Commit 74d6790c authored by Linus Torvalds's avatar Linus Torvalds

Merge branch 'stable/for-linus-5.13' of...

Merge branch 'stable/for-linus-5.13' of git://git.kernel.org/pub/scm/linux/kernel/git/konrad/swiotlb

Pull swiotlb updates from Konrad Rzeszutek Wilk:
 "Christoph Hellwig has taken a cleaver and trimmed off the not-needed
  code and nicely folded duplicate code in the generic framework.

  This lays the groundwork for more work to add extra DMA-backend-ish in
  the future. Along with that some bug-fixes to make this a nice working
  package"

* 'stable/for-linus-5.13' of git://git.kernel.org/pub/scm/linux/kernel/git/konrad/swiotlb:
  swiotlb: don't override user specified size in swiotlb_adjust_size
  swiotlb: Fix the type of index
  swiotlb: Make SWIOTLB_NO_FORCE perform no allocation
  ARM: Qualify enabling of swiotlb_init()
  swiotlb: remove swiotlb_nr_tbl
  swiotlb: dynamically allocate io_tlb_default_mem
  swiotlb: move global variables into a new io_tlb_mem structure
  xen-swiotlb: remove the unused size argument from xen_swiotlb_fixup
  xen-swiotlb: split xen_swiotlb_init
  swiotlb: lift the double initialization protection from xen-swiotlb
  xen-swiotlb: remove xen_io_tlb_start and xen_io_tlb_nslabs
  xen-swiotlb: remove xen_set_nslabs
  xen-swiotlb: use io_tlb_end in xen_swiotlb_dma_supported
  xen-swiotlb: use is_swiotlb_buffer in is_xen_swiotlb_buffer
  swiotlb: split swiotlb_tbl_sync_single
  swiotlb: move orig addr and size validation into swiotlb_bounce
  swiotlb: remove the alloc_size parameter to swiotlb_tbl_unmap_single
  powerpc/svm: stop using io_tlb_start
parents 954b7207 dfc06b38
...@@ -301,7 +301,11 @@ static void __init free_highpages(void) ...@@ -301,7 +301,11 @@ static void __init free_highpages(void)
void __init mem_init(void) void __init mem_init(void)
{ {
#ifdef CONFIG_ARM_LPAE #ifdef CONFIG_ARM_LPAE
if (swiotlb_force == SWIOTLB_FORCE ||
max_pfn > arm_dma_pfn_limit)
swiotlb_init(1); swiotlb_init(1);
else
swiotlb_force = SWIOTLB_NO_FORCE;
#endif #endif
set_max_mapnr(pfn_to_page(max_pfn) - mem_map); set_max_mapnr(pfn_to_page(max_pfn) - mem_map);
......
...@@ -152,7 +152,7 @@ static int __init xen_mm_init(void) ...@@ -152,7 +152,7 @@ static int __init xen_mm_init(void)
struct gnttab_cache_flush cflush; struct gnttab_cache_flush cflush;
if (!xen_swiotlb_detect()) if (!xen_swiotlb_detect())
return 0; return 0;
xen_swiotlb_init(1, false); xen_swiotlb_init();
cflush.op = 0; cflush.op = 0;
cflush.a.dev_bus_addr = 0; cflush.a.dev_bus_addr = 0;
......
...@@ -55,8 +55,8 @@ void __init svm_swiotlb_init(void) ...@@ -55,8 +55,8 @@ void __init svm_swiotlb_init(void)
if (vstart && !swiotlb_init_with_tbl(vstart, io_tlb_nslabs, false)) if (vstart && !swiotlb_init_with_tbl(vstart, io_tlb_nslabs, false))
return; return;
if (io_tlb_start)
memblock_free_early(io_tlb_start, memblock_free_early(__pa(vstart),
PAGE_ALIGN(io_tlb_nslabs << IO_TLB_SHIFT)); PAGE_ALIGN(io_tlb_nslabs << IO_TLB_SHIFT));
panic("SVM: Cannot allocate SWIOTLB buffer"); panic("SVM: Cannot allocate SWIOTLB buffer");
} }
......
...@@ -59,7 +59,7 @@ int __init pci_xen_swiotlb_detect(void) ...@@ -59,7 +59,7 @@ int __init pci_xen_swiotlb_detect(void)
void __init pci_xen_swiotlb_init(void) void __init pci_xen_swiotlb_init(void)
{ {
if (xen_swiotlb) { if (xen_swiotlb) {
xen_swiotlb_init(1, true /* early */); xen_swiotlb_init_early();
dma_ops = &xen_swiotlb_dma_ops; dma_ops = &xen_swiotlb_dma_ops;
#ifdef CONFIG_PCI #ifdef CONFIG_PCI
...@@ -76,7 +76,7 @@ int pci_xen_swiotlb_init_late(void) ...@@ -76,7 +76,7 @@ int pci_xen_swiotlb_init_late(void)
if (xen_swiotlb) if (xen_swiotlb)
return 0; return 0;
rc = xen_swiotlb_init(1, false /* late */); rc = xen_swiotlb_init();
if (rc) if (rc)
return rc; return rc;
......
...@@ -42,7 +42,7 @@ static int i915_gem_object_get_pages_internal(struct drm_i915_gem_object *obj) ...@@ -42,7 +42,7 @@ static int i915_gem_object_get_pages_internal(struct drm_i915_gem_object *obj)
max_order = MAX_ORDER; max_order = MAX_ORDER;
#ifdef CONFIG_SWIOTLB #ifdef CONFIG_SWIOTLB
if (swiotlb_nr_tbl()) { if (is_swiotlb_active()) {
unsigned int max_segment; unsigned int max_segment;
max_segment = swiotlb_max_segment(); max_segment = swiotlb_max_segment();
......
...@@ -321,7 +321,7 @@ nouveau_ttm_init(struct nouveau_drm *drm) ...@@ -321,7 +321,7 @@ nouveau_ttm_init(struct nouveau_drm *drm)
} }
#if IS_ENABLED(CONFIG_SWIOTLB) && IS_ENABLED(CONFIG_X86) #if IS_ENABLED(CONFIG_SWIOTLB) && IS_ENABLED(CONFIG_X86)
need_swiotlb = !!swiotlb_nr_tbl(); need_swiotlb = is_swiotlb_active();
#endif #endif
ret = ttm_device_init(&drm->ttm.bdev, &nouveau_bo_driver, drm->dev->dev, ret = ttm_device_init(&drm->ttm.bdev, &nouveau_bo_driver, drm->dev->dev,
......
...@@ -496,8 +496,6 @@ static void __iommu_dma_unmap_swiotlb(struct device *dev, dma_addr_t dma_addr, ...@@ -496,8 +496,6 @@ static void __iommu_dma_unmap_swiotlb(struct device *dev, dma_addr_t dma_addr,
unsigned long attrs) unsigned long attrs)
{ {
struct iommu_domain *domain = iommu_get_dma_domain(dev); struct iommu_domain *domain = iommu_get_dma_domain(dev);
struct iommu_dma_cookie *cookie = domain->iova_cookie;
struct iova_domain *iovad = &cookie->iovad;
phys_addr_t phys; phys_addr_t phys;
phys = iommu_iova_to_phys(domain, dma_addr); phys = iommu_iova_to_phys(domain, dma_addr);
...@@ -507,8 +505,7 @@ static void __iommu_dma_unmap_swiotlb(struct device *dev, dma_addr_t dma_addr, ...@@ -507,8 +505,7 @@ static void __iommu_dma_unmap_swiotlb(struct device *dev, dma_addr_t dma_addr,
__iommu_dma_unmap(dev, dma_addr, size); __iommu_dma_unmap(dev, dma_addr, size);
if (unlikely(is_swiotlb_buffer(phys))) if (unlikely(is_swiotlb_buffer(phys)))
swiotlb_tbl_unmap_single(dev, phys, size, swiotlb_tbl_unmap_single(dev, phys, size, dir, attrs);
iova_align(iovad, size), dir, attrs);
} }
static dma_addr_t __iommu_dma_map(struct device *dev, phys_addr_t phys, static dma_addr_t __iommu_dma_map(struct device *dev, phys_addr_t phys,
...@@ -578,10 +575,8 @@ static dma_addr_t __iommu_dma_map_swiotlb(struct device *dev, phys_addr_t phys, ...@@ -578,10 +575,8 @@ static dma_addr_t __iommu_dma_map_swiotlb(struct device *dev, phys_addr_t phys,
} }
iova = __iommu_dma_map(dev, phys, aligned_size, prot, dma_mask); iova = __iommu_dma_map(dev, phys, aligned_size, prot, dma_mask);
if ((iova == DMA_MAPPING_ERROR) && is_swiotlb_buffer(phys)) if (iova == DMA_MAPPING_ERROR && is_swiotlb_buffer(phys))
swiotlb_tbl_unmap_single(dev, phys, org_size, swiotlb_tbl_unmap_single(dev, phys, org_size, dir, attrs);
aligned_size, dir, attrs);
return iova; return iova;
} }
...@@ -787,7 +782,7 @@ static void iommu_dma_sync_single_for_cpu(struct device *dev, ...@@ -787,7 +782,7 @@ static void iommu_dma_sync_single_for_cpu(struct device *dev,
arch_sync_dma_for_cpu(phys, size, dir); arch_sync_dma_for_cpu(phys, size, dir);
if (is_swiotlb_buffer(phys)) if (is_swiotlb_buffer(phys))
swiotlb_tbl_sync_single(dev, phys, size, dir, SYNC_FOR_CPU); swiotlb_sync_single_for_cpu(dev, phys, size, dir);
} }
static void iommu_dma_sync_single_for_device(struct device *dev, static void iommu_dma_sync_single_for_device(struct device *dev,
...@@ -800,7 +795,7 @@ static void iommu_dma_sync_single_for_device(struct device *dev, ...@@ -800,7 +795,7 @@ static void iommu_dma_sync_single_for_device(struct device *dev,
phys = iommu_iova_to_phys(iommu_get_dma_domain(dev), dma_handle); phys = iommu_iova_to_phys(iommu_get_dma_domain(dev), dma_handle);
if (is_swiotlb_buffer(phys)) if (is_swiotlb_buffer(phys))
swiotlb_tbl_sync_single(dev, phys, size, dir, SYNC_FOR_DEVICE); swiotlb_sync_single_for_device(dev, phys, size, dir);
if (!dev_is_dma_coherent(dev)) if (!dev_is_dma_coherent(dev))
arch_sync_dma_for_device(phys, size, dir); arch_sync_dma_for_device(phys, size, dir);
...@@ -821,8 +816,8 @@ static void iommu_dma_sync_sg_for_cpu(struct device *dev, ...@@ -821,8 +816,8 @@ static void iommu_dma_sync_sg_for_cpu(struct device *dev,
arch_sync_dma_for_cpu(sg_phys(sg), sg->length, dir); arch_sync_dma_for_cpu(sg_phys(sg), sg->length, dir);
if (is_swiotlb_buffer(sg_phys(sg))) if (is_swiotlb_buffer(sg_phys(sg)))
swiotlb_tbl_sync_single(dev, sg_phys(sg), sg->length, swiotlb_sync_single_for_cpu(dev, sg_phys(sg),
dir, SYNC_FOR_CPU); sg->length, dir);
} }
} }
...@@ -838,8 +833,8 @@ static void iommu_dma_sync_sg_for_device(struct device *dev, ...@@ -838,8 +833,8 @@ static void iommu_dma_sync_sg_for_device(struct device *dev,
for_each_sg(sgl, sg, nelems, i) { for_each_sg(sgl, sg, nelems, i) {
if (is_swiotlb_buffer(sg_phys(sg))) if (is_swiotlb_buffer(sg_phys(sg)))
swiotlb_tbl_sync_single(dev, sg_phys(sg), sg->length, swiotlb_sync_single_for_device(dev, sg_phys(sg),
dir, SYNC_FOR_DEVICE); sg->length, dir);
if (!dev_is_dma_coherent(dev)) if (!dev_is_dma_coherent(dev))
arch_sync_dma_for_device(sg_phys(sg), sg->length, dir); arch_sync_dma_for_device(sg_phys(sg), sg->length, dir);
......
...@@ -693,7 +693,7 @@ static int pcifront_connect_and_init_dma(struct pcifront_device *pdev) ...@@ -693,7 +693,7 @@ static int pcifront_connect_and_init_dma(struct pcifront_device *pdev)
spin_unlock(&pcifront_dev_lock); spin_unlock(&pcifront_dev_lock);
if (!err && !swiotlb_nr_tbl()) { if (!err && !is_swiotlb_active()) {
err = pci_xen_swiotlb_init_late(); err = pci_xen_swiotlb_init_late();
if (err) if (err)
dev_err(&pdev->xdev->dev, "Could not setup SWIOTLB!\n"); dev_err(&pdev->xdev->dev, "Could not setup SWIOTLB!\n");
......
...@@ -40,14 +40,7 @@ ...@@ -40,14 +40,7 @@
#include <trace/events/swiotlb.h> #include <trace/events/swiotlb.h>
#define MAX_DMA_BITS 32 #define MAX_DMA_BITS 32
/*
* Used to do a quick range check in swiotlb_tbl_unmap_single and
* swiotlb_tbl_sync_single_*, to see if the memory was in fact allocated by this
* API.
*/
static char *xen_io_tlb_start, *xen_io_tlb_end;
static unsigned long xen_io_tlb_nslabs;
/* /*
* Quick lookup value of the bus address of the IOTLB. * Quick lookup value of the bus address of the IOTLB.
*/ */
...@@ -82,11 +75,6 @@ static inline phys_addr_t xen_dma_to_phys(struct device *dev, ...@@ -82,11 +75,6 @@ static inline phys_addr_t xen_dma_to_phys(struct device *dev,
return xen_bus_to_phys(dev, dma_to_phys(dev, dma_addr)); return xen_bus_to_phys(dev, dma_to_phys(dev, dma_addr));
} }
static inline dma_addr_t xen_virt_to_bus(struct device *dev, void *address)
{
return xen_phys_to_dma(dev, virt_to_phys(address));
}
static inline int range_straddles_page_boundary(phys_addr_t p, size_t size) static inline int range_straddles_page_boundary(phys_addr_t p, size_t size)
{ {
unsigned long next_bfn, xen_pfn = XEN_PFN_DOWN(p); unsigned long next_bfn, xen_pfn = XEN_PFN_DOWN(p);
...@@ -111,15 +99,12 @@ static int is_xen_swiotlb_buffer(struct device *dev, dma_addr_t dma_addr) ...@@ -111,15 +99,12 @@ static int is_xen_swiotlb_buffer(struct device *dev, dma_addr_t dma_addr)
* have the same virtual address as another address * have the same virtual address as another address
* in our domain. Therefore _only_ check address within our domain. * in our domain. Therefore _only_ check address within our domain.
*/ */
if (pfn_valid(PFN_DOWN(paddr))) { if (pfn_valid(PFN_DOWN(paddr)))
return paddr >= virt_to_phys(xen_io_tlb_start) && return is_swiotlb_buffer(paddr);
paddr < virt_to_phys(xen_io_tlb_end);
}
return 0; return 0;
} }
static int static int xen_swiotlb_fixup(void *buf, unsigned long nslabs)
xen_swiotlb_fixup(void *buf, size_t size, unsigned long nslabs)
{ {
int i, rc; int i, rc;
int dma_bits; int dma_bits;
...@@ -145,16 +130,6 @@ xen_swiotlb_fixup(void *buf, size_t size, unsigned long nslabs) ...@@ -145,16 +130,6 @@ xen_swiotlb_fixup(void *buf, size_t size, unsigned long nslabs)
} while (i < nslabs); } while (i < nslabs);
return 0; return 0;
} }
static unsigned long xen_set_nslabs(unsigned long nr_tbl)
{
if (!nr_tbl) {
xen_io_tlb_nslabs = (64 * 1024 * 1024 >> IO_TLB_SHIFT);
xen_io_tlb_nslabs = ALIGN(xen_io_tlb_nslabs, IO_TLB_SEGSIZE);
} else
xen_io_tlb_nslabs = nr_tbl;
return xen_io_tlb_nslabs << IO_TLB_SHIFT;
}
enum xen_swiotlb_err { enum xen_swiotlb_err {
XEN_SWIOTLB_UNKNOWN = 0, XEN_SWIOTLB_UNKNOWN = 0,
...@@ -177,102 +152,109 @@ static const char *xen_swiotlb_error(enum xen_swiotlb_err err) ...@@ -177,102 +152,109 @@ static const char *xen_swiotlb_error(enum xen_swiotlb_err err)
} }
return ""; return "";
} }
int __ref xen_swiotlb_init(int verbose, bool early)
#define DEFAULT_NSLABS ALIGN(SZ_64M >> IO_TLB_SHIFT, IO_TLB_SEGSIZE)
int __ref xen_swiotlb_init(void)
{ {
unsigned long bytes, order;
int rc = -ENOMEM;
enum xen_swiotlb_err m_ret = XEN_SWIOTLB_UNKNOWN; enum xen_swiotlb_err m_ret = XEN_SWIOTLB_UNKNOWN;
unsigned int repeat = 3; unsigned long bytes = swiotlb_size_or_default();
unsigned long nslabs = bytes >> IO_TLB_SHIFT;
unsigned int order, repeat = 3;
int rc = -ENOMEM;
char *start;
xen_io_tlb_nslabs = swiotlb_nr_tbl();
retry: retry:
bytes = xen_set_nslabs(xen_io_tlb_nslabs); m_ret = XEN_SWIOTLB_ENOMEM;
order = get_order(xen_io_tlb_nslabs << IO_TLB_SHIFT); order = get_order(bytes);
/*
* IO TLB memory already allocated. Just use it.
*/
if (io_tlb_start != 0) {
xen_io_tlb_start = phys_to_virt(io_tlb_start);
goto end;
}
/* /*
* Get IO TLB memory from any location. * Get IO TLB memory from any location.
*/ */
if (early) {
xen_io_tlb_start = memblock_alloc(PAGE_ALIGN(bytes),
PAGE_SIZE);
if (!xen_io_tlb_start)
panic("%s: Failed to allocate %lu bytes align=0x%lx\n",
__func__, PAGE_ALIGN(bytes), PAGE_SIZE);
} else {
#define SLABS_PER_PAGE (1 << (PAGE_SHIFT - IO_TLB_SHIFT)) #define SLABS_PER_PAGE (1 << (PAGE_SHIFT - IO_TLB_SHIFT))
#define IO_TLB_MIN_SLABS ((1<<20) >> IO_TLB_SHIFT) #define IO_TLB_MIN_SLABS ((1<<20) >> IO_TLB_SHIFT)
while ((SLABS_PER_PAGE << order) > IO_TLB_MIN_SLABS) { while ((SLABS_PER_PAGE << order) > IO_TLB_MIN_SLABS) {
xen_io_tlb_start = (void *)xen_get_swiotlb_free_pages(order); start = (void *)xen_get_swiotlb_free_pages(order);
if (xen_io_tlb_start) if (start)
break; break;
order--; order--;
} }
if (!start)
goto error;
if (order != get_order(bytes)) { if (order != get_order(bytes)) {
pr_warn("Warning: only able to allocate %ld MB for software IO TLB\n", pr_warn("Warning: only able to allocate %ld MB for software IO TLB\n",
(PAGE_SIZE << order) >> 20); (PAGE_SIZE << order) >> 20);
xen_io_tlb_nslabs = SLABS_PER_PAGE << order; nslabs = SLABS_PER_PAGE << order;
bytes = xen_io_tlb_nslabs << IO_TLB_SHIFT; bytes = nslabs << IO_TLB_SHIFT;
}
}
if (!xen_io_tlb_start) {
m_ret = XEN_SWIOTLB_ENOMEM;
goto error;
} }
/* /*
* And replace that memory with pages under 4GB. * And replace that memory with pages under 4GB.
*/ */
rc = xen_swiotlb_fixup(xen_io_tlb_start, rc = xen_swiotlb_fixup(start, nslabs);
bytes,
xen_io_tlb_nslabs);
if (rc) { if (rc) {
if (early) free_pages((unsigned long)start, order);
memblock_free(__pa(xen_io_tlb_start),
PAGE_ALIGN(bytes));
else {
free_pages((unsigned long)xen_io_tlb_start, order);
xen_io_tlb_start = NULL;
}
m_ret = XEN_SWIOTLB_EFIXUP; m_ret = XEN_SWIOTLB_EFIXUP;
goto error; goto error;
} }
if (early) { rc = swiotlb_late_init_with_tbl(start, nslabs);
if (swiotlb_init_with_tbl(xen_io_tlb_start, xen_io_tlb_nslabs, if (rc)
verbose))
panic("Cannot allocate SWIOTLB buffer");
rc = 0;
} else
rc = swiotlb_late_init_with_tbl(xen_io_tlb_start, xen_io_tlb_nslabs);
end:
xen_io_tlb_end = xen_io_tlb_start + bytes;
if (!rc)
swiotlb_set_max_segment(PAGE_SIZE);
return rc; return rc;
swiotlb_set_max_segment(PAGE_SIZE);
return 0;
error: error:
if (repeat--) { if (repeat--) {
xen_io_tlb_nslabs = max(1024UL, /* Min is 2MB */ /* Min is 2MB */
(xen_io_tlb_nslabs >> 1)); nslabs = max(1024UL, (nslabs >> 1));
pr_info("Lowering to %luMB\n", pr_info("Lowering to %luMB\n",
(xen_io_tlb_nslabs << IO_TLB_SHIFT) >> 20); (nslabs << IO_TLB_SHIFT) >> 20);
goto retry; goto retry;
} }
pr_err("%s (rc:%d)\n", xen_swiotlb_error(m_ret), rc); pr_err("%s (rc:%d)\n", xen_swiotlb_error(m_ret), rc);
if (early) free_pages((unsigned long)start, order);
panic("%s (rc:%d)", xen_swiotlb_error(m_ret), rc);
else
free_pages((unsigned long)xen_io_tlb_start, order);
return rc; return rc;
} }
#ifdef CONFIG_X86
void __init xen_swiotlb_init_early(void)
{
unsigned long bytes = swiotlb_size_or_default();
unsigned long nslabs = bytes >> IO_TLB_SHIFT;
unsigned int repeat = 3;
char *start;
int rc;
retry:
/*
* Get IO TLB memory from any location.
*/
start = memblock_alloc(PAGE_ALIGN(bytes), PAGE_SIZE);
if (!start)
panic("%s: Failed to allocate %lu bytes align=0x%lx\n",
__func__, PAGE_ALIGN(bytes), PAGE_SIZE);
/*
* And replace that memory with pages under 4GB.
*/
rc = xen_swiotlb_fixup(start, nslabs);
if (rc) {
memblock_free(__pa(start), PAGE_ALIGN(bytes));
if (repeat--) {
/* Min is 2MB */
nslabs = max(1024UL, (nslabs >> 1));
bytes = nslabs << IO_TLB_SHIFT;
pr_info("Lowering to %luMB\n", bytes >> 20);
goto retry;
}
panic("%s (rc:%d)", xen_swiotlb_error(XEN_SWIOTLB_EFIXUP), rc);
}
if (swiotlb_init_with_tbl(start, nslabs, false))
panic("Cannot allocate SWIOTLB buffer");
swiotlb_set_max_segment(PAGE_SIZE);
}
#endif /* CONFIG_X86 */
static void * static void *
xen_swiotlb_alloc_coherent(struct device *hwdev, size_t size, xen_swiotlb_alloc_coherent(struct device *hwdev, size_t size,
dma_addr_t *dma_handle, gfp_t flags, dma_addr_t *dma_handle, gfp_t flags,
...@@ -406,7 +388,7 @@ static dma_addr_t xen_swiotlb_map_page(struct device *dev, struct page *page, ...@@ -406,7 +388,7 @@ static dma_addr_t xen_swiotlb_map_page(struct device *dev, struct page *page,
* Ensure that the address returned is DMA'ble * Ensure that the address returned is DMA'ble
*/ */
if (unlikely(!dma_capable(dev, dev_addr, size, true))) { if (unlikely(!dma_capable(dev, dev_addr, size, true))) {
swiotlb_tbl_unmap_single(dev, map, size, size, dir, swiotlb_tbl_unmap_single(dev, map, size, dir,
attrs | DMA_ATTR_SKIP_CPU_SYNC); attrs | DMA_ATTR_SKIP_CPU_SYNC);
return DMA_MAPPING_ERROR; return DMA_MAPPING_ERROR;
} }
...@@ -445,7 +427,7 @@ static void xen_swiotlb_unmap_page(struct device *hwdev, dma_addr_t dev_addr, ...@@ -445,7 +427,7 @@ static void xen_swiotlb_unmap_page(struct device *hwdev, dma_addr_t dev_addr,
/* NOTE: We use dev_addr here, not paddr! */ /* NOTE: We use dev_addr here, not paddr! */
if (is_xen_swiotlb_buffer(hwdev, dev_addr)) if (is_xen_swiotlb_buffer(hwdev, dev_addr))
swiotlb_tbl_unmap_single(hwdev, paddr, size, size, dir, attrs); swiotlb_tbl_unmap_single(hwdev, paddr, size, dir, attrs);
} }
static void static void
...@@ -462,7 +444,7 @@ xen_swiotlb_sync_single_for_cpu(struct device *dev, dma_addr_t dma_addr, ...@@ -462,7 +444,7 @@ xen_swiotlb_sync_single_for_cpu(struct device *dev, dma_addr_t dma_addr,
} }
if (is_xen_swiotlb_buffer(dev, dma_addr)) if (is_xen_swiotlb_buffer(dev, dma_addr))
swiotlb_tbl_sync_single(dev, paddr, size, dir, SYNC_FOR_CPU); swiotlb_sync_single_for_cpu(dev, paddr, size, dir);
} }
static void static void
...@@ -472,7 +454,7 @@ xen_swiotlb_sync_single_for_device(struct device *dev, dma_addr_t dma_addr, ...@@ -472,7 +454,7 @@ xen_swiotlb_sync_single_for_device(struct device *dev, dma_addr_t dma_addr,
phys_addr_t paddr = xen_dma_to_phys(dev, dma_addr); phys_addr_t paddr = xen_dma_to_phys(dev, dma_addr);
if (is_xen_swiotlb_buffer(dev, dma_addr)) if (is_xen_swiotlb_buffer(dev, dma_addr))
swiotlb_tbl_sync_single(dev, paddr, size, dir, SYNC_FOR_DEVICE); swiotlb_sync_single_for_device(dev, paddr, size, dir);
if (!dev_is_dma_coherent(dev)) { if (!dev_is_dma_coherent(dev)) {
if (pfn_valid(PFN_DOWN(dma_to_phys(dev, dma_addr)))) if (pfn_valid(PFN_DOWN(dma_to_phys(dev, dma_addr))))
...@@ -560,7 +542,7 @@ xen_swiotlb_sync_sg_for_device(struct device *dev, struct scatterlist *sgl, ...@@ -560,7 +542,7 @@ xen_swiotlb_sync_sg_for_device(struct device *dev, struct scatterlist *sgl,
static int static int
xen_swiotlb_dma_supported(struct device *hwdev, u64 mask) xen_swiotlb_dma_supported(struct device *hwdev, u64 mask)
{ {
return xen_virt_to_bus(hwdev, xen_io_tlb_end - 1) <= mask; return xen_phys_to_dma(hwdev, io_tlb_default_mem->end - 1) <= mask;
} }
const struct dma_map_ops xen_swiotlb_dma_ops = { const struct dma_map_ops xen_swiotlb_dma_ops = {
......
...@@ -6,6 +6,7 @@ ...@@ -6,6 +6,7 @@
#include <linux/init.h> #include <linux/init.h>
#include <linux/types.h> #include <linux/types.h>
#include <linux/limits.h> #include <linux/limits.h>
#include <linux/spinlock.h>
struct device; struct device;
struct page; struct page;
...@@ -36,20 +37,11 @@ enum swiotlb_force { ...@@ -36,20 +37,11 @@ enum swiotlb_force {
extern void swiotlb_init(int verbose); extern void swiotlb_init(int verbose);
int swiotlb_init_with_tbl(char *tlb, unsigned long nslabs, int verbose); int swiotlb_init_with_tbl(char *tlb, unsigned long nslabs, int verbose);
extern unsigned long swiotlb_nr_tbl(void);
unsigned long swiotlb_size_or_default(void); unsigned long swiotlb_size_or_default(void);
extern int swiotlb_late_init_with_tbl(char *tlb, unsigned long nslabs); extern int swiotlb_late_init_with_tbl(char *tlb, unsigned long nslabs);
extern int swiotlb_late_init_with_default_size(size_t default_size); extern int swiotlb_late_init_with_default_size(size_t default_size);
extern void __init swiotlb_update_mem_attributes(void); extern void __init swiotlb_update_mem_attributes(void);
/*
* Enumeration for sync targets
*/
enum dma_sync_target {
SYNC_FOR_CPU = 0,
SYNC_FOR_DEVICE = 1,
};
phys_addr_t swiotlb_tbl_map_single(struct device *hwdev, phys_addr_t phys, phys_addr_t swiotlb_tbl_map_single(struct device *hwdev, phys_addr_t phys,
size_t mapping_size, size_t alloc_size, size_t mapping_size, size_t alloc_size,
enum dma_data_direction dir, unsigned long attrs); enum dma_data_direction dir, unsigned long attrs);
...@@ -57,32 +49,70 @@ phys_addr_t swiotlb_tbl_map_single(struct device *hwdev, phys_addr_t phys, ...@@ -57,32 +49,70 @@ phys_addr_t swiotlb_tbl_map_single(struct device *hwdev, phys_addr_t phys,
extern void swiotlb_tbl_unmap_single(struct device *hwdev, extern void swiotlb_tbl_unmap_single(struct device *hwdev,
phys_addr_t tlb_addr, phys_addr_t tlb_addr,
size_t mapping_size, size_t mapping_size,
size_t alloc_size,
enum dma_data_direction dir, enum dma_data_direction dir,
unsigned long attrs); unsigned long attrs);
extern void swiotlb_tbl_sync_single(struct device *hwdev, void swiotlb_sync_single_for_device(struct device *dev, phys_addr_t tlb_addr,
phys_addr_t tlb_addr, size_t size, enum dma_data_direction dir);
size_t size, enum dma_data_direction dir, void swiotlb_sync_single_for_cpu(struct device *dev, phys_addr_t tlb_addr,
enum dma_sync_target target); size_t size, enum dma_data_direction dir);
dma_addr_t swiotlb_map(struct device *dev, phys_addr_t phys, dma_addr_t swiotlb_map(struct device *dev, phys_addr_t phys,
size_t size, enum dma_data_direction dir, unsigned long attrs); size_t size, enum dma_data_direction dir, unsigned long attrs);
#ifdef CONFIG_SWIOTLB #ifdef CONFIG_SWIOTLB
extern enum swiotlb_force swiotlb_force; extern enum swiotlb_force swiotlb_force;
extern phys_addr_t io_tlb_start, io_tlb_end;
/**
* struct io_tlb_mem - IO TLB Memory Pool Descriptor
*
* @start: The start address of the swiotlb memory pool. Used to do a quick
* range check to see if the memory was in fact allocated by this
* API.
* @end: The end address of the swiotlb memory pool. Used to do a quick
* range check to see if the memory was in fact allocated by this
* API.
* @nslabs: The number of IO TLB blocks (in groups of 64) between @start and
* @end. This is command line adjustable via setup_io_tlb_npages.
* @used: The number of used IO TLB block.
* @list: The free list describing the number of free entries available
* from each index.
* @index: The index to start searching in the next round.
* @orig_addr: The original address corresponding to a mapped entry.
* @alloc_size: Size of the allocated buffer.
* @lock: The lock to protect the above data structures in the map and
* unmap calls.
* @debugfs: The dentry to debugfs.
* @late_alloc: %true if allocated using the page allocator
*/
struct io_tlb_mem {
phys_addr_t start;
phys_addr_t end;
unsigned long nslabs;
unsigned long used;
unsigned int index;
spinlock_t lock;
struct dentry *debugfs;
bool late_alloc;
struct io_tlb_slot {
phys_addr_t orig_addr;
size_t alloc_size;
unsigned int list;
} slots[];
};
extern struct io_tlb_mem *io_tlb_default_mem;
static inline bool is_swiotlb_buffer(phys_addr_t paddr) static inline bool is_swiotlb_buffer(phys_addr_t paddr)
{ {
return paddr >= io_tlb_start && paddr < io_tlb_end; struct io_tlb_mem *mem = io_tlb_default_mem;
return mem && paddr >= mem->start && paddr < mem->end;
} }
void __init swiotlb_exit(void); void __init swiotlb_exit(void);
unsigned int swiotlb_max_segment(void); unsigned int swiotlb_max_segment(void);
size_t swiotlb_max_mapping_size(struct device *dev); size_t swiotlb_max_mapping_size(struct device *dev);
bool is_swiotlb_active(void); bool is_swiotlb_active(void);
void __init swiotlb_adjust_size(unsigned long new_size); void __init swiotlb_adjust_size(unsigned long size);
#else #else
#define swiotlb_force SWIOTLB_NO_FORCE #define swiotlb_force SWIOTLB_NO_FORCE
static inline bool is_swiotlb_buffer(phys_addr_t paddr) static inline bool is_swiotlb_buffer(phys_addr_t paddr)
...@@ -106,7 +136,7 @@ static inline bool is_swiotlb_active(void) ...@@ -106,7 +136,7 @@ static inline bool is_swiotlb_active(void)
return false; return false;
} }
static inline void swiotlb_adjust_size(unsigned long new_size) static inline void swiotlb_adjust_size(unsigned long size)
{ {
} }
#endif /* CONFIG_SWIOTLB */ #endif /* CONFIG_SWIOTLB */
......
...@@ -10,7 +10,8 @@ void xen_dma_sync_for_cpu(struct device *dev, dma_addr_t handle, ...@@ -10,7 +10,8 @@ void xen_dma_sync_for_cpu(struct device *dev, dma_addr_t handle,
void xen_dma_sync_for_device(struct device *dev, dma_addr_t handle, void xen_dma_sync_for_device(struct device *dev, dma_addr_t handle,
size_t size, enum dma_data_direction dir); size_t size, enum dma_data_direction dir);
extern int xen_swiotlb_init(int verbose, bool early); int xen_swiotlb_init(void);
void __init xen_swiotlb_init_early(void);
extern const struct dma_map_ops xen_swiotlb_dma_ops; extern const struct dma_map_ops xen_swiotlb_dma_ops;
#endif /* __LINUX_SWIOTLB_XEN_H */ #endif /* __LINUX_SWIOTLB_XEN_H */
...@@ -344,8 +344,8 @@ void dma_direct_sync_sg_for_device(struct device *dev, ...@@ -344,8 +344,8 @@ void dma_direct_sync_sg_for_device(struct device *dev,
phys_addr_t paddr = dma_to_phys(dev, sg_dma_address(sg)); phys_addr_t paddr = dma_to_phys(dev, sg_dma_address(sg));
if (unlikely(is_swiotlb_buffer(paddr))) if (unlikely(is_swiotlb_buffer(paddr)))
swiotlb_tbl_sync_single(dev, paddr, sg->length, swiotlb_sync_single_for_device(dev, paddr, sg->length,
dir, SYNC_FOR_DEVICE); dir);
if (!dev_is_dma_coherent(dev)) if (!dev_is_dma_coherent(dev))
arch_sync_dma_for_device(paddr, sg->length, arch_sync_dma_for_device(paddr, sg->length,
...@@ -370,8 +370,8 @@ void dma_direct_sync_sg_for_cpu(struct device *dev, ...@@ -370,8 +370,8 @@ void dma_direct_sync_sg_for_cpu(struct device *dev,
arch_sync_dma_for_cpu(paddr, sg->length, dir); arch_sync_dma_for_cpu(paddr, sg->length, dir);
if (unlikely(is_swiotlb_buffer(paddr))) if (unlikely(is_swiotlb_buffer(paddr)))
swiotlb_tbl_sync_single(dev, paddr, sg->length, dir, swiotlb_sync_single_for_cpu(dev, paddr, sg->length,
SYNC_FOR_CPU); dir);
if (dir == DMA_FROM_DEVICE) if (dir == DMA_FROM_DEVICE)
arch_dma_mark_clean(paddr, sg->length); arch_dma_mark_clean(paddr, sg->length);
......
...@@ -57,7 +57,7 @@ static inline void dma_direct_sync_single_for_device(struct device *dev, ...@@ -57,7 +57,7 @@ static inline void dma_direct_sync_single_for_device(struct device *dev,
phys_addr_t paddr = dma_to_phys(dev, addr); phys_addr_t paddr = dma_to_phys(dev, addr);
if (unlikely(is_swiotlb_buffer(paddr))) if (unlikely(is_swiotlb_buffer(paddr)))
swiotlb_tbl_sync_single(dev, paddr, size, dir, SYNC_FOR_DEVICE); swiotlb_sync_single_for_device(dev, paddr, size, dir);
if (!dev_is_dma_coherent(dev)) if (!dev_is_dma_coherent(dev))
arch_sync_dma_for_device(paddr, size, dir); arch_sync_dma_for_device(paddr, size, dir);
...@@ -74,7 +74,7 @@ static inline void dma_direct_sync_single_for_cpu(struct device *dev, ...@@ -74,7 +74,7 @@ static inline void dma_direct_sync_single_for_cpu(struct device *dev,
} }
if (unlikely(is_swiotlb_buffer(paddr))) if (unlikely(is_swiotlb_buffer(paddr)))
swiotlb_tbl_sync_single(dev, paddr, size, dir, SYNC_FOR_CPU); swiotlb_sync_single_for_cpu(dev, paddr, size, dir);
if (dir == DMA_FROM_DEVICE) if (dir == DMA_FROM_DEVICE)
arch_dma_mark_clean(paddr, size); arch_dma_mark_clean(paddr, size);
...@@ -114,6 +114,6 @@ static inline void dma_direct_unmap_page(struct device *dev, dma_addr_t addr, ...@@ -114,6 +114,6 @@ static inline void dma_direct_unmap_page(struct device *dev, dma_addr_t addr,
dma_direct_sync_single_for_cpu(dev, addr, size, dir); dma_direct_sync_single_for_cpu(dev, addr, size, dir);
if (unlikely(is_swiotlb_buffer(phys))) if (unlikely(is_swiotlb_buffer(phys)))
swiotlb_tbl_unmap_single(dev, phys, size, size, dir, attrs); swiotlb_tbl_unmap_single(dev, phys, size, dir, attrs);
} }
#endif /* _KERNEL_DMA_DIRECT_H */ #endif /* _KERNEL_DMA_DIRECT_H */
...@@ -59,32 +59,11 @@ ...@@ -59,32 +59,11 @@
*/ */
#define IO_TLB_MIN_SLABS ((1<<20) >> IO_TLB_SHIFT) #define IO_TLB_MIN_SLABS ((1<<20) >> IO_TLB_SHIFT)
enum swiotlb_force swiotlb_force; #define INVALID_PHYS_ADDR (~(phys_addr_t)0)
/*
* Used to do a quick range check in swiotlb_tbl_unmap_single and
* swiotlb_tbl_sync_single_*, to see if the memory was in fact allocated by this
* API.
*/
phys_addr_t io_tlb_start, io_tlb_end;
/*
* The number of IO TLB blocks (in groups of 64) between io_tlb_start and
* io_tlb_end. This is command line adjustable via setup_io_tlb_npages.
*/
static unsigned long io_tlb_nslabs;
/* enum swiotlb_force swiotlb_force;
* The number of used IO TLB block
*/
static unsigned long io_tlb_used;
/* struct io_tlb_mem *io_tlb_default_mem;
* This is a free list describing the number of free entries available from
* each index
*/
static unsigned int *io_tlb_list;
static unsigned int io_tlb_index;
/* /*
* Max segment that we can provide which (if pages are contingous) will * Max segment that we can provide which (if pages are contingous) will
...@@ -92,57 +71,30 @@ static unsigned int io_tlb_index; ...@@ -92,57 +71,30 @@ static unsigned int io_tlb_index;
*/ */
static unsigned int max_segment; static unsigned int max_segment;
/* static unsigned long default_nslabs = IO_TLB_DEFAULT_SIZE >> IO_TLB_SHIFT;
* We need to save away the original address corresponding to a mapped entry
* for the sync operations.
*/
#define INVALID_PHYS_ADDR (~(phys_addr_t)0)
static phys_addr_t *io_tlb_orig_addr;
/*
* The mapped buffer's size should be validated during a sync operation.
*/
static size_t *io_tlb_orig_size;
/*
* Protect the above data structures in the map and unmap calls
*/
static DEFINE_SPINLOCK(io_tlb_lock);
static int late_alloc;
static int __init static int __init
setup_io_tlb_npages(char *str) setup_io_tlb_npages(char *str)
{ {
if (isdigit(*str)) { if (isdigit(*str)) {
io_tlb_nslabs = simple_strtoul(str, &str, 0);
/* avoid tail segment of size < IO_TLB_SEGSIZE */ /* avoid tail segment of size < IO_TLB_SEGSIZE */
io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE); default_nslabs =
ALIGN(simple_strtoul(str, &str, 0), IO_TLB_SEGSIZE);
} }
if (*str == ',') if (*str == ',')
++str; ++str;
if (!strcmp(str, "force")) { if (!strcmp(str, "force"))
swiotlb_force = SWIOTLB_FORCE; swiotlb_force = SWIOTLB_FORCE;
} else if (!strcmp(str, "noforce")) { else if (!strcmp(str, "noforce"))
swiotlb_force = SWIOTLB_NO_FORCE; swiotlb_force = SWIOTLB_NO_FORCE;
io_tlb_nslabs = 1;
}
return 0; return 0;
} }
early_param("swiotlb", setup_io_tlb_npages); early_param("swiotlb", setup_io_tlb_npages);
static bool no_iotlb_memory;
unsigned long swiotlb_nr_tbl(void)
{
return unlikely(no_iotlb_memory) ? 0 : io_tlb_nslabs;
}
EXPORT_SYMBOL_GPL(swiotlb_nr_tbl);
unsigned int swiotlb_max_segment(void) unsigned int swiotlb_max_segment(void)
{ {
return unlikely(no_iotlb_memory) ? 0 : max_segment; return io_tlb_default_mem ? max_segment : 0;
} }
EXPORT_SYMBOL_GPL(swiotlb_max_segment); EXPORT_SYMBOL_GPL(swiotlb_max_segment);
...@@ -156,42 +108,34 @@ void swiotlb_set_max_segment(unsigned int val) ...@@ -156,42 +108,34 @@ void swiotlb_set_max_segment(unsigned int val)
unsigned long swiotlb_size_or_default(void) unsigned long swiotlb_size_or_default(void)
{ {
unsigned long size; return default_nslabs << IO_TLB_SHIFT;
size = io_tlb_nslabs << IO_TLB_SHIFT;
return size ? size : (IO_TLB_DEFAULT_SIZE);
} }
void __init swiotlb_adjust_size(unsigned long new_size) void __init swiotlb_adjust_size(unsigned long size)
{ {
unsigned long size;
/* /*
* If swiotlb parameter has not been specified, give a chance to * If swiotlb parameter has not been specified, give a chance to
* architectures such as those supporting memory encryption to * architectures such as those supporting memory encryption to
* adjust/expand SWIOTLB size for their use. * adjust/expand SWIOTLB size for their use.
*/ */
if (!io_tlb_nslabs) { if (default_nslabs != IO_TLB_DEFAULT_SIZE >> IO_TLB_SHIFT)
size = ALIGN(new_size, IO_TLB_SIZE); return;
io_tlb_nslabs = size >> IO_TLB_SHIFT; size = ALIGN(size, IO_TLB_SIZE);
io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE); default_nslabs = ALIGN(size >> IO_TLB_SHIFT, IO_TLB_SEGSIZE);
pr_info("SWIOTLB bounce buffer size adjusted to %luMB", size >> 20); pr_info("SWIOTLB bounce buffer size adjusted to %luMB", size >> 20);
}
} }
void swiotlb_print_info(void) void swiotlb_print_info(void)
{ {
unsigned long bytes = io_tlb_nslabs << IO_TLB_SHIFT; struct io_tlb_mem *mem = io_tlb_default_mem;
if (no_iotlb_memory) { if (!mem) {
pr_warn("No low mem\n"); pr_warn("No low mem\n");
return; return;
} }
pr_info("mapped [mem %pa-%pa] (%luMB)\n", &io_tlb_start, &io_tlb_end, pr_info("mapped [mem %pa-%pa] (%luMB)\n", &mem->start, &mem->end,
bytes >> 20); (mem->nslabs << IO_TLB_SHIFT) >> 20);
} }
static inline unsigned long io_tlb_offset(unsigned long val) static inline unsigned long io_tlb_offset(unsigned long val)
...@@ -212,64 +156,51 @@ static inline unsigned long nr_slots(u64 val) ...@@ -212,64 +156,51 @@ static inline unsigned long nr_slots(u64 val)
*/ */
void __init swiotlb_update_mem_attributes(void) void __init swiotlb_update_mem_attributes(void)
{ {
struct io_tlb_mem *mem = io_tlb_default_mem;
void *vaddr; void *vaddr;
unsigned long bytes; unsigned long bytes;
if (no_iotlb_memory || late_alloc) if (!mem || mem->late_alloc)
return; return;
vaddr = phys_to_virt(mem->start);
vaddr = phys_to_virt(io_tlb_start); bytes = PAGE_ALIGN(mem->nslabs << IO_TLB_SHIFT);
bytes = PAGE_ALIGN(io_tlb_nslabs << IO_TLB_SHIFT);
set_memory_decrypted((unsigned long)vaddr, bytes >> PAGE_SHIFT); set_memory_decrypted((unsigned long)vaddr, bytes >> PAGE_SHIFT);
memset(vaddr, 0, bytes); memset(vaddr, 0, bytes);
} }
int __init swiotlb_init_with_tbl(char *tlb, unsigned long nslabs, int verbose) int __init swiotlb_init_with_tbl(char *tlb, unsigned long nslabs, int verbose)
{ {
unsigned long i, bytes; unsigned long bytes = nslabs << IO_TLB_SHIFT, i;
struct io_tlb_mem *mem;
size_t alloc_size; size_t alloc_size;
bytes = nslabs << IO_TLB_SHIFT; if (swiotlb_force == SWIOTLB_NO_FORCE)
return 0;
io_tlb_nslabs = nslabs;
io_tlb_start = __pa(tlb);
io_tlb_end = io_tlb_start + bytes;
/*
* Allocate and initialize the free list array. This array is used
* to find contiguous free memory regions of size up to IO_TLB_SEGSIZE
* between io_tlb_start and io_tlb_end.
*/
alloc_size = PAGE_ALIGN(io_tlb_nslabs * sizeof(int));
io_tlb_list = memblock_alloc(alloc_size, PAGE_SIZE);
if (!io_tlb_list)
panic("%s: Failed to allocate %zu bytes align=0x%lx\n",
__func__, alloc_size, PAGE_SIZE);
alloc_size = PAGE_ALIGN(io_tlb_nslabs * sizeof(phys_addr_t)); /* protect against double initialization */
io_tlb_orig_addr = memblock_alloc(alloc_size, PAGE_SIZE); if (WARN_ON_ONCE(io_tlb_default_mem))
if (!io_tlb_orig_addr) return -ENOMEM;
panic("%s: Failed to allocate %zu bytes align=0x%lx\n",
__func__, alloc_size, PAGE_SIZE);
alloc_size = PAGE_ALIGN(io_tlb_nslabs * sizeof(size_t)); alloc_size = PAGE_ALIGN(struct_size(mem, slots, nslabs));
io_tlb_orig_size = memblock_alloc(alloc_size, PAGE_SIZE); mem = memblock_alloc(alloc_size, PAGE_SIZE);
if (!io_tlb_orig_size) if (!mem)
panic("%s: Failed to allocate %zu bytes align=0x%lx\n", panic("%s: Failed to allocate %zu bytes align=0x%lx\n",
__func__, alloc_size, PAGE_SIZE); __func__, alloc_size, PAGE_SIZE);
mem->nslabs = nslabs;
for (i = 0; i < io_tlb_nslabs; i++) { mem->start = __pa(tlb);
io_tlb_list[i] = IO_TLB_SEGSIZE - io_tlb_offset(i); mem->end = mem->start + bytes;
io_tlb_orig_addr[i] = INVALID_PHYS_ADDR; mem->index = 0;
io_tlb_orig_size[i] = 0; spin_lock_init(&mem->lock);
for (i = 0; i < mem->nslabs; i++) {
mem->slots[i].list = IO_TLB_SEGSIZE - io_tlb_offset(i);
mem->slots[i].orig_addr = INVALID_PHYS_ADDR;
mem->slots[i].alloc_size = 0;
} }
io_tlb_index = 0;
no_iotlb_memory = false;
io_tlb_default_mem = mem;
if (verbose) if (verbose)
swiotlb_print_info(); swiotlb_print_info();
swiotlb_set_max_segment(mem->nslabs << IO_TLB_SHIFT);
swiotlb_set_max_segment(io_tlb_nslabs << IO_TLB_SHIFT);
return 0; return 0;
} }
...@@ -280,29 +211,24 @@ int __init swiotlb_init_with_tbl(char *tlb, unsigned long nslabs, int verbose) ...@@ -280,29 +211,24 @@ int __init swiotlb_init_with_tbl(char *tlb, unsigned long nslabs, int verbose)
void __init void __init
swiotlb_init(int verbose) swiotlb_init(int verbose)
{ {
size_t default_size = IO_TLB_DEFAULT_SIZE; size_t bytes = PAGE_ALIGN(default_nslabs << IO_TLB_SHIFT);
unsigned char *vstart; void *tlb;
unsigned long bytes;
if (!io_tlb_nslabs) {
io_tlb_nslabs = (default_size >> IO_TLB_SHIFT);
io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE);
}
bytes = io_tlb_nslabs << IO_TLB_SHIFT; if (swiotlb_force == SWIOTLB_NO_FORCE)
return;
/* Get IO TLB memory from the low pages */ /* Get IO TLB memory from the low pages */
vstart = memblock_alloc_low(PAGE_ALIGN(bytes), PAGE_SIZE); tlb = memblock_alloc_low(bytes, PAGE_SIZE);
if (vstart && !swiotlb_init_with_tbl(vstart, io_tlb_nslabs, verbose)) if (!tlb)
goto fail;
if (swiotlb_init_with_tbl(tlb, default_nslabs, verbose))
goto fail_free_mem;
return; return;
if (io_tlb_start) { fail_free_mem:
memblock_free_early(io_tlb_start, memblock_free_early(__pa(tlb), bytes);
PAGE_ALIGN(io_tlb_nslabs << IO_TLB_SHIFT)); fail:
io_tlb_start = 0;
}
pr_warn("Cannot allocate buffer"); pr_warn("Cannot allocate buffer");
no_iotlb_memory = true;
} }
/* /*
...@@ -313,22 +239,22 @@ swiotlb_init(int verbose) ...@@ -313,22 +239,22 @@ swiotlb_init(int verbose)
int int
swiotlb_late_init_with_default_size(size_t default_size) swiotlb_late_init_with_default_size(size_t default_size)
{ {
unsigned long bytes, req_nslabs = io_tlb_nslabs; unsigned long nslabs =
ALIGN(default_size >> IO_TLB_SHIFT, IO_TLB_SEGSIZE);
unsigned long bytes;
unsigned char *vstart = NULL; unsigned char *vstart = NULL;
unsigned int order; unsigned int order;
int rc = 0; int rc = 0;
if (!io_tlb_nslabs) { if (swiotlb_force == SWIOTLB_NO_FORCE)
io_tlb_nslabs = (default_size >> IO_TLB_SHIFT); return 0;
io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE);
}
/* /*
* Get IO TLB memory from the low pages * Get IO TLB memory from the low pages
*/ */
order = get_order(io_tlb_nslabs << IO_TLB_SHIFT); order = get_order(nslabs << IO_TLB_SHIFT);
io_tlb_nslabs = SLABS_PER_PAGE << order; nslabs = SLABS_PER_PAGE << order;
bytes = io_tlb_nslabs << IO_TLB_SHIFT; bytes = nslabs << IO_TLB_SHIFT;
while ((SLABS_PER_PAGE << order) > IO_TLB_MIN_SLABS) { while ((SLABS_PER_PAGE << order) > IO_TLB_MIN_SLABS) {
vstart = (void *)__get_free_pages(GFP_DMA | __GFP_NOWARN, vstart = (void *)__get_free_pages(GFP_DMA | __GFP_NOWARN,
...@@ -338,134 +264,99 @@ swiotlb_late_init_with_default_size(size_t default_size) ...@@ -338,134 +264,99 @@ swiotlb_late_init_with_default_size(size_t default_size)
order--; order--;
} }
if (!vstart) { if (!vstart)
io_tlb_nslabs = req_nslabs;
return -ENOMEM; return -ENOMEM;
}
if (order != get_order(bytes)) { if (order != get_order(bytes)) {
pr_warn("only able to allocate %ld MB\n", pr_warn("only able to allocate %ld MB\n",
(PAGE_SIZE << order) >> 20); (PAGE_SIZE << order) >> 20);
io_tlb_nslabs = SLABS_PER_PAGE << order; nslabs = SLABS_PER_PAGE << order;
} }
rc = swiotlb_late_init_with_tbl(vstart, io_tlb_nslabs); rc = swiotlb_late_init_with_tbl(vstart, nslabs);
if (rc) if (rc)
free_pages((unsigned long)vstart, order); free_pages((unsigned long)vstart, order);
return rc; return rc;
} }
static void swiotlb_cleanup(void)
{
io_tlb_end = 0;
io_tlb_start = 0;
io_tlb_nslabs = 0;
max_segment = 0;
}
int int
swiotlb_late_init_with_tbl(char *tlb, unsigned long nslabs) swiotlb_late_init_with_tbl(char *tlb, unsigned long nslabs)
{ {
unsigned long i, bytes; unsigned long bytes = nslabs << IO_TLB_SHIFT, i;
struct io_tlb_mem *mem;
bytes = nslabs << IO_TLB_SHIFT; if (swiotlb_force == SWIOTLB_NO_FORCE)
return 0;
io_tlb_nslabs = nslabs; /* protect against double initialization */
io_tlb_start = virt_to_phys(tlb); if (WARN_ON_ONCE(io_tlb_default_mem))
io_tlb_end = io_tlb_start + bytes; return -ENOMEM;
set_memory_decrypted((unsigned long)tlb, bytes >> PAGE_SHIFT); mem = (void *)__get_free_pages(GFP_KERNEL,
memset(tlb, 0, bytes); get_order(struct_size(mem, slots, nslabs)));
if (!mem)
return -ENOMEM;
/* mem->nslabs = nslabs;
* Allocate and initialize the free list array. This array is used mem->start = virt_to_phys(tlb);
* to find contiguous free memory regions of size up to IO_TLB_SEGSIZE mem->end = mem->start + bytes;
* between io_tlb_start and io_tlb_end. mem->index = 0;
*/ mem->late_alloc = 1;
io_tlb_list = (unsigned int *)__get_free_pages(GFP_KERNEL, spin_lock_init(&mem->lock);
get_order(io_tlb_nslabs * sizeof(int))); for (i = 0; i < mem->nslabs; i++) {
if (!io_tlb_list) mem->slots[i].list = IO_TLB_SEGSIZE - io_tlb_offset(i);
goto cleanup3; mem->slots[i].orig_addr = INVALID_PHYS_ADDR;
mem->slots[i].alloc_size = 0;
io_tlb_orig_addr = (phys_addr_t *)
__get_free_pages(GFP_KERNEL,
get_order(io_tlb_nslabs *
sizeof(phys_addr_t)));
if (!io_tlb_orig_addr)
goto cleanup4;
io_tlb_orig_size = (size_t *)
__get_free_pages(GFP_KERNEL,
get_order(io_tlb_nslabs *
sizeof(size_t)));
if (!io_tlb_orig_size)
goto cleanup5;
for (i = 0; i < io_tlb_nslabs; i++) {
io_tlb_list[i] = IO_TLB_SEGSIZE - io_tlb_offset(i);
io_tlb_orig_addr[i] = INVALID_PHYS_ADDR;
io_tlb_orig_size[i] = 0;
} }
io_tlb_index = 0;
no_iotlb_memory = false;
swiotlb_print_info();
late_alloc = 1;
swiotlb_set_max_segment(io_tlb_nslabs << IO_TLB_SHIFT); set_memory_decrypted((unsigned long)tlb, bytes >> PAGE_SHIFT);
memset(tlb, 0, bytes);
io_tlb_default_mem = mem;
swiotlb_print_info();
swiotlb_set_max_segment(mem->nslabs << IO_TLB_SHIFT);
return 0; return 0;
cleanup5:
free_pages((unsigned long)io_tlb_orig_addr, get_order(io_tlb_nslabs *
sizeof(phys_addr_t)));
cleanup4:
free_pages((unsigned long)io_tlb_list, get_order(io_tlb_nslabs *
sizeof(int)));
io_tlb_list = NULL;
cleanup3:
swiotlb_cleanup();
return -ENOMEM;
} }
void __init swiotlb_exit(void) void __init swiotlb_exit(void)
{ {
if (!io_tlb_orig_addr) struct io_tlb_mem *mem = io_tlb_default_mem;
size_t size;
if (!mem)
return; return;
if (late_alloc) { size = struct_size(mem, slots, mem->nslabs);
free_pages((unsigned long)io_tlb_orig_size, if (mem->late_alloc)
get_order(io_tlb_nslabs * sizeof(size_t))); free_pages((unsigned long)mem, get_order(size));
free_pages((unsigned long)io_tlb_orig_addr, else
get_order(io_tlb_nslabs * sizeof(phys_addr_t))); memblock_free_late(__pa(mem), PAGE_ALIGN(size));
free_pages((unsigned long)io_tlb_list, get_order(io_tlb_nslabs * io_tlb_default_mem = NULL;
sizeof(int)));
free_pages((unsigned long)phys_to_virt(io_tlb_start),
get_order(io_tlb_nslabs << IO_TLB_SHIFT));
} else {
memblock_free_late(__pa(io_tlb_orig_addr),
PAGE_ALIGN(io_tlb_nslabs * sizeof(phys_addr_t)));
memblock_free_late(__pa(io_tlb_orig_size),
PAGE_ALIGN(io_tlb_nslabs * sizeof(size_t)));
memblock_free_late(__pa(io_tlb_list),
PAGE_ALIGN(io_tlb_nslabs * sizeof(int)));
memblock_free_late(io_tlb_start,
PAGE_ALIGN(io_tlb_nslabs << IO_TLB_SHIFT));
}
swiotlb_cleanup();
} }
/* /*
* Bounce: copy the swiotlb buffer from or back to the original dma location * Bounce: copy the swiotlb buffer from or back to the original dma location
*/ */
static void swiotlb_bounce(phys_addr_t orig_addr, phys_addr_t tlb_addr, static void swiotlb_bounce(struct device *dev, phys_addr_t tlb_addr, size_t size,
size_t size, enum dma_data_direction dir) enum dma_data_direction dir)
{ {
struct io_tlb_mem *mem = io_tlb_default_mem;
int index = (tlb_addr - mem->start) >> IO_TLB_SHIFT;
phys_addr_t orig_addr = mem->slots[index].orig_addr;
size_t alloc_size = mem->slots[index].alloc_size;
unsigned long pfn = PFN_DOWN(orig_addr); unsigned long pfn = PFN_DOWN(orig_addr);
unsigned char *vaddr = phys_to_virt(tlb_addr); unsigned char *vaddr = phys_to_virt(tlb_addr);
if (orig_addr == INVALID_PHYS_ADDR)
return;
if (size > alloc_size) {
dev_WARN_ONCE(dev, 1,
"Buffer overflow detected. Allocation size: %zu. Mapping size: %zu.\n",
alloc_size, size);
size = alloc_size;
}
if (PageHighMem(pfn_to_page(pfn))) { if (PageHighMem(pfn_to_page(pfn))) {
/* The buffer does not have a mapping. Map it in and copy */ /* The buffer does not have a mapping. Map it in and copy */
unsigned int offset = orig_addr & ~PAGE_MASK; unsigned int offset = orig_addr & ~PAGE_MASK;
...@@ -517,9 +408,9 @@ static inline unsigned long get_max_slots(unsigned long boundary_mask) ...@@ -517,9 +408,9 @@ static inline unsigned long get_max_slots(unsigned long boundary_mask)
return nr_slots(boundary_mask + 1); return nr_slots(boundary_mask + 1);
} }
static unsigned int wrap_index(unsigned int index) static unsigned int wrap_index(struct io_tlb_mem *mem, unsigned int index)
{ {
if (index >= io_tlb_nslabs) if (index >= mem->nslabs)
return 0; return 0;
return index; return index;
} }
...@@ -531,9 +422,10 @@ static unsigned int wrap_index(unsigned int index) ...@@ -531,9 +422,10 @@ static unsigned int wrap_index(unsigned int index)
static int find_slots(struct device *dev, phys_addr_t orig_addr, static int find_slots(struct device *dev, phys_addr_t orig_addr,
size_t alloc_size) size_t alloc_size)
{ {
struct io_tlb_mem *mem = io_tlb_default_mem;
unsigned long boundary_mask = dma_get_seg_boundary(dev); unsigned long boundary_mask = dma_get_seg_boundary(dev);
dma_addr_t tbl_dma_addr = dma_addr_t tbl_dma_addr =
phys_to_dma_unencrypted(dev, io_tlb_start) & boundary_mask; phys_to_dma_unencrypted(dev, mem->start) & boundary_mask;
unsigned long max_slots = get_max_slots(boundary_mask); unsigned long max_slots = get_max_slots(boundary_mask);
unsigned int iotlb_align_mask = unsigned int iotlb_align_mask =
dma_get_min_align_mask(dev) & ~(IO_TLB_SIZE - 1); dma_get_min_align_mask(dev) & ~(IO_TLB_SIZE - 1);
...@@ -552,15 +444,15 @@ static int find_slots(struct device *dev, phys_addr_t orig_addr, ...@@ -552,15 +444,15 @@ static int find_slots(struct device *dev, phys_addr_t orig_addr,
if (alloc_size >= PAGE_SIZE) if (alloc_size >= PAGE_SIZE)
stride = max(stride, stride << (PAGE_SHIFT - IO_TLB_SHIFT)); stride = max(stride, stride << (PAGE_SHIFT - IO_TLB_SHIFT));
spin_lock_irqsave(&io_tlb_lock, flags); spin_lock_irqsave(&mem->lock, flags);
if (unlikely(nslots > io_tlb_nslabs - io_tlb_used)) if (unlikely(nslots > mem->nslabs - mem->used))
goto not_found; goto not_found;
index = wrap = wrap_index(ALIGN(io_tlb_index, stride)); index = wrap = wrap_index(mem, ALIGN(mem->index, stride));
do { do {
if ((slot_addr(tbl_dma_addr, index) & iotlb_align_mask) != if ((slot_addr(tbl_dma_addr, index) & iotlb_align_mask) !=
(orig_addr & iotlb_align_mask)) { (orig_addr & iotlb_align_mask)) {
index = wrap_index(index + 1); index = wrap_index(mem, index + 1);
continue; continue;
} }
...@@ -572,34 +464,34 @@ static int find_slots(struct device *dev, phys_addr_t orig_addr, ...@@ -572,34 +464,34 @@ static int find_slots(struct device *dev, phys_addr_t orig_addr,
if (!iommu_is_span_boundary(index, nslots, if (!iommu_is_span_boundary(index, nslots,
nr_slots(tbl_dma_addr), nr_slots(tbl_dma_addr),
max_slots)) { max_slots)) {
if (io_tlb_list[index] >= nslots) if (mem->slots[index].list >= nslots)
goto found; goto found;
} }
index = wrap_index(index + stride); index = wrap_index(mem, index + stride);
} while (index != wrap); } while (index != wrap);
not_found: not_found:
spin_unlock_irqrestore(&io_tlb_lock, flags); spin_unlock_irqrestore(&mem->lock, flags);
return -1; return -1;
found: found:
for (i = index; i < index + nslots; i++) for (i = index; i < index + nslots; i++)
io_tlb_list[i] = 0; mem->slots[i].list = 0;
for (i = index - 1; for (i = index - 1;
io_tlb_offset(i) != IO_TLB_SEGSIZE - 1 && io_tlb_offset(i) != IO_TLB_SEGSIZE - 1 &&
io_tlb_list[i]; i--) mem->slots[i].list; i--)
io_tlb_list[i] = ++count; mem->slots[i].list = ++count;
/* /*
* Update the indices to avoid searching in the next round. * Update the indices to avoid searching in the next round.
*/ */
if (index + nslots < io_tlb_nslabs) if (index + nslots < mem->nslabs)
io_tlb_index = index + nslots; mem->index = index + nslots;
else else
io_tlb_index = 0; mem->index = 0;
io_tlb_used += nslots; mem->used += nslots;
spin_unlock_irqrestore(&io_tlb_lock, flags); spin_unlock_irqrestore(&mem->lock, flags);
return index; return index;
} }
...@@ -607,11 +499,13 @@ phys_addr_t swiotlb_tbl_map_single(struct device *dev, phys_addr_t orig_addr, ...@@ -607,11 +499,13 @@ phys_addr_t swiotlb_tbl_map_single(struct device *dev, phys_addr_t orig_addr,
size_t mapping_size, size_t alloc_size, size_t mapping_size, size_t alloc_size,
enum dma_data_direction dir, unsigned long attrs) enum dma_data_direction dir, unsigned long attrs)
{ {
struct io_tlb_mem *mem = io_tlb_default_mem;
unsigned int offset = swiotlb_align_offset(dev, orig_addr); unsigned int offset = swiotlb_align_offset(dev, orig_addr);
unsigned int index, i; unsigned int i;
int index;
phys_addr_t tlb_addr; phys_addr_t tlb_addr;
if (no_iotlb_memory) if (!mem)
panic("Can not allocate SWIOTLB buffer earlier and can't now provide you with the DMA bounce buffer"); panic("Can not allocate SWIOTLB buffer earlier and can't now provide you with the DMA bounce buffer");
if (mem_encrypt_active()) if (mem_encrypt_active())
...@@ -628,7 +522,7 @@ phys_addr_t swiotlb_tbl_map_single(struct device *dev, phys_addr_t orig_addr, ...@@ -628,7 +522,7 @@ phys_addr_t swiotlb_tbl_map_single(struct device *dev, phys_addr_t orig_addr,
if (!(attrs & DMA_ATTR_NO_WARN)) if (!(attrs & DMA_ATTR_NO_WARN))
dev_warn_ratelimited(dev, dev_warn_ratelimited(dev,
"swiotlb buffer is full (sz: %zd bytes), total %lu (slots), used %lu (slots)\n", "swiotlb buffer is full (sz: %zd bytes), total %lu (slots), used %lu (slots)\n",
alloc_size, io_tlb_nslabs, io_tlb_used); alloc_size, mem->nslabs, mem->used);
return (phys_addr_t)DMA_MAPPING_ERROR; return (phys_addr_t)DMA_MAPPING_ERROR;
} }
...@@ -638,49 +532,37 @@ phys_addr_t swiotlb_tbl_map_single(struct device *dev, phys_addr_t orig_addr, ...@@ -638,49 +532,37 @@ phys_addr_t swiotlb_tbl_map_single(struct device *dev, phys_addr_t orig_addr,
* needed. * needed.
*/ */
for (i = 0; i < nr_slots(alloc_size + offset); i++) { for (i = 0; i < nr_slots(alloc_size + offset); i++) {
io_tlb_orig_addr[index + i] = slot_addr(orig_addr, i); mem->slots[index + i].orig_addr = slot_addr(orig_addr, i);
io_tlb_orig_size[index+i] = alloc_size - (i << IO_TLB_SHIFT); mem->slots[index + i].alloc_size =
alloc_size - (i << IO_TLB_SHIFT);
} }
tlb_addr = slot_addr(io_tlb_start, index) + offset; tlb_addr = slot_addr(mem->start, index) + offset;
if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC) && if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC) &&
(dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL)) (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL))
swiotlb_bounce(orig_addr, tlb_addr, mapping_size, DMA_TO_DEVICE); swiotlb_bounce(dev, tlb_addr, mapping_size, DMA_TO_DEVICE);
return tlb_addr; return tlb_addr;
} }
static void validate_sync_size_and_truncate(struct device *hwdev, size_t orig_size, size_t *size)
{
if (*size > orig_size) {
/* Warn and truncate mapping_size */
dev_WARN_ONCE(hwdev, 1,
"Attempt for buffer overflow. Original size: %zu. Mapping size: %zu.\n",
orig_size, *size);
*size = orig_size;
}
}
/* /*
* tlb_addr is the physical address of the bounce buffer to unmap. * tlb_addr is the physical address of the bounce buffer to unmap.
*/ */
void swiotlb_tbl_unmap_single(struct device *hwdev, phys_addr_t tlb_addr, void swiotlb_tbl_unmap_single(struct device *hwdev, phys_addr_t tlb_addr,
size_t mapping_size, size_t alloc_size, size_t mapping_size, enum dma_data_direction dir,
enum dma_data_direction dir, unsigned long attrs) unsigned long attrs)
{ {
struct io_tlb_mem *mem = io_tlb_default_mem;
unsigned long flags; unsigned long flags;
unsigned int offset = swiotlb_align_offset(hwdev, tlb_addr); unsigned int offset = swiotlb_align_offset(hwdev, tlb_addr);
int i, count, nslots = nr_slots(alloc_size + offset); int index = (tlb_addr - offset - mem->start) >> IO_TLB_SHIFT;
int index = (tlb_addr - offset - io_tlb_start) >> IO_TLB_SHIFT; int nslots = nr_slots(mem->slots[index].alloc_size + offset);
phys_addr_t orig_addr = io_tlb_orig_addr[index]; int count, i;
validate_sync_size_and_truncate(hwdev, io_tlb_orig_size[index], &mapping_size);
/* /*
* First, sync the memory before unmapping the entry * First, sync the memory before unmapping the entry
*/ */
if (orig_addr != INVALID_PHYS_ADDR && if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC) &&
!(attrs & DMA_ATTR_SKIP_CPU_SYNC) && (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL))
((dir == DMA_FROM_DEVICE) || (dir == DMA_BIDIRECTIONAL))) swiotlb_bounce(hwdev, tlb_addr, mapping_size, DMA_FROM_DEVICE);
swiotlb_bounce(orig_addr, tlb_addr, mapping_size, DMA_FROM_DEVICE);
/* /*
* Return the buffer to the free list by setting the corresponding * Return the buffer to the free list by setting the corresponding
...@@ -688,9 +570,9 @@ void swiotlb_tbl_unmap_single(struct device *hwdev, phys_addr_t tlb_addr, ...@@ -688,9 +570,9 @@ void swiotlb_tbl_unmap_single(struct device *hwdev, phys_addr_t tlb_addr,
* While returning the entries to the free list, we merge the entries * While returning the entries to the free list, we merge the entries
* with slots below and above the pool being returned. * with slots below and above the pool being returned.
*/ */
spin_lock_irqsave(&io_tlb_lock, flags); spin_lock_irqsave(&mem->lock, flags);
if (index + nslots < ALIGN(index + 1, IO_TLB_SEGSIZE)) if (index + nslots < ALIGN(index + 1, IO_TLB_SEGSIZE))
count = io_tlb_list[index + nslots]; count = mem->slots[index + nslots].list;
else else
count = 0; count = 0;
...@@ -699,9 +581,9 @@ void swiotlb_tbl_unmap_single(struct device *hwdev, phys_addr_t tlb_addr, ...@@ -699,9 +581,9 @@ void swiotlb_tbl_unmap_single(struct device *hwdev, phys_addr_t tlb_addr,
* superceeding slots * superceeding slots
*/ */
for (i = index + nslots - 1; i >= index; i--) { for (i = index + nslots - 1; i >= index; i--) {
io_tlb_list[i] = ++count; mem->slots[i].list = ++count;
io_tlb_orig_addr[i] = INVALID_PHYS_ADDR; mem->slots[i].orig_addr = INVALID_PHYS_ADDR;
io_tlb_orig_size[i] = 0; mem->slots[i].alloc_size = 0;
} }
/* /*
...@@ -709,44 +591,29 @@ void swiotlb_tbl_unmap_single(struct device *hwdev, phys_addr_t tlb_addr, ...@@ -709,44 +591,29 @@ void swiotlb_tbl_unmap_single(struct device *hwdev, phys_addr_t tlb_addr,
* available (non zero) * available (non zero)
*/ */
for (i = index - 1; for (i = index - 1;
io_tlb_offset(i) != IO_TLB_SEGSIZE - 1 && io_tlb_list[i]; io_tlb_offset(i) != IO_TLB_SEGSIZE - 1 && mem->slots[i].list;
i--) i--)
io_tlb_list[i] = ++count; mem->slots[i].list = ++count;
io_tlb_used -= nslots; mem->used -= nslots;
spin_unlock_irqrestore(&io_tlb_lock, flags); spin_unlock_irqrestore(&mem->lock, flags);
} }
void swiotlb_tbl_sync_single(struct device *hwdev, phys_addr_t tlb_addr, void swiotlb_sync_single_for_device(struct device *dev, phys_addr_t tlb_addr,
size_t size, enum dma_data_direction dir, size_t size, enum dma_data_direction dir)
enum dma_sync_target target)
{ {
int index = (tlb_addr - io_tlb_start) >> IO_TLB_SHIFT; if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL)
size_t orig_size = io_tlb_orig_size[index]; swiotlb_bounce(dev, tlb_addr, size, DMA_TO_DEVICE);
phys_addr_t orig_addr = io_tlb_orig_addr[index]; else
BUG_ON(dir != DMA_FROM_DEVICE);
if (orig_addr == INVALID_PHYS_ADDR) }
return;
validate_sync_size_and_truncate(hwdev, orig_size, &size);
switch (target) { void swiotlb_sync_single_for_cpu(struct device *dev, phys_addr_t tlb_addr,
case SYNC_FOR_CPU: size_t size, enum dma_data_direction dir)
if (likely(dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL)) {
swiotlb_bounce(orig_addr, tlb_addr, if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL)
size, DMA_FROM_DEVICE); swiotlb_bounce(dev, tlb_addr, size, DMA_FROM_DEVICE);
else else
BUG_ON(dir != DMA_TO_DEVICE); BUG_ON(dir != DMA_TO_DEVICE);
break;
case SYNC_FOR_DEVICE:
if (likely(dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL))
swiotlb_bounce(orig_addr, tlb_addr,
size, DMA_TO_DEVICE);
else
BUG_ON(dir != DMA_FROM_DEVICE);
break;
default:
BUG();
}
} }
/* /*
...@@ -770,7 +637,7 @@ dma_addr_t swiotlb_map(struct device *dev, phys_addr_t paddr, size_t size, ...@@ -770,7 +637,7 @@ dma_addr_t swiotlb_map(struct device *dev, phys_addr_t paddr, size_t size,
/* Ensure that the address returned is DMA'ble */ /* Ensure that the address returned is DMA'ble */
dma_addr = phys_to_dma_unencrypted(dev, swiotlb_addr); dma_addr = phys_to_dma_unencrypted(dev, swiotlb_addr);
if (unlikely(!dma_capable(dev, dma_addr, size, true))) { if (unlikely(!dma_capable(dev, dma_addr, size, true))) {
swiotlb_tbl_unmap_single(dev, swiotlb_addr, size, size, dir, swiotlb_tbl_unmap_single(dev, swiotlb_addr, size, dir,
attrs | DMA_ATTR_SKIP_CPU_SYNC); attrs | DMA_ATTR_SKIP_CPU_SYNC);
dev_WARN_ONCE(dev, 1, dev_WARN_ONCE(dev, 1,
"swiotlb addr %pad+%zu overflow (mask %llx, bus limit %llx).\n", "swiotlb addr %pad+%zu overflow (mask %llx, bus limit %llx).\n",
...@@ -790,22 +657,21 @@ size_t swiotlb_max_mapping_size(struct device *dev) ...@@ -790,22 +657,21 @@ size_t swiotlb_max_mapping_size(struct device *dev)
bool is_swiotlb_active(void) bool is_swiotlb_active(void)
{ {
/* return io_tlb_default_mem != NULL;
* When SWIOTLB is initialized, even if io_tlb_start points to physical
* address zero, io_tlb_end surely doesn't.
*/
return io_tlb_end != 0;
} }
EXPORT_SYMBOL_GPL(is_swiotlb_active);
#ifdef CONFIG_DEBUG_FS #ifdef CONFIG_DEBUG_FS
static int __init swiotlb_create_debugfs(void) static int __init swiotlb_create_debugfs(void)
{ {
struct dentry *root; struct io_tlb_mem *mem = io_tlb_default_mem;
root = debugfs_create_dir("swiotlb", NULL); if (!mem)
debugfs_create_ulong("io_tlb_nslabs", 0400, root, &io_tlb_nslabs); return 0;
debugfs_create_ulong("io_tlb_used", 0400, root, &io_tlb_used); mem->debugfs = debugfs_create_dir("swiotlb", NULL);
debugfs_create_ulong("io_tlb_nslabs", 0400, mem->debugfs, &mem->nslabs);
debugfs_create_ulong("io_tlb_used", 0400, mem->debugfs, &mem->used);
return 0; return 0;
} }
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment