Commit 64a599ac authored by Eric Biggers's avatar Eric Biggers Committed by Greg Kroah-Hartman

fscrypt: fix context consistency check when key(s) unavailable

commit 272f98f6 upstream.

To mitigate some types of offline attacks, filesystem encryption is
designed to enforce that all files in an encrypted directory tree use
the same encryption policy (i.e. the same encryption context excluding
the nonce).  However, the fscrypt_has_permitted_context() function which
enforces this relies on comparing struct fscrypt_info's, which are only
available when we have the encryption keys.  This can cause two
incorrect behaviors:

1. If we have the parent directory's key but not the child's key, or
   vice versa, then fscrypt_has_permitted_context() returned false,
   causing applications to see EPERM or ENOKEY.  This is incorrect if
   the encryption contexts are in fact consistent.  Although we'd
   normally have either both keys or neither key in that case since the
   master_key_descriptors would be the same, this is not guaranteed
   because keys can be added or removed from keyrings at any time.

2. If we have neither the parent's key nor the child's key, then
   fscrypt_has_permitted_context() returned true, causing applications
   to see no error (or else an error for some other reason).  This is
   incorrect if the encryption contexts are in fact inconsistent, since
   in that case we should deny access.

To fix this, retrieve and compare the fscrypt_contexts if we are unable
to set up both fscrypt_infos.

While this slightly hurts performance when accessing an encrypted
directory tree without the key, this isn't a case we really need to be
optimizing for; access *with* the key is much more important.
Furthermore, the performance hit is barely noticeable given that we are
already retrieving the fscrypt_context and doing two keyring searches in
fscrypt_get_encryption_info().  If we ever actually wanted to optimize
this case we might start by caching the fscrypt_contexts.
Signed-off-by: default avatarEric Biggers <ebiggers@google.com>
Signed-off-by: default avatarTheodore Ts'o <tytso@mit.edu>
Signed-off-by: default avatarGreg Kroah-Hartman <gregkh@linuxfoundation.org>
parent 8dd114ef
......@@ -161,27 +161,61 @@ int fscrypt_get_policy(struct inode *inode, struct fscrypt_policy *policy)
}
EXPORT_SYMBOL(fscrypt_get_policy);
/**
* fscrypt_has_permitted_context() - is a file's encryption policy permitted
* within its directory?
*
* @parent: inode for parent directory
* @child: inode for file being looked up, opened, or linked into @parent
*
* Filesystems must call this before permitting access to an inode in a
* situation where the parent directory is encrypted (either before allowing
* ->lookup() to succeed, or for a regular file before allowing it to be opened)
* and before any operation that involves linking an inode into an encrypted
* directory, including link, rename, and cross rename. It enforces the
* constraint that within a given encrypted directory tree, all files use the
* same encryption policy. The pre-access check is needed to detect potentially
* malicious offline violations of this constraint, while the link and rename
* checks are needed to prevent online violations of this constraint.
*
* Return: 1 if permitted, 0 if forbidden. If forbidden, the caller must fail
* the filesystem operation with EPERM.
*/
int fscrypt_has_permitted_context(struct inode *parent, struct inode *child)
{
struct fscrypt_info *parent_ci, *child_ci;
const struct fscrypt_operations *cops = parent->i_sb->s_cop;
const struct fscrypt_info *parent_ci, *child_ci;
struct fscrypt_context parent_ctx, child_ctx;
int res;
if ((parent == NULL) || (child == NULL)) {
printk(KERN_ERR "parent %p child %p\n", parent, child);
BUG_ON(1);
}
/* No restrictions on file types which are never encrypted */
if (!S_ISREG(child->i_mode) && !S_ISDIR(child->i_mode) &&
!S_ISLNK(child->i_mode))
return 1;
/* no restrictions if the parent directory is not encrypted */
if (!parent->i_sb->s_cop->is_encrypted(parent))
/* No restrictions if the parent directory is unencrypted */
if (!cops->is_encrypted(parent))
return 1;
/* if the child directory is not encrypted, this is always a problem */
if (!parent->i_sb->s_cop->is_encrypted(child))
/* Encrypted directories must not contain unencrypted files */
if (!cops->is_encrypted(child))
return 0;
/*
* Both parent and child are encrypted, so verify they use the same
* encryption policy. Compare the fscrypt_info structs if the keys are
* available, otherwise retrieve and compare the fscrypt_contexts.
*
* Note that the fscrypt_context retrieval will be required frequently
* when accessing an encrypted directory tree without the key.
* Performance-wise this is not a big deal because we already don't
* really optimize for file access without the key (to the extent that
* such access is even possible), given that any attempted access
* already causes a fscrypt_context retrieval and keyring search.
*
* In any case, if an unexpected error occurs, fall back to "forbidden".
*/
res = fscrypt_get_encryption_info(parent);
if (res)
return 0;
......@@ -190,17 +224,32 @@ int fscrypt_has_permitted_context(struct inode *parent, struct inode *child)
return 0;
parent_ci = parent->i_crypt_info;
child_ci = child->i_crypt_info;
if (!parent_ci && !child_ci)
return 1;
if (!parent_ci || !child_ci)
return 0;
return (memcmp(parent_ci->ci_master_key,
child_ci->ci_master_key,
if (parent_ci && child_ci) {
return memcmp(parent_ci->ci_master_key, child_ci->ci_master_key,
FS_KEY_DESCRIPTOR_SIZE) == 0 &&
(parent_ci->ci_data_mode == child_ci->ci_data_mode) &&
(parent_ci->ci_filename_mode == child_ci->ci_filename_mode) &&
(parent_ci->ci_flags == child_ci->ci_flags));
(parent_ci->ci_filename_mode ==
child_ci->ci_filename_mode) &&
(parent_ci->ci_flags == child_ci->ci_flags);
}
res = cops->get_context(parent, &parent_ctx, sizeof(parent_ctx));
if (res != sizeof(parent_ctx))
return 0;
res = cops->get_context(child, &child_ctx, sizeof(child_ctx));
if (res != sizeof(child_ctx))
return 0;
return memcmp(parent_ctx.master_key_descriptor,
child_ctx.master_key_descriptor,
FS_KEY_DESCRIPTOR_SIZE) == 0 &&
(parent_ctx.contents_encryption_mode ==
child_ctx.contents_encryption_mode) &&
(parent_ctx.filenames_encryption_mode ==
child_ctx.filenames_encryption_mode) &&
(parent_ctx.flags == child_ctx.flags);
}
EXPORT_SYMBOL(fscrypt_has_permitted_context);
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment