Commit 647810ec authored by Boris Brezillon's avatar Boris Brezillon

drm/panthor: Add the MMU/VM logical block

MMU and VM management is related and placed in the same source file.

Page table updates are delegated to the io-pgtable-arm driver that's in
the iommu subsystem.

The VM management logic is based on drm_gpuva_mgr, and is assuming the
VA space is mostly managed by the usermode driver, except for a reserved
portion of this VA-space that's used for kernel objects (like the heap
contexts/chunks).

Both asynchronous and synchronous VM operations are supported, and
internal helpers are exposed to allow other logical blocks to map their
buffers in the GPU VA space.

There's one VM_BIND queue per-VM (meaning the Vulkan driver can only
expose one sparse-binding queue), and this bind queue is managed with
a 1:1 drm_sched_entity:drm_gpu_scheduler, such that each VM gets its own
independent execution queue, avoiding VM operation serialization at the
device level (things are still serialized at the VM level).

The rest is just implementation details that are hopefully well explained
in the documentation.

v6:
- Add Maxime's and Heiko's acks
- Add Steve's R-b
- Adjust the TRANSCFG value to account for SW VA space limitation on
  32-bit systems
- Keep header inclusion alphabetically ordered

v5:
- Fix a double panthor_vm_cleanup_op_ctx() call
- Fix a race between panthor_vm_prepare_map_op_ctx() and
  panthor_vm_bo_put()
- Fix panthor_vm_pool_destroy_vm() kernel doc
- Fix paddr adjustment in panthor_vm_map_pages()
- Fix bo_offset calculation in panthor_vm_get_bo_for_va()

v4:
- Add an helper to return the VM state
- Check drmm_mutex_init() return code
- Remove the VM from the AS reclaim list when panthor_vm_active() is
  called
- Count the number of active VM users instead of considering there's
  at most one user (several scheduling groups can point to the same
  vM)
- Pre-allocate a VMA object for unmap operations (unmaps can trigger
  a sm_step_remap() call)
- Check vm->root_page_table instead of vm->pgtbl_ops to detect if
  the io-pgtable is trying to allocate the root page table
- Don't memset() the va_node in panthor_vm_alloc_va(), make it a
  caller requirement
- Fix the kernel doc in a few places
- Drop the panthor_vm::base offset constraint and modify
  panthor_vm_put() to explicitly check for a NULL value
- Fix unbalanced vm_bo refcount in panthor_gpuva_sm_step_remap()
- Drop stale comments about the shared_bos list
- Patch mmu_features::va_bits on 32-bit builds to reflect the
  io_pgtable limitation and let the UMD know about it

v3:
- Add acks for the MIT/GPL2 relicensing
- Propagate MMU faults to the scheduler
- Move pages pinning/unpinning out of the dma_signalling path
- Fix 32-bit support
- Rework the user/kernel VA range calculation
- Make the auto-VA range explicit (auto-VA range doesn't cover the full
  kernel-VA range on the MCU VM)
- Let callers of panthor_vm_alloc_va() allocate the drm_mm_node
  (embedded in panthor_kernel_bo now)
- Adjust things to match the latest drm_gpuvm changes (extobj tracking,
  resv prep and more)
- Drop the per-AS lock and use slots_lock (fixes a race on vm->as.id)
- Set as.id to -1 when reusing an address space from the LRU list
- Drop misleading comment about page faults
- Remove check for irq being assigned in panthor_mmu_unplug()
Co-developed-by: default avatarSteven Price <steven.price@arm.com>
Signed-off-by: default avatarSteven Price <steven.price@arm.com>
Signed-off-by: default avatarBoris Brezillon <boris.brezillon@collabora.com>
Acked-by: Steven Price <steven.price@arm.com> # MIT+GPL2 relicensing,Arm
Acked-by: Grant Likely <grant.likely@linaro.org> # MIT+GPL2 relicensing,Linaro
Acked-by: Boris Brezillon <boris.brezillon@collabora.com> # MIT+GPL2 relicensing,Collabora
Reviewed-by: default avatarSteven Price <steven.price@arm.com>
Acked-by: default avatarMaxime Ripard <mripard@kernel.org>
Acked-by: default avatarHeiko Stuebner <heiko@sntech.de>
Link: https://patchwork.freedesktop.org/patch/msgid/20240229162230.2634044-8-boris.brezillon@collabora.com
parent fac9b22d
// SPDX-License-Identifier: GPL-2.0 or MIT
/* Copyright 2019 Linaro, Ltd, Rob Herring <robh@kernel.org> */
/* Copyright 2023 Collabora ltd. */
#include <drm/drm_debugfs.h>
#include <drm/drm_drv.h>
#include <drm/drm_exec.h>
#include <drm/drm_gpuvm.h>
#include <drm/drm_managed.h>
#include <drm/gpu_scheduler.h>
#include <drm/panthor_drm.h>
#include <linux/atomic.h>
#include <linux/bitfield.h>
#include <linux/delay.h>
#include <linux/dma-mapping.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/iopoll.h>
#include <linux/io-pgtable.h>
#include <linux/iommu.h>
#include <linux/kmemleak.h>
#include <linux/platform_device.h>
#include <linux/pm_runtime.h>
#include <linux/rwsem.h>
#include <linux/sched.h>
#include <linux/shmem_fs.h>
#include <linux/sizes.h>
#include "panthor_device.h"
#include "panthor_gem.h"
#include "panthor_heap.h"
#include "panthor_mmu.h"
#include "panthor_regs.h"
#include "panthor_sched.h"
#define MAX_AS_SLOTS 32
struct panthor_vm;
/**
* struct panthor_as_slot - Address space slot
*/
struct panthor_as_slot {
/** @vm: VM bound to this slot. NULL is no VM is bound. */
struct panthor_vm *vm;
};
/**
* struct panthor_mmu - MMU related data
*/
struct panthor_mmu {
/** @irq: The MMU irq. */
struct panthor_irq irq;
/** @as: Address space related fields.
*
* The GPU has a limited number of address spaces (AS) slots, forcing
* us to re-assign them to re-assign slots on-demand.
*/
struct {
/** @slots_lock: Lock protecting access to all other AS fields. */
struct mutex slots_lock;
/** @alloc_mask: Bitmask encoding the allocated slots. */
unsigned long alloc_mask;
/** @faulty_mask: Bitmask encoding the faulty slots. */
unsigned long faulty_mask;
/** @slots: VMs currently bound to the AS slots. */
struct panthor_as_slot slots[MAX_AS_SLOTS];
/**
* @lru_list: List of least recently used VMs.
*
* We use this list to pick a VM to evict when all slots are
* used.
*
* There should be no more active VMs than there are AS slots,
* so this LRU is just here to keep VMs bound until there's
* a need to release a slot, thus avoid unnecessary TLB/cache
* flushes.
*/
struct list_head lru_list;
} as;
/** @vm: VMs management fields */
struct {
/** @lock: Lock protecting access to list. */
struct mutex lock;
/** @list: List containing all VMs. */
struct list_head list;
/** @reset_in_progress: True if a reset is in progress. */
bool reset_in_progress;
/** @wq: Workqueue used for the VM_BIND queues. */
struct workqueue_struct *wq;
} vm;
};
/**
* struct panthor_vm_pool - VM pool object
*/
struct panthor_vm_pool {
/** @xa: Array used for VM handle tracking. */
struct xarray xa;
};
/**
* struct panthor_vma - GPU mapping object
*
* This is used to track GEM mappings in GPU space.
*/
struct panthor_vma {
/** @base: Inherits from drm_gpuva. */
struct drm_gpuva base;
/** @node: Used to implement deferred release of VMAs. */
struct list_head node;
/**
* @flags: Combination of drm_panthor_vm_bind_op_flags.
*
* Only map related flags are accepted.
*/
u32 flags;
};
/**
* struct panthor_vm_op_ctx - VM operation context
*
* With VM operations potentially taking place in a dma-signaling path, we
* need to make sure everything that might require resource allocation is
* pre-allocated upfront. This is what this operation context is far.
*
* We also collect resources that have been freed, so we can release them
* asynchronously, and let the VM_BIND scheduler process the next VM_BIND
* request.
*/
struct panthor_vm_op_ctx {
/** @rsvd_page_tables: Pages reserved for the MMU page table update. */
struct {
/** @count: Number of pages reserved. */
u32 count;
/** @ptr: Point to the first unused page in the @pages table. */
u32 ptr;
/**
* @page: Array of pages that can be used for an MMU page table update.
*
* After an VM operation, there might be free pages left in this array.
* They should be returned to the pt_cache as part of the op_ctx cleanup.
*/
void **pages;
} rsvd_page_tables;
/**
* @preallocated_vmas: Pre-allocated VMAs to handle the remap case.
*
* Partial unmap requests or map requests overlapping existing mappings will
* trigger a remap call, which need to register up to three panthor_vma objects
* (one for the new mapping, and two for the previous and next mappings).
*/
struct panthor_vma *preallocated_vmas[3];
/** @flags: Combination of drm_panthor_vm_bind_op_flags. */
u32 flags;
/** @va: Virtual range targeted by the VM operation. */
struct {
/** @addr: Start address. */
u64 addr;
/** @range: Range size. */
u64 range;
} va;
/**
* @returned_vmas: List of panthor_vma objects returned after a VM operation.
*
* For unmap operations, this will contain all VMAs that were covered by the
* specified VA range.
*
* For map operations, this will contain all VMAs that previously mapped to
* the specified VA range.
*
* Those VMAs, and the resources they point to will be released as part of
* the op_ctx cleanup operation.
*/
struct list_head returned_vmas;
/** @map: Fields specific to a map operation. */
struct {
/** @vm_bo: Buffer object to map. */
struct drm_gpuvm_bo *vm_bo;
/** @bo_offset: Offset in the buffer object. */
u64 bo_offset;
/**
* @sgt: sg-table pointing to pages backing the GEM object.
*
* This is gathered at job creation time, such that we don't have
* to allocate in ::run_job().
*/
struct sg_table *sgt;
/**
* @new_vma: The new VMA object that will be inserted to the VA tree.
*/
struct panthor_vma *new_vma;
} map;
};
/**
* struct panthor_vm - VM object
*
* A VM is an object representing a GPU (or MCU) virtual address space.
* It embeds the MMU page table for this address space, a tree containing
* all the virtual mappings of GEM objects, and other things needed to manage
* the VM.
*
* Except for the MCU VM, which is managed by the kernel, all other VMs are
* created by userspace and mostly managed by userspace, using the
* %DRM_IOCTL_PANTHOR_VM_BIND ioctl.
*
* A portion of the virtual address space is reserved for kernel objects,
* like heap chunks, and userspace gets to decide how much of the virtual
* address space is left to the kernel (half of the virtual address space
* by default).
*/
struct panthor_vm {
/**
* @base: Inherit from drm_gpuvm.
*
* We delegate all the VA management to the common drm_gpuvm framework
* and only implement hooks to update the MMU page table.
*/
struct drm_gpuvm base;
/**
* @sched: Scheduler used for asynchronous VM_BIND request.
*
* We use a 1:1 scheduler here.
*/
struct drm_gpu_scheduler sched;
/**
* @entity: Scheduling entity representing the VM_BIND queue.
*
* There's currently one bind queue per VM. It doesn't make sense to
* allow more given the VM operations are serialized anyway.
*/
struct drm_sched_entity entity;
/** @ptdev: Device. */
struct panthor_device *ptdev;
/** @memattr: Value to program to the AS_MEMATTR register. */
u64 memattr;
/** @pgtbl_ops: Page table operations. */
struct io_pgtable_ops *pgtbl_ops;
/** @root_page_table: Stores the root page table pointer. */
void *root_page_table;
/**
* @op_lock: Lock used to serialize operations on a VM.
*
* The serialization of jobs queued to the VM_BIND queue is already
* taken care of by drm_sched, but we need to serialize synchronous
* and asynchronous VM_BIND request. This is what this lock is for.
*/
struct mutex op_lock;
/**
* @op_ctx: The context attached to the currently executing VM operation.
*
* NULL when no operation is in progress.
*/
struct panthor_vm_op_ctx *op_ctx;
/**
* @mm: Memory management object representing the auto-VA/kernel-VA.
*
* Used to auto-allocate VA space for kernel-managed objects (tiler
* heaps, ...).
*
* For the MCU VM, this is managing the VA range that's used to map
* all shared interfaces.
*
* For user VMs, the range is specified by userspace, and must not
* exceed half of the VA space addressable.
*/
struct drm_mm mm;
/** @mm_lock: Lock protecting the @mm field. */
struct mutex mm_lock;
/** @kernel_auto_va: Automatic VA-range for kernel BOs. */
struct {
/** @start: Start of the automatic VA-range for kernel BOs. */
u64 start;
/** @size: Size of the automatic VA-range for kernel BOs. */
u64 end;
} kernel_auto_va;
/** @as: Address space related fields. */
struct {
/**
* @id: ID of the address space this VM is bound to.
*
* A value of -1 means the VM is inactive/not bound.
*/
int id;
/** @active_cnt: Number of active users of this VM. */
refcount_t active_cnt;
/**
* @lru_node: Used to instead the VM in the panthor_mmu::as::lru_list.
*
* Active VMs should not be inserted in the LRU list.
*/
struct list_head lru_node;
} as;
/**
* @heaps: Tiler heap related fields.
*/
struct {
/**
* @pool: The heap pool attached to this VM.
*
* Will stay NULL until someone creates a heap context on this VM.
*/
struct panthor_heap_pool *pool;
/** @lock: Lock used to protect access to @pool. */
struct mutex lock;
} heaps;
/** @node: Used to insert the VM in the panthor_mmu::vm::list. */
struct list_head node;
/** @for_mcu: True if this is the MCU VM. */
bool for_mcu;
/**
* @destroyed: True if the VM was destroyed.
*
* No further bind requests should be queued to a destroyed VM.
*/
bool destroyed;
/**
* @unusable: True if the VM has turned unusable because something
* bad happened during an asynchronous request.
*
* We don't try to recover from such failures, because this implies
* informing userspace about the specific operation that failed, and
* hoping the userspace driver can replay things from there. This all
* sounds very complicated for little gain.
*
* Instead, we should just flag the VM as unusable, and fail any
* further request targeting this VM.
*
* We also provide a way to query a VM state, so userspace can destroy
* it and create a new one.
*
* As an analogy, this would be mapped to a VK_ERROR_DEVICE_LOST
* situation, where the logical device needs to be re-created.
*/
bool unusable;
/**
* @unhandled_fault: Unhandled fault happened.
*
* This should be reported to the scheduler, and the queue/group be
* flagged as faulty as a result.
*/
bool unhandled_fault;
};
/**
* struct panthor_vm_bind_job - VM bind job
*/
struct panthor_vm_bind_job {
/** @base: Inherit from drm_sched_job. */
struct drm_sched_job base;
/** @refcount: Reference count. */
struct kref refcount;
/** @cleanup_op_ctx_work: Work used to cleanup the VM operation context. */
struct work_struct cleanup_op_ctx_work;
/** @vm: VM targeted by the VM operation. */
struct panthor_vm *vm;
/** @ctx: Operation context. */
struct panthor_vm_op_ctx ctx;
};
/**
* @pt_cache: Cache used to allocate MMU page tables.
*
* The pre-allocation pattern forces us to over-allocate to plan for
* the worst case scenario, and return the pages we didn't use.
*
* Having a kmem_cache allows us to speed allocations.
*/
static struct kmem_cache *pt_cache;
/**
* alloc_pt() - Custom page table allocator
* @cookie: Cookie passed at page table allocation time.
* @size: Size of the page table. This size should be fixed,
* and determined at creation time based on the granule size.
* @gfp: GFP flags.
*
* We want a custom allocator so we can use a cache for page table
* allocations and amortize the cost of the over-reservation that's
* done to allow asynchronous VM operations.
*
* Return: non-NULL on success, NULL if the allocation failed for any
* reason.
*/
static void *alloc_pt(void *cookie, size_t size, gfp_t gfp)
{
struct panthor_vm *vm = cookie;
void *page;
/* Allocation of the root page table happening during init. */
if (unlikely(!vm->root_page_table)) {
struct page *p;
drm_WARN_ON(&vm->ptdev->base, vm->op_ctx);
p = alloc_pages_node(dev_to_node(vm->ptdev->base.dev),
gfp | __GFP_ZERO, get_order(size));
page = p ? page_address(p) : NULL;
vm->root_page_table = page;
return page;
}
/* We're not supposed to have anything bigger than 4k here, because we picked a
* 4k granule size at init time.
*/
if (drm_WARN_ON(&vm->ptdev->base, size != SZ_4K))
return NULL;
/* We must have some op_ctx attached to the VM and it must have at least one
* free page.
*/
if (drm_WARN_ON(&vm->ptdev->base, !vm->op_ctx) ||
drm_WARN_ON(&vm->ptdev->base,
vm->op_ctx->rsvd_page_tables.ptr >= vm->op_ctx->rsvd_page_tables.count))
return NULL;
page = vm->op_ctx->rsvd_page_tables.pages[vm->op_ctx->rsvd_page_tables.ptr++];
memset(page, 0, SZ_4K);
/* Page table entries don't use virtual addresses, which trips out
* kmemleak. kmemleak_alloc_phys() might work, but physical addresses
* are mixed with other fields, and I fear kmemleak won't detect that
* either.
*
* Let's just ignore memory passed to the page-table driver for now.
*/
kmemleak_ignore(page);
return page;
}
/**
* @free_pt() - Custom page table free function
* @cookie: Cookie passed at page table allocation time.
* @data: Page table to free.
* @size: Size of the page table. This size should be fixed,
* and determined at creation time based on the granule size.
*/
static void free_pt(void *cookie, void *data, size_t size)
{
struct panthor_vm *vm = cookie;
if (unlikely(vm->root_page_table == data)) {
free_pages((unsigned long)data, get_order(size));
vm->root_page_table = NULL;
return;
}
if (drm_WARN_ON(&vm->ptdev->base, size != SZ_4K))
return;
/* Return the page to the pt_cache. */
kmem_cache_free(pt_cache, data);
}
static int wait_ready(struct panthor_device *ptdev, u32 as_nr)
{
int ret;
u32 val;
/* Wait for the MMU status to indicate there is no active command, in
* case one is pending.
*/
ret = readl_relaxed_poll_timeout_atomic(ptdev->iomem + AS_STATUS(as_nr),
val, !(val & AS_STATUS_AS_ACTIVE),
10, 100000);
if (ret) {
panthor_device_schedule_reset(ptdev);
drm_err(&ptdev->base, "AS_ACTIVE bit stuck\n");
}
return ret;
}
static int write_cmd(struct panthor_device *ptdev, u32 as_nr, u32 cmd)
{
int status;
/* write AS_COMMAND when MMU is ready to accept another command */
status = wait_ready(ptdev, as_nr);
if (!status)
gpu_write(ptdev, AS_COMMAND(as_nr), cmd);
return status;
}
static void lock_region(struct panthor_device *ptdev, u32 as_nr,
u64 region_start, u64 size)
{
u8 region_width;
u64 region;
u64 region_end = region_start + size;
if (!size)
return;
/*
* The locked region is a naturally aligned power of 2 block encoded as
* log2 minus(1).
* Calculate the desired start/end and look for the highest bit which
* differs. The smallest naturally aligned block must include this bit
* change, the desired region starts with this bit (and subsequent bits)
* zeroed and ends with the bit (and subsequent bits) set to one.
*/
region_width = max(fls64(region_start ^ (region_end - 1)),
const_ilog2(AS_LOCK_REGION_MIN_SIZE)) - 1;
/*
* Mask off the low bits of region_start (which would be ignored by
* the hardware anyway)
*/
region_start &= GENMASK_ULL(63, region_width);
region = region_width | region_start;
/* Lock the region that needs to be updated */
gpu_write(ptdev, AS_LOCKADDR_LO(as_nr), lower_32_bits(region));
gpu_write(ptdev, AS_LOCKADDR_HI(as_nr), upper_32_bits(region));
write_cmd(ptdev, as_nr, AS_COMMAND_LOCK);
}
static int mmu_hw_do_operation_locked(struct panthor_device *ptdev, int as_nr,
u64 iova, u64 size, u32 op)
{
lockdep_assert_held(&ptdev->mmu->as.slots_lock);
if (as_nr < 0)
return 0;
if (op != AS_COMMAND_UNLOCK)
lock_region(ptdev, as_nr, iova, size);
/* Run the MMU operation */
write_cmd(ptdev, as_nr, op);
/* Wait for the flush to complete */
return wait_ready(ptdev, as_nr);
}
static int mmu_hw_do_operation(struct panthor_vm *vm,
u64 iova, u64 size, u32 op)
{
struct panthor_device *ptdev = vm->ptdev;
int ret;
mutex_lock(&ptdev->mmu->as.slots_lock);
ret = mmu_hw_do_operation_locked(ptdev, vm->as.id, iova, size, op);
mutex_unlock(&ptdev->mmu->as.slots_lock);
return ret;
}
static int panthor_mmu_as_enable(struct panthor_device *ptdev, u32 as_nr,
u64 transtab, u64 transcfg, u64 memattr)
{
int ret;
ret = mmu_hw_do_operation_locked(ptdev, as_nr, 0, ~0ULL, AS_COMMAND_FLUSH_MEM);
if (ret)
return ret;
gpu_write(ptdev, AS_TRANSTAB_LO(as_nr), lower_32_bits(transtab));
gpu_write(ptdev, AS_TRANSTAB_HI(as_nr), upper_32_bits(transtab));
gpu_write(ptdev, AS_MEMATTR_LO(as_nr), lower_32_bits(memattr));
gpu_write(ptdev, AS_MEMATTR_HI(as_nr), upper_32_bits(memattr));
gpu_write(ptdev, AS_TRANSCFG_LO(as_nr), lower_32_bits(transcfg));
gpu_write(ptdev, AS_TRANSCFG_HI(as_nr), upper_32_bits(transcfg));
return write_cmd(ptdev, as_nr, AS_COMMAND_UPDATE);
}
static int panthor_mmu_as_disable(struct panthor_device *ptdev, u32 as_nr)
{
int ret;
ret = mmu_hw_do_operation_locked(ptdev, as_nr, 0, ~0ULL, AS_COMMAND_FLUSH_MEM);
if (ret)
return ret;
gpu_write(ptdev, AS_TRANSTAB_LO(as_nr), 0);
gpu_write(ptdev, AS_TRANSTAB_HI(as_nr), 0);
gpu_write(ptdev, AS_MEMATTR_LO(as_nr), 0);
gpu_write(ptdev, AS_MEMATTR_HI(as_nr), 0);
gpu_write(ptdev, AS_TRANSCFG_LO(as_nr), AS_TRANSCFG_ADRMODE_UNMAPPED);
gpu_write(ptdev, AS_TRANSCFG_HI(as_nr), 0);
return write_cmd(ptdev, as_nr, AS_COMMAND_UPDATE);
}
static u32 panthor_mmu_fault_mask(struct panthor_device *ptdev, u32 value)
{
/* Bits 16 to 31 mean REQ_COMPLETE. */
return value & GENMASK(15, 0);
}
static u32 panthor_mmu_as_fault_mask(struct panthor_device *ptdev, u32 as)
{
return BIT(as);
}
/**
* panthor_vm_has_unhandled_faults() - Check if a VM has unhandled faults
* @vm: VM to check.
*
* Return: true if the VM has unhandled faults, false otherwise.
*/
bool panthor_vm_has_unhandled_faults(struct panthor_vm *vm)
{
return vm->unhandled_fault;
}
/**
* panthor_vm_is_unusable() - Check if the VM is still usable
* @vm: VM to check.
*
* Return: true if the VM is unusable, false otherwise.
*/
bool panthor_vm_is_unusable(struct panthor_vm *vm)
{
return vm->unusable;
}
static void panthor_vm_release_as_locked(struct panthor_vm *vm)
{
struct panthor_device *ptdev = vm->ptdev;
lockdep_assert_held(&ptdev->mmu->as.slots_lock);
if (drm_WARN_ON(&ptdev->base, vm->as.id < 0))
return;
ptdev->mmu->as.slots[vm->as.id].vm = NULL;
clear_bit(vm->as.id, &ptdev->mmu->as.alloc_mask);
refcount_set(&vm->as.active_cnt, 0);
list_del_init(&vm->as.lru_node);
vm->as.id = -1;
}
/**
* panthor_vm_active() - Flag a VM as active
* @VM: VM to flag as active.
*
* Assigns an address space to a VM so it can be used by the GPU/MCU.
*
* Return: 0 on success, a negative error code otherwise.
*/
int panthor_vm_active(struct panthor_vm *vm)
{
struct panthor_device *ptdev = vm->ptdev;
u32 va_bits = GPU_MMU_FEATURES_VA_BITS(ptdev->gpu_info.mmu_features);
struct io_pgtable_cfg *cfg = &io_pgtable_ops_to_pgtable(vm->pgtbl_ops)->cfg;
int ret = 0, as, cookie;
u64 transtab, transcfg;
if (!drm_dev_enter(&ptdev->base, &cookie))
return -ENODEV;
if (refcount_inc_not_zero(&vm->as.active_cnt))
goto out_dev_exit;
mutex_lock(&ptdev->mmu->as.slots_lock);
if (refcount_inc_not_zero(&vm->as.active_cnt))
goto out_unlock;
as = vm->as.id;
if (as >= 0) {
/* Unhandled pagefault on this AS, the MMU was disabled. We need to
* re-enable the MMU after clearing+unmasking the AS interrupts.
*/
if (ptdev->mmu->as.faulty_mask & panthor_mmu_as_fault_mask(ptdev, as))
goto out_enable_as;
goto out_make_active;
}
/* Check for a free AS */
if (vm->for_mcu) {
drm_WARN_ON(&ptdev->base, ptdev->mmu->as.alloc_mask & BIT(0));
as = 0;
} else {
as = ffz(ptdev->mmu->as.alloc_mask | BIT(0));
}
if (!(BIT(as) & ptdev->gpu_info.as_present)) {
struct panthor_vm *lru_vm;
lru_vm = list_first_entry_or_null(&ptdev->mmu->as.lru_list,
struct panthor_vm,
as.lru_node);
if (drm_WARN_ON(&ptdev->base, !lru_vm)) {
ret = -EBUSY;
goto out_unlock;
}
drm_WARN_ON(&ptdev->base, refcount_read(&lru_vm->as.active_cnt));
as = lru_vm->as.id;
panthor_vm_release_as_locked(lru_vm);
}
/* Assign the free or reclaimed AS to the FD */
vm->as.id = as;
set_bit(as, &ptdev->mmu->as.alloc_mask);
ptdev->mmu->as.slots[as].vm = vm;
out_enable_as:
transtab = cfg->arm_lpae_s1_cfg.ttbr;
transcfg = AS_TRANSCFG_PTW_MEMATTR_WB |
AS_TRANSCFG_PTW_RA |
AS_TRANSCFG_ADRMODE_AARCH64_4K |
AS_TRANSCFG_INA_BITS(55 - va_bits);
if (ptdev->coherent)
transcfg |= AS_TRANSCFG_PTW_SH_OS;
/* If the VM is re-activated, we clear the fault. */
vm->unhandled_fault = false;
/* Unhandled pagefault on this AS, clear the fault and re-enable interrupts
* before enabling the AS.
*/
if (ptdev->mmu->as.faulty_mask & panthor_mmu_as_fault_mask(ptdev, as)) {
gpu_write(ptdev, MMU_INT_CLEAR, panthor_mmu_as_fault_mask(ptdev, as));
ptdev->mmu->as.faulty_mask &= ~panthor_mmu_as_fault_mask(ptdev, as);
gpu_write(ptdev, MMU_INT_MASK, ~ptdev->mmu->as.faulty_mask);
}
ret = panthor_mmu_as_enable(vm->ptdev, vm->as.id, transtab, transcfg, vm->memattr);
out_make_active:
if (!ret) {
refcount_set(&vm->as.active_cnt, 1);
list_del_init(&vm->as.lru_node);
}
out_unlock:
mutex_unlock(&ptdev->mmu->as.slots_lock);
out_dev_exit:
drm_dev_exit(cookie);
return ret;
}
/**
* panthor_vm_idle() - Flag a VM idle
* @VM: VM to flag as idle.
*
* When we know the GPU is done with the VM (no more jobs to process),
* we can relinquish the AS slot attached to this VM, if any.
*
* We don't release the slot immediately, but instead place the VM in
* the LRU list, so it can be evicted if another VM needs an AS slot.
* This way, VMs keep attached to the AS they were given until we run
* out of free slot, limiting the number of MMU operations (TLB flush
* and other AS updates).
*/
void panthor_vm_idle(struct panthor_vm *vm)
{
struct panthor_device *ptdev = vm->ptdev;
if (!refcount_dec_and_mutex_lock(&vm->as.active_cnt, &ptdev->mmu->as.slots_lock))
return;
if (!drm_WARN_ON(&ptdev->base, vm->as.id == -1 || !list_empty(&vm->as.lru_node)))
list_add_tail(&vm->as.lru_node, &ptdev->mmu->as.lru_list);
refcount_set(&vm->as.active_cnt, 0);
mutex_unlock(&ptdev->mmu->as.slots_lock);
}
static void panthor_vm_stop(struct panthor_vm *vm)
{
drm_sched_stop(&vm->sched, NULL);
}
static void panthor_vm_start(struct panthor_vm *vm)
{
drm_sched_start(&vm->sched, true);
}
/**
* panthor_vm_as() - Get the AS slot attached to a VM
* @vm: VM to get the AS slot of.
*
* Return: -1 if the VM is not assigned an AS slot yet, >= 0 otherwise.
*/
int panthor_vm_as(struct panthor_vm *vm)
{
return vm->as.id;
}
static size_t get_pgsize(u64 addr, size_t size, size_t *count)
{
/*
* io-pgtable only operates on multiple pages within a single table
* entry, so we need to split at boundaries of the table size, i.e.
* the next block size up. The distance from address A to the next
* boundary of block size B is logically B - A % B, but in unsigned
* two's complement where B is a power of two we get the equivalence
* B - A % B == (B - A) % B == (n * B - A) % B, and choose n = 0 :)
*/
size_t blk_offset = -addr % SZ_2M;
if (blk_offset || size < SZ_2M) {
*count = min_not_zero(blk_offset, size) / SZ_4K;
return SZ_4K;
}
blk_offset = -addr % SZ_1G ?: SZ_1G;
*count = min(blk_offset, size) / SZ_2M;
return SZ_2M;
}
static int panthor_vm_flush_range(struct panthor_vm *vm, u64 iova, u64 size)
{
struct panthor_device *ptdev = vm->ptdev;
int ret = 0, cookie;
if (vm->as.id < 0)
return 0;
/* If the device is unplugged, we just silently skip the flush. */
if (!drm_dev_enter(&ptdev->base, &cookie))
return 0;
/* Flush the PTs only if we're already awake */
if (pm_runtime_active(ptdev->base.dev))
ret = mmu_hw_do_operation(vm, iova, size, AS_COMMAND_FLUSH_PT);
drm_dev_exit(cookie);
return ret;
}
static int panthor_vm_unmap_pages(struct panthor_vm *vm, u64 iova, u64 size)
{
struct panthor_device *ptdev = vm->ptdev;
struct io_pgtable_ops *ops = vm->pgtbl_ops;
u64 offset = 0;
drm_dbg(&ptdev->base, "unmap: as=%d, iova=%llx, len=%llx", vm->as.id, iova, size);
while (offset < size) {
size_t unmapped_sz = 0, pgcount;
size_t pgsize = get_pgsize(iova + offset, size - offset, &pgcount);
unmapped_sz = ops->unmap_pages(ops, iova + offset, pgsize, pgcount, NULL);
if (drm_WARN_ON(&ptdev->base, unmapped_sz != pgsize * pgcount)) {
drm_err(&ptdev->base, "failed to unmap range %llx-%llx (requested range %llx-%llx)\n",
iova + offset + unmapped_sz,
iova + offset + pgsize * pgcount,
iova, iova + size);
panthor_vm_flush_range(vm, iova, offset + unmapped_sz);
return -EINVAL;
}
offset += unmapped_sz;
}
return panthor_vm_flush_range(vm, iova, size);
}
static int
panthor_vm_map_pages(struct panthor_vm *vm, u64 iova, int prot,
struct sg_table *sgt, u64 offset, u64 size)
{
struct panthor_device *ptdev = vm->ptdev;
unsigned int count;
struct scatterlist *sgl;
struct io_pgtable_ops *ops = vm->pgtbl_ops;
u64 start_iova = iova;
int ret;
if (!size)
return 0;
for_each_sgtable_dma_sg(sgt, sgl, count) {
dma_addr_t paddr = sg_dma_address(sgl);
size_t len = sg_dma_len(sgl);
if (len <= offset) {
offset -= len;
continue;
}
paddr += offset;
len -= offset;
len = min_t(size_t, len, size);
size -= len;
drm_dbg(&ptdev->base, "map: as=%d, iova=%llx, paddr=%pad, len=%zx",
vm->as.id, iova, &paddr, len);
while (len) {
size_t pgcount, mapped = 0;
size_t pgsize = get_pgsize(iova | paddr, len, &pgcount);
ret = ops->map_pages(ops, iova, paddr, pgsize, pgcount, prot,
GFP_KERNEL, &mapped);
iova += mapped;
paddr += mapped;
len -= mapped;
if (drm_WARN_ON(&ptdev->base, !ret && !mapped))
ret = -ENOMEM;
if (ret) {
/* If something failed, unmap what we've already mapped before
* returning. The unmap call is not supposed to fail.
*/
drm_WARN_ON(&ptdev->base,
panthor_vm_unmap_pages(vm, start_iova,
iova - start_iova));
return ret;
}
}
if (!size)
break;
}
return panthor_vm_flush_range(vm, start_iova, iova - start_iova);
}
static int flags_to_prot(u32 flags)
{
int prot = 0;
if (flags & DRM_PANTHOR_VM_BIND_OP_MAP_NOEXEC)
prot |= IOMMU_NOEXEC;
if (!(flags & DRM_PANTHOR_VM_BIND_OP_MAP_UNCACHED))
prot |= IOMMU_CACHE;
if (flags & DRM_PANTHOR_VM_BIND_OP_MAP_READONLY)
prot |= IOMMU_READ;
else
prot |= IOMMU_READ | IOMMU_WRITE;
return prot;
}
/**
* panthor_vm_alloc_va() - Allocate a region in the auto-va space
* @VM: VM to allocate a region on.
* @va: start of the VA range. Can be PANTHOR_VM_KERNEL_AUTO_VA if the user
* wants the VA to be automatically allocated from the auto-VA range.
* @size: size of the VA range.
* @va_node: drm_mm_node to initialize. Must be zero-initialized.
*
* Some GPU objects, like heap chunks, are fully managed by the kernel and
* need to be mapped to the userspace VM, in the region reserved for kernel
* objects.
*
* This function takes care of allocating a region in the kernel auto-VA space.
*
* Return: 0 on success, an error code otherwise.
*/
int
panthor_vm_alloc_va(struct panthor_vm *vm, u64 va, u64 size,
struct drm_mm_node *va_node)
{
int ret;
if (!size || (size & ~PAGE_MASK))
return -EINVAL;
if (va != PANTHOR_VM_KERNEL_AUTO_VA && (va & ~PAGE_MASK))
return -EINVAL;
mutex_lock(&vm->mm_lock);
if (va != PANTHOR_VM_KERNEL_AUTO_VA) {
va_node->start = va;
va_node->size = size;
ret = drm_mm_reserve_node(&vm->mm, va_node);
} else {
ret = drm_mm_insert_node_in_range(&vm->mm, va_node, size,
size >= SZ_2M ? SZ_2M : SZ_4K,
0, vm->kernel_auto_va.start,
vm->kernel_auto_va.end,
DRM_MM_INSERT_BEST);
}
mutex_unlock(&vm->mm_lock);
return ret;
}
/**
* panthor_vm_free_va() - Free a region allocated with panthor_vm_alloc_va()
* @VM: VM to free the region on.
* @va_node: Memory node representing the region to free.
*/
void panthor_vm_free_va(struct panthor_vm *vm, struct drm_mm_node *va_node)
{
mutex_lock(&vm->mm_lock);
drm_mm_remove_node(va_node);
mutex_unlock(&vm->mm_lock);
}
static void panthor_vm_bo_put(struct drm_gpuvm_bo *vm_bo)
{
struct panthor_gem_object *bo = to_panthor_bo(vm_bo->obj);
struct drm_gpuvm *vm = vm_bo->vm;
bool unpin;
/* We must retain the GEM before calling drm_gpuvm_bo_put(),
* otherwise the mutex might be destroyed while we hold it.
* Same goes for the VM, since we take the VM resv lock.
*/
drm_gem_object_get(&bo->base.base);
drm_gpuvm_get(vm);
/* We take the resv lock to protect against concurrent accesses to the
* gpuvm evicted/extobj lists that are modified in
* drm_gpuvm_bo_destroy(), which is called if drm_gpuvm_bo_put()
* releases sthe last vm_bo reference.
* We take the BO GPUVA list lock to protect the vm_bo removal from the
* GEM vm_bo list.
*/
dma_resv_lock(drm_gpuvm_resv(vm), NULL);
mutex_lock(&bo->gpuva_list_lock);
unpin = drm_gpuvm_bo_put(vm_bo);
mutex_unlock(&bo->gpuva_list_lock);
dma_resv_unlock(drm_gpuvm_resv(vm));
/* If the vm_bo object was destroyed, release the pin reference that
* was hold by this object.
*/
if (unpin && !bo->base.base.import_attach)
drm_gem_shmem_unpin(&bo->base);
drm_gpuvm_put(vm);
drm_gem_object_put(&bo->base.base);
}
static void panthor_vm_cleanup_op_ctx(struct panthor_vm_op_ctx *op_ctx,
struct panthor_vm *vm)
{
struct panthor_vma *vma, *tmp_vma;
u32 remaining_pt_count = op_ctx->rsvd_page_tables.count -
op_ctx->rsvd_page_tables.ptr;
if (remaining_pt_count) {
kmem_cache_free_bulk(pt_cache, remaining_pt_count,
op_ctx->rsvd_page_tables.pages +
op_ctx->rsvd_page_tables.ptr);
}
kfree(op_ctx->rsvd_page_tables.pages);
if (op_ctx->map.vm_bo)
panthor_vm_bo_put(op_ctx->map.vm_bo);
for (u32 i = 0; i < ARRAY_SIZE(op_ctx->preallocated_vmas); i++)
kfree(op_ctx->preallocated_vmas[i]);
list_for_each_entry_safe(vma, tmp_vma, &op_ctx->returned_vmas, node) {
list_del(&vma->node);
panthor_vm_bo_put(vma->base.vm_bo);
kfree(vma);
}
}
static struct panthor_vma *
panthor_vm_op_ctx_get_vma(struct panthor_vm_op_ctx *op_ctx)
{
for (u32 i = 0; i < ARRAY_SIZE(op_ctx->preallocated_vmas); i++) {
struct panthor_vma *vma = op_ctx->preallocated_vmas[i];
if (vma) {
op_ctx->preallocated_vmas[i] = NULL;
return vma;
}
}
return NULL;
}
static int
panthor_vm_op_ctx_prealloc_vmas(struct panthor_vm_op_ctx *op_ctx)
{
u32 vma_count;
switch (op_ctx->flags & DRM_PANTHOR_VM_BIND_OP_TYPE_MASK) {
case DRM_PANTHOR_VM_BIND_OP_TYPE_MAP:
/* One VMA for the new mapping, and two more VMAs for the remap case
* which might contain both a prev and next VA.
*/
vma_count = 3;
break;
case DRM_PANTHOR_VM_BIND_OP_TYPE_UNMAP:
/* Partial unmaps might trigger a remap with either a prev or a next VA,
* but not both.
*/
vma_count = 1;
break;
default:
return 0;
}
for (u32 i = 0; i < vma_count; i++) {
struct panthor_vma *vma = kzalloc(sizeof(*vma), GFP_KERNEL);
if (!vma)
return -ENOMEM;
op_ctx->preallocated_vmas[i] = vma;
}
return 0;
}
#define PANTHOR_VM_BIND_OP_MAP_FLAGS \
(DRM_PANTHOR_VM_BIND_OP_MAP_READONLY | \
DRM_PANTHOR_VM_BIND_OP_MAP_NOEXEC | \
DRM_PANTHOR_VM_BIND_OP_MAP_UNCACHED | \
DRM_PANTHOR_VM_BIND_OP_TYPE_MASK)
static int panthor_vm_prepare_map_op_ctx(struct panthor_vm_op_ctx *op_ctx,
struct panthor_vm *vm,
struct panthor_gem_object *bo,
u64 offset,
u64 size, u64 va,
u32 flags)
{
struct drm_gpuvm_bo *preallocated_vm_bo;
struct sg_table *sgt = NULL;
u64 pt_count;
int ret;
if (!bo)
return -EINVAL;
if ((flags & ~PANTHOR_VM_BIND_OP_MAP_FLAGS) ||
(flags & DRM_PANTHOR_VM_BIND_OP_TYPE_MASK) != DRM_PANTHOR_VM_BIND_OP_TYPE_MAP)
return -EINVAL;
/* Make sure the VA and size are aligned and in-bounds. */
if (size > bo->base.base.size || offset > bo->base.base.size - size)
return -EINVAL;
/* If the BO has an exclusive VM attached, it can't be mapped to other VMs. */
if (bo->exclusive_vm_root_gem &&
bo->exclusive_vm_root_gem != panthor_vm_root_gem(vm))
return -EINVAL;
memset(op_ctx, 0, sizeof(*op_ctx));
INIT_LIST_HEAD(&op_ctx->returned_vmas);
op_ctx->flags = flags;
op_ctx->va.range = size;
op_ctx->va.addr = va;
ret = panthor_vm_op_ctx_prealloc_vmas(op_ctx);
if (ret)
goto err_cleanup;
if (!bo->base.base.import_attach) {
/* Pre-reserve the BO pages, so the map operation doesn't have to
* allocate.
*/
ret = drm_gem_shmem_pin(&bo->base);
if (ret)
goto err_cleanup;
}
sgt = drm_gem_shmem_get_pages_sgt(&bo->base);
if (IS_ERR(sgt)) {
if (!bo->base.base.import_attach)
drm_gem_shmem_unpin(&bo->base);
ret = PTR_ERR(sgt);
goto err_cleanup;
}
op_ctx->map.sgt = sgt;
preallocated_vm_bo = drm_gpuvm_bo_create(&vm->base, &bo->base.base);
if (!preallocated_vm_bo) {
if (!bo->base.base.import_attach)
drm_gem_shmem_unpin(&bo->base);
ret = -ENOMEM;
goto err_cleanup;
}
mutex_lock(&bo->gpuva_list_lock);
op_ctx->map.vm_bo = drm_gpuvm_bo_obtain_prealloc(preallocated_vm_bo);
mutex_unlock(&bo->gpuva_list_lock);
/* If the a vm_bo for this <VM,BO> combination exists, it already
* retains a pin ref, and we can release the one we took earlier.
*
* If our pre-allocated vm_bo is picked, it now retains the pin ref,
* which will be released in panthor_vm_bo_put().
*/
if (preallocated_vm_bo != op_ctx->map.vm_bo &&
!bo->base.base.import_attach)
drm_gem_shmem_unpin(&bo->base);
op_ctx->map.bo_offset = offset;
/* L1, L2 and L3 page tables.
* We could optimize L3 allocation by iterating over the sgt and merging
* 2M contiguous blocks, but it's simpler to over-provision and return
* the pages if they're not used.
*/
pt_count = ((ALIGN(va + size, 1ull << 39) - ALIGN_DOWN(va, 1ull << 39)) >> 39) +
((ALIGN(va + size, 1ull << 30) - ALIGN_DOWN(va, 1ull << 30)) >> 30) +
((ALIGN(va + size, 1ull << 21) - ALIGN_DOWN(va, 1ull << 21)) >> 21);
op_ctx->rsvd_page_tables.pages = kcalloc(pt_count,
sizeof(*op_ctx->rsvd_page_tables.pages),
GFP_KERNEL);
if (!op_ctx->rsvd_page_tables.pages)
goto err_cleanup;
ret = kmem_cache_alloc_bulk(pt_cache, GFP_KERNEL, pt_count,
op_ctx->rsvd_page_tables.pages);
op_ctx->rsvd_page_tables.count = ret;
if (ret != pt_count) {
ret = -ENOMEM;
goto err_cleanup;
}
/* Insert BO into the extobj list last, when we know nothing can fail. */
dma_resv_lock(panthor_vm_resv(vm), NULL);
drm_gpuvm_bo_extobj_add(op_ctx->map.vm_bo);
dma_resv_unlock(panthor_vm_resv(vm));
return 0;
err_cleanup:
panthor_vm_cleanup_op_ctx(op_ctx, vm);
return ret;
}
static int panthor_vm_prepare_unmap_op_ctx(struct panthor_vm_op_ctx *op_ctx,
struct panthor_vm *vm,
u64 va, u64 size)
{
u32 pt_count = 0;
int ret;
memset(op_ctx, 0, sizeof(*op_ctx));
INIT_LIST_HEAD(&op_ctx->returned_vmas);
op_ctx->va.range = size;
op_ctx->va.addr = va;
op_ctx->flags = DRM_PANTHOR_VM_BIND_OP_TYPE_UNMAP;
/* Pre-allocate L3 page tables to account for the split-2M-block
* situation on unmap.
*/
if (va != ALIGN(va, SZ_2M))
pt_count++;
if (va + size != ALIGN(va + size, SZ_2M) &&
ALIGN(va + size, SZ_2M) != ALIGN(va, SZ_2M))
pt_count++;
ret = panthor_vm_op_ctx_prealloc_vmas(op_ctx);
if (ret)
goto err_cleanup;
if (pt_count) {
op_ctx->rsvd_page_tables.pages = kcalloc(pt_count,
sizeof(*op_ctx->rsvd_page_tables.pages),
GFP_KERNEL);
if (!op_ctx->rsvd_page_tables.pages)
goto err_cleanup;
ret = kmem_cache_alloc_bulk(pt_cache, GFP_KERNEL, pt_count,
op_ctx->rsvd_page_tables.pages);
if (ret != pt_count) {
ret = -ENOMEM;
goto err_cleanup;
}
op_ctx->rsvd_page_tables.count = pt_count;
}
return 0;
err_cleanup:
panthor_vm_cleanup_op_ctx(op_ctx, vm);
return ret;
}
static void panthor_vm_prepare_sync_only_op_ctx(struct panthor_vm_op_ctx *op_ctx,
struct panthor_vm *vm)
{
memset(op_ctx, 0, sizeof(*op_ctx));
INIT_LIST_HEAD(&op_ctx->returned_vmas);
op_ctx->flags = DRM_PANTHOR_VM_BIND_OP_TYPE_SYNC_ONLY;
}
/**
* panthor_vm_get_bo_for_va() - Get the GEM object mapped at a virtual address
* @vm: VM to look into.
* @va: Virtual address to search for.
* @bo_offset: Offset of the GEM object mapped at this virtual address.
* Only valid on success.
*
* The object returned by this function might no longer be mapped when the
* function returns. It's the caller responsibility to ensure there's no
* concurrent map/unmap operations making the returned value invalid, or
* make sure it doesn't matter if the object is no longer mapped.
*
* Return: A valid pointer on success, an ERR_PTR() otherwise.
*/
struct panthor_gem_object *
panthor_vm_get_bo_for_va(struct panthor_vm *vm, u64 va, u64 *bo_offset)
{
struct panthor_gem_object *bo = ERR_PTR(-ENOENT);
struct drm_gpuva *gpuva;
struct panthor_vma *vma;
/* Take the VM lock to prevent concurrent map/unmap operations. */
mutex_lock(&vm->op_lock);
gpuva = drm_gpuva_find_first(&vm->base, va, 1);
vma = gpuva ? container_of(gpuva, struct panthor_vma, base) : NULL;
if (vma && vma->base.gem.obj) {
drm_gem_object_get(vma->base.gem.obj);
bo = to_panthor_bo(vma->base.gem.obj);
*bo_offset = vma->base.gem.offset + (va - vma->base.va.addr);
}
mutex_unlock(&vm->op_lock);
return bo;
}
#define PANTHOR_VM_MIN_KERNEL_VA_SIZE SZ_256M
static u64
panthor_vm_create_get_user_va_range(const struct drm_panthor_vm_create *args,
u64 full_va_range)
{
u64 user_va_range;
/* Make sure we have a minimum amount of VA space for kernel objects. */
if (full_va_range < PANTHOR_VM_MIN_KERNEL_VA_SIZE)
return 0;
if (args->user_va_range) {
/* Use the user provided value if != 0. */
user_va_range = args->user_va_range;
} else if (TASK_SIZE_OF(current) < full_va_range) {
/* If the task VM size is smaller than the GPU VA range, pick this
* as our default user VA range, so userspace can CPU/GPU map buffers
* at the same address.
*/
user_va_range = TASK_SIZE_OF(current);
} else {
/* If the GPU VA range is smaller than the task VM size, we
* just have to live with the fact we won't be able to map
* all buffers at the same GPU/CPU address.
*
* If the GPU VA range is bigger than 4G (more than 32-bit of
* VA), we split the range in two, and assign half of it to
* the user and the other half to the kernel, if it's not, we
* keep the kernel VA space as small as possible.
*/
user_va_range = full_va_range > SZ_4G ?
full_va_range / 2 :
full_va_range - PANTHOR_VM_MIN_KERNEL_VA_SIZE;
}
if (full_va_range - PANTHOR_VM_MIN_KERNEL_VA_SIZE < user_va_range)
user_va_range = full_va_range - PANTHOR_VM_MIN_KERNEL_VA_SIZE;
return user_va_range;
}
#define PANTHOR_VM_CREATE_FLAGS 0
static int
panthor_vm_create_check_args(const struct panthor_device *ptdev,
const struct drm_panthor_vm_create *args,
u64 *kernel_va_start, u64 *kernel_va_range)
{
u32 va_bits = GPU_MMU_FEATURES_VA_BITS(ptdev->gpu_info.mmu_features);
u64 full_va_range = 1ull << va_bits;
u64 user_va_range;
if (args->flags & ~PANTHOR_VM_CREATE_FLAGS)
return -EINVAL;
user_va_range = panthor_vm_create_get_user_va_range(args, full_va_range);
if (!user_va_range || (args->user_va_range && args->user_va_range > user_va_range))
return -EINVAL;
/* Pick a kernel VA range that's a power of two, to have a clear split. */
*kernel_va_range = rounddown_pow_of_two(full_va_range - user_va_range);
*kernel_va_start = full_va_range - *kernel_va_range;
return 0;
}
/*
* Only 32 VMs per open file. If that becomes a limiting factor, we can
* increase this number.
*/
#define PANTHOR_MAX_VMS_PER_FILE 32
/**
* panthor_vm_pool_create_vm() - Create a VM
* @pool: The VM to create this VM on.
* @kernel_va_start: Start of the region reserved for kernel objects.
* @kernel_va_range: Size of the region reserved for kernel objects.
*
* Return: a positive VM ID on success, a negative error code otherwise.
*/
int panthor_vm_pool_create_vm(struct panthor_device *ptdev,
struct panthor_vm_pool *pool,
struct drm_panthor_vm_create *args)
{
u64 kernel_va_start, kernel_va_range;
struct panthor_vm *vm;
int ret;
u32 id;
ret = panthor_vm_create_check_args(ptdev, args, &kernel_va_start, &kernel_va_range);
if (ret)
return ret;
vm = panthor_vm_create(ptdev, false, kernel_va_start, kernel_va_range,
kernel_va_start, kernel_va_range);
if (IS_ERR(vm))
return PTR_ERR(vm);
ret = xa_alloc(&pool->xa, &id, vm,
XA_LIMIT(1, PANTHOR_MAX_VMS_PER_FILE), GFP_KERNEL);
if (ret) {
panthor_vm_put(vm);
return ret;
}
args->user_va_range = kernel_va_start;
return id;
}
static void panthor_vm_destroy(struct panthor_vm *vm)
{
if (!vm)
return;
vm->destroyed = true;
mutex_lock(&vm->heaps.lock);
panthor_heap_pool_destroy(vm->heaps.pool);
vm->heaps.pool = NULL;
mutex_unlock(&vm->heaps.lock);
drm_WARN_ON(&vm->ptdev->base,
panthor_vm_unmap_range(vm, vm->base.mm_start, vm->base.mm_range));
panthor_vm_put(vm);
}
/**
* panthor_vm_pool_destroy_vm() - Destroy a VM.
* @pool: VM pool.
* @handle: VM handle.
*
* This function doesn't free the VM object or its resources, it just kills
* all mappings, and makes sure nothing can be mapped after that point.
*
* If there was any active jobs at the time this function is called, these
* jobs should experience page faults and be killed as a result.
*
* The VM resources are freed when the last reference on the VM object is
* dropped.
*/
int panthor_vm_pool_destroy_vm(struct panthor_vm_pool *pool, u32 handle)
{
struct panthor_vm *vm;
vm = xa_erase(&pool->xa, handle);
panthor_vm_destroy(vm);
return vm ? 0 : -EINVAL;
}
/**
* panthor_vm_pool_get_vm() - Retrieve VM object bound to a VM handle
* @pool: VM pool to check.
* @handle: Handle of the VM to retrieve.
*
* Return: A valid pointer if the VM exists, NULL otherwise.
*/
struct panthor_vm *
panthor_vm_pool_get_vm(struct panthor_vm_pool *pool, u32 handle)
{
struct panthor_vm *vm;
vm = panthor_vm_get(xa_load(&pool->xa, handle));
return vm;
}
/**
* panthor_vm_pool_destroy() - Destroy a VM pool.
* @pfile: File.
*
* Destroy all VMs in the pool, and release the pool resources.
*
* Note that VMs can outlive the pool they were created from if other
* objects hold a reference to there VMs.
*/
void panthor_vm_pool_destroy(struct panthor_file *pfile)
{
struct panthor_vm *vm;
unsigned long i;
if (!pfile->vms)
return;
xa_for_each(&pfile->vms->xa, i, vm)
panthor_vm_destroy(vm);
xa_destroy(&pfile->vms->xa);
kfree(pfile->vms);
}
/**
* panthor_vm_pool_create() - Create a VM pool
* @pfile: File.
*
* Return: 0 on success, a negative error code otherwise.
*/
int panthor_vm_pool_create(struct panthor_file *pfile)
{
pfile->vms = kzalloc(sizeof(*pfile->vms), GFP_KERNEL);
if (!pfile->vms)
return -ENOMEM;
xa_init_flags(&pfile->vms->xa, XA_FLAGS_ALLOC1);
return 0;
}
/* dummy TLB ops, the real TLB flush happens in panthor_vm_flush_range() */
static void mmu_tlb_flush_all(void *cookie)
{
}
static void mmu_tlb_flush_walk(unsigned long iova, size_t size, size_t granule, void *cookie)
{
}
static const struct iommu_flush_ops mmu_tlb_ops = {
.tlb_flush_all = mmu_tlb_flush_all,
.tlb_flush_walk = mmu_tlb_flush_walk,
};
static const char *access_type_name(struct panthor_device *ptdev,
u32 fault_status)
{
switch (fault_status & AS_FAULTSTATUS_ACCESS_TYPE_MASK) {
case AS_FAULTSTATUS_ACCESS_TYPE_ATOMIC:
return "ATOMIC";
case AS_FAULTSTATUS_ACCESS_TYPE_READ:
return "READ";
case AS_FAULTSTATUS_ACCESS_TYPE_WRITE:
return "WRITE";
case AS_FAULTSTATUS_ACCESS_TYPE_EX:
return "EXECUTE";
default:
drm_WARN_ON(&ptdev->base, 1);
return NULL;
}
}
static void panthor_mmu_irq_handler(struct panthor_device *ptdev, u32 status)
{
bool has_unhandled_faults = false;
status = panthor_mmu_fault_mask(ptdev, status);
while (status) {
u32 as = ffs(status | (status >> 16)) - 1;
u32 mask = panthor_mmu_as_fault_mask(ptdev, as);
u32 new_int_mask;
u64 addr;
u32 fault_status;
u32 exception_type;
u32 access_type;
u32 source_id;
fault_status = gpu_read(ptdev, AS_FAULTSTATUS(as));
addr = gpu_read(ptdev, AS_FAULTADDRESS_LO(as));
addr |= (u64)gpu_read(ptdev, AS_FAULTADDRESS_HI(as)) << 32;
/* decode the fault status */
exception_type = fault_status & 0xFF;
access_type = (fault_status >> 8) & 0x3;
source_id = (fault_status >> 16);
mutex_lock(&ptdev->mmu->as.slots_lock);
ptdev->mmu->as.faulty_mask |= mask;
new_int_mask =
panthor_mmu_fault_mask(ptdev, ~ptdev->mmu->as.faulty_mask);
/* terminal fault, print info about the fault */
drm_err(&ptdev->base,
"Unhandled Page fault in AS%d at VA 0x%016llX\n"
"raw fault status: 0x%X\n"
"decoded fault status: %s\n"
"exception type 0x%X: %s\n"
"access type 0x%X: %s\n"
"source id 0x%X\n",
as, addr,
fault_status,
(fault_status & (1 << 10) ? "DECODER FAULT" : "SLAVE FAULT"),
exception_type, panthor_exception_name(ptdev, exception_type),
access_type, access_type_name(ptdev, fault_status),
source_id);
/* Ignore MMU interrupts on this AS until it's been
* re-enabled.
*/
ptdev->mmu->irq.mask = new_int_mask;
gpu_write(ptdev, MMU_INT_MASK, new_int_mask);
if (ptdev->mmu->as.slots[as].vm)
ptdev->mmu->as.slots[as].vm->unhandled_fault = true;
/* Disable the MMU to kill jobs on this AS. */
panthor_mmu_as_disable(ptdev, as);
mutex_unlock(&ptdev->mmu->as.slots_lock);
status &= ~mask;
has_unhandled_faults = true;
}
if (has_unhandled_faults)
panthor_sched_report_mmu_fault(ptdev);
}
PANTHOR_IRQ_HANDLER(mmu, MMU, panthor_mmu_irq_handler);
/**
* panthor_mmu_suspend() - Suspend the MMU logic
* @ptdev: Device.
*
* All we do here is de-assign the AS slots on all active VMs, so things
* get flushed to the main memory, and no further access to these VMs are
* possible.
*
* We also suspend the MMU IRQ.
*/
void panthor_mmu_suspend(struct panthor_device *ptdev)
{
mutex_lock(&ptdev->mmu->as.slots_lock);
for (u32 i = 0; i < ARRAY_SIZE(ptdev->mmu->as.slots); i++) {
struct panthor_vm *vm = ptdev->mmu->as.slots[i].vm;
if (vm) {
drm_WARN_ON(&ptdev->base, panthor_mmu_as_disable(ptdev, i));
panthor_vm_release_as_locked(vm);
}
}
mutex_unlock(&ptdev->mmu->as.slots_lock);
panthor_mmu_irq_suspend(&ptdev->mmu->irq);
}
/**
* panthor_mmu_resume() - Resume the MMU logic
* @ptdev: Device.
*
* Resume the IRQ.
*
* We don't re-enable previously active VMs. We assume other parts of the
* driver will call panthor_vm_active() on the VMs they intend to use.
*/
void panthor_mmu_resume(struct panthor_device *ptdev)
{
mutex_lock(&ptdev->mmu->as.slots_lock);
ptdev->mmu->as.alloc_mask = 0;
ptdev->mmu->as.faulty_mask = 0;
mutex_unlock(&ptdev->mmu->as.slots_lock);
panthor_mmu_irq_resume(&ptdev->mmu->irq, panthor_mmu_fault_mask(ptdev, ~0));
}
/**
* panthor_mmu_pre_reset() - Prepare for a reset
* @ptdev: Device.
*
* Suspend the IRQ, and make sure all VM_BIND queues are stopped, so we
* don't get asked to do a VM operation while the GPU is down.
*
* We don't cleanly shutdown the AS slots here, because the reset might
* come from an AS_ACTIVE_BIT stuck situation.
*/
void panthor_mmu_pre_reset(struct panthor_device *ptdev)
{
struct panthor_vm *vm;
panthor_mmu_irq_suspend(&ptdev->mmu->irq);
mutex_lock(&ptdev->mmu->vm.lock);
ptdev->mmu->vm.reset_in_progress = true;
list_for_each_entry(vm, &ptdev->mmu->vm.list, node)
panthor_vm_stop(vm);
mutex_unlock(&ptdev->mmu->vm.lock);
}
/**
* panthor_mmu_post_reset() - Restore things after a reset
* @ptdev: Device.
*
* Put the MMU logic back in action after a reset. That implies resuming the
* IRQ and re-enabling the VM_BIND queues.
*/
void panthor_mmu_post_reset(struct panthor_device *ptdev)
{
struct panthor_vm *vm;
mutex_lock(&ptdev->mmu->as.slots_lock);
/* Now that the reset is effective, we can assume that none of the
* AS slots are setup, and clear the faulty flags too.
*/
ptdev->mmu->as.alloc_mask = 0;
ptdev->mmu->as.faulty_mask = 0;
for (u32 i = 0; i < ARRAY_SIZE(ptdev->mmu->as.slots); i++) {
struct panthor_vm *vm = ptdev->mmu->as.slots[i].vm;
if (vm)
panthor_vm_release_as_locked(vm);
}
mutex_unlock(&ptdev->mmu->as.slots_lock);
panthor_mmu_irq_resume(&ptdev->mmu->irq, panthor_mmu_fault_mask(ptdev, ~0));
/* Restart the VM_BIND queues. */
mutex_lock(&ptdev->mmu->vm.lock);
list_for_each_entry(vm, &ptdev->mmu->vm.list, node) {
panthor_vm_start(vm);
}
ptdev->mmu->vm.reset_in_progress = false;
mutex_unlock(&ptdev->mmu->vm.lock);
}
static void panthor_vm_free(struct drm_gpuvm *gpuvm)
{
struct panthor_vm *vm = container_of(gpuvm, struct panthor_vm, base);
struct panthor_device *ptdev = vm->ptdev;
mutex_lock(&vm->heaps.lock);
if (drm_WARN_ON(&ptdev->base, vm->heaps.pool))
panthor_heap_pool_destroy(vm->heaps.pool);
mutex_unlock(&vm->heaps.lock);
mutex_destroy(&vm->heaps.lock);
mutex_lock(&ptdev->mmu->vm.lock);
list_del(&vm->node);
/* Restore the scheduler state so we can call drm_sched_entity_destroy()
* and drm_sched_fini(). If get there, that means we have no job left
* and no new jobs can be queued, so we can start the scheduler without
* risking interfering with the reset.
*/
if (ptdev->mmu->vm.reset_in_progress)
panthor_vm_start(vm);
mutex_unlock(&ptdev->mmu->vm.lock);
drm_sched_entity_destroy(&vm->entity);
drm_sched_fini(&vm->sched);
mutex_lock(&ptdev->mmu->as.slots_lock);
if (vm->as.id >= 0) {
int cookie;
if (drm_dev_enter(&ptdev->base, &cookie)) {
panthor_mmu_as_disable(ptdev, vm->as.id);
drm_dev_exit(cookie);
}
ptdev->mmu->as.slots[vm->as.id].vm = NULL;
clear_bit(vm->as.id, &ptdev->mmu->as.alloc_mask);
list_del(&vm->as.lru_node);
}
mutex_unlock(&ptdev->mmu->as.slots_lock);
free_io_pgtable_ops(vm->pgtbl_ops);
drm_mm_takedown(&vm->mm);
kfree(vm);
}
/**
* panthor_vm_put() - Release a reference on a VM
* @vm: VM to release the reference on. Can be NULL.
*/
void panthor_vm_put(struct panthor_vm *vm)
{
drm_gpuvm_put(vm ? &vm->base : NULL);
}
/**
* panthor_vm_get() - Get a VM reference
* @vm: VM to get the reference on. Can be NULL.
*
* Return: @vm value.
*/
struct panthor_vm *panthor_vm_get(struct panthor_vm *vm)
{
if (vm)
drm_gpuvm_get(&vm->base);
return vm;
}
/**
* panthor_vm_get_heap_pool() - Get the heap pool attached to a VM
* @vm: VM to query the heap pool on.
* @create: True if the heap pool should be created when it doesn't exist.
*
* Heap pools are per-VM. This function allows one to retrieve the heap pool
* attached to a VM.
*
* If no heap pool exists yet, and @create is true, we create one.
*
* The returned panthor_heap_pool should be released with panthor_heap_pool_put().
*
* Return: A valid pointer on success, an ERR_PTR() otherwise.
*/
struct panthor_heap_pool *panthor_vm_get_heap_pool(struct panthor_vm *vm, bool create)
{
struct panthor_heap_pool *pool;
mutex_lock(&vm->heaps.lock);
if (!vm->heaps.pool && create) {
if (vm->destroyed)
pool = ERR_PTR(-EINVAL);
else
pool = panthor_heap_pool_create(vm->ptdev, vm);
if (!IS_ERR(pool))
vm->heaps.pool = panthor_heap_pool_get(pool);
} else {
pool = panthor_heap_pool_get(vm->heaps.pool);
}
mutex_unlock(&vm->heaps.lock);
return pool;
}
static u64 mair_to_memattr(u64 mair)
{
u64 memattr = 0;
u32 i;
for (i = 0; i < 8; i++) {
u8 in_attr = mair >> (8 * i), out_attr;
u8 outer = in_attr >> 4, inner = in_attr & 0xf;
/* For caching to be enabled, inner and outer caching policy
* have to be both write-back, if one of them is write-through
* or non-cacheable, we just choose non-cacheable. Device
* memory is also translated to non-cacheable.
*/
if (!(outer & 3) || !(outer & 4) || !(inner & 4)) {
out_attr = AS_MEMATTR_AARCH64_INNER_OUTER_NC |
AS_MEMATTR_AARCH64_SH_MIDGARD_INNER |
AS_MEMATTR_AARCH64_INNER_ALLOC_EXPL(false, false);
} else {
/* Use SH_CPU_INNER mode so SH_IS, which is used when
* IOMMU_CACHE is set, actually maps to the standard
* definition of inner-shareable and not Mali's
* internal-shareable mode.
*/
out_attr = AS_MEMATTR_AARCH64_INNER_OUTER_WB |
AS_MEMATTR_AARCH64_SH_CPU_INNER |
AS_MEMATTR_AARCH64_INNER_ALLOC_EXPL(inner & 1, inner & 2);
}
memattr |= (u64)out_attr << (8 * i);
}
return memattr;
}
static void panthor_vma_link(struct panthor_vm *vm,
struct panthor_vma *vma,
struct drm_gpuvm_bo *vm_bo)
{
struct panthor_gem_object *bo = to_panthor_bo(vma->base.gem.obj);
mutex_lock(&bo->gpuva_list_lock);
drm_gpuva_link(&vma->base, vm_bo);
drm_WARN_ON(&vm->ptdev->base, drm_gpuvm_bo_put(vm_bo));
mutex_unlock(&bo->gpuva_list_lock);
}
static void panthor_vma_unlink(struct panthor_vm *vm,
struct panthor_vma *vma)
{
struct panthor_gem_object *bo = to_panthor_bo(vma->base.gem.obj);
struct drm_gpuvm_bo *vm_bo = drm_gpuvm_bo_get(vma->base.vm_bo);
mutex_lock(&bo->gpuva_list_lock);
drm_gpuva_unlink(&vma->base);
mutex_unlock(&bo->gpuva_list_lock);
/* drm_gpuva_unlink() release the vm_bo, but we manually retained it
* when entering this function, so we can implement deferred VMA
* destruction. Re-assign it here.
*/
vma->base.vm_bo = vm_bo;
list_add_tail(&vma->node, &vm->op_ctx->returned_vmas);
}
static void panthor_vma_init(struct panthor_vma *vma, u32 flags)
{
INIT_LIST_HEAD(&vma->node);
vma->flags = flags;
}
#define PANTHOR_VM_MAP_FLAGS \
(DRM_PANTHOR_VM_BIND_OP_MAP_READONLY | \
DRM_PANTHOR_VM_BIND_OP_MAP_NOEXEC | \
DRM_PANTHOR_VM_BIND_OP_MAP_UNCACHED)
static int panthor_gpuva_sm_step_map(struct drm_gpuva_op *op, void *priv)
{
struct panthor_vm *vm = priv;
struct panthor_vm_op_ctx *op_ctx = vm->op_ctx;
struct panthor_vma *vma = panthor_vm_op_ctx_get_vma(op_ctx);
int ret;
if (!vma)
return -EINVAL;
panthor_vma_init(vma, op_ctx->flags & PANTHOR_VM_MAP_FLAGS);
ret = panthor_vm_map_pages(vm, op->map.va.addr, flags_to_prot(vma->flags),
op_ctx->map.sgt, op->map.gem.offset,
op->map.va.range);
if (ret)
return ret;
/* Ref owned by the mapping now, clear the obj field so we don't release the
* pinning/obj ref behind GPUVA's back.
*/
drm_gpuva_map(&vm->base, &vma->base, &op->map);
panthor_vma_link(vm, vma, op_ctx->map.vm_bo);
op_ctx->map.vm_bo = NULL;
return 0;
}
static int panthor_gpuva_sm_step_remap(struct drm_gpuva_op *op,
void *priv)
{
struct panthor_vma *unmap_vma = container_of(op->remap.unmap->va, struct panthor_vma, base);
struct panthor_vm *vm = priv;
struct panthor_vm_op_ctx *op_ctx = vm->op_ctx;
struct panthor_vma *prev_vma = NULL, *next_vma = NULL;
u64 unmap_start, unmap_range;
int ret;
drm_gpuva_op_remap_to_unmap_range(&op->remap, &unmap_start, &unmap_range);
ret = panthor_vm_unmap_pages(vm, unmap_start, unmap_range);
if (ret)
return ret;
if (op->remap.prev) {
prev_vma = panthor_vm_op_ctx_get_vma(op_ctx);
panthor_vma_init(prev_vma, unmap_vma->flags);
}
if (op->remap.next) {
next_vma = panthor_vm_op_ctx_get_vma(op_ctx);
panthor_vma_init(next_vma, unmap_vma->flags);
}
drm_gpuva_remap(prev_vma ? &prev_vma->base : NULL,
next_vma ? &next_vma->base : NULL,
&op->remap);
if (prev_vma) {
/* panthor_vma_link() transfers the vm_bo ownership to
* the VMA object. Since the vm_bo we're passing is still
* owned by the old mapping which will be released when this
* mapping is destroyed, we need to grab a ref here.
*/
panthor_vma_link(vm, prev_vma,
drm_gpuvm_bo_get(op->remap.unmap->va->vm_bo));
}
if (next_vma) {
panthor_vma_link(vm, next_vma,
drm_gpuvm_bo_get(op->remap.unmap->va->vm_bo));
}
panthor_vma_unlink(vm, unmap_vma);
return 0;
}
static int panthor_gpuva_sm_step_unmap(struct drm_gpuva_op *op,
void *priv)
{
struct panthor_vma *unmap_vma = container_of(op->unmap.va, struct panthor_vma, base);
struct panthor_vm *vm = priv;
int ret;
ret = panthor_vm_unmap_pages(vm, unmap_vma->base.va.addr,
unmap_vma->base.va.range);
if (drm_WARN_ON(&vm->ptdev->base, ret))
return ret;
drm_gpuva_unmap(&op->unmap);
panthor_vma_unlink(vm, unmap_vma);
return 0;
}
static const struct drm_gpuvm_ops panthor_gpuvm_ops = {
.vm_free = panthor_vm_free,
.sm_step_map = panthor_gpuva_sm_step_map,
.sm_step_remap = panthor_gpuva_sm_step_remap,
.sm_step_unmap = panthor_gpuva_sm_step_unmap,
};
/**
* panthor_vm_resv() - Get the dma_resv object attached to a VM.
* @vm: VM to get the dma_resv of.
*
* Return: A dma_resv object.
*/
struct dma_resv *panthor_vm_resv(struct panthor_vm *vm)
{
return drm_gpuvm_resv(&vm->base);
}
struct drm_gem_object *panthor_vm_root_gem(struct panthor_vm *vm)
{
if (!vm)
return NULL;
return vm->base.r_obj;
}
static int
panthor_vm_exec_op(struct panthor_vm *vm, struct panthor_vm_op_ctx *op,
bool flag_vm_unusable_on_failure)
{
u32 op_type = op->flags & DRM_PANTHOR_VM_BIND_OP_TYPE_MASK;
int ret;
if (op_type == DRM_PANTHOR_VM_BIND_OP_TYPE_SYNC_ONLY)
return 0;
mutex_lock(&vm->op_lock);
vm->op_ctx = op;
switch (op_type) {
case DRM_PANTHOR_VM_BIND_OP_TYPE_MAP:
if (vm->unusable) {
ret = -EINVAL;
break;
}
ret = drm_gpuvm_sm_map(&vm->base, vm, op->va.addr, op->va.range,
op->map.vm_bo->obj, op->map.bo_offset);
break;
case DRM_PANTHOR_VM_BIND_OP_TYPE_UNMAP:
ret = drm_gpuvm_sm_unmap(&vm->base, vm, op->va.addr, op->va.range);
break;
default:
ret = -EINVAL;
break;
}
if (ret && flag_vm_unusable_on_failure)
vm->unusable = true;
vm->op_ctx = NULL;
mutex_unlock(&vm->op_lock);
return ret;
}
static struct dma_fence *
panthor_vm_bind_run_job(struct drm_sched_job *sched_job)
{
struct panthor_vm_bind_job *job = container_of(sched_job, struct panthor_vm_bind_job, base);
bool cookie;
int ret;
/* Not only we report an error whose result is propagated to the
* drm_sched finished fence, but we also flag the VM as unusable, because
* a failure in the async VM_BIND results in an inconsistent state. VM needs
* to be destroyed and recreated.
*/
cookie = dma_fence_begin_signalling();
ret = panthor_vm_exec_op(job->vm, &job->ctx, true);
dma_fence_end_signalling(cookie);
return ret ? ERR_PTR(ret) : NULL;
}
static void panthor_vm_bind_job_release(struct kref *kref)
{
struct panthor_vm_bind_job *job = container_of(kref, struct panthor_vm_bind_job, refcount);
if (job->base.s_fence)
drm_sched_job_cleanup(&job->base);
panthor_vm_cleanup_op_ctx(&job->ctx, job->vm);
panthor_vm_put(job->vm);
kfree(job);
}
/**
* panthor_vm_bind_job_put() - Release a VM_BIND job reference
* @sched_job: Job to release the reference on.
*/
void panthor_vm_bind_job_put(struct drm_sched_job *sched_job)
{
struct panthor_vm_bind_job *job =
container_of(sched_job, struct panthor_vm_bind_job, base);
if (sched_job)
kref_put(&job->refcount, panthor_vm_bind_job_release);
}
static void
panthor_vm_bind_free_job(struct drm_sched_job *sched_job)
{
struct panthor_vm_bind_job *job =
container_of(sched_job, struct panthor_vm_bind_job, base);
drm_sched_job_cleanup(sched_job);
/* Do the heavy cleanups asynchronously, so we're out of the
* dma-signaling path and can acquire dma-resv locks safely.
*/
queue_work(panthor_cleanup_wq, &job->cleanup_op_ctx_work);
}
static enum drm_gpu_sched_stat
panthor_vm_bind_timedout_job(struct drm_sched_job *sched_job)
{
WARN(1, "VM_BIND ops are synchronous for now, there should be no timeout!");
return DRM_GPU_SCHED_STAT_NOMINAL;
}
static const struct drm_sched_backend_ops panthor_vm_bind_ops = {
.run_job = panthor_vm_bind_run_job,
.free_job = panthor_vm_bind_free_job,
.timedout_job = panthor_vm_bind_timedout_job,
};
/**
* panthor_vm_create() - Create a VM
* @ptdev: Device.
* @for_mcu: True if this is the FW MCU VM.
* @kernel_va_start: Start of the range reserved for kernel BO mapping.
* @kernel_va_size: Size of the range reserved for kernel BO mapping.
* @auto_kernel_va_start: Start of the auto-VA kernel range.
* @auto_kernel_va_size: Size of the auto-VA kernel range.
*
* Return: A valid pointer on success, an ERR_PTR() otherwise.
*/
struct panthor_vm *
panthor_vm_create(struct panthor_device *ptdev, bool for_mcu,
u64 kernel_va_start, u64 kernel_va_size,
u64 auto_kernel_va_start, u64 auto_kernel_va_size)
{
u32 va_bits = GPU_MMU_FEATURES_VA_BITS(ptdev->gpu_info.mmu_features);
u32 pa_bits = GPU_MMU_FEATURES_PA_BITS(ptdev->gpu_info.mmu_features);
u64 full_va_range = 1ull << va_bits;
struct drm_gem_object *dummy_gem;
struct drm_gpu_scheduler *sched;
struct io_pgtable_cfg pgtbl_cfg;
u64 mair, min_va, va_range;
struct panthor_vm *vm;
int ret;
vm = kzalloc(sizeof(*vm), GFP_KERNEL);
if (!vm)
return ERR_PTR(-ENOMEM);
/* We allocate a dummy GEM for the VM. */
dummy_gem = drm_gpuvm_resv_object_alloc(&ptdev->base);
if (!dummy_gem) {
ret = -ENOMEM;
goto err_free_vm;
}
mutex_init(&vm->heaps.lock);
vm->for_mcu = for_mcu;
vm->ptdev = ptdev;
mutex_init(&vm->op_lock);
if (for_mcu) {
/* CSF MCU is a cortex M7, and can only address 4G */
min_va = 0;
va_range = SZ_4G;
} else {
min_va = 0;
va_range = full_va_range;
}
mutex_init(&vm->mm_lock);
drm_mm_init(&vm->mm, kernel_va_start, kernel_va_size);
vm->kernel_auto_va.start = auto_kernel_va_start;
vm->kernel_auto_va.end = vm->kernel_auto_va.start + auto_kernel_va_size - 1;
INIT_LIST_HEAD(&vm->node);
INIT_LIST_HEAD(&vm->as.lru_node);
vm->as.id = -1;
refcount_set(&vm->as.active_cnt, 0);
pgtbl_cfg = (struct io_pgtable_cfg) {
.pgsize_bitmap = SZ_4K | SZ_2M,
.ias = va_bits,
.oas = pa_bits,
.coherent_walk = ptdev->coherent,
.tlb = &mmu_tlb_ops,
.iommu_dev = ptdev->base.dev,
.alloc = alloc_pt,
.free = free_pt,
};
vm->pgtbl_ops = alloc_io_pgtable_ops(ARM_64_LPAE_S1, &pgtbl_cfg, vm);
if (!vm->pgtbl_ops) {
ret = -EINVAL;
goto err_mm_takedown;
}
/* Bind operations are synchronous for now, no timeout needed. */
ret = drm_sched_init(&vm->sched, &panthor_vm_bind_ops, ptdev->mmu->vm.wq,
1, 1, 0,
MAX_SCHEDULE_TIMEOUT, NULL, NULL,
"panthor-vm-bind", ptdev->base.dev);
if (ret)
goto err_free_io_pgtable;
sched = &vm->sched;
ret = drm_sched_entity_init(&vm->entity, 0, &sched, 1, NULL);
if (ret)
goto err_sched_fini;
mair = io_pgtable_ops_to_pgtable(vm->pgtbl_ops)->cfg.arm_lpae_s1_cfg.mair;
vm->memattr = mair_to_memattr(mair);
mutex_lock(&ptdev->mmu->vm.lock);
list_add_tail(&vm->node, &ptdev->mmu->vm.list);
/* If a reset is in progress, stop the scheduler. */
if (ptdev->mmu->vm.reset_in_progress)
panthor_vm_stop(vm);
mutex_unlock(&ptdev->mmu->vm.lock);
/* We intentionally leave the reserved range to zero, because we want kernel VMAs
* to be handled the same way user VMAs are.
*/
drm_gpuvm_init(&vm->base, for_mcu ? "panthor-MCU-VM" : "panthor-GPU-VM",
DRM_GPUVM_RESV_PROTECTED, &ptdev->base, dummy_gem,
min_va, va_range, 0, 0, &panthor_gpuvm_ops);
drm_gem_object_put(dummy_gem);
return vm;
err_sched_fini:
drm_sched_fini(&vm->sched);
err_free_io_pgtable:
free_io_pgtable_ops(vm->pgtbl_ops);
err_mm_takedown:
drm_mm_takedown(&vm->mm);
drm_gem_object_put(dummy_gem);
err_free_vm:
kfree(vm);
return ERR_PTR(ret);
}
static int
panthor_vm_bind_prepare_op_ctx(struct drm_file *file,
struct panthor_vm *vm,
const struct drm_panthor_vm_bind_op *op,
struct panthor_vm_op_ctx *op_ctx)
{
struct drm_gem_object *gem;
int ret;
/* Aligned on page size. */
if ((op->va | op->size) & ~PAGE_MASK)
return -EINVAL;
switch (op->flags & DRM_PANTHOR_VM_BIND_OP_TYPE_MASK) {
case DRM_PANTHOR_VM_BIND_OP_TYPE_MAP:
gem = drm_gem_object_lookup(file, op->bo_handle);
ret = panthor_vm_prepare_map_op_ctx(op_ctx, vm,
gem ? to_panthor_bo(gem) : NULL,
op->bo_offset,
op->size,
op->va,
op->flags);
drm_gem_object_put(gem);
return ret;
case DRM_PANTHOR_VM_BIND_OP_TYPE_UNMAP:
if (op->flags & ~DRM_PANTHOR_VM_BIND_OP_TYPE_MASK)
return -EINVAL;
if (op->bo_handle || op->bo_offset)
return -EINVAL;
return panthor_vm_prepare_unmap_op_ctx(op_ctx, vm, op->va, op->size);
case DRM_PANTHOR_VM_BIND_OP_TYPE_SYNC_ONLY:
if (op->flags & ~DRM_PANTHOR_VM_BIND_OP_TYPE_MASK)
return -EINVAL;
if (op->bo_handle || op->bo_offset)
return -EINVAL;
if (op->va || op->size)
return -EINVAL;
if (!op->syncs.count)
return -EINVAL;
panthor_vm_prepare_sync_only_op_ctx(op_ctx, vm);
return 0;
default:
return -EINVAL;
}
}
static void panthor_vm_bind_job_cleanup_op_ctx_work(struct work_struct *work)
{
struct panthor_vm_bind_job *job =
container_of(work, struct panthor_vm_bind_job, cleanup_op_ctx_work);
panthor_vm_bind_job_put(&job->base);
}
/**
* panthor_vm_bind_job_create() - Create a VM_BIND job
* @file: File.
* @vm: VM targeted by the VM_BIND job.
* @op: VM operation data.
*
* Return: A valid pointer on success, an ERR_PTR() otherwise.
*/
struct drm_sched_job *
panthor_vm_bind_job_create(struct drm_file *file,
struct panthor_vm *vm,
const struct drm_panthor_vm_bind_op *op)
{
struct panthor_vm_bind_job *job;
int ret;
if (!vm)
return ERR_PTR(-EINVAL);
if (vm->destroyed || vm->unusable)
return ERR_PTR(-EINVAL);
job = kzalloc(sizeof(*job), GFP_KERNEL);
if (!job)
return ERR_PTR(-ENOMEM);
ret = panthor_vm_bind_prepare_op_ctx(file, vm, op, &job->ctx);
if (ret) {
kfree(job);
return ERR_PTR(ret);
}
INIT_WORK(&job->cleanup_op_ctx_work, panthor_vm_bind_job_cleanup_op_ctx_work);
kref_init(&job->refcount);
job->vm = panthor_vm_get(vm);
ret = drm_sched_job_init(&job->base, &vm->entity, 1, vm);
if (ret)
goto err_put_job;
return &job->base;
err_put_job:
panthor_vm_bind_job_put(&job->base);
return ERR_PTR(ret);
}
/**
* panthor_vm_bind_job_prepare_resvs() - Prepare VM_BIND job dma_resvs
* @exec: The locking/preparation context.
* @sched_job: The job to prepare resvs on.
*
* Locks and prepare the VM resv.
*
* If this is a map operation, locks and prepares the GEM resv.
*
* Return: 0 on success, a negative error code otherwise.
*/
int panthor_vm_bind_job_prepare_resvs(struct drm_exec *exec,
struct drm_sched_job *sched_job)
{
struct panthor_vm_bind_job *job = container_of(sched_job, struct panthor_vm_bind_job, base);
int ret;
/* Acquire the VM lock an reserve a slot for this VM bind job. */
ret = drm_gpuvm_prepare_vm(&job->vm->base, exec, 1);
if (ret)
return ret;
if (job->ctx.map.vm_bo) {
/* Lock/prepare the GEM being mapped. */
ret = drm_exec_prepare_obj(exec, job->ctx.map.vm_bo->obj, 1);
if (ret)
return ret;
}
return 0;
}
/**
* panthor_vm_bind_job_update_resvs() - Update the resv objects touched by a job
* @exec: drm_exec context.
* @sched_job: Job to update the resvs on.
*/
void panthor_vm_bind_job_update_resvs(struct drm_exec *exec,
struct drm_sched_job *sched_job)
{
struct panthor_vm_bind_job *job = container_of(sched_job, struct panthor_vm_bind_job, base);
/* Explicit sync => we just register our job finished fence as bookkeep. */
drm_gpuvm_resv_add_fence(&job->vm->base, exec,
&sched_job->s_fence->finished,
DMA_RESV_USAGE_BOOKKEEP,
DMA_RESV_USAGE_BOOKKEEP);
}
void panthor_vm_update_resvs(struct panthor_vm *vm, struct drm_exec *exec,
struct dma_fence *fence,
enum dma_resv_usage private_usage,
enum dma_resv_usage extobj_usage)
{
drm_gpuvm_resv_add_fence(&vm->base, exec, fence, private_usage, extobj_usage);
}
/**
* panthor_vm_bind_exec_sync_op() - Execute a VM_BIND operation synchronously.
* @file: File.
* @vm: VM targeted by the VM operation.
* @op: Data describing the VM operation.
*
* Return: 0 on success, a negative error code otherwise.
*/
int panthor_vm_bind_exec_sync_op(struct drm_file *file,
struct panthor_vm *vm,
struct drm_panthor_vm_bind_op *op)
{
struct panthor_vm_op_ctx op_ctx;
int ret;
/* No sync objects allowed on synchronous operations. */
if (op->syncs.count)
return -EINVAL;
if (!op->size)
return 0;
ret = panthor_vm_bind_prepare_op_ctx(file, vm, op, &op_ctx);
if (ret)
return ret;
ret = panthor_vm_exec_op(vm, &op_ctx, false);
panthor_vm_cleanup_op_ctx(&op_ctx, vm);
return ret;
}
/**
* panthor_vm_map_bo_range() - Map a GEM object range to a VM
* @vm: VM to map the GEM to.
* @bo: GEM object to map.
* @offset: Offset in the GEM object.
* @size: Size to map.
* @va: Virtual address to map the object to.
* @flags: Combination of drm_panthor_vm_bind_op_flags flags.
* Only map-related flags are valid.
*
* Internal use only. For userspace requests, use
* panthor_vm_bind_exec_sync_op() instead.
*
* Return: 0 on success, a negative error code otherwise.
*/
int panthor_vm_map_bo_range(struct panthor_vm *vm, struct panthor_gem_object *bo,
u64 offset, u64 size, u64 va, u32 flags)
{
struct panthor_vm_op_ctx op_ctx;
int ret;
ret = panthor_vm_prepare_map_op_ctx(&op_ctx, vm, bo, offset, size, va, flags);
if (ret)
return ret;
ret = panthor_vm_exec_op(vm, &op_ctx, false);
panthor_vm_cleanup_op_ctx(&op_ctx, vm);
return ret;
}
/**
* panthor_vm_unmap_range() - Unmap a portion of the VA space
* @vm: VM to unmap the region from.
* @va: Virtual address to unmap. Must be 4k aligned.
* @size: Size of the region to unmap. Must be 4k aligned.
*
* Internal use only. For userspace requests, use
* panthor_vm_bind_exec_sync_op() instead.
*
* Return: 0 on success, a negative error code otherwise.
*/
int panthor_vm_unmap_range(struct panthor_vm *vm, u64 va, u64 size)
{
struct panthor_vm_op_ctx op_ctx;
int ret;
ret = panthor_vm_prepare_unmap_op_ctx(&op_ctx, vm, va, size);
if (ret)
return ret;
ret = panthor_vm_exec_op(vm, &op_ctx, false);
panthor_vm_cleanup_op_ctx(&op_ctx, vm);
return ret;
}
/**
* panthor_vm_prepare_mapped_bos_resvs() - Prepare resvs on VM BOs.
* @exec: Locking/preparation context.
* @vm: VM targeted by the GPU job.
* @slot_count: Number of slots to reserve.
*
* GPU jobs assume all BOs bound to the VM at the time the job is submitted
* are available when the job is executed. In order to guarantee that, we
* need to reserve a slot on all BOs mapped to a VM and update this slot with
* the job fence after its submission.
*
* Return: 0 on success, a negative error code otherwise.
*/
int panthor_vm_prepare_mapped_bos_resvs(struct drm_exec *exec, struct panthor_vm *vm,
u32 slot_count)
{
int ret;
/* Acquire the VM lock and reserve a slot for this GPU job. */
ret = drm_gpuvm_prepare_vm(&vm->base, exec, slot_count);
if (ret)
return ret;
return drm_gpuvm_prepare_objects(&vm->base, exec, slot_count);
}
/**
* panthor_mmu_unplug() - Unplug the MMU logic
* @ptdev: Device.
*
* No access to the MMU regs should be done after this function is called.
* We suspend the IRQ and disable all VMs to guarantee that.
*/
void panthor_mmu_unplug(struct panthor_device *ptdev)
{
panthor_mmu_irq_suspend(&ptdev->mmu->irq);
mutex_lock(&ptdev->mmu->as.slots_lock);
for (u32 i = 0; i < ARRAY_SIZE(ptdev->mmu->as.slots); i++) {
struct panthor_vm *vm = ptdev->mmu->as.slots[i].vm;
if (vm) {
drm_WARN_ON(&ptdev->base, panthor_mmu_as_disable(ptdev, i));
panthor_vm_release_as_locked(vm);
}
}
mutex_unlock(&ptdev->mmu->as.slots_lock);
}
static void panthor_mmu_release_wq(struct drm_device *ddev, void *res)
{
destroy_workqueue(res);
}
/**
* panthor_mmu_init() - Initialize the MMU logic.
* @ptdev: Device.
*
* Return: 0 on success, a negative error code otherwise.
*/
int panthor_mmu_init(struct panthor_device *ptdev)
{
u32 va_bits = GPU_MMU_FEATURES_VA_BITS(ptdev->gpu_info.mmu_features);
struct panthor_mmu *mmu;
int ret, irq;
mmu = drmm_kzalloc(&ptdev->base, sizeof(*mmu), GFP_KERNEL);
if (!mmu)
return -ENOMEM;
INIT_LIST_HEAD(&mmu->as.lru_list);
ret = drmm_mutex_init(&ptdev->base, &mmu->as.slots_lock);
if (ret)
return ret;
INIT_LIST_HEAD(&mmu->vm.list);
ret = drmm_mutex_init(&ptdev->base, &mmu->vm.lock);
if (ret)
return ret;
ptdev->mmu = mmu;
irq = platform_get_irq_byname(to_platform_device(ptdev->base.dev), "mmu");
if (irq <= 0)
return -ENODEV;
ret = panthor_request_mmu_irq(ptdev, &mmu->irq, irq,
panthor_mmu_fault_mask(ptdev, ~0));
if (ret)
return ret;
mmu->vm.wq = alloc_workqueue("panthor-vm-bind", WQ_UNBOUND, 0);
if (!mmu->vm.wq)
return -ENOMEM;
/* On 32-bit kernels, the VA space is limited by the io_pgtable_ops abstraction,
* which passes iova as an unsigned long. Patch the mmu_features to reflect this
* limitation.
*/
if (sizeof(unsigned long) * 8 < va_bits) {
ptdev->gpu_info.mmu_features &= ~GENMASK(7, 0);
ptdev->gpu_info.mmu_features |= sizeof(unsigned long) * 8;
}
return drmm_add_action_or_reset(&ptdev->base, panthor_mmu_release_wq, mmu->vm.wq);
}
#ifdef CONFIG_DEBUG_FS
static int show_vm_gpuvas(struct panthor_vm *vm, struct seq_file *m)
{
int ret;
mutex_lock(&vm->op_lock);
ret = drm_debugfs_gpuva_info(m, &vm->base);
mutex_unlock(&vm->op_lock);
return ret;
}
static int show_each_vm(struct seq_file *m, void *arg)
{
struct drm_info_node *node = (struct drm_info_node *)m->private;
struct drm_device *ddev = node->minor->dev;
struct panthor_device *ptdev = container_of(ddev, struct panthor_device, base);
int (*show)(struct panthor_vm *, struct seq_file *) = node->info_ent->data;
struct panthor_vm *vm;
int ret = 0;
mutex_lock(&ptdev->mmu->vm.lock);
list_for_each_entry(vm, &ptdev->mmu->vm.list, node) {
ret = show(vm, m);
if (ret < 0)
break;
seq_puts(m, "\n");
}
mutex_unlock(&ptdev->mmu->vm.lock);
return ret;
}
static struct drm_info_list panthor_mmu_debugfs_list[] = {
DRM_DEBUGFS_GPUVA_INFO(show_each_vm, show_vm_gpuvas),
};
/**
* panthor_mmu_debugfs_init() - Initialize MMU debugfs entries
* @minor: Minor.
*/
void panthor_mmu_debugfs_init(struct drm_minor *minor)
{
drm_debugfs_create_files(panthor_mmu_debugfs_list,
ARRAY_SIZE(panthor_mmu_debugfs_list),
minor->debugfs_root, minor);
}
#endif /* CONFIG_DEBUG_FS */
/**
* panthor_mmu_pt_cache_init() - Initialize the page table cache.
*
* Return: 0 on success, a negative error code otherwise.
*/
int panthor_mmu_pt_cache_init(void)
{
pt_cache = kmem_cache_create("panthor-mmu-pt", SZ_4K, SZ_4K, 0, NULL);
if (!pt_cache)
return -ENOMEM;
return 0;
}
/**
* panthor_mmu_pt_cache_fini() - Destroy the page table cache.
*/
void panthor_mmu_pt_cache_fini(void)
{
kmem_cache_destroy(pt_cache);
}
/* SPDX-License-Identifier: GPL-2.0 or MIT */
/* Copyright 2019 Linaro, Ltd, Rob Herring <robh@kernel.org> */
/* Copyright 2023 Collabora ltd. */
#ifndef __PANTHOR_MMU_H__
#define __PANTHOR_MMU_H__
#include <linux/dma-resv.h>
struct drm_exec;
struct drm_sched_job;
struct panthor_gem_object;
struct panthor_heap_pool;
struct panthor_vm;
struct panthor_vma;
struct panthor_mmu;
int panthor_mmu_init(struct panthor_device *ptdev);
void panthor_mmu_unplug(struct panthor_device *ptdev);
void panthor_mmu_pre_reset(struct panthor_device *ptdev);
void panthor_mmu_post_reset(struct panthor_device *ptdev);
void panthor_mmu_suspend(struct panthor_device *ptdev);
void panthor_mmu_resume(struct panthor_device *ptdev);
int panthor_vm_map_bo_range(struct panthor_vm *vm, struct panthor_gem_object *bo,
u64 offset, u64 size, u64 va, u32 flags);
int panthor_vm_unmap_range(struct panthor_vm *vm, u64 va, u64 size);
struct panthor_gem_object *
panthor_vm_get_bo_for_va(struct panthor_vm *vm, u64 va, u64 *bo_offset);
int panthor_vm_active(struct panthor_vm *vm);
void panthor_vm_idle(struct panthor_vm *vm);
int panthor_vm_as(struct panthor_vm *vm);
struct panthor_heap_pool *
panthor_vm_get_heap_pool(struct panthor_vm *vm, bool create);
struct panthor_vm *panthor_vm_get(struct panthor_vm *vm);
void panthor_vm_put(struct panthor_vm *vm);
struct panthor_vm *panthor_vm_create(struct panthor_device *ptdev, bool for_mcu,
u64 kernel_va_start, u64 kernel_va_size,
u64 kernel_auto_va_start,
u64 kernel_auto_va_size);
int panthor_vm_prepare_mapped_bos_resvs(struct drm_exec *exec,
struct panthor_vm *vm,
u32 slot_count);
int panthor_vm_add_bos_resvs_deps_to_job(struct panthor_vm *vm,
struct drm_sched_job *job);
void panthor_vm_add_job_fence_to_bos_resvs(struct panthor_vm *vm,
struct drm_sched_job *job);
struct dma_resv *panthor_vm_resv(struct panthor_vm *vm);
struct drm_gem_object *panthor_vm_root_gem(struct panthor_vm *vm);
void panthor_vm_pool_destroy(struct panthor_file *pfile);
int panthor_vm_pool_create(struct panthor_file *pfile);
int panthor_vm_pool_create_vm(struct panthor_device *ptdev,
struct panthor_vm_pool *pool,
struct drm_panthor_vm_create *args);
int panthor_vm_pool_destroy_vm(struct panthor_vm_pool *pool, u32 handle);
struct panthor_vm *panthor_vm_pool_get_vm(struct panthor_vm_pool *pool, u32 handle);
bool panthor_vm_has_unhandled_faults(struct panthor_vm *vm);
bool panthor_vm_is_unusable(struct panthor_vm *vm);
/*
* PANTHOR_VM_KERNEL_AUTO_VA: Use this magic address when you want the GEM
* logic to auto-allocate the virtual address in the reserved kernel VA range.
*/
#define PANTHOR_VM_KERNEL_AUTO_VA ~0ull
int panthor_vm_alloc_va(struct panthor_vm *vm, u64 va, u64 size,
struct drm_mm_node *va_node);
void panthor_vm_free_va(struct panthor_vm *vm, struct drm_mm_node *va_node);
int panthor_vm_bind_exec_sync_op(struct drm_file *file,
struct panthor_vm *vm,
struct drm_panthor_vm_bind_op *op);
struct drm_sched_job *
panthor_vm_bind_job_create(struct drm_file *file,
struct panthor_vm *vm,
const struct drm_panthor_vm_bind_op *op);
void panthor_vm_bind_job_put(struct drm_sched_job *job);
int panthor_vm_bind_job_prepare_resvs(struct drm_exec *exec,
struct drm_sched_job *job);
void panthor_vm_bind_job_update_resvs(struct drm_exec *exec, struct drm_sched_job *job);
void panthor_vm_update_resvs(struct panthor_vm *vm, struct drm_exec *exec,
struct dma_fence *fence,
enum dma_resv_usage private_usage,
enum dma_resv_usage extobj_usage);
int panthor_mmu_pt_cache_init(void);
void panthor_mmu_pt_cache_fini(void);
#ifdef CONFIG_DEBUG_FS
void panthor_mmu_debugfs_init(struct drm_minor *minor);
#endif
#endif
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment