Commit 7324b889 authored by Alice Ryhl's avatar Alice Ryhl Committed by Tejun Heo

rust: workqueue: add helper for defining work_struct fields

The main challenge with defining `work_struct` fields is making sure
that the function pointer stored in the `work_struct` is appropriate for
the work item type it is embedded in. It needs to know the offset of the
`work_struct` field being used (even if there are several!) so that it
can do a `container_of`, and it needs to know the type of the work item
so that it can call into the right user-provided code. All of this needs
to happen in a way that provides a safe API to the user, so that users
of the workqueue cannot mix up the function pointers.

There are three important pieces that are relevant when doing this:

 * The pointer type.
 * The work item struct. This is what the pointer points at.
 * The `work_struct` field. This is a field of the work item struct.

This patch introduces a separate trait for each piece. The pointer type
is given a `WorkItemPointer` trait, which pointer types need to
implement to be usable with the workqueue. This trait will be
implemented for `Arc` and `Box` in a later patch in this patchset.
Implementing this trait is unsafe because this is where the
`container_of` operation happens, but user-code will not need to
implement it themselves.

The work item struct should then implement the `WorkItem` trait. This
trait is where user-code specifies what they want to happen when a work
item is executed. It also specifies what the correct pointer type is.

Finally, to make the work item struct know the offset of its
`work_struct` field, we use a trait called `HasWork<T, ID>`. If a type
implements this trait, then the type declares that, at the given offset,
there is a field of type `Work<T, ID>`. The trait is marked unsafe
because the OFFSET constant must be correct, but we provide an
`impl_has_work!` macro that can safely implement `HasWork<T>` on a type.
The macro expands to something that only compiles if the specified field
really has the type `Work<T>`. It is used like this:

```
struct MyWorkItem {
    work_field: Work<MyWorkItem, 1>,
}

impl_has_work! {
    impl HasWork<MyWorkItem, 1> for MyWorkItem { self.work_field }
}
```

Note that since the `Work` type is annotated with an id, you can have
several `work_struct` fields by using a different id for each one.
Co-developed-by: default avatarGary Guo <gary@garyguo.net>
Signed-off-by: default avatarGary Guo <gary@garyguo.net>
Signed-off-by: default avatarAlice Ryhl <aliceryhl@google.com>
Reviewed-by: default avatarBenno Lossin <benno.lossin@proton.me>
Reviewed-by: default avatarMartin Rodriguez Reboredo <yakoyoku@gmail.com>
Reviewed-by: default avatarAndreas Hindborg <a.hindborg@samsung.com>
Reviewed-by: default avatarBoqun Feng <boqun.feng@gmail.com>
Signed-off-by: default avatarTejun Heo <tj@kernel.org>
parent 03394130
......@@ -30,6 +30,7 @@
#include <linux/sched/signal.h>
#include <linux/spinlock.h>
#include <linux/wait.h>
#include <linux/workqueue.h>
__noreturn void rust_helper_BUG(void)
{
......@@ -144,6 +145,18 @@ struct kunit *rust_helper_kunit_get_current_test(void)
}
EXPORT_SYMBOL_GPL(rust_helper_kunit_get_current_test);
void rust_helper_init_work_with_key(struct work_struct *work, work_func_t func,
bool onstack, const char *name,
struct lock_class_key *key)
{
__init_work(work, onstack);
work->data = (atomic_long_t)WORK_DATA_INIT();
lockdep_init_map(&work->lockdep_map, name, key, 0);
INIT_LIST_HEAD(&work->entry);
work->func = func;
}
EXPORT_SYMBOL_GPL(rust_helper_init_work_with_key);
/*
* `bindgen` binds the C `size_t` type as the Rust `usize` type, so we can
* use it in contexts where Rust expects a `usize` like slice (array) indices.
......
......@@ -16,6 +16,7 @@
#![feature(coerce_unsized)]
#![feature(dispatch_from_dyn)]
#![feature(new_uninit)]
#![feature(offset_of)]
#![feature(ptr_metadata)]
#![feature(receiver_trait)]
#![feature(unsize)]
......
......@@ -2,9 +2,42 @@
//! Work queues.
//!
//! This file has two components: The raw work item API, and the safe work item API.
//!
//! One pattern that is used in both APIs is the `ID` const generic, which exists to allow a single
//! type to define multiple `work_struct` fields. This is done by choosing an id for each field,
//! and using that id to specify which field you wish to use. (The actual value doesn't matter, as
//! long as you use different values for different fields of the same struct.) Since these IDs are
//! generic, they are used only at compile-time, so they shouldn't exist in the final binary.
//!
//! # The raw API
//!
//! The raw API consists of the `RawWorkItem` trait, where the work item needs to provide an
//! arbitrary function that knows how to enqueue the work item. It should usually not be used
//! directly, but if you want to, you can use it without using the pieces from the safe API.
//!
//! # The safe API
//!
//! The safe API is used via the `Work` struct and `WorkItem` traits. Furthermore, it also includes
//! a trait called `WorkItemPointer`, which is usually not used directly by the user.
//!
//! * The `Work` struct is the Rust wrapper for the C `work_struct` type.
//! * The `WorkItem` trait is implemented for structs that can be enqueued to a workqueue.
//! * The `WorkItemPointer` trait is implemented for the pointer type that points at a something
//! that implements `WorkItem`.
//!
//! C header: [`include/linux/workqueue.h`](../../../../include/linux/workqueue.h)
use crate::{bindings, types::Opaque};
use crate::{bindings, prelude::*, sync::LockClassKey, types::Opaque};
use core::marker::PhantomData;
/// Creates a [`Work`] initialiser with the given name and a newly-created lock class.
#[macro_export]
macro_rules! new_work {
($($name:literal)?) => {
$crate::workqueue::Work::new($crate::optional_name!($($name)?), $crate::static_lock_class!())
};
}
/// A kernel work queue.
///
......@@ -108,6 +141,228 @@ unsafe fn __enqueue<F>(self, queue_work_on: F) -> Self::EnqueueOutput
F: FnOnce(*mut bindings::work_struct) -> bool;
}
/// Defines the method that should be called directly when a work item is executed.
///
/// This trait is implemented by `Pin<Box<T>>` and `Arc<T>`, and is mainly intended to be
/// implemented for smart pointer types. For your own structs, you would implement [`WorkItem`]
/// instead. The `run` method on this trait will usually just perform the appropriate
/// `container_of` translation and then call into the `run` method from the [`WorkItem`] trait.
///
/// This trait is used when the `work_struct` field is defined using the [`Work`] helper.
///
/// # Safety
///
/// Implementers must ensure that [`__enqueue`] uses a `work_struct` initialized with the [`run`]
/// method of this trait as the function pointer.
///
/// [`__enqueue`]: RawWorkItem::__enqueue
/// [`run`]: WorkItemPointer::run
pub unsafe trait WorkItemPointer<const ID: u64>: RawWorkItem<ID> {
/// Run this work item.
///
/// # Safety
///
/// The provided `work_struct` pointer must originate from a previous call to `__enqueue` where
/// the `queue_work_on` closure returned true, and the pointer must still be valid.
unsafe extern "C" fn run(ptr: *mut bindings::work_struct);
}
/// Defines the method that should be called when this work item is executed.
///
/// This trait is used when the `work_struct` field is defined using the [`Work`] helper.
pub trait WorkItem<const ID: u64 = 0> {
/// The pointer type that this struct is wrapped in. This will typically be `Arc<Self>` or
/// `Pin<Box<Self>>`.
type Pointer: WorkItemPointer<ID>;
/// The method that should be called when this work item is executed.
fn run(this: Self::Pointer);
}
/// Links for a work item.
///
/// This struct contains a function pointer to the `run` function from the [`WorkItemPointer`]
/// trait, and defines the linked list pointers necessary to enqueue a work item in a workqueue.
///
/// Wraps the kernel's C `struct work_struct`.
///
/// This is a helper type used to associate a `work_struct` with the [`WorkItem`] that uses it.
#[repr(transparent)]
pub struct Work<T: ?Sized, const ID: u64 = 0> {
work: Opaque<bindings::work_struct>,
_inner: PhantomData<T>,
}
// SAFETY: Kernel work items are usable from any thread.
//
// We do not need to constrain `T` since the work item does not actually contain a `T`.
unsafe impl<T: ?Sized, const ID: u64> Send for Work<T, ID> {}
// SAFETY: Kernel work items are usable from any thread.
//
// We do not need to constrain `T` since the work item does not actually contain a `T`.
unsafe impl<T: ?Sized, const ID: u64> Sync for Work<T, ID> {}
impl<T: ?Sized, const ID: u64> Work<T, ID> {
/// Creates a new instance of [`Work`].
#[inline]
#[allow(clippy::new_ret_no_self)]
pub fn new(name: &'static CStr, key: &'static LockClassKey) -> impl PinInit<Self>
where
T: WorkItem<ID>,
{
// SAFETY: The `WorkItemPointer` implementation promises that `run` can be used as the work
// item function.
unsafe {
kernel::init::pin_init_from_closure(move |slot| {
let slot = Self::raw_get(slot);
bindings::init_work_with_key(
slot,
Some(T::Pointer::run),
false,
name.as_char_ptr(),
key.as_ptr(),
);
Ok(())
})
}
}
/// Get a pointer to the inner `work_struct`.
///
/// # Safety
///
/// The provided pointer must not be dangling and must be properly aligned. (But the memory
/// need not be initialized.)
#[inline]
pub unsafe fn raw_get(ptr: *const Self) -> *mut bindings::work_struct {
// SAFETY: The caller promises that the pointer is aligned and not dangling.
//
// A pointer cast would also be ok due to `#[repr(transparent)]`. We use `addr_of!` so that
// the compiler does not complain that the `work` field is unused.
unsafe { Opaque::raw_get(core::ptr::addr_of!((*ptr).work)) }
}
}
/// Declares that a type has a [`Work<T, ID>`] field.
///
/// The intended way of using this trait is via the [`impl_has_work!`] macro. You can use the macro
/// like this:
///
/// ```no_run
/// use kernel::impl_has_work;
/// use kernel::prelude::*;
/// use kernel::workqueue::Work;
///
/// struct MyWorkItem {
/// work_field: Work<MyWorkItem, 1>,
/// }
///
/// impl_has_work! {
/// impl HasWork<MyWorkItem, 1> for MyWorkItem { self.work_field }
/// }
/// ```
///
/// Note that since the `Work` type is annotated with an id, you can have several `work_struct`
/// fields by using a different id for each one.
///
/// # Safety
///
/// The [`OFFSET`] constant must be the offset of a field in Self of type [`Work<T, ID>`]. The methods on
/// this trait must have exactly the behavior that the definitions given below have.
///
/// [`Work<T, ID>`]: Work
/// [`impl_has_work!`]: crate::impl_has_work
/// [`OFFSET`]: HasWork::OFFSET
pub unsafe trait HasWork<T, const ID: u64 = 0> {
/// The offset of the [`Work<T, ID>`] field.
///
/// [`Work<T, ID>`]: Work
const OFFSET: usize;
/// Returns the offset of the [`Work<T, ID>`] field.
///
/// This method exists because the [`OFFSET`] constant cannot be accessed if the type is not Sized.
///
/// [`Work<T, ID>`]: Work
/// [`OFFSET`]: HasWork::OFFSET
#[inline]
fn get_work_offset(&self) -> usize {
Self::OFFSET
}
/// Returns a pointer to the [`Work<T, ID>`] field.
///
/// # Safety
///
/// The provided pointer must point at a valid struct of type `Self`.
///
/// [`Work<T, ID>`]: Work
#[inline]
unsafe fn raw_get_work(ptr: *mut Self) -> *mut Work<T, ID> {
// SAFETY: The caller promises that the pointer is valid.
unsafe { (ptr as *mut u8).add(Self::OFFSET) as *mut Work<T, ID> }
}
/// Returns a pointer to the struct containing the [`Work<T, ID>`] field.
///
/// # Safety
///
/// The pointer must point at a [`Work<T, ID>`] field in a struct of type `Self`.
///
/// [`Work<T, ID>`]: Work
#[inline]
unsafe fn work_container_of(ptr: *mut Work<T, ID>) -> *mut Self
where
Self: Sized,
{
// SAFETY: The caller promises that the pointer points at a field of the right type in the
// right kind of struct.
unsafe { (ptr as *mut u8).sub(Self::OFFSET) as *mut Self }
}
}
/// Used to safely implement the [`HasWork<T, ID>`] trait.
///
/// # Examples
///
/// ```
/// use kernel::impl_has_work;
/// use kernel::sync::Arc;
/// use kernel::workqueue::{self, Work};
///
/// struct MyStruct {
/// work_field: Work<MyStruct, 17>,
/// }
///
/// impl_has_work! {
/// impl HasWork<MyStruct, 17> for MyStruct { self.work_field }
/// }
/// ```
///
/// [`HasWork<T, ID>`]: HasWork
#[macro_export]
macro_rules! impl_has_work {
($(impl$(<$($implarg:ident),*>)?
HasWork<$work_type:ty $(, $id:tt)?>
for $self:ident $(<$($selfarg:ident),*>)?
{ self.$field:ident }
)*) => {$(
// SAFETY: The implementation of `raw_get_work` only compiles if the field has the right
// type.
unsafe impl$(<$($implarg),*>)? $crate::workqueue::HasWork<$work_type $(, $id)?> for $self $(<$($selfarg),*>)? {
const OFFSET: usize = ::core::mem::offset_of!(Self, $field) as usize;
#[inline]
unsafe fn raw_get_work(ptr: *mut Self) -> *mut $crate::workqueue::Work<$work_type $(, $id)?> {
// SAFETY: The caller promises that the pointer is not dangling.
unsafe {
::core::ptr::addr_of_mut!((*ptr).$field)
}
}
}
)*};
}
/// Returns the system work queue (`system_wq`).
///
/// It is the one used by `schedule[_delayed]_work[_on]()`. Multi-CPU multi-threaded. There are
......
......@@ -262,7 +262,7 @@ $(obj)/%.lst: $(src)/%.c FORCE
# Compile Rust sources (.rs)
# ---------------------------------------------------------------------------
rust_allowed_features := new_uninit
rust_allowed_features := new_uninit,offset_of
# `--out-dir` is required to avoid temporaries being created by `rustc` in the
# current working directory, which may be not accessible in the out-of-tree
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment