Commit 7a8e76a3 authored by Steven Rostedt's avatar Steven Rostedt Committed by Ingo Molnar

tracing: unified trace buffer

This is a unified tracing buffer that implements a ring buffer that
hopefully everyone will eventually be able to use.

The events recorded into the buffer have the following structure:

  struct ring_buffer_event {
	u32 type:2, len:3, time_delta:27;
	u32 array[];
  };

The minimum size of an event is 8 bytes. All events are 4 byte
aligned inside the buffer.

There are 4 types (all internal use for the ring buffer, only
the data type is exported to the interface users).

 RINGBUF_TYPE_PADDING: this type is used to note extra space at the end
	of a buffer page.

 RINGBUF_TYPE_TIME_EXTENT: This type is used when the time between events
	is greater than the 27 bit delta can hold. We add another
	32 bits, and record that in its own event (8 byte size).

 RINGBUF_TYPE_TIME_STAMP: (Not implemented yet). This will hold data to
	help keep the buffer timestamps in sync.

RINGBUF_TYPE_DATA: The event actually holds user data.

The "len" field is only three bits. Since the data must be
4 byte aligned, this field is shifted left by 2, giving a
max length of 28 bytes. If the data load is greater than 28
bytes, the first array field holds the full length of the
data load and the len field is set to zero.

Example, data size of 7 bytes:

	type = RINGBUF_TYPE_DATA
	len = 2
	time_delta: <time-stamp> - <prev_event-time-stamp>
	array[0..1]: <7 bytes of data> <1 byte empty>

This event is saved in 12 bytes of the buffer.

An event with 82 bytes of data:

	type = RINGBUF_TYPE_DATA
	len = 0
	time_delta: <time-stamp> - <prev_event-time-stamp>
	array[0]: 84 (Note the alignment)
	array[1..14]: <82 bytes of data> <2 bytes empty>

The above event is saved in 92 bytes (if my math is correct).
82 bytes of data, 2 bytes empty, 4 byte header, 4 byte length.

Do not reference the above event struct directly. Use the following
functions to gain access to the event table, since the
ring_buffer_event structure may change in the future.

ring_buffer_event_length(event): get the length of the event.
	This is the size of the memory used to record this
	event, and not the size of the data pay load.

ring_buffer_time_delta(event): get the time delta of the event
	This returns the delta time stamp since the last event.
	Note: Even though this is in the header, there should
		be no reason to access this directly, accept
		for debugging.

ring_buffer_event_data(event): get the data from the event
	This is the function to use to get the actual data
	from the event. Note, it is only a pointer to the
	data inside the buffer. This data must be copied to
	another location otherwise you risk it being written
	over in the buffer.

ring_buffer_lock: A way to lock the entire buffer.
ring_buffer_unlock: unlock the buffer.

ring_buffer_alloc: create a new ring buffer. Can choose between
	overwrite or consumer/producer mode. Overwrite will
	overwrite old data, where as consumer producer will
	throw away new data if the consumer catches up with the
	producer.  The consumer/producer is the default.

ring_buffer_free: free the ring buffer.

ring_buffer_resize: resize the buffer. Changes the size of each cpu
	buffer. Note, it is up to the caller to provide that
	the buffer is not being used while this is happening.
	This requirement may go away but do not count on it.

ring_buffer_lock_reserve: locks the ring buffer and allocates an
	entry on the buffer to write to.
ring_buffer_unlock_commit: unlocks the ring buffer and commits it to
	the buffer.

ring_buffer_write: writes some data into the ring buffer.

ring_buffer_peek: Look at a next item in the cpu buffer.
ring_buffer_consume: get the next item in the cpu buffer and
	consume it. That is, this function increments the head
	pointer.

ring_buffer_read_start: Start an iterator of a cpu buffer.
	For now, this disables the cpu buffer, until you issue
	a finish. This is just because we do not want the iterator
	to be overwritten. This restriction may change in the future.
	But note, this is used for static reading of a buffer which
	is usually done "after" a trace. Live readings would want
	to use the ring_buffer_consume above, which will not
	disable the ring buffer.

ring_buffer_read_finish: Finishes the read iterator and reenables
	the ring buffer.

ring_buffer_iter_peek: Look at the next item in the cpu iterator.
ring_buffer_read: Read the iterator and increment it.
ring_buffer_iter_reset: Reset the iterator to point to the beginning
	of the cpu buffer.
ring_buffer_iter_empty: Returns true if the iterator is at the end
	of the cpu buffer.

ring_buffer_size: returns the size in bytes of each cpu buffer.
	Note, the real size is this times the number of CPUs.

ring_buffer_reset_cpu: Sets the cpu buffer to empty
ring_buffer_reset: sets all cpu buffers to empty

ring_buffer_swap_cpu: swaps a cpu buffer from one buffer with a
	cpu buffer of another buffer. This is handy when you
	want to take a snap shot of a running trace on just one
	cpu. Having a backup buffer, to swap with facilitates this.
	Ftrace max latencies use this.

ring_buffer_empty: Returns true if the ring buffer is empty.
ring_buffer_empty_cpu: Returns true if the cpu buffer is empty.

ring_buffer_record_disable: disable all cpu buffers (read only)
ring_buffer_record_disable_cpu: disable a single cpu buffer (read only)
ring_buffer_record_enable: enable all cpu buffers.
ring_buffer_record_enabl_cpu: enable a single cpu buffer.

ring_buffer_entries: The number of entries in a ring buffer.
ring_buffer_overruns: The number of entries removed due to writing wrap.

ring_buffer_time_stamp: Get the time stamp used by the ring buffer
ring_buffer_normalize_time_stamp: normalize the ring buffer time stamp
	into nanosecs.

I still need to implement the GTOD feature. But we need support from
the cpu frequency infrastructure.  But this can be done at a later
time without affecting the ring buffer interface.
Signed-off-by: default avatarSteven Rostedt <srostedt@redhat.com>
Signed-off-by: default avatarIngo Molnar <mingo@elte.hu>
parent 5aa60c60
#ifndef _LINUX_RING_BUFFER_H
#define _LINUX_RING_BUFFER_H
#include <linux/mm.h>
#include <linux/seq_file.h>
struct ring_buffer;
struct ring_buffer_iter;
/*
* Don't reference this struct directly, use functions below.
*/
struct ring_buffer_event {
u32 type:2, len:3, time_delta:27;
u32 array[];
};
/**
* enum ring_buffer_type - internal ring buffer types
*
* @RINGBUF_TYPE_PADDING: Left over page padding
* array is ignored
* size is variable depending on how much
* padding is needed
*
* @RINGBUF_TYPE_TIME_EXTEND: Extend the time delta
* array[0] = time delta (28 .. 59)
* size = 8 bytes
*
* @RINGBUF_TYPE_TIME_STAMP: Sync time stamp with external clock
* array[0] = tv_nsec
* array[1] = tv_sec
* size = 16 bytes
*
* @RINGBUF_TYPE_DATA: Data record
* If len is zero:
* array[0] holds the actual length
* array[1..(length+3)/4-1] holds data
* else
* length = len << 2
* array[0..(length+3)/4] holds data
*/
enum ring_buffer_type {
RINGBUF_TYPE_PADDING,
RINGBUF_TYPE_TIME_EXTEND,
/* FIXME: RINGBUF_TYPE_TIME_STAMP not implemented */
RINGBUF_TYPE_TIME_STAMP,
RINGBUF_TYPE_DATA,
};
unsigned ring_buffer_event_length(struct ring_buffer_event *event);
void *ring_buffer_event_data(struct ring_buffer_event *event);
/**
* ring_buffer_event_time_delta - return the delta timestamp of the event
* @event: the event to get the delta timestamp of
*
* The delta timestamp is the 27 bit timestamp since the last event.
*/
static inline unsigned
ring_buffer_event_time_delta(struct ring_buffer_event *event)
{
return event->time_delta;
}
void ring_buffer_lock(struct ring_buffer *buffer, unsigned long *flags);
void ring_buffer_unlock(struct ring_buffer *buffer, unsigned long flags);
/*
* size is in bytes for each per CPU buffer.
*/
struct ring_buffer *
ring_buffer_alloc(unsigned long size, unsigned flags);
void ring_buffer_free(struct ring_buffer *buffer);
int ring_buffer_resize(struct ring_buffer *buffer, unsigned long size);
struct ring_buffer_event *
ring_buffer_lock_reserve(struct ring_buffer *buffer,
unsigned long length,
unsigned long *flags);
int ring_buffer_unlock_commit(struct ring_buffer *buffer,
struct ring_buffer_event *event,
unsigned long flags);
int ring_buffer_write(struct ring_buffer *buffer,
unsigned long length, void *data);
struct ring_buffer_event *
ring_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts);
struct ring_buffer_event *
ring_buffer_consume(struct ring_buffer *buffer, int cpu, u64 *ts);
struct ring_buffer_iter *
ring_buffer_read_start(struct ring_buffer *buffer, int cpu);
void ring_buffer_read_finish(struct ring_buffer_iter *iter);
struct ring_buffer_event *
ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts);
struct ring_buffer_event *
ring_buffer_read(struct ring_buffer_iter *iter, u64 *ts);
void ring_buffer_iter_reset(struct ring_buffer_iter *iter);
int ring_buffer_iter_empty(struct ring_buffer_iter *iter);
unsigned long ring_buffer_size(struct ring_buffer *buffer);
void ring_buffer_reset_cpu(struct ring_buffer *buffer, int cpu);
void ring_buffer_reset(struct ring_buffer *buffer);
int ring_buffer_swap_cpu(struct ring_buffer *buffer_a,
struct ring_buffer *buffer_b, int cpu);
int ring_buffer_empty(struct ring_buffer *buffer);
int ring_buffer_empty_cpu(struct ring_buffer *buffer, int cpu);
void ring_buffer_record_disable(struct ring_buffer *buffer);
void ring_buffer_record_enable(struct ring_buffer *buffer);
void ring_buffer_record_disable_cpu(struct ring_buffer *buffer, int cpu);
void ring_buffer_record_enable_cpu(struct ring_buffer *buffer, int cpu);
unsigned long ring_buffer_entries(struct ring_buffer *buffer);
unsigned long ring_buffer_overruns(struct ring_buffer *buffer);
u64 ring_buffer_time_stamp(int cpu);
void ring_buffer_normalize_time_stamp(int cpu, u64 *ts);
enum ring_buffer_flags {
RB_FL_OVERWRITE = 1 << 0,
};
#endif /* _LINUX_RING_BUFFER_H */
...@@ -18,9 +18,13 @@ config HAVE_FTRACE_MCOUNT_RECORD ...@@ -18,9 +18,13 @@ config HAVE_FTRACE_MCOUNT_RECORD
config TRACER_MAX_TRACE config TRACER_MAX_TRACE
bool bool
config RING_BUFFER
bool
config TRACING config TRACING
bool bool
select DEBUG_FS select DEBUG_FS
select RING_BUFFER
select STACKTRACE select STACKTRACE
select TRACEPOINTS select TRACEPOINTS
......
...@@ -11,6 +11,7 @@ obj-y += trace_selftest_dynamic.o ...@@ -11,6 +11,7 @@ obj-y += trace_selftest_dynamic.o
endif endif
obj-$(CONFIG_FTRACE) += libftrace.o obj-$(CONFIG_FTRACE) += libftrace.o
obj-$(CONFIG_RING_BUFFER) += ring_buffer.o
obj-$(CONFIG_TRACING) += trace.o obj-$(CONFIG_TRACING) += trace.o
obj-$(CONFIG_CONTEXT_SWITCH_TRACER) += trace_sched_switch.o obj-$(CONFIG_CONTEXT_SWITCH_TRACER) += trace_sched_switch.o
......
/*
* Generic ring buffer
*
* Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
*/
#include <linux/ring_buffer.h>
#include <linux/spinlock.h>
#include <linux/debugfs.h>
#include <linux/uaccess.h>
#include <linux/module.h>
#include <linux/percpu.h>
#include <linux/mutex.h>
#include <linux/sched.h> /* used for sched_clock() (for now) */
#include <linux/init.h>
#include <linux/hash.h>
#include <linux/list.h>
#include <linux/fs.h>
/* Up this if you want to test the TIME_EXTENTS and normalization */
#define DEBUG_SHIFT 0
/* FIXME!!! */
u64 ring_buffer_time_stamp(int cpu)
{
/* shift to debug/test normalization and TIME_EXTENTS */
return sched_clock() << DEBUG_SHIFT;
}
void ring_buffer_normalize_time_stamp(int cpu, u64 *ts)
{
/* Just stupid testing the normalize function and deltas */
*ts >>= DEBUG_SHIFT;
}
#define RB_EVNT_HDR_SIZE (sizeof(struct ring_buffer_event))
#define RB_ALIGNMENT_SHIFT 2
#define RB_ALIGNMENT (1 << RB_ALIGNMENT_SHIFT)
#define RB_MAX_SMALL_DATA 28
enum {
RB_LEN_TIME_EXTEND = 8,
RB_LEN_TIME_STAMP = 16,
};
/* inline for ring buffer fast paths */
static inline unsigned
rb_event_length(struct ring_buffer_event *event)
{
unsigned length;
switch (event->type) {
case RINGBUF_TYPE_PADDING:
/* undefined */
return -1;
case RINGBUF_TYPE_TIME_EXTEND:
return RB_LEN_TIME_EXTEND;
case RINGBUF_TYPE_TIME_STAMP:
return RB_LEN_TIME_STAMP;
case RINGBUF_TYPE_DATA:
if (event->len)
length = event->len << RB_ALIGNMENT_SHIFT;
else
length = event->array[0];
return length + RB_EVNT_HDR_SIZE;
default:
BUG();
}
/* not hit */
return 0;
}
/**
* ring_buffer_event_length - return the length of the event
* @event: the event to get the length of
*/
unsigned ring_buffer_event_length(struct ring_buffer_event *event)
{
return rb_event_length(event);
}
/* inline for ring buffer fast paths */
static inline void *
rb_event_data(struct ring_buffer_event *event)
{
BUG_ON(event->type != RINGBUF_TYPE_DATA);
/* If length is in len field, then array[0] has the data */
if (event->len)
return (void *)&event->array[0];
/* Otherwise length is in array[0] and array[1] has the data */
return (void *)&event->array[1];
}
/**
* ring_buffer_event_data - return the data of the event
* @event: the event to get the data from
*/
void *ring_buffer_event_data(struct ring_buffer_event *event)
{
return rb_event_data(event);
}
#define for_each_buffer_cpu(buffer, cpu) \
for_each_cpu_mask(cpu, buffer->cpumask)
#define TS_SHIFT 27
#define TS_MASK ((1ULL << TS_SHIFT) - 1)
#define TS_DELTA_TEST (~TS_MASK)
/*
* This hack stolen from mm/slob.c.
* We can store per page timing information in the page frame of the page.
* Thanks to Peter Zijlstra for suggesting this idea.
*/
struct buffer_page {
union {
struct {
unsigned long flags; /* mandatory */
atomic_t _count; /* mandatory */
u64 time_stamp; /* page time stamp */
unsigned size; /* size of page data */
struct list_head list; /* list of free pages */
};
struct page page;
};
};
/*
* We need to fit the time_stamp delta into 27 bits.
*/
static inline int test_time_stamp(u64 delta)
{
if (delta & TS_DELTA_TEST)
return 1;
return 0;
}
#define BUF_PAGE_SIZE PAGE_SIZE
/*
* head_page == tail_page && head == tail then buffer is empty.
*/
struct ring_buffer_per_cpu {
int cpu;
struct ring_buffer *buffer;
spinlock_t lock;
struct lock_class_key lock_key;
struct list_head pages;
unsigned long head; /* read from head */
unsigned long tail; /* write to tail */
struct buffer_page *head_page;
struct buffer_page *tail_page;
unsigned long overrun;
unsigned long entries;
u64 write_stamp;
u64 read_stamp;
atomic_t record_disabled;
};
struct ring_buffer {
unsigned long size;
unsigned pages;
unsigned flags;
int cpus;
cpumask_t cpumask;
atomic_t record_disabled;
struct mutex mutex;
struct ring_buffer_per_cpu **buffers;
};
struct ring_buffer_iter {
struct ring_buffer_per_cpu *cpu_buffer;
unsigned long head;
struct buffer_page *head_page;
u64 read_stamp;
};
#define RB_WARN_ON(buffer, cond) \
if (unlikely(cond)) { \
atomic_inc(&buffer->record_disabled); \
WARN_ON(1); \
return -1; \
}
/**
* check_pages - integrity check of buffer pages
* @cpu_buffer: CPU buffer with pages to test
*
* As a safty measure we check to make sure the data pages have not
* been corrupted.
*/
static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
{
struct list_head *head = &cpu_buffer->pages;
struct buffer_page *page, *tmp;
RB_WARN_ON(cpu_buffer, head->next->prev != head);
RB_WARN_ON(cpu_buffer, head->prev->next != head);
list_for_each_entry_safe(page, tmp, head, list) {
RB_WARN_ON(cpu_buffer, page->list.next->prev != &page->list);
RB_WARN_ON(cpu_buffer, page->list.prev->next != &page->list);
}
return 0;
}
static unsigned rb_head_size(struct ring_buffer_per_cpu *cpu_buffer)
{
return cpu_buffer->head_page->size;
}
static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
unsigned nr_pages)
{
struct list_head *head = &cpu_buffer->pages;
struct buffer_page *page, *tmp;
unsigned long addr;
LIST_HEAD(pages);
unsigned i;
for (i = 0; i < nr_pages; i++) {
addr = __get_free_page(GFP_KERNEL);
if (!addr)
goto free_pages;
page = (struct buffer_page *)virt_to_page(addr);
list_add(&page->list, &pages);
}
list_splice(&pages, head);
rb_check_pages(cpu_buffer);
return 0;
free_pages:
list_for_each_entry_safe(page, tmp, &pages, list) {
list_del_init(&page->list);
__free_page(&page->page);
}
return -ENOMEM;
}
static struct ring_buffer_per_cpu *
rb_allocate_cpu_buffer(struct ring_buffer *buffer, int cpu)
{
struct ring_buffer_per_cpu *cpu_buffer;
int ret;
cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
GFP_KERNEL, cpu_to_node(cpu));
if (!cpu_buffer)
return NULL;
cpu_buffer->cpu = cpu;
cpu_buffer->buffer = buffer;
spin_lock_init(&cpu_buffer->lock);
INIT_LIST_HEAD(&cpu_buffer->pages);
ret = rb_allocate_pages(cpu_buffer, buffer->pages);
if (ret < 0)
goto fail_free_buffer;
cpu_buffer->head_page
= list_entry(cpu_buffer->pages.next, struct buffer_page, list);
cpu_buffer->tail_page
= list_entry(cpu_buffer->pages.next, struct buffer_page, list);
return cpu_buffer;
fail_free_buffer:
kfree(cpu_buffer);
return NULL;
}
static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
{
struct list_head *head = &cpu_buffer->pages;
struct buffer_page *page, *tmp;
list_for_each_entry_safe(page, tmp, head, list) {
list_del_init(&page->list);
__free_page(&page->page);
}
kfree(cpu_buffer);
}
/**
* ring_buffer_alloc - allocate a new ring_buffer
* @size: the size in bytes that is needed.
* @flags: attributes to set for the ring buffer.
*
* Currently the only flag that is available is the RB_FL_OVERWRITE
* flag. This flag means that the buffer will overwrite old data
* when the buffer wraps. If this flag is not set, the buffer will
* drop data when the tail hits the head.
*/
struct ring_buffer *ring_buffer_alloc(unsigned long size, unsigned flags)
{
struct ring_buffer *buffer;
int bsize;
int cpu;
/* keep it in its own cache line */
buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
GFP_KERNEL);
if (!buffer)
return NULL;
buffer->pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
buffer->flags = flags;
/* need at least two pages */
if (buffer->pages == 1)
buffer->pages++;
buffer->cpumask = cpu_possible_map;
buffer->cpus = nr_cpu_ids;
bsize = sizeof(void *) * nr_cpu_ids;
buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
GFP_KERNEL);
if (!buffer->buffers)
goto fail_free_buffer;
for_each_buffer_cpu(buffer, cpu) {
buffer->buffers[cpu] =
rb_allocate_cpu_buffer(buffer, cpu);
if (!buffer->buffers[cpu])
goto fail_free_buffers;
}
mutex_init(&buffer->mutex);
return buffer;
fail_free_buffers:
for_each_buffer_cpu(buffer, cpu) {
if (buffer->buffers[cpu])
rb_free_cpu_buffer(buffer->buffers[cpu]);
}
kfree(buffer->buffers);
fail_free_buffer:
kfree(buffer);
return NULL;
}
/**
* ring_buffer_free - free a ring buffer.
* @buffer: the buffer to free.
*/
void
ring_buffer_free(struct ring_buffer *buffer)
{
int cpu;
for_each_buffer_cpu(buffer, cpu)
rb_free_cpu_buffer(buffer->buffers[cpu]);
kfree(buffer);
}
static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer);
static void
rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned nr_pages)
{
struct buffer_page *page;
struct list_head *p;
unsigned i;
atomic_inc(&cpu_buffer->record_disabled);
synchronize_sched();
for (i = 0; i < nr_pages; i++) {
BUG_ON(list_empty(&cpu_buffer->pages));
p = cpu_buffer->pages.next;
page = list_entry(p, struct buffer_page, list);
list_del_init(&page->list);
__free_page(&page->page);
}
BUG_ON(list_empty(&cpu_buffer->pages));
rb_reset_cpu(cpu_buffer);
rb_check_pages(cpu_buffer);
atomic_dec(&cpu_buffer->record_disabled);
}
static void
rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer,
struct list_head *pages, unsigned nr_pages)
{
struct buffer_page *page;
struct list_head *p;
unsigned i;
atomic_inc(&cpu_buffer->record_disabled);
synchronize_sched();
for (i = 0; i < nr_pages; i++) {
BUG_ON(list_empty(pages));
p = pages->next;
page = list_entry(p, struct buffer_page, list);
list_del_init(&page->list);
list_add_tail(&page->list, &cpu_buffer->pages);
}
rb_reset_cpu(cpu_buffer);
rb_check_pages(cpu_buffer);
atomic_dec(&cpu_buffer->record_disabled);
}
/**
* ring_buffer_resize - resize the ring buffer
* @buffer: the buffer to resize.
* @size: the new size.
*
* The tracer is responsible for making sure that the buffer is
* not being used while changing the size.
* Note: We may be able to change the above requirement by using
* RCU synchronizations.
*
* Minimum size is 2 * BUF_PAGE_SIZE.
*
* Returns -1 on failure.
*/
int ring_buffer_resize(struct ring_buffer *buffer, unsigned long size)
{
struct ring_buffer_per_cpu *cpu_buffer;
unsigned nr_pages, rm_pages, new_pages;
struct buffer_page *page, *tmp;
unsigned long buffer_size;
unsigned long addr;
LIST_HEAD(pages);
int i, cpu;
size = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
size *= BUF_PAGE_SIZE;
buffer_size = buffer->pages * BUF_PAGE_SIZE;
/* we need a minimum of two pages */
if (size < BUF_PAGE_SIZE * 2)
size = BUF_PAGE_SIZE * 2;
if (size == buffer_size)
return size;
mutex_lock(&buffer->mutex);
nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
if (size < buffer_size) {
/* easy case, just free pages */
BUG_ON(nr_pages >= buffer->pages);
rm_pages = buffer->pages - nr_pages;
for_each_buffer_cpu(buffer, cpu) {
cpu_buffer = buffer->buffers[cpu];
rb_remove_pages(cpu_buffer, rm_pages);
}
goto out;
}
/*
* This is a bit more difficult. We only want to add pages
* when we can allocate enough for all CPUs. We do this
* by allocating all the pages and storing them on a local
* link list. If we succeed in our allocation, then we
* add these pages to the cpu_buffers. Otherwise we just free
* them all and return -ENOMEM;
*/
BUG_ON(nr_pages <= buffer->pages);
new_pages = nr_pages - buffer->pages;
for_each_buffer_cpu(buffer, cpu) {
for (i = 0; i < new_pages; i++) {
addr = __get_free_page(GFP_KERNEL);
if (!addr)
goto free_pages;
page = (struct buffer_page *)virt_to_page(addr);
list_add(&page->list, &pages);
}
}
for_each_buffer_cpu(buffer, cpu) {
cpu_buffer = buffer->buffers[cpu];
rb_insert_pages(cpu_buffer, &pages, new_pages);
}
BUG_ON(!list_empty(&pages));
out:
buffer->pages = nr_pages;
mutex_unlock(&buffer->mutex);
return size;
free_pages:
list_for_each_entry_safe(page, tmp, &pages, list) {
list_del_init(&page->list);
__free_page(&page->page);
}
return -ENOMEM;
}
static inline int rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
{
return cpu_buffer->head_page == cpu_buffer->tail_page &&
cpu_buffer->head == cpu_buffer->tail;
}
static inline int rb_null_event(struct ring_buffer_event *event)
{
return event->type == RINGBUF_TYPE_PADDING;
}
static inline void *rb_page_index(struct buffer_page *page, unsigned index)
{
void *addr = page_address(&page->page);
return addr + index;
}
static inline struct ring_buffer_event *
rb_head_event(struct ring_buffer_per_cpu *cpu_buffer)
{
return rb_page_index(cpu_buffer->head_page,
cpu_buffer->head);
}
static inline struct ring_buffer_event *
rb_iter_head_event(struct ring_buffer_iter *iter)
{
return rb_page_index(iter->head_page,
iter->head);
}
/*
* When the tail hits the head and the buffer is in overwrite mode,
* the head jumps to the next page and all content on the previous
* page is discarded. But before doing so, we update the overrun
* variable of the buffer.
*/
static void rb_update_overflow(struct ring_buffer_per_cpu *cpu_buffer)
{
struct ring_buffer_event *event;
unsigned long head;
for (head = 0; head < rb_head_size(cpu_buffer);
head += rb_event_length(event)) {
event = rb_page_index(cpu_buffer->head_page, head);
BUG_ON(rb_null_event(event));
/* Only count data entries */
if (event->type != RINGBUF_TYPE_DATA)
continue;
cpu_buffer->overrun++;
cpu_buffer->entries--;
}
}
static inline void rb_inc_page(struct ring_buffer_per_cpu *cpu_buffer,
struct buffer_page **page)
{
struct list_head *p = (*page)->list.next;
if (p == &cpu_buffer->pages)
p = p->next;
*page = list_entry(p, struct buffer_page, list);
}
static inline void
rb_add_stamp(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts)
{
cpu_buffer->tail_page->time_stamp = *ts;
cpu_buffer->write_stamp = *ts;
}
static void rb_reset_read_page(struct ring_buffer_per_cpu *cpu_buffer)
{
cpu_buffer->read_stamp = cpu_buffer->head_page->time_stamp;
cpu_buffer->head = 0;
}
static void
rb_reset_iter_read_page(struct ring_buffer_iter *iter)
{
iter->read_stamp = iter->head_page->time_stamp;
iter->head = 0;
}
/**
* ring_buffer_update_event - update event type and data
* @event: the even to update
* @type: the type of event
* @length: the size of the event field in the ring buffer
*
* Update the type and data fields of the event. The length
* is the actual size that is written to the ring buffer,
* and with this, we can determine what to place into the
* data field.
*/
static inline void
rb_update_event(struct ring_buffer_event *event,
unsigned type, unsigned length)
{
event->type = type;
switch (type) {
case RINGBUF_TYPE_PADDING:
break;
case RINGBUF_TYPE_TIME_EXTEND:
event->len =
(RB_LEN_TIME_EXTEND + (RB_ALIGNMENT-1))
>> RB_ALIGNMENT_SHIFT;
break;
case RINGBUF_TYPE_TIME_STAMP:
event->len =
(RB_LEN_TIME_STAMP + (RB_ALIGNMENT-1))
>> RB_ALIGNMENT_SHIFT;
break;
case RINGBUF_TYPE_DATA:
length -= RB_EVNT_HDR_SIZE;
if (length > RB_MAX_SMALL_DATA) {
event->len = 0;
event->array[0] = length;
} else
event->len =
(length + (RB_ALIGNMENT-1))
>> RB_ALIGNMENT_SHIFT;
break;
default:
BUG();
}
}
static inline unsigned rb_calculate_event_length(unsigned length)
{
struct ring_buffer_event event; /* Used only for sizeof array */
/* zero length can cause confusions */
if (!length)
length = 1;
if (length > RB_MAX_SMALL_DATA)
length += sizeof(event.array[0]);
length += RB_EVNT_HDR_SIZE;
length = ALIGN(length, RB_ALIGNMENT);
return length;
}
static struct ring_buffer_event *
__rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
unsigned type, unsigned long length, u64 *ts)
{
struct buffer_page *head_page, *tail_page;
unsigned long tail;
struct ring_buffer *buffer = cpu_buffer->buffer;
struct ring_buffer_event *event;
tail_page = cpu_buffer->tail_page;
head_page = cpu_buffer->head_page;
tail = cpu_buffer->tail;
if (tail + length > BUF_PAGE_SIZE) {
struct buffer_page *next_page = tail_page;
rb_inc_page(cpu_buffer, &next_page);
if (next_page == head_page) {
if (!(buffer->flags & RB_FL_OVERWRITE))
return NULL;
/* count overflows */
rb_update_overflow(cpu_buffer);
rb_inc_page(cpu_buffer, &head_page);
cpu_buffer->head_page = head_page;
rb_reset_read_page(cpu_buffer);
}
if (tail != BUF_PAGE_SIZE) {
event = rb_page_index(tail_page, tail);
/* page padding */
event->type = RINGBUF_TYPE_PADDING;
}
tail_page->size = tail;
tail_page = next_page;
tail_page->size = 0;
tail = 0;
cpu_buffer->tail_page = tail_page;
cpu_buffer->tail = tail;
rb_add_stamp(cpu_buffer, ts);
}
BUG_ON(tail + length > BUF_PAGE_SIZE);
event = rb_page_index(tail_page, tail);
rb_update_event(event, type, length);
return event;
}
static int
rb_add_time_stamp(struct ring_buffer_per_cpu *cpu_buffer,
u64 *ts, u64 *delta)
{
struct ring_buffer_event *event;
static int once;
if (unlikely(*delta > (1ULL << 59) && !once++)) {
printk(KERN_WARNING "Delta way too big! %llu"
" ts=%llu write stamp = %llu\n",
*delta, *ts, cpu_buffer->write_stamp);
WARN_ON(1);
}
/*
* The delta is too big, we to add a
* new timestamp.
*/
event = __rb_reserve_next(cpu_buffer,
RINGBUF_TYPE_TIME_EXTEND,
RB_LEN_TIME_EXTEND,
ts);
if (!event)
return -1;
/* check to see if we went to the next page */
if (cpu_buffer->tail) {
/* Still on same page, update timestamp */
event->time_delta = *delta & TS_MASK;
event->array[0] = *delta >> TS_SHIFT;
/* commit the time event */
cpu_buffer->tail +=
rb_event_length(event);
cpu_buffer->write_stamp = *ts;
*delta = 0;
}
return 0;
}
static struct ring_buffer_event *
rb_reserve_next_event(struct ring_buffer_per_cpu *cpu_buffer,
unsigned type, unsigned long length)
{
struct ring_buffer_event *event;
u64 ts, delta;
ts = ring_buffer_time_stamp(cpu_buffer->cpu);
if (cpu_buffer->tail) {
delta = ts - cpu_buffer->write_stamp;
if (test_time_stamp(delta)) {
int ret;
ret = rb_add_time_stamp(cpu_buffer, &ts, &delta);
if (ret < 0)
return NULL;
}
} else {
rb_add_stamp(cpu_buffer, &ts);
delta = 0;
}
event = __rb_reserve_next(cpu_buffer, type, length, &ts);
if (!event)
return NULL;
/* If the reserve went to the next page, our delta is zero */
if (!cpu_buffer->tail)
delta = 0;
event->time_delta = delta;
return event;
}
/**
* ring_buffer_lock_reserve - reserve a part of the buffer
* @buffer: the ring buffer to reserve from
* @length: the length of the data to reserve (excluding event header)
* @flags: a pointer to save the interrupt flags
*
* Returns a reseverd event on the ring buffer to copy directly to.
* The user of this interface will need to get the body to write into
* and can use the ring_buffer_event_data() interface.
*
* The length is the length of the data needed, not the event length
* which also includes the event header.
*
* Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
* If NULL is returned, then nothing has been allocated or locked.
*/
struct ring_buffer_event *
ring_buffer_lock_reserve(struct ring_buffer *buffer,
unsigned long length,
unsigned long *flags)
{
struct ring_buffer_per_cpu *cpu_buffer;
struct ring_buffer_event *event;
int cpu;
if (atomic_read(&buffer->record_disabled))
return NULL;
raw_local_irq_save(*flags);
cpu = raw_smp_processor_id();
if (!cpu_isset(cpu, buffer->cpumask))
goto out_irq;
cpu_buffer = buffer->buffers[cpu];
spin_lock(&cpu_buffer->lock);
if (atomic_read(&cpu_buffer->record_disabled))
goto no_record;
length = rb_calculate_event_length(length);
if (length > BUF_PAGE_SIZE)
return NULL;
event = rb_reserve_next_event(cpu_buffer, RINGBUF_TYPE_DATA, length);
if (!event)
goto no_record;
return event;
no_record:
spin_unlock(&cpu_buffer->lock);
out_irq:
local_irq_restore(*flags);
return NULL;
}
static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer,
struct ring_buffer_event *event)
{
cpu_buffer->tail += rb_event_length(event);
cpu_buffer->tail_page->size = cpu_buffer->tail;
cpu_buffer->write_stamp += event->time_delta;
cpu_buffer->entries++;
}
/**
* ring_buffer_unlock_commit - commit a reserved
* @buffer: The buffer to commit to
* @event: The event pointer to commit.
* @flags: the interrupt flags received from ring_buffer_lock_reserve.
*
* This commits the data to the ring buffer, and releases any locks held.
*
* Must be paired with ring_buffer_lock_reserve.
*/
int ring_buffer_unlock_commit(struct ring_buffer *buffer,
struct ring_buffer_event *event,
unsigned long flags)
{
struct ring_buffer_per_cpu *cpu_buffer;
int cpu = raw_smp_processor_id();
cpu_buffer = buffer->buffers[cpu];
assert_spin_locked(&cpu_buffer->lock);
rb_commit(cpu_buffer, event);
spin_unlock(&cpu_buffer->lock);
raw_local_irq_restore(flags);
return 0;
}
/**
* ring_buffer_write - write data to the buffer without reserving
* @buffer: The ring buffer to write to.
* @length: The length of the data being written (excluding the event header)
* @data: The data to write to the buffer.
*
* This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
* one function. If you already have the data to write to the buffer, it
* may be easier to simply call this function.
*
* Note, like ring_buffer_lock_reserve, the length is the length of the data
* and not the length of the event which would hold the header.
*/
int ring_buffer_write(struct ring_buffer *buffer,
unsigned long length,
void *data)
{
struct ring_buffer_per_cpu *cpu_buffer;
struct ring_buffer_event *event;
unsigned long event_length, flags;
void *body;
int ret = -EBUSY;
int cpu;
if (atomic_read(&buffer->record_disabled))
return -EBUSY;
local_irq_save(flags);
cpu = raw_smp_processor_id();
if (!cpu_isset(cpu, buffer->cpumask))
goto out_irq;
cpu_buffer = buffer->buffers[cpu];
spin_lock(&cpu_buffer->lock);
if (atomic_read(&cpu_buffer->record_disabled))
goto out;
event_length = rb_calculate_event_length(length);
event = rb_reserve_next_event(cpu_buffer,
RINGBUF_TYPE_DATA, event_length);
if (!event)
goto out;
body = rb_event_data(event);
memcpy(body, data, length);
rb_commit(cpu_buffer, event);
ret = 0;
out:
spin_unlock(&cpu_buffer->lock);
out_irq:
local_irq_restore(flags);
return ret;
}
/**
* ring_buffer_lock - lock the ring buffer
* @buffer: The ring buffer to lock
* @flags: The place to store the interrupt flags
*
* This locks all the per CPU buffers.
*
* Must be unlocked by ring_buffer_unlock.
*/
void ring_buffer_lock(struct ring_buffer *buffer, unsigned long *flags)
{
struct ring_buffer_per_cpu *cpu_buffer;
int cpu;
local_irq_save(*flags);
for_each_buffer_cpu(buffer, cpu) {
cpu_buffer = buffer->buffers[cpu];
spin_lock(&cpu_buffer->lock);
}
}
/**
* ring_buffer_unlock - unlock a locked buffer
* @buffer: The locked buffer to unlock
* @flags: The interrupt flags received by ring_buffer_lock
*/
void ring_buffer_unlock(struct ring_buffer *buffer, unsigned long flags)
{
struct ring_buffer_per_cpu *cpu_buffer;
int cpu;
for (cpu = buffer->cpus - 1; cpu >= 0; cpu--) {
if (!cpu_isset(cpu, buffer->cpumask))
continue;
cpu_buffer = buffer->buffers[cpu];
spin_unlock(&cpu_buffer->lock);
}
local_irq_restore(flags);
}
/**
* ring_buffer_record_disable - stop all writes into the buffer
* @buffer: The ring buffer to stop writes to.
*
* This prevents all writes to the buffer. Any attempt to write
* to the buffer after this will fail and return NULL.
*
* The caller should call synchronize_sched() after this.
*/
void ring_buffer_record_disable(struct ring_buffer *buffer)
{
atomic_inc(&buffer->record_disabled);
}
/**
* ring_buffer_record_enable - enable writes to the buffer
* @buffer: The ring buffer to enable writes
*
* Note, multiple disables will need the same number of enables
* to truely enable the writing (much like preempt_disable).
*/
void ring_buffer_record_enable(struct ring_buffer *buffer)
{
atomic_dec(&buffer->record_disabled);
}
/**
* ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
* @buffer: The ring buffer to stop writes to.
* @cpu: The CPU buffer to stop
*
* This prevents all writes to the buffer. Any attempt to write
* to the buffer after this will fail and return NULL.
*
* The caller should call synchronize_sched() after this.
*/
void ring_buffer_record_disable_cpu(struct ring_buffer *buffer, int cpu)
{
struct ring_buffer_per_cpu *cpu_buffer;
if (!cpu_isset(cpu, buffer->cpumask))
return;
cpu_buffer = buffer->buffers[cpu];
atomic_inc(&cpu_buffer->record_disabled);
}
/**
* ring_buffer_record_enable_cpu - enable writes to the buffer
* @buffer: The ring buffer to enable writes
* @cpu: The CPU to enable.
*
* Note, multiple disables will need the same number of enables
* to truely enable the writing (much like preempt_disable).
*/
void ring_buffer_record_enable_cpu(struct ring_buffer *buffer, int cpu)
{
struct ring_buffer_per_cpu *cpu_buffer;
if (!cpu_isset(cpu, buffer->cpumask))
return;
cpu_buffer = buffer->buffers[cpu];
atomic_dec(&cpu_buffer->record_disabled);
}
/**
* ring_buffer_entries_cpu - get the number of entries in a cpu buffer
* @buffer: The ring buffer
* @cpu: The per CPU buffer to get the entries from.
*/
unsigned long ring_buffer_entries_cpu(struct ring_buffer *buffer, int cpu)
{
struct ring_buffer_per_cpu *cpu_buffer;
if (!cpu_isset(cpu, buffer->cpumask))
return 0;
cpu_buffer = buffer->buffers[cpu];
return cpu_buffer->entries;
}
/**
* ring_buffer_overrun_cpu - get the number of overruns in a cpu_buffer
* @buffer: The ring buffer
* @cpu: The per CPU buffer to get the number of overruns from
*/
unsigned long ring_buffer_overrun_cpu(struct ring_buffer *buffer, int cpu)
{
struct ring_buffer_per_cpu *cpu_buffer;
if (!cpu_isset(cpu, buffer->cpumask))
return 0;
cpu_buffer = buffer->buffers[cpu];
return cpu_buffer->overrun;
}
/**
* ring_buffer_entries - get the number of entries in a buffer
* @buffer: The ring buffer
*
* Returns the total number of entries in the ring buffer
* (all CPU entries)
*/
unsigned long ring_buffer_entries(struct ring_buffer *buffer)
{
struct ring_buffer_per_cpu *cpu_buffer;
unsigned long entries = 0;
int cpu;
/* if you care about this being correct, lock the buffer */
for_each_buffer_cpu(buffer, cpu) {
cpu_buffer = buffer->buffers[cpu];
entries += cpu_buffer->entries;
}
return entries;
}
/**
* ring_buffer_overrun_cpu - get the number of overruns in buffer
* @buffer: The ring buffer
*
* Returns the total number of overruns in the ring buffer
* (all CPU entries)
*/
unsigned long ring_buffer_overruns(struct ring_buffer *buffer)
{
struct ring_buffer_per_cpu *cpu_buffer;
unsigned long overruns = 0;
int cpu;
/* if you care about this being correct, lock the buffer */
for_each_buffer_cpu(buffer, cpu) {
cpu_buffer = buffer->buffers[cpu];
overruns += cpu_buffer->overrun;
}
return overruns;
}
/**
* ring_buffer_iter_reset - reset an iterator
* @iter: The iterator to reset
*
* Resets the iterator, so that it will start from the beginning
* again.
*/
void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
{
struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
iter->head_page = cpu_buffer->head_page;
iter->head = cpu_buffer->head;
rb_reset_iter_read_page(iter);
}
/**
* ring_buffer_iter_empty - check if an iterator has no more to read
* @iter: The iterator to check
*/
int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
{
struct ring_buffer_per_cpu *cpu_buffer;
cpu_buffer = iter->cpu_buffer;
return iter->head_page == cpu_buffer->tail_page &&
iter->head == cpu_buffer->tail;
}
static void
rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
struct ring_buffer_event *event)
{
u64 delta;
switch (event->type) {
case RINGBUF_TYPE_PADDING:
return;
case RINGBUF_TYPE_TIME_EXTEND:
delta = event->array[0];
delta <<= TS_SHIFT;
delta += event->time_delta;
cpu_buffer->read_stamp += delta;
return;
case RINGBUF_TYPE_TIME_STAMP:
/* FIXME: not implemented */
return;
case RINGBUF_TYPE_DATA:
cpu_buffer->read_stamp += event->time_delta;
return;
default:
BUG();
}
return;
}
static void
rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
struct ring_buffer_event *event)
{
u64 delta;
switch (event->type) {
case RINGBUF_TYPE_PADDING:
return;
case RINGBUF_TYPE_TIME_EXTEND:
delta = event->array[0];
delta <<= TS_SHIFT;
delta += event->time_delta;
iter->read_stamp += delta;
return;
case RINGBUF_TYPE_TIME_STAMP:
/* FIXME: not implemented */
return;
case RINGBUF_TYPE_DATA:
iter->read_stamp += event->time_delta;
return;
default:
BUG();
}
return;
}
static void rb_advance_head(struct ring_buffer_per_cpu *cpu_buffer)
{
struct ring_buffer_event *event;
unsigned length;
/*
* Check if we are at the end of the buffer.
*/
if (cpu_buffer->head >= cpu_buffer->head_page->size) {
BUG_ON(cpu_buffer->head_page == cpu_buffer->tail_page);
rb_inc_page(cpu_buffer, &cpu_buffer->head_page);
rb_reset_read_page(cpu_buffer);
return;
}
event = rb_head_event(cpu_buffer);
if (event->type == RINGBUF_TYPE_DATA)
cpu_buffer->entries--;
length = rb_event_length(event);
/*
* This should not be called to advance the header if we are
* at the tail of the buffer.
*/
BUG_ON((cpu_buffer->head_page == cpu_buffer->tail_page) &&
(cpu_buffer->head + length > cpu_buffer->tail));
rb_update_read_stamp(cpu_buffer, event);
cpu_buffer->head += length;
/* check for end of page */
if ((cpu_buffer->head >= cpu_buffer->head_page->size) &&
(cpu_buffer->head_page != cpu_buffer->tail_page))
rb_advance_head(cpu_buffer);
}
static void rb_advance_iter(struct ring_buffer_iter *iter)
{
struct ring_buffer *buffer;
struct ring_buffer_per_cpu *cpu_buffer;
struct ring_buffer_event *event;
unsigned length;
cpu_buffer = iter->cpu_buffer;
buffer = cpu_buffer->buffer;
/*
* Check if we are at the end of the buffer.
*/
if (iter->head >= iter->head_page->size) {
BUG_ON(iter->head_page == cpu_buffer->tail_page);
rb_inc_page(cpu_buffer, &iter->head_page);
rb_reset_iter_read_page(iter);
return;
}
event = rb_iter_head_event(iter);
length = rb_event_length(event);
/*
* This should not be called to advance the header if we are
* at the tail of the buffer.
*/
BUG_ON((iter->head_page == cpu_buffer->tail_page) &&
(iter->head + length > cpu_buffer->tail));
rb_update_iter_read_stamp(iter, event);
iter->head += length;
/* check for end of page padding */
if ((iter->head >= iter->head_page->size) &&
(iter->head_page != cpu_buffer->tail_page))
rb_advance_iter(iter);
}
/**
* ring_buffer_peek - peek at the next event to be read
* @buffer: The ring buffer to read
* @cpu: The cpu to peak at
* @ts: The timestamp counter of this event.
*
* This will return the event that will be read next, but does
* not consume the data.
*/
struct ring_buffer_event *
ring_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts)
{
struct ring_buffer_per_cpu *cpu_buffer;
struct ring_buffer_event *event;
if (!cpu_isset(cpu, buffer->cpumask))
return NULL;
cpu_buffer = buffer->buffers[cpu];
again:
if (rb_per_cpu_empty(cpu_buffer))
return NULL;
event = rb_head_event(cpu_buffer);
switch (event->type) {
case RINGBUF_TYPE_PADDING:
rb_inc_page(cpu_buffer, &cpu_buffer->head_page);
rb_reset_read_page(cpu_buffer);
goto again;
case RINGBUF_TYPE_TIME_EXTEND:
/* Internal data, OK to advance */
rb_advance_head(cpu_buffer);
goto again;
case RINGBUF_TYPE_TIME_STAMP:
/* FIXME: not implemented */
rb_advance_head(cpu_buffer);
goto again;
case RINGBUF_TYPE_DATA:
if (ts) {
*ts = cpu_buffer->read_stamp + event->time_delta;
ring_buffer_normalize_time_stamp(cpu_buffer->cpu, ts);
}
return event;
default:
BUG();
}
return NULL;
}
/**
* ring_buffer_iter_peek - peek at the next event to be read
* @iter: The ring buffer iterator
* @ts: The timestamp counter of this event.
*
* This will return the event that will be read next, but does
* not increment the iterator.
*/
struct ring_buffer_event *
ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
{
struct ring_buffer *buffer;
struct ring_buffer_per_cpu *cpu_buffer;
struct ring_buffer_event *event;
if (ring_buffer_iter_empty(iter))
return NULL;
cpu_buffer = iter->cpu_buffer;
buffer = cpu_buffer->buffer;
again:
if (rb_per_cpu_empty(cpu_buffer))
return NULL;
event = rb_iter_head_event(iter);
switch (event->type) {
case RINGBUF_TYPE_PADDING:
rb_inc_page(cpu_buffer, &iter->head_page);
rb_reset_iter_read_page(iter);
goto again;
case RINGBUF_TYPE_TIME_EXTEND:
/* Internal data, OK to advance */
rb_advance_iter(iter);
goto again;
case RINGBUF_TYPE_TIME_STAMP:
/* FIXME: not implemented */
rb_advance_iter(iter);
goto again;
case RINGBUF_TYPE_DATA:
if (ts) {
*ts = iter->read_stamp + event->time_delta;
ring_buffer_normalize_time_stamp(cpu_buffer->cpu, ts);
}
return event;
default:
BUG();
}
return NULL;
}
/**
* ring_buffer_consume - return an event and consume it
* @buffer: The ring buffer to get the next event from
*
* Returns the next event in the ring buffer, and that event is consumed.
* Meaning, that sequential reads will keep returning a different event,
* and eventually empty the ring buffer if the producer is slower.
*/
struct ring_buffer_event *
ring_buffer_consume(struct ring_buffer *buffer, int cpu, u64 *ts)
{
struct ring_buffer_per_cpu *cpu_buffer;
struct ring_buffer_event *event;
if (!cpu_isset(cpu, buffer->cpumask))
return NULL;
event = ring_buffer_peek(buffer, cpu, ts);
if (!event)
return NULL;
cpu_buffer = buffer->buffers[cpu];
rb_advance_head(cpu_buffer);
return event;
}
/**
* ring_buffer_read_start - start a non consuming read of the buffer
* @buffer: The ring buffer to read from
* @cpu: The cpu buffer to iterate over
*
* This starts up an iteration through the buffer. It also disables
* the recording to the buffer until the reading is finished.
* This prevents the reading from being corrupted. This is not
* a consuming read, so a producer is not expected.
*
* Must be paired with ring_buffer_finish.
*/
struct ring_buffer_iter *
ring_buffer_read_start(struct ring_buffer *buffer, int cpu)
{
struct ring_buffer_per_cpu *cpu_buffer;
struct ring_buffer_iter *iter;
if (!cpu_isset(cpu, buffer->cpumask))
return NULL;
iter = kmalloc(sizeof(*iter), GFP_KERNEL);
if (!iter)
return NULL;
cpu_buffer = buffer->buffers[cpu];
iter->cpu_buffer = cpu_buffer;
atomic_inc(&cpu_buffer->record_disabled);
synchronize_sched();
spin_lock(&cpu_buffer->lock);
iter->head = cpu_buffer->head;
iter->head_page = cpu_buffer->head_page;
rb_reset_iter_read_page(iter);
spin_unlock(&cpu_buffer->lock);
return iter;
}
/**
* ring_buffer_finish - finish reading the iterator of the buffer
* @iter: The iterator retrieved by ring_buffer_start
*
* This re-enables the recording to the buffer, and frees the
* iterator.
*/
void
ring_buffer_read_finish(struct ring_buffer_iter *iter)
{
struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
atomic_dec(&cpu_buffer->record_disabled);
kfree(iter);
}
/**
* ring_buffer_read - read the next item in the ring buffer by the iterator
* @iter: The ring buffer iterator
* @ts: The time stamp of the event read.
*
* This reads the next event in the ring buffer and increments the iterator.
*/
struct ring_buffer_event *
ring_buffer_read(struct ring_buffer_iter *iter, u64 *ts)
{
struct ring_buffer_event *event;
event = ring_buffer_iter_peek(iter, ts);
if (!event)
return NULL;
rb_advance_iter(iter);
return event;
}
/**
* ring_buffer_size - return the size of the ring buffer (in bytes)
* @buffer: The ring buffer.
*/
unsigned long ring_buffer_size(struct ring_buffer *buffer)
{
return BUF_PAGE_SIZE * buffer->pages;
}
static void
rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
{
cpu_buffer->head_page
= list_entry(cpu_buffer->pages.next, struct buffer_page, list);
cpu_buffer->tail_page
= list_entry(cpu_buffer->pages.next, struct buffer_page, list);
cpu_buffer->head = cpu_buffer->tail = 0;
cpu_buffer->overrun = 0;
cpu_buffer->entries = 0;
}
/**
* ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
* @buffer: The ring buffer to reset a per cpu buffer of
* @cpu: The CPU buffer to be reset
*/
void ring_buffer_reset_cpu(struct ring_buffer *buffer, int cpu)
{
struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
unsigned long flags;
if (!cpu_isset(cpu, buffer->cpumask))
return;
raw_local_irq_save(flags);
spin_lock(&cpu_buffer->lock);
rb_reset_cpu(cpu_buffer);
spin_unlock(&cpu_buffer->lock);
raw_local_irq_restore(flags);
}
/**
* ring_buffer_reset - reset a ring buffer
* @buffer: The ring buffer to reset all cpu buffers
*/
void ring_buffer_reset(struct ring_buffer *buffer)
{
unsigned long flags;
int cpu;
ring_buffer_lock(buffer, &flags);
for_each_buffer_cpu(buffer, cpu)
rb_reset_cpu(buffer->buffers[cpu]);
ring_buffer_unlock(buffer, flags);
}
/**
* rind_buffer_empty - is the ring buffer empty?
* @buffer: The ring buffer to test
*/
int ring_buffer_empty(struct ring_buffer *buffer)
{
struct ring_buffer_per_cpu *cpu_buffer;
int cpu;
/* yes this is racy, but if you don't like the race, lock the buffer */
for_each_buffer_cpu(buffer, cpu) {
cpu_buffer = buffer->buffers[cpu];
if (!rb_per_cpu_empty(cpu_buffer))
return 0;
}
return 1;
}
/**
* ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
* @buffer: The ring buffer
* @cpu: The CPU buffer to test
*/
int ring_buffer_empty_cpu(struct ring_buffer *buffer, int cpu)
{
struct ring_buffer_per_cpu *cpu_buffer;
if (!cpu_isset(cpu, buffer->cpumask))
return 1;
cpu_buffer = buffer->buffers[cpu];
return rb_per_cpu_empty(cpu_buffer);
}
/**
* ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
* @buffer_a: One buffer to swap with
* @buffer_b: The other buffer to swap with
*
* This function is useful for tracers that want to take a "snapshot"
* of a CPU buffer and has another back up buffer lying around.
* it is expected that the tracer handles the cpu buffer not being
* used at the moment.
*/
int ring_buffer_swap_cpu(struct ring_buffer *buffer_a,
struct ring_buffer *buffer_b, int cpu)
{
struct ring_buffer_per_cpu *cpu_buffer_a;
struct ring_buffer_per_cpu *cpu_buffer_b;
if (!cpu_isset(cpu, buffer_a->cpumask) ||
!cpu_isset(cpu, buffer_b->cpumask))
return -EINVAL;
/* At least make sure the two buffers are somewhat the same */
if (buffer_a->size != buffer_b->size ||
buffer_a->pages != buffer_b->pages)
return -EINVAL;
cpu_buffer_a = buffer_a->buffers[cpu];
cpu_buffer_b = buffer_b->buffers[cpu];
/*
* We can't do a synchronize_sched here because this
* function can be called in atomic context.
* Normally this will be called from the same CPU as cpu.
* If not it's up to the caller to protect this.
*/
atomic_inc(&cpu_buffer_a->record_disabled);
atomic_inc(&cpu_buffer_b->record_disabled);
buffer_a->buffers[cpu] = cpu_buffer_b;
buffer_b->buffers[cpu] = cpu_buffer_a;
cpu_buffer_b->buffer = buffer_a;
cpu_buffer_a->buffer = buffer_b;
atomic_dec(&cpu_buffer_a->record_disabled);
atomic_dec(&cpu_buffer_b->record_disabled);
return 0;
}
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment