Commit 6363b3f3 authored by Linus Torvalds's avatar Linus Torvalds

Merge tag 'ipmi-for-4.15' of git://github.com/cminyard/linux-ipmi

Pull IPMI updates from Corey Minyard:
 "This is a fairly large rework of the IPMI code, along with a bunch of
  smaller fixes. The major changes have been in the next tree for a
  couple of months, so they should be good to do in.

   - Some users had IPMI systems where the GUID of the IPMI controller
     could change. So rescanning of the GUID was added. The naming of
     some sysfs things was dependent on the GUID, however, so this
     resulted in the sysfs interface code in IPMI changing to remove
     that dependency and name the IPMI BMCs like other sysfs devices.

   - The ipmi_si_intf.c code was fairly bloated with all the different
     discovery methods (PCI, ACPI, SMBIOS, OF, platform, module
     parameters, hot add). The structure of how the interfaces were
     added was redone to make them more modular, then the individual
     methods were pulled out into their own files"

* tag 'ipmi-for-4.15' of git://github.com/cminyard/linux-ipmi: (48 commits)
  ipmi_si: Delete an error message for a failed memory allocation in try_smi_init()
  ipmi_si: fix memory leak on new_smi
  ipmi: remove redundant initialization of bmc
  ipmi: pr_err() strings should end with newlines
  ipmi: Clean up some print operations
  ipmi: Make the DMI probe into a generic platform probe
  ipmi: Make the IPMI proc interface configurable
  ipmi_ssif: Add device attrs for the things in proc
  ipmi_si: Add device attrs for the things in proc
  ipmi_si: remove ipmi_smi_alloc() function
  ipmi_si: Move port and mem I/O handling to their own files
  ipmi_si: Get rid of unused spacing and port fields
  ipmi_si: Move PARISC handling to another file
  ipmi_si: Move PCI setup to another file
  ipmi_si: Move platform device handling to another file
  ipmi_si: Move hardcode handling to a separate file.
  ipmi_si: Move the hotmod handling to another file.
  ipmi_si: Change ipmi_si_add_smi() to take just I/O info
  ipmi_si: Move io setup into io structure
  ipmi_si: Move irq setup handling into the io struct
  ...
parents 1b6115fb 6297fabd
......@@ -81,7 +81,9 @@ If you want the driver to put an event into the event log on a panic,
enable the 'Generate a panic event to all BMCs on a panic' option. If
you want the whole panic string put into the event log using OEM
events, enable the 'Generate OEM events containing the panic string'
option.
option. You can also enable these dynamically by setting the module
parameter named "panic_op" in the ipmi_msghandler module to "event"
or "string". Setting that parameter to "none" disables this function.
Basic Design
------------
......
......@@ -22,24 +22,39 @@ config IPMI_DMI_DECODE
if IPMI_HANDLER
config IPMI_PROC_INTERFACE
bool 'Provide an interface for IPMI stats in /proc (deprecated)'
depends on PROC_FS
default y
help
Do not use this any more, use sysfs for this info. It will be
removed in future kernel versions.
config IPMI_PANIC_EVENT
bool 'Generate a panic event to all BMCs on a panic'
help
When a panic occurs, this will cause the IPMI message handler to
generate an IPMI event describing the panic to each interface
registered with the message handler.
When a panic occurs, this will cause the IPMI message handler to,
by default, generate an IPMI event describing the panic to each
interface registered with the message handler. This is always
available, the module parameter for ipmi_msghandler named
panic_op can be set to "event" to chose this value, this config
simply causes the default value to be set to "event".
config IPMI_PANIC_STRING
bool 'Generate OEM events containing the panic string'
depends on IPMI_PANIC_EVENT
help
When a panic occurs, this will cause the IPMI message handler to
generate IPMI OEM type f0 events holding the IPMB address of the
panic generator (byte 4 of the event), a sequence number for the
string (byte 5 of the event) and part of the string (the rest of the
event). Bytes 1, 2, and 3 are the normal usage for an OEM event.
You can fetch these events and use the sequence numbers to piece the
string together.
When a panic occurs, this will cause the IPMI message handler to,
by default, generate IPMI OEM type f0 events holding the IPMB
address of the panic generator (byte 4 of the event), a sequence
number for the string (byte 5 of the event) and part of the
string (the rest of the event). Bytes 1, 2, and 3 are the normal
usage for an OEM event. You can fetch these events and use the
sequence numbers to piece the string together. This config
parameter sets the default value to generate these events,
the module parameter for ipmi_msghandler named panic_op can
be set to "string" to chose this value, this config simply
causes the default value to be set to "string".
config IPMI_DEVICE_INTERFACE
tristate 'Device interface for IPMI'
......
......@@ -3,7 +3,15 @@
# Makefile for the ipmi drivers.
#
ipmi_si-y := ipmi_si_intf.o ipmi_kcs_sm.o ipmi_smic_sm.o ipmi_bt_sm.o
ipmi_si-y := ipmi_si_intf.o ipmi_kcs_sm.o ipmi_smic_sm.o ipmi_bt_sm.o \
ipmi_si_hotmod.o ipmi_si_hardcode.o ipmi_si_platform.o \
ipmi_si_port_io.o ipmi_si_mem_io.o
ifdef CONFIG_PCI
ipmi_si-y += ipmi_si_pci.o
endif
ifdef CONFIG_PARISC
ipmi_si-y += ipmi_si_parisc.o
endif
obj-$(CONFIG_IPMI_HANDLER) += ipmi_msghandler.o
obj-$(CONFIG_IPMI_DEVICE_INTERFACE) += ipmi_devintf.o
......
......@@ -9,10 +9,16 @@
#include <linux/dmi.h>
#include <linux/platform_device.h>
#include <linux/property.h>
#include "ipmi_si_sm.h"
#include "ipmi_dmi.h"
#define IPMI_DMI_TYPE_KCS 0x01
#define IPMI_DMI_TYPE_SMIC 0x02
#define IPMI_DMI_TYPE_BT 0x03
#define IPMI_DMI_TYPE_SSIF 0x04
struct ipmi_dmi_info {
int type;
enum si_type si_type;
u32 flags;
unsigned long addr;
u8 slave_addr;
......@@ -23,6 +29,15 @@ static struct ipmi_dmi_info *ipmi_dmi_infos;
static int ipmi_dmi_nr __initdata;
#define set_prop_entry(_p_, _name_, type, val) \
do { \
struct property_entry *_p = &_p_; \
_p->name = _name_; \
_p->length = sizeof(type); \
_p->is_string = false; \
_p->value.type##_data = val; \
} while(0)
static void __init dmi_add_platform_ipmi(unsigned long base_addr,
u32 flags,
u8 slave_addr,
......@@ -33,27 +48,14 @@ static void __init dmi_add_platform_ipmi(unsigned long base_addr,
struct platform_device *pdev;
struct resource r[4];
unsigned int num_r = 1, size;
struct property_entry p[4] = {
PROPERTY_ENTRY_U8("slave-addr", slave_addr),
PROPERTY_ENTRY_U8("ipmi-type", type),
PROPERTY_ENTRY_U16("i2c-addr", base_addr),
{ }
};
struct property_entry p[5];
unsigned int pidx = 0;
char *name, *override;
int rv;
enum si_type si_type;
struct ipmi_dmi_info *info;
info = kmalloc(sizeof(*info), GFP_KERNEL);
if (!info) {
pr_warn("ipmi:dmi: Could not allocate dmi info\n");
} else {
info->type = type;
info->flags = flags;
info->addr = base_addr;
info->slave_addr = slave_addr;
info->next = ipmi_dmi_infos;
ipmi_dmi_infos = info;
}
memset(p, 0, sizeof(p));
name = "dmi-ipmi-si";
override = "ipmi_si";
......@@ -63,28 +65,53 @@ static void __init dmi_add_platform_ipmi(unsigned long base_addr,
override = "ipmi_ssif";
offset = 1;
size = 1;
si_type = SI_TYPE_INVALID;
break;
case IPMI_DMI_TYPE_BT:
size = 3;
si_type = SI_BT;
break;
case IPMI_DMI_TYPE_KCS:
size = 2;
si_type = SI_KCS;
break;
case IPMI_DMI_TYPE_SMIC:
size = 2;
si_type = SI_SMIC;
break;
default:
pr_err("ipmi:dmi: Invalid IPMI type: %d", type);
pr_err("ipmi:dmi: Invalid IPMI type: %d\n", type);
return;
}
if (si_type != SI_TYPE_INVALID)
set_prop_entry(p[pidx++], "ipmi-type", u8, si_type);
set_prop_entry(p[pidx++], "slave-addr", u8, slave_addr);
set_prop_entry(p[pidx++], "addr-source", u8, SI_SMBIOS);
info = kmalloc(sizeof(*info), GFP_KERNEL);
if (!info) {
pr_warn("ipmi:dmi: Could not allocate dmi info\n");
} else {
info->si_type = si_type;
info->flags = flags;
info->addr = base_addr;
info->slave_addr = slave_addr;
info->next = ipmi_dmi_infos;
ipmi_dmi_infos = info;
}
pdev = platform_device_alloc(name, ipmi_dmi_nr);
if (!pdev) {
pr_err("ipmi:dmi: Error allocation IPMI platform device");
pr_err("ipmi:dmi: Error allocation IPMI platform device\n");
return;
}
pdev->driver_override = override;
if (type == IPMI_DMI_TYPE_SSIF)
if (type == IPMI_DMI_TYPE_SSIF) {
set_prop_entry(p[pidx++], "i2c-addr", u16, base_addr);
goto add_properties;
}
memset(r, 0, sizeof(r));
......@@ -152,12 +179,13 @@ static void __init dmi_add_platform_ipmi(unsigned long base_addr,
* This function allows an ACPI-specified IPMI device to look up the
* slave address from the DMI table.
*/
int ipmi_dmi_get_slave_addr(int type, u32 flags, unsigned long base_addr)
int ipmi_dmi_get_slave_addr(enum si_type si_type, u32 flags,
unsigned long base_addr)
{
struct ipmi_dmi_info *info = ipmi_dmi_infos;
while (info) {
if (info->type == type &&
if (info->si_type == si_type &&
info->flags == flags &&
info->addr == base_addr)
return info->slave_addr;
......@@ -240,7 +268,7 @@ static void __init dmi_decode_ipmi(const struct dmi_header *dm)
offset = 16;
break;
default:
pr_err("ipmi:dmi: Invalid offset: 0");
pr_err("ipmi:dmi: Invalid offset: 0\n");
return;
}
}
......
......@@ -3,11 +3,7 @@
* DMI defines for use by IPMI
*/
#define IPMI_DMI_TYPE_KCS 0x01
#define IPMI_DMI_TYPE_SMIC 0x02
#define IPMI_DMI_TYPE_BT 0x03
#define IPMI_DMI_TYPE_SSIF 0x04
#ifdef CONFIG_IPMI_DMI_DECODE
int ipmi_dmi_get_slave_addr(int type, u32 flags, unsigned long base_addr);
int ipmi_dmi_get_slave_addr(enum si_type si_type, u32 flags,
unsigned long base_addr);
#endif
......@@ -46,6 +46,9 @@
#include <linux/proc_fs.h>
#include <linux/rcupdate.h>
#include <linux/interrupt.h>
#include <linux/moduleparam.h>
#include <linux/workqueue.h>
#include <linux/uuid.h>
#define PFX "IPMI message handler: "
......@@ -61,9 +64,77 @@ static int handle_one_recv_msg(ipmi_smi_t intf,
static int initialized;
#ifdef CONFIG_PROC_FS
enum ipmi_panic_event_op {
IPMI_SEND_PANIC_EVENT_NONE,
IPMI_SEND_PANIC_EVENT,
IPMI_SEND_PANIC_EVENT_STRING
};
#ifdef CONFIG_IPMI_PANIC_STRING
#define IPMI_PANIC_DEFAULT IPMI_SEND_PANIC_EVENT_STRING
#elif defined(CONFIG_IPMI_PANIC_EVENT)
#define IPMI_PANIC_DEFAULT IPMI_SEND_PANIC_EVENT
#else
#define IPMI_PANIC_DEFAULT IPMI_SEND_PANIC_EVENT_NONE
#endif
static enum ipmi_panic_event_op ipmi_send_panic_event = IPMI_PANIC_DEFAULT;
static int panic_op_write_handler(const char *val,
const struct kernel_param *kp)
{
char valcp[16];
char *s;
strncpy(valcp, val, 16);
valcp[15] = '\0';
s = strstrip(valcp);
if (strcmp(s, "none") == 0)
ipmi_send_panic_event = IPMI_SEND_PANIC_EVENT_NONE;
else if (strcmp(s, "event") == 0)
ipmi_send_panic_event = IPMI_SEND_PANIC_EVENT;
else if (strcmp(s, "string") == 0)
ipmi_send_panic_event = IPMI_SEND_PANIC_EVENT_STRING;
else
return -EINVAL;
return 0;
}
static int panic_op_read_handler(char *buffer, const struct kernel_param *kp)
{
switch (ipmi_send_panic_event) {
case IPMI_SEND_PANIC_EVENT_NONE:
strcpy(buffer, "none");
break;
case IPMI_SEND_PANIC_EVENT:
strcpy(buffer, "event");
break;
case IPMI_SEND_PANIC_EVENT_STRING:
strcpy(buffer, "string");
break;
default:
strcpy(buffer, "???");
break;
}
return strlen(buffer);
}
static const struct kernel_param_ops panic_op_ops = {
.set = panic_op_write_handler,
.get = panic_op_read_handler
};
module_param_cb(panic_op, &panic_op_ops, NULL, 0600);
MODULE_PARM_DESC(panic_op, "Sets if the IPMI driver will attempt to store panic information in the event log in the event of a panic. Set to 'none' for no, 'event' for a single event, or 'string' for a generic event and the panic string in IPMI OEM events.");
#ifdef CONFIG_IPMI_PROC_INTERFACE
static struct proc_dir_entry *proc_ipmi_root;
#endif /* CONFIG_PROC_FS */
#endif /* CONFIG_IPMI_PROC_INTERFACE */
/* Remain in auto-maintenance mode for this amount of time (in ms). */
#define IPMI_MAINTENANCE_MODE_TIMEOUT 30000
......@@ -90,6 +161,9 @@ static struct proc_dir_entry *proc_ipmi_root;
*/
#define IPMI_REQUEST_EV_TIME (1000 / (IPMI_TIMEOUT_TIME))
/* How long should we cache dynamic device IDs? */
#define IPMI_DYN_DEV_ID_EXPIRY (10 * HZ)
/*
* The main "user" data structure.
*/
......@@ -169,10 +243,17 @@ struct seq_table {
#define NEXT_SEQID(seqid) (((seqid) + 1) & 0x3ffffff)
#define IPMI_MAX_CHANNELS 16
struct ipmi_channel {
unsigned char medium;
unsigned char protocol;
};
struct ipmi_channel_set {
struct ipmi_channel c[IPMI_MAX_CHANNELS];
};
struct ipmi_my_addrinfo {
/*
* My slave address. This is initialized to IPMI_BMC_SLAVE_ADDR,
* but may be changed by the user.
......@@ -186,23 +267,38 @@ struct ipmi_channel {
unsigned char lun;
};
#ifdef CONFIG_PROC_FS
#ifdef CONFIG_IPMI_PROC_INTERFACE
struct ipmi_proc_entry {
char *name;
struct ipmi_proc_entry *next;
};
#endif
/*
* Note that the product id, manufacturer id, guid, and device id are
* immutable in this structure, so dyn_mutex is not required for
* accessing those. If those change on a BMC, a new BMC is allocated.
*/
struct bmc_device {
struct platform_device pdev;
struct list_head intfs; /* Interfaces on this BMC. */
struct ipmi_device_id id;
unsigned char guid[16];
int guid_set;
char name[16];
struct ipmi_device_id fetch_id;
int dyn_id_set;
unsigned long dyn_id_expiry;
struct mutex dyn_mutex; /* Protects id, intfs, & dyn* */
guid_t guid;
guid_t fetch_guid;
int dyn_guid_set;
struct kref usecount;
struct work_struct remove_work;
};
#define to_bmc_device(x) container_of((x), struct bmc_device, pdev.dev)
static int bmc_get_device_id(ipmi_smi_t intf, struct bmc_device *bmc,
struct ipmi_device_id *id,
bool *guid_set, guid_t *guid);
/*
* Various statistics for IPMI, these index stats[] in the ipmi_smi
* structure.
......@@ -308,7 +404,6 @@ enum ipmi_stat_indexes {
#define IPMI_IPMB_NUM_SEQ 64
#define IPMI_MAX_CHANNELS 16
struct ipmi_smi {
/* What interface number are we? */
int intf_num;
......@@ -327,15 +422,23 @@ struct ipmi_smi {
*/
struct list_head users;
/* Information to supply to users. */
unsigned char ipmi_version_major;
unsigned char ipmi_version_minor;
/* Used for wake ups at startup. */
wait_queue_head_t waitq;
/*
* Prevents the interface from being unregistered when the
* interface is used by being looked up through the BMC
* structure.
*/
struct mutex bmc_reg_mutex;
struct bmc_device tmp_bmc;
struct bmc_device *bmc;
bool bmc_registered;
struct list_head bmc_link;
char *my_dev_name;
bool in_bmc_register; /* Handle recursive situations. Yuck. */
struct work_struct bmc_reg_work;
/*
* This is the lower-layer's sender routine. Note that you
......@@ -346,10 +449,13 @@ struct ipmi_smi {
const struct ipmi_smi_handlers *handlers;
void *send_info;
#ifdef CONFIG_PROC_FS
#ifdef CONFIG_IPMI_PROC_INTERFACE
/* A list of proc entries for this interface. */
struct mutex proc_entry_lock;
struct ipmi_proc_entry *proc_entries;
struct proc_dir_entry *proc_dir;
char proc_dir_name[10];
#endif
/* Driver-model device for the system interface. */
......@@ -421,6 +527,8 @@ struct ipmi_smi {
* interface comes in with a NULL user, call this routine with
* it. Note that the message will still be freed by the
* caller. This only works on the system interface.
*
* Protected by bmc_reg_mutex.
*/
void (*null_user_handler)(ipmi_smi_t intf, struct ipmi_recv_msg *msg);
......@@ -431,11 +539,11 @@ struct ipmi_smi {
int curr_channel;
/* Channel information */
struct ipmi_channel channels[IPMI_MAX_CHANNELS];
/* Proc FS stuff. */
struct proc_dir_entry *proc_dir;
char proc_dir_name[10];
struct ipmi_channel_set *channel_list;
unsigned int curr_working_cset; /* First index into the following. */
struct ipmi_channel_set wchannels[2];
struct ipmi_my_addrinfo addrinfo[IPMI_MAX_CHANNELS];
bool channels_ready;
atomic_t stats[IPMI_NUM_STATS];
......@@ -448,6 +556,14 @@ struct ipmi_smi {
};
#define to_si_intf_from_dev(device) container_of(device, struct ipmi_smi, dev)
static void __get_guid(ipmi_smi_t intf);
static void __ipmi_bmc_unregister(ipmi_smi_t intf);
static int __ipmi_bmc_register(ipmi_smi_t intf,
struct ipmi_device_id *id,
bool guid_set, guid_t *guid, int intf_num);
static int __scan_channels(ipmi_smi_t intf, struct ipmi_device_id *id);
/**
* The driver model view of the IPMI messaging driver.
*/
......@@ -457,6 +573,9 @@ static struct platform_driver ipmidriver = {
.bus = &platform_bus_type
}
};
/*
* This mutex keeps us from adding the same BMC twice.
*/
static DEFINE_MUTEX(ipmidriver_mutex);
static LIST_HEAD(ipmi_interfaces);
......@@ -475,7 +594,7 @@ static DEFINE_MUTEX(smi_watchers_mutex);
static const char * const addr_src_to_str[] = {
"invalid", "hotmod", "hardcoded", "SPMI", "ACPI", "SMBIOS", "PCI",
"device-tree"
"device-tree", "platform"
};
const char *ipmi_addr_src_to_str(enum ipmi_addr_src src)
......@@ -1119,12 +1238,21 @@ int ipmi_destroy_user(ipmi_user_t user)
}
EXPORT_SYMBOL(ipmi_destroy_user);
void ipmi_get_version(ipmi_user_t user,
int ipmi_get_version(ipmi_user_t user,
unsigned char *major,
unsigned char *minor)
{
*major = user->intf->ipmi_version_major;
*minor = user->intf->ipmi_version_minor;
struct ipmi_device_id id;
int rv;
rv = bmc_get_device_id(user->intf, NULL, &id, NULL, NULL);
if (rv)
return rv;
*major = ipmi_version_major(&id);
*minor = ipmi_version_minor(&id);
return 0;
}
EXPORT_SYMBOL(ipmi_get_version);
......@@ -1134,7 +1262,7 @@ int ipmi_set_my_address(ipmi_user_t user,
{
if (channel >= IPMI_MAX_CHANNELS)
return -EINVAL;
user->intf->channels[channel].address = address;
user->intf->addrinfo[channel].address = address;
return 0;
}
EXPORT_SYMBOL(ipmi_set_my_address);
......@@ -1145,7 +1273,7 @@ int ipmi_get_my_address(ipmi_user_t user,
{
if (channel >= IPMI_MAX_CHANNELS)
return -EINVAL;
*address = user->intf->channels[channel].address;
*address = user->intf->addrinfo[channel].address;
return 0;
}
EXPORT_SYMBOL(ipmi_get_my_address);
......@@ -1156,7 +1284,7 @@ int ipmi_set_my_LUN(ipmi_user_t user,
{
if (channel >= IPMI_MAX_CHANNELS)
return -EINVAL;
user->intf->channels[channel].lun = LUN & 0x3;
user->intf->addrinfo[channel].lun = LUN & 0x3;
return 0;
}
EXPORT_SYMBOL(ipmi_set_my_LUN);
......@@ -1167,7 +1295,7 @@ int ipmi_get_my_LUN(ipmi_user_t user,
{
if (channel >= IPMI_MAX_CHANNELS)
return -EINVAL;
*address = user->intf->channels[channel].lun;
*address = user->intf->addrinfo[channel].lun;
return 0;
}
EXPORT_SYMBOL(ipmi_get_my_LUN);
......@@ -1264,8 +1392,8 @@ int ipmi_set_gets_events(ipmi_user_t user, bool val)
list_move_tail(&msg->link, &msgs);
intf->waiting_events_count = 0;
if (intf->event_msg_printed) {
printk(KERN_WARNING PFX "Event queue no longer"
" full\n");
dev_warn(intf->si_dev,
PFX "Event queue no longer full\n");
intf->event_msg_printed = 0;
}
......@@ -1655,6 +1783,7 @@ static int i_ipmi_request(ipmi_user_t user,
unsigned char ipmb_seq;
long seqid;
int broadcast = 0;
struct ipmi_channel *chans;
if (addr->channel >= IPMI_MAX_CHANNELS) {
ipmi_inc_stat(intf, sent_invalid_commands);
......@@ -1662,8 +1791,9 @@ static int i_ipmi_request(ipmi_user_t user,
goto out_err;
}
if (intf->channels[addr->channel].medium
!= IPMI_CHANNEL_MEDIUM_IPMB) {
chans = READ_ONCE(intf->channel_list)->c;
if (chans[addr->channel].medium != IPMI_CHANNEL_MEDIUM_IPMB) {
ipmi_inc_stat(intf, sent_invalid_commands);
rv = -EINVAL;
goto out_err;
......@@ -1785,6 +1915,7 @@ static int i_ipmi_request(ipmi_user_t user,
struct ipmi_lan_addr *lan_addr;
unsigned char ipmb_seq;
long seqid;
struct ipmi_channel *chans;
if (addr->channel >= IPMI_MAX_CHANNELS) {
ipmi_inc_stat(intf, sent_invalid_commands);
......@@ -1792,9 +1923,11 @@ static int i_ipmi_request(ipmi_user_t user,
goto out_err;
}
if ((intf->channels[addr->channel].medium
chans = READ_ONCE(intf->channel_list)->c;
if ((chans[addr->channel].medium
!= IPMI_CHANNEL_MEDIUM_8023LAN)
&& (intf->channels[addr->channel].medium
&& (chans[addr->channel].medium
!= IPMI_CHANNEL_MEDIUM_ASYNC)) {
ipmi_inc_stat(intf, sent_invalid_commands);
rv = -EINVAL;
......@@ -1928,8 +2061,8 @@ static int check_addr(ipmi_smi_t intf,
{
if (addr->channel >= IPMI_MAX_CHANNELS)
return -EINVAL;
*lun = intf->channels[addr->channel].lun;
*saddr = intf->channels[addr->channel].address;
*lun = intf->addrinfo[addr->channel].lun;
*saddr = intf->addrinfo[addr->channel].address;
return 0;
}
......@@ -1997,15 +2130,249 @@ int ipmi_request_supply_msgs(ipmi_user_t user,
}
EXPORT_SYMBOL(ipmi_request_supply_msgs);
#ifdef CONFIG_PROC_FS
static void bmc_device_id_handler(ipmi_smi_t intf, struct ipmi_recv_msg *msg)
{
int rv;
if ((msg->addr.addr_type != IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
|| (msg->msg.netfn != IPMI_NETFN_APP_RESPONSE)
|| (msg->msg.cmd != IPMI_GET_DEVICE_ID_CMD)) {
dev_warn(intf->si_dev,
PFX "invalid device_id msg: addr_type=%d netfn=%x cmd=%x\n",
msg->addr.addr_type, msg->msg.netfn, msg->msg.cmd);
return;
}
rv = ipmi_demangle_device_id(msg->msg.netfn, msg->msg.cmd,
msg->msg.data, msg->msg.data_len, &intf->bmc->fetch_id);
if (rv) {
dev_warn(intf->si_dev,
PFX "device id demangle failed: %d\n", rv);
intf->bmc->dyn_id_set = 0;
} else {
/*
* Make sure the id data is available before setting
* dyn_id_set.
*/
smp_wmb();
intf->bmc->dyn_id_set = 1;
}
wake_up(&intf->waitq);
}
static int
send_get_device_id_cmd(ipmi_smi_t intf)
{
struct ipmi_system_interface_addr si;
struct kernel_ipmi_msg msg;
si.addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
si.channel = IPMI_BMC_CHANNEL;
si.lun = 0;
msg.netfn = IPMI_NETFN_APP_REQUEST;
msg.cmd = IPMI_GET_DEVICE_ID_CMD;
msg.data = NULL;
msg.data_len = 0;
return i_ipmi_request(NULL,
intf,
(struct ipmi_addr *) &si,
0,
&msg,
intf,
NULL,
NULL,
0,
intf->addrinfo[0].address,
intf->addrinfo[0].lun,
-1, 0);
}
static int __get_device_id(ipmi_smi_t intf, struct bmc_device *bmc)
{
int rv;
bmc->dyn_id_set = 2;
intf->null_user_handler = bmc_device_id_handler;
rv = send_get_device_id_cmd(intf);
if (rv)
return rv;
wait_event(intf->waitq, bmc->dyn_id_set != 2);
if (!bmc->dyn_id_set)
rv = -EIO; /* Something went wrong in the fetch. */
/* dyn_id_set makes the id data available. */
smp_rmb();
intf->null_user_handler = NULL;
return rv;
}
/*
* Fetch the device id for the bmc/interface. You must pass in either
* bmc or intf, this code will get the other one. If the data has
* been recently fetched, this will just use the cached data. Otherwise
* it will run a new fetch.
*
* Except for the first time this is called (in ipmi_register_smi()),
* this will always return good data;
*/
static int __bmc_get_device_id(ipmi_smi_t intf, struct bmc_device *bmc,
struct ipmi_device_id *id,
bool *guid_set, guid_t *guid, int intf_num)
{
int rv = 0;
int prev_dyn_id_set, prev_guid_set;
bool intf_set = intf != NULL;
if (!intf) {
mutex_lock(&bmc->dyn_mutex);
retry_bmc_lock:
if (list_empty(&bmc->intfs)) {
mutex_unlock(&bmc->dyn_mutex);
return -ENOENT;
}
intf = list_first_entry(&bmc->intfs, struct ipmi_smi,
bmc_link);
kref_get(&intf->refcount);
mutex_unlock(&bmc->dyn_mutex);
mutex_lock(&intf->bmc_reg_mutex);
mutex_lock(&bmc->dyn_mutex);
if (intf != list_first_entry(&bmc->intfs, struct ipmi_smi,
bmc_link)) {
mutex_unlock(&intf->bmc_reg_mutex);
kref_put(&intf->refcount, intf_free);
goto retry_bmc_lock;
}
} else {
mutex_lock(&intf->bmc_reg_mutex);
bmc = intf->bmc;
mutex_lock(&bmc->dyn_mutex);
kref_get(&intf->refcount);
}
/* If we have a valid and current ID, just return that. */
if (intf->in_bmc_register ||
(bmc->dyn_id_set && time_is_after_jiffies(bmc->dyn_id_expiry)))
goto out_noprocessing;
prev_guid_set = bmc->dyn_guid_set;
__get_guid(intf);
prev_dyn_id_set = bmc->dyn_id_set;
rv = __get_device_id(intf, bmc);
if (rv)
goto out;
/*
* The guid, device id, manufacturer id, and product id should
* not change on a BMC. If it does we have to do some dancing.
*/
if (!intf->bmc_registered
|| (!prev_guid_set && bmc->dyn_guid_set)
|| (!prev_dyn_id_set && bmc->dyn_id_set)
|| (prev_guid_set && bmc->dyn_guid_set
&& !guid_equal(&bmc->guid, &bmc->fetch_guid))
|| bmc->id.device_id != bmc->fetch_id.device_id
|| bmc->id.manufacturer_id != bmc->fetch_id.manufacturer_id
|| bmc->id.product_id != bmc->fetch_id.product_id) {
struct ipmi_device_id id = bmc->fetch_id;
int guid_set = bmc->dyn_guid_set;
guid_t guid;
guid = bmc->fetch_guid;
mutex_unlock(&bmc->dyn_mutex);
__ipmi_bmc_unregister(intf);
/* Fill in the temporary BMC for good measure. */
intf->bmc->id = id;
intf->bmc->dyn_guid_set = guid_set;
intf->bmc->guid = guid;
if (__ipmi_bmc_register(intf, &id, guid_set, &guid, intf_num))
need_waiter(intf); /* Retry later on an error. */
else
__scan_channels(intf, &id);
if (!intf_set) {
/*
* We weren't given the interface on the
* command line, so restart the operation on
* the next interface for the BMC.
*/
mutex_unlock(&intf->bmc_reg_mutex);
mutex_lock(&bmc->dyn_mutex);
goto retry_bmc_lock;
}
/* We have a new BMC, set it up. */
bmc = intf->bmc;
mutex_lock(&bmc->dyn_mutex);
goto out_noprocessing;
} else if (memcmp(&bmc->fetch_id, &bmc->id, sizeof(bmc->id)))
/* Version info changes, scan the channels again. */
__scan_channels(intf, &bmc->fetch_id);
bmc->dyn_id_expiry = jiffies + IPMI_DYN_DEV_ID_EXPIRY;
out:
if (rv && prev_dyn_id_set) {
rv = 0; /* Ignore failures if we have previous data. */
bmc->dyn_id_set = prev_dyn_id_set;
}
if (!rv) {
bmc->id = bmc->fetch_id;
if (bmc->dyn_guid_set)
bmc->guid = bmc->fetch_guid;
else if (prev_guid_set)
/*
* The guid used to be valid and it failed to fetch,
* just use the cached value.
*/
bmc->dyn_guid_set = prev_guid_set;
}
out_noprocessing:
if (!rv) {
if (id)
*id = bmc->id;
if (guid_set)
*guid_set = bmc->dyn_guid_set;
if (guid && bmc->dyn_guid_set)
*guid = bmc->guid;
}
mutex_unlock(&bmc->dyn_mutex);
mutex_unlock(&intf->bmc_reg_mutex);
kref_put(&intf->refcount, intf_free);
return rv;
}
static int bmc_get_device_id(ipmi_smi_t intf, struct bmc_device *bmc,
struct ipmi_device_id *id,
bool *guid_set, guid_t *guid)
{
return __bmc_get_device_id(intf, bmc, id, guid_set, guid, -1);
}
#ifdef CONFIG_IPMI_PROC_INTERFACE
static int smi_ipmb_proc_show(struct seq_file *m, void *v)
{
ipmi_smi_t intf = m->private;
int i;
seq_printf(m, "%x", intf->channels[0].address);
seq_printf(m, "%x", intf->addrinfo[0].address);
for (i = 1; i < IPMI_MAX_CHANNELS; i++)
seq_printf(m, " %x", intf->channels[i].address);
seq_printf(m, " %x", intf->addrinfo[i].address);
seq_putc(m, '\n');
return 0;
......@@ -2026,10 +2393,16 @@ static const struct file_operations smi_ipmb_proc_ops = {
static int smi_version_proc_show(struct seq_file *m, void *v)
{
ipmi_smi_t intf = m->private;
struct ipmi_device_id id;
int rv;
rv = bmc_get_device_id(intf, NULL, &id, NULL, NULL);
if (rv)
return rv;
seq_printf(m, "%u.%u\n",
ipmi_version_major(&intf->bmc->id),
ipmi_version_minor(&intf->bmc->id));
ipmi_version_major(&id),
ipmi_version_minor(&id));
return 0;
}
......@@ -2120,14 +2493,12 @@ static const struct file_operations smi_stats_proc_ops = {
.llseek = seq_lseek,
.release = single_release,
};
#endif /* CONFIG_PROC_FS */
int ipmi_smi_add_proc_entry(ipmi_smi_t smi, char *name,
const struct file_operations *proc_ops,
void *data)
{
int rv = 0;
#ifdef CONFIG_PROC_FS
struct proc_dir_entry *file;
struct ipmi_proc_entry *entry;
......@@ -2153,7 +2524,6 @@ int ipmi_smi_add_proc_entry(ipmi_smi_t smi, char *name,
smi->proc_entries = entry;
mutex_unlock(&smi->proc_entry_lock);
}
#endif /* CONFIG_PROC_FS */
return rv;
}
......@@ -2163,7 +2533,6 @@ static int add_proc_entries(ipmi_smi_t smi, int num)
{
int rv = 0;
#ifdef CONFIG_PROC_FS
sprintf(smi->proc_dir_name, "%d", num);
smi->proc_dir = proc_mkdir(smi->proc_dir_name, proc_ipmi_root);
if (!smi->proc_dir)
......@@ -2183,14 +2552,12 @@ static int add_proc_entries(ipmi_smi_t smi, int num)
rv = ipmi_smi_add_proc_entry(smi, "version",
&smi_version_proc_ops,
smi);
#endif /* CONFIG_PROC_FS */
return rv;
}
static void remove_proc_entries(ipmi_smi_t smi)
{
#ifdef CONFIG_PROC_FS
struct ipmi_proc_entry *entry;
mutex_lock(&smi->proc_entry_lock);
......@@ -2204,66 +2571,22 @@ static void remove_proc_entries(ipmi_smi_t smi)
}
mutex_unlock(&smi->proc_entry_lock);
remove_proc_entry(smi->proc_dir_name, proc_ipmi_root);
#endif /* CONFIG_PROC_FS */
}
static int __find_bmc_guid(struct device *dev, void *data)
{
unsigned char *id = data;
struct bmc_device *bmc = to_bmc_device(dev);
return memcmp(bmc->guid, id, 16) == 0;
}
static struct bmc_device *ipmi_find_bmc_guid(struct device_driver *drv,
unsigned char *guid)
{
struct device *dev;
dev = driver_find_device(drv, NULL, guid, __find_bmc_guid);
if (dev)
return to_bmc_device(dev);
else
return NULL;
}
struct prod_dev_id {
unsigned int product_id;
unsigned char device_id;
};
static int __find_bmc_prod_dev_id(struct device *dev, void *data)
{
struct prod_dev_id *id = data;
struct bmc_device *bmc = to_bmc_device(dev);
return (bmc->id.product_id == id->product_id
&& bmc->id.device_id == id->device_id);
}
static struct bmc_device *ipmi_find_bmc_prod_dev_id(
struct device_driver *drv,
unsigned int product_id, unsigned char device_id)
{
struct prod_dev_id id = {
.product_id = product_id,
.device_id = device_id,
};
struct device *dev;
dev = driver_find_device(drv, NULL, &id, __find_bmc_prod_dev_id);
if (dev)
return to_bmc_device(dev);
else
return NULL;
}
#endif /* CONFIG_IPMI_PROC_INTERFACE */
static ssize_t device_id_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct bmc_device *bmc = to_bmc_device(dev);
struct ipmi_device_id id;
int rv;
rv = bmc_get_device_id(NULL, bmc, &id, NULL, NULL);
if (rv)
return rv;
return snprintf(buf, 10, "%u\n", bmc->id.device_id);
return snprintf(buf, 10, "%u\n", id.device_id);
}
static DEVICE_ATTR(device_id, S_IRUGO, device_id_show, NULL);
......@@ -2272,9 +2595,14 @@ static ssize_t provides_device_sdrs_show(struct device *dev,
char *buf)
{
struct bmc_device *bmc = to_bmc_device(dev);
struct ipmi_device_id id;
int rv;
rv = bmc_get_device_id(NULL, bmc, &id, NULL, NULL);
if (rv)
return rv;
return snprintf(buf, 10, "%u\n",
(bmc->id.device_revision & 0x80) >> 7);
return snprintf(buf, 10, "%u\n", (id.device_revision & 0x80) >> 7);
}
static DEVICE_ATTR(provides_device_sdrs, S_IRUGO, provides_device_sdrs_show,
NULL);
......@@ -2283,9 +2611,14 @@ static ssize_t revision_show(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct bmc_device *bmc = to_bmc_device(dev);
struct ipmi_device_id id;
int rv;
return snprintf(buf, 20, "%u\n",
bmc->id.device_revision & 0x0F);
rv = bmc_get_device_id(NULL, bmc, &id, NULL, NULL);
if (rv)
return rv;
return snprintf(buf, 20, "%u\n", id.device_revision & 0x0F);
}
static DEVICE_ATTR(revision, S_IRUGO, revision_show, NULL);
......@@ -2294,9 +2627,15 @@ static ssize_t firmware_revision_show(struct device *dev,
char *buf)
{
struct bmc_device *bmc = to_bmc_device(dev);
struct ipmi_device_id id;
int rv;
rv = bmc_get_device_id(NULL, bmc, &id, NULL, NULL);
if (rv)
return rv;
return snprintf(buf, 20, "%u.%x\n", bmc->id.firmware_revision_1,
bmc->id.firmware_revision_2);
return snprintf(buf, 20, "%u.%x\n", id.firmware_revision_1,
id.firmware_revision_2);
}
static DEVICE_ATTR(firmware_revision, S_IRUGO, firmware_revision_show, NULL);
......@@ -2305,10 +2644,16 @@ static ssize_t ipmi_version_show(struct device *dev,
char *buf)
{
struct bmc_device *bmc = to_bmc_device(dev);
struct ipmi_device_id id;
int rv;
rv = bmc_get_device_id(NULL, bmc, &id, NULL, NULL);
if (rv)
return rv;
return snprintf(buf, 20, "%u.%u\n",
ipmi_version_major(&bmc->id),
ipmi_version_minor(&bmc->id));
ipmi_version_major(&id),
ipmi_version_minor(&id));
}
static DEVICE_ATTR(ipmi_version, S_IRUGO, ipmi_version_show, NULL);
......@@ -2317,9 +2662,14 @@ static ssize_t add_dev_support_show(struct device *dev,
char *buf)
{
struct bmc_device *bmc = to_bmc_device(dev);
struct ipmi_device_id id;
int rv;
return snprintf(buf, 10, "0x%02x\n",
bmc->id.additional_device_support);
rv = bmc_get_device_id(NULL, bmc, &id, NULL, NULL);
if (rv)
return rv;
return snprintf(buf, 10, "0x%02x\n", id.additional_device_support);
}
static DEVICE_ATTR(additional_device_support, S_IRUGO, add_dev_support_show,
NULL);
......@@ -2329,8 +2679,14 @@ static ssize_t manufacturer_id_show(struct device *dev,
char *buf)
{
struct bmc_device *bmc = to_bmc_device(dev);
struct ipmi_device_id id;
int rv;
rv = bmc_get_device_id(NULL, bmc, &id, NULL, NULL);
if (rv)
return rv;
return snprintf(buf, 20, "0x%6.6x\n", bmc->id.manufacturer_id);
return snprintf(buf, 20, "0x%6.6x\n", id.manufacturer_id);
}
static DEVICE_ATTR(manufacturer_id, S_IRUGO, manufacturer_id_show, NULL);
......@@ -2339,8 +2695,14 @@ static ssize_t product_id_show(struct device *dev,
char *buf)
{
struct bmc_device *bmc = to_bmc_device(dev);
struct ipmi_device_id id;
int rv;
rv = bmc_get_device_id(NULL, bmc, &id, NULL, NULL);
if (rv)
return rv;
return snprintf(buf, 10, "0x%4.4x\n", bmc->id.product_id);
return snprintf(buf, 10, "0x%4.4x\n", id.product_id);
}
static DEVICE_ATTR(product_id, S_IRUGO, product_id_show, NULL);
......@@ -2349,12 +2711,18 @@ static ssize_t aux_firmware_rev_show(struct device *dev,
char *buf)
{
struct bmc_device *bmc = to_bmc_device(dev);
struct ipmi_device_id id;
int rv;
rv = bmc_get_device_id(NULL, bmc, &id, NULL, NULL);
if (rv)
return rv;
return snprintf(buf, 21, "0x%02x 0x%02x 0x%02x 0x%02x\n",
bmc->id.aux_firmware_revision[3],
bmc->id.aux_firmware_revision[2],
bmc->id.aux_firmware_revision[1],
bmc->id.aux_firmware_revision[0]);
id.aux_firmware_revision[3],
id.aux_firmware_revision[2],
id.aux_firmware_revision[1],
id.aux_firmware_revision[0]);
}
static DEVICE_ATTR(aux_firmware_revision, S_IRUGO, aux_firmware_rev_show, NULL);
......@@ -2362,10 +2730,17 @@ static ssize_t guid_show(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct bmc_device *bmc = to_bmc_device(dev);
bool guid_set;
guid_t guid;
int rv;
return snprintf(buf, 100, "%Lx%Lx\n",
(long long) bmc->guid[0],
(long long) bmc->guid[8]);
rv = bmc_get_device_id(NULL, bmc, NULL, &guid_set, &guid);
if (rv)
return rv;
if (!guid_set)
return -ENOENT;
return snprintf(buf, 38, "%pUl\n", guid.b);
}
static DEVICE_ATTR(guid, S_IRUGO, guid_show, NULL);
......@@ -2389,11 +2764,20 @@ static umode_t bmc_dev_attr_is_visible(struct kobject *kobj,
struct device *dev = kobj_to_dev(kobj);
struct bmc_device *bmc = to_bmc_device(dev);
umode_t mode = attr->mode;
int rv;
if (attr == &dev_attr_aux_firmware_revision.attr)
return bmc->id.aux_firmware_revision_set ? mode : 0;
if (attr == &dev_attr_guid.attr)
return bmc->guid_set ? mode : 0;
if (attr == &dev_attr_aux_firmware_revision.attr) {
struct ipmi_device_id id;
rv = bmc_get_device_id(NULL, bmc, &id, NULL, NULL);
return (!rv && id.aux_firmware_revision_set) ? mode : 0;
}
if (attr == &dev_attr_guid.attr) {
bool guid_set;
rv = bmc_get_device_id(NULL, bmc, NULL, &guid_set, NULL);
return (!rv && guid_set) ? mode : 0;
}
return mode;
}
......@@ -2411,127 +2795,239 @@ static const struct device_type bmc_device_type = {
.groups = bmc_dev_attr_groups,
};
static int __find_bmc_guid(struct device *dev, void *data)
{
guid_t *guid = data;
struct bmc_device *bmc;
int rv;
if (dev->type != &bmc_device_type)
return 0;
bmc = to_bmc_device(dev);
rv = bmc->dyn_guid_set && guid_equal(&bmc->guid, guid);
if (rv)
rv = kref_get_unless_zero(&bmc->usecount);
return rv;
}
/*
* Returns with the bmc's usecount incremented, if it is non-NULL.
*/
static struct bmc_device *ipmi_find_bmc_guid(struct device_driver *drv,
guid_t *guid)
{
struct device *dev;
struct bmc_device *bmc = NULL;
dev = driver_find_device(drv, NULL, guid, __find_bmc_guid);
if (dev) {
bmc = to_bmc_device(dev);
put_device(dev);
}
return bmc;
}
struct prod_dev_id {
unsigned int product_id;
unsigned char device_id;
};
static int __find_bmc_prod_dev_id(struct device *dev, void *data)
{
struct prod_dev_id *cid = data;
struct bmc_device *bmc;
int rv;
if (dev->type != &bmc_device_type)
return 0;
bmc = to_bmc_device(dev);
rv = (bmc->id.product_id == cid->product_id
&& bmc->id.device_id == cid->device_id);
if (rv)
rv = kref_get_unless_zero(&bmc->usecount);
return rv;
}
/*
* Returns with the bmc's usecount incremented, if it is non-NULL.
*/
static struct bmc_device *ipmi_find_bmc_prod_dev_id(
struct device_driver *drv,
unsigned int product_id, unsigned char device_id)
{
struct prod_dev_id id = {
.product_id = product_id,
.device_id = device_id,
};
struct device *dev;
struct bmc_device *bmc = NULL;
dev = driver_find_device(drv, NULL, &id, __find_bmc_prod_dev_id);
if (dev) {
bmc = to_bmc_device(dev);
put_device(dev);
}
return bmc;
}
static DEFINE_IDA(ipmi_bmc_ida);
static void
release_bmc_device(struct device *dev)
{
kfree(to_bmc_device(dev));
}
static void cleanup_bmc_work(struct work_struct *work)
{
struct bmc_device *bmc = container_of(work, struct bmc_device,
remove_work);
int id = bmc->pdev.id; /* Unregister overwrites id */
platform_device_unregister(&bmc->pdev);
ida_simple_remove(&ipmi_bmc_ida, id);
}
static void
cleanup_bmc_device(struct kref *ref)
{
struct bmc_device *bmc = container_of(ref, struct bmc_device, usecount);
platform_device_unregister(&bmc->pdev);
/*
* Remove the platform device in a work queue to avoid issues
* with removing the device attributes while reading a device
* attribute.
*/
schedule_work(&bmc->remove_work);
}
static void ipmi_bmc_unregister(ipmi_smi_t intf)
/*
* Must be called with intf->bmc_reg_mutex held.
*/
static void __ipmi_bmc_unregister(ipmi_smi_t intf)
{
struct bmc_device *bmc = intf->bmc;
if (!intf->bmc_registered)
return;
sysfs_remove_link(&intf->si_dev->kobj, "bmc");
if (intf->my_dev_name) {
sysfs_remove_link(&bmc->pdev.dev.kobj, intf->my_dev_name);
kfree(intf->my_dev_name);
intf->my_dev_name = NULL;
}
mutex_lock(&ipmidriver_mutex);
mutex_lock(&bmc->dyn_mutex);
list_del(&intf->bmc_link);
mutex_unlock(&bmc->dyn_mutex);
intf->bmc = &intf->tmp_bmc;
kref_put(&bmc->usecount, cleanup_bmc_device);
intf->bmc = NULL;
mutex_unlock(&ipmidriver_mutex);
intf->bmc_registered = false;
}
static int ipmi_bmc_register(ipmi_smi_t intf, int ifnum)
static void ipmi_bmc_unregister(ipmi_smi_t intf)
{
mutex_lock(&intf->bmc_reg_mutex);
__ipmi_bmc_unregister(intf);
mutex_unlock(&intf->bmc_reg_mutex);
}
/*
* Must be called with intf->bmc_reg_mutex held.
*/
static int __ipmi_bmc_register(ipmi_smi_t intf,
struct ipmi_device_id *id,
bool guid_set, guid_t *guid, int intf_num)
{
int rv;
struct bmc_device *bmc = intf->bmc;
struct bmc_device *bmc;
struct bmc_device *old_bmc;
mutex_lock(&ipmidriver_mutex);
/*
* platform_device_register() can cause bmc_reg_mutex to
* be claimed because of the is_visible functions of
* the attributes. Eliminate possible recursion and
* release the lock.
*/
intf->in_bmc_register = true;
mutex_unlock(&intf->bmc_reg_mutex);
/*
* Try to find if there is an bmc_device struct
* representing the interfaced BMC already
*/
if (bmc->guid_set)
old_bmc = ipmi_find_bmc_guid(&ipmidriver.driver, bmc->guid);
mutex_lock(&ipmidriver_mutex);
if (guid_set)
old_bmc = ipmi_find_bmc_guid(&ipmidriver.driver, guid);
else
old_bmc = ipmi_find_bmc_prod_dev_id(&ipmidriver.driver,
bmc->id.product_id,
bmc->id.device_id);
id->product_id,
id->device_id);
/*
* If there is already an bmc_device, free the new one,
* otherwise register the new BMC device
*/
if (old_bmc) {
kfree(bmc);
intf->bmc = old_bmc;
bmc = old_bmc;
/*
* Note: old_bmc already has usecount incremented by
* the BMC find functions.
*/
intf->bmc = old_bmc;
mutex_lock(&bmc->dyn_mutex);
list_add_tail(&intf->bmc_link, &bmc->intfs);
mutex_unlock(&bmc->dyn_mutex);
kref_get(&bmc->usecount);
mutex_unlock(&ipmidriver_mutex);
printk(KERN_INFO
dev_info(intf->si_dev,
"ipmi: interfacing existing BMC (man_id: 0x%6.6x,"
" prod_id: 0x%4.4x, dev_id: 0x%2.2x)\n",
bmc->id.manufacturer_id,
bmc->id.product_id,
bmc->id.device_id);
} else {
unsigned char orig_dev_id = bmc->id.device_id;
int warn_printed = 0;
bmc = kzalloc(sizeof(*bmc), GFP_KERNEL);
if (!bmc) {
rv = -ENOMEM;
goto out;
}
INIT_LIST_HEAD(&bmc->intfs);
mutex_init(&bmc->dyn_mutex);
INIT_WORK(&bmc->remove_work, cleanup_bmc_work);
snprintf(bmc->name, sizeof(bmc->name),
"ipmi_bmc.%4.4x", bmc->id.product_id);
bmc->pdev.name = bmc->name;
bmc->id = *id;
bmc->dyn_id_set = 1;
bmc->dyn_guid_set = guid_set;
bmc->guid = *guid;
bmc->dyn_id_expiry = jiffies + IPMI_DYN_DEV_ID_EXPIRY;
while (ipmi_find_bmc_prod_dev_id(&ipmidriver.driver,
bmc->id.product_id,
bmc->id.device_id)) {
if (!warn_printed) {
printk(KERN_WARNING PFX
"This machine has two different BMCs"
" with the same product id and device"
" id. This is an error in the"
" firmware, but incrementing the"
" device id to work around the problem."
" Prod ID = 0x%x, Dev ID = 0x%x\n",
bmc->id.product_id, bmc->id.device_id);
warn_printed = 1;
}
bmc->id.device_id++; /* Wraps at 255 */
if (bmc->id.device_id == orig_dev_id) {
printk(KERN_ERR PFX
"Out of device ids!\n");
break;
}
}
bmc->pdev.name = "ipmi_bmc";
rv = ida_simple_get(&ipmi_bmc_ida, 0, 0, GFP_KERNEL);
if (rv < 0)
goto out;
bmc->pdev.dev.driver = &ipmidriver.driver;
bmc->pdev.id = bmc->id.device_id;
bmc->pdev.id = rv;
bmc->pdev.dev.release = release_bmc_device;
bmc->pdev.dev.type = &bmc_device_type;
kref_init(&bmc->usecount);
intf->bmc = bmc;
mutex_lock(&bmc->dyn_mutex);
list_add_tail(&intf->bmc_link, &bmc->intfs);
mutex_unlock(&bmc->dyn_mutex);
rv = platform_device_register(&bmc->pdev);
mutex_unlock(&ipmidriver_mutex);
if (rv) {
put_device(&bmc->pdev.dev);
printk(KERN_ERR
"ipmi_msghandler:"
" Unable to register bmc device: %d\n",
dev_err(intf->si_dev,
PFX " Unable to register bmc device: %d\n",
rv);
/*
* Don't go to out_err, you can only do that if
* the device is registered already.
*/
return rv;
goto out_list_del;
}
dev_info(intf->si_dev, "Found new BMC (man_id: 0x%6.6x, "
"prod_id: 0x%4.4x, dev_id: 0x%2.2x)\n",
dev_info(intf->si_dev,
"Found new BMC (man_id: 0x%6.6x, prod_id: 0x%4.4x, dev_id: 0x%2.2x)\n",
bmc->id.manufacturer_id,
bmc->id.product_id,
bmc->id.device_id);
......@@ -2543,19 +3039,19 @@ static int ipmi_bmc_register(ipmi_smi_t intf, int ifnum)
*/
rv = sysfs_create_link(&intf->si_dev->kobj, &bmc->pdev.dev.kobj, "bmc");
if (rv) {
printk(KERN_ERR
"ipmi_msghandler: Unable to create bmc symlink: %d\n",
rv);
goto out_err;
dev_err(intf->si_dev,
PFX "Unable to create bmc symlink: %d\n", rv);
goto out_put_bmc;
}
intf->my_dev_name = kasprintf(GFP_KERNEL, "ipmi%d", ifnum);
if (intf_num == -1)
intf_num = intf->intf_num;
intf->my_dev_name = kasprintf(GFP_KERNEL, "ipmi%d", intf_num);
if (!intf->my_dev_name) {
rv = -ENOMEM;
printk(KERN_ERR
"ipmi_msghandler: allocate link from BMC: %d\n",
rv);
goto out_err;
dev_err(intf->si_dev,
PFX "Unable to allocate link from BMC: %d\n", rv);
goto out_unlink1;
}
rv = sysfs_create_link(&bmc->pdev.dev.kobj, &intf->si_dev->kobj,
......@@ -2563,18 +3059,42 @@ static int ipmi_bmc_register(ipmi_smi_t intf, int ifnum)
if (rv) {
kfree(intf->my_dev_name);
intf->my_dev_name = NULL;
printk(KERN_ERR
"ipmi_msghandler:"
" Unable to create symlink to bmc: %d\n",
rv);
goto out_err;
dev_err(intf->si_dev,
PFX "Unable to create symlink to bmc: %d\n", rv);
goto out_free_my_dev_name;
}
return 0;
intf->bmc_registered = true;
out_err:
ipmi_bmc_unregister(intf);
out:
mutex_unlock(&ipmidriver_mutex);
mutex_lock(&intf->bmc_reg_mutex);
intf->in_bmc_register = false;
return rv;
out_free_my_dev_name:
kfree(intf->my_dev_name);
intf->my_dev_name = NULL;
out_unlink1:
sysfs_remove_link(&intf->si_dev->kobj, "bmc");
out_put_bmc:
mutex_lock(&bmc->dyn_mutex);
list_del(&intf->bmc_link);
mutex_unlock(&bmc->dyn_mutex);
intf->bmc = &intf->tmp_bmc;
kref_put(&bmc->usecount, cleanup_bmc_device);
goto out;
out_list_del:
mutex_lock(&bmc->dyn_mutex);
list_del(&intf->bmc_link);
mutex_unlock(&bmc->dyn_mutex);
intf->bmc = &intf->tmp_bmc;
put_device(&bmc->pdev.dev);
goto out;
}
static int
......@@ -2600,14 +3120,15 @@ send_guid_cmd(ipmi_smi_t intf, int chan)
NULL,
NULL,
0,
intf->channels[0].address,
intf->channels[0].lun,
intf->addrinfo[0].address,
intf->addrinfo[0].lun,
-1, 0);
}
static void
guid_handler(ipmi_smi_t intf, struct ipmi_recv_msg *msg)
static void guid_handler(ipmi_smi_t intf, struct ipmi_recv_msg *msg)
{
struct bmc_device *bmc = intf->bmc;
if ((msg->addr.addr_type != IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
|| (msg->msg.netfn != IPMI_NETFN_APP_RESPONSE)
|| (msg->msg.cmd != IPMI_GET_DEVICE_GUID_CMD))
......@@ -2616,38 +3137,46 @@ guid_handler(ipmi_smi_t intf, struct ipmi_recv_msg *msg)
if (msg->msg.data[0] != 0) {
/* Error from getting the GUID, the BMC doesn't have one. */
intf->bmc->guid_set = 0;
bmc->dyn_guid_set = 0;
goto out;
}
if (msg->msg.data_len < 17) {
intf->bmc->guid_set = 0;
printk(KERN_WARNING PFX
"guid_handler: The GUID response from the BMC was too"
" short, it was %d but should have been 17. Assuming"
" GUID is not available.\n",
bmc->dyn_guid_set = 0;
dev_warn(intf->si_dev,
PFX "The GUID response from the BMC was too short, it was %d but should have been 17. Assuming GUID is not available.\n",
msg->msg.data_len);
goto out;
}
memcpy(intf->bmc->guid, msg->msg.data, 16);
intf->bmc->guid_set = 1;
memcpy(bmc->fetch_guid.b, msg->msg.data + 1, 16);
/*
* Make sure the guid data is available before setting
* dyn_guid_set.
*/
smp_wmb();
bmc->dyn_guid_set = 1;
out:
wake_up(&intf->waitq);
}
static void
get_guid(ipmi_smi_t intf)
static void __get_guid(ipmi_smi_t intf)
{
int rv;
struct bmc_device *bmc = intf->bmc;
intf->bmc->guid_set = 0x2;
bmc->dyn_guid_set = 2;
intf->null_user_handler = guid_handler;
rv = send_guid_cmd(intf, 0);
if (rv)
/* Send failed, no GUID available. */
intf->bmc->guid_set = 0;
wait_event(intf->waitq, intf->bmc->guid_set != 2);
bmc->dyn_guid_set = 0;
wait_event(intf->waitq, bmc->dyn_guid_set != 2);
/* dyn_guid_set makes the guid data available. */
smp_rmb();
intf->null_user_handler = NULL;
}
......@@ -2676,8 +3205,8 @@ send_channel_info_cmd(ipmi_smi_t intf, int chan)
NULL,
NULL,
0,
intf->channels[0].address,
intf->channels[0].lun,
intf->addrinfo[0].address,
intf->addrinfo[0].lun,
-1, 0);
}
......@@ -2685,7 +3214,9 @@ static void
channel_handler(ipmi_smi_t intf, struct ipmi_recv_msg *msg)
{
int rv = 0;
int chan;
int ch;
unsigned int set = intf->curr_working_cset;
struct ipmi_channel *chans;
if ((msg->addr.addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
&& (msg->msg.netfn == IPMI_NETFN_APP_RESPONSE)
......@@ -2701,12 +3232,13 @@ channel_handler(ipmi_smi_t intf, struct ipmi_recv_msg *msg)
* assume it has one IPMB at channel
* zero.
*/
intf->channels[0].medium
intf->wchannels[set].c[0].medium
= IPMI_CHANNEL_MEDIUM_IPMB;
intf->channels[0].protocol
intf->wchannels[set].c[0].protocol
= IPMI_CHANNEL_PROTOCOL_IPMB;
intf->curr_channel = IPMI_MAX_CHANNELS;
intf->channel_list = intf->wchannels + set;
intf->channels_ready = true;
wake_up(&intf->waitq);
goto out;
}
......@@ -2716,24 +3248,31 @@ channel_handler(ipmi_smi_t intf, struct ipmi_recv_msg *msg)
/* Message not big enough, just go on. */
goto next_channel;
}
chan = intf->curr_channel;
intf->channels[chan].medium = msg->msg.data[2] & 0x7f;
intf->channels[chan].protocol = msg->msg.data[3] & 0x1f;
ch = intf->curr_channel;
chans = intf->wchannels[set].c;
chans[ch].medium = msg->msg.data[2] & 0x7f;
chans[ch].protocol = msg->msg.data[3] & 0x1f;
next_channel:
intf->curr_channel++;
if (intf->curr_channel >= IPMI_MAX_CHANNELS)
if (intf->curr_channel >= IPMI_MAX_CHANNELS) {
intf->channel_list = intf->wchannels + set;
intf->channels_ready = true;
wake_up(&intf->waitq);
else
} else {
intf->channel_list = intf->wchannels + set;
intf->channels_ready = true;
rv = send_channel_info_cmd(intf, intf->curr_channel);
}
if (rv) {
/* Got an error somehow, just give up. */
printk(KERN_WARNING PFX
"Error sending channel information for channel"
" %d: %d\n", intf->curr_channel, rv);
dev_warn(intf->si_dev,
PFX "Error sending channel information for channel %d: %d\n",
intf->curr_channel, rv);
intf->curr_channel = IPMI_MAX_CHANNELS;
intf->channel_list = intf->wchannels + set;
intf->channels_ready = true;
wake_up(&intf->waitq);
}
}
......@@ -2741,6 +3280,53 @@ channel_handler(ipmi_smi_t intf, struct ipmi_recv_msg *msg)
return;
}
/*
* Must be holding intf->bmc_reg_mutex to call this.
*/
static int __scan_channels(ipmi_smi_t intf, struct ipmi_device_id *id)
{
int rv;
if (ipmi_version_major(id) > 1
|| (ipmi_version_major(id) == 1
&& ipmi_version_minor(id) >= 5)) {
unsigned int set;
/*
* Start scanning the channels to see what is
* available.
*/
set = !intf->curr_working_cset;
intf->curr_working_cset = set;
memset(&intf->wchannels[set], 0,
sizeof(struct ipmi_channel_set));
intf->null_user_handler = channel_handler;
intf->curr_channel = 0;
rv = send_channel_info_cmd(intf, 0);
if (rv) {
dev_warn(intf->si_dev,
"Error sending channel information for channel 0, %d\n",
rv);
return -EIO;
}
/* Wait for the channel info to be read. */
wait_event(intf->waitq, intf->channels_ready);
intf->null_user_handler = NULL;
} else {
unsigned int set = intf->curr_working_cset;
/* Assume a single IPMB channel at zero. */
intf->wchannels[set].c[0].medium = IPMI_CHANNEL_MEDIUM_IPMB;
intf->wchannels[set].c[0].protocol = IPMI_CHANNEL_PROTOCOL_IPMB;
intf->channel_list = intf->wchannels + set;
intf->channels_ready = true;
}
return 0;
}
static void ipmi_poll(ipmi_smi_t intf)
{
if (intf->handlers->poll)
......@@ -2755,9 +3341,18 @@ void ipmi_poll_interface(ipmi_user_t user)
}
EXPORT_SYMBOL(ipmi_poll_interface);
static void redo_bmc_reg(struct work_struct *work)
{
ipmi_smi_t intf = container_of(work, struct ipmi_smi, bmc_reg_work);
if (!intf->in_shutdown)
bmc_get_device_id(intf, NULL, NULL, NULL, NULL);
kref_put(&intf->refcount, intf_free);
}
int ipmi_register_smi(const struct ipmi_smi_handlers *handlers,
void *send_info,
struct ipmi_device_id *device_id,
struct device *si_dev,
unsigned char slave_addr)
{
......@@ -2766,6 +3361,7 @@ int ipmi_register_smi(const struct ipmi_smi_handlers *handlers,
ipmi_smi_t intf;
ipmi_smi_t tintf;
struct list_head *link;
struct ipmi_device_id id;
/*
* Make sure the driver is actually initialized, this handles
......@@ -2787,24 +3383,21 @@ int ipmi_register_smi(const struct ipmi_smi_handlers *handlers,
if (!intf)
return -ENOMEM;
intf->ipmi_version_major = ipmi_version_major(device_id);
intf->ipmi_version_minor = ipmi_version_minor(device_id);
intf->bmc = kzalloc(sizeof(*intf->bmc), GFP_KERNEL);
if (!intf->bmc) {
kfree(intf);
return -ENOMEM;
}
intf->bmc = &intf->tmp_bmc;
INIT_LIST_HEAD(&intf->bmc->intfs);
mutex_init(&intf->bmc->dyn_mutex);
INIT_LIST_HEAD(&intf->bmc_link);
mutex_init(&intf->bmc_reg_mutex);
intf->intf_num = -1; /* Mark it invalid for now. */
kref_init(&intf->refcount);
intf->bmc->id = *device_id;
INIT_WORK(&intf->bmc_reg_work, redo_bmc_reg);
intf->si_dev = si_dev;
for (j = 0; j < IPMI_MAX_CHANNELS; j++) {
intf->channels[j].address = IPMI_BMC_SLAVE_ADDR;
intf->channels[j].lun = 2;
intf->addrinfo[j].address = IPMI_BMC_SLAVE_ADDR;
intf->addrinfo[j].lun = 2;
}
if (slave_addr != 0)
intf->channels[0].address = slave_addr;
intf->addrinfo[0].address = slave_addr;
INIT_LIST_HEAD(&intf->users);
intf->handlers = handlers;
intf->send_info = send_info;
......@@ -2814,7 +3407,7 @@ int ipmi_register_smi(const struct ipmi_smi_handlers *handlers,
intf->seq_table[j].seqid = 0;
}
intf->curr_seq = 0;
#ifdef CONFIG_PROC_FS
#ifdef CONFIG_IPMI_PROC_INTERFACE
mutex_init(&intf->proc_entry_lock);
#endif
spin_lock_init(&intf->waiting_rcv_msgs_lock);
......@@ -2838,7 +3431,9 @@ int ipmi_register_smi(const struct ipmi_smi_handlers *handlers,
for (i = 0; i < IPMI_NUM_STATS; i++)
atomic_set(&intf->stats[i], 0);
#ifdef CONFIG_IPMI_PROC_INTERFACE
intf->proc_dir = NULL;
#endif
mutex_lock(&smi_watchers_mutex);
mutex_lock(&ipmi_interfaces_mutex);
......@@ -2862,45 +3457,29 @@ int ipmi_register_smi(const struct ipmi_smi_handlers *handlers,
if (rv)
goto out;
get_guid(intf);
if ((intf->ipmi_version_major > 1)
|| ((intf->ipmi_version_major == 1)
&& (intf->ipmi_version_minor >= 5))) {
/*
* Start scanning the channels to see what is
* available.
*/
intf->null_user_handler = channel_handler;
intf->curr_channel = 0;
rv = send_channel_info_cmd(intf, 0);
rv = __bmc_get_device_id(intf, NULL, &id, NULL, NULL, i);
if (rv) {
printk(KERN_WARNING PFX
"Error sending channel information for channel"
" 0, %d\n", rv);
dev_err(si_dev, "Unable to get the device id: %d\n", rv);
goto out;
}
/* Wait for the channel info to be read. */
wait_event(intf->waitq,
intf->curr_channel >= IPMI_MAX_CHANNELS);
intf->null_user_handler = NULL;
} else {
/* Assume a single IPMB channel at zero. */
intf->channels[0].medium = IPMI_CHANNEL_MEDIUM_IPMB;
intf->channels[0].protocol = IPMI_CHANNEL_PROTOCOL_IPMB;
intf->curr_channel = IPMI_MAX_CHANNELS;
}
rv = ipmi_bmc_register(intf, i);
mutex_lock(&intf->bmc_reg_mutex);
rv = __scan_channels(intf, &id);
mutex_unlock(&intf->bmc_reg_mutex);
if (rv)
goto out;
if (rv == 0)
#ifdef CONFIG_IPMI_PROC_INTERFACE
rv = add_proc_entries(intf, i);
#endif
out:
if (rv) {
ipmi_bmc_unregister(intf);
#ifdef CONFIG_IPMI_PROC_INTERFACE
if (intf->proc_dir)
remove_proc_entries(intf);
#endif
intf->handlers = NULL;
list_del_rcu(&intf->link);
mutex_unlock(&ipmi_interfaces_mutex);
......@@ -3005,7 +3584,9 @@ int ipmi_unregister_smi(ipmi_smi_t intf)
intf->handlers = NULL;
mutex_unlock(&ipmi_interfaces_mutex);
#ifdef CONFIG_IPMI_PROC_INTERFACE
remove_proc_entries(intf);
#endif
ipmi_bmc_unregister(intf);
/*
......@@ -3130,7 +3711,7 @@ static int handle_ipmb_get_msg_cmd(ipmi_smi_t intf,
msg->data[3] = msg->rsp[6];
msg->data[4] = ((netfn + 1) << 2) | (msg->rsp[7] & 0x3);
msg->data[5] = ipmb_checksum(&(msg->data[3]), 2);
msg->data[6] = intf->channels[msg->rsp[3] & 0xf].address;
msg->data[6] = intf->addrinfo[msg->rsp[3] & 0xf].address;
/* rqseq/lun */
msg->data[7] = (msg->rsp[7] & 0xfc) | (msg->rsp[4] & 0x3);
msg->data[8] = msg->rsp[8]; /* cmd */
......@@ -3584,8 +4165,8 @@ static int handle_read_event_rsp(ipmi_smi_t intf,
* There's too many things in the queue, discard this
* message.
*/
printk(KERN_WARNING PFX "Event queue full, discarding"
" incoming events\n");
dev_warn(intf->si_dev,
PFX "Event queue full, discarding incoming events\n");
intf->event_msg_printed = 1;
}
......@@ -3603,11 +4184,8 @@ static int handle_bmc_rsp(ipmi_smi_t intf,
recv_msg = (struct ipmi_recv_msg *) msg->user_data;
if (recv_msg == NULL) {
printk(KERN_WARNING
"IPMI message received with no owner. This\n"
"could be because of a malformed message, or\n"
"because of a hardware error. Contact your\n"
"hardware vender for assistance\n");
dev_warn(intf->si_dev,
"IPMI message received with no owner. This could be because of a malformed message, or because of a hardware error. Contact your hardware vender for assistance\n");
return 0;
}
......@@ -3661,8 +4239,8 @@ static int handle_one_recv_msg(ipmi_smi_t intf,
#endif
if (msg->rsp_size < 2) {
/* Message is too small to be correct. */
printk(KERN_WARNING PFX "BMC returned to small a message"
" for netfn %x cmd %x, got %d bytes\n",
dev_warn(intf->si_dev,
PFX "BMC returned to small a message for netfn %x cmd %x, got %d bytes\n",
(msg->data[0] >> 2) | 1, msg->data[1], msg->rsp_size);
/* Generate an error response for the message. */
......@@ -3676,8 +4254,8 @@ static int handle_one_recv_msg(ipmi_smi_t intf,
* The NetFN and Command in the response is not even
* marginally correct.
*/
printk(KERN_WARNING PFX "BMC returned incorrect response,"
" expected netfn %x cmd %x, got netfn %x cmd %x\n",
dev_warn(intf->si_dev,
PFX "BMC returned incorrect response, expected netfn %x cmd %x, got netfn %x cmd %x\n",
(msg->data[0] >> 2) | 1, msg->data[1],
msg->rsp[0] >> 2, msg->rsp[1]);
......@@ -3721,6 +4299,8 @@ static int handle_one_recv_msg(ipmi_smi_t intf,
deliver_response(recv_msg);
} else if ((msg->rsp[0] == ((IPMI_NETFN_APP_REQUEST|1) << 2))
&& (msg->rsp[1] == IPMI_GET_MSG_CMD)) {
struct ipmi_channel *chans;
/* It's from the receive queue. */
chan = msg->rsp[3] & 0xf;
if (chan >= IPMI_MAX_CHANNELS) {
......@@ -3735,12 +4315,14 @@ static int handle_one_recv_msg(ipmi_smi_t intf,
* equal to or greater than IPMI_MAX_CHANNELS when all the
* channels for this interface have been initialized.
*/
if (intf->curr_channel < IPMI_MAX_CHANNELS) {
if (!intf->channels_ready) {
requeue = 0; /* Throw the message away */
goto out;
}
switch (intf->channels[chan].medium) {
chans = READ_ONCE(intf->channel_list)->c;
switch (chans[chan].medium) {
case IPMI_CHANNEL_MEDIUM_IPMB:
if (msg->rsp[4] & 0x04) {
/*
......@@ -3777,9 +4359,8 @@ static int handle_one_recv_msg(ipmi_smi_t intf,
default:
/* Check for OEM Channels. Clients had better
register for these commands. */
if ((intf->channels[chan].medium
>= IPMI_CHANNEL_MEDIUM_OEM_MIN)
&& (intf->channels[chan].medium
if ((chans[chan].medium >= IPMI_CHANNEL_MEDIUM_OEM_MIN)
&& (chans[chan].medium
<= IPMI_CHANNEL_MEDIUM_OEM_MAX)) {
requeue = handle_oem_get_msg_cmd(intf, msg);
} else {
......@@ -3941,15 +4522,14 @@ void ipmi_smi_msg_received(ipmi_smi_t intf,
&& (msg->rsp[2] != IPMI_LOST_ARBITRATION_ERR)
&& (msg->rsp[2] != IPMI_BUS_ERR)
&& (msg->rsp[2] != IPMI_NAK_ON_WRITE_ERR)) {
int chan = msg->rsp[3] & 0xf;
int ch = msg->rsp[3] & 0xf;
struct ipmi_channel *chans;
/* Got an error sending the message, handle it. */
if (chan >= IPMI_MAX_CHANNELS)
; /* This shouldn't happen */
else if ((intf->channels[chan].medium
== IPMI_CHANNEL_MEDIUM_8023LAN)
|| (intf->channels[chan].medium
== IPMI_CHANNEL_MEDIUM_ASYNC))
chans = READ_ONCE(intf->channel_list)->c;
if ((chans[ch].medium == IPMI_CHANNEL_MEDIUM_8023LAN)
|| (chans[ch].medium == IPMI_CHANNEL_MEDIUM_ASYNC))
ipmi_inc_stat(intf, sent_lan_command_errs);
else
ipmi_inc_stat(intf, sent_ipmb_command_errs);
......@@ -4030,7 +4610,8 @@ smi_from_recv_msg(ipmi_smi_t intf, struct ipmi_recv_msg *recv_msg,
}
static void check_msg_timeout(ipmi_smi_t intf, struct seq_table *ent,
struct list_head *timeouts, long timeout_period,
struct list_head *timeouts,
unsigned long timeout_period,
int slot, unsigned long *flags,
unsigned int *waiting_msgs)
{
......@@ -4043,8 +4624,8 @@ static void check_msg_timeout(ipmi_smi_t intf, struct seq_table *ent,
if (!ent->inuse)
return;
if (timeout_period < ent->timeout) {
ent->timeout -= timeout_period;
if (ent->timeout > 0) {
(*waiting_msgs)++;
return;
}
......@@ -4110,7 +4691,8 @@ static void check_msg_timeout(ipmi_smi_t intf, struct seq_table *ent,
}
}
static unsigned int ipmi_timeout_handler(ipmi_smi_t intf, long timeout_period)
static unsigned int ipmi_timeout_handler(ipmi_smi_t intf,
unsigned long timeout_period)
{
struct list_head timeouts;
struct ipmi_recv_msg *msg, *msg2;
......@@ -4118,6 +4700,14 @@ static unsigned int ipmi_timeout_handler(ipmi_smi_t intf, long timeout_period)
int i;
unsigned int waiting_msgs = 0;
if (!intf->bmc_registered) {
kref_get(&intf->refcount);
if (!schedule_work(&intf->bmc_reg_work)) {
kref_put(&intf->refcount, intf_free);
waiting_msgs++;
}
}
/*
* Go through the seq table and find any messages that
* have timed out, putting them in the timeouts
......@@ -4269,8 +4859,6 @@ void ipmi_free_recv_msg(struct ipmi_recv_msg *msg)
}
EXPORT_SYMBOL(ipmi_free_recv_msg);
#ifdef CONFIG_IPMI_PANIC_EVENT
static atomic_t panic_done_count = ATOMIC_INIT(0);
static void dummy_smi_done_handler(struct ipmi_smi_msg *msg)
......@@ -4306,8 +4894,8 @@ static void ipmi_panic_request_and_wait(ipmi_smi_t intf,
&smi_msg,
&recv_msg,
0,
intf->channels[0].address,
intf->channels[0].lun,
intf->addrinfo[0].address,
intf->addrinfo[0].lun,
0, 1); /* Don't retry, and don't wait. */
if (rv)
atomic_sub(2, &panic_done_count);
......@@ -4318,7 +4906,6 @@ static void ipmi_panic_request_and_wait(ipmi_smi_t intf,
ipmi_poll(intf);
}
#ifdef CONFIG_IPMI_PANIC_STRING
static void event_receiver_fetcher(ipmi_smi_t intf, struct ipmi_recv_msg *msg)
{
if ((msg->addr.addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
......@@ -4345,7 +4932,6 @@ static void device_id_fetcher(ipmi_smi_t intf, struct ipmi_recv_msg *msg)
intf->local_event_generator = (msg->msg.data[6] >> 5) & 1;
}
}
#endif
static void send_panic_events(char *str)
{
......@@ -4355,6 +4941,9 @@ static void send_panic_events(char *str)
struct ipmi_system_interface_addr *si;
struct ipmi_addr addr;
if (ipmi_send_panic_event == IPMI_SEND_PANIC_EVENT_NONE)
return;
si = (struct ipmi_system_interface_addr *) &addr;
si->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
si->channel = IPMI_BMC_CHANNEL;
......@@ -4383,20 +4972,19 @@ static void send_panic_events(char *str)
/* For every registered interface, send the event. */
list_for_each_entry_rcu(intf, &ipmi_interfaces, link) {
if (!intf->handlers)
/* Interface is not ready. */
if (!intf->handlers || !intf->handlers->poll)
/* Interface is not ready or can't run at panic time. */
continue;
/* Send the event announcing the panic. */
ipmi_panic_request_and_wait(intf, &addr, &msg);
}
#ifdef CONFIG_IPMI_PANIC_STRING
/*
* On every interface, dump a bunch of OEM event holding the
* string.
*/
if (!str)
if (ipmi_send_panic_event != IPMI_SEND_PANIC_EVENT_STRING || !str)
return;
/* For every registered interface, send the event. */
......@@ -4456,7 +5044,7 @@ static void send_panic_events(char *str)
*/
if (((intf->event_receiver & 1) == 0)
&& (intf->event_receiver != 0)
&& (intf->event_receiver != intf->channels[0].address)) {
&& (intf->event_receiver != intf->addrinfo[0].address)) {
/*
* The event receiver is valid, send an IPMB
* message.
......@@ -4493,7 +5081,7 @@ static void send_panic_events(char *str)
data[0] = 0;
data[1] = 0;
data[2] = 0xf0; /* OEM event without timestamp. */
data[3] = intf->channels[0].address;
data[3] = intf->addrinfo[0].address;
data[4] = j++; /* sequence # */
/*
* Always give 11 bytes, so strncpy will fill
......@@ -4505,9 +5093,7 @@ static void send_panic_events(char *str)
ipmi_panic_request_and_wait(intf, &addr, &msg);
}
}
#endif /* CONFIG_IPMI_PANIC_STRING */
}
#endif /* CONFIG_IPMI_PANIC_EVENT */
static int has_panicked;
......@@ -4545,12 +5131,12 @@ static int panic_event(struct notifier_block *this,
spin_unlock(&intf->waiting_rcv_msgs_lock);
intf->run_to_completion = 1;
intf->handlers->set_run_to_completion(intf->send_info, 1);
if (intf->handlers->set_run_to_completion)
intf->handlers->set_run_to_completion(intf->send_info,
1);
}
#ifdef CONFIG_IPMI_PANIC_EVENT
send_panic_events(ptr);
#endif
return NOTIFY_DONE;
}
......@@ -4570,22 +5156,21 @@ static int ipmi_init_msghandler(void)
rv = driver_register(&ipmidriver.driver);
if (rv) {
printk(KERN_ERR PFX "Could not register IPMI driver\n");
pr_err(PFX "Could not register IPMI driver\n");
return rv;
}
printk(KERN_INFO "ipmi message handler version "
IPMI_DRIVER_VERSION "\n");
pr_info("ipmi message handler version " IPMI_DRIVER_VERSION "\n");
#ifdef CONFIG_PROC_FS
#ifdef CONFIG_IPMI_PROC_INTERFACE
proc_ipmi_root = proc_mkdir("ipmi", NULL);
if (!proc_ipmi_root) {
printk(KERN_ERR PFX "Unable to create IPMI proc dir");
pr_err(PFX "Unable to create IPMI proc dir");
driver_unregister(&ipmidriver.driver);
return -ENOMEM;
}
#endif /* CONFIG_PROC_FS */
#endif /* CONFIG_IPMI_PROC_INTERFACE */
setup_timer(&ipmi_timer, ipmi_timeout, 0);
mod_timer(&ipmi_timer, jiffies + IPMI_TIMEOUT_JIFFIES);
......@@ -4625,9 +5210,9 @@ static void __exit cleanup_ipmi(void)
atomic_inc(&stop_operation);
del_timer_sync(&ipmi_timer);
#ifdef CONFIG_PROC_FS
#ifdef CONFIG_IPMI_PROC_INTERFACE
proc_remove(proc_ipmi_root);
#endif /* CONFIG_PROC_FS */
#endif /* CONFIG_IPMI_PROC_INTERFACE */
driver_unregister(&ipmidriver.driver);
......@@ -4636,12 +5221,10 @@ static void __exit cleanup_ipmi(void)
/* Check for buffer leaks. */
count = atomic_read(&smi_msg_inuse_count);
if (count != 0)
printk(KERN_WARNING PFX "SMI message count %d at exit\n",
count);
pr_warn(PFX "SMI message count %d at exit\n", count);
count = atomic_read(&recv_msg_inuse_count);
if (count != 0)
printk(KERN_WARNING PFX "recv message count %d at exit\n",
count);
pr_warn(PFX "recv message count %d at exit\n", count);
}
module_exit(cleanup_ipmi);
......
......@@ -23,7 +23,6 @@
struct ipmi_smi_powernv {
u64 interface_id;
struct ipmi_device_id ipmi_id;
ipmi_smi_t intf;
unsigned int irq;
......@@ -266,8 +265,7 @@ static int ipmi_powernv_probe(struct platform_device *pdev)
}
/* todo: query actual ipmi_device_id */
rc = ipmi_register_smi(&ipmi_powernv_smi_handlers, ipmi,
&ipmi->ipmi_id, dev, 0);
rc = ipmi_register_smi(&ipmi_powernv_smi_handlers, ipmi, dev, 0);
if (rc) {
dev_warn(dev, "IPMI SMI registration failed (%d)\n", rc);
goto err_free_msg;
......
......@@ -133,7 +133,7 @@ static void receive_handler(struct ipmi_recv_msg *recv_msg, void *handler_data)
complete(comp);
}
static struct ipmi_user_hndl ipmi_poweroff_handler = {
static const struct ipmi_user_hndl ipmi_poweroff_handler = {
.ipmi_recv_hndl = receive_handler
};
......
/*
* ipmi_si.h
*
* Interface from the device-specific interfaces (OF, DMI, ACPI, PCI,
* etc) to the base ipmi system interface code.
*/
#include <linux/interrupt.h>
#include "ipmi_si_sm.h"
#define IPMI_IO_ADDR_SPACE 0
#define IPMI_MEM_ADDR_SPACE 1
#define DEFAULT_REGSPACING 1
#define DEFAULT_REGSIZE 1
#define DEVICE_NAME "ipmi_si"
int ipmi_si_add_smi(struct si_sm_io *io);
irqreturn_t ipmi_si_irq_handler(int irq, void *data);
void ipmi_irq_start_cleanup(struct si_sm_io *io);
int ipmi_std_irq_setup(struct si_sm_io *io);
void ipmi_irq_finish_setup(struct si_sm_io *io);
int ipmi_si_remove_by_dev(struct device *dev);
void ipmi_si_remove_by_data(int addr_space, enum si_type si_type,
unsigned long addr);
int ipmi_si_hardcode_find_bmc(void);
void ipmi_si_platform_init(void);
void ipmi_si_platform_shutdown(void);
extern struct platform_driver ipmi_platform_driver;
#ifdef CONFIG_PCI
void ipmi_si_pci_init(void);
void ipmi_si_pci_shutdown(void);
#else
static inline void ipmi_si_pci_init(void) { }
static inline void ipmi_si_pci_shutdown(void) { }
#endif
#ifdef CONFIG_PARISC
void ipmi_si_parisc_init(void);
void ipmi_si_parisc_shutdown(void);
#else
static inline void ipmi_si_parisc_init(void) { }
static inline void ipmi_si_parisc_shutdown(void) { }
#endif
int ipmi_si_port_setup(struct si_sm_io *io);
int ipmi_si_mem_setup(struct si_sm_io *io);
#include <linux/moduleparam.h>
#include "ipmi_si.h"
#define PFX "ipmi_hardcode: "
/*
* There can be 4 IO ports passed in (with or without IRQs), 4 addresses,
* a default IO port, and 1 ACPI/SPMI address. That sets SI_MAX_DRIVERS.
*/
#define SI_MAX_PARMS 4
static char *si_type[SI_MAX_PARMS];
#define MAX_SI_TYPE_STR 30
static char si_type_str[MAX_SI_TYPE_STR];
static unsigned long addrs[SI_MAX_PARMS];
static unsigned int num_addrs;
static unsigned int ports[SI_MAX_PARMS];
static unsigned int num_ports;
static int irqs[SI_MAX_PARMS];
static unsigned int num_irqs;
static int regspacings[SI_MAX_PARMS];
static unsigned int num_regspacings;
static int regsizes[SI_MAX_PARMS];
static unsigned int num_regsizes;
static int regshifts[SI_MAX_PARMS];
static unsigned int num_regshifts;
static int slave_addrs[SI_MAX_PARMS]; /* Leaving 0 chooses the default value */
static unsigned int num_slave_addrs;
module_param_string(type, si_type_str, MAX_SI_TYPE_STR, 0);
MODULE_PARM_DESC(type, "Defines the type of each interface, each"
" interface separated by commas. The types are 'kcs',"
" 'smic', and 'bt'. For example si_type=kcs,bt will set"
" the first interface to kcs and the second to bt");
module_param_hw_array(addrs, ulong, iomem, &num_addrs, 0);
MODULE_PARM_DESC(addrs, "Sets the memory address of each interface, the"
" addresses separated by commas. Only use if an interface"
" is in memory. Otherwise, set it to zero or leave"
" it blank.");
module_param_hw_array(ports, uint, ioport, &num_ports, 0);
MODULE_PARM_DESC(ports, "Sets the port address of each interface, the"
" addresses separated by commas. Only use if an interface"
" is a port. Otherwise, set it to zero or leave"
" it blank.");
module_param_hw_array(irqs, int, irq, &num_irqs, 0);
MODULE_PARM_DESC(irqs, "Sets the interrupt of each interface, the"
" addresses separated by commas. Only use if an interface"
" has an interrupt. Otherwise, set it to zero or leave"
" it blank.");
module_param_hw_array(regspacings, int, other, &num_regspacings, 0);
MODULE_PARM_DESC(regspacings, "The number of bytes between the start address"
" and each successive register used by the interface. For"
" instance, if the start address is 0xca2 and the spacing"
" is 2, then the second address is at 0xca4. Defaults"
" to 1.");
module_param_hw_array(regsizes, int, other, &num_regsizes, 0);
MODULE_PARM_DESC(regsizes, "The size of the specific IPMI register in bytes."
" This should generally be 1, 2, 4, or 8 for an 8-bit,"
" 16-bit, 32-bit, or 64-bit register. Use this if you"
" the 8-bit IPMI register has to be read from a larger"
" register.");
module_param_hw_array(regshifts, int, other, &num_regshifts, 0);
MODULE_PARM_DESC(regshifts, "The amount to shift the data read from the."
" IPMI register, in bits. For instance, if the data"
" is read from a 32-bit word and the IPMI data is in"
" bit 8-15, then the shift would be 8");
module_param_hw_array(slave_addrs, int, other, &num_slave_addrs, 0);
MODULE_PARM_DESC(slave_addrs, "Set the default IPMB slave address for"
" the controller. Normally this is 0x20, but can be"
" overridden by this parm. This is an array indexed"
" by interface number.");
int ipmi_si_hardcode_find_bmc(void)
{
int ret = -ENODEV;
int i;
struct si_sm_io io;
char *str;
/* Parse out the si_type string into its components. */
str = si_type_str;
if (*str != '\0') {
for (i = 0; (i < SI_MAX_PARMS) && (*str != '\0'); i++) {
si_type[i] = str;
str = strchr(str, ',');
if (str) {
*str = '\0';
str++;
} else {
break;
}
}
}
memset(&io, 0, sizeof(io));
for (i = 0; i < SI_MAX_PARMS; i++) {
if (!ports[i] && !addrs[i])
continue;
io.addr_source = SI_HARDCODED;
pr_info(PFX "probing via hardcoded address\n");
if (!si_type[i] || strcmp(si_type[i], "kcs") == 0) {
io.si_type = SI_KCS;
} else if (strcmp(si_type[i], "smic") == 0) {
io.si_type = SI_SMIC;
} else if (strcmp(si_type[i], "bt") == 0) {
io.si_type = SI_BT;
} else {
pr_warn(PFX "Interface type specified for interface %d, was invalid: %s\n",
i, si_type[i]);
continue;
}
if (ports[i]) {
/* An I/O port */
io.addr_data = ports[i];
io.addr_type = IPMI_IO_ADDR_SPACE;
} else if (addrs[i]) {
/* A memory port */
io.addr_data = addrs[i];
io.addr_type = IPMI_MEM_ADDR_SPACE;
} else {
pr_warn(PFX "Interface type specified for interface %d, but port and address were not set or set to zero.\n",
i);
continue;
}
io.addr = NULL;
io.regspacing = regspacings[i];
if (!io.regspacing)
io.regspacing = DEFAULT_REGSPACING;
io.regsize = regsizes[i];
if (!io.regsize)
io.regsize = DEFAULT_REGSIZE;
io.regshift = regshifts[i];
io.irq = irqs[i];
if (io.irq)
io.irq_setup = ipmi_std_irq_setup;
io.slave_addr = slave_addrs[i];
ret = ipmi_si_add_smi(&io);
}
return ret;
}
/*
* ipmi_si_hotmod.c
*
* Handling for dynamically adding/removing IPMI devices through
* a module parameter (and thus sysfs).
*/
#include <linux/moduleparam.h>
#include <linux/ipmi.h>
#include "ipmi_si.h"
#define PFX "ipmi_hotmod: "
static int hotmod_handler(const char *val, const struct kernel_param *kp);
module_param_call(hotmod, hotmod_handler, NULL, NULL, 0200);
MODULE_PARM_DESC(hotmod, "Add and remove interfaces. See"
" Documentation/IPMI.txt in the kernel sources for the"
" gory details.");
/*
* Parms come in as <op1>[:op2[:op3...]]. ops are:
* add|remove,kcs|bt|smic,mem|i/o,<address>[,<opt1>[,<opt2>[,...]]]
* Options are:
* rsp=<regspacing>
* rsi=<regsize>
* rsh=<regshift>
* irq=<irq>
* ipmb=<ipmb addr>
*/
enum hotmod_op { HM_ADD, HM_REMOVE };
struct hotmod_vals {
const char *name;
const int val;
};
static const struct hotmod_vals hotmod_ops[] = {
{ "add", HM_ADD },
{ "remove", HM_REMOVE },
{ NULL }
};
static const struct hotmod_vals hotmod_si[] = {
{ "kcs", SI_KCS },
{ "smic", SI_SMIC },
{ "bt", SI_BT },
{ NULL }
};
static const struct hotmod_vals hotmod_as[] = {
{ "mem", IPMI_MEM_ADDR_SPACE },
{ "i/o", IPMI_IO_ADDR_SPACE },
{ NULL }
};
static int parse_str(const struct hotmod_vals *v, int *val, char *name,
char **curr)
{
char *s;
int i;
s = strchr(*curr, ',');
if (!s) {
pr_warn(PFX "No hotmod %s given.\n", name);
return -EINVAL;
}
*s = '\0';
s++;
for (i = 0; v[i].name; i++) {
if (strcmp(*curr, v[i].name) == 0) {
*val = v[i].val;
*curr = s;
return 0;
}
}
pr_warn(PFX "Invalid hotmod %s '%s'\n", name, *curr);
return -EINVAL;
}
static int check_hotmod_int_op(const char *curr, const char *option,
const char *name, int *val)
{
char *n;
if (strcmp(curr, name) == 0) {
if (!option) {
pr_warn(PFX "No option given for '%s'\n", curr);
return -EINVAL;
}
*val = simple_strtoul(option, &n, 0);
if ((*n != '\0') || (*option == '\0')) {
pr_warn(PFX "Bad option given for '%s'\n", curr);
return -EINVAL;
}
return 1;
}
return 0;
}
static int hotmod_handler(const char *val, const struct kernel_param *kp)
{
char *str = kstrdup(val, GFP_KERNEL);
int rv;
char *next, *curr, *s, *n, *o;
enum hotmod_op op;
enum si_type si_type;
int addr_space;
unsigned long addr;
int regspacing;
int regsize;
int regshift;
int irq;
int ipmb;
int ival;
int len;
if (!str)
return -ENOMEM;
/* Kill any trailing spaces, as we can get a "\n" from echo. */
len = strlen(str);
ival = len - 1;
while ((ival >= 0) && isspace(str[ival])) {
str[ival] = '\0';
ival--;
}
for (curr = str; curr; curr = next) {
regspacing = 1;
regsize = 1;
regshift = 0;
irq = 0;
ipmb = 0; /* Choose the default if not specified */
next = strchr(curr, ':');
if (next) {
*next = '\0';
next++;
}
rv = parse_str(hotmod_ops, &ival, "operation", &curr);
if (rv)
break;
op = ival;
rv = parse_str(hotmod_si, &ival, "interface type", &curr);
if (rv)
break;
si_type = ival;
rv = parse_str(hotmod_as, &addr_space, "address space", &curr);
if (rv)
break;
s = strchr(curr, ',');
if (s) {
*s = '\0';
s++;
}
addr = simple_strtoul(curr, &n, 0);
if ((*n != '\0') || (*curr == '\0')) {
pr_warn(PFX "Invalid hotmod address '%s'\n", curr);
break;
}
while (s) {
curr = s;
s = strchr(curr, ',');
if (s) {
*s = '\0';
s++;
}
o = strchr(curr, '=');
if (o) {
*o = '\0';
o++;
}
rv = check_hotmod_int_op(curr, o, "rsp", &regspacing);
if (rv < 0)
goto out;
else if (rv)
continue;
rv = check_hotmod_int_op(curr, o, "rsi", &regsize);
if (rv < 0)
goto out;
else if (rv)
continue;
rv = check_hotmod_int_op(curr, o, "rsh", &regshift);
if (rv < 0)
goto out;
else if (rv)
continue;
rv = check_hotmod_int_op(curr, o, "irq", &irq);
if (rv < 0)
goto out;
else if (rv)
continue;
rv = check_hotmod_int_op(curr, o, "ipmb", &ipmb);
if (rv < 0)
goto out;
else if (rv)
continue;
rv = -EINVAL;
pr_warn(PFX "Invalid hotmod option '%s'\n", curr);
goto out;
}
if (op == HM_ADD) {
struct si_sm_io io;
memset(&io, 0, sizeof(io));
io.addr_source = SI_HOTMOD;
io.si_type = si_type;
io.addr_data = addr;
io.addr_type = addr_space;
io.addr = NULL;
io.regspacing = regspacing;
if (!io.regspacing)
io.regspacing = DEFAULT_REGSPACING;
io.regsize = regsize;
if (!io.regsize)
io.regsize = DEFAULT_REGSIZE;
io.regshift = regshift;
io.irq = irq;
if (io.irq)
io.irq_setup = ipmi_std_irq_setup;
io.slave_addr = ipmb;
rv = ipmi_si_add_smi(&io);
if (rv)
goto out;
} else {
ipmi_si_remove_by_data(addr_space, si_type, addr);
}
}
rv = len;
out:
kfree(str);
return rv;
}
......@@ -49,8 +49,6 @@
#include <linux/slab.h>
#include <linux/delay.h>
#include <linux/list.h>
#include <linux/pci.h>
#include <linux/ioport.h>
#include <linux/notifier.h>
#include <linux/mutex.h>
#include <linux/kthread.h>
......@@ -59,22 +57,9 @@
#include <linux/rcupdate.h>
#include <linux/ipmi.h>
#include <linux/ipmi_smi.h>
#include <asm/io.h>
#include "ipmi_si_sm.h"
#include "ipmi_dmi.h"
#include <linux/dmi.h>
#include "ipmi_si.h"
#include <linux/string.h>
#include <linux/ctype.h>
#include <linux/of_device.h>
#include <linux/of_platform.h>
#include <linux/of_address.h>
#include <linux/of_irq.h>
#include <linux/acpi.h>
#ifdef CONFIG_PARISC
#include <asm/hardware.h> /* for register_parisc_driver() stuff */
#include <asm/parisc-device.h>
#endif
#define PFX "ipmi_si: "
......@@ -104,15 +89,9 @@ enum si_intf_state {
#define IPMI_BT_INTMASK_CLEAR_IRQ_BIT 2
#define IPMI_BT_INTMASK_ENABLE_IRQ_BIT 1
enum si_type {
SI_KCS, SI_SMIC, SI_BT
};
static const char * const si_to_str[] = { "kcs", "smic", "bt" };
#define DEVICE_NAME "ipmi_si"
static const char * const si_to_str[] = { "invalid", "kcs", "smic", "bt" };
static struct platform_driver ipmi_driver;
static int initialized;
/*
* Indexes into stats[] in smi_info below.
......@@ -167,7 +146,6 @@ struct smi_info {
ipmi_smi_t intf;
struct si_sm_data *si_sm;
const struct si_sm_handlers *handlers;
enum si_type si_type;
spinlock_t si_lock;
struct ipmi_smi_msg *waiting_msg;
struct ipmi_smi_msg *curr_msg;
......@@ -178,14 +156,6 @@ struct smi_info {
* IPMI
*/
struct si_sm_io io;
int (*io_setup)(struct smi_info *info);
void (*io_cleanup)(struct smi_info *info);
int (*irq_setup)(struct smi_info *info);
void (*irq_cleanup)(struct smi_info *info);
unsigned int io_size;
enum ipmi_addr_src addr_source; /* ACPI, PCI, SMBIOS, hardcode, etc. */
void (*addr_source_cleanup)(struct smi_info *info);
void *addr_source_data;
/*
* Per-OEM handler, called from handle_flags(). Returns 1
......@@ -226,19 +196,6 @@ struct smi_info {
*/
bool run_to_completion;
/* The I/O port of an SI interface. */
int port;
/*
* The space between start addresses of the two ports. For
* instance, if the first port is 0xca2 and the spacing is 4, then
* the second port is 0xca6.
*/
unsigned int spacing;
/* zero if no irq; */
int irq;
/* The timer for this si. */
struct timer_list si_timer;
......@@ -289,26 +246,15 @@ struct smi_info {
/* From the get device id response... */
struct ipmi_device_id device_id;
/* Driver model stuff. */
struct device *dev;
/* Default driver model device. */
struct platform_device *pdev;
/*
* True if we allocated the device, false if it came from
* someplace else (like PCI).
*/
bool dev_registered;
/* Slave address, could be reported from DMI. */
unsigned char slave_addr;
/* Counters and things for the proc filesystem. */
atomic_t stats[SI_NUM_STATS];
struct task_struct *thread;
struct list_head link;
union ipmi_smi_info_union addr_info;
};
#define smi_inc_stat(smi, stat) \
......@@ -316,23 +262,15 @@ struct smi_info {
#define smi_get_stat(smi, stat) \
((unsigned int) atomic_read(&(smi)->stats[SI_STAT_ ## stat]))
#define SI_MAX_PARMS 4
static int force_kipmid[SI_MAX_PARMS];
#define IPMI_MAX_INTFS 4
static int force_kipmid[IPMI_MAX_INTFS];
static int num_force_kipmid;
#ifdef CONFIG_PCI
static bool pci_registered;
#endif
#ifdef CONFIG_PARISC
static bool parisc_registered;
#endif
static unsigned int kipmid_max_busy_us[SI_MAX_PARMS];
static unsigned int kipmid_max_busy_us[IPMI_MAX_INTFS];
static int num_max_busy_us;
static bool unload_when_empty = true;
static int add_smi(struct smi_info *smi);
static int try_smi_init(struct smi_info *smi);
static void cleanup_one_si(struct smi_info *to_clean);
static void cleanup_ipmi_si(void);
......@@ -499,7 +437,7 @@ static void start_getting_events(struct smi_info *smi_info)
*/
static inline bool disable_si_irq(struct smi_info *smi_info, bool start_timer)
{
if ((smi_info->irq) && (!smi_info->interrupt_disabled)) {
if ((smi_info->io.irq) && (!smi_info->interrupt_disabled)) {
smi_info->interrupt_disabled = true;
start_check_enables(smi_info, start_timer);
return true;
......@@ -509,7 +447,7 @@ static inline bool disable_si_irq(struct smi_info *smi_info, bool start_timer)
static inline bool enable_si_irq(struct smi_info *smi_info)
{
if ((smi_info->irq) && (smi_info->interrupt_disabled)) {
if ((smi_info->io.irq) && (smi_info->interrupt_disabled)) {
smi_info->interrupt_disabled = false;
start_check_enables(smi_info, true);
return true;
......@@ -585,13 +523,13 @@ static u8 current_global_enables(struct smi_info *smi_info, u8 base,
if (smi_info->supports_event_msg_buff)
enables |= IPMI_BMC_EVT_MSG_BUFF;
if (((smi_info->irq && !smi_info->interrupt_disabled) ||
if (((smi_info->io.irq && !smi_info->interrupt_disabled) ||
smi_info->cannot_disable_irq) &&
!smi_info->irq_enable_broken)
enables |= IPMI_BMC_RCV_MSG_INTR;
if (smi_info->supports_event_msg_buff &&
smi_info->irq && !smi_info->interrupt_disabled &&
smi_info->io.irq && !smi_info->interrupt_disabled &&
!smi_info->irq_enable_broken)
enables |= IPMI_BMC_EVT_MSG_INTR;
......@@ -673,7 +611,7 @@ static void handle_transaction_done(struct smi_info *smi_info)
smi_info->handlers->get_result(smi_info->si_sm, msg, 3);
if (msg[2] != 0) {
/* Error clearing flags */
dev_warn(smi_info->dev,
dev_warn(smi_info->io.dev,
"Error clearing flags: %2.2x\n", msg[2]);
}
smi_info->si_state = SI_NORMAL;
......@@ -765,15 +703,15 @@ static void handle_transaction_done(struct smi_info *smi_info)
/* We got the flags from the SMI, now handle them. */
smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
if (msg[2] != 0) {
dev_warn(smi_info->dev,
dev_warn(smi_info->io.dev,
"Couldn't get irq info: %x.\n", msg[2]);
dev_warn(smi_info->dev,
dev_warn(smi_info->io.dev,
"Maybe ok, but ipmi might run very slowly.\n");
smi_info->si_state = SI_NORMAL;
break;
}
enables = current_global_enables(smi_info, 0, &irq_on);
if (smi_info->si_type == SI_BT)
if (smi_info->io.si_type == SI_BT)
/* BT has its own interrupt enable bit. */
check_bt_irq(smi_info, irq_on);
if (enables != (msg[3] & GLOBAL_ENABLES_MASK)) {
......@@ -803,7 +741,7 @@ static void handle_transaction_done(struct smi_info *smi_info)
smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
if (msg[2] != 0)
dev_warn(smi_info->dev,
dev_warn(smi_info->io.dev,
"Could not set the global enables: 0x%x.\n",
msg[2]);
......@@ -927,7 +865,7 @@ static enum si_sm_result smi_event_handler(struct smi_info *smi_info,
* asynchronously reset, and may thus get interrupts
* disable and messages disabled.
*/
if (smi_info->supports_event_msg_buff || smi_info->irq) {
if (smi_info->supports_event_msg_buff || smi_info->io.irq) {
start_check_enables(smi_info, true);
} else {
smi_info->curr_msg = alloc_msg_handle_irq(smi_info);
......@@ -1153,8 +1091,6 @@ static void set_need_watch(void *send_info, bool enable)
spin_unlock_irqrestore(&smi_info->si_lock, flags);
}
static int initialized;
static void smi_timeout(unsigned long data)
{
struct smi_info *smi_info = (struct smi_info *) data;
......@@ -1172,7 +1108,7 @@ static void smi_timeout(unsigned long data)
* SI_USEC_PER_JIFFY);
smi_result = smi_event_handler(smi_info, time_diff);
if ((smi_info->irq) && (!smi_info->interrupt_disabled)) {
if ((smi_info->io.irq) && (!smi_info->interrupt_disabled)) {
/* Running with interrupts, only do long timeouts. */
timeout = jiffies + SI_TIMEOUT_JIFFIES;
smi_inc_stat(smi_info, long_timeouts);
......@@ -1199,11 +1135,17 @@ static void smi_timeout(unsigned long data)
spin_unlock_irqrestore(&(smi_info->si_lock), flags);
}
static irqreturn_t si_irq_handler(int irq, void *data)
irqreturn_t ipmi_si_irq_handler(int irq, void *data)
{
struct smi_info *smi_info = data;
unsigned long flags;
if (smi_info->io.si_type == SI_BT)
/* We need to clear the IRQ flag for the BT interface. */
smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG,
IPMI_BT_INTMASK_CLEAR_IRQ_BIT
| IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
spin_lock_irqsave(&(smi_info->si_lock), flags);
smi_inc_stat(smi_info, interrupts);
......@@ -1215,16 +1157,6 @@ static irqreturn_t si_irq_handler(int irq, void *data)
return IRQ_HANDLED;
}
static irqreturn_t si_bt_irq_handler(int irq, void *data)
{
struct smi_info *smi_info = data;
/* We need to clear the IRQ flag for the BT interface. */
smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG,
IPMI_BT_INTMASK_CLEAR_IRQ_BIT
| IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
return si_irq_handler(irq, data);
}
static int smi_start_processing(void *send_info,
ipmi_smi_t intf)
{
......@@ -1238,8 +1170,10 @@ static int smi_start_processing(void *send_info,
smi_mod_timer(new_smi, jiffies + SI_TIMEOUT_JIFFIES);
/* Try to claim any interrupts. */
if (new_smi->irq_setup)
new_smi->irq_setup(new_smi);
if (new_smi->io.irq_setup) {
new_smi->io.irq_handler_data = new_smi;
new_smi->io.irq_setup(&new_smi->io);
}
/*
* Check if the user forcefully enabled the daemon.
......@@ -1250,14 +1184,14 @@ static int smi_start_processing(void *send_info,
* The BT interface is efficient enough to not need a thread,
* and there is no need for a thread if we have interrupts.
*/
else if ((new_smi->si_type != SI_BT) && (!new_smi->irq))
else if ((new_smi->io.si_type != SI_BT) && (!new_smi->io.irq))
enable = 1;
if (enable) {
new_smi->thread = kthread_run(ipmi_thread, new_smi,
"kipmi%d", new_smi->intf_num);
if (IS_ERR(new_smi->thread)) {
dev_notice(new_smi->dev, "Could not start"
dev_notice(new_smi->io.dev, "Could not start"
" kernel thread due to error %ld, only using"
" timers to drive the interface\n",
PTR_ERR(new_smi->thread));
......@@ -1272,10 +1206,10 @@ static int get_smi_info(void *send_info, struct ipmi_smi_info *data)
{
struct smi_info *smi = send_info;
data->addr_src = smi->addr_source;
data->dev = smi->dev;
data->addr_info = smi->addr_info;
get_device(smi->dev);
data->addr_src = smi->io.addr_source;
data->dev = smi->io.dev;
data->addr_info = smi->io.addr_info;
get_device(smi->io.dev);
return 0;
}
......@@ -1301,118 +1235,12 @@ static const struct ipmi_smi_handlers handlers = {
.poll = poll,
};
/*
* There can be 4 IO ports passed in (with or without IRQs), 4 addresses,
* a default IO port, and 1 ACPI/SPMI address. That sets SI_MAX_DRIVERS.
*/
static LIST_HEAD(smi_infos);
static DEFINE_MUTEX(smi_infos_lock);
static int smi_num; /* Used to sequence the SMIs */
#define DEFAULT_REGSPACING 1
#define DEFAULT_REGSIZE 1
#ifdef CONFIG_ACPI
static bool si_tryacpi = true;
#endif
#ifdef CONFIG_DMI
static bool si_trydmi = true;
#endif
static bool si_tryplatform = true;
#ifdef CONFIG_PCI
static bool si_trypci = true;
#endif
static char *si_type[SI_MAX_PARMS];
#define MAX_SI_TYPE_STR 30
static char si_type_str[MAX_SI_TYPE_STR];
static unsigned long addrs[SI_MAX_PARMS];
static unsigned int num_addrs;
static unsigned int ports[SI_MAX_PARMS];
static unsigned int num_ports;
static int irqs[SI_MAX_PARMS];
static unsigned int num_irqs;
static int regspacings[SI_MAX_PARMS];
static unsigned int num_regspacings;
static int regsizes[SI_MAX_PARMS];
static unsigned int num_regsizes;
static int regshifts[SI_MAX_PARMS];
static unsigned int num_regshifts;
static int slave_addrs[SI_MAX_PARMS]; /* Leaving 0 chooses the default value */
static unsigned int num_slave_addrs;
#define IPMI_IO_ADDR_SPACE 0
#define IPMI_MEM_ADDR_SPACE 1
static const char * const addr_space_to_str[] = { "i/o", "mem" };
static int hotmod_handler(const char *val, const struct kernel_param *kp);
module_param_call(hotmod, hotmod_handler, NULL, NULL, 0200);
MODULE_PARM_DESC(hotmod, "Add and remove interfaces. See"
" Documentation/IPMI.txt in the kernel sources for the"
" gory details.");
#ifdef CONFIG_ACPI
module_param_named(tryacpi, si_tryacpi, bool, 0);
MODULE_PARM_DESC(tryacpi, "Setting this to zero will disable the"
" default scan of the interfaces identified via ACPI");
#endif
#ifdef CONFIG_DMI
module_param_named(trydmi, si_trydmi, bool, 0);
MODULE_PARM_DESC(trydmi, "Setting this to zero will disable the"
" default scan of the interfaces identified via DMI");
#endif
module_param_named(tryplatform, si_tryplatform, bool, 0);
MODULE_PARM_DESC(tryplatform, "Setting this to zero will disable the"
" default scan of the interfaces identified via platform"
" interfaces like openfirmware");
#ifdef CONFIG_PCI
module_param_named(trypci, si_trypci, bool, 0);
MODULE_PARM_DESC(trypci, "Setting this to zero will disable the"
" default scan of the interfaces identified via pci");
#endif
module_param_string(type, si_type_str, MAX_SI_TYPE_STR, 0);
MODULE_PARM_DESC(type, "Defines the type of each interface, each"
" interface separated by commas. The types are 'kcs',"
" 'smic', and 'bt'. For example si_type=kcs,bt will set"
" the first interface to kcs and the second to bt");
module_param_hw_array(addrs, ulong, iomem, &num_addrs, 0);
MODULE_PARM_DESC(addrs, "Sets the memory address of each interface, the"
" addresses separated by commas. Only use if an interface"
" is in memory. Otherwise, set it to zero or leave"
" it blank.");
module_param_hw_array(ports, uint, ioport, &num_ports, 0);
MODULE_PARM_DESC(ports, "Sets the port address of each interface, the"
" addresses separated by commas. Only use if an interface"
" is a port. Otherwise, set it to zero or leave"
" it blank.");
module_param_hw_array(irqs, int, irq, &num_irqs, 0);
MODULE_PARM_DESC(irqs, "Sets the interrupt of each interface, the"
" addresses separated by commas. Only use if an interface"
" has an interrupt. Otherwise, set it to zero or leave"
" it blank.");
module_param_hw_array(regspacings, int, other, &num_regspacings, 0);
MODULE_PARM_DESC(regspacings, "The number of bytes between the start address"
" and each successive register used by the interface. For"
" instance, if the start address is 0xca2 and the spacing"
" is 2, then the second address is at 0xca4. Defaults"
" to 1.");
module_param_hw_array(regsizes, int, other, &num_regsizes, 0);
MODULE_PARM_DESC(regsizes, "The size of the specific IPMI register in bytes."
" This should generally be 1, 2, 4, or 8 for an 8-bit,"
" 16-bit, 32-bit, or 64-bit register. Use this if you"
" the 8-bit IPMI register has to be read from a larger"
" register.");
module_param_hw_array(regshifts, int, other, &num_regshifts, 0);
MODULE_PARM_DESC(regshifts, "The amount to shift the data read from the."
" IPMI register, in bits. For instance, if the data"
" is read from a 32-bit word and the IPMI data is in"
" bit 8-15, then the shift would be 8");
module_param_hw_array(slave_addrs, int, other, &num_slave_addrs, 0);
MODULE_PARM_DESC(slave_addrs, "Set the default IPMB slave address for"
" the controller. Normally this is 0x20, but can be"
" overridden by this parm. This is an array indexed"
" by interface number.");
module_param_array(force_kipmid, int, &num_force_kipmid, 0);
MODULE_PARM_DESC(force_kipmid, "Force the kipmi daemon to be enabled (1) or"
" disabled(0). Normally the IPMI driver auto-detects"
......@@ -1427,1639 +1255,243 @@ MODULE_PARM_DESC(kipmid_max_busy_us,
" sleeping. 0 (default) means to wait forever. Set to 100-500"
" if kipmid is using up a lot of CPU time.");
void ipmi_irq_finish_setup(struct si_sm_io *io)
{
if (io->si_type == SI_BT)
/* Enable the interrupt in the BT interface. */
io->outputb(io, IPMI_BT_INTMASK_REG,
IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
}
static void std_irq_cleanup(struct smi_info *info)
void ipmi_irq_start_cleanup(struct si_sm_io *io)
{
if (info->si_type == SI_BT)
if (io->si_type == SI_BT)
/* Disable the interrupt in the BT interface. */
info->io.outputb(&info->io, IPMI_BT_INTMASK_REG, 0);
free_irq(info->irq, info);
io->outputb(io, IPMI_BT_INTMASK_REG, 0);
}
static void std_irq_cleanup(struct si_sm_io *io)
{
ipmi_irq_start_cleanup(io);
free_irq(io->irq, io->irq_handler_data);
}
static int std_irq_setup(struct smi_info *info)
int ipmi_std_irq_setup(struct si_sm_io *io)
{
int rv;
if (!info->irq)
if (!io->irq)
return 0;
if (info->si_type == SI_BT) {
rv = request_irq(info->irq,
si_bt_irq_handler,
IRQF_SHARED,
DEVICE_NAME,
info);
if (!rv)
/* Enable the interrupt in the BT interface. */
info->io.outputb(&info->io, IPMI_BT_INTMASK_REG,
IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
} else
rv = request_irq(info->irq,
si_irq_handler,
rv = request_irq(io->irq,
ipmi_si_irq_handler,
IRQF_SHARED,
DEVICE_NAME,
info);
io->irq_handler_data);
if (rv) {
dev_warn(info->dev, "%s unable to claim interrupt %d,"
dev_warn(io->dev, "%s unable to claim interrupt %d,"
" running polled\n",
DEVICE_NAME, info->irq);
info->irq = 0;
DEVICE_NAME, io->irq);
io->irq = 0;
} else {
info->irq_cleanup = std_irq_cleanup;
dev_info(info->dev, "Using irq %d\n", info->irq);
io->irq_cleanup = std_irq_cleanup;
ipmi_irq_finish_setup(io);
dev_info(io->dev, "Using irq %d\n", io->irq);
}
return rv;
}
static unsigned char port_inb(const struct si_sm_io *io, unsigned int offset)
static int wait_for_msg_done(struct smi_info *smi_info)
{
unsigned int addr = io->addr_data;
return inb(addr + (offset * io->regspacing));
}
enum si_sm_result smi_result;
static void port_outb(const struct si_sm_io *io, unsigned int offset,
unsigned char b)
{
unsigned int addr = io->addr_data;
smi_result = smi_info->handlers->event(smi_info->si_sm, 0);
for (;;) {
if (smi_result == SI_SM_CALL_WITH_DELAY ||
smi_result == SI_SM_CALL_WITH_TICK_DELAY) {
schedule_timeout_uninterruptible(1);
smi_result = smi_info->handlers->event(
smi_info->si_sm, jiffies_to_usecs(1));
} else if (smi_result == SI_SM_CALL_WITHOUT_DELAY) {
smi_result = smi_info->handlers->event(
smi_info->si_sm, 0);
} else
break;
}
if (smi_result == SI_SM_HOSED)
/*
* We couldn't get the state machine to run, so whatever's at
* the port is probably not an IPMI SMI interface.
*/
return -ENODEV;
outb(b, addr + (offset * io->regspacing));
return 0;
}
static unsigned char port_inw(const struct si_sm_io *io, unsigned int offset)
static int try_get_dev_id(struct smi_info *smi_info)
{
unsigned int addr = io->addr_data;
return (inw(addr + (offset * io->regspacing)) >> io->regshift) & 0xff;
}
unsigned char msg[2];
unsigned char *resp;
unsigned long resp_len;
int rv = 0;
static void port_outw(const struct si_sm_io *io, unsigned int offset,
unsigned char b)
{
unsigned int addr = io->addr_data;
resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
if (!resp)
return -ENOMEM;
outw(b << io->regshift, addr + (offset * io->regspacing));
}
/*
* Do a Get Device ID command, since it comes back with some
* useful info.
*/
msg[0] = IPMI_NETFN_APP_REQUEST << 2;
msg[1] = IPMI_GET_DEVICE_ID_CMD;
smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
static unsigned char port_inl(const struct si_sm_io *io, unsigned int offset)
{
unsigned int addr = io->addr_data;
rv = wait_for_msg_done(smi_info);
if (rv)
goto out;
return (inl(addr + (offset * io->regspacing)) >> io->regshift) & 0xff;
}
resp_len = smi_info->handlers->get_result(smi_info->si_sm,
resp, IPMI_MAX_MSG_LENGTH);
static void port_outl(const struct si_sm_io *io, unsigned int offset,
unsigned char b)
{
unsigned int addr = io->addr_data;
/* Check and record info from the get device id, in case we need it. */
rv = ipmi_demangle_device_id(resp[0] >> 2, resp[1],
resp + 2, resp_len - 2, &smi_info->device_id);
outl(b << io->regshift, addr+(offset * io->regspacing));
out:
kfree(resp);
return rv;
}
static void port_cleanup(struct smi_info *info)
static int get_global_enables(struct smi_info *smi_info, u8 *enables)
{
unsigned int addr = info->io.addr_data;
int idx;
unsigned char msg[3];
unsigned char *resp;
unsigned long resp_len;
int rv;
if (addr) {
for (idx = 0; idx < info->io_size; idx++)
release_region(addr + idx * info->io.regspacing,
info->io.regsize);
}
}
resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
if (!resp)
return -ENOMEM;
static int port_setup(struct smi_info *info)
{
unsigned int addr = info->io.addr_data;
int idx;
msg[0] = IPMI_NETFN_APP_REQUEST << 2;
msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
if (!addr)
return -ENODEV;
rv = wait_for_msg_done(smi_info);
if (rv) {
dev_warn(smi_info->io.dev,
"Error getting response from get global enables command: %d\n",
rv);
goto out;
}
info->io_cleanup = port_cleanup;
resp_len = smi_info->handlers->get_result(smi_info->si_sm,
resp, IPMI_MAX_MSG_LENGTH);
/*
* Figure out the actual inb/inw/inl/etc routine to use based
* upon the register size.
*/
switch (info->io.regsize) {
case 1:
info->io.inputb = port_inb;
info->io.outputb = port_outb;
break;
case 2:
info->io.inputb = port_inw;
info->io.outputb = port_outw;
break;
case 4:
info->io.inputb = port_inl;
info->io.outputb = port_outl;
break;
default:
dev_warn(info->dev, "Invalid register size: %d\n",
info->io.regsize);
return -EINVAL;
if (resp_len < 4 ||
resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
resp[1] != IPMI_GET_BMC_GLOBAL_ENABLES_CMD ||
resp[2] != 0) {
dev_warn(smi_info->io.dev,
"Invalid return from get global enables command: %ld %x %x %x\n",
resp_len, resp[0], resp[1], resp[2]);
rv = -EINVAL;
goto out;
} else {
*enables = resp[3];
}
/*
* Some BIOSes reserve disjoint I/O regions in their ACPI
* tables. This causes problems when trying to register the
* entire I/O region. Therefore we must register each I/O
* port separately.
*/
for (idx = 0; idx < info->io_size; idx++) {
if (request_region(addr + idx * info->io.regspacing,
info->io.regsize, DEVICE_NAME) == NULL) {
/* Undo allocations */
while (idx--)
release_region(addr + idx * info->io.regspacing,
info->io.regsize);
return -EIO;
}
}
return 0;
out:
kfree(resp);
return rv;
}
static unsigned char intf_mem_inb(const struct si_sm_io *io,
unsigned int offset)
/*
* Returns 1 if it gets an error from the command.
*/
static int set_global_enables(struct smi_info *smi_info, u8 enables)
{
return readb((io->addr)+(offset * io->regspacing));
}
unsigned char msg[3];
unsigned char *resp;
unsigned long resp_len;
int rv;
static void intf_mem_outb(const struct si_sm_io *io, unsigned int offset,
unsigned char b)
{
writeb(b, (io->addr)+(offset * io->regspacing));
}
resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
if (!resp)
return -ENOMEM;
static unsigned char intf_mem_inw(const struct si_sm_io *io,
unsigned int offset)
{
return (readw((io->addr)+(offset * io->regspacing)) >> io->regshift)
& 0xff;
}
msg[0] = IPMI_NETFN_APP_REQUEST << 2;
msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
msg[2] = enables;
smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3);
static void intf_mem_outw(const struct si_sm_io *io, unsigned int offset,
unsigned char b)
{
writeb(b << io->regshift, (io->addr)+(offset * io->regspacing));
}
rv = wait_for_msg_done(smi_info);
if (rv) {
dev_warn(smi_info->io.dev,
"Error getting response from set global enables command: %d\n",
rv);
goto out;
}
static unsigned char intf_mem_inl(const struct si_sm_io *io,
unsigned int offset)
{
return (readl((io->addr)+(offset * io->regspacing)) >> io->regshift)
& 0xff;
}
resp_len = smi_info->handlers->get_result(smi_info->si_sm,
resp, IPMI_MAX_MSG_LENGTH);
static void intf_mem_outl(const struct si_sm_io *io, unsigned int offset,
unsigned char b)
{
writel(b << io->regshift, (io->addr)+(offset * io->regspacing));
}
if (resp_len < 3 ||
resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
resp[1] != IPMI_SET_BMC_GLOBAL_ENABLES_CMD) {
dev_warn(smi_info->io.dev,
"Invalid return from set global enables command: %ld %x %x\n",
resp_len, resp[0], resp[1]);
rv = -EINVAL;
goto out;
}
#ifdef readq
static unsigned char mem_inq(const struct si_sm_io *io, unsigned int offset)
{
return (readq((io->addr)+(offset * io->regspacing)) >> io->regshift)
& 0xff;
}
if (resp[2] != 0)
rv = 1;
static void mem_outq(const struct si_sm_io *io, unsigned int offset,
unsigned char b)
{
writeq(b << io->regshift, (io->addr)+(offset * io->regspacing));
out:
kfree(resp);
return rv;
}
#endif
static void mem_region_cleanup(struct smi_info *info, int num)
/*
* Some BMCs do not support clearing the receive irq bit in the global
* enables (even if they don't support interrupts on the BMC). Check
* for this and handle it properly.
*/
static void check_clr_rcv_irq(struct smi_info *smi_info)
{
unsigned long addr = info->io.addr_data;
int idx;
u8 enables = 0;
int rv;
for (idx = 0; idx < num; idx++)
release_mem_region(addr + idx * info->io.regspacing,
info->io.regsize);
}
rv = get_global_enables(smi_info, &enables);
if (!rv) {
if ((enables & IPMI_BMC_RCV_MSG_INTR) == 0)
/* Already clear, should work ok. */
return;
static void mem_cleanup(struct smi_info *info)
{
if (info->io.addr) {
iounmap(info->io.addr);
mem_region_cleanup(info, info->io_size);
enables &= ~IPMI_BMC_RCV_MSG_INTR;
rv = set_global_enables(smi_info, enables);
}
}
static int mem_setup(struct smi_info *info)
{
unsigned long addr = info->io.addr_data;
int mapsize, idx;
if (!addr)
return -ENODEV;
info->io_cleanup = mem_cleanup;
/*
* Figure out the actual readb/readw/readl/etc routine to use based
* upon the register size.
*/
switch (info->io.regsize) {
case 1:
info->io.inputb = intf_mem_inb;
info->io.outputb = intf_mem_outb;
break;
case 2:
info->io.inputb = intf_mem_inw;
info->io.outputb = intf_mem_outw;
break;
case 4:
info->io.inputb = intf_mem_inl;
info->io.outputb = intf_mem_outl;
break;
#ifdef readq
case 8:
info->io.inputb = mem_inq;
info->io.outputb = mem_outq;
break;
#endif
default:
dev_warn(info->dev, "Invalid register size: %d\n",
info->io.regsize);
return -EINVAL;
if (rv < 0) {
dev_err(smi_info->io.dev,
"Cannot check clearing the rcv irq: %d\n", rv);
return;
}
if (rv) {
/*
* Some BIOSes reserve disjoint memory regions in their ACPI
* tables. This causes problems when trying to request the
* entire region. Therefore we must request each register
* separately.
* An error when setting the event buffer bit means
* clearing the bit is not supported.
*/
for (idx = 0; idx < info->io_size; idx++) {
if (request_mem_region(addr + idx * info->io.regspacing,
info->io.regsize, DEVICE_NAME) == NULL) {
/* Undo allocations */
mem_region_cleanup(info, idx);
return -EIO;
}
dev_warn(smi_info->io.dev,
"The BMC does not support clearing the recv irq bit, compensating, but the BMC needs to be fixed.\n");
smi_info->cannot_disable_irq = true;
}
/*
* Calculate the total amount of memory to claim. This is an
* unusual looking calculation, but it avoids claiming any
* more memory than it has to. It will claim everything
* between the first address to the end of the last full
* register.
*/
mapsize = ((info->io_size * info->io.regspacing)
- (info->io.regspacing - info->io.regsize));
info->io.addr = ioremap(addr, mapsize);
if (info->io.addr == NULL) {
mem_region_cleanup(info, info->io_size);
return -EIO;
}
return 0;
}
/*
* Parms come in as <op1>[:op2[:op3...]]. ops are:
* add|remove,kcs|bt|smic,mem|i/o,<address>[,<opt1>[,<opt2>[,...]]]
* Options are:
* rsp=<regspacing>
* rsi=<regsize>
* rsh=<regshift>
* irq=<irq>
* ipmb=<ipmb addr>
*/
enum hotmod_op { HM_ADD, HM_REMOVE };
struct hotmod_vals {
const char *name;
const int val;
};
static const struct hotmod_vals hotmod_ops[] = {
{ "add", HM_ADD },
{ "remove", HM_REMOVE },
{ NULL }
};
static const struct hotmod_vals hotmod_si[] = {
{ "kcs", SI_KCS },
{ "smic", SI_SMIC },
{ "bt", SI_BT },
{ NULL }
};
static const struct hotmod_vals hotmod_as[] = {
{ "mem", IPMI_MEM_ADDR_SPACE },
{ "i/o", IPMI_IO_ADDR_SPACE },
{ NULL }
};
static int parse_str(const struct hotmod_vals *v, int *val, char *name,
char **curr)
{
char *s;
int i;
s = strchr(*curr, ',');
if (!s) {
pr_warn(PFX "No hotmod %s given.\n", name);
return -EINVAL;
}
*s = '\0';
s++;
for (i = 0; v[i].name; i++) {
if (strcmp(*curr, v[i].name) == 0) {
*val = v[i].val;
*curr = s;
return 0;
}
}
pr_warn(PFX "Invalid hotmod %s '%s'\n", name, *curr);
return -EINVAL;
}
static int check_hotmod_int_op(const char *curr, const char *option,
const char *name, int *val)
{
char *n;
if (strcmp(curr, name) == 0) {
if (!option) {
pr_warn(PFX "No option given for '%s'\n", curr);
return -EINVAL;
}
*val = simple_strtoul(option, &n, 0);
if ((*n != '\0') || (*option == '\0')) {
pr_warn(PFX "Bad option given for '%s'\n", curr);
return -EINVAL;
}
return 1;
}
return 0;
}
static struct smi_info *smi_info_alloc(void)
{
struct smi_info *info = kzalloc(sizeof(*info), GFP_KERNEL);
if (info)
spin_lock_init(&info->si_lock);
return info;
}
static int hotmod_handler(const char *val, const struct kernel_param *kp)
{
char *str = kstrdup(val, GFP_KERNEL);
int rv;
char *next, *curr, *s, *n, *o;
enum hotmod_op op;
enum si_type si_type;
int addr_space;
unsigned long addr;
int regspacing;
int regsize;
int regshift;
int irq;
int ipmb;
int ival;
int len;
struct smi_info *info;
if (!str)
return -ENOMEM;
/* Kill any trailing spaces, as we can get a "\n" from echo. */
len = strlen(str);
ival = len - 1;
while ((ival >= 0) && isspace(str[ival])) {
str[ival] = '\0';
ival--;
}
for (curr = str; curr; curr = next) {
regspacing = 1;
regsize = 1;
regshift = 0;
irq = 0;
ipmb = 0; /* Choose the default if not specified */
next = strchr(curr, ':');
if (next) {
*next = '\0';
next++;
}
rv = parse_str(hotmod_ops, &ival, "operation", &curr);
if (rv)
break;
op = ival;
rv = parse_str(hotmod_si, &ival, "interface type", &curr);
if (rv)
break;
si_type = ival;
rv = parse_str(hotmod_as, &addr_space, "address space", &curr);
if (rv)
break;
s = strchr(curr, ',');
if (s) {
*s = '\0';
s++;
}
addr = simple_strtoul(curr, &n, 0);
if ((*n != '\0') || (*curr == '\0')) {
pr_warn(PFX "Invalid hotmod address '%s'\n", curr);
break;
}
while (s) {
curr = s;
s = strchr(curr, ',');
if (s) {
*s = '\0';
s++;
}
o = strchr(curr, '=');
if (o) {
*o = '\0';
o++;
}
rv = check_hotmod_int_op(curr, o, "rsp", &regspacing);
if (rv < 0)
goto out;
else if (rv)
continue;
rv = check_hotmod_int_op(curr, o, "rsi", &regsize);
if (rv < 0)
goto out;
else if (rv)
continue;
rv = check_hotmod_int_op(curr, o, "rsh", &regshift);
if (rv < 0)
goto out;
else if (rv)
continue;
rv = check_hotmod_int_op(curr, o, "irq", &irq);
if (rv < 0)
goto out;
else if (rv)
continue;
rv = check_hotmod_int_op(curr, o, "ipmb", &ipmb);
if (rv < 0)
goto out;
else if (rv)
continue;
rv = -EINVAL;
pr_warn(PFX "Invalid hotmod option '%s'\n", curr);
goto out;
}
if (op == HM_ADD) {
info = smi_info_alloc();
if (!info) {
rv = -ENOMEM;
goto out;
}
info->addr_source = SI_HOTMOD;
info->si_type = si_type;
info->io.addr_data = addr;
info->io.addr_type = addr_space;
if (addr_space == IPMI_MEM_ADDR_SPACE)
info->io_setup = mem_setup;
else
info->io_setup = port_setup;
info->io.addr = NULL;
info->io.regspacing = regspacing;
if (!info->io.regspacing)
info->io.regspacing = DEFAULT_REGSPACING;
info->io.regsize = regsize;
if (!info->io.regsize)
info->io.regsize = DEFAULT_REGSIZE;
info->io.regshift = regshift;
info->irq = irq;
if (info->irq)
info->irq_setup = std_irq_setup;
info->slave_addr = ipmb;
rv = add_smi(info);
if (rv) {
kfree(info);
goto out;
}
mutex_lock(&smi_infos_lock);
rv = try_smi_init(info);
mutex_unlock(&smi_infos_lock);
if (rv) {
cleanup_one_si(info);
goto out;
}
} else {
/* remove */
struct smi_info *e, *tmp_e;
mutex_lock(&smi_infos_lock);
list_for_each_entry_safe(e, tmp_e, &smi_infos, link) {
if (e->io.addr_type != addr_space)
continue;
if (e->si_type != si_type)
continue;
if (e->io.addr_data == addr)
cleanup_one_si(e);
}
mutex_unlock(&smi_infos_lock);
}
}
rv = len;
out:
kfree(str);
return rv;
}
static int hardcode_find_bmc(void)
{
int ret = -ENODEV;
int i;
struct smi_info *info;
for (i = 0; i < SI_MAX_PARMS; i++) {
if (!ports[i] && !addrs[i])
continue;
info = smi_info_alloc();
if (!info)
return -ENOMEM;
info->addr_source = SI_HARDCODED;
pr_info(PFX "probing via hardcoded address\n");
if (!si_type[i] || strcmp(si_type[i], "kcs") == 0) {
info->si_type = SI_KCS;
} else if (strcmp(si_type[i], "smic") == 0) {
info->si_type = SI_SMIC;
} else if (strcmp(si_type[i], "bt") == 0) {
info->si_type = SI_BT;
} else {
pr_warn(PFX "Interface type specified for interface %d, was invalid: %s\n",
i, si_type[i]);
kfree(info);
continue;
}
if (ports[i]) {
/* An I/O port */
info->io_setup = port_setup;
info->io.addr_data = ports[i];
info->io.addr_type = IPMI_IO_ADDR_SPACE;
} else if (addrs[i]) {
/* A memory port */
info->io_setup = mem_setup;
info->io.addr_data = addrs[i];
info->io.addr_type = IPMI_MEM_ADDR_SPACE;
} else {
pr_warn(PFX "Interface type specified for interface %d, but port and address were not set or set to zero.\n",
i);
kfree(info);
continue;
}
info->io.addr = NULL;
info->io.regspacing = regspacings[i];
if (!info->io.regspacing)
info->io.regspacing = DEFAULT_REGSPACING;
info->io.regsize = regsizes[i];
if (!info->io.regsize)
info->io.regsize = DEFAULT_REGSIZE;
info->io.regshift = regshifts[i];
info->irq = irqs[i];
if (info->irq)
info->irq_setup = std_irq_setup;
info->slave_addr = slave_addrs[i];
if (!add_smi(info)) {
mutex_lock(&smi_infos_lock);
if (try_smi_init(info))
cleanup_one_si(info);
mutex_unlock(&smi_infos_lock);
ret = 0;
} else {
kfree(info);
}
}
return ret;
}
#ifdef CONFIG_ACPI
/*
* Once we get an ACPI failure, we don't try any more, because we go
* through the tables sequentially. Once we don't find a table, there
* are no more.
*/
static int acpi_failure;
/* For GPE-type interrupts. */
static u32 ipmi_acpi_gpe(acpi_handle gpe_device,
u32 gpe_number, void *context)
{
struct smi_info *smi_info = context;
unsigned long flags;
spin_lock_irqsave(&(smi_info->si_lock), flags);
smi_inc_stat(smi_info, interrupts);
debug_timestamp("ACPI_GPE");
smi_event_handler(smi_info, 0);
spin_unlock_irqrestore(&(smi_info->si_lock), flags);
return ACPI_INTERRUPT_HANDLED;
}
static void acpi_gpe_irq_cleanup(struct smi_info *info)
{
if (!info->irq)
return;
acpi_remove_gpe_handler(NULL, info->irq, &ipmi_acpi_gpe);
}
static int acpi_gpe_irq_setup(struct smi_info *info)
{
acpi_status status;
if (!info->irq)
return 0;
status = acpi_install_gpe_handler(NULL,
info->irq,
ACPI_GPE_LEVEL_TRIGGERED,
&ipmi_acpi_gpe,
info);
if (status != AE_OK) {
dev_warn(info->dev, "%s unable to claim ACPI GPE %d,"
" running polled\n", DEVICE_NAME, info->irq);
info->irq = 0;
return -EINVAL;
} else {
info->irq_cleanup = acpi_gpe_irq_cleanup;
dev_info(info->dev, "Using ACPI GPE %d\n", info->irq);
return 0;
}
}
/*
* Defined at
* http://h21007.www2.hp.com/portal/download/files/unprot/hpspmi.pdf
*/
struct SPMITable {
s8 Signature[4];
u32 Length;
u8 Revision;
u8 Checksum;
s8 OEMID[6];
s8 OEMTableID[8];
s8 OEMRevision[4];
s8 CreatorID[4];
s8 CreatorRevision[4];
u8 InterfaceType;
u8 IPMIlegacy;
s16 SpecificationRevision;
/*
* Bit 0 - SCI interrupt supported
* Bit 1 - I/O APIC/SAPIC
*/
u8 InterruptType;
/*
* If bit 0 of InterruptType is set, then this is the SCI
* interrupt in the GPEx_STS register.
*/
u8 GPE;
s16 Reserved;
/*
* If bit 1 of InterruptType is set, then this is the I/O
* APIC/SAPIC interrupt.
*/
u32 GlobalSystemInterrupt;
/* The actual register address. */
struct acpi_generic_address addr;
u8 UID[4];
s8 spmi_id[1]; /* A '\0' terminated array starts here. */
};
static int try_init_spmi(struct SPMITable *spmi)
{
struct smi_info *info;
int rv;
if (spmi->IPMIlegacy != 1) {
pr_info(PFX "Bad SPMI legacy %d\n", spmi->IPMIlegacy);
return -ENODEV;
}
info = smi_info_alloc();
if (!info) {
pr_err(PFX "Could not allocate SI data (3)\n");
return -ENOMEM;
}
info->addr_source = SI_SPMI;
pr_info(PFX "probing via SPMI\n");
/* Figure out the interface type. */
switch (spmi->InterfaceType) {
case 1: /* KCS */
info->si_type = SI_KCS;
break;
case 2: /* SMIC */
info->si_type = SI_SMIC;
break;
case 3: /* BT */
info->si_type = SI_BT;
break;
case 4: /* SSIF, just ignore */
kfree(info);
return -EIO;
default:
pr_info(PFX "Unknown ACPI/SPMI SI type %d\n",
spmi->InterfaceType);
kfree(info);
return -EIO;
}
if (spmi->InterruptType & 1) {
/* We've got a GPE interrupt. */
info->irq = spmi->GPE;
info->irq_setup = acpi_gpe_irq_setup;
} else if (spmi->InterruptType & 2) {
/* We've got an APIC/SAPIC interrupt. */
info->irq = spmi->GlobalSystemInterrupt;
info->irq_setup = std_irq_setup;
} else {
/* Use the default interrupt setting. */
info->irq = 0;
info->irq_setup = NULL;
}
if (spmi->addr.bit_width) {
/* A (hopefully) properly formed register bit width. */
info->io.regspacing = spmi->addr.bit_width / 8;
} else {
info->io.regspacing = DEFAULT_REGSPACING;
}
info->io.regsize = info->io.regspacing;
info->io.regshift = spmi->addr.bit_offset;
if (spmi->addr.space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY) {
info->io_setup = mem_setup;
info->io.addr_type = IPMI_MEM_ADDR_SPACE;
} else if (spmi->addr.space_id == ACPI_ADR_SPACE_SYSTEM_IO) {
info->io_setup = port_setup;
info->io.addr_type = IPMI_IO_ADDR_SPACE;
} else {
kfree(info);
pr_warn(PFX "Unknown ACPI I/O Address type\n");
return -EIO;
}
info->io.addr_data = spmi->addr.address;
pr_info("ipmi_si: SPMI: %s %#lx regsize %d spacing %d irq %d\n",
(info->io.addr_type == IPMI_IO_ADDR_SPACE) ? "io" : "mem",
info->io.addr_data, info->io.regsize, info->io.regspacing,
info->irq);
rv = add_smi(info);
if (rv)
kfree(info);
return rv;
}
static void spmi_find_bmc(void)
{
acpi_status status;
struct SPMITable *spmi;
int i;
if (acpi_disabled)
return;
if (acpi_failure)
return;
for (i = 0; ; i++) {
status = acpi_get_table(ACPI_SIG_SPMI, i+1,
(struct acpi_table_header **)&spmi);
if (status != AE_OK)
return;
try_init_spmi(spmi);
}
}
#endif
#if defined(CONFIG_DMI) || defined(CONFIG_ACPI)
struct resource *ipmi_get_info_from_resources(struct platform_device *pdev,
struct smi_info *info)
{
struct resource *res, *res_second;
res = platform_get_resource(pdev, IORESOURCE_IO, 0);
if (res) {
info->io_setup = port_setup;
info->io.addr_type = IPMI_IO_ADDR_SPACE;
} else {
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
if (res) {
info->io_setup = mem_setup;
info->io.addr_type = IPMI_MEM_ADDR_SPACE;
}
}
if (!res) {
dev_err(&pdev->dev, "no I/O or memory address\n");
return NULL;
}
info->io.addr_data = res->start;
info->io.regspacing = DEFAULT_REGSPACING;
res_second = platform_get_resource(pdev,
(info->io.addr_type == IPMI_IO_ADDR_SPACE) ?
IORESOURCE_IO : IORESOURCE_MEM,
1);
if (res_second) {
if (res_second->start > info->io.addr_data)
info->io.regspacing =
res_second->start - info->io.addr_data;
}
info->io.regsize = DEFAULT_REGSIZE;
info->io.regshift = 0;
return res;
}
#endif
#ifdef CONFIG_DMI
static int dmi_ipmi_probe(struct platform_device *pdev)
{
struct smi_info *info;
u8 type, slave_addr;
int rv;
if (!si_trydmi)
return -ENODEV;
rv = device_property_read_u8(&pdev->dev, "ipmi-type", &type);
if (rv)
return -ENODEV;
info = smi_info_alloc();
if (!info) {
pr_err(PFX "Could not allocate SI data\n");
return -ENOMEM;
}
info->addr_source = SI_SMBIOS;
pr_info(PFX "probing via SMBIOS\n");
switch (type) {
case IPMI_DMI_TYPE_KCS:
info->si_type = SI_KCS;
break;
case IPMI_DMI_TYPE_SMIC:
info->si_type = SI_SMIC;
break;
case IPMI_DMI_TYPE_BT:
info->si_type = SI_BT;
break;
default:
kfree(info);
return -EINVAL;
}
if (!ipmi_get_info_from_resources(pdev, info)) {
rv = -EINVAL;
goto err_free;
}
rv = device_property_read_u8(&pdev->dev, "slave-addr", &slave_addr);
if (rv) {
dev_warn(&pdev->dev, "device has no slave-addr property");
info->slave_addr = 0x20;
} else {
info->slave_addr = slave_addr;
}
info->irq = platform_get_irq(pdev, 0);
if (info->irq > 0)
info->irq_setup = std_irq_setup;
else
info->irq = 0;
info->dev = &pdev->dev;
pr_info("ipmi_si: SMBIOS: %s %#lx regsize %d spacing %d irq %d\n",
(info->io.addr_type == IPMI_IO_ADDR_SPACE) ? "io" : "mem",
info->io.addr_data, info->io.regsize, info->io.regspacing,
info->irq);
if (add_smi(info))
kfree(info);
return 0;
err_free:
kfree(info);
return rv;
}
#else
static int dmi_ipmi_probe(struct platform_device *pdev)
{
return -ENODEV;
}
#endif /* CONFIG_DMI */
#ifdef CONFIG_PCI
#define PCI_ERMC_CLASSCODE 0x0C0700
#define PCI_ERMC_CLASSCODE_MASK 0xffffff00
#define PCI_ERMC_CLASSCODE_TYPE_MASK 0xff
#define PCI_ERMC_CLASSCODE_TYPE_SMIC 0x00
#define PCI_ERMC_CLASSCODE_TYPE_KCS 0x01
#define PCI_ERMC_CLASSCODE_TYPE_BT 0x02
#define PCI_HP_VENDOR_ID 0x103C
#define PCI_MMC_DEVICE_ID 0x121A
#define PCI_MMC_ADDR_CW 0x10
static void ipmi_pci_cleanup(struct smi_info *info)
{
struct pci_dev *pdev = info->addr_source_data;
pci_disable_device(pdev);
}
static int ipmi_pci_probe_regspacing(struct smi_info *info)
{
if (info->si_type == SI_KCS) {
unsigned char status;
int regspacing;
info->io.regsize = DEFAULT_REGSIZE;
info->io.regshift = 0;
info->io_size = 2;
info->handlers = &kcs_smi_handlers;
/* detect 1, 4, 16byte spacing */
for (regspacing = DEFAULT_REGSPACING; regspacing <= 16;) {
info->io.regspacing = regspacing;
if (info->io_setup(info)) {
dev_err(info->dev,
"Could not setup I/O space\n");
return DEFAULT_REGSPACING;
}
/* write invalid cmd */
info->io.outputb(&info->io, 1, 0x10);
/* read status back */
status = info->io.inputb(&info->io, 1);
info->io_cleanup(info);
if (status)
return regspacing;
regspacing *= 4;
}
}
return DEFAULT_REGSPACING;
}
static int ipmi_pci_probe(struct pci_dev *pdev,
const struct pci_device_id *ent)
{
int rv;
int class_type = pdev->class & PCI_ERMC_CLASSCODE_TYPE_MASK;
struct smi_info *info;
info = smi_info_alloc();
if (!info)
return -ENOMEM;
info->addr_source = SI_PCI;
dev_info(&pdev->dev, "probing via PCI");
switch (class_type) {
case PCI_ERMC_CLASSCODE_TYPE_SMIC:
info->si_type = SI_SMIC;
break;
case PCI_ERMC_CLASSCODE_TYPE_KCS:
info->si_type = SI_KCS;
break;
case PCI_ERMC_CLASSCODE_TYPE_BT:
info->si_type = SI_BT;
break;
default:
kfree(info);
dev_info(&pdev->dev, "Unknown IPMI type: %d\n", class_type);
return -ENOMEM;
}
rv = pci_enable_device(pdev);
if (rv) {
dev_err(&pdev->dev, "couldn't enable PCI device\n");
kfree(info);
return rv;
}
info->addr_source_cleanup = ipmi_pci_cleanup;
info->addr_source_data = pdev;
if (pci_resource_flags(pdev, 0) & IORESOURCE_IO) {
info->io_setup = port_setup;
info->io.addr_type = IPMI_IO_ADDR_SPACE;
} else {
info->io_setup = mem_setup;
info->io.addr_type = IPMI_MEM_ADDR_SPACE;
}
info->io.addr_data = pci_resource_start(pdev, 0);
info->io.regspacing = ipmi_pci_probe_regspacing(info);
info->io.regsize = DEFAULT_REGSIZE;
info->io.regshift = 0;
info->irq = pdev->irq;
if (info->irq)
info->irq_setup = std_irq_setup;
info->dev = &pdev->dev;
pci_set_drvdata(pdev, info);
dev_info(&pdev->dev, "%pR regsize %d spacing %d irq %d\n",
&pdev->resource[0], info->io.regsize, info->io.regspacing,
info->irq);
rv = add_smi(info);
if (rv) {
kfree(info);
pci_disable_device(pdev);
}
return rv;
}
static void ipmi_pci_remove(struct pci_dev *pdev)
{
struct smi_info *info = pci_get_drvdata(pdev);
cleanup_one_si(info);
}
static const struct pci_device_id ipmi_pci_devices[] = {
{ PCI_DEVICE(PCI_HP_VENDOR_ID, PCI_MMC_DEVICE_ID) },
{ PCI_DEVICE_CLASS(PCI_ERMC_CLASSCODE, PCI_ERMC_CLASSCODE_MASK) },
{ 0, }
};
MODULE_DEVICE_TABLE(pci, ipmi_pci_devices);
static struct pci_driver ipmi_pci_driver = {
.name = DEVICE_NAME,
.id_table = ipmi_pci_devices,
.probe = ipmi_pci_probe,
.remove = ipmi_pci_remove,
};
#endif /* CONFIG_PCI */
#ifdef CONFIG_OF
static const struct of_device_id of_ipmi_match[] = {
{ .type = "ipmi", .compatible = "ipmi-kcs",
.data = (void *)(unsigned long) SI_KCS },
{ .type = "ipmi", .compatible = "ipmi-smic",
.data = (void *)(unsigned long) SI_SMIC },
{ .type = "ipmi", .compatible = "ipmi-bt",
.data = (void *)(unsigned long) SI_BT },
{},
};
MODULE_DEVICE_TABLE(of, of_ipmi_match);
static int of_ipmi_probe(struct platform_device *dev)
{
const struct of_device_id *match;
struct smi_info *info;
struct resource resource;
const __be32 *regsize, *regspacing, *regshift;
struct device_node *np = dev->dev.of_node;
int ret;
int proplen;
dev_info(&dev->dev, "probing via device tree\n");
match = of_match_device(of_ipmi_match, &dev->dev);
if (!match)
return -ENODEV;
if (!of_device_is_available(np))
return -EINVAL;
ret = of_address_to_resource(np, 0, &resource);
if (ret) {
dev_warn(&dev->dev, PFX "invalid address from OF\n");
return ret;
}
regsize = of_get_property(np, "reg-size", &proplen);
if (regsize && proplen != 4) {
dev_warn(&dev->dev, PFX "invalid regsize from OF\n");
return -EINVAL;
}
regspacing = of_get_property(np, "reg-spacing", &proplen);
if (regspacing && proplen != 4) {
dev_warn(&dev->dev, PFX "invalid regspacing from OF\n");
return -EINVAL;
}
regshift = of_get_property(np, "reg-shift", &proplen);
if (regshift && proplen != 4) {
dev_warn(&dev->dev, PFX "invalid regshift from OF\n");
return -EINVAL;
}
info = smi_info_alloc();
if (!info) {
dev_err(&dev->dev,
"could not allocate memory for OF probe\n");
return -ENOMEM;
}
info->si_type = (enum si_type) match->data;
info->addr_source = SI_DEVICETREE;
info->irq_setup = std_irq_setup;
if (resource.flags & IORESOURCE_IO) {
info->io_setup = port_setup;
info->io.addr_type = IPMI_IO_ADDR_SPACE;
} else {
info->io_setup = mem_setup;
info->io.addr_type = IPMI_MEM_ADDR_SPACE;
}
info->io.addr_data = resource.start;
info->io.regsize = regsize ? be32_to_cpup(regsize) : DEFAULT_REGSIZE;
info->io.regspacing = regspacing ? be32_to_cpup(regspacing) : DEFAULT_REGSPACING;
info->io.regshift = regshift ? be32_to_cpup(regshift) : 0;
info->irq = irq_of_parse_and_map(dev->dev.of_node, 0);
info->dev = &dev->dev;
dev_dbg(&dev->dev, "addr 0x%lx regsize %d spacing %d irq %d\n",
info->io.addr_data, info->io.regsize, info->io.regspacing,
info->irq);
dev_set_drvdata(&dev->dev, info);
ret = add_smi(info);
if (ret) {
kfree(info);
return ret;
}
return 0;
}
#else
#define of_ipmi_match NULL
static int of_ipmi_probe(struct platform_device *dev)
{
return -ENODEV;
}
#endif
#ifdef CONFIG_ACPI
static int find_slave_address(struct smi_info *info, int slave_addr)
{
#ifdef CONFIG_IPMI_DMI_DECODE
if (!slave_addr) {
int type = -1;
u32 flags = IORESOURCE_IO;
switch (info->si_type) {
case SI_KCS:
type = IPMI_DMI_TYPE_KCS;
break;
case SI_BT:
type = IPMI_DMI_TYPE_BT;
break;
case SI_SMIC:
type = IPMI_DMI_TYPE_SMIC;
break;
}
if (info->io.addr_type == IPMI_MEM_ADDR_SPACE)
flags = IORESOURCE_MEM;
slave_addr = ipmi_dmi_get_slave_addr(type, flags,
info->io.addr_data);
}
#endif
return slave_addr;
}
static int acpi_ipmi_probe(struct platform_device *dev)
{
struct smi_info *info;
acpi_handle handle;
acpi_status status;
unsigned long long tmp;
struct resource *res;
int rv = -EINVAL;
if (!si_tryacpi)
return -ENODEV;
handle = ACPI_HANDLE(&dev->dev);
if (!handle)
return -ENODEV;
info = smi_info_alloc();
if (!info)
return -ENOMEM;
info->addr_source = SI_ACPI;
dev_info(&dev->dev, PFX "probing via ACPI\n");
info->addr_info.acpi_info.acpi_handle = handle;
/* _IFT tells us the interface type: KCS, BT, etc */
status = acpi_evaluate_integer(handle, "_IFT", NULL, &tmp);
if (ACPI_FAILURE(status)) {
dev_err(&dev->dev, "Could not find ACPI IPMI interface type\n");
goto err_free;
}
switch (tmp) {
case 1:
info->si_type = SI_KCS;
break;
case 2:
info->si_type = SI_SMIC;
break;
case 3:
info->si_type = SI_BT;
break;
case 4: /* SSIF, just ignore */
rv = -ENODEV;
goto err_free;
default:
dev_info(&dev->dev, "unknown IPMI type %lld\n", tmp);
goto err_free;
}
res = ipmi_get_info_from_resources(dev, info);
if (!res) {
rv = -EINVAL;
goto err_free;
}
/* If _GPE exists, use it; otherwise use standard interrupts */
status = acpi_evaluate_integer(handle, "_GPE", NULL, &tmp);
if (ACPI_SUCCESS(status)) {
info->irq = tmp;
info->irq_setup = acpi_gpe_irq_setup;
} else {
int irq = platform_get_irq(dev, 0);
if (irq > 0) {
info->irq = irq;
info->irq_setup = std_irq_setup;
}
}
info->slave_addr = find_slave_address(info, info->slave_addr);
info->dev = &dev->dev;
platform_set_drvdata(dev, info);
dev_info(info->dev, "%pR regsize %d spacing %d irq %d\n",
res, info->io.regsize, info->io.regspacing,
info->irq);
rv = add_smi(info);
if (rv)
kfree(info);
return rv;
err_free:
kfree(info);
return rv;
}
static const struct acpi_device_id acpi_ipmi_match[] = {
{ "IPI0001", 0 },
{ },
};
MODULE_DEVICE_TABLE(acpi, acpi_ipmi_match);
#else
static int acpi_ipmi_probe(struct platform_device *dev)
{
return -ENODEV;
}
#endif
static int ipmi_probe(struct platform_device *dev)
{
if (of_ipmi_probe(dev) == 0)
return 0;
if (acpi_ipmi_probe(dev) == 0)
return 0;
return dmi_ipmi_probe(dev);
}
static int ipmi_remove(struct platform_device *dev)
{
struct smi_info *info = dev_get_drvdata(&dev->dev);
cleanup_one_si(info);
return 0;
}
static struct platform_driver ipmi_driver = {
.driver = {
.name = DEVICE_NAME,
.of_match_table = of_ipmi_match,
.acpi_match_table = ACPI_PTR(acpi_ipmi_match),
},
.probe = ipmi_probe,
.remove = ipmi_remove,
};
#ifdef CONFIG_PARISC
static int __init ipmi_parisc_probe(struct parisc_device *dev)
{
struct smi_info *info;
int rv;
info = smi_info_alloc();
if (!info) {
dev_err(&dev->dev,
"could not allocate memory for PARISC probe\n");
return -ENOMEM;
}
info->si_type = SI_KCS;
info->addr_source = SI_DEVICETREE;
info->io_setup = mem_setup;
info->io.addr_type = IPMI_MEM_ADDR_SPACE;
info->io.addr_data = dev->hpa.start;
info->io.regsize = 1;
info->io.regspacing = 1;
info->io.regshift = 0;
info->irq = 0; /* no interrupt */
info->irq_setup = NULL;
info->dev = &dev->dev;
dev_dbg(&dev->dev, "addr 0x%lx\n", info->io.addr_data);
dev_set_drvdata(&dev->dev, info);
rv = add_smi(info);
if (rv) {
kfree(info);
return rv;
}
return 0;
}
static int __exit ipmi_parisc_remove(struct parisc_device *dev)
{
cleanup_one_si(dev_get_drvdata(&dev->dev));
return 0;
}
static const struct parisc_device_id ipmi_parisc_tbl[] __initconst = {
{ HPHW_MC, HVERSION_REV_ANY_ID, 0x004, 0xC0 },
{ 0, }
};
MODULE_DEVICE_TABLE(parisc, ipmi_parisc_tbl);
static struct parisc_driver ipmi_parisc_driver __refdata = {
.name = "ipmi",
.id_table = ipmi_parisc_tbl,
.probe = ipmi_parisc_probe,
.remove = __exit_p(ipmi_parisc_remove),
};
#endif /* CONFIG_PARISC */
static int wait_for_msg_done(struct smi_info *smi_info)
{
enum si_sm_result smi_result;
smi_result = smi_info->handlers->event(smi_info->si_sm, 0);
for (;;) {
if (smi_result == SI_SM_CALL_WITH_DELAY ||
smi_result == SI_SM_CALL_WITH_TICK_DELAY) {
schedule_timeout_uninterruptible(1);
smi_result = smi_info->handlers->event(
smi_info->si_sm, jiffies_to_usecs(1));
} else if (smi_result == SI_SM_CALL_WITHOUT_DELAY) {
smi_result = smi_info->handlers->event(
smi_info->si_sm, 0);
} else
break;
}
if (smi_result == SI_SM_HOSED)
/*
* We couldn't get the state machine to run, so whatever's at
* the port is probably not an IPMI SMI interface.
*/
return -ENODEV;
return 0;
}
static int try_get_dev_id(struct smi_info *smi_info)
{
unsigned char msg[2];
unsigned char *resp;
unsigned long resp_len;
int rv = 0;
resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
if (!resp)
return -ENOMEM;
/*
* Do a Get Device ID command, since it comes back with some
* useful info.
*/
msg[0] = IPMI_NETFN_APP_REQUEST << 2;
msg[1] = IPMI_GET_DEVICE_ID_CMD;
smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
rv = wait_for_msg_done(smi_info);
if (rv)
goto out;
resp_len = smi_info->handlers->get_result(smi_info->si_sm,
resp, IPMI_MAX_MSG_LENGTH);
/* Check and record info from the get device id, in case we need it. */
rv = ipmi_demangle_device_id(resp, resp_len, &smi_info->device_id);
out:
kfree(resp);
return rv;
}
static int get_global_enables(struct smi_info *smi_info, u8 *enables)
{
unsigned char msg[3];
unsigned char *resp;
unsigned long resp_len;
int rv;
resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
if (!resp)
return -ENOMEM;
msg[0] = IPMI_NETFN_APP_REQUEST << 2;
msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
rv = wait_for_msg_done(smi_info);
if (rv) {
dev_warn(smi_info->dev,
"Error getting response from get global enables command: %d\n",
rv);
goto out;
}
resp_len = smi_info->handlers->get_result(smi_info->si_sm,
resp, IPMI_MAX_MSG_LENGTH);
if (resp_len < 4 ||
resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
resp[1] != IPMI_GET_BMC_GLOBAL_ENABLES_CMD ||
resp[2] != 0) {
dev_warn(smi_info->dev,
"Invalid return from get global enables command: %ld %x %x %x\n",
resp_len, resp[0], resp[1], resp[2]);
rv = -EINVAL;
goto out;
} else {
*enables = resp[3];
}
out:
kfree(resp);
return rv;
}
/*
* Returns 1 if it gets an error from the command.
*/
static int set_global_enables(struct smi_info *smi_info, u8 enables)
{
unsigned char msg[3];
unsigned char *resp;
unsigned long resp_len;
int rv;
resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
if (!resp)
return -ENOMEM;
msg[0] = IPMI_NETFN_APP_REQUEST << 2;
msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
msg[2] = enables;
smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3);
rv = wait_for_msg_done(smi_info);
if (rv) {
dev_warn(smi_info->dev,
"Error getting response from set global enables command: %d\n",
rv);
goto out;
}
resp_len = smi_info->handlers->get_result(smi_info->si_sm,
resp, IPMI_MAX_MSG_LENGTH);
if (resp_len < 3 ||
resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
resp[1] != IPMI_SET_BMC_GLOBAL_ENABLES_CMD) {
dev_warn(smi_info->dev,
"Invalid return from set global enables command: %ld %x %x\n",
resp_len, resp[0], resp[1]);
rv = -EINVAL;
goto out;
}
if (resp[2] != 0)
rv = 1;
out:
kfree(resp);
return rv;
}
/*
* Some BMCs do not support clearing the receive irq bit in the global
* enables (even if they don't support interrupts on the BMC). Check
* for this and handle it properly.
*/
static void check_clr_rcv_irq(struct smi_info *smi_info)
{
u8 enables = 0;
int rv;
rv = get_global_enables(smi_info, &enables);
if (!rv) {
if ((enables & IPMI_BMC_RCV_MSG_INTR) == 0)
/* Already clear, should work ok. */
return;
enables &= ~IPMI_BMC_RCV_MSG_INTR;
rv = set_global_enables(smi_info, enables);
}
if (rv < 0) {
dev_err(smi_info->dev,
"Cannot check clearing the rcv irq: %d\n", rv);
return;
}
if (rv) {
/*
* An error when setting the event buffer bit means
* clearing the bit is not supported.
*/
dev_warn(smi_info->dev,
"The BMC does not support clearing the recv irq bit, compensating, but the BMC needs to be fixed.\n");
smi_info->cannot_disable_irq = true;
}
}
}
/*
* Some BMCs do not support setting the interrupt bits in the global
......@@ -3071,7 +1503,7 @@ static void check_set_rcv_irq(struct smi_info *smi_info)
u8 enables = 0;
int rv;
if (!smi_info->irq)
if (!smi_info->io.irq)
return;
rv = get_global_enables(smi_info, &enables);
......@@ -3081,7 +1513,7 @@ static void check_set_rcv_irq(struct smi_info *smi_info)
}
if (rv < 0) {
dev_err(smi_info->dev,
dev_err(smi_info->io.dev,
"Cannot check setting the rcv irq: %d\n", rv);
return;
}
......@@ -3091,7 +1523,7 @@ static void check_set_rcv_irq(struct smi_info *smi_info)
* An error when setting the event buffer bit means
* setting the bit is not supported.
*/
dev_warn(smi_info->dev,
dev_warn(smi_info->io.dev,
"The BMC does not support setting the recv irq bit, compensating, but the BMC needs to be fixed.\n");
smi_info->cannot_disable_irq = true;
smi_info->irq_enable_broken = true;
......@@ -3173,11 +1605,12 @@ static int try_enable_event_buffer(struct smi_info *smi_info)
return rv;
}
#ifdef CONFIG_IPMI_PROC_INTERFACE
static int smi_type_proc_show(struct seq_file *m, void *v)
{
struct smi_info *smi = m->private;
seq_printf(m, "%s\n", si_to_str[smi->si_type]);
seq_printf(m, "%s\n", si_to_str[smi->io.si_type]);
return 0;
}
......@@ -3199,7 +1632,7 @@ static int smi_si_stats_proc_show(struct seq_file *m, void *v)
struct smi_info *smi = m->private;
seq_printf(m, "interrupts_enabled: %d\n",
smi->irq && !smi->interrupt_disabled);
smi->io.irq && !smi->interrupt_disabled);
seq_printf(m, "short_timeouts: %u\n",
smi_get_stat(smi, short_timeouts));
seq_printf(m, "long_timeouts: %u\n",
......@@ -3243,14 +1676,14 @@ static int smi_params_proc_show(struct seq_file *m, void *v)
seq_printf(m,
"%s,%s,0x%lx,rsp=%d,rsi=%d,rsh=%d,irq=%d,ipmb=%d\n",
si_to_str[smi->si_type],
si_to_str[smi->io.si_type],
addr_space_to_str[smi->io.addr_type],
smi->io.addr_data,
smi->io.regspacing,
smi->io.regsize,
smi->io.regshift,
smi->irq,
smi->slave_addr);
smi->io.irq,
smi->io.slave_addr);
return 0;
}
......@@ -3266,6 +1699,93 @@ static const struct file_operations smi_params_proc_ops = {
.llseek = seq_lseek,
.release = single_release,
};
#endif
#define IPMI_SI_ATTR(name) \
static ssize_t ipmi_##name##_show(struct device *dev, \
struct device_attribute *attr, \
char *buf) \
{ \
struct smi_info *smi_info = dev_get_drvdata(dev); \
\
return snprintf(buf, 10, "%u\n", smi_get_stat(smi_info, name)); \
} \
static DEVICE_ATTR(name, S_IRUGO, ipmi_##name##_show, NULL)
static ssize_t ipmi_type_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct smi_info *smi_info = dev_get_drvdata(dev);
return snprintf(buf, 10, "%s\n", si_to_str[smi_info->io.si_type]);
}
static DEVICE_ATTR(type, S_IRUGO, ipmi_type_show, NULL);
static ssize_t ipmi_interrupts_enabled_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct smi_info *smi_info = dev_get_drvdata(dev);
int enabled = smi_info->io.irq && !smi_info->interrupt_disabled;
return snprintf(buf, 10, "%d\n", enabled);
}
static DEVICE_ATTR(interrupts_enabled, S_IRUGO,
ipmi_interrupts_enabled_show, NULL);
IPMI_SI_ATTR(short_timeouts);
IPMI_SI_ATTR(long_timeouts);
IPMI_SI_ATTR(idles);
IPMI_SI_ATTR(interrupts);
IPMI_SI_ATTR(attentions);
IPMI_SI_ATTR(flag_fetches);
IPMI_SI_ATTR(hosed_count);
IPMI_SI_ATTR(complete_transactions);
IPMI_SI_ATTR(events);
IPMI_SI_ATTR(watchdog_pretimeouts);
IPMI_SI_ATTR(incoming_messages);
static ssize_t ipmi_params_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct smi_info *smi_info = dev_get_drvdata(dev);
return snprintf(buf, 200,
"%s,%s,0x%lx,rsp=%d,rsi=%d,rsh=%d,irq=%d,ipmb=%d\n",
si_to_str[smi_info->io.si_type],
addr_space_to_str[smi_info->io.addr_type],
smi_info->io.addr_data,
smi_info->io.regspacing,
smi_info->io.regsize,
smi_info->io.regshift,
smi_info->io.irq,
smi_info->io.slave_addr);
}
static DEVICE_ATTR(params, S_IRUGO, ipmi_params_show, NULL);
static struct attribute *ipmi_si_dev_attrs[] = {
&dev_attr_type.attr,
&dev_attr_interrupts_enabled.attr,
&dev_attr_short_timeouts.attr,
&dev_attr_long_timeouts.attr,
&dev_attr_idles.attr,
&dev_attr_interrupts.attr,
&dev_attr_attentions.attr,
&dev_attr_flag_fetches.attr,
&dev_attr_hosed_count.attr,
&dev_attr_complete_transactions.attr,
&dev_attr_events.attr,
&dev_attr_watchdog_pretimeouts.attr,
&dev_attr_incoming_messages.attr,
&dev_attr_params.attr,
NULL
};
static const struct attribute_group ipmi_si_dev_attr_group = {
.attrs = ipmi_si_dev_attrs,
};
/*
* oem_data_avail_to_receive_msg_avail
......@@ -3388,7 +1908,7 @@ setup_dell_poweredge_bt_xaction_handler(struct smi_info *smi_info)
{
struct ipmi_device_id *id = &smi_info->device_id;
if (id->manufacturer_id == DELL_IANA_MFR_ID &&
smi_info->si_type == SI_BT)
smi_info->io.si_type == SI_BT)
register_xaction_notifier(&dell_poweredge_bt_xaction_notifier);
}
......@@ -3424,7 +1944,7 @@ static inline void wait_for_timer_and_thread(struct smi_info *smi_info)
del_timer_sync(&smi_info->si_timer);
}
static int is_new_interface(struct smi_info *info)
static struct smi_info *find_dup_si(struct smi_info *info)
{
struct smi_info *e;
......@@ -3437,31 +1957,61 @@ static int is_new_interface(struct smi_info *info)
* slave address but SMBIOS does. Pick it up from
* any source that has it available.
*/
if (info->slave_addr && !e->slave_addr)
e->slave_addr = info->slave_addr;
return 0;
if (info->io.slave_addr && !e->io.slave_addr)
e->io.slave_addr = info->io.slave_addr;
return e;
}
}
return 1;
return NULL;
}
static int add_smi(struct smi_info *new_smi)
int ipmi_si_add_smi(struct si_sm_io *io)
{
int rv = 0;
struct smi_info *new_smi, *dup;
if (!io->io_setup) {
if (io->addr_type == IPMI_IO_ADDR_SPACE) {
io->io_setup = ipmi_si_port_setup;
} else if (io->addr_type == IPMI_MEM_ADDR_SPACE) {
io->io_setup = ipmi_si_mem_setup;
} else {
return -EINVAL;
}
}
new_smi = kzalloc(sizeof(*new_smi), GFP_KERNEL);
if (!new_smi)
return -ENOMEM;
spin_lock_init(&new_smi->si_lock);
new_smi->io = *io;
mutex_lock(&smi_infos_lock);
if (!is_new_interface(new_smi)) {
pr_info(PFX "%s-specified %s state machine: duplicate\n",
ipmi_addr_src_to_str(new_smi->addr_source),
si_to_str[new_smi->si_type]);
dup = find_dup_si(new_smi);
if (dup) {
if (new_smi->io.addr_source == SI_ACPI &&
dup->io.addr_source == SI_SMBIOS) {
/* We prefer ACPI over SMBIOS. */
dev_info(dup->io.dev,
"Removing SMBIOS-specified %s state machine in favor of ACPI\n",
si_to_str[new_smi->io.si_type]);
cleanup_one_si(dup);
} else {
dev_info(new_smi->io.dev,
"%s-specified %s state machine: duplicate\n",
ipmi_addr_src_to_str(new_smi->io.addr_source),
si_to_str[new_smi->io.si_type]);
rv = -EBUSY;
kfree(new_smi);
goto out_err;
}
}
pr_info(PFX "Adding %s-specified %s state machine\n",
ipmi_addr_src_to_str(new_smi->addr_source),
si_to_str[new_smi->si_type]);
ipmi_addr_src_to_str(new_smi->io.addr_source),
si_to_str[new_smi->io.si_type]);
/* So we know not to free it unless we have allocated one. */
new_smi->intf = NULL;
......@@ -3470,6 +2020,14 @@ static int add_smi(struct smi_info *new_smi)
list_add_tail(&new_smi->link, &smi_infos);
if (initialized) {
rv = try_smi_init(new_smi);
if (rv) {
mutex_unlock(&smi_infos_lock);
cleanup_one_si(new_smi);
return rv;
}
}
out_err:
mutex_unlock(&smi_infos_lock);
return rv;
......@@ -3487,13 +2045,13 @@ static int try_smi_init(struct smi_info *new_smi)
char *init_name = NULL;
pr_info(PFX "Trying %s-specified %s state machine at %s address 0x%lx, slave address 0x%x, irq %d\n",
ipmi_addr_src_to_str(new_smi->addr_source),
si_to_str[new_smi->si_type],
ipmi_addr_src_to_str(new_smi->io.addr_source),
si_to_str[new_smi->io.si_type],
addr_space_to_str[new_smi->io.addr_type],
new_smi->io.addr_data,
new_smi->slave_addr, new_smi->irq);
new_smi->io.slave_addr, new_smi->io.irq);
switch (new_smi->si_type) {
switch (new_smi->io.si_type) {
case SI_KCS:
new_smi->handlers = &kcs_smi_handlers;
break;
......@@ -3515,7 +2073,7 @@ static int try_smi_init(struct smi_info *new_smi)
new_smi->intf_num = smi_num;
/* Do this early so it's available for logs. */
if (!new_smi->dev) {
if (!new_smi->io.dev) {
init_name = kasprintf(GFP_KERNEL, "ipmi_si.%d",
new_smi->intf_num);
......@@ -3529,33 +2087,33 @@ static int try_smi_init(struct smi_info *new_smi)
pr_err(PFX "Unable to allocate platform device\n");
goto out_err;
}
new_smi->dev = &new_smi->pdev->dev;
new_smi->dev->driver = &ipmi_driver.driver;
new_smi->io.dev = &new_smi->pdev->dev;
new_smi->io.dev->driver = &ipmi_platform_driver.driver;
/* Nulled by device_add() */
new_smi->dev->init_name = init_name;
new_smi->io.dev->init_name = init_name;
}
/* Allocate the state machine's data and initialize it. */
new_smi->si_sm = kmalloc(new_smi->handlers->size(), GFP_KERNEL);
if (!new_smi->si_sm) {
pr_err(PFX "Could not allocate state machine memory\n");
rv = -ENOMEM;
goto out_err;
}
new_smi->io_size = new_smi->handlers->init_data(new_smi->si_sm,
new_smi->io.io_size = new_smi->handlers->init_data(new_smi->si_sm,
&new_smi->io);
/* Now that we know the I/O size, we can set up the I/O. */
rv = new_smi->io_setup(new_smi);
rv = new_smi->io.io_setup(&new_smi->io);
if (rv) {
dev_err(new_smi->dev, "Could not set up I/O space\n");
dev_err(new_smi->io.dev, "Could not set up I/O space\n");
goto out_err;
}
/* Do low-level detection first. */
if (new_smi->handlers->detect(new_smi->si_sm)) {
if (new_smi->addr_source)
dev_err(new_smi->dev, "Interface detection failed\n");
if (new_smi->io.addr_source)
dev_err(new_smi->io.dev,
"Interface detection failed\n");
rv = -ENODEV;
goto out_err;
}
......@@ -3566,8 +2124,9 @@ static int try_smi_init(struct smi_info *new_smi)
*/
rv = try_get_dev_id(new_smi);
if (rv) {
if (new_smi->addr_source)
dev_err(new_smi->dev, "There appears to be no BMC at this location\n");
if (new_smi->io.addr_source)
dev_err(new_smi->io.dev,
"There appears to be no BMC at this location\n");
goto out_err;
}
......@@ -3599,7 +2158,7 @@ static int try_smi_init(struct smi_info *new_smi)
* IRQ is defined to be set when non-zero. req_events will
* cause a global flags check that will enable interrupts.
*/
if (new_smi->irq) {
if (new_smi->io.irq) {
new_smi->interrupt_disabled = false;
atomic_set(&new_smi->req_events, 1);
}
......@@ -3607,30 +2166,40 @@ static int try_smi_init(struct smi_info *new_smi)
if (new_smi->pdev) {
rv = platform_device_add(new_smi->pdev);
if (rv) {
dev_err(new_smi->dev,
dev_err(new_smi->io.dev,
"Unable to register system interface device: %d\n",
rv);
goto out_err;
}
new_smi->dev_registered = true;
}
dev_set_drvdata(new_smi->io.dev, new_smi);
rv = device_add_group(new_smi->io.dev, &ipmi_si_dev_attr_group);
if (rv) {
dev_err(new_smi->io.dev,
"Unable to add device attributes: error %d\n",
rv);
goto out_err_stop_timer;
}
rv = ipmi_register_smi(&handlers,
new_smi,
&new_smi->device_id,
new_smi->dev,
new_smi->slave_addr);
new_smi->io.dev,
new_smi->io.slave_addr);
if (rv) {
dev_err(new_smi->dev, "Unable to register device: error %d\n",
dev_err(new_smi->io.dev,
"Unable to register device: error %d\n",
rv);
goto out_err_stop_timer;
goto out_err_remove_attrs;
}
#ifdef CONFIG_IPMI_PROC_INTERFACE
rv = ipmi_smi_add_proc_entry(new_smi->intf, "type",
&smi_type_proc_ops,
new_smi);
if (rv) {
dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv);
dev_err(new_smi->io.dev,
"Unable to create proc entry: %d\n", rv);
goto out_err_stop_timer;
}
......@@ -3638,7 +2207,8 @@ static int try_smi_init(struct smi_info *new_smi)
&smi_si_stats_proc_ops,
new_smi);
if (rv) {
dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv);
dev_err(new_smi->io.dev,
"Unable to create proc entry: %d\n", rv);
goto out_err_stop_timer;
}
......@@ -3646,21 +2216,27 @@ static int try_smi_init(struct smi_info *new_smi)
&smi_params_proc_ops,
new_smi);
if (rv) {
dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv);
dev_err(new_smi->io.dev,
"Unable to create proc entry: %d\n", rv);
goto out_err_stop_timer;
}
#endif
/* Don't increment till we know we have succeeded. */
smi_num++;
dev_info(new_smi->dev, "IPMI %s interface initialized\n",
si_to_str[new_smi->si_type]);
dev_info(new_smi->io.dev, "IPMI %s interface initialized\n",
si_to_str[new_smi->io.si_type]);
WARN_ON(new_smi->dev->init_name != NULL);
WARN_ON(new_smi->io.dev->init_name != NULL);
kfree(init_name);
return 0;
out_err_remove_attrs:
device_remove_group(new_smi->io.dev, &ipmi_si_dev_attr_group);
dev_set_drvdata(new_smi->io.dev, NULL);
out_err_stop_timer:
wait_for_timer_and_thread(new_smi);
......@@ -3673,9 +2249,9 @@ static int try_smi_init(struct smi_info *new_smi)
ipmi_unregister_smi(intf);
}
if (new_smi->irq_cleanup) {
new_smi->irq_cleanup(new_smi);
new_smi->irq_cleanup = NULL;
if (new_smi->io.irq_cleanup) {
new_smi->io.irq_cleanup(&new_smi->io);
new_smi->io.irq_cleanup = NULL;
}
/*
......@@ -3691,22 +2267,20 @@ static int try_smi_init(struct smi_info *new_smi)
kfree(new_smi->si_sm);
new_smi->si_sm = NULL;
}
if (new_smi->addr_source_cleanup) {
new_smi->addr_source_cleanup(new_smi);
new_smi->addr_source_cleanup = NULL;
if (new_smi->io.addr_source_cleanup) {
new_smi->io.addr_source_cleanup(&new_smi->io);
new_smi->io.addr_source_cleanup = NULL;
}
if (new_smi->io_cleanup) {
new_smi->io_cleanup(new_smi);
new_smi->io_cleanup = NULL;
if (new_smi->io.io_cleanup) {
new_smi->io.io_cleanup(&new_smi->io);
new_smi->io.io_cleanup = NULL;
}
if (new_smi->dev_registered) {
if (new_smi->pdev) {
platform_device_unregister(new_smi->pdev);
new_smi->dev_registered = false;
new_smi->pdev = NULL;
} else if (new_smi->pdev) {
platform_device_put(new_smi->pdev);
new_smi->pdev = NULL;
}
kfree(init_name);
......@@ -3716,97 +2290,57 @@ static int try_smi_init(struct smi_info *new_smi)
static int init_ipmi_si(void)
{
int i;
char *str;
int rv;
struct smi_info *e;
enum ipmi_addr_src type = SI_INVALID;
if (initialized)
return 0;
initialized = 1;
if (si_tryplatform) {
rv = platform_driver_register(&ipmi_driver);
if (rv) {
pr_err(PFX "Unable to register driver: %d\n", rv);
return rv;
}
}
/* Parse out the si_type string into its components. */
str = si_type_str;
if (*str != '\0') {
for (i = 0; (i < SI_MAX_PARMS) && (*str != '\0'); i++) {
si_type[i] = str;
str = strchr(str, ',');
if (str) {
*str = '\0';
str++;
} else {
break;
}
}
}
pr_info("IPMI System Interface driver.\n");
/* If the user gave us a device, they presumably want us to use it */
if (!hardcode_find_bmc())
return 0;
if (!ipmi_si_hardcode_find_bmc())
goto do_scan;
#ifdef CONFIG_PCI
if (si_trypci) {
rv = pci_register_driver(&ipmi_pci_driver);
if (rv)
pr_err(PFX "Unable to register PCI driver: %d\n", rv);
else
pci_registered = true;
}
#endif
ipmi_si_platform_init();
#ifdef CONFIG_ACPI
if (si_tryacpi)
spmi_find_bmc();
#endif
ipmi_si_pci_init();
#ifdef CONFIG_PARISC
register_parisc_driver(&ipmi_parisc_driver);
parisc_registered = true;
#endif
ipmi_si_parisc_init();
/* We prefer devices with interrupts, but in the case of a machine
with multiple BMCs we assume that there will be several instances
of a given type so if we succeed in registering a type then also
try to register everything else of the same type */
do_scan:
mutex_lock(&smi_infos_lock);
list_for_each_entry(e, &smi_infos, link) {
/* Try to register a device if it has an IRQ and we either
haven't successfully registered a device yet or this
device has the same type as one we successfully registered */
if (e->irq && (!type || e->addr_source == type)) {
if (e->io.irq && (!type || e->io.addr_source == type)) {
if (!try_smi_init(e)) {
type = e->addr_source;
type = e->io.addr_source;
}
}
}
/* type will only have been set if we successfully registered an si */
if (type) {
mutex_unlock(&smi_infos_lock);
return 0;
}
if (type)
goto skip_fallback_noirq;
/* Fall back to the preferred device */
list_for_each_entry(e, &smi_infos, link) {
if (!e->irq && (!type || e->addr_source == type)) {
if (!e->io.irq && (!type || e->io.addr_source == type)) {
if (!try_smi_init(e)) {
type = e->addr_source;
type = e->io.addr_source;
}
}
}
skip_fallback_noirq:
initialized = 1;
mutex_unlock(&smi_infos_lock);
if (type)
......@@ -3843,8 +2377,8 @@ static void cleanup_one_si(struct smi_info *to_clean)
}
}
if (to_clean->dev)
dev_set_drvdata(to_clean->dev, NULL);
device_remove_group(to_clean->io.dev, &ipmi_si_dev_attr_group);
dev_set_drvdata(to_clean->io.dev, NULL);
list_del(&to_clean->link);
......@@ -3852,8 +2386,8 @@ static void cleanup_one_si(struct smi_info *to_clean)
* Make sure that interrupts, the timer and the thread are
* stopped and will not run again.
*/
if (to_clean->irq_cleanup)
to_clean->irq_cleanup(to_clean);
if (to_clean->io.irq_cleanup)
to_clean->io.irq_cleanup(&to_clean->io);
wait_for_timer_and_thread(to_clean);
/*
......@@ -3865,6 +2399,7 @@ static void cleanup_one_si(struct smi_info *to_clean)
poll(to_clean);
schedule_timeout_uninterruptible(1);
}
if (to_clean->handlers)
disable_si_irq(to_clean, false);
while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) {
poll(to_clean);
......@@ -3876,17 +2411,53 @@ static void cleanup_one_si(struct smi_info *to_clean)
kfree(to_clean->si_sm);
if (to_clean->addr_source_cleanup)
to_clean->addr_source_cleanup(to_clean);
if (to_clean->io_cleanup)
to_clean->io_cleanup(to_clean);
if (to_clean->io.addr_source_cleanup)
to_clean->io.addr_source_cleanup(&to_clean->io);
if (to_clean->io.io_cleanup)
to_clean->io.io_cleanup(&to_clean->io);
if (to_clean->dev_registered)
if (to_clean->pdev)
platform_device_unregister(to_clean->pdev);
kfree(to_clean);
}
int ipmi_si_remove_by_dev(struct device *dev)
{
struct smi_info *e;
int rv = -ENOENT;
mutex_lock(&smi_infos_lock);
list_for_each_entry(e, &smi_infos, link) {
if (e->io.dev == dev) {
cleanup_one_si(e);
rv = 0;
break;
}
}
mutex_unlock(&smi_infos_lock);
return rv;
}
void ipmi_si_remove_by_data(int addr_space, enum si_type si_type,
unsigned long addr)
{
/* remove */
struct smi_info *e, *tmp_e;
mutex_lock(&smi_infos_lock);
list_for_each_entry_safe(e, tmp_e, &smi_infos, link) {
if (e->io.addr_type != addr_space)
continue;
if (e->io.si_type != si_type)
continue;
if (e->io.addr_data == addr)
cleanup_one_si(e);
}
mutex_unlock(&smi_infos_lock);
}
static void cleanup_ipmi_si(void)
{
struct smi_info *e, *tmp_e;
......@@ -3894,16 +2465,11 @@ static void cleanup_ipmi_si(void)
if (!initialized)
return;
#ifdef CONFIG_PCI
if (pci_registered)
pci_unregister_driver(&ipmi_pci_driver);
#endif
#ifdef CONFIG_PARISC
if (parisc_registered)
unregister_parisc_driver(&ipmi_parisc_driver);
#endif
ipmi_si_pci_shutdown();
ipmi_si_parisc_shutdown();
platform_driver_unregister(&ipmi_driver);
ipmi_si_platform_shutdown();
mutex_lock(&smi_infos_lock);
list_for_each_entry_safe(e, tmp_e, &smi_infos, link)
......
#include <linux/io.h>
#include "ipmi_si.h"
static unsigned char intf_mem_inb(const struct si_sm_io *io,
unsigned int offset)
{
return readb((io->addr)+(offset * io->regspacing));
}
static void intf_mem_outb(const struct si_sm_io *io, unsigned int offset,
unsigned char b)
{
writeb(b, (io->addr)+(offset * io->regspacing));
}
static unsigned char intf_mem_inw(const struct si_sm_io *io,
unsigned int offset)
{
return (readw((io->addr)+(offset * io->regspacing)) >> io->regshift)
& 0xff;
}
static void intf_mem_outw(const struct si_sm_io *io, unsigned int offset,
unsigned char b)
{
writeb(b << io->regshift, (io->addr)+(offset * io->regspacing));
}
static unsigned char intf_mem_inl(const struct si_sm_io *io,
unsigned int offset)
{
return (readl((io->addr)+(offset * io->regspacing)) >> io->regshift)
& 0xff;
}
static void intf_mem_outl(const struct si_sm_io *io, unsigned int offset,
unsigned char b)
{
writel(b << io->regshift, (io->addr)+(offset * io->regspacing));
}
#ifdef readq
static unsigned char mem_inq(const struct si_sm_io *io, unsigned int offset)
{
return (readq((io->addr)+(offset * io->regspacing)) >> io->regshift)
& 0xff;
}
static void mem_outq(const struct si_sm_io *io, unsigned int offset,
unsigned char b)
{
writeq(b << io->regshift, (io->addr)+(offset * io->regspacing));
}
#endif
static void mem_region_cleanup(struct si_sm_io *io, int num)
{
unsigned long addr = io->addr_data;
int idx;
for (idx = 0; idx < num; idx++)
release_mem_region(addr + idx * io->regspacing,
io->regsize);
}
static void mem_cleanup(struct si_sm_io *io)
{
if (io->addr) {
iounmap(io->addr);
mem_region_cleanup(io, io->io_size);
}
}
int ipmi_si_mem_setup(struct si_sm_io *io)
{
unsigned long addr = io->addr_data;
int mapsize, idx;
if (!addr)
return -ENODEV;
io->io_cleanup = mem_cleanup;
/*
* Figure out the actual readb/readw/readl/etc routine to use based
* upon the register size.
*/
switch (io->regsize) {
case 1:
io->inputb = intf_mem_inb;
io->outputb = intf_mem_outb;
break;
case 2:
io->inputb = intf_mem_inw;
io->outputb = intf_mem_outw;
break;
case 4:
io->inputb = intf_mem_inl;
io->outputb = intf_mem_outl;
break;
#ifdef readq
case 8:
io->inputb = mem_inq;
io->outputb = mem_outq;
break;
#endif
default:
dev_warn(io->dev, "Invalid register size: %d\n",
io->regsize);
return -EINVAL;
}
/*
* Some BIOSes reserve disjoint memory regions in their ACPI
* tables. This causes problems when trying to request the
* entire region. Therefore we must request each register
* separately.
*/
for (idx = 0; idx < io->io_size; idx++) {
if (request_mem_region(addr + idx * io->regspacing,
io->regsize, DEVICE_NAME) == NULL) {
/* Undo allocations */
mem_region_cleanup(io, idx);
return -EIO;
}
}
/*
* Calculate the total amount of memory to claim. This is an
* unusual looking calculation, but it avoids claiming any
* more memory than it has to. It will claim everything
* between the first address to the end of the last full
* register.
*/
mapsize = ((io->io_size * io->regspacing)
- (io->regspacing - io->regsize));
io->addr = ioremap(addr, mapsize);
if (io->addr == NULL) {
mem_region_cleanup(io, io->io_size);
return -EIO;
}
return 0;
}
#include <linux/module.h>
#include <asm/hardware.h> /* for register_parisc_driver() stuff */
#include <asm/parisc-device.h>
#include "ipmi_si.h"
static bool parisc_registered;
static int __init ipmi_parisc_probe(struct parisc_device *dev)
{
struct si_sm_io io;
io.si_type = SI_KCS;
io.addr_source = SI_DEVICETREE;
io.addr_type = IPMI_MEM_ADDR_SPACE;
io.addr_data = dev->hpa.start;
io.regsize = 1;
io.regspacing = 1;
io.regshift = 0;
io.irq = 0; /* no interrupt */
io.irq_setup = NULL;
io.dev = &dev->dev;
dev_dbg(&dev->dev, "addr 0x%lx\n", io.addr_data);
return ipmi_si_add_smi(&io);
}
static int __exit ipmi_parisc_remove(struct parisc_device *dev)
{
return ipmi_si_remove_by_dev(&dev->dev);
}
static const struct parisc_device_id ipmi_parisc_tbl[] __initconst = {
{ HPHW_MC, HVERSION_REV_ANY_ID, 0x004, 0xC0 },
{ 0, }
};
MODULE_DEVICE_TABLE(parisc, ipmi_parisc_tbl);
static struct parisc_driver ipmi_parisc_driver __refdata = {
.name = "ipmi",
.id_table = ipmi_parisc_tbl,
.probe = ipmi_parisc_probe,
.remove = __exit_p(ipmi_parisc_remove),
};
void ipmi_si_parisc_init(void)
{
register_parisc_driver(&ipmi_parisc_driver);
parisc_registered = true;
}
void ipmi_si_parisc_shutdown(void)
{
if (parisc_registered)
unregister_parisc_driver(&ipmi_parisc_driver);
}
/*
* ipmi_si_pci.c
*
* Handling for IPMI devices on the PCI bus.
*/
#include <linux/module.h>
#include <linux/pci.h>
#include "ipmi_si.h"
#define PFX "ipmi_pci: "
static bool pci_registered;
static bool si_trypci = true;
module_param_named(trypci, si_trypci, bool, 0);
MODULE_PARM_DESC(trypci, "Setting this to zero will disable the"
" default scan of the interfaces identified via pci");
#define PCI_ERMC_CLASSCODE 0x0C0700
#define PCI_ERMC_CLASSCODE_MASK 0xffffff00
#define PCI_ERMC_CLASSCODE_TYPE_MASK 0xff
#define PCI_ERMC_CLASSCODE_TYPE_SMIC 0x00
#define PCI_ERMC_CLASSCODE_TYPE_KCS 0x01
#define PCI_ERMC_CLASSCODE_TYPE_BT 0x02
#define PCI_HP_VENDOR_ID 0x103C
#define PCI_MMC_DEVICE_ID 0x121A
#define PCI_MMC_ADDR_CW 0x10
static void ipmi_pci_cleanup(struct si_sm_io *io)
{
struct pci_dev *pdev = io->addr_source_data;
pci_disable_device(pdev);
}
static int ipmi_pci_probe_regspacing(struct si_sm_io *io)
{
if (io->si_type == SI_KCS) {
unsigned char status;
int regspacing;
io->regsize = DEFAULT_REGSIZE;
io->regshift = 0;
/* detect 1, 4, 16byte spacing */
for (regspacing = DEFAULT_REGSPACING; regspacing <= 16;) {
io->regspacing = regspacing;
if (io->io_setup(io)) {
dev_err(io->dev,
"Could not setup I/O space\n");
return DEFAULT_REGSPACING;
}
/* write invalid cmd */
io->outputb(io, 1, 0x10);
/* read status back */
status = io->inputb(io, 1);
io->io_cleanup(io);
if (status)
return regspacing;
regspacing *= 4;
}
}
return DEFAULT_REGSPACING;
}
static int ipmi_pci_probe(struct pci_dev *pdev,
const struct pci_device_id *ent)
{
int rv;
int class_type = pdev->class & PCI_ERMC_CLASSCODE_TYPE_MASK;
struct si_sm_io io;
memset(&io, 0, sizeof(io));
io.addr_source = SI_PCI;
dev_info(&pdev->dev, "probing via PCI");
switch (class_type) {
case PCI_ERMC_CLASSCODE_TYPE_SMIC:
io.si_type = SI_SMIC;
break;
case PCI_ERMC_CLASSCODE_TYPE_KCS:
io.si_type = SI_KCS;
break;
case PCI_ERMC_CLASSCODE_TYPE_BT:
io.si_type = SI_BT;
break;
default:
dev_info(&pdev->dev, "Unknown IPMI type: %d\n", class_type);
return -ENOMEM;
}
rv = pci_enable_device(pdev);
if (rv) {
dev_err(&pdev->dev, "couldn't enable PCI device\n");
return rv;
}
io.addr_source_cleanup = ipmi_pci_cleanup;
io.addr_source_data = pdev;
if (pci_resource_flags(pdev, 0) & IORESOURCE_IO)
io.addr_type = IPMI_IO_ADDR_SPACE;
else
io.addr_type = IPMI_MEM_ADDR_SPACE;
io.addr_data = pci_resource_start(pdev, 0);
io.regspacing = ipmi_pci_probe_regspacing(&io);
io.regsize = DEFAULT_REGSIZE;
io.regshift = 0;
io.irq = pdev->irq;
if (io.irq)
io.irq_setup = ipmi_std_irq_setup;
io.dev = &pdev->dev;
dev_info(&pdev->dev, "%pR regsize %d spacing %d irq %d\n",
&pdev->resource[0], io.regsize, io.regspacing, io.irq);
rv = ipmi_si_add_smi(&io);
if (rv)
pci_disable_device(pdev);
return rv;
}
static void ipmi_pci_remove(struct pci_dev *pdev)
{
ipmi_si_remove_by_dev(&pdev->dev);
}
static const struct pci_device_id ipmi_pci_devices[] = {
{ PCI_DEVICE(PCI_HP_VENDOR_ID, PCI_MMC_DEVICE_ID) },
{ PCI_DEVICE_CLASS(PCI_ERMC_CLASSCODE, PCI_ERMC_CLASSCODE_MASK) },
{ 0, }
};
MODULE_DEVICE_TABLE(pci, ipmi_pci_devices);
static struct pci_driver ipmi_pci_driver = {
.name = DEVICE_NAME,
.id_table = ipmi_pci_devices,
.probe = ipmi_pci_probe,
.remove = ipmi_pci_remove,
};
void ipmi_si_pci_init(void)
{
if (si_trypci) {
int rv = pci_register_driver(&ipmi_pci_driver);
if (rv)
pr_err(PFX "Unable to register PCI driver: %d\n", rv);
else
pci_registered = true;
}
}
void ipmi_si_pci_shutdown(void)
{
if (pci_registered)
pci_unregister_driver(&ipmi_pci_driver);
}
/*
* ipmi_si_platform.c
*
* Handling for platform devices in IPMI (ACPI, OF, and things
* coming from the platform.
*/
#include <linux/types.h>
#include <linux/module.h>
#include <linux/of_device.h>
#include <linux/of_platform.h>
#include <linux/of_address.h>
#include <linux/of_irq.h>
#include <linux/acpi.h>
#include "ipmi_si.h"
#include "ipmi_dmi.h"
#define PFX "ipmi_platform: "
static bool si_tryplatform = true;
#ifdef CONFIG_ACPI
static bool si_tryacpi = true;
#endif
#ifdef CONFIG_OF
static bool si_tryopenfirmware = true;
#endif
#ifdef CONFIG_DMI
static bool si_trydmi = true;
#else
static bool si_trydmi = false;
#endif
module_param_named(tryplatform, si_tryplatform, bool, 0);
MODULE_PARM_DESC(tryplatform, "Setting this to zero will disable the"
" default scan of the interfaces identified via platform"
" interfaces besides ACPI, OpenFirmware, and DMI");
#ifdef CONFIG_ACPI
module_param_named(tryacpi, si_tryacpi, bool, 0);
MODULE_PARM_DESC(tryacpi, "Setting this to zero will disable the"
" default scan of the interfaces identified via ACPI");
#endif
#ifdef CONFIG_OF
module_param_named(tryopenfirmware, si_tryopenfirmware, bool, 0);
MODULE_PARM_DESC(tryacpi, "Setting this to zero will disable the"
" default scan of the interfaces identified via OpenFirmware");
#endif
#ifdef CONFIG_DMI
module_param_named(trydmi, si_trydmi, bool, 0);
MODULE_PARM_DESC(trydmi, "Setting this to zero will disable the"
" default scan of the interfaces identified via DMI");
#endif
#ifdef CONFIG_ACPI
/*
* Once we get an ACPI failure, we don't try any more, because we go
* through the tables sequentially. Once we don't find a table, there
* are no more.
*/
static int acpi_failure;
/* For GPE-type interrupts. */
static u32 ipmi_acpi_gpe(acpi_handle gpe_device,
u32 gpe_number, void *context)
{
struct si_sm_io *io = context;
ipmi_si_irq_handler(io->irq, io->irq_handler_data);
return ACPI_INTERRUPT_HANDLED;
}
static void acpi_gpe_irq_cleanup(struct si_sm_io *io)
{
if (!io->irq)
return;
ipmi_irq_start_cleanup(io);
acpi_remove_gpe_handler(NULL, io->irq, &ipmi_acpi_gpe);
}
static int acpi_gpe_irq_setup(struct si_sm_io *io)
{
acpi_status status;
if (!io->irq)
return 0;
status = acpi_install_gpe_handler(NULL,
io->irq,
ACPI_GPE_LEVEL_TRIGGERED,
&ipmi_acpi_gpe,
io);
if (status != AE_OK) {
dev_warn(io->dev,
"Unable to claim ACPI GPE %d, running polled\n",
io->irq);
io->irq = 0;
return -EINVAL;
} else {
io->irq_cleanup = acpi_gpe_irq_cleanup;
ipmi_irq_finish_setup(io);
dev_info(io->dev, "Using ACPI GPE %d\n", io->irq);
return 0;
}
}
/*
* Defined at
* http://h21007.www2.hp.com/portal/download/files/unprot/hpspmi.pdf
*/
struct SPMITable {
s8 Signature[4];
u32 Length;
u8 Revision;
u8 Checksum;
s8 OEMID[6];
s8 OEMTableID[8];
s8 OEMRevision[4];
s8 CreatorID[4];
s8 CreatorRevision[4];
u8 InterfaceType;
u8 IPMIlegacy;
s16 SpecificationRevision;
/*
* Bit 0 - SCI interrupt supported
* Bit 1 - I/O APIC/SAPIC
*/
u8 InterruptType;
/*
* If bit 0 of InterruptType is set, then this is the SCI
* interrupt in the GPEx_STS register.
*/
u8 GPE;
s16 Reserved;
/*
* If bit 1 of InterruptType is set, then this is the I/O
* APIC/SAPIC interrupt.
*/
u32 GlobalSystemInterrupt;
/* The actual register address. */
struct acpi_generic_address addr;
u8 UID[4];
s8 spmi_id[1]; /* A '\0' terminated array starts here. */
};
static int try_init_spmi(struct SPMITable *spmi)
{
struct si_sm_io io;
if (spmi->IPMIlegacy != 1) {
pr_info(PFX "Bad SPMI legacy %d\n", spmi->IPMIlegacy);
return -ENODEV;
}
memset(&io, 0, sizeof(io));
io.addr_source = SI_SPMI;
pr_info(PFX "probing via SPMI\n");
/* Figure out the interface type. */
switch (spmi->InterfaceType) {
case 1: /* KCS */
io.si_type = SI_KCS;
break;
case 2: /* SMIC */
io.si_type = SI_SMIC;
break;
case 3: /* BT */
io.si_type = SI_BT;
break;
case 4: /* SSIF, just ignore */
return -EIO;
default:
pr_info(PFX "Unknown ACPI/SPMI SI type %d\n",
spmi->InterfaceType);
return -EIO;
}
if (spmi->InterruptType & 1) {
/* We've got a GPE interrupt. */
io.irq = spmi->GPE;
io.irq_setup = acpi_gpe_irq_setup;
} else if (spmi->InterruptType & 2) {
/* We've got an APIC/SAPIC interrupt. */
io.irq = spmi->GlobalSystemInterrupt;
io.irq_setup = ipmi_std_irq_setup;
} else {
/* Use the default interrupt setting. */
io.irq = 0;
io.irq_setup = NULL;
}
if (spmi->addr.bit_width) {
/* A (hopefully) properly formed register bit width. */
io.regspacing = spmi->addr.bit_width / 8;
} else {
io.regspacing = DEFAULT_REGSPACING;
}
io.regsize = io.regspacing;
io.regshift = spmi->addr.bit_offset;
if (spmi->addr.space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY) {
io.addr_type = IPMI_MEM_ADDR_SPACE;
} else if (spmi->addr.space_id == ACPI_ADR_SPACE_SYSTEM_IO) {
io.addr_type = IPMI_IO_ADDR_SPACE;
} else {
pr_warn(PFX "Unknown ACPI I/O Address type\n");
return -EIO;
}
io.addr_data = spmi->addr.address;
pr_info("ipmi_si: SPMI: %s %#lx regsize %d spacing %d irq %d\n",
(io.addr_type == IPMI_IO_ADDR_SPACE) ? "io" : "mem",
io.addr_data, io.regsize, io.regspacing, io.irq);
return ipmi_si_add_smi(&io);
}
static void spmi_find_bmc(void)
{
acpi_status status;
struct SPMITable *spmi;
int i;
if (acpi_disabled)
return;
if (acpi_failure)
return;
for (i = 0; ; i++) {
status = acpi_get_table(ACPI_SIG_SPMI, i+1,
(struct acpi_table_header **)&spmi);
if (status != AE_OK)
return;
try_init_spmi(spmi);
}
}
#endif
static struct resource *
ipmi_get_info_from_resources(struct platform_device *pdev,
struct si_sm_io *io)
{
struct resource *res, *res_second;
res = platform_get_resource(pdev, IORESOURCE_IO, 0);
if (res) {
io->addr_type = IPMI_IO_ADDR_SPACE;
} else {
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
if (res)
io->addr_type = IPMI_MEM_ADDR_SPACE;
}
if (!res) {
dev_err(&pdev->dev, "no I/O or memory address\n");
return NULL;
}
io->addr_data = res->start;
io->regspacing = DEFAULT_REGSPACING;
res_second = platform_get_resource(pdev,
(io->addr_type == IPMI_IO_ADDR_SPACE) ?
IORESOURCE_IO : IORESOURCE_MEM,
1);
if (res_second) {
if (res_second->start > io->addr_data)
io->regspacing = res_second->start - io->addr_data;
}
io->regsize = DEFAULT_REGSIZE;
io->regshift = 0;
return res;
}
static int platform_ipmi_probe(struct platform_device *pdev)
{
struct si_sm_io io;
u8 type, slave_addr, addr_source;
int rv;
rv = device_property_read_u8(&pdev->dev, "addr-source", &addr_source);
if (rv)
addr_source = SI_PLATFORM;
if (addr_source >= SI_LAST)
return -EINVAL;
if (addr_source == SI_SMBIOS) {
if (!si_trydmi)
return -ENODEV;
} else {
if (!si_tryplatform)
return -ENODEV;
}
rv = device_property_read_u8(&pdev->dev, "ipmi-type", &type);
if (rv)
return -ENODEV;
memset(&io, 0, sizeof(io));
io.addr_source = addr_source;
dev_info(&pdev->dev, PFX "probing via %s\n",
ipmi_addr_src_to_str(addr_source));
switch (type) {
case SI_KCS:
case SI_SMIC:
case SI_BT:
io.si_type = type;
break;
default:
dev_err(&pdev->dev, "ipmi-type property is invalid\n");
return -EINVAL;
}
if (!ipmi_get_info_from_resources(pdev, &io))
return -EINVAL;
rv = device_property_read_u8(&pdev->dev, "slave-addr", &slave_addr);
if (rv) {
dev_warn(&pdev->dev, "device has no slave-addr property\n");
io.slave_addr = 0x20;
} else {
io.slave_addr = slave_addr;
}
io.irq = platform_get_irq(pdev, 0);
if (io.irq > 0)
io.irq_setup = ipmi_std_irq_setup;
else
io.irq = 0;
io.dev = &pdev->dev;
pr_info("ipmi_si: SMBIOS: %s %#lx regsize %d spacing %d irq %d\n",
(io.addr_type == IPMI_IO_ADDR_SPACE) ? "io" : "mem",
io.addr_data, io.regsize, io.regspacing, io.irq);
ipmi_si_add_smi(&io);
return 0;
}
#ifdef CONFIG_OF
static const struct of_device_id of_ipmi_match[] = {
{ .type = "ipmi", .compatible = "ipmi-kcs",
.data = (void *)(unsigned long) SI_KCS },
{ .type = "ipmi", .compatible = "ipmi-smic",
.data = (void *)(unsigned long) SI_SMIC },
{ .type = "ipmi", .compatible = "ipmi-bt",
.data = (void *)(unsigned long) SI_BT },
{},
};
MODULE_DEVICE_TABLE(of, of_ipmi_match);
static int of_ipmi_probe(struct platform_device *pdev)
{
const struct of_device_id *match;
struct si_sm_io io;
struct resource resource;
const __be32 *regsize, *regspacing, *regshift;
struct device_node *np = pdev->dev.of_node;
int ret;
int proplen;
if (!si_tryopenfirmware)
return -ENODEV;
dev_info(&pdev->dev, "probing via device tree\n");
match = of_match_device(of_ipmi_match, &pdev->dev);
if (!match)
return -ENODEV;
if (!of_device_is_available(np))
return -EINVAL;
ret = of_address_to_resource(np, 0, &resource);
if (ret) {
dev_warn(&pdev->dev, PFX "invalid address from OF\n");
return ret;
}
regsize = of_get_property(np, "reg-size", &proplen);
if (regsize && proplen != 4) {
dev_warn(&pdev->dev, PFX "invalid regsize from OF\n");
return -EINVAL;
}
regspacing = of_get_property(np, "reg-spacing", &proplen);
if (regspacing && proplen != 4) {
dev_warn(&pdev->dev, PFX "invalid regspacing from OF\n");
return -EINVAL;
}
regshift = of_get_property(np, "reg-shift", &proplen);
if (regshift && proplen != 4) {
dev_warn(&pdev->dev, PFX "invalid regshift from OF\n");
return -EINVAL;
}
memset(&io, 0, sizeof(io));
io.si_type = (enum si_type) match->data;
io.addr_source = SI_DEVICETREE;
io.irq_setup = ipmi_std_irq_setup;
if (resource.flags & IORESOURCE_IO)
io.addr_type = IPMI_IO_ADDR_SPACE;
else
io.addr_type = IPMI_MEM_ADDR_SPACE;
io.addr_data = resource.start;
io.regsize = regsize ? be32_to_cpup(regsize) : DEFAULT_REGSIZE;
io.regspacing = regspacing ? be32_to_cpup(regspacing) : DEFAULT_REGSPACING;
io.regshift = regshift ? be32_to_cpup(regshift) : 0;
io.irq = irq_of_parse_and_map(pdev->dev.of_node, 0);
io.dev = &pdev->dev;
dev_dbg(&pdev->dev, "addr 0x%lx regsize %d spacing %d irq %d\n",
io.addr_data, io.regsize, io.regspacing, io.irq);
return ipmi_si_add_smi(&io);
}
#else
#define of_ipmi_match NULL
static int of_ipmi_probe(struct platform_device *dev)
{
return -ENODEV;
}
#endif
#ifdef CONFIG_ACPI
static int find_slave_address(struct si_sm_io *io, int slave_addr)
{
#ifdef CONFIG_IPMI_DMI_DECODE
if (!slave_addr) {
u32 flags = IORESOURCE_IO;
if (io->addr_type == IPMI_MEM_ADDR_SPACE)
flags = IORESOURCE_MEM;
slave_addr = ipmi_dmi_get_slave_addr(io->si_type, flags,
io->addr_data);
}
#endif
return slave_addr;
}
static int acpi_ipmi_probe(struct platform_device *pdev)
{
struct si_sm_io io;
acpi_handle handle;
acpi_status status;
unsigned long long tmp;
struct resource *res;
int rv = -EINVAL;
if (!si_tryacpi)
return -ENODEV;
handle = ACPI_HANDLE(&pdev->dev);
if (!handle)
return -ENODEV;
memset(&io, 0, sizeof(io));
io.addr_source = SI_ACPI;
dev_info(&pdev->dev, PFX "probing via ACPI\n");
io.addr_info.acpi_info.acpi_handle = handle;
/* _IFT tells us the interface type: KCS, BT, etc */
status = acpi_evaluate_integer(handle, "_IFT", NULL, &tmp);
if (ACPI_FAILURE(status)) {
dev_err(&pdev->dev,
"Could not find ACPI IPMI interface type\n");
goto err_free;
}
switch (tmp) {
case 1:
io.si_type = SI_KCS;
break;
case 2:
io.si_type = SI_SMIC;
break;
case 3:
io.si_type = SI_BT;
break;
case 4: /* SSIF, just ignore */
rv = -ENODEV;
goto err_free;
default:
dev_info(&pdev->dev, "unknown IPMI type %lld\n", tmp);
goto err_free;
}
res = ipmi_get_info_from_resources(pdev, &io);
if (!res) {
rv = -EINVAL;
goto err_free;
}
/* If _GPE exists, use it; otherwise use standard interrupts */
status = acpi_evaluate_integer(handle, "_GPE", NULL, &tmp);
if (ACPI_SUCCESS(status)) {
io.irq = tmp;
io.irq_setup = acpi_gpe_irq_setup;
} else {
int irq = platform_get_irq(pdev, 0);
if (irq > 0) {
io.irq = irq;
io.irq_setup = ipmi_std_irq_setup;
}
}
io.slave_addr = find_slave_address(&io, io.slave_addr);
io.dev = &pdev->dev;
dev_info(io.dev, "%pR regsize %d spacing %d irq %d\n",
res, io.regsize, io.regspacing, io.irq);
return ipmi_si_add_smi(&io);
err_free:
return rv;
}
static const struct acpi_device_id acpi_ipmi_match[] = {
{ "IPI0001", 0 },
{ },
};
MODULE_DEVICE_TABLE(acpi, acpi_ipmi_match);
#else
static int acpi_ipmi_probe(struct platform_device *dev)
{
return -ENODEV;
}
#endif
static int ipmi_probe(struct platform_device *pdev)
{
if (pdev->dev.of_node && of_ipmi_probe(pdev) == 0)
return 0;
if (acpi_ipmi_probe(pdev) == 0)
return 0;
return platform_ipmi_probe(pdev);
}
static int ipmi_remove(struct platform_device *pdev)
{
return ipmi_si_remove_by_dev(&pdev->dev);
}
struct platform_driver ipmi_platform_driver = {
.driver = {
.name = DEVICE_NAME,
.of_match_table = of_ipmi_match,
.acpi_match_table = ACPI_PTR(acpi_ipmi_match),
},
.probe = ipmi_probe,
.remove = ipmi_remove,
};
void ipmi_si_platform_init(void)
{
int rv = platform_driver_register(&ipmi_platform_driver);
if (rv)
pr_err(PFX "Unable to register driver: %d\n", rv);
#ifdef CONFIG_ACPI
if (si_tryacpi)
spmi_find_bmc();
#endif
}
void ipmi_si_platform_shutdown(void)
{
platform_driver_unregister(&ipmi_platform_driver);
}
#include <linux/io.h>
#include "ipmi_si.h"
static unsigned char port_inb(const struct si_sm_io *io, unsigned int offset)
{
unsigned int addr = io->addr_data;
return inb(addr + (offset * io->regspacing));
}
static void port_outb(const struct si_sm_io *io, unsigned int offset,
unsigned char b)
{
unsigned int addr = io->addr_data;
outb(b, addr + (offset * io->regspacing));
}
static unsigned char port_inw(const struct si_sm_io *io, unsigned int offset)
{
unsigned int addr = io->addr_data;
return (inw(addr + (offset * io->regspacing)) >> io->regshift) & 0xff;
}
static void port_outw(const struct si_sm_io *io, unsigned int offset,
unsigned char b)
{
unsigned int addr = io->addr_data;
outw(b << io->regshift, addr + (offset * io->regspacing));
}
static unsigned char port_inl(const struct si_sm_io *io, unsigned int offset)
{
unsigned int addr = io->addr_data;
return (inl(addr + (offset * io->regspacing)) >> io->regshift) & 0xff;
}
static void port_outl(const struct si_sm_io *io, unsigned int offset,
unsigned char b)
{
unsigned int addr = io->addr_data;
outl(b << io->regshift, addr+(offset * io->regspacing));
}
static void port_cleanup(struct si_sm_io *io)
{
unsigned int addr = io->addr_data;
int idx;
if (addr) {
for (idx = 0; idx < io->io_size; idx++)
release_region(addr + idx * io->regspacing,
io->regsize);
}
}
int ipmi_si_port_setup(struct si_sm_io *io)
{
unsigned int addr = io->addr_data;
int idx;
if (!addr)
return -ENODEV;
io->io_cleanup = port_cleanup;
/*
* Figure out the actual inb/inw/inl/etc routine to use based
* upon the register size.
*/
switch (io->regsize) {
case 1:
io->inputb = port_inb;
io->outputb = port_outb;
break;
case 2:
io->inputb = port_inw;
io->outputb = port_outw;
break;
case 4:
io->inputb = port_inl;
io->outputb = port_outl;
break;
default:
dev_warn(io->dev, "Invalid register size: %d\n",
io->regsize);
return -EINVAL;
}
/*
* Some BIOSes reserve disjoint I/O regions in their ACPI
* tables. This causes problems when trying to register the
* entire I/O region. Therefore we must register each I/O
* port separately.
*/
for (idx = 0; idx < io->io_size; idx++) {
if (request_region(addr + idx * io->regspacing,
io->regsize, DEVICE_NAME) == NULL) {
/* Undo allocations */
while (idx--)
release_region(addr + idx * io->regspacing,
io->regsize);
return -EIO;
}
}
return 0;
}
......@@ -34,12 +34,18 @@
* 675 Mass Ave, Cambridge, MA 02139, USA.
*/
#include <linux/ipmi.h>
/*
* This is defined by the state machines themselves, it is an opaque
* data type for them to use.
*/
struct si_sm_data;
enum si_type {
SI_TYPE_INVALID, SI_KCS, SI_SMIC, SI_BT
};
/*
* The structure for doing I/O in the state machine. The state
* machine doesn't have the actual I/O routines, they are done through
......@@ -61,6 +67,23 @@ struct si_sm_io {
int regshift;
int addr_type;
long addr_data;
enum ipmi_addr_src addr_source; /* ACPI, PCI, SMBIOS, hardcode, etc. */
void (*addr_source_cleanup)(struct si_sm_io *io);
void *addr_source_data;
union ipmi_smi_info_union addr_info;
int (*io_setup)(struct si_sm_io *info);
void (*io_cleanup)(struct si_sm_io *info);
unsigned int io_size;
int irq;
int (*irq_setup)(struct si_sm_io *io);
void *irq_handler_data;
void (*irq_cleanup)(struct si_sm_io *io);
u8 slave_addr;
enum si_type si_type;
struct device *dev;
};
/* Results of SMI events. */
......
......@@ -53,6 +53,7 @@
#include <linux/acpi.h>
#include <linux/ctype.h>
#include <linux/time64.h>
#include "ipmi_si_sm.h"
#include "ipmi_dmi.h"
#define PFX "ipmi_ssif: "
......@@ -267,9 +268,6 @@ struct ssif_info {
unsigned char *i2c_data;
unsigned int i2c_size;
/* From the device id response. */
struct ipmi_device_id device_id;
struct timer_list retry_timer;
int retries_left;
......@@ -1176,6 +1174,61 @@ MODULE_PARM_DESC(trydmi, "Setting this to zero will disable the default scan of
static DEFINE_MUTEX(ssif_infos_mutex);
static LIST_HEAD(ssif_infos);
#define IPMI_SSIF_ATTR(name) \
static ssize_t ipmi_##name##_show(struct device *dev, \
struct device_attribute *attr, \
char *buf) \
{ \
struct ssif_info *ssif_info = dev_get_drvdata(dev); \
\
return snprintf(buf, 10, "%u\n", ssif_get_stat(ssif_info, name));\
} \
static DEVICE_ATTR(name, S_IRUGO, ipmi_##name##_show, NULL)
static ssize_t ipmi_type_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
return snprintf(buf, 10, "ssif\n");
}
static DEVICE_ATTR(type, S_IRUGO, ipmi_type_show, NULL);
IPMI_SSIF_ATTR(sent_messages);
IPMI_SSIF_ATTR(sent_messages_parts);
IPMI_SSIF_ATTR(send_retries);
IPMI_SSIF_ATTR(send_errors);
IPMI_SSIF_ATTR(received_messages);
IPMI_SSIF_ATTR(received_message_parts);
IPMI_SSIF_ATTR(receive_retries);
IPMI_SSIF_ATTR(receive_errors);
IPMI_SSIF_ATTR(flag_fetches);
IPMI_SSIF_ATTR(hosed);
IPMI_SSIF_ATTR(events);
IPMI_SSIF_ATTR(watchdog_pretimeouts);
IPMI_SSIF_ATTR(alerts);
static struct attribute *ipmi_ssif_dev_attrs[] = {
&dev_attr_type.attr,
&dev_attr_sent_messages.attr,
&dev_attr_sent_messages_parts.attr,
&dev_attr_send_retries.attr,
&dev_attr_send_errors.attr,
&dev_attr_received_messages.attr,
&dev_attr_received_message_parts.attr,
&dev_attr_receive_retries.attr,
&dev_attr_receive_errors.attr,
&dev_attr_flag_fetches.attr,
&dev_attr_hosed.attr,
&dev_attr_events.attr,
&dev_attr_watchdog_pretimeouts.attr,
&dev_attr_alerts.attr,
NULL
};
static const struct attribute_group ipmi_ssif_dev_attr_group = {
.attrs = ipmi_ssif_dev_attrs,
};
static int ssif_remove(struct i2c_client *client)
{
struct ssif_info *ssif_info = i2c_get_clientdata(client);
......@@ -1196,6 +1249,9 @@ static int ssif_remove(struct i2c_client *client)
}
ssif_info->intf = NULL;
device_remove_group(&ssif_info->client->dev, &ipmi_ssif_dev_attr_group);
dev_set_drvdata(&ssif_info->client->dev, NULL);
/* make sure the driver is not looking for flags any more. */
while (ssif_info->ssif_state != SSIF_NORMAL)
schedule_timeout(1);
......@@ -1289,6 +1345,7 @@ static int ssif_detect(struct i2c_client *client, struct i2c_board_info *info)
return rv;
}
#ifdef CONFIG_IPMI_PROC_INTERFACE
static int smi_type_proc_show(struct seq_file *m, void *v)
{
seq_puts(m, "ssif\n");
......@@ -1352,6 +1409,7 @@ static const struct file_operations smi_stats_proc_ops = {
.llseek = seq_lseek,
.release = single_release,
};
#endif
static int strcmp_nospace(char *s1, char *s2)
{
......@@ -1425,7 +1483,7 @@ static int find_slave_address(struct i2c_client *client, int slave_addr)
#ifdef CONFIG_IPMI_DMI_DECODE
if (!slave_addr)
slave_addr = ipmi_dmi_get_slave_addr(
IPMI_DMI_TYPE_SSIF,
SI_TYPE_INVALID,
i2c_adapter_id(client->adapter),
client->addr);
#endif
......@@ -1481,20 +1539,6 @@ static int ssif_probe(struct i2c_client *client, const struct i2c_device_id *id)
ipmi_addr_src_to_str(ssif_info->addr_source),
client->addr, client->adapter->name, slave_addr);
/*
* Do a Get Device ID command, since it comes back with some
* useful info.
*/
msg[0] = IPMI_NETFN_APP_REQUEST << 2;
msg[1] = IPMI_GET_DEVICE_ID_CMD;
rv = do_cmd(client, 2, msg, &len, resp);
if (rv)
goto out;
rv = ipmi_demangle_device_id(resp, len, &ssif_info->device_id);
if (rv)
goto out;
ssif_info->client = client;
i2c_set_clientdata(client, ssif_info);
......@@ -1682,16 +1726,26 @@ static int ssif_probe(struct i2c_client *client, const struct i2c_device_id *id)
}
}
dev_set_drvdata(&ssif_info->client->dev, ssif_info);
rv = device_add_group(&ssif_info->client->dev,
&ipmi_ssif_dev_attr_group);
if (rv) {
dev_err(&ssif_info->client->dev,
"Unable to add device attributes: error %d\n",
rv);
goto out;
}
rv = ipmi_register_smi(&ssif_info->handlers,
ssif_info,
&ssif_info->device_id,
&ssif_info->client->dev,
slave_addr);
if (rv) {
pr_err(PFX "Unable to register device: error %d\n", rv);
goto out;
goto out_remove_attr;
}
#ifdef CONFIG_IPMI_PROC_INTERFACE
rv = ipmi_smi_add_proc_entry(ssif_info->intf, "type",
&smi_type_proc_ops,
ssif_info);
......@@ -1707,6 +1761,7 @@ static int ssif_probe(struct i2c_client *client, const struct i2c_device_id *id)
pr_err(PFX "Unable to create proc entry: %d\n", rv);
goto out_err_unreg;
}
#endif
out:
if (rv) {
......@@ -1725,8 +1780,14 @@ static int ssif_probe(struct i2c_client *client, const struct i2c_device_id *id)
kfree(resp);
return rv;
out_err_unreg:
#ifdef CONFIG_IPMI_PROC_INTERFACE
out_err_unreg:
ipmi_unregister_smi(ssif_info->intf);
#endif
out_remove_attr:
device_remove_group(&ssif_info->client->dev, &ipmi_ssif_dev_attr_group);
dev_set_drvdata(&ssif_info->client->dev, NULL);
goto out;
}
......@@ -1953,20 +2014,13 @@ static void spmi_find_bmc(void) { }
#ifdef CONFIG_DMI
static int dmi_ipmi_probe(struct platform_device *pdev)
{
u8 type, slave_addr = 0;
u8 slave_addr = 0;
u16 i2c_addr;
int rv;
if (!ssif_trydmi)
return -ENODEV;
rv = device_property_read_u8(&pdev->dev, "ipmi-type", &type);
if (rv)
return -ENODEV;
if (type != IPMI_DMI_TYPE_SSIF)
return -ENODEV;
rv = device_property_read_u16(&pdev->dev, "i2c-addr", &i2c_addr);
if (rv) {
dev_warn(&pdev->dev, PFX "No i2c-addr property\n");
......
......@@ -1009,9 +1009,14 @@ static void ipmi_register_watchdog(int ipmi_intf)
goto out;
}
ipmi_get_version(watchdog_user,
rv = ipmi_get_version(watchdog_user,
&ipmi_version_major,
&ipmi_version_minor);
if (rv) {
pr_warn(PFX "Unable to get IPMI version, assuming 1.0\n");
ipmi_version_major = 1;
ipmi_version_minor = 0;
}
rv = misc_register(&ipmi_wdog_miscdev);
if (rv < 0) {
......
......@@ -113,7 +113,7 @@ int ipmi_create_user(unsigned int if_num,
int ipmi_destroy_user(ipmi_user_t user);
/* Get the IPMI version of the BMC we are talking to. */
void ipmi_get_version(ipmi_user_t user,
int ipmi_get_version(ipmi_user_t user,
unsigned char *major,
unsigned char *minor);
......@@ -277,7 +277,7 @@ int ipmi_validate_addr(struct ipmi_addr *addr, int len);
*/
enum ipmi_addr_src {
SI_INVALID = 0, SI_HOTMOD, SI_HARDCODED, SI_SPMI, SI_ACPI, SI_SMBIOS,
SI_PCI, SI_DEVICETREE, SI_LAST
SI_PCI, SI_DEVICETREE, SI_PLATFORM, SI_LAST
};
const char *ipmi_addr_src_to_str(enum ipmi_addr_src src);
......
......@@ -162,27 +162,27 @@ struct ipmi_device_id {
#define ipmi_version_major(v) ((v)->ipmi_version & 0xf)
#define ipmi_version_minor(v) ((v)->ipmi_version >> 4)
/* Take a pointer to a raw data buffer and a length and extract device
id information from it. The first byte of data must point to the
netfn << 2, the data should be of the format:
netfn << 2, cmd, completion code, data
as normally comes from a device interface. */
static inline int ipmi_demangle_device_id(const unsigned char *data,
/* Take a pointer to an IPMI response and extract device id information from
* it. @netfn is in the IPMI_NETFN_ format, so may need to be shifted from
* a SI response.
*/
static inline int ipmi_demangle_device_id(uint8_t netfn, uint8_t cmd,
const unsigned char *data,
unsigned int data_len,
struct ipmi_device_id *id)
{
if (data_len < 9)
if (data_len < 7)
return -EINVAL;
if (data[0] != IPMI_NETFN_APP_RESPONSE << 2 ||
data[1] != IPMI_GET_DEVICE_ID_CMD)
if (netfn != IPMI_NETFN_APP_RESPONSE || cmd != IPMI_GET_DEVICE_ID_CMD)
/* Strange, didn't get the response we expected. */
return -EINVAL;
if (data[2] != 0)
if (data[0] != 0)
/* That's odd, it shouldn't be able to fail. */
return -EINVAL;
data += 3;
data_len -= 3;
data++;
data_len--;
id->device_id = data[0];
id->device_revision = data[1];
id->firmware_revision_1 = data[2];
......@@ -214,7 +214,6 @@ static inline int ipmi_demangle_device_id(const unsigned char *data,
call. */
int ipmi_register_smi(const struct ipmi_smi_handlers *handlers,
void *send_info,
struct ipmi_device_id *device_id,
struct device *dev,
unsigned char slave_addr);
......@@ -242,11 +241,13 @@ static inline void ipmi_free_smi_msg(struct ipmi_smi_msg *msg)
msg->done(msg);
}
#ifdef CONFIG_IPMI_PROC_INTERFACE
/* Allow the lower layer to add things to the proc filesystem
directory for this interface. Note that the entry will
automatically be dstroyed when the interface is destroyed. */
int ipmi_smi_add_proc_entry(ipmi_smi_t smi, char *name,
const struct file_operations *proc_ops,
void *data);
#endif
#endif /* __LINUX_IPMI_SMI_H */
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment