Commit 7786fb36 authored by Ben Skeggs's avatar Ben Skeggs Committed by Dave Airlie

drm/nouveau/disp: collapse nvkm_dp into nvkm_outp

There should be no changes to code here other than modifying the
dereferences.
Signed-off-by: default avatarBen Skeggs <bskeggs@redhat.com>
Reviewed-by: default avatarLyude Paul <lyude@redhat.com>
Signed-off-by: default avatarDave Airlie <airlied@redhat.com>
parent 89ed996b
...@@ -40,7 +40,7 @@ ...@@ -40,7 +40,7 @@
#define AMPERE_IED_HACK(disp) ((disp)->engine.subdev.device->card_type >= GA100) #define AMPERE_IED_HACK(disp) ((disp)->engine.subdev.device->card_type >= GA100)
struct lt_state { struct lt_state {
struct nvkm_dp *dp; struct nvkm_outp *outp;
int repeaters; int repeaters;
int repeater; int repeater;
...@@ -55,7 +55,7 @@ struct lt_state { ...@@ -55,7 +55,7 @@ struct lt_state {
static int static int
nvkm_dp_train_sense(struct lt_state *lt, bool pc, u32 delay) nvkm_dp_train_sense(struct lt_state *lt, bool pc, u32 delay)
{ {
struct nvkm_dp *dp = lt->dp; struct nvkm_outp *outp = lt->outp;
u32 addr; u32 addr;
int ret; int ret;
...@@ -66,7 +66,7 @@ nvkm_dp_train_sense(struct lt_state *lt, bool pc, u32 delay) ...@@ -66,7 +66,7 @@ nvkm_dp_train_sense(struct lt_state *lt, bool pc, u32 delay)
else else
addr = DPCD_LS02; addr = DPCD_LS02;
ret = nvkm_rdaux(dp->aux, addr, &lt->stat[0], 3); ret = nvkm_rdaux(outp->dp.aux, addr, &lt->stat[0], 3);
if (ret) if (ret)
return ret; return ret;
...@@ -75,18 +75,18 @@ nvkm_dp_train_sense(struct lt_state *lt, bool pc, u32 delay) ...@@ -75,18 +75,18 @@ nvkm_dp_train_sense(struct lt_state *lt, bool pc, u32 delay)
else else
addr = DPCD_LS06; addr = DPCD_LS06;
ret = nvkm_rdaux(dp->aux, addr, &lt->stat[4], 2); ret = nvkm_rdaux(outp->dp.aux, addr, &lt->stat[4], 2);
if (ret) if (ret)
return ret; return ret;
if (pc) { if (pc) {
ret = nvkm_rdaux(dp->aux, DPCD_LS0C, &lt->pc2stat, 1); ret = nvkm_rdaux(outp->dp.aux, DPCD_LS0C, &lt->pc2stat, 1);
if (ret) if (ret)
lt->pc2stat = 0x00; lt->pc2stat = 0x00;
OUTP_TRACE(&dp->outp, "status %6ph pc2 %02x",
lt->stat, lt->pc2stat); OUTP_TRACE(outp, "status %6ph pc2 %02x", lt->stat, lt->pc2stat);
} else { } else {
OUTP_TRACE(&dp->outp, "status %6ph", lt->stat); OUTP_TRACE(outp, "status %6ph", lt->stat);
} }
return 0; return 0;
...@@ -95,8 +95,8 @@ nvkm_dp_train_sense(struct lt_state *lt, bool pc, u32 delay) ...@@ -95,8 +95,8 @@ nvkm_dp_train_sense(struct lt_state *lt, bool pc, u32 delay)
static int static int
nvkm_dp_train_drive(struct lt_state *lt, bool pc) nvkm_dp_train_drive(struct lt_state *lt, bool pc)
{ {
struct nvkm_dp *dp = lt->dp; struct nvkm_outp *outp = lt->outp;
struct nvkm_ior *ior = dp->outp.ior; struct nvkm_ior *ior = outp->ior;
struct nvkm_bios *bios = ior->disp->engine.subdev.device->bios; struct nvkm_bios *bios = ior->disp->engine.subdev.device->bios;
struct nvbios_dpout info; struct nvbios_dpout info;
struct nvbios_dpcfg ocfg; struct nvbios_dpcfg ocfg;
...@@ -127,26 +127,22 @@ nvkm_dp_train_drive(struct lt_state *lt, bool pc) ...@@ -127,26 +127,22 @@ nvkm_dp_train_drive(struct lt_state *lt, bool pc)
lt->conf[i] = (lpre << 3) | lvsw; lt->conf[i] = (lpre << 3) | lvsw;
lt->pc2conf[i >> 1] |= lpc2 << ((i & 1) * 4); lt->pc2conf[i >> 1] |= lpc2 << ((i & 1) * 4);
OUTP_TRACE(&dp->outp, "config lane %d %02x %02x", OUTP_TRACE(outp, "config lane %d %02x %02x", i, lt->conf[i], lpc2);
i, lt->conf[i], lpc2);
if (lt->repeater != lt->repeaters) if (lt->repeater != lt->repeaters)
continue; continue;
data = nvbios_dpout_match(bios, dp->outp.info.hasht, data = nvbios_dpout_match(bios, outp->info.hasht, outp->info.hashm,
dp->outp.info.hashm,
&ver, &hdr, &cnt, &len, &info); &ver, &hdr, &cnt, &len, &info);
if (!data) if (!data)
continue; continue;
data = nvbios_dpcfg_match(bios, data, lpc2 & 3, lvsw & 3, data = nvbios_dpcfg_match(bios, data, lpc2 & 3, lvsw & 3, lpre & 3,
lpre & 3, &ver, &hdr, &cnt, &len, &ver, &hdr, &cnt, &len, &ocfg);
&ocfg);
if (!data) if (!data)
continue; continue;
ior->func->dp.drive(ior, i, ocfg.pc, ocfg.dc, ior->func->dp.drive(ior, i, ocfg.pc, ocfg.dc, ocfg.pe, ocfg.tx_pu);
ocfg.pe, ocfg.tx_pu);
} }
if (lt->repeater) if (lt->repeater)
...@@ -154,12 +150,12 @@ nvkm_dp_train_drive(struct lt_state *lt, bool pc) ...@@ -154,12 +150,12 @@ nvkm_dp_train_drive(struct lt_state *lt, bool pc)
else else
addr = DPCD_LC03(0); addr = DPCD_LC03(0);
ret = nvkm_wraux(dp->aux, addr, lt->conf, 4); ret = nvkm_wraux(outp->dp.aux, addr, lt->conf, 4);
if (ret) if (ret)
return ret; return ret;
if (pc) { if (pc) {
ret = nvkm_wraux(dp->aux, DPCD_LC0F, lt->pc2conf, 2); ret = nvkm_wraux(outp->dp.aux, DPCD_LC0F, lt->pc2conf, 2);
if (ret) if (ret)
return ret; return ret;
} }
...@@ -170,19 +166,19 @@ nvkm_dp_train_drive(struct lt_state *lt, bool pc) ...@@ -170,19 +166,19 @@ nvkm_dp_train_drive(struct lt_state *lt, bool pc)
static void static void
nvkm_dp_train_pattern(struct lt_state *lt, u8 pattern) nvkm_dp_train_pattern(struct lt_state *lt, u8 pattern)
{ {
struct nvkm_dp *dp = lt->dp; struct nvkm_outp *outp = lt->outp;
u32 addr; u32 addr;
u8 sink_tp; u8 sink_tp;
OUTP_TRACE(&dp->outp, "training pattern %d", pattern); OUTP_TRACE(outp, "training pattern %d", pattern);
dp->outp.ior->func->dp.pattern(dp->outp.ior, pattern); outp->ior->func->dp.pattern(outp->ior, pattern);
if (lt->repeater) if (lt->repeater)
addr = DPCD_LTTPR_PATTERN_SET(lt->repeater); addr = DPCD_LTTPR_PATTERN_SET(lt->repeater);
else else
addr = DPCD_LC02; addr = DPCD_LC02;
nvkm_rdaux(dp->aux, addr, &sink_tp, 1); nvkm_rdaux(outp->dp.aux, addr, &sink_tp, 1);
sink_tp &= ~DPCD_LC02_TRAINING_PATTERN_SET; sink_tp &= ~DPCD_LC02_TRAINING_PATTERN_SET;
sink_tp |= (pattern != 4) ? pattern : 7; sink_tp |= (pattern != 4) ? pattern : 7;
...@@ -190,13 +186,13 @@ nvkm_dp_train_pattern(struct lt_state *lt, u8 pattern) ...@@ -190,13 +186,13 @@ nvkm_dp_train_pattern(struct lt_state *lt, u8 pattern)
sink_tp |= DPCD_LC02_SCRAMBLING_DISABLE; sink_tp |= DPCD_LC02_SCRAMBLING_DISABLE;
else else
sink_tp &= ~DPCD_LC02_SCRAMBLING_DISABLE; sink_tp &= ~DPCD_LC02_SCRAMBLING_DISABLE;
nvkm_wraux(dp->aux, addr, &sink_tp, 1); nvkm_wraux(outp->dp.aux, addr, &sink_tp, 1);
} }
static int static int
nvkm_dp_train_eq(struct lt_state *lt) nvkm_dp_train_eq(struct lt_state *lt)
{ {
struct nvkm_i2c_aux *aux = lt->dp->aux; struct nvkm_i2c_aux *aux = lt->outp->dp.aux;
bool eq_done = false, cr_done = true; bool eq_done = false, cr_done = true;
int tries = 0, usec = 0, i; int tries = 0, usec = 0, i;
u8 data; u8 data;
...@@ -207,17 +203,17 @@ nvkm_dp_train_eq(struct lt_state *lt) ...@@ -207,17 +203,17 @@ nvkm_dp_train_eq(struct lt_state *lt)
nvkm_dp_train_pattern(lt, 4); nvkm_dp_train_pattern(lt, 4);
} else { } else {
if (lt->dp->dpcd[DPCD_RC00_DPCD_REV] >= 0x14 && if (lt->outp->dp.dpcd[DPCD_RC00_DPCD_REV] >= 0x14 &&
lt->dp->dpcd[DPCD_RC03] & DPCD_RC03_TPS4_SUPPORTED) lt->outp->dp.dpcd[DPCD_RC03] & DPCD_RC03_TPS4_SUPPORTED)
nvkm_dp_train_pattern(lt, 4); nvkm_dp_train_pattern(lt, 4);
else else
if (lt->dp->dpcd[DPCD_RC00_DPCD_REV] >= 0x12 && if (lt->outp->dp.dpcd[DPCD_RC00_DPCD_REV] >= 0x12 &&
lt->dp->dpcd[DPCD_RC02] & DPCD_RC02_TPS3_SUPPORTED) lt->outp->dp.dpcd[DPCD_RC02] & DPCD_RC02_TPS3_SUPPORTED)
nvkm_dp_train_pattern(lt, 3); nvkm_dp_train_pattern(lt, 3);
else else
nvkm_dp_train_pattern(lt, 2); nvkm_dp_train_pattern(lt, 2);
usec = (lt->dp->dpcd[DPCD_RC0E] & DPCD_RC0E_AUX_RD_INTERVAL) * 4000; usec = (lt->outp->dp.dpcd[DPCD_RC0E] & DPCD_RC0E_AUX_RD_INTERVAL) * 4000;
} }
do { do {
...@@ -227,7 +223,7 @@ nvkm_dp_train_eq(struct lt_state *lt) ...@@ -227,7 +223,7 @@ nvkm_dp_train_eq(struct lt_state *lt)
break; break;
eq_done = !!(lt->stat[2] & DPCD_LS04_INTERLANE_ALIGN_DONE); eq_done = !!(lt->stat[2] & DPCD_LS04_INTERLANE_ALIGN_DONE);
for (i = 0; i < lt->dp->outp.ior->dp.nr && eq_done; i++) { for (i = 0; i < lt->outp->ior->dp.nr && eq_done; i++) {
u8 lane = (lt->stat[i >> 1] >> ((i & 1) * 4)) & 0xf; u8 lane = (lt->stat[i >> 1] >> ((i & 1) * 4)) & 0xf;
if (!(lane & DPCD_LS02_LANE0_CR_DONE)) if (!(lane & DPCD_LS02_LANE0_CR_DONE))
cr_done = false; cr_done = false;
...@@ -249,8 +245,8 @@ nvkm_dp_train_cr(struct lt_state *lt) ...@@ -249,8 +245,8 @@ nvkm_dp_train_cr(struct lt_state *lt)
nvkm_dp_train_pattern(lt, 1); nvkm_dp_train_pattern(lt, 1);
if (lt->dp->dpcd[DPCD_RC00_DPCD_REV] < 0x14 && !lt->repeater) if (lt->outp->dp.dpcd[DPCD_RC00_DPCD_REV] < 0x14 && !lt->repeater)
usec = (lt->dp->dpcd[DPCD_RC0E] & DPCD_RC0E_AUX_RD_INTERVAL) * 4000; usec = (lt->outp->dp.dpcd[DPCD_RC0E] & DPCD_RC0E_AUX_RD_INTERVAL) * 4000;
do { do {
if (nvkm_dp_train_drive(lt, false) || if (nvkm_dp_train_drive(lt, false) ||
...@@ -258,7 +254,7 @@ nvkm_dp_train_cr(struct lt_state *lt) ...@@ -258,7 +254,7 @@ nvkm_dp_train_cr(struct lt_state *lt)
break; break;
cr_done = true; cr_done = true;
for (i = 0; i < lt->dp->outp.ior->dp.nr; i++) { for (i = 0; i < lt->outp->ior->dp.nr; i++) {
u8 lane = (lt->stat[i >> 1] >> ((i & 1) * 4)) & 0xf; u8 lane = (lt->stat[i >> 1] >> ((i & 1) * 4)) & 0xf;
if (!(lane & DPCD_LS02_LANE0_CR_DONE)) { if (!(lane & DPCD_LS02_LANE0_CR_DONE)) {
cr_done = false; cr_done = false;
...@@ -278,45 +274,44 @@ nvkm_dp_train_cr(struct lt_state *lt) ...@@ -278,45 +274,44 @@ nvkm_dp_train_cr(struct lt_state *lt)
} }
static int static int
nvkm_dp_train_links(struct nvkm_dp *dp, int rate) nvkm_dp_train_links(struct nvkm_outp *outp, int rate)
{ {
struct nvkm_ior *ior = dp->outp.ior; struct nvkm_ior *ior = outp->ior;
struct nvkm_disp *disp = dp->outp.disp; struct nvkm_disp *disp = outp->disp;
struct nvkm_subdev *subdev = &disp->engine.subdev; struct nvkm_subdev *subdev = &disp->engine.subdev;
struct nvkm_bios *bios = subdev->device->bios; struct nvkm_bios *bios = subdev->device->bios;
struct lt_state lt = { struct lt_state lt = {
.dp = dp, .outp = outp,
}; };
u32 lnkcmp; u32 lnkcmp;
u8 sink[2], data; u8 sink[2], data;
int ret; int ret;
OUTP_DBG(&dp->outp, "training %d x %d MB/s", OUTP_DBG(outp, "training %d x %d MB/s", ior->dp.nr, ior->dp.bw * 27);
ior->dp.nr, ior->dp.bw * 27);
/* Intersect misc. capabilities of the OR and sink. */ /* Intersect misc. capabilities of the OR and sink. */
if (disp->engine.subdev.device->chipset < 0x110) if (disp->engine.subdev.device->chipset < 0x110)
dp->dpcd[DPCD_RC03] &= ~DPCD_RC03_TPS4_SUPPORTED; outp->dp.dpcd[DPCD_RC03] &= ~DPCD_RC03_TPS4_SUPPORTED;
if (disp->engine.subdev.device->chipset < 0xd0) if (disp->engine.subdev.device->chipset < 0xd0)
dp->dpcd[DPCD_RC02] &= ~DPCD_RC02_TPS3_SUPPORTED; outp->dp.dpcd[DPCD_RC02] &= ~DPCD_RC02_TPS3_SUPPORTED;
lt.pc2 = dp->dpcd[DPCD_RC02] & DPCD_RC02_TPS3_SUPPORTED; lt.pc2 = outp->dp.dpcd[DPCD_RC02] & DPCD_RC02_TPS3_SUPPORTED;
if (AMPERE_IED_HACK(disp) && (lnkcmp = lt.dp->info.script[0])) { if (AMPERE_IED_HACK(disp) && (lnkcmp = lt.outp->dp.info.script[0])) {
/* Execute BeforeLinkTraining script from DP Info table. */ /* Execute BeforeLinkTraining script from DP Info table. */
while (ior->dp.bw < nvbios_rd08(bios, lnkcmp)) while (ior->dp.bw < nvbios_rd08(bios, lnkcmp))
lnkcmp += 3; lnkcmp += 3;
lnkcmp = nvbios_rd16(bios, lnkcmp + 1); lnkcmp = nvbios_rd16(bios, lnkcmp + 1);
nvbios_init(&dp->outp.disp->engine.subdev, lnkcmp, nvbios_init(&outp->disp->engine.subdev, lnkcmp,
init.outp = &dp->outp.info; init.outp = &outp->info;
init.or = ior->id; init.or = ior->id;
init.link = ior->asy.link; init.link = ior->asy.link;
); );
} }
/* Set desired link configuration on the source. */ /* Set desired link configuration on the source. */
if ((lnkcmp = lt.dp->info.lnkcmp)) { if ((lnkcmp = lt.outp->dp.info.lnkcmp)) {
if (dp->version < 0x30) { if (outp->dp.version < 0x30) {
while ((ior->dp.bw * 2700) < nvbios_rd16(bios, lnkcmp)) while ((ior->dp.bw * 2700) < nvbios_rd16(bios, lnkcmp))
lnkcmp += 4; lnkcmp += 4;
lnkcmp = nvbios_rd16(bios, lnkcmp + 2); lnkcmp = nvbios_rd16(bios, lnkcmp + 2);
...@@ -327,16 +322,16 @@ nvkm_dp_train_links(struct nvkm_dp *dp, int rate) ...@@ -327,16 +322,16 @@ nvkm_dp_train_links(struct nvkm_dp *dp, int rate)
} }
nvbios_init(subdev, lnkcmp, nvbios_init(subdev, lnkcmp,
init.outp = &dp->outp.info; init.outp = &outp->info;
init.or = ior->id; init.or = ior->id;
init.link = ior->asy.link; init.link = ior->asy.link;
); );
} }
ret = ior->func->dp.links(ior, dp->aux); ret = ior->func->dp.links(ior, outp->dp.aux);
if (ret) { if (ret) {
if (ret < 0) { if (ret < 0) {
OUTP_ERR(&dp->outp, "train failed with %d", ret); OUTP_ERR(outp, "train failed with %d", ret);
return ret; return ret;
} }
return 0; return 0;
...@@ -347,36 +342,36 @@ nvkm_dp_train_links(struct nvkm_dp *dp, int rate) ...@@ -347,36 +342,36 @@ nvkm_dp_train_links(struct nvkm_dp *dp, int rate)
/* Select LTTPR non-transparent mode if we have a valid configuration, /* Select LTTPR non-transparent mode if we have a valid configuration,
* use transparent mode otherwise. * use transparent mode otherwise.
*/ */
if (dp->lttpr[0] >= 0x14) { if (outp->dp.lttpr[0] >= 0x14) {
data = DPCD_LTTPR_MODE_TRANSPARENT; data = DPCD_LTTPR_MODE_TRANSPARENT;
nvkm_wraux(dp->aux, DPCD_LTTPR_MODE, &data, sizeof(data)); nvkm_wraux(outp->dp.aux, DPCD_LTTPR_MODE, &data, sizeof(data));
if (dp->lttprs) { if (outp->dp.lttprs) {
data = DPCD_LTTPR_MODE_NON_TRANSPARENT; data = DPCD_LTTPR_MODE_NON_TRANSPARENT;
nvkm_wraux(dp->aux, DPCD_LTTPR_MODE, &data, sizeof(data)); nvkm_wraux(outp->dp.aux, DPCD_LTTPR_MODE, &data, sizeof(data));
lt.repeaters = dp->lttprs; lt.repeaters = outp->dp.lttprs;
} }
} }
/* Set desired link configuration on the sink. */ /* Set desired link configuration on the sink. */
sink[0] = (dp->rate[rate].dpcd < 0) ? ior->dp.bw : 0; sink[0] = (outp->dp.rate[rate].dpcd < 0) ? ior->dp.bw : 0;
sink[1] = ior->dp.nr; sink[1] = ior->dp.nr;
if (ior->dp.ef) if (ior->dp.ef)
sink[1] |= DPCD_LC01_ENHANCED_FRAME_EN; sink[1] |= DPCD_LC01_ENHANCED_FRAME_EN;
ret = nvkm_wraux(dp->aux, DPCD_LC00_LINK_BW_SET, sink, 2); ret = nvkm_wraux(outp->dp.aux, DPCD_LC00_LINK_BW_SET, sink, 2);
if (ret) if (ret)
return ret; return ret;
if (dp->rate[rate].dpcd >= 0) { if (outp->dp.rate[rate].dpcd >= 0) {
ret = nvkm_rdaux(dp->aux, DPCD_LC15_LINK_RATE_SET, &sink[0], sizeof(sink[0])); ret = nvkm_rdaux(outp->dp.aux, DPCD_LC15_LINK_RATE_SET, &sink[0], sizeof(sink[0]));
if (ret) if (ret)
return ret; return ret;
sink[0] &= ~DPCD_LC15_LINK_RATE_SET_MASK; sink[0] &= ~DPCD_LC15_LINK_RATE_SET_MASK;
sink[0] |= dp->rate[rate].dpcd; sink[0] |= outp->dp.rate[rate].dpcd;
ret = nvkm_wraux(dp->aux, DPCD_LC15_LINK_RATE_SET, &sink[0], sizeof(sink[0])); ret = nvkm_wraux(outp->dp.aux, DPCD_LC15_LINK_RATE_SET, &sink[0], sizeof(sink[0]));
if (ret) if (ret)
return ret; return ret;
} }
...@@ -384,9 +379,9 @@ nvkm_dp_train_links(struct nvkm_dp *dp, int rate) ...@@ -384,9 +379,9 @@ nvkm_dp_train_links(struct nvkm_dp *dp, int rate)
/* Attempt to train the link in this configuration. */ /* Attempt to train the link in this configuration. */
for (lt.repeater = lt.repeaters; lt.repeater >= 0; lt.repeater--) { for (lt.repeater = lt.repeaters; lt.repeater >= 0; lt.repeater--) {
if (lt.repeater) if (lt.repeater)
OUTP_DBG(&dp->outp, "training LTTPR%d", lt.repeater); OUTP_DBG(outp, "training LTTPR%d", lt.repeater);
else else
OUTP_DBG(&dp->outp, "training sink"); OUTP_DBG(outp, "training sink");
memset(lt.stat, 0x00, sizeof(lt.stat)); memset(lt.stat, 0x00, sizeof(lt.stat));
ret = nvkm_dp_train_cr(&lt); ret = nvkm_dp_train_cr(&lt);
...@@ -399,94 +394,92 @@ nvkm_dp_train_links(struct nvkm_dp *dp, int rate) ...@@ -399,94 +394,92 @@ nvkm_dp_train_links(struct nvkm_dp *dp, int rate)
} }
static void static void
nvkm_dp_train_fini(struct nvkm_dp *dp) nvkm_dp_train_fini(struct nvkm_outp *outp)
{ {
/* Execute AfterLinkTraining script from DP Info table. */ /* Execute AfterLinkTraining script from DP Info table. */
nvbios_init(&dp->outp.disp->engine.subdev, dp->info.script[1], nvbios_init(&outp->disp->engine.subdev, outp->dp.info.script[1],
init.outp = &dp->outp.info; init.outp = &outp->info;
init.or = dp->outp.ior->id; init.or = outp->ior->id;
init.link = dp->outp.ior->asy.link; init.link = outp->ior->asy.link;
); );
} }
static void static void
nvkm_dp_train_init(struct nvkm_dp *dp) nvkm_dp_train_init(struct nvkm_outp *outp)
{ {
/* Execute EnableSpread/DisableSpread script from DP Info table. */ /* Execute EnableSpread/DisableSpread script from DP Info table. */
if (dp->dpcd[DPCD_RC03] & DPCD_RC03_MAX_DOWNSPREAD) { if (outp->dp.dpcd[DPCD_RC03] & DPCD_RC03_MAX_DOWNSPREAD) {
nvbios_init(&dp->outp.disp->engine.subdev, dp->info.script[2], nvbios_init(&outp->disp->engine.subdev, outp->dp.info.script[2],
init.outp = &dp->outp.info; init.outp = &outp->info;
init.or = dp->outp.ior->id; init.or = outp->ior->id;
init.link = dp->outp.ior->asy.link; init.link = outp->ior->asy.link;
); );
} else { } else {
nvbios_init(&dp->outp.disp->engine.subdev, dp->info.script[3], nvbios_init(&outp->disp->engine.subdev, outp->dp.info.script[3],
init.outp = &dp->outp.info; init.outp = &outp->info;
init.or = dp->outp.ior->id; init.or = outp->ior->id;
init.link = dp->outp.ior->asy.link; init.link = outp->ior->asy.link;
); );
} }
if (!AMPERE_IED_HACK(dp->outp.disp)) { if (!AMPERE_IED_HACK(outp->disp)) {
/* Execute BeforeLinkTraining script from DP Info table. */ /* Execute BeforeLinkTraining script from DP Info table. */
nvbios_init(&dp->outp.disp->engine.subdev, dp->info.script[0], nvbios_init(&outp->disp->engine.subdev, outp->dp.info.script[0],
init.outp = &dp->outp.info; init.outp = &outp->info;
init.or = dp->outp.ior->id; init.or = outp->ior->id;
init.link = dp->outp.ior->asy.link; init.link = outp->ior->asy.link;
); );
} }
} }
static int static int
nvkm_dp_train(struct nvkm_dp *dp, u32 dataKBps) nvkm_dp_train(struct nvkm_outp *outp, u32 dataKBps)
{ {
struct nvkm_ior *ior = dp->outp.ior; struct nvkm_ior *ior = outp->ior;
int ret = -EINVAL, nr, rate; int ret = -EINVAL, nr, rate;
u8 pwr; u8 pwr;
/* Ensure sink is not in a low-power state. */ /* Ensure sink is not in a low-power state. */
if (!nvkm_rdaux(dp->aux, DPCD_SC00, &pwr, 1)) { if (!nvkm_rdaux(outp->dp.aux, DPCD_SC00, &pwr, 1)) {
if ((pwr & DPCD_SC00_SET_POWER) != DPCD_SC00_SET_POWER_D0) { if ((pwr & DPCD_SC00_SET_POWER) != DPCD_SC00_SET_POWER_D0) {
pwr &= ~DPCD_SC00_SET_POWER; pwr &= ~DPCD_SC00_SET_POWER;
pwr |= DPCD_SC00_SET_POWER_D0; pwr |= DPCD_SC00_SET_POWER_D0;
nvkm_wraux(dp->aux, DPCD_SC00, &pwr, 1); nvkm_wraux(outp->dp.aux, DPCD_SC00, &pwr, 1);
} }
} }
ior->dp.mst = dp->lt.mst; ior->dp.mst = outp->dp.lt.mst;
ior->dp.ef = dp->dpcd[DPCD_RC02] & DPCD_RC02_ENHANCED_FRAME_CAP; ior->dp.ef = outp->dp.dpcd[DPCD_RC02] & DPCD_RC02_ENHANCED_FRAME_CAP;
ior->dp.nr = 0; ior->dp.nr = 0;
/* Link training. */ /* Link training. */
OUTP_DBG(&dp->outp, "training"); OUTP_DBG(outp, "training");
nvkm_dp_train_init(dp); nvkm_dp_train_init(outp);
for (nr = dp->links; ret < 0 && nr; nr >>= 1) { for (nr = outp->dp.links; ret < 0 && nr; nr >>= 1) {
for (rate = 0; ret < 0 && rate < dp->rates; rate++) { for (rate = 0; ret < 0 && rate < outp->dp.rates; rate++) {
if (dp->rate[rate].rate * nr >= dataKBps || WARN_ON(!ior->dp.nr)) { if (outp->dp.rate[rate].rate * nr >= dataKBps || WARN_ON(!ior->dp.nr)) {
/* Program selected link configuration. */ /* Program selected link configuration. */
ior->dp.bw = dp->rate[rate].rate / 27000; ior->dp.bw = outp->dp.rate[rate].rate / 27000;
ior->dp.nr = nr; ior->dp.nr = nr;
ret = nvkm_dp_train_links(dp, rate); ret = nvkm_dp_train_links(outp, rate);
} }
} }
} }
nvkm_dp_train_fini(dp); nvkm_dp_train_fini(outp);
if (ret < 0) if (ret < 0)
OUTP_ERR(&dp->outp, "training failed"); OUTP_ERR(outp, "training failed");
else else
OUTP_DBG(&dp->outp, "training done"); OUTP_DBG(outp, "training done");
atomic_set(&dp->lt.done, 1); atomic_set(&outp->dp.lt.done, 1);
return ret; return ret;
} }
void void
nvkm_dp_disable(struct nvkm_outp *outp, struct nvkm_ior *ior) nvkm_dp_disable(struct nvkm_outp *outp, struct nvkm_ior *ior)
{ {
struct nvkm_dp *dp = nvkm_dp(outp);
/* Execute DisableLT script from DP Info Table. */ /* Execute DisableLT script from DP Info Table. */
nvbios_init(&ior->disp->engine.subdev, dp->info.script[4], nvbios_init(&ior->disp->engine.subdev, outp->dp.info.script[4],
init.outp = &dp->outp.info; init.outp = &outp->info;
init.or = ior->id; init.or = ior->id;
init.link = ior->arm.link; init.link = ior->arm.link;
); );
...@@ -495,18 +488,15 @@ nvkm_dp_disable(struct nvkm_outp *outp, struct nvkm_ior *ior) ...@@ -495,18 +488,15 @@ nvkm_dp_disable(struct nvkm_outp *outp, struct nvkm_ior *ior)
static void static void
nvkm_dp_release(struct nvkm_outp *outp) nvkm_dp_release(struct nvkm_outp *outp)
{ {
struct nvkm_dp *dp = nvkm_dp(outp);
/* Prevent link from being retrained if sink sends an IRQ. */ /* Prevent link from being retrained if sink sends an IRQ. */
atomic_set(&dp->lt.done, 0); atomic_set(&outp->dp.lt.done, 0);
dp->outp.ior->dp.nr = 0; outp->ior->dp.nr = 0;
} }
static int static int
nvkm_dp_acquire(struct nvkm_outp *outp) nvkm_dp_acquire(struct nvkm_outp *outp)
{ {
struct nvkm_dp *dp = nvkm_dp(outp); struct nvkm_ior *ior = outp->ior;
struct nvkm_ior *ior = dp->outp.ior;
struct nvkm_head *head; struct nvkm_head *head;
bool retrain = true; bool retrain = true;
u32 datakbps = 0; u32 datakbps = 0;
...@@ -515,7 +505,7 @@ nvkm_dp_acquire(struct nvkm_outp *outp) ...@@ -515,7 +505,7 @@ nvkm_dp_acquire(struct nvkm_outp *outp)
u8 stat[3]; u8 stat[3];
int ret, i; int ret, i;
mutex_lock(&dp->mutex); mutex_lock(&outp->dp.mutex);
/* Check that link configuration meets current requirements. */ /* Check that link configuration meets current requirements. */
list_for_each_entry(head, &outp->disp->head, head) { list_for_each_entry(head, &outp->disp->head, head) {
...@@ -527,18 +517,17 @@ nvkm_dp_acquire(struct nvkm_outp *outp) ...@@ -527,18 +517,17 @@ nvkm_dp_acquire(struct nvkm_outp *outp)
linkKBps = ior->dp.bw * 27000 * ior->dp.nr; linkKBps = ior->dp.bw * 27000 * ior->dp.nr;
dataKBps = DIV_ROUND_UP(datakbps, 8); dataKBps = DIV_ROUND_UP(datakbps, 8);
OUTP_DBG(&dp->outp, "data %d KB/s link %d KB/s mst %d->%d", OUTP_DBG(outp, "data %d KB/s link %d KB/s mst %d->%d",
dataKBps, linkKBps, ior->dp.mst, dp->lt.mst); dataKBps, linkKBps, ior->dp.mst, outp->dp.lt.mst);
if (linkKBps < dataKBps || ior->dp.mst != dp->lt.mst) { if (linkKBps < dataKBps || ior->dp.mst != outp->dp.lt.mst) {
OUTP_DBG(&dp->outp, "link requirements changed"); OUTP_DBG(outp, "link requirements changed");
goto done; goto done;
} }
/* Check that link is still trained. */ /* Check that link is still trained. */
ret = nvkm_rdaux(dp->aux, DPCD_LS02, stat, 3); ret = nvkm_rdaux(outp->dp.aux, DPCD_LS02, stat, 3);
if (ret) { if (ret) {
OUTP_DBG(&dp->outp, OUTP_DBG(outp, "failed to read link status, assuming no sink");
"failed to read link status, assuming no sink");
goto done; goto done;
} }
...@@ -548,125 +537,126 @@ nvkm_dp_acquire(struct nvkm_outp *outp) ...@@ -548,125 +537,126 @@ nvkm_dp_acquire(struct nvkm_outp *outp)
if (!(lane & DPCD_LS02_LANE0_CR_DONE) || if (!(lane & DPCD_LS02_LANE0_CR_DONE) ||
!(lane & DPCD_LS02_LANE0_CHANNEL_EQ_DONE) || !(lane & DPCD_LS02_LANE0_CHANNEL_EQ_DONE) ||
!(lane & DPCD_LS02_LANE0_SYMBOL_LOCKED)) { !(lane & DPCD_LS02_LANE0_SYMBOL_LOCKED)) {
OUTP_DBG(&dp->outp, OUTP_DBG(outp, "lane %d not equalised", lane);
"lane %d not equalised", lane);
goto done; goto done;
} }
} }
retrain = false; retrain = false;
} else { } else {
OUTP_DBG(&dp->outp, "no inter-lane alignment"); OUTP_DBG(outp, "no inter-lane alignment");
} }
done: done:
if (retrain || !atomic_read(&dp->lt.done)) if (retrain || !atomic_read(&outp->dp.lt.done))
ret = nvkm_dp_train(dp, dataKBps); ret = nvkm_dp_train(outp, dataKBps);
mutex_unlock(&dp->mutex); mutex_unlock(&outp->dp.mutex);
return ret; return ret;
} }
static bool static bool
nvkm_dp_enable_supported_link_rates(struct nvkm_dp *dp) nvkm_dp_enable_supported_link_rates(struct nvkm_outp *outp)
{ {
u8 sink_rates[DPCD_RC10_SUPPORTED_LINK_RATES__SIZE]; u8 sink_rates[DPCD_RC10_SUPPORTED_LINK_RATES__SIZE];
int i, j, k; int i, j, k;
if (dp->outp.conn->info.type != DCB_CONNECTOR_eDP || if (outp->conn->info.type != DCB_CONNECTOR_eDP ||
dp->dpcd[DPCD_RC00_DPCD_REV] < 0x13 || outp->dp.dpcd[DPCD_RC00_DPCD_REV] < 0x13 ||
nvkm_rdaux(dp->aux, DPCD_RC10_SUPPORTED_LINK_RATES(0), sink_rates, sizeof(sink_rates))) nvkm_rdaux(outp->dp.aux, DPCD_RC10_SUPPORTED_LINK_RATES(0),
sink_rates, sizeof(sink_rates)))
return false; return false;
for (i = 0; i < ARRAY_SIZE(sink_rates); i += 2) { for (i = 0; i < ARRAY_SIZE(sink_rates); i += 2) {
const u32 rate = ((sink_rates[i + 1] << 8) | sink_rates[i]) * 200 / 10; const u32 rate = ((sink_rates[i + 1] << 8) | sink_rates[i]) * 200 / 10;
if (!rate || WARN_ON(dp->rates == ARRAY_SIZE(dp->rate))) if (!rate || WARN_ON(outp->dp.rates == ARRAY_SIZE(outp->dp.rate)))
break; break;
if (rate > dp->outp.info.dpconf.link_bw * 27000) { if (rate > outp->info.dpconf.link_bw * 27000) {
OUTP_DBG(&dp->outp, "rate %d !outp", rate); OUTP_DBG(outp, "rate %d !outp", rate);
continue; continue;
} }
for (j = 0; j < dp->rates; j++) { for (j = 0; j < outp->dp.rates; j++) {
if (rate > dp->rate[j].rate) { if (rate > outp->dp.rate[j].rate) {
for (k = dp->rates; k > j; k--) for (k = outp->dp.rates; k > j; k--)
dp->rate[k] = dp->rate[k - 1]; outp->dp.rate[k] = outp->dp.rate[k - 1];
break; break;
} }
} }
dp->rate[j].dpcd = i / 2; outp->dp.rate[j].dpcd = i / 2;
dp->rate[j].rate = rate; outp->dp.rate[j].rate = rate;
dp->rates++; outp->dp.rates++;
} }
for (i = 0; i < dp->rates; i++) for (i = 0; i < outp->dp.rates; i++)
OUTP_DBG(&dp->outp, "link_rate[%d] = %d", dp->rate[i].dpcd, dp->rate[i].rate); OUTP_DBG(outp, "link_rate[%d] = %d", outp->dp.rate[i].dpcd, outp->dp.rate[i].rate);
return dp->rates != 0; return outp->dp.rates != 0;
} }
static bool static bool
nvkm_dp_enable(struct nvkm_dp *dp, bool enable) nvkm_dp_enable(struct nvkm_outp *outp, bool enable)
{ {
struct nvkm_i2c_aux *aux = dp->aux; struct nvkm_i2c_aux *aux = outp->dp.aux;
if (enable) { if (enable) {
if (!dp->present) { if (!outp->dp.present) {
OUTP_DBG(&dp->outp, "aux power -> always"); OUTP_DBG(outp, "aux power -> always");
nvkm_i2c_aux_monitor(aux, true); nvkm_i2c_aux_monitor(aux, true);
dp->present = true; outp->dp.present = true;
} }
/* Detect any LTTPRs before reading DPCD receiver caps. */ /* Detect any LTTPRs before reading DPCD receiver caps. */
if (!nvkm_rdaux(aux, DPCD_LTTPR_REV, dp->lttpr, sizeof(dp->lttpr)) && if (!nvkm_rdaux(aux, DPCD_LTTPR_REV, outp->dp.lttpr, sizeof(outp->dp.lttpr)) &&
dp->lttpr[0] >= 0x14 && dp->lttpr[2]) { outp->dp.lttpr[0] >= 0x14 && outp->dp.lttpr[2]) {
switch (dp->lttpr[2]) { switch (outp->dp.lttpr[2]) {
case 0x80: dp->lttprs = 1; break; case 0x80: outp->dp.lttprs = 1; break;
case 0x40: dp->lttprs = 2; break; case 0x40: outp->dp.lttprs = 2; break;
case 0x20: dp->lttprs = 3; break; case 0x20: outp->dp.lttprs = 3; break;
case 0x10: dp->lttprs = 4; break; case 0x10: outp->dp.lttprs = 4; break;
case 0x08: dp->lttprs = 5; break; case 0x08: outp->dp.lttprs = 5; break;
case 0x04: dp->lttprs = 6; break; case 0x04: outp->dp.lttprs = 6; break;
case 0x02: dp->lttprs = 7; break; case 0x02: outp->dp.lttprs = 7; break;
case 0x01: dp->lttprs = 8; break; case 0x01: outp->dp.lttprs = 8; break;
default: default:
/* Unknown LTTPR count, we'll switch to transparent mode. */ /* Unknown LTTPR count, we'll switch to transparent mode. */
WARN_ON(1); WARN_ON(1);
dp->lttprs = 0; outp->dp.lttprs = 0;
break; break;
} }
} else { } else {
/* No LTTPR support, or zero LTTPR count - don't touch it at all. */ /* No LTTPR support, or zero LTTPR count - don't touch it at all. */
memset(dp->lttpr, 0x00, sizeof(dp->lttpr)); memset(outp->dp.lttpr, 0x00, sizeof(outp->dp.lttpr));
} }
if (!nvkm_rdaux(aux, DPCD_RC00_DPCD_REV, dp->dpcd, sizeof(dp->dpcd))) { if (!nvkm_rdaux(aux, DPCD_RC00_DPCD_REV, outp->dp.dpcd, sizeof(outp->dp.dpcd))) {
const u8 rates[] = { 0x1e, 0x14, 0x0a, 0x06, 0 }; const u8 rates[] = { 0x1e, 0x14, 0x0a, 0x06, 0 };
const u8 *rate; const u8 *rate;
int rate_max; int rate_max;
dp->rates = 0; outp->dp.rates = 0;
dp->links = dp->dpcd[DPCD_RC02] & DPCD_RC02_MAX_LANE_COUNT; outp->dp.links = outp->dp.dpcd[DPCD_RC02] & DPCD_RC02_MAX_LANE_COUNT;
dp->links = min(dp->links, dp->outp.info.dpconf.link_nr); outp->dp.links = min(outp->dp.links, outp->info.dpconf.link_nr);
if (dp->lttprs && dp->lttpr[4]) if (outp->dp.lttprs && outp->dp.lttpr[4])
dp->links = min_t(int, dp->links, dp->lttpr[4]); outp->dp.links = min_t(int, outp->dp.links, outp->dp.lttpr[4]);
rate_max = dp->dpcd[DPCD_RC01_MAX_LINK_RATE]; rate_max = outp->dp.dpcd[DPCD_RC01_MAX_LINK_RATE];
rate_max = min(rate_max, dp->outp.info.dpconf.link_bw); rate_max = min(rate_max, outp->info.dpconf.link_bw);
if (dp->lttprs && dp->lttpr[1]) if (outp->dp.lttprs && outp->dp.lttpr[1])
rate_max = min_t(int, rate_max, dp->lttpr[1]); rate_max = min_t(int, rate_max, outp->dp.lttpr[1]);
if (!nvkm_dp_enable_supported_link_rates(dp)) { if (!nvkm_dp_enable_supported_link_rates(outp)) {
for (rate = rates; *rate; rate++) { for (rate = rates; *rate; rate++) {
if (*rate <= rate_max) { if (*rate > rate_max)
if (WARN_ON(dp->rates == ARRAY_SIZE(dp->rate))) continue;
if (WARN_ON(outp->dp.rates == ARRAY_SIZE(outp->dp.rate)))
break; break;
dp->rate[dp->rates].dpcd = -1; outp->dp.rate[outp->dp.rates].dpcd = -1;
dp->rate[dp->rates].rate = *rate * 27000; outp->dp.rate[outp->dp.rates].rate = *rate * 27000;
dp->rates++; outp->dp.rates++;
}
} }
} }
...@@ -674,13 +664,13 @@ nvkm_dp_enable(struct nvkm_dp *dp, bool enable) ...@@ -674,13 +664,13 @@ nvkm_dp_enable(struct nvkm_dp *dp, bool enable)
} }
} }
if (dp->present) { if (outp->dp.present) {
OUTP_DBG(&dp->outp, "aux power -> demand"); OUTP_DBG(outp, "aux power -> demand");
nvkm_i2c_aux_monitor(aux, false); nvkm_i2c_aux_monitor(aux, false);
dp->present = false; outp->dp.present = false;
} }
atomic_set(&dp->lt.done, 0); atomic_set(&outp->dp.lt.done, 0);
return false; return false;
} }
...@@ -688,18 +678,18 @@ static int ...@@ -688,18 +678,18 @@ static int
nvkm_dp_hpd(struct nvkm_notify *notify) nvkm_dp_hpd(struct nvkm_notify *notify)
{ {
const struct nvkm_i2c_ntfy_rep *line = notify->data; const struct nvkm_i2c_ntfy_rep *line = notify->data;
struct nvkm_dp *dp = container_of(notify, typeof(*dp), hpd); struct nvkm_outp *outp = container_of(notify, typeof(*outp), dp.hpd);
struct nvkm_conn *conn = dp->outp.conn; struct nvkm_conn *conn = outp->conn;
struct nvkm_disp *disp = dp->outp.disp; struct nvkm_disp *disp = outp->disp;
struct nvif_notify_conn_rep_v0 rep = {}; struct nvif_notify_conn_rep_v0 rep = {};
OUTP_DBG(&dp->outp, "HPD: %d", line->mask); OUTP_DBG(outp, "HPD: %d", line->mask);
if (line->mask & NVKM_I2C_IRQ) { if (line->mask & NVKM_I2C_IRQ) {
if (atomic_read(&dp->lt.done)) if (atomic_read(&outp->dp.lt.done))
dp->outp.func->acquire(&dp->outp); outp->func->acquire(outp);
rep.mask |= NVIF_NOTIFY_CONN_V0_IRQ; rep.mask |= NVIF_NOTIFY_CONN_V0_IRQ;
} else { } else {
nvkm_dp_enable(dp, true); nvkm_dp_enable(outp, true);
} }
if (line->mask & NVKM_I2C_UNPLUG) if (line->mask & NVKM_I2C_UNPLUG)
...@@ -714,24 +704,22 @@ nvkm_dp_hpd(struct nvkm_notify *notify) ...@@ -714,24 +704,22 @@ nvkm_dp_hpd(struct nvkm_notify *notify)
static void static void
nvkm_dp_fini(struct nvkm_outp *outp) nvkm_dp_fini(struct nvkm_outp *outp)
{ {
struct nvkm_dp *dp = nvkm_dp(outp); nvkm_notify_put(&outp->dp.hpd);
nvkm_notify_put(&dp->hpd); nvkm_dp_enable(outp, false);
nvkm_dp_enable(dp, false);
} }
static void static void
nvkm_dp_init(struct nvkm_outp *outp) nvkm_dp_init(struct nvkm_outp *outp)
{ {
struct nvkm_gpio *gpio = outp->disp->engine.subdev.device->gpio; struct nvkm_gpio *gpio = outp->disp->engine.subdev.device->gpio;
struct nvkm_dp *dp = nvkm_dp(outp);
nvkm_notify_put(&dp->outp.conn->hpd); nvkm_notify_put(&outp->conn->hpd);
/* eDP panels need powering on by us (if the VBIOS doesn't default it /* eDP panels need powering on by us (if the VBIOS doesn't default it
* to on) before doing any AUX channel transactions. LVDS panel power * to on) before doing any AUX channel transactions. LVDS panel power
* is handled by the SOR itself, and not required for LVDS DDC. * is handled by the SOR itself, and not required for LVDS DDC.
*/ */
if (dp->outp.conn->info.type == DCB_CONNECTOR_eDP) { if (outp->conn->info.type == DCB_CONNECTOR_eDP) {
int power = nvkm_gpio_get(gpio, 0, DCB_GPIO_PANEL_POWER, 0xff); int power = nvkm_gpio_get(gpio, 0, DCB_GPIO_PANEL_POWER, 0xff);
if (power == 0) if (power == 0)
nvkm_gpio_set(gpio, 0, DCB_GPIO_PANEL_POWER, 0xff, 1); nvkm_gpio_set(gpio, 0, DCB_GPIO_PANEL_POWER, 0xff, 1);
...@@ -748,21 +736,20 @@ nvkm_dp_init(struct nvkm_outp *outp) ...@@ -748,21 +736,20 @@ nvkm_dp_init(struct nvkm_outp *outp)
/* If the eDP panel can't be detected, we need to restore /* If the eDP panel can't be detected, we need to restore
* the panel power GPIO to avoid breaking another output. * the panel power GPIO to avoid breaking another output.
*/ */
if (!nvkm_dp_enable(dp, true) && power == 0) if (!nvkm_dp_enable(outp, true) && power == 0)
nvkm_gpio_set(gpio, 0, DCB_GPIO_PANEL_POWER, 0xff, 0); nvkm_gpio_set(gpio, 0, DCB_GPIO_PANEL_POWER, 0xff, 0);
} else { } else {
nvkm_dp_enable(dp, true); nvkm_dp_enable(outp, true);
} }
nvkm_notify_get(&dp->hpd); nvkm_notify_get(&outp->dp.hpd);
} }
static void * static void *
nvkm_dp_dtor(struct nvkm_outp *outp) nvkm_dp_dtor(struct nvkm_outp *outp)
{ {
struct nvkm_dp *dp = nvkm_dp(outp); nvkm_notify_fini(&outp->dp.hpd);
nvkm_notify_fini(&dp->hpd); return outp;
return dp;
} }
static const struct nvkm_outp_func static const struct nvkm_outp_func
...@@ -777,7 +764,7 @@ nvkm_dp_func = { ...@@ -777,7 +764,7 @@ nvkm_dp_func = {
static int static int
nvkm_dp_ctor(struct nvkm_disp *disp, int index, struct dcb_output *dcbE, nvkm_dp_ctor(struct nvkm_disp *disp, int index, struct dcb_output *dcbE,
struct nvkm_i2c_aux *aux, struct nvkm_dp *dp) struct nvkm_i2c_aux *aux, struct nvkm_outp *outp)
{ {
struct nvkm_device *device = disp->engine.subdev.device; struct nvkm_device *device = disp->engine.subdev.device;
struct nvkm_bios *bios = device->bios; struct nvkm_bios *bios = device->bios;
...@@ -786,64 +773,60 @@ nvkm_dp_ctor(struct nvkm_disp *disp, int index, struct dcb_output *dcbE, ...@@ -786,64 +773,60 @@ nvkm_dp_ctor(struct nvkm_disp *disp, int index, struct dcb_output *dcbE,
u32 data; u32 data;
int ret; int ret;
ret = nvkm_outp_ctor(&nvkm_dp_func, disp, index, dcbE, &dp->outp); ret = nvkm_outp_ctor(&nvkm_dp_func, disp, index, dcbE, outp);
if (ret) if (ret)
return ret; return ret;
dp->aux = aux; outp->dp.aux = aux;
if (!dp->aux) { if (!outp->dp.aux) {
OUTP_ERR(&dp->outp, "no aux"); OUTP_ERR(outp, "no aux");
return -EINVAL; return -EINVAL;
} }
/* bios data is not optional */ /* bios data is not optional */
data = nvbios_dpout_match(bios, dp->outp.info.hasht, data = nvbios_dpout_match(bios, outp->info.hasht, outp->info.hashm,
dp->outp.info.hashm, &dp->version, &outp->dp.version, &hdr, &cnt, &len, &outp->dp.info);
&hdr, &cnt, &len, &dp->info);
if (!data) { if (!data) {
OUTP_ERR(&dp->outp, "no bios dp data"); OUTP_ERR(outp, "no bios dp data");
return -EINVAL; return -EINVAL;
} }
OUTP_DBG(&dp->outp, "bios dp %02x %02x %02x %02x", OUTP_DBG(outp, "bios dp %02x %02x %02x %02x", outp->dp.version, hdr, cnt, len);
dp->version, hdr, cnt, len);
/* hotplug detect, replaces gpio-based mechanism with aux events */ /* hotplug detect, replaces gpio-based mechanism with aux events */
ret = nvkm_notify_init(NULL, &i2c->event, nvkm_dp_hpd, true, ret = nvkm_notify_init(NULL, &i2c->event, nvkm_dp_hpd, true,
&(struct nvkm_i2c_ntfy_req) { &(struct nvkm_i2c_ntfy_req) {
.mask = NVKM_I2C_PLUG | NVKM_I2C_UNPLUG | .mask = NVKM_I2C_PLUG | NVKM_I2C_UNPLUG |
NVKM_I2C_IRQ, NVKM_I2C_IRQ,
.port = dp->aux->id, .port = outp->dp.aux->id,
}, },
sizeof(struct nvkm_i2c_ntfy_req), sizeof(struct nvkm_i2c_ntfy_req),
sizeof(struct nvkm_i2c_ntfy_rep), sizeof(struct nvkm_i2c_ntfy_rep),
&dp->hpd); &outp->dp.hpd);
if (ret) { if (ret) {
OUTP_ERR(&dp->outp, "error monitoring aux hpd: %d", ret); OUTP_ERR(outp, "error monitoring aux hpd: %d", ret);
return ret; return ret;
} }
mutex_init(&dp->mutex); mutex_init(&outp->dp.mutex);
atomic_set(&dp->lt.done, 0); atomic_set(&outp->dp.lt.done, 0);
return 0; return 0;
} }
int int
nvkm_dp_new(struct nvkm_disp *disp, int index, struct dcb_output *dcbE, nvkm_dp_new(struct nvkm_disp *disp, int index, struct dcb_output *dcbE, struct nvkm_outp **poutp)
struct nvkm_outp **poutp)
{ {
struct nvkm_i2c *i2c = disp->engine.subdev.device->i2c; struct nvkm_i2c *i2c = disp->engine.subdev.device->i2c;
struct nvkm_i2c_aux *aux; struct nvkm_i2c_aux *aux;
struct nvkm_dp *dp; struct nvkm_outp *outp;
if (dcbE->location == 0) if (dcbE->location == 0)
aux = nvkm_i2c_aux_find(i2c, NVKM_I2C_AUX_CCB(dcbE->i2c_index)); aux = nvkm_i2c_aux_find(i2c, NVKM_I2C_AUX_CCB(dcbE->i2c_index));
else else
aux = nvkm_i2c_aux_find(i2c, NVKM_I2C_AUX_EXT(dcbE->extdev)); aux = nvkm_i2c_aux_find(i2c, NVKM_I2C_AUX_EXT(dcbE->extdev));
if (!(dp = kzalloc(sizeof(*dp), GFP_KERNEL))) if (!(outp = *poutp = kzalloc(sizeof(*outp), GFP_KERNEL)))
return -ENOMEM; return -ENOMEM;
*poutp = &dp->outp;
return nvkm_dp_ctor(disp, index, dcbE, aux, dp); return nvkm_dp_ctor(disp, index, dcbE, aux, outp);
} }
/* SPDX-License-Identifier: MIT */ /* SPDX-License-Identifier: MIT */
#ifndef __NVKM_DISP_DP_H__ #ifndef __NVKM_DISP_DP_H__
#define __NVKM_DISP_DP_H__ #define __NVKM_DISP_DP_H__
#define nvkm_dp(p) container_of((p), struct nvkm_dp, outp)
#include "outp.h" #include "outp.h"
#include <core/notify.h>
#include <subdev/bios.h>
#include <subdev/bios/dp.h>
struct nvkm_dp {
struct nvkm_outp outp;
struct nvbios_dpout info;
u8 version;
struct nvkm_i2c_aux *aux;
struct nvkm_notify hpd;
bool present;
u8 lttpr[6];
u8 lttprs;
u8 dpcd[16];
struct {
int dpcd; /* -1, or index into SUPPORTED_LINK_RATES table */
u32 rate;
} rate[8];
int rates;
int links;
struct mutex mutex;
struct {
atomic_t done;
bool mst;
} lt;
};
int nvkm_dp_new(struct nvkm_disp *, int index, struct dcb_output *, int nvkm_dp_new(struct nvkm_disp *, int index, struct dcb_output *,
struct nvkm_outp **); struct nvkm_outp **);
void nvkm_dp_disable(struct nvkm_outp *, struct nvkm_ior *); void nvkm_dp_disable(struct nvkm_outp *, struct nvkm_ior *);
......
...@@ -2,9 +2,11 @@ ...@@ -2,9 +2,11 @@
#ifndef __NVKM_DISP_OUTP_H__ #ifndef __NVKM_DISP_OUTP_H__
#define __NVKM_DISP_OUTP_H__ #define __NVKM_DISP_OUTP_H__
#include <engine/disp.h> #include <engine/disp.h>
#include <core/notify.h>
#include <subdev/bios.h> #include <subdev/bios.h>
#include <subdev/bios/dcb.h> #include <subdev/bios/dcb.h>
#include <subdev/bios/dp.h>
struct nvkm_outp { struct nvkm_outp {
const struct nvkm_outp_func *func; const struct nvkm_outp_func *func;
...@@ -23,6 +25,34 @@ struct nvkm_outp { ...@@ -23,6 +25,34 @@ struct nvkm_outp {
#define NVKM_OUTP_USER 2 #define NVKM_OUTP_USER 2
u8 acquired:2; u8 acquired:2;
struct nvkm_ior *ior; struct nvkm_ior *ior;
union {
struct {
struct nvbios_dpout info;
u8 version;
struct nvkm_i2c_aux *aux;
struct nvkm_notify hpd;
bool present;
u8 lttpr[6];
u8 lttprs;
u8 dpcd[16];
struct {
int dpcd; /* -1, or index into SUPPORTED_LINK_RATES table */
u32 rate;
} rate[8];
int rates;
int links;
struct mutex mutex;
struct {
atomic_t done;
bool mst;
} lt;
} dp;
};
}; };
int nvkm_outp_ctor(const struct nvkm_outp_func *, struct nvkm_disp *, int nvkm_outp_ctor(const struct nvkm_outp_func *, struct nvkm_disp *,
......
...@@ -23,7 +23,6 @@ ...@@ -23,7 +23,6 @@
*/ */
#include "rootnv50.h" #include "rootnv50.h"
#include "channv50.h" #include "channv50.h"
#include "dp.h"
#include "head.h" #include "head.h"
#include "ior.h" #include "ior.h"
...@@ -227,7 +226,6 @@ nv50_disp_root_mthd_(struct nvkm_object *object, u32 mthd, void *data, u32 size) ...@@ -227,7 +226,6 @@ nv50_disp_root_mthd_(struct nvkm_object *object, u32 mthd, void *data, u32 size)
} }
break; break;
case NV50_DISP_MTHD_V1_SOR_DP_MST_LINK: { case NV50_DISP_MTHD_V1_SOR_DP_MST_LINK: {
struct nvkm_dp *dp = nvkm_dp(outp);
union { union {
struct nv50_disp_sor_dp_mst_link_v0 v0; struct nv50_disp_sor_dp_mst_link_v0 v0;
} *args = data; } *args = data;
...@@ -236,7 +234,7 @@ nv50_disp_root_mthd_(struct nvkm_object *object, u32 mthd, void *data, u32 size) ...@@ -236,7 +234,7 @@ nv50_disp_root_mthd_(struct nvkm_object *object, u32 mthd, void *data, u32 size)
if (!(ret = nvif_unpack(ret, &data, &size, args->v0, 0, 0, false))) { if (!(ret = nvif_unpack(ret, &data, &size, args->v0, 0, 0, false))) {
nvif_ioctl(object, "disp sor dp mst link vers %d state %d\n", nvif_ioctl(object, "disp sor dp mst link vers %d state %d\n",
args->v0.version, args->v0.state); args->v0.version, args->v0.state);
dp->lt.mst = !!args->v0.state; outp->dp.lt.mst = !!args->v0.state;
return 0; return 0;
} else } else
return ret; return ret;
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment