next_off = offsetof(struct ipv6hdr, nexthdr);
ipproto_off = ETH_HLEN + next_off;
if (strcmp(testname, "ip") == 0) {
if (proto == PF_INET)
optlen = sizeof(struct ip_timestamp);
else
optlen = sizeof(struct ip6_frag);
}
struct sock_filter filter[] = {
BPF_STMT(BPF_LD + BPF_H + BPF_ABS, ethproto_off),
BPF_JUMP(BPF_JMP + BPF_JEQ + BPF_K, ntohs(ethhdr_proto), 0, 7),
BPF_STMT(BPF_LD + BPF_B + BPF_ABS, ipproto_off),
BPF_JUMP(BPF_JMP + BPF_JEQ + BPF_K, IPPROTO_TCP, 0, 5),
BPF_STMT(BPF_LD + BPF_H + BPF_ABS, dport_off),
BPF_JUMP(BPF_JMP + BPF_JEQ + BPF_K, DPORT, 2, 0),
BPF_STMT(BPF_LD + BPF_H + BPF_ABS, dport_off + optlen),
BPF_JUMP(BPF_JMP + BPF_JEQ + BPF_K, DPORT, 0, 1),
BPF_STMT(BPF_RET + BPF_K, 0xFFFFFFFF),
BPF_STMT(BPF_RET + BPF_K, 0),
};
struct sock_fprog bpf = {
.len = ARRAY_SIZE(filter),
.filter = filter,
};
if (setsockopt(fd, SOL_SOCKET, SO_ATTACH_FILTER, &bpf, sizeof(bpf)) < 0)
error(1, errno, "error setting filter");
}
static uint32_t checksum_nofold(void *data, size_t len, uint32_t sum)
{
uint16_t *words = data;
int i;
for (i = 0; i < len / 2; i++)
sum += words[i];
if (len & 1)
sum += ((char *)data)[len - 1];
return sum;
}
static uint16_t checksum_fold(void *data, size_t len, uint32_t sum)
{
sum = checksum_nofold(data, len, sum);
while (sum > 0xFFFF)
sum = (sum & 0xFFFF) + (sum >> 16);
return ~sum;
}
static uint16_t tcp_checksum(void *buf, int payload_len)
{
struct pseudo_header6 {
struct in6_addr saddr;
struct in6_addr daddr;
uint16_t protocol;
uint16_t payload_len;
} ph6;
struct pseudo_header4 {
struct in_addr saddr;
struct in_addr daddr;
uint16_t protocol;
uint16_t payload_len;
} ph4;
uint32_t sum = 0;
if (proto == PF_INET6) {
if (inet_pton(AF_INET6, SIP6, &ph6.saddr) != 1)
error(1, errno, "inet_pton6 source ip pseudo");
if (inet_pton(AF_INET6, DIP6, &ph6.daddr) != 1)
error(1, errno, "inet_pton6 dest ip pseudo");
ph6.protocol = htons(IPPROTO_TCP);
ph6.payload_len = htons(sizeof(struct tcphdr) + payload_len);
sum = checksum_nofold(&ph6, sizeof(ph6), 0);
} else if (proto == PF_INET) {
if (inet_pton(AF_INET, SIP4, &ph4.saddr) != 1)
error(1, errno, "inet_pton source ip pseudo");
if (inet_pton(AF_INET, DIP4, &ph4.daddr) != 1)
error(1, errno, "inet_pton dest ip pseudo");
ph4.protocol = htons(IPPROTO_TCP);
ph4.payload_len = htons(sizeof(struct tcphdr) + payload_len);
sum = checksum_nofold(&ph4, sizeof(ph4), 0);
}
return checksum_fold(buf, sizeof(struct tcphdr) + payload_len, sum);
}
static void read_MAC(uint8_t *mac_addr, char *mac)
{
if (sscanf(mac, "%hhx:%hhx:%hhx:%hhx:%hhx:%hhx",
&mac_addr[0], &mac_addr[1], &mac_addr[2],
&mac_addr[3], &mac_addr[4], &mac_addr[5]) != 6)
error(1, 0, "sscanf");
}
static void fill_datalinklayer(void *buf)
{
struct ethhdr *eth = buf;
memcpy(eth->h_dest, dst_mac, ETH_ALEN);
memcpy(eth->h_source, src_mac, ETH_ALEN);
eth->h_proto = ethhdr_proto;
}
static void fill_networklayer(void *buf, int payload_len)
{
struct ipv6hdr *ip6h = buf;
struct iphdr *iph = buf;
if (proto == PF_INET6) {
memset(ip6h, 0, sizeof(*ip6h));
ip6h->version = 6;
ip6h->payload_len = htons(sizeof(struct tcphdr) + payload_len);
ip6h->nexthdr = IPPROTO_TCP;
ip6h->hop_limit = 8;
if (inet_pton(AF_INET6, SIP6, &ip6h->saddr) != 1)
error(1, errno, "inet_pton source ip6");
if (inet_pton(AF_INET6, DIP6, &ip6h->daddr) != 1)
error(1, errno, "inet_pton dest ip6");
} else if (proto == PF_INET) {
memset(iph, 0, sizeof(*iph));
iph->version = 4;
iph->ihl = 5;
iph->ttl = 8;
iph->protocol = IPPROTO_TCP;
iph->tot_len = htons(sizeof(struct tcphdr) +
payload_len + sizeof(struct iphdr));
iph->frag_off = htons(0x4000); /* DF = 1, MF = 0 */
if (inet_pton(AF_INET, SIP4, &iph->saddr) != 1)
error(1, errno, "inet_pton source ip");
if (inet_pton(AF_INET, DIP4, &iph->daddr) != 1)
error(1, errno, "inet_pton dest ip");
iph->check = checksum_fold(buf, sizeof(struct iphdr), 0);
}
}
static void fill_transportlayer(void *buf, int seq_offset, int ack_offset,
int payload_len, int fin)
{
struct tcphdr *tcph = buf;
memset(tcph, 0, sizeof(*tcph));
tcph->source = htons(SPORT);
tcph->dest = htons(DPORT);
tcph->seq = ntohl(START_SEQ + seq_offset);
tcph->ack_seq = ntohl(START_ACK + ack_offset);
tcph->ack = 1;
tcph->fin = fin;
tcph->doff = 5;
tcph->window = htons(TCP_MAXWIN);
tcph->urg_ptr = 0;
tcph->check = tcp_checksum(tcph, payload_len);
}
static void write_packet(int fd, char *buf, int len, struct sockaddr_ll *daddr)
{
int ret = -1;
ret = sendto(fd, buf, len, 0, (struct sockaddr *)daddr, sizeof(*daddr));
if (ret == -1)
error(1, errno, "sendto failure");
if (ret != len)
error(1, errno, "sendto wrong length");
}
static void create_packet(void *buf, int seq_offset, int ack_offset,
int payload_len, int fin)
{
memset(buf, 0, total_hdr_len);
memset(buf + total_hdr_len, 'a', payload_len);
fill_transportlayer(buf + tcp_offset, seq_offset, ack_offset,
payload_len, fin);
fill_networklayer(buf + ETH_HLEN, payload_len);
fill_datalinklayer(buf);
}
/* send one extra flag, not first and not last pkt */
static void send_flags(int fd, struct sockaddr_ll *daddr, int psh, int syn,
int rst, int urg)
{
static char flag_buf[MAX_HDR_LEN + PAYLOAD_LEN];
static char buf[MAX_HDR_LEN + PAYLOAD_LEN];
int payload_len, pkt_size, flag, i;
struct tcphdr *tcph;
payload_len = PAYLOAD_LEN * psh;
pkt_size = total_hdr_len + payload_len;
flag = NUM_PACKETS / 2;
create_packet(flag_buf, flag * payload_len, 0, payload_len, 0);
tcph = (struct tcphdr *)(flag_buf + tcp_offset);
tcph->psh = psh;
tcph->syn = syn;
tcph->rst = rst;
tcph->urg = urg;
tcph->check = 0;
tcph->check = tcp_checksum(tcph, payload_len);
for (i = 0; i < NUM_PACKETS + 1; i++) {
if (i == flag) {
write_packet(fd, flag_buf, pkt_size, daddr);
continue;
}
create_packet(buf, i * PAYLOAD_LEN, 0, PAYLOAD_LEN, 0);
write_packet(fd, buf, total_hdr_len + PAYLOAD_LEN, daddr);
}
}
/* Test for data of same length, smaller than previous
* and of different lengths
*/
static void send_data_pkts(int fd, struct sockaddr_ll *daddr,
int payload_len1, int payload_len2)
{
static char buf[ETH_HLEN + IP_MAXPACKET];
create_packet(buf, 0, 0, payload_len1, 0);
write_packet(fd, buf, total_hdr_len + payload_len1, daddr);
create_packet(buf, payload_len1, 0, payload_len2, 0);
write_packet(fd, buf, total_hdr_len + payload_len2, daddr);
}
/* If incoming segments make tracked segment length exceed
* legal IP datagram length, do not coalesce
*/
static void send_large(int fd, struct sockaddr_ll *daddr, int remainder)
{
static char pkts[NUM_LARGE_PKT][TOTAL_HDR_LEN + MSS];
static char last[TOTAL_HDR_LEN + MSS];
static char new_seg[TOTAL_HDR_LEN + MSS];
int i;
for (i = 0; i < NUM_LARGE_PKT; i++)
create_packet(pkts[i], i * MSS, 0, MSS, 0);
create_packet(last, NUM_LARGE_PKT * MSS, 0, remainder, 0);
create_packet(new_seg, (NUM_LARGE_PKT + 1) * MSS, 0, remainder, 0);
for (i = 0; i < NUM_LARGE_PKT; i++)
write_packet(fd, pkts[i], total_hdr_len + MSS, daddr);
write_packet(fd, last, total_hdr_len + remainder, daddr);
write_packet(fd, new_seg, total_hdr_len + remainder, daddr);
}
/* Pure acks and dup acks don't coalesce */
static void send_ack(int fd, struct sockaddr_ll *daddr)
{
static char buf[MAX_HDR_LEN];
create_packet(buf, 0, 0, 0, 0);
write_packet(fd, buf, total_hdr_len, daddr);
write_packet(fd, buf, total_hdr_len, daddr);
create_packet(buf, 0, 1, 0, 0);
write_packet(fd, buf, total_hdr_len, daddr);
}
static void recompute_packet(char *buf, char *no_ext, int extlen)
{
struct tcphdr *tcphdr = (struct tcphdr *)(buf + tcp_offset);
struct ipv6hdr *ip6h = (struct ipv6hdr *)(buf + ETH_HLEN);
struct iphdr *iph = (struct iphdr *)(buf + ETH_HLEN);
memmove(buf, no_ext, total_hdr_len);
memmove(buf + total_hdr_len + extlen,
no_ext + total_hdr_len, PAYLOAD_LEN);
tcphdr->doff = tcphdr->doff + (extlen / 4);
tcphdr->check = 0;
tcphdr->check = tcp_checksum(tcphdr, PAYLOAD_LEN + extlen);
if (proto == PF_INET) {
iph->tot_len = htons(ntohs(iph->tot_len) + extlen);
iph->check = 0;
iph->check = checksum_fold(iph, sizeof(struct iphdr), 0);
} else {
ip6h->payload_len = htons(ntohs(ip6h->payload_len) + extlen);
}
}
static void tcp_write_options(char *buf, int kind, int ts)
{
struct tcp_option_ts {
uint8_t kind;
uint8_t len;
uint32_t tsval;
uint32_t tsecr;
} *opt_ts = (void *)buf;
struct tcp_option_window {
uint8_t kind;
uint8_t len;
uint8_t shift;
} *opt_window = (void *)buf;
switch (kind) {
case TCPOPT_NOP:
buf[0] = TCPOPT_NOP;
break;
case TCPOPT_WINDOW:
memset(opt_window, 0, sizeof(struct tcp_option_window));
opt_window->kind = TCPOPT_WINDOW;
opt_window->len = TCPOLEN_WINDOW;
opt_window->shift = 0;
break;
case TCPOPT_TIMESTAMP:
memset(opt_ts, 0, sizeof(struct tcp_option_ts));
opt_ts->kind = TCPOPT_TIMESTAMP;
opt_ts->len = TCPOLEN_TIMESTAMP;
opt_ts->tsval = ts;
opt_ts->tsecr = 0;
break;
default:
error(1, 0, "unimplemented TCP option");
break;
}
}
/* TCP with options is always a permutation of {TS, NOP, NOP}.
* Implement different orders to verify coalescing stops.
*/
static void add_standard_tcp_options(char *buf, char *no_ext, int ts, int order)
{
switch (order) {
case 0:
tcp_write_options(buf + total_hdr_len, TCPOPT_NOP, 0);
tcp_write_options(buf + total_hdr_len + 1, TCPOPT_NOP, 0);
tcp_write_options(buf + total_hdr_len + 2 /* two NOP opts */,
TCPOPT_TIMESTAMP, ts);
break;
case 1:
tcp_write_options(buf + total_hdr_len, TCPOPT_NOP, 0);
tcp_write_options(buf + total_hdr_len + 1,
TCPOPT_TIMESTAMP, ts);
tcp_write_options(buf + total_hdr_len + 1 + TCPOLEN_TIMESTAMP,
TCPOPT_NOP, 0);
break;
case 2:
tcp_write_options(buf + total_hdr_len, TCPOPT_TIMESTAMP, ts);
tcp_write_options(buf + total_hdr_len + TCPOLEN_TIMESTAMP + 1,
TCPOPT_NOP, 0);
tcp_write_options(buf + total_hdr_len + TCPOLEN_TIMESTAMP + 2,
TCPOPT_NOP, 0);
break;
default:
error(1, 0, "unknown order");
break;
}
recompute_packet(buf, no_ext, TCPOLEN_TSTAMP_APPA);
}
/* Packets with invalid checksum don't coalesce. */
static void send_changed_checksum(int fd, struct sockaddr_ll *daddr)
{
static char buf[MAX_HDR_LEN + PAYLOAD_LEN];
struct tcphdr *tcph = (struct tcphdr *)(buf + tcp_offset);
int pkt_size = total_hdr_len + PAYLOAD_LEN;
create_packet(buf, 0, 0, PAYLOAD_LEN, 0);
write_packet(fd, buf, pkt_size, daddr);
create_packet(buf, PAYLOAD_LEN, 0, PAYLOAD_LEN, 0);
tcph->check = tcph->check - 1;
write_packet(fd, buf, pkt_size, daddr);
}
/* Packets with non-consecutive sequence number don't coalesce.*/
static void send_changed_seq(int fd, struct sockaddr_ll *daddr)
{
static char buf[MAX_HDR_LEN + PAYLOAD_LEN];
struct tcphdr *tcph = (struct tcphdr *)(buf + tcp_offset);
int pkt_size = total_hdr_len + PAYLOAD_LEN;
create_packet(buf, 0, 0, PAYLOAD_LEN, 0);
write_packet(fd, buf, pkt_size, daddr);
create_packet(buf, PAYLOAD_LEN, 0, PAYLOAD_LEN, 0);
tcph->seq = ntohl(htonl(tcph->seq) + 1);
tcph->check = 0;
tcph->check = tcp_checksum(tcph, PAYLOAD_LEN);
write_packet(fd, buf, pkt_size, daddr);
}
/* Packet with different timestamp option or different timestamps
* don't coalesce.
*/
static void send_changed_ts(int fd, struct sockaddr_ll *daddr)
{
static char buf[MAX_HDR_LEN + PAYLOAD_LEN];
static char extpkt[sizeof(buf) + TCPOLEN_TSTAMP_APPA];
int pkt_size = total_hdr_len + PAYLOAD_LEN + TCPOLEN_TSTAMP_APPA;
create_packet(buf, 0, 0, PAYLOAD_LEN, 0);
add_standard_tcp_options(extpkt, buf, 0, 0);
write_packet(fd, extpkt, pkt_size, daddr);
create_packet(buf, PAYLOAD_LEN, 0, PAYLOAD_LEN, 0);
add_standard_tcp_options(extpkt, buf, 0, 0);
write_packet(fd, extpkt, pkt_size, daddr);
create_packet(buf, PAYLOAD_LEN * 2, 0, PAYLOAD_LEN, 0);
add_standard_tcp_options(extpkt, buf, 100, 0);
write_packet(fd, extpkt, pkt_size, daddr);
create_packet(buf, PAYLOAD_LEN * 3, 0, PAYLOAD_LEN, 0);
add_standard_tcp_options(extpkt, buf, 100, 1);
write_packet(fd, extpkt, pkt_size, daddr);
create_packet(buf, PAYLOAD_LEN * 4, 0, PAYLOAD_LEN, 0);
add_standard_tcp_options(extpkt, buf, 100, 2);
write_packet(fd, extpkt, pkt_size, daddr);
}
/* Packet with different tcp options don't coalesce. */
static void send_diff_opt(int fd, struct sockaddr_ll *daddr)
{
static char buf[MAX_HDR_LEN + PAYLOAD_LEN];
static char extpkt1[sizeof(buf) + TCPOLEN_TSTAMP_APPA];
static char extpkt2[sizeof(buf) + TCPOLEN_MAXSEG];
int extpkt1_size = total_hdr_len + PAYLOAD_LEN + TCPOLEN_TSTAMP_APPA;
int extpkt2_size = total_hdr_len + PAYLOAD_LEN + TCPOLEN_MAXSEG;
create_packet(buf, 0, 0, PAYLOAD_LEN, 0);
add_standard_tcp_options(extpkt1, buf, 0, 0);
write_packet(fd, extpkt1, extpkt1_size, daddr);
create_packet(buf, PAYLOAD_LEN, 0, PAYLOAD_LEN, 0);
add_standard_tcp_options(extpkt1, buf, 0, 0);
write_packet(fd, extpkt1, extpkt1_size, daddr);
create_packet(buf, PAYLOAD_LEN * 2, 0, PAYLOAD_LEN, 0);
tcp_write_options(extpkt2 + MAX_HDR_LEN, TCPOPT_NOP, 0);
tcp_write_options(extpkt2 + MAX_HDR_LEN + 1, TCPOPT_WINDOW, 0);
recompute_packet(extpkt2, buf, TCPOLEN_WINDOW + 1);
write_packet(fd, extpkt2, extpkt2_size, daddr);
}
static void add_ipv4_ts_option(void *buf, void *optpkt)
{
struct ip_timestamp *ts = (struct ip_timestamp *)(optpkt + tcp_offset);
int optlen = sizeof(struct ip_timestamp);
struct iphdr *iph;
if (optlen % 4)
error(1, 0, "ipv4 timestamp length is not a multiple of 4B");
ts->ipt_code = IPOPT_TS;
ts->ipt_len = optlen;
ts->ipt_ptr = 5;
ts->ipt_flg = IPOPT_TS_TSONLY;
memcpy(optpkt, buf, tcp_offset);
memcpy(optpkt + tcp_offset + optlen, buf + tcp_offset,
sizeof(struct tcphdr) + PAYLOAD_LEN);
iph = (struct iphdr *)(optpkt + ETH_HLEN);
iph->ihl = 5 + (optlen / 4);
iph->tot_len = htons(ntohs(iph->tot_len) + optlen);
iph->check = 0;
iph->check = checksum_fold(iph, sizeof(struct iphdr) + optlen, 0);
}
/* IPv4 options shouldn't coalesce */
static void send_ip_options(int fd, struct sockaddr_ll *daddr)
{
static char buf[MAX_HDR_LEN + PAYLOAD_LEN];
static char optpkt[sizeof(buf) + sizeof(struct ip_timestamp)];
int optlen = sizeof(struct ip_timestamp);
int pkt_size = total_hdr_len + PAYLOAD_LEN + optlen;
create_packet(buf, 0, 0, PAYLOAD_LEN, 0);
write_packet(fd, buf, total_hdr_len + PAYLOAD_LEN, daddr);
create_packet(buf, PAYLOAD_LEN * 1, 0, PAYLOAD_LEN, 0);
add_ipv4_ts_option(buf, optpkt);
write_packet(fd, optpkt, pkt_size, daddr);
create_packet(buf, PAYLOAD_LEN * 2, 0, PAYLOAD_LEN, 0);
write_packet(fd, buf, total_hdr_len + PAYLOAD_LEN, daddr);
}
/* IPv4 fragments shouldn't coalesce */
static void send_fragment4(int fd, struct sockaddr_ll *daddr)
{
static char buf[IP_MAXPACKET];
struct iphdr *iph = (struct iphdr *)(buf + ETH_HLEN);
int pkt_size = total_hdr_len + PAYLOAD_LEN;
create_packet(buf, 0, 0, PAYLOAD_LEN, 0);
write_packet(fd, buf, pkt_size, daddr);
/* Once fragmented, packet would retain the total_len.
* Tcp header is prepared as if rest of data is in follow-up frags,
* but follow up frags aren't actually sent.
*/
memset(buf + total_hdr_len, 'a', PAYLOAD_LEN * 2);
fill_transportlayer(buf + tcp_offset, PAYLOAD_LEN, 0, PAYLOAD_LEN * 2, 0);
fill_networklayer(buf + ETH_HLEN, PAYLOAD_LEN);
fill_datalinklayer(buf);
iph->frag_off = htons(0x6000); // DF = 1, MF = 1
iph->check = 0;
iph->check = checksum_fold(iph, sizeof(struct iphdr), 0);
write_packet(fd, buf, pkt_size, daddr);
}
/* IPv4 packets with different ttl don't coalesce.*/
static void send_changed_ttl(int fd, struct sockaddr_ll *daddr)
{
int pkt_size = total_hdr_len + PAYLOAD_LEN;
static char buf[MAX_HDR_LEN + PAYLOAD_LEN];
struct iphdr *iph = (struct iphdr *)(buf + ETH_HLEN);
create_packet(buf, 0, 0, PAYLOAD_LEN, 0);
write_packet(fd, buf, pkt_size, daddr);
create_packet(buf, PAYLOAD_LEN, 0, PAYLOAD_LEN, 0);
iph->ttl = 7;
iph->check = 0;
iph->check = checksum_fold(iph, sizeof(struct iphdr), 0);
write_packet(fd, buf, pkt_size, daddr);
}
/* Packets with different tos don't coalesce.*/
static void send_changed_tos(int fd, struct sockaddr_ll *daddr)
{
int pkt_size = total_hdr_len + PAYLOAD_LEN;
static char buf[MAX_HDR_LEN + PAYLOAD_LEN];
struct iphdr *iph = (struct iphdr *)(buf + ETH_HLEN);
struct ipv6hdr *ip6h = (struct ipv6hdr *)(buf + ETH_HLEN);
create_packet(buf, 0, 0, PAYLOAD_LEN, 0);
write_packet(fd, buf, pkt_size, daddr);
create_packet(buf, PAYLOAD_LEN, 0, PAYLOAD_LEN, 0);
if (proto == PF_INET) {
iph->tos = 1;
iph->check = 0;
iph->check = checksum_fold(iph, sizeof(struct iphdr), 0);
} else if (proto == PF_INET6) {
ip6h->priority = 0xf;
}
write_packet(fd, buf, pkt_size, daddr);
}
/* Packets with different ECN don't coalesce.*/
static void send_changed_ECN(int fd, struct sockaddr_ll *daddr)
{
int pkt_size = total_hdr_len + PAYLOAD_LEN;
static char buf[MAX_HDR_LEN + PAYLOAD_LEN];
struct iphdr *iph = (struct iphdr *)(buf + ETH_HLEN);
create_packet(buf, 0, 0, PAYLOAD_LEN, 0);
write_packet(fd, buf, pkt_size, daddr);
create_packet(buf, PAYLOAD_LEN, 0, PAYLOAD_LEN, 0);
if (proto == PF_INET) {
buf[ETH_HLEN + 1] ^= 0x2; // ECN set to 10
iph->check = 0;
iph->check = checksum_fold(iph, sizeof(struct iphdr), 0);
} else {
buf[ETH_HLEN + 1] ^= 0x20; // ECN set to 10
}
write_packet(fd, buf, pkt_size, daddr);
}
/* IPv6 fragments and packets with extensions don't coalesce.*/
static void send_fragment6(int fd, struct sockaddr_ll *daddr)
{
static char buf[MAX_HDR_LEN + PAYLOAD_LEN];
static char extpkt[MAX_HDR_LEN + PAYLOAD_LEN +
sizeof(struct ip6_frag)];
struct ipv6hdr *ip6h = (struct ipv6hdr *)(buf + ETH_HLEN);
struct ip6_frag *frag = (void *)(extpkt + tcp_offset);
int extlen = sizeof(struct ip6_frag);
int bufpkt_len = total_hdr_len + PAYLOAD_LEN;
int extpkt_len = bufpkt_len + extlen;
int i;
for (i = 0; i < 2; i++) {
create_packet(buf, PAYLOAD_LEN * i, 0, PAYLOAD_LEN, 0);
write_packet(fd, buf, bufpkt_len, daddr);
}
create_packet(buf, PAYLOAD_LEN * 2, 0, PAYLOAD_LEN, 0);
memset(extpkt, 0, extpkt_len);
ip6h->nexthdr = IPPROTO_FRAGMENT;
ip6h->payload_len = htons(ntohs(ip6h->payload_len) + extlen);
frag->ip6f_nxt = IPPROTO_TCP;
memcpy(extpkt, buf, tcp_offset);
memcpy(extpkt + tcp_offset + extlen, buf + tcp_offset,
sizeof(struct tcphdr) + PAYLOAD_LEN);
write_packet(fd, extpkt, extpkt_len, daddr);
create_packet(buf, PAYLOAD_LEN * 3, 0, PAYLOAD_LEN, 0);
write_packet(fd, buf, bufpkt_len, daddr);
}
static void bind_packetsocket(int fd)
{
struct sockaddr_ll daddr = {};
daddr.sll_family = AF_PACKET;
daddr.sll_protocol = ethhdr_proto;
daddr.sll_ifindex = if_nametoindex(ifname);
if (daddr.sll_ifindex == 0)
error(1, errno, "if_nametoindex");
if (bind(fd, (void *)&daddr, sizeof(daddr)) < 0)
error(1, errno, "could not bind socket");
}
static void set_timeout(int fd)
{
struct timeval timeout;
timeout.tv_sec = 120;
timeout.tv_usec = 0;
if (setsockopt(fd, SOL_SOCKET, SO_RCVTIMEO, (char *)&timeout,
sizeof(timeout)) < 0)
error(1, errno, "cannot set timeout, setsockopt failed");
}
static void check_recv_pkts(int fd, int *correct_payload,
int correct_num_pkts)
{
static char buffer[IP_MAXPACKET + ETH_HLEN + 1];
struct iphdr *iph = (struct iphdr *)(buffer + ETH_HLEN);
struct ipv6hdr *ip6h = (struct ipv6hdr *)(buffer + ETH_HLEN);
struct tcphdr *tcph;
bool bad_packet = false;
int tcp_ext_len = 0;
int ip_ext_len = 0;
int pkt_size = -1;
int data_len = 0;
int num_pkt = 0;
int i;
vlog("Expected {");
for (i = 0; i < correct_num_pkts; i++)
vlog("%d ", correct_payload[i]);
vlog("}, Total %d packets\nReceived {", correct_num_pkts);
while (1) {
pkt_size = recv(fd, buffer, IP_MAXPACKET + ETH_HLEN + 1, 0);
if (pkt_size < 0)
error(1, errno, "could not receive");
if (iph->version == 4)
ip_ext_len = (iph->ihl - 5) * 4;
else if (ip6h->version == 6 && ip6h->nexthdr != IPPROTO_TCP)
ip_ext_len = sizeof(struct ip6_frag);
tcph = (struct tcphdr *)(buffer + tcp_offset + ip_ext_len);
if (tcph->fin)
break;
tcp_ext_len = (tcph->doff - 5) * 4;
data_len = pkt_size - total_hdr_len - tcp_ext_len - ip_ext_len;
/* Min ethernet frame payload is 46(ETH_ZLEN - ETH_HLEN) by RFC 802.3.
* Ipv4/tcp packets without at least 6 bytes of data will be padded.
* Packet sockets are protocol agnostic, and will not trim the padding.
*/
if (pkt_size == ETH_ZLEN && iph->version == 4) {
data_len = ntohs(iph->tot_len)
- sizeof(struct tcphdr) - sizeof(struct iphdr);
}
vlog("%d ", data_len);
if (data_len != correct_payload[num_pkt]) {
vlog("[!=%d]", correct_payload[num_pkt]);
bad_packet = true;
}
num_pkt++;
}
vlog("}, Total %d packets.\n", num_pkt);
if (num_pkt != correct_num_pkts)
error(1, 0, "incorrect number of packets");
if (bad_packet)
error(1, 0, "incorrect packet geometry");
printf("Test succeeded\n\n");
}
static void gro_sender(void)
{
static char fin_pkt[MAX_HDR_LEN];
struct sockaddr_ll daddr = {};
int txfd = -1;
txfd = socket(PF_PACKET, SOCK_RAW, IPPROTO_RAW);
if (txfd < 0)
error(1, errno, "socket creation");
memset(&daddr, 0, sizeof(daddr));
daddr.sll_ifindex = if_nametoindex(ifname);
if (daddr.sll_ifindex == 0)
error(1, errno, "if_nametoindex");
daddr.sll_family = AF_PACKET;
memcpy(daddr.sll_addr, dst_mac, ETH_ALEN);
daddr.sll_halen = ETH_ALEN;
create_packet(fin_pkt, PAYLOAD_LEN * 2, 0, 0, 1);
if (strcmp(testname, "data") == 0) {
send_data_pkts(txfd, &daddr, PAYLOAD_LEN, PAYLOAD_LEN);
write_packet(txfd, fin_pkt, total_hdr_len, &daddr);
send_data_pkts(txfd, &daddr, PAYLOAD_LEN, PAYLOAD_LEN / 2);
write_packet(txfd, fin_pkt, total_hdr_len, &daddr);
send_data_pkts(txfd, &daddr, PAYLOAD_LEN / 2, PAYLOAD_LEN);
write_packet(txfd, fin_pkt, total_hdr_len, &daddr);
} else if (strcmp(testname, "ack") == 0) {
send_ack(txfd, &daddr);
write_packet(txfd, fin_pkt, total_hdr_len, &daddr);
} else if (strcmp(testname, "flags") == 0) {
send_flags(txfd, &daddr, 1, 0, 0, 0);
write_packet(txfd, fin_pkt, total_hdr_len, &daddr);
send_flags(txfd, &daddr, 0, 1, 0, 0);
write_packet(txfd, fin_pkt, total_hdr_len, &daddr);
send_flags(txfd, &daddr, 0, 0, 1, 0);
write_packet(txfd, fin_pkt, total_hdr_len, &daddr);
send_flags(txfd, &daddr, 0, 0, 0, 1);
write_packet(txfd, fin_pkt, total_hdr_len, &daddr);
} else if (strcmp(testname, "tcp") == 0) {
send_changed_checksum(txfd, &daddr);
write_packet(txfd, fin_pkt, total_hdr_len, &daddr);
send_changed_seq(txfd, &daddr);
write_packet(txfd, fin_pkt, total_hdr_len, &daddr);
send_changed_ts(txfd, &daddr);
write_packet(txfd, fin_pkt, total_hdr_len, &daddr);
send_diff_opt(txfd, &daddr);
write_packet(txfd, fin_pkt, total_hdr_len, &daddr);
} else if (strcmp(testname, "ip") == 0) {
send_changed_ECN(txfd, &daddr);
write_packet(txfd, fin_pkt, total_hdr_len, &daddr);
send_changed_tos(txfd, &daddr);
write_packet(txfd, fin_pkt, total_hdr_len, &daddr);
if (proto == PF_INET) {
/* Modified packets may be received out of order.
* Sleep function added to enforce test boundaries
* so that fin pkts are not received prior to other pkts.
*/
sleep(1);
send_changed_ttl(txfd, &daddr);
write_packet(txfd, fin_pkt, total_hdr_len, &daddr);
sleep(1);
send_ip_options(txfd, &daddr);
sleep(1);
write_packet(txfd, fin_pkt, total_hdr_len, &daddr);
sleep(1);
send_fragment4(txfd, &daddr);
sleep(1);
write_packet(txfd, fin_pkt, total_hdr_len, &daddr);
} else if (proto == PF_INET6) {
send_fragment6(txfd, &daddr);
write_packet(txfd, fin_pkt, total_hdr_len, &daddr);
}
} else if (strcmp(testname, "large") == 0) {
/* 20 is the difference between min iphdr size
* and min ipv6hdr size. Like MAX_HDR_SIZE,
* MAX_PAYLOAD is defined with the larger header of the two.
*/
int offset = proto == PF_INET ? 20 : 0;
int remainder = (MAX_PAYLOAD + offset) % MSS;
send_large(txfd, &daddr, remainder);
write_packet(txfd, fin_pkt, total_hdr_len, &daddr);
send_large(txfd, &daddr, remainder + 1);
write_packet(txfd, fin_pkt, total_hdr_len, &daddr);
} else {
error(1, 0, "Unknown testcase");
}
if (close(txfd))
error(1, errno, "socket close");
}
static void gro_receiver(void)
{
static int correct_payload[NUM_PACKETS];
int rxfd = -1;
rxfd = socket(PF_PACKET, SOCK_RAW, htons(ETH_P_NONE));
if (rxfd < 0)
error(1, 0, "socket creation");
setup_sock_filter(rxfd);
set_timeout(rxfd);
bind_packetsocket(rxfd);
memset(correct_payload, 0, sizeof(correct_payload));
if (strcmp(testname, "data") == 0) {
printf("pure data packet of same size: ");
correct_payload[0] = PAYLOAD_LEN * 2;
check_recv_pkts(rxfd, correct_payload, 1);
printf("large data packets followed by a smaller one: ");
correct_payload[0] = PAYLOAD_LEN * 1.5;
check_recv_pkts(rxfd, correct_payload, 1);
printf("small data packets followed by a larger one: ");
correct_payload[0] = PAYLOAD_LEN / 2;
correct_payload[1] = PAYLOAD_LEN;
check_recv_pkts(rxfd, correct_payload, 2);
} else if (strcmp(testname, "ack") == 0) {
printf("duplicate ack and pure ack: ");
check_recv_pkts(rxfd, correct_payload, 3);
} else if (strcmp(testname, "flags") == 0) {
correct_payload[0] = PAYLOAD_LEN * 3;
correct_payload[1] = PAYLOAD_LEN * 2;
printf("psh flag ends coalescing: ");
check_recv_pkts(rxfd, correct_payload, 2);
correct_payload[0] = PAYLOAD_LEN * 2;
correct_payload[1] = 0;
correct_payload[2] = PAYLOAD_LEN * 2;
printf("syn flag ends coalescing: ");
check_recv_pkts(rxfd, correct_payload, 3);
printf("rst flag ends coalescing: ");
check_recv_pkts(rxfd, correct_payload, 3);
printf("urg flag ends coalescing: ");
check_recv_pkts(rxfd, correct_payload, 3);
} else if (strcmp(testname, "tcp") == 0) {
correct_payload[0] = PAYLOAD_LEN;
correct_payload[1] = PAYLOAD_LEN;
correct_payload[2] = PAYLOAD_LEN;
correct_payload[3] = PAYLOAD_LEN;
printf("changed checksum does not coalesce: ");
check_recv_pkts(rxfd, correct_payload, 2);
printf("Wrong Seq number doesn't coalesce: ");
check_recv_pkts(rxfd, correct_payload, 2);
printf("Different timestamp doesn't coalesce: ");
correct_payload[0] = PAYLOAD_LEN * 2;
check_recv_pkts(rxfd, correct_payload, 4);
printf("Different options doesn't coalesce: ");
correct_payload[0] = PAYLOAD_LEN * 2;
check_recv_pkts(rxfd, correct_payload, 2);
} else if (strcmp(testname, "ip") == 0) {
correct_payload[0] = PAYLOAD_LEN;
correct_payload[1] = PAYLOAD_LEN;
printf("different ECN doesn't coalesce: ");
check_recv_pkts(rxfd, correct_payload, 2);
printf("different tos doesn't coalesce: ");
check_recv_pkts(rxfd, correct_payload, 2);
if (proto == PF_INET) {
printf("different ttl doesn't coalesce: ");
check_recv_pkts(rxfd, correct_payload, 2);
printf("ip options doesn't coalesce: ");
correct_payload[2] = PAYLOAD_LEN;
check_recv_pkts(rxfd, correct_payload, 3);
printf("fragmented ip4 doesn't coalesce: ");
check_recv_pkts(rxfd, correct_payload, 2);
} else if (proto == PF_INET6) {
/* GRO doesn't check for ipv6 hop limit when flushing.
* Hence no corresponding test to the ipv4 case.
*/
printf("fragmented ip6 doesn't coalesce: ");
correct_payload[0] = PAYLOAD_LEN * 2;
check_recv_pkts(rxfd, correct_payload, 2);
}
} else if (strcmp(testname, "large") == 0) {
int offset = proto == PF_INET ? 20 : 0;
int remainder = (MAX_PAYLOAD + offset) % MSS;
correct_payload[0] = (MAX_PAYLOAD + offset);
correct_payload[1] = remainder;
printf("Shouldn't coalesce if exceed IP max pkt size: ");
check_recv_pkts(rxfd, correct_payload, 2);
/* last segment sent individually, doesn't start new segment */
correct_payload[0] = correct_payload[0] - remainder;
correct_payload[1] = remainder + 1;
correct_payload[2] = remainder + 1;
check_recv_pkts(rxfd, correct_payload, 3);
} else {
error(1, 0, "Test case error, should never trigger");
}
if (close(rxfd))
error(1, 0, "socket close");
}
static void parse_args(int argc, char **argv)
{
static const struct option opts[] = {
{ "dmac", required_argument, NULL, 'D' },
{ "iface", required_argument, NULL, 'i' },
{ "ipv4", no_argument, NULL, '4' },
{ "ipv6", no_argument, NULL, '6' },
{ "rx", no_argument, NULL, 'r' },
{ "smac", required_argument, NULL, 'S' },
{ "test", required_argument, NULL, 't' },
{ "verbose", no_argument, NULL, 'v' },
{ 0, 0, 0, 0 }
};
int c;
while ((c = getopt_long(argc, argv, "46D:i:rS:t:v", opts, NULL)) != -1) {
switch (c) {
case '4':
proto = PF_INET;
ethhdr_proto = htons(ETH_P_IP);
break;
case '6':
proto = PF_INET6;
ethhdr_proto = htons(ETH_P_IPV6);
break;
case 'D':
dmac = optarg;
break;
case 'i':
ifname = optarg;
break;
case 'r':
tx_socket = false;
break;
case 'S':
smac = optarg;
break;
case 't':
testname = optarg;
break;
case 'v':
verbose = true;
break;
default:
error(1, 0, "%s invalid option %c\n", __func__, c);
break;
}
}
}
int main(int argc, char **argv)
{
parse_args(argc, argv);
if (proto == PF_INET) {
tcp_offset = ETH_HLEN + sizeof(struct iphdr);
total_hdr_len = tcp_offset + sizeof(struct tcphdr);
} else if (proto == PF_INET6) {
tcp_offset = ETH_HLEN + sizeof(struct ipv6hdr);
total_hdr_len = MAX_HDR_LEN;
} else {
error(1, 0, "Protocol family is not ipv4 or ipv6");
}
read_MAC(src_mac, smac);
read_MAC(dst_mac, dmac);
if (tx_socket)
gro_sender();
else
gro_receiver();
return 0;
}
#!/bin/bash
# SPDX-License-Identifier: GPL-2.0
source setup_loopback.sh
readonly SERVER_MAC="aa:00:00:00:00:02"
readonly CLIENT_MAC="aa:00:00:00:00:01"
readonly TESTS=("data" "ack" "flags" "tcp" "ip" "large")
readonly PROTOS=("ipv4" "ipv6")
dev="eth0"
test="all"
proto="ipv4"
setup_interrupt() {
# Use timer on host to trigger the network stack
# Also disable device interrupt to not depend on NIC interrupt
# Reduce test flakiness caused by unexpected interrupts
echo 100000 >"${FLUSH_PATH}"
echo 50 >"${IRQ_PATH}"
}
setup_ns() {
# Set up server_ns namespace and client_ns namespace
setup_macvlan_ns "${dev}" server_ns server "${SERVER_MAC}"
setup_macvlan_ns "${dev}" client_ns client "${CLIENT_MAC}"
}
cleanup_ns() {
cleanup_macvlan_ns server_ns server client_ns client
}
setup() {
setup_loopback_environment "${dev}"
setup_interrupt
}
cleanup() {
cleanup_loopback "${dev}"
echo "${FLUSH_TIMEOUT}" >"${FLUSH_PATH}"
echo "${HARD_IRQS}" >"${IRQ_PATH}"
}
run_test() {
local server_pid=0
local exit_code=0
local protocol=$1
local test=$2
local ARGS=( "--${protocol}" "--dmac" "${SERVER_MAC}" \
"--smac" "${CLIENT_MAC}" "--test" "${test}" "--verbose" )
setup_ns
# Each test is run 3 times to deflake, because given the receive timing,
# not all packets that should coalesce will be considered in the same flow
# on every try.
for tries in {1..3}; do
# Actual test starts here
ip netns exec server_ns ./gro "${ARGS[@]}" "--rx" "--iface" "server" \
1>>log.txt &
server_pid=$!
sleep 0.5 # to allow for socket init
ip netns exec client_ns ./gro "${ARGS[@]}" "--iface" "client" \
1>>log.txt
wait "${server_pid}"
exit_code=$?
if [[ "${exit_code}" -eq 0 ]]; then
break;
fi
done
cleanup_ns
echo ${exit_code}
}
run_all_tests() {
local failed_tests=()
for proto in "${PROTOS[@]}"; do
for test in "${TESTS[@]}"; do
echo "running test ${proto} ${test}" >&2
exit_code=$(run_test $proto $test)
if [[ "${exit_code}" -ne 0 ]]; then
failed_tests+=("${proto}_${test}")
fi;
done;
done
if [[ ${#failed_tests[@]} -ne 0 ]]; then
echo "failed tests: ${failed_tests[*]}. \
Please see log.txt for more logs"
exit 1
else
echo "All Tests Succeeded!"
fi;
}
usage() {
echo "Usage: $0 \
[-i <DEV>] \
[-t data|ack|flags|tcp|ip|large] \
[-p <ipv4|ipv6>]" 1>&2;
exit 1;
}
while getopts "i:t:p:" opt; do
case "${opt}" in
i)
dev="${OPTARG}"
;;
t)
test="${OPTARG}"
;;
p)
proto="${OPTARG}"
;;
*)
usage
;;
esac
done
readonly FLUSH_PATH="/sys/class/net/${dev}/gro_flush_timeout"
readonly IRQ_PATH="/sys/class/net/${dev}/napi_defer_hard_irqs"
readonly FLUSH_TIMEOUT="$(< ${FLUSH_PATH})"
readonly HARD_IRQS="$(< ${IRQ_PATH})"
setup
trap cleanup EXIT
if [[ "${test}" == "all" ]]; then
run_all_tests
else
run_test "${proto}" "${test}"
fi;
#!/bin/bash
# SPDX-License-Identifier: GPL-2.0
netdev_check_for_carrier() {
local -r dev="$1"
for i in {1..5}; do
carrier="$(cat /sys/class/net/${dev}/carrier)"
if [[ "${carrier}" -ne 1 ]] ; then
echo "carrier not ready yet..." >&2
sleep 1
else
echo "carrier ready" >&2
break
fi
done
echo "${carrier}"
}
# Assumes that there is no existing ipvlan device on the physical device
setup_loopback_environment() {
local dev="$1"
# Fail hard if cannot turn on loopback mode for current NIC
ethtool -K "${dev}" loopback on || exit 1
sleep 1
# Check for the carrier
carrier=$(netdev_check_for_carrier ${dev})
if [[ "${carrier}" -ne 1 ]] ; then
echo "setup_loopback_environment failed"
exit 1
fi
}
setup_macvlan_ns(){
local -r link_dev="$1"
local -r ns_name="$2"
local -r ns_dev="$3"
local -r ns_mac="$4"
local -r addr="$5"
ip link add link "${link_dev}" dev "${ns_dev}" \
address "${ns_mac}" type macvlan
exit_code=$?
if [[ "${exit_code}" -ne 0 ]]; then
echo "setup_macvlan_ns failed"
exit $exit_code
fi
[[ -e /var/run/netns/"${ns_name}" ]] || ip netns add "${ns_name}"
ip link set dev "${ns_dev}" netns "${ns_name}"
ip -netns "${ns_name}" link set dev "${ns_dev}" up
if [[ -n "${addr}" ]]; then
ip -netns "${ns_name}" addr add dev "${ns_dev}" "${addr}"
fi
sleep 1
}
cleanup_macvlan_ns(){
while (( $# >= 2 )); do
ns_name="$1"
ns_dev="$2"
ip -netns "${ns_name}" link del dev "${ns_dev}"
ip netns del "${ns_name}"
shift 2
done
}
cleanup_loopback(){
local -r dev="$1"
ethtool -K "${dev}" loopback off
sleep 1
# Check for the carrier
carrier=$(netdev_check_for_carrier ${dev})
if [[ "${carrier}" -ne 1 ]] ; then
echo "setup_loopback_environment failed"
exit 1
fi
}
// SPDX-License-Identifier: GPL-2.0
/* Toeplitz test
*
* 1. Read packets and their rx_hash using PF_PACKET/TPACKET_V3
* 2. Compute the rx_hash in software based on the packet contents
* 3. Compare the two
*
* Optionally, either '-C $rx_irq_cpu_list' or '-r $rps_bitmap' may be given.
*
* If '-C $rx_irq_cpu_list' is given, also
*
* 4. Identify the cpu on which the packet arrived with PACKET_FANOUT_CPU
* 5. Compute the rxqueue that RSS would select based on this rx_hash
* 6. Using the $rx_irq_cpu_list map, identify the arriving cpu based on rxq irq
* 7. Compare the cpus from 4 and 6
*
* Else if '-r $rps_bitmap' is given, also
*
* 4. Identify the cpu on which the packet arrived with PACKET_FANOUT_CPU
* 5. Compute the cpu that RPS should select based on rx_hash and $rps_bitmap
* 6. Compare the cpus from 4 and 5
*/
#define _GNU_SOURCE
#include <arpa/inet.h>
#include <errno.h>
#include <error.h>
#include <fcntl.h>
#include <getopt.h>
#include <linux/filter.h>
#include <linux/if_ether.h>
#include <linux/if_packet.h>
#include <net/if.h>
#include <netdb.h>
#include <netinet/ip.h>
#include <netinet/ip6.h>
#include <netinet/tcp.h>
#include <netinet/udp.h>
#include <poll.h>
#include <stdbool.h>
#include <stddef.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/mman.h>
#include <sys/socket.h>
#include <sys/stat.h>
#include <sys/sysinfo.h>
#include <sys/time.h>
#include <sys/types.h>
#include <unistd.h>
#define TOEPLITZ_KEY_MIN_LEN 40
#define TOEPLITZ_KEY_MAX_LEN 60
#define TOEPLITZ_STR_LEN(K) (((K) * 3) - 1) /* hex encoded: AA:BB:CC:...:ZZ */
#define TOEPLITZ_STR_MIN_LEN TOEPLITZ_STR_LEN(TOEPLITZ_KEY_MIN_LEN)
#define TOEPLITZ_STR_MAX_LEN TOEPLITZ_STR_LEN(TOEPLITZ_KEY_MAX_LEN)
#define FOUR_TUPLE_MAX_LEN ((sizeof(struct in6_addr) * 2) + (sizeof(uint16_t) * 2))
#define RSS_MAX_CPUS (1 << 16) /* real constraint is PACKET_FANOUT_MAX */
#define RPS_MAX_CPUS 16UL /* must be a power of 2 */
/* configuration options (cmdline arguments) */
static uint16_t cfg_dport = 8000;
static int cfg_family = AF_INET6;
static char *cfg_ifname = "eth0";
static int cfg_num_queues;
static int cfg_num_rps_cpus;
static bool cfg_sink;
static int cfg_type = SOCK_STREAM;
static int cfg_timeout_msec = 1000;
static bool cfg_verbose;
/* global vars */
static int num_cpus;
static int ring_block_nr;
static int ring_block_sz;
/* stats */
static int frames_received;
static int frames_nohash;
static int frames_error;
#define log_verbose(args...) do { if (cfg_verbose) fprintf(stderr, args); } while (0)
/* tpacket ring */
struct ring_state {
int fd;
char *mmap;
int idx;
int cpu;
};
static unsigned int rx_irq_cpus[RSS_MAX_CPUS]; /* map from rxq to cpu */
static int rps_silo_to_cpu[RPS_MAX_CPUS];
static unsigned char toeplitz_key[TOEPLITZ_KEY_MAX_LEN];
static struct ring_state rings[RSS_MAX_CPUS];
static inline uint32_t toeplitz(const unsigned char *four_tuple,
const unsigned char *key)
{
int i, bit, ret = 0;
uint32_t key32;
key32 = ntohl(*((uint32_t *)key));
key += 4;
for (i = 0; i < FOUR_TUPLE_MAX_LEN; i++) {
for (bit = 7; bit >= 0; bit--) {
if (four_tuple[i] & (1 << bit))
ret ^= key32;
key32 <<= 1;
key32 |= !!(key[0] & (1 << bit));
}
key++;
}
return ret;
}
/* Compare computed cpu with arrival cpu from packet_fanout_cpu */
static void verify_rss(uint32_t rx_hash, int cpu)
{
int queue = rx_hash % cfg_num_queues;
log_verbose(" rxq %d (cpu %d)", queue, rx_irq_cpus[queue]);
if (rx_irq_cpus[queue] != cpu) {
log_verbose(". error: rss cpu mismatch (%d)", cpu);
frames_error++;
}
}
static void verify_rps(uint64_t rx_hash, int cpu)
{
int silo = (rx_hash * cfg_num_rps_cpus) >> 32;
log_verbose(" silo %d (cpu %d)", silo, rps_silo_to_cpu[silo]);
if (rps_silo_to_cpu[silo] != cpu) {
log_verbose(". error: rps cpu mismatch (%d)", cpu);
frames_error++;
}
}
static void log_rxhash(int cpu, uint32_t rx_hash,
const char *addrs, int addr_len)
{
char saddr[INET6_ADDRSTRLEN], daddr[INET6_ADDRSTRLEN];
uint16_t *ports;
if (!inet_ntop(cfg_family, addrs, saddr, sizeof(saddr)) ||
!inet_ntop(cfg_family, addrs + addr_len, daddr, sizeof(daddr)))
error(1, 0, "address parse error");
ports = (void *)addrs + (addr_len * 2);
log_verbose("cpu %d: rx_hash 0x%08x [saddr %s daddr %s sport %02hu dport %02hu]",
cpu, rx_hash, saddr, daddr,
ntohs(ports[0]), ntohs(ports[1]));
}
/* Compare computed rxhash with rxhash received from tpacket_v3 */
static void verify_rxhash(const char *pkt, uint32_t rx_hash, int cpu)
{
unsigned char four_tuple[FOUR_TUPLE_MAX_LEN] = {0};
uint32_t rx_hash_sw;
const char *addrs;
int addr_len;
if (cfg_family == AF_INET) {
addr_len = sizeof(struct in_addr);
addrs = pkt + offsetof(struct iphdr, saddr);
} else {
addr_len = sizeof(struct in6_addr);
addrs = pkt + offsetof(struct ip6_hdr, ip6_src);
}
memcpy(four_tuple, addrs, (addr_len * 2) + (sizeof(uint16_t) * 2));
rx_hash_sw = toeplitz(four_tuple, toeplitz_key);
if (cfg_verbose)
log_rxhash(cpu, rx_hash, addrs, addr_len);
if (rx_hash != rx_hash_sw) {
log_verbose(" != expected 0x%x\n", rx_hash_sw);
frames_error++;
return;
}
log_verbose(" OK");
if (cfg_num_queues)
verify_rss(rx_hash, cpu);
else if (cfg_num_rps_cpus)
verify_rps(rx_hash, cpu);
log_verbose("\n");
}
static char *recv_frame(const struct ring_state *ring, char *frame)
{
struct tpacket3_hdr *hdr = (void *)frame;
if (hdr->hv1.tp_rxhash)
verify_rxhash(frame + hdr->tp_net, hdr->hv1.tp_rxhash,
ring->cpu);
else
frames_nohash++;
return frame + hdr->tp_next_offset;
}
/* A single TPACKET_V3 block can hold multiple frames */
static void recv_block(struct ring_state *ring)
{
struct tpacket_block_desc *block;
char *frame;
int i;
block = (void *)(ring->mmap + ring->idx * ring_block_sz);
if (!(block->hdr.bh1.block_status & TP_STATUS_USER))
return;
frame = (char *)block;
frame += block->hdr.bh1.offset_to_first_pkt;
for (i = 0; i < block->hdr.bh1.num_pkts; i++) {
frame = recv_frame(ring, frame);
frames_received++;
}
block->hdr.bh1.block_status = TP_STATUS_KERNEL;
ring->idx = (ring->idx + 1) % ring_block_nr;
}
/* simple test: sleep once unconditionally and then process all rings */
static void process_rings(void)
{
int i;
usleep(1000 * cfg_timeout_msec);
for (i = 0; i < num_cpus; i++)
recv_block(&rings[i]);
fprintf(stderr, "count: pass=%u nohash=%u fail=%u\n",
frames_received - frames_nohash - frames_error,
frames_nohash, frames_error);
}
static char *setup_ring(int fd)
{
struct tpacket_req3 req3 = {0};
void *ring;
req3.tp_retire_blk_tov = cfg_timeout_msec;
req3.tp_feature_req_word = TP_FT_REQ_FILL_RXHASH;
req3.tp_frame_size = 2048;
req3.tp_frame_nr = 1 << 10;
req3.tp_block_nr = 2;
req3.tp_block_size = req3.tp_frame_size * req3.tp_frame_nr;
req3.tp_block_size /= req3.tp_block_nr;
if (setsockopt(fd, SOL_PACKET, PACKET_RX_RING, &req3, sizeof(req3)))
error(1, errno, "setsockopt PACKET_RX_RING");
ring_block_sz = req3.tp_block_size;
ring_block_nr = req3.tp_block_nr;
ring = mmap(0, req3.tp_block_size * req3.tp_block_nr,
PROT_READ | PROT_WRITE,
MAP_SHARED | MAP_LOCKED | MAP_POPULATE, fd, 0);
if (ring == MAP_FAILED)
error(1, 0, "mmap failed");
return ring;
}
static void __set_filter(int fd, int off_proto, uint8_t proto, int off_dport)
{
struct sock_filter filter[] = {
BPF_STMT(BPF_LD + BPF_B + BPF_ABS, SKF_AD_OFF + SKF_AD_PKTTYPE),
BPF_JUMP(BPF_JMP + BPF_JEQ + BPF_K, PACKET_HOST, 0, 4),
BPF_STMT(BPF_LD + BPF_B + BPF_ABS, off_proto),
BPF_JUMP(BPF_JMP + BPF_JEQ + BPF_K, proto, 0, 2),
BPF_STMT(BPF_LD + BPF_H + BPF_ABS, off_dport),
BPF_JUMP(BPF_JMP + BPF_JEQ + BPF_K, cfg_dport, 1, 0),
BPF_STMT(BPF_RET + BPF_K, 0),
BPF_STMT(BPF_RET + BPF_K, 0xFFFF),
};
struct sock_fprog prog = {};
prog.filter = filter;
prog.len = sizeof(filter) / sizeof(struct sock_filter);
if (setsockopt(fd, SOL_SOCKET, SO_ATTACH_FILTER, &prog, sizeof(prog)))
error(1, errno, "setsockopt filter");
}
/* filter on transport protocol and destination port */
static void set_filter(int fd)
{
const int off_dport = offsetof(struct tcphdr, dest); /* same for udp */
uint8_t proto;
proto = cfg_type == SOCK_STREAM ? IPPROTO_TCP : IPPROTO_UDP;
if (cfg_family == AF_INET)
__set_filter(fd, offsetof(struct iphdr, protocol), proto,
sizeof(struct iphdr) + off_dport);
else
__set_filter(fd, offsetof(struct ip6_hdr, ip6_nxt), proto,
sizeof(struct ip6_hdr) + off_dport);
}
/* drop everything: used temporarily during setup */
static void set_filter_null(int fd)
{
struct sock_filter filter[] = {
BPF_STMT(BPF_RET + BPF_K, 0),
};
struct sock_fprog prog = {};
prog.filter = filter;
prog.len = sizeof(filter) / sizeof(struct sock_filter);
if (setsockopt(fd, SOL_SOCKET, SO_ATTACH_FILTER, &prog, sizeof(prog)))
error(1, errno, "setsockopt filter");
}
static int create_ring(char **ring)
{
struct fanout_args args = {
.id = 1,
.type_flags = PACKET_FANOUT_CPU,
.max_num_members = RSS_MAX_CPUS
};
struct sockaddr_ll ll = { 0 };
int fd, val;
fd = socket(PF_PACKET, SOCK_DGRAM, 0);
if (fd == -1)
error(1, errno, "socket creation failed");
val = TPACKET_V3;
if (setsockopt(fd, SOL_PACKET, PACKET_VERSION, &val, sizeof(val)))
error(1, errno, "setsockopt PACKET_VERSION");
*ring = setup_ring(fd);
/* block packets until all rings are added to the fanout group:
* else packets can arrive during setup and get misclassified
*/
set_filter_null(fd);
ll.sll_family = AF_PACKET;
ll.sll_ifindex = if_nametoindex(cfg_ifname);
ll.sll_protocol = cfg_family == AF_INET ? htons(ETH_P_IP) :
htons(ETH_P_IPV6);
if (bind(fd, (void *)&ll, sizeof(ll)))
error(1, errno, "bind");
/* must come after bind: verifies all programs in group match */
if (setsockopt(fd, SOL_PACKET, PACKET_FANOUT, &args, sizeof(args))) {
/* on failure, retry using old API if that is sufficient:
* it has a hard limit of 256 sockets, so only try if
* (a) only testing rxhash, not RSS or (b) <= 256 cpus.
* in this API, the third argument is left implicit.
*/
if (cfg_num_queues || num_cpus > 256 ||
setsockopt(fd, SOL_PACKET, PACKET_FANOUT,
&args, sizeof(uint32_t)))
error(1, errno, "setsockopt PACKET_FANOUT cpu");
}
return fd;
}
/* setup inet(6) socket to blackhole the test traffic, if arg '-s' */
static int setup_sink(void)
{
int fd, val;
fd = socket(cfg_family, cfg_type, 0);
if (fd == -1)
error(1, errno, "socket %d.%d", cfg_family, cfg_type);
val = 1 << 20;
if (setsockopt(fd, SOL_SOCKET, SO_RCVBUFFORCE, &val, sizeof(val)))
error(1, errno, "setsockopt rcvbuf");
return fd;
}
static void setup_rings(void)
{
int i;
for (i = 0; i < num_cpus; i++) {
rings[i].cpu = i;
rings[i].fd = create_ring(&rings[i].mmap);
}
/* accept packets once all rings in the fanout group are up */
for (i = 0; i < num_cpus; i++)
set_filter(rings[i].fd);
}
static void cleanup_rings(void)
{
int i;
for (i = 0; i < num_cpus; i++) {
if (munmap(rings[i].mmap, ring_block_nr * ring_block_sz))
error(1, errno, "munmap");
if (close(rings[i].fd))
error(1, errno, "close");
}
}
static void parse_cpulist(const char *arg)
{
do {
rx_irq_cpus[cfg_num_queues++] = strtol(arg, NULL, 10);
arg = strchr(arg, ',');
if (!arg)
break;
arg++; // skip ','
} while (1);
}
static void show_cpulist(void)
{
int i;
for (i = 0; i < cfg_num_queues; i++)
fprintf(stderr, "rxq %d: cpu %d\n", i, rx_irq_cpus[i]);
}
static void show_silos(void)
{
int i;
for (i = 0; i < cfg_num_rps_cpus; i++)
fprintf(stderr, "silo %d: cpu %d\n", i, rps_silo_to_cpu[i]);
}
static void parse_toeplitz_key(const char *str, int slen, unsigned char *key)
{
int i, ret, off;
if (slen < TOEPLITZ_STR_MIN_LEN ||
slen > TOEPLITZ_STR_MAX_LEN + 1)
error(1, 0, "invalid toeplitz key");
for (i = 0, off = 0; off < slen; i++, off += 3) {
ret = sscanf(str + off, "%hhx", &key[i]);
if (ret != 1)
error(1, 0, "key parse error at %d off %d len %d",
i, off, slen);
}
}
static void parse_rps_bitmap(const char *arg)
{
unsigned long bitmap;
int i;
bitmap = strtoul(arg, NULL, 0);
if (bitmap & ~(RPS_MAX_CPUS - 1))
error(1, 0, "rps bitmap 0x%lx out of bounds 0..%lu",
bitmap, RPS_MAX_CPUS - 1);
for (i = 0; i < RPS_MAX_CPUS; i++)
if (bitmap & 1UL << i)
rps_silo_to_cpu[cfg_num_rps_cpus++] = i;
}
static void parse_opts(int argc, char **argv)
{
static struct option long_options[] = {
{"dport", required_argument, 0, 'd'},
{"cpus", required_argument, 0, 'C'},
{"key", required_argument, 0, 'k'},
{"iface", required_argument, 0, 'i'},
{"ipv4", no_argument, 0, '4'},
{"ipv6", no_argument, 0, '6'},
{"sink", no_argument, 0, 's'},
{"tcp", no_argument, 0, 't'},
{"timeout", required_argument, 0, 'T'},
{"udp", no_argument, 0, 'u'},
{"verbose", no_argument, 0, 'v'},
{"rps", required_argument, 0, 'r'},
{0, 0, 0, 0}
};
bool have_toeplitz = false;
int index, c;
while ((c = getopt_long(argc, argv, "46C:d:i:k:r:stT:u:v", long_options, &index)) != -1) {
switch (c) {
case '4':
cfg_family = AF_INET;
break;
case '6':
cfg_family = AF_INET6;
break;
case 'C':
parse_cpulist(optarg);
break;
case 'd':
cfg_dport = strtol(optarg, NULL, 0);
break;
case 'i':
cfg_ifname = optarg;
break;
case 'k':
parse_toeplitz_key(optarg, strlen(optarg),
toeplitz_key);
have_toeplitz = true;
break;
case 'r':
parse_rps_bitmap(optarg);
break;
case 's':
cfg_sink = true;
break;
case 't':
cfg_type = SOCK_STREAM;
break;
case 'T':
cfg_timeout_msec = strtol(optarg, NULL, 0);
break;
case 'u':
cfg_type = SOCK_DGRAM;
break;
case 'v':
cfg_verbose = true;
break;
default:
error(1, 0, "unknown option %c", optopt);
break;
}
}
if (!have_toeplitz)
error(1, 0, "Must supply rss key ('-k')");
num_cpus = get_nprocs();
if (num_cpus > RSS_MAX_CPUS)
error(1, 0, "increase RSS_MAX_CPUS");
if (cfg_num_queues && cfg_num_rps_cpus)
error(1, 0,
"Can't supply both RSS cpus ('-C') and RPS map ('-r')");
if (cfg_verbose) {
show_cpulist();
show_silos();
}
}
int main(int argc, char **argv)
{
const int min_tests = 10;
int fd_sink = -1;
parse_opts(argc, argv);
if (cfg_sink)
fd_sink = setup_sink();
setup_rings();
process_rings();
cleanup_rings();
if (cfg_sink && close(fd_sink))
error(1, errno, "close sink");
if (frames_received - frames_nohash < min_tests)
error(1, 0, "too few frames for verification");
return frames_error;
}
#!/bin/bash
# SPDX-License-Identifier: GPL-2.0
#
# extended toeplitz test: test rxhash plus, optionally, either (1) rss mapping
# from rxhash to rx queue ('-rss') or (2) rps mapping from rxhash to cpu
# ('-rps <rps_map>')
#
# irq-pattern-prefix can be derived from /sys/kernel/irq/*/action,
# which is a driver-specific encoding.
#
# invoke as ./toeplitz.sh (-i <iface>) -u|-t -4|-6 \
# [(-rss -irq_prefix <irq-pattern-prefix>)|(-rps <rps_map>)]
source setup_loopback.sh
readonly SERVER_IP4="192.168.1.200/24"
readonly SERVER_IP6="fda8::1/64"
readonly SERVER_MAC="aa:00:00:00:00:02"
readonly CLIENT_IP4="192.168.1.100/24"
readonly CLIENT_IP6="fda8::2/64"
readonly CLIENT_MAC="aa:00:00:00:00:01"
PORT=8000
KEY="$(</proc/sys/net/core/netdev_rss_key)"
TEST_RSS=false
RPS_MAP=""
PROTO_FLAG=""
IP_FLAG=""
DEV="eth0"
# Return the number of rxqs among which RSS is configured to spread packets.
# This is determined by reading the RSS indirection table using ethtool.
get_rss_cfg_num_rxqs() {
echo $(ethtool -x "${DEV}" |
egrep [[:space:]]+[0-9]+:[[:space:]]+ |
cut -d: -f2- |
awk '{$1=$1};1' |
tr ' ' '\n' |
sort -u |
wc -l)
}
# Return a list of the receive irq handler cpus.
# The list is ordered by the irqs, so first rxq-0 cpu, then rxq-1 cpu, etc.
# Reads /sys/kernel/irq/ in order, so algorithm depends on
# irq_{rxq-0} < irq_{rxq-1}, etc.
get_rx_irq_cpus() {
CPUS=""
# sort so that irq 2 is read before irq 10
SORTED_IRQS=$(for i in /sys/kernel/irq/*; do echo $i; done | sort -V)
# Consider only as many queues as RSS actually uses. We assume that
# if RSS_CFG_NUM_RXQS=N, then RSS uses rxqs 0-(N-1).
RSS_CFG_NUM_RXQS=$(get_rss_cfg_num_rxqs)
RXQ_COUNT=0
for i in ${SORTED_IRQS}
do
[[ "${RXQ_COUNT}" -lt "${RSS_CFG_NUM_RXQS}" ]] || break
# lookup relevant IRQs by action name
[[ -e "$i/actions" ]] || continue
cat "$i/actions" | grep -q "${IRQ_PATTERN}" || continue
irqname=$(<"$i/actions")
# does the IRQ get called
irqcount=$(cat "$i/per_cpu_count" | tr -d '0,')
[[ -n "${irqcount}" ]] || continue
# lookup CPU
irq=$(basename "$i")
cpu=$(cat "/proc/irq/$irq/smp_affinity_list")
if [[ -z "${CPUS}" ]]; then
CPUS="${cpu}"
else
CPUS="${CPUS},${cpu}"
fi
RXQ_COUNT=$((RXQ_COUNT+1))
done
echo "${CPUS}"
}
get_disable_rfs_cmd() {
echo "echo 0 > /proc/sys/net/core/rps_sock_flow_entries;"
}
get_set_rps_bitmaps_cmd() {
CMD=""
for i in /sys/class/net/${DEV}/queues/rx-*/rps_cpus
do
CMD="${CMD} echo $1 > ${i};"
done
echo "${CMD}"
}
get_disable_rps_cmd() {
echo "$(get_set_rps_bitmaps_cmd 0)"
}
die() {
echo "$1"
exit 1
}
check_nic_rxhash_enabled() {
local -r pattern="receive-hashing:\ on"
ethtool -k "${DEV}" | grep -q "${pattern}" || die "rxhash must be enabled"
}
parse_opts() {
local prog=$0
shift 1
while [[ "$1" =~ "-" ]]; do
if [[ "$1" = "-irq_prefix" ]]; then
shift
IRQ_PATTERN="^$1-[0-9]*$"
elif [[ "$1" = "-u" || "$1" = "-t" ]]; then
PROTO_FLAG="$1"
elif [[ "$1" = "-4" ]]; then
IP_FLAG="$1"
SERVER_IP="${SERVER_IP4}"
CLIENT_IP="${CLIENT_IP4}"
elif [[ "$1" = "-6" ]]; then
IP_FLAG="$1"
SERVER_IP="${SERVER_IP6}"
CLIENT_IP="${CLIENT_IP6}"
elif [[ "$1" = "-rss" ]]; then
TEST_RSS=true
elif [[ "$1" = "-rps" ]]; then
shift
RPS_MAP="$1"
elif [[ "$1" = "-i" ]]; then
shift
DEV="$1"
else
die "Usage: ${prog} (-i <iface>) -u|-t -4|-6 \
[(-rss -irq_prefix <irq-pattern-prefix>)|(-rps <rps_map>)]"
fi
shift
done
}
setup() {
setup_loopback_environment "${DEV}"
# Set up server_ns namespace and client_ns namespace
setup_macvlan_ns "${DEV}" server_ns server \
"${SERVER_MAC}" "${SERVER_IP}"
setup_macvlan_ns "${DEV}" client_ns client \
"${CLIENT_MAC}" "${CLIENT_IP}"
}
cleanup() {
cleanup_macvlan_ns server_ns server client_ns client
cleanup_loopback "${DEV}"
}
parse_opts $0 $@
setup
trap cleanup EXIT
check_nic_rxhash_enabled
# Actual test starts here
if [[ "${TEST_RSS}" = true ]]; then
# RPS/RFS must be disabled because they move packets between cpus,
# which breaks the PACKET_FANOUT_CPU identification of RSS decisions.
eval "$(get_disable_rfs_cmd) $(get_disable_rps_cmd)" \
ip netns exec server_ns ./toeplitz "${IP_FLAG}" "${PROTO_FLAG}" \
-d "${PORT}" -i "${DEV}" -k "${KEY}" -T 1000 \
-C "$(get_rx_irq_cpus)" -s -v &
elif [[ ! -z "${RPS_MAP}" ]]; then
eval "$(get_disable_rfs_cmd) $(get_set_rps_bitmaps_cmd ${RPS_MAP})" \
ip netns exec server_ns ./toeplitz "${IP_FLAG}" "${PROTO_FLAG}" \
-d "${PORT}" -i "${DEV}" -k "${KEY}" -T 1000 \
-r "0x${RPS_MAP}" -s -v &
else
ip netns exec server_ns ./toeplitz "${IP_FLAG}" "${PROTO_FLAG}" \
-d "${PORT}" -i "${DEV}" -k "${KEY}" -T 1000 -s -v &
fi
server_pid=$!
ip netns exec client_ns ./toeplitz_client.sh "${PROTO_FLAG}" \
"${IP_FLAG}" "${SERVER_IP%%/*}" "${PORT}" &
client_pid=$!
wait "${server_pid}"
exit_code=$?
kill -9 "${client_pid}"
if [[ "${exit_code}" -eq 0 ]]; then
echo "Test Succeeded!"
fi
exit "${exit_code}"
#!/bin/bash
# SPDX-License-Identifier: GPL-2.0
#
# A simple program for generating traffic for the toeplitz test.
#
# This program sends packets periodically for, conservatively, 20 seconds. The
# intent is for the calling program to kill this program once it is no longer
# needed, rather than waiting for the 20 second expiration.
send_traffic() {
expiration=$((SECONDS+20))
while [[ "${SECONDS}" -lt "${expiration}" ]]
do
if [[ "${PROTO}" == "-u" ]]; then
echo "msg $i" | nc "${IPVER}" -u -w 0 "${ADDR}" "${PORT}"
else
echo "msg $i" | nc "${IPVER}" -w 0 "${ADDR}" "${PORT}"
fi
sleep 0.001
done
}
PROTO=$1
IPVER=$2
ADDR=$3
PORT=$4
send_traffic
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment