Commit 7d55524d authored by Omar Ramirez Luna's avatar Omar Ramirez Luna Committed by Greg Kroah-Hartman

staging: ti dspbridge: add resource manager

Add TI's DSP Bridge resource manager driver sources
Signed-off-by: default avatarOmar Ramirez Luna <omar.ramirez@ti.com>
Signed-off-by: default avatarKanigeri, Hari <h-kanigeri2@ti.com>
Signed-off-by: default avatarAmeya Palande <ameya.palande@nokia.com>
Signed-off-by: default avatarGuzman Lugo, Fernando <fernando.lugo@ti.com>
Signed-off-by: default avatarHebbar, Shivananda <x0hebbar@ti.com>
Signed-off-by: default avatarRamos Falcon, Ernesto <ernesto@ti.com>
Signed-off-by: default avatarFelipe Contreras <felipe.contreras@gmail.com>
Signed-off-by: default avatarAnna, Suman <s-anna@ti.com>
Signed-off-by: default avatarGupta, Ramesh <grgupta@ti.com>
Signed-off-by: default avatarGomez Castellanos, Ivan <ivan.gomez@ti.com>
Signed-off-by: default avatarAndy Shevchenko <ext-andriy.shevchenko@nokia.com>
Signed-off-by: default avatarArmando Uribe De Leon <x0095078@ti.com>
Signed-off-by: default avatarDeepak Chitriki <deepak.chitriki@ti.com>
Signed-off-by: default avatarMenon, Nishanth <nm@ti.com>
Signed-off-by: default avatarPhil Carmody <ext-phil.2.carmody@nokia.com>
Signed-off-by: default avatarOhad Ben-Cohen <ohad@wizery.com>
Signed-off-by: default avatarGreg Kroah-Hartman <gregkh@suse.de>
parent c4ca3d5a
/*
* dbdcd.c
*
* DSP-BIOS Bridge driver support functions for TI OMAP processors.
*
* This file contains the implementation of the DSP/BIOS Bridge
* Configuration Database (DCD).
*
* Notes:
* The fxn dcd_get_objects can apply a callback fxn to each DCD object
* that is located in a specified COFF file. At the moment,
* dcd_auto_register, dcd_auto_unregister, and NLDR module all use
* dcd_get_objects.
*
* Copyright (C) 2005-2006 Texas Instruments, Inc.
*
* This package is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
* THIS PACKAGE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED
* WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR A PARTICULAR PURPOSE.
*/
/* ----------------------------------- Host OS */
#include <dspbridge/host_os.h>
/* ----------------------------------- DSP/BIOS Bridge */
#include <dspbridge/std.h>
#include <dspbridge/dbdefs.h>
/* ----------------------------------- Trace & Debug */
#include <dspbridge/dbc.h>
/* ----------------------------------- Platform Manager */
#include <dspbridge/cod.h>
/* ----------------------------------- Others */
#include <dspbridge/uuidutil.h>
/* ----------------------------------- This */
#include <dspbridge/dbdcd.h>
/* ----------------------------------- Global defines. */
#define MAX_INT2CHAR_LENGTH 16 /* Max int2char len of 32 bit int */
/* Name of section containing dependent libraries */
#define DEPLIBSECT ".dspbridge_deplibs"
/* DCD specific structures. */
struct dcd_manager {
struct cod_manager *cod_mgr; /* Handle to COD manager object. */
};
/* Pointer to the registry support key */
static struct list_head reg_key_list;
static DEFINE_SPINLOCK(dbdcd_lock);
/* Global reference variables. */
static u32 refs;
static u32 enum_refs;
/* Helper function prototypes. */
static s32 atoi(char *psz_buf);
static int get_attrs_from_buf(char *psz_buf, u32 ul_buf_size,
enum dsp_dcdobjtype obj_type,
struct dcd_genericobj *pGenObj);
static void compress_buf(char *psz_buf, u32 ul_buf_size, s32 cCharSize);
static char dsp_char2_gpp_char(char *pWord, s32 cDspCharSize);
static int get_dep_lib_info(IN struct dcd_manager *hdcd_mgr,
IN struct dsp_uuid *uuid_obj,
IN OUT u16 *pNumLibs,
OPTIONAL OUT u16 *pNumPersLibs,
OPTIONAL OUT struct dsp_uuid *pDepLibUuids,
OPTIONAL OUT bool *pPersistentDepLibs,
IN enum nldr_phase phase);
/*
* ======== dcd_auto_register ========
* Purpose:
* Parses the supplied image and resigsters with DCD.
*/
int dcd_auto_register(IN struct dcd_manager *hdcd_mgr,
IN char *pszCoffPath)
{
int status = 0;
DBC_REQUIRE(refs > 0);
if (hdcd_mgr)
status = dcd_get_objects(hdcd_mgr, pszCoffPath,
(dcd_registerfxn) dcd_register_object,
(void *)pszCoffPath);
else
status = -EFAULT;
return status;
}
/*
* ======== dcd_auto_unregister ========
* Purpose:
* Parses the supplied DSP image and unresiters from DCD.
*/
int dcd_auto_unregister(IN struct dcd_manager *hdcd_mgr,
IN char *pszCoffPath)
{
int status = 0;
DBC_REQUIRE(refs > 0);
if (hdcd_mgr)
status = dcd_get_objects(hdcd_mgr, pszCoffPath,
(dcd_registerfxn) dcd_register_object,
NULL);
else
status = -EFAULT;
return status;
}
/*
* ======== dcd_create_manager ========
* Purpose:
* Creates DCD manager.
*/
int dcd_create_manager(IN char *pszZlDllName,
OUT struct dcd_manager **phDcdMgr)
{
struct cod_manager *cod_mgr; /* COD manager handle */
struct dcd_manager *dcd_mgr_obj = NULL; /* DCD Manager pointer */
int status = 0;
DBC_REQUIRE(refs >= 0);
DBC_REQUIRE(phDcdMgr);
status = cod_create(&cod_mgr, pszZlDllName, NULL);
if (DSP_FAILED(status))
goto func_end;
/* Create a DCD object. */
dcd_mgr_obj = kzalloc(sizeof(struct dcd_manager), GFP_KERNEL);
if (dcd_mgr_obj != NULL) {
/* Fill out the object. */
dcd_mgr_obj->cod_mgr = cod_mgr;
/* Return handle to this DCD interface. */
*phDcdMgr = dcd_mgr_obj;
} else {
status = -ENOMEM;
/*
* If allocation of DcdManager object failed, delete the
* COD manager.
*/
cod_delete(cod_mgr);
}
DBC_ENSURE((DSP_SUCCEEDED(status)) ||
((dcd_mgr_obj == NULL) && (status == -ENOMEM)));
func_end:
return status;
}
/*
* ======== dcd_destroy_manager ========
* Purpose:
* Frees DCD Manager object.
*/
int dcd_destroy_manager(IN struct dcd_manager *hdcd_mgr)
{
struct dcd_manager *dcd_mgr_obj = hdcd_mgr;
int status = -EFAULT;
DBC_REQUIRE(refs >= 0);
if (hdcd_mgr) {
/* Delete the COD manager. */
cod_delete(dcd_mgr_obj->cod_mgr);
/* Deallocate a DCD manager object. */
kfree(dcd_mgr_obj);
status = 0;
}
return status;
}
/*
* ======== dcd_enumerate_object ========
* Purpose:
* Enumerates objects in the DCD.
*/
int dcd_enumerate_object(IN s32 cIndex, IN enum dsp_dcdobjtype obj_type,
OUT struct dsp_uuid *uuid_obj)
{
int status = 0;
char sz_reg_key[DCD_MAXPATHLENGTH];
char sz_value[DCD_MAXPATHLENGTH];
struct dsp_uuid dsp_uuid_obj;
char sz_obj_type[MAX_INT2CHAR_LENGTH]; /* str. rep. of obj_type. */
u32 dw_key_len = 0;
struct dcd_key_elem *dcd_key;
int len;
DBC_REQUIRE(refs >= 0);
DBC_REQUIRE(cIndex >= 0);
DBC_REQUIRE(uuid_obj != NULL);
if ((cIndex != 0) && (enum_refs == 0)) {
/*
* If an enumeration is being performed on an index greater
* than zero, then the current enum_refs must have been
* incremented to greater than zero.
*/
status = -EIDRM;
} else {
/*
* Pre-determine final key length. It's length of DCD_REGKEY +
* "_\0" + length of sz_obj_type string + terminating NULL.
*/
dw_key_len = strlen(DCD_REGKEY) + 1 + sizeof(sz_obj_type) + 1;
DBC_ASSERT(dw_key_len < DCD_MAXPATHLENGTH);
/* Create proper REG key; concatenate DCD_REGKEY with
* obj_type. */
strncpy(sz_reg_key, DCD_REGKEY, strlen(DCD_REGKEY) + 1);
if ((strlen(sz_reg_key) + strlen("_\0")) <
DCD_MAXPATHLENGTH) {
strncat(sz_reg_key, "_\0", 2);
} else {
status = -EPERM;
}
/* This snprintf is guaranteed not to exceed max size of an
* integer. */
status = snprintf(sz_obj_type, MAX_INT2CHAR_LENGTH, "%d",
obj_type);
if (status == -1) {
status = -EPERM;
} else {
status = 0;
if ((strlen(sz_reg_key) + strlen(sz_obj_type)) <
DCD_MAXPATHLENGTH) {
strncat(sz_reg_key, sz_obj_type,
strlen(sz_obj_type) + 1);
} else {
status = -EPERM;
}
}
if (DSP_SUCCEEDED(status)) {
len = strlen(sz_reg_key);
spin_lock(&dbdcd_lock);
list_for_each_entry(dcd_key, &reg_key_list, link) {
if (!strncmp(dcd_key->name, sz_reg_key, len)
&& !cIndex--) {
strncpy(sz_value, &dcd_key->name[len],
strlen(&dcd_key->name[len]) + 1);
break;
}
}
spin_unlock(&dbdcd_lock);
if (&dcd_key->link == &reg_key_list)
status = -ENODATA;
}
if (DSP_SUCCEEDED(status)) {
/* Create UUID value using string retrieved from
* registry. */
uuid_uuid_from_string(sz_value, &dsp_uuid_obj);
*uuid_obj = dsp_uuid_obj;
/* Increment enum_refs to update reference count. */
enum_refs++;
status = 0;
} else if (status == -ENODATA) {
/* At the end of enumeration. Reset enum_refs. */
enum_refs = 0;
/*
* TODO: Revisit, this is not an errror case but code
* expects non-zero value.
*/
status = ENODATA;
} else {
status = -EPERM;
}
}
DBC_ENSURE(uuid_obj || (status == -EPERM));
return status;
}
/*
* ======== dcd_exit ========
* Purpose:
* Discontinue usage of the DCD module.
*/
void dcd_exit(void)
{
struct dcd_key_elem *rv, *rv_tmp;
DBC_REQUIRE(refs > 0);
refs--;
if (refs == 0) {
cod_exit();
list_for_each_entry_safe(rv, rv_tmp, &reg_key_list, link) {
list_del(&rv->link);
kfree(rv->path);
kfree(rv);
}
}
DBC_ENSURE(refs >= 0);
}
/*
* ======== dcd_get_dep_libs ========
*/
int dcd_get_dep_libs(IN struct dcd_manager *hdcd_mgr,
IN struct dsp_uuid *uuid_obj,
u16 numLibs, OUT struct dsp_uuid *pDepLibUuids,
OUT bool *pPersistentDepLibs,
IN enum nldr_phase phase)
{
int status = 0;
DBC_REQUIRE(refs > 0);
DBC_REQUIRE(hdcd_mgr);
DBC_REQUIRE(uuid_obj != NULL);
DBC_REQUIRE(pDepLibUuids != NULL);
DBC_REQUIRE(pPersistentDepLibs != NULL);
status =
get_dep_lib_info(hdcd_mgr, uuid_obj, &numLibs, NULL, pDepLibUuids,
pPersistentDepLibs, phase);
return status;
}
/*
* ======== dcd_get_num_dep_libs ========
*/
int dcd_get_num_dep_libs(IN struct dcd_manager *hdcd_mgr,
IN struct dsp_uuid *uuid_obj,
OUT u16 *pNumLibs, OUT u16 *pNumPersLibs,
IN enum nldr_phase phase)
{
int status = 0;
DBC_REQUIRE(refs > 0);
DBC_REQUIRE(hdcd_mgr);
DBC_REQUIRE(pNumLibs != NULL);
DBC_REQUIRE(pNumPersLibs != NULL);
DBC_REQUIRE(uuid_obj != NULL);
status = get_dep_lib_info(hdcd_mgr, uuid_obj, pNumLibs, pNumPersLibs,
NULL, NULL, phase);
return status;
}
/*
* ======== dcd_get_object_def ========
* Purpose:
* Retrieves the properties of a node or processor based on the UUID and
* object type.
*/
int dcd_get_object_def(IN struct dcd_manager *hdcd_mgr,
IN struct dsp_uuid *pObjUuid,
IN enum dsp_dcdobjtype obj_type,
OUT struct dcd_genericobj *pObjDef)
{
struct dcd_manager *dcd_mgr_obj = hdcd_mgr; /* ptr to DCD mgr */
struct cod_libraryobj *lib = NULL;
int status = 0;
u32 ul_addr = 0; /* Used by cod_get_section */
u32 ul_len = 0; /* Used by cod_get_section */
u32 dw_buf_size; /* Used by REG functions */
char sz_reg_key[DCD_MAXPATHLENGTH];
char *sz_uuid; /*[MAXUUIDLEN]; */
struct dcd_key_elem *dcd_key = NULL;
char sz_sect_name[MAXUUIDLEN + 2]; /* ".[UUID]\0" */
char *psz_coff_buf;
u32 dw_key_len; /* Len of REG key. */
char sz_obj_type[MAX_INT2CHAR_LENGTH]; /* str. rep. of obj_type. */
DBC_REQUIRE(refs > 0);
DBC_REQUIRE(pObjDef != NULL);
DBC_REQUIRE(pObjUuid != NULL);
sz_uuid = kzalloc(MAXUUIDLEN, GFP_KERNEL);
if (!sz_uuid) {
status = -ENOMEM;
goto func_end;
}
if (!hdcd_mgr) {
status = -EFAULT;
goto func_end;
}
/* Pre-determine final key length. It's length of DCD_REGKEY +
* "_\0" + length of sz_obj_type string + terminating NULL */
dw_key_len = strlen(DCD_REGKEY) + 1 + sizeof(sz_obj_type) + 1;
DBC_ASSERT(dw_key_len < DCD_MAXPATHLENGTH);
/* Create proper REG key; concatenate DCD_REGKEY with obj_type. */
strncpy(sz_reg_key, DCD_REGKEY, strlen(DCD_REGKEY) + 1);
if ((strlen(sz_reg_key) + strlen("_\0")) < DCD_MAXPATHLENGTH)
strncat(sz_reg_key, "_\0", 2);
else
status = -EPERM;
status = snprintf(sz_obj_type, MAX_INT2CHAR_LENGTH, "%d", obj_type);
if (status == -1) {
status = -EPERM;
} else {
status = 0;
if ((strlen(sz_reg_key) + strlen(sz_obj_type)) <
DCD_MAXPATHLENGTH) {
strncat(sz_reg_key, sz_obj_type,
strlen(sz_obj_type) + 1);
} else {
status = -EPERM;
}
/* Create UUID value to set in registry. */
uuid_uuid_to_string(pObjUuid, sz_uuid, MAXUUIDLEN);
if ((strlen(sz_reg_key) + MAXUUIDLEN) < DCD_MAXPATHLENGTH)
strncat(sz_reg_key, sz_uuid, MAXUUIDLEN);
else
status = -EPERM;
/* Retrieve paths from the registry based on struct dsp_uuid */
dw_buf_size = DCD_MAXPATHLENGTH;
}
if (DSP_SUCCEEDED(status)) {
spin_lock(&dbdcd_lock);
list_for_each_entry(dcd_key, &reg_key_list, link) {
if (!strncmp(dcd_key->name, sz_reg_key,
strlen(sz_reg_key) + 1))
break;
}
spin_unlock(&dbdcd_lock);
if (&dcd_key->link == &reg_key_list) {
status = -ENOKEY;
goto func_end;
}
}
/* Open COFF file. */
status = cod_open(dcd_mgr_obj->cod_mgr, dcd_key->path,
COD_NOLOAD, &lib);
if (DSP_FAILED(status)) {
status = -EACCES;
goto func_end;
}
/* Ensure sz_uuid + 1 is not greater than sizeof sz_sect_name. */
DBC_ASSERT((strlen(sz_uuid) + 1) < sizeof(sz_sect_name));
/* Create section name based on node UUID. A period is
* pre-pended to the UUID string to form the section name.
* I.e. ".24BC8D90_BB45_11d4_B756_006008BDB66F" */
strncpy(sz_sect_name, ".", 2);
strncat(sz_sect_name, sz_uuid, strlen(sz_uuid));
/* Get section information. */
status = cod_get_section(lib, sz_sect_name, &ul_addr, &ul_len);
if (DSP_FAILED(status)) {
status = -EACCES;
goto func_end;
}
/* Allocate zeroed buffer. */
psz_coff_buf = kzalloc(ul_len + 4, GFP_KERNEL);
#ifdef _DB_TIOMAP
if (strstr(dcd_key->path, "iva") == NULL) {
/* Locate section by objectID and read its content. */
status =
cod_read_section(lib, sz_sect_name, psz_coff_buf, ul_len);
} else {
status =
cod_read_section(lib, sz_sect_name, psz_coff_buf, ul_len);
dev_dbg(bridge, "%s: Skipped Byte swap for IVA!!\n", __func__);
}
#else
status = cod_read_section(lib, sz_sect_name, psz_coff_buf, ul_len);
#endif
if (DSP_SUCCEEDED(status)) {
/* Compres DSP buffer to conform to PC format. */
if (strstr(dcd_key->path, "iva") == NULL) {
compress_buf(psz_coff_buf, ul_len, DSPWORDSIZE);
} else {
compress_buf(psz_coff_buf, ul_len, 1);
dev_dbg(bridge, "%s: Compressing IVA COFF buffer by 1 "
"for IVA!!\n", __func__);
}
/* Parse the content of the COFF buffer. */
status =
get_attrs_from_buf(psz_coff_buf, ul_len, obj_type, pObjDef);
if (DSP_FAILED(status))
status = -EACCES;
} else {
status = -EACCES;
}
/* Free the previously allocated dynamic buffer. */
kfree(psz_coff_buf);
func_end:
if (lib)
cod_close(lib);
kfree(sz_uuid);
return status;
}
/*
* ======== dcd_get_objects ========
*/
int dcd_get_objects(IN struct dcd_manager *hdcd_mgr,
IN char *pszCoffPath, dcd_registerfxn registerFxn,
void *handle)
{
struct dcd_manager *dcd_mgr_obj = hdcd_mgr;
int status = 0;
char *psz_coff_buf;
char *psz_cur;
struct cod_libraryobj *lib = NULL;
u32 ul_addr = 0; /* Used by cod_get_section */
u32 ul_len = 0; /* Used by cod_get_section */
char seps[] = ":, ";
char *token = NULL;
struct dsp_uuid dsp_uuid_obj;
s32 object_type;
DBC_REQUIRE(refs > 0);
if (!hdcd_mgr) {
status = -EFAULT;
goto func_end;
}
/* Open DSP coff file, don't load symbols. */
status = cod_open(dcd_mgr_obj->cod_mgr, pszCoffPath, COD_NOLOAD, &lib);
if (DSP_FAILED(status)) {
status = -EACCES;
goto func_cont;
}
/* Get DCD_RESIGER_SECTION section information. */
status = cod_get_section(lib, DCD_REGISTER_SECTION, &ul_addr, &ul_len);
if (DSP_FAILED(status) || !(ul_len > 0)) {
status = -EACCES;
goto func_cont;
}
/* Allocate zeroed buffer. */
psz_coff_buf = kzalloc(ul_len + 4, GFP_KERNEL);
#ifdef _DB_TIOMAP
if (strstr(pszCoffPath, "iva") == NULL) {
/* Locate section by objectID and read its content. */
status = cod_read_section(lib, DCD_REGISTER_SECTION,
psz_coff_buf, ul_len);
} else {
dev_dbg(bridge, "%s: Skipped Byte swap for IVA!!\n", __func__);
status = cod_read_section(lib, DCD_REGISTER_SECTION,
psz_coff_buf, ul_len);
}
#else
status =
cod_read_section(lib, DCD_REGISTER_SECTION, psz_coff_buf, ul_len);
#endif
if (DSP_SUCCEEDED(status)) {
/* Compress DSP buffer to conform to PC format. */
if (strstr(pszCoffPath, "iva") == NULL) {
compress_buf(psz_coff_buf, ul_len, DSPWORDSIZE);
} else {
compress_buf(psz_coff_buf, ul_len, 1);
dev_dbg(bridge, "%s: Compress COFF buffer with 1 word "
"for IVA!!\n", __func__);
}
/* Read from buffer and register object in buffer. */
psz_cur = psz_coff_buf;
while ((token = strsep(&psz_cur, seps)) && *token != '\0') {
/* Retrieve UUID string. */
uuid_uuid_from_string(token, &dsp_uuid_obj);
/* Retrieve object type */
token = strsep(&psz_cur, seps);
/* Retrieve object type */
object_type = atoi(token);
/*
* Apply registerFxn to the found DCD object.
* Possible actions include:
*
* 1) Register found DCD object.
* 2) Unregister found DCD object (when handle == NULL)
* 3) Add overlay node.
*/
status =
registerFxn(&dsp_uuid_obj, object_type, handle);
if (DSP_FAILED(status)) {
/* if error occurs, break from while loop. */
break;
}
}
} else {
status = -EACCES;
}
/* Free the previously allocated dynamic buffer. */
kfree(psz_coff_buf);
func_cont:
if (lib)
cod_close(lib);
func_end:
return status;
}
/*
* ======== dcd_get_library_name ========
* Purpose:
* Retrieves the library name for the given UUID.
*
*/
int dcd_get_library_name(IN struct dcd_manager *hdcd_mgr,
IN struct dsp_uuid *uuid_obj,
IN OUT char *pstrLibName, IN OUT u32 * pdwSize,
enum nldr_phase phase, OUT bool *phase_split)
{
char sz_reg_key[DCD_MAXPATHLENGTH];
char sz_uuid[MAXUUIDLEN];
u32 dw_key_len; /* Len of REG key. */
char sz_obj_type[MAX_INT2CHAR_LENGTH]; /* str. rep. of obj_type. */
int status = 0;
struct dcd_key_elem *dcd_key = NULL;
DBC_REQUIRE(uuid_obj != NULL);
DBC_REQUIRE(pstrLibName != NULL);
DBC_REQUIRE(pdwSize != NULL);
DBC_REQUIRE(hdcd_mgr);
dev_dbg(bridge, "%s: hdcd_mgr %p, uuid_obj %p, pstrLibName %p, pdwSize "
"%p\n", __func__, hdcd_mgr, uuid_obj, pstrLibName, pdwSize);
/*
* Pre-determine final key length. It's length of DCD_REGKEY +
* "_\0" + length of sz_obj_type string + terminating NULL.
*/
dw_key_len = strlen(DCD_REGKEY) + 1 + sizeof(sz_obj_type) + 1;
DBC_ASSERT(dw_key_len < DCD_MAXPATHLENGTH);
/* Create proper REG key; concatenate DCD_REGKEY with obj_type. */
strncpy(sz_reg_key, DCD_REGKEY, strlen(DCD_REGKEY) + 1);
if ((strlen(sz_reg_key) + strlen("_\0")) < DCD_MAXPATHLENGTH)
strncat(sz_reg_key, "_\0", 2);
else
status = -EPERM;
switch (phase) {
case NLDR_CREATE:
/* create phase type */
sprintf(sz_obj_type, "%d", DSP_DCDCREATELIBTYPE);
break;
case NLDR_EXECUTE:
/* execute phase type */
sprintf(sz_obj_type, "%d", DSP_DCDEXECUTELIBTYPE);
break;
case NLDR_DELETE:
/* delete phase type */
sprintf(sz_obj_type, "%d", DSP_DCDDELETELIBTYPE);
break;
case NLDR_NOPHASE:
/* known to be a dependent library */
sprintf(sz_obj_type, "%d", DSP_DCDLIBRARYTYPE);
break;
default:
status = -EINVAL;
DBC_ASSERT(false);
}
if (DSP_SUCCEEDED(status)) {
if ((strlen(sz_reg_key) + strlen(sz_obj_type)) <
DCD_MAXPATHLENGTH) {
strncat(sz_reg_key, sz_obj_type,
strlen(sz_obj_type) + 1);
} else {
status = -EPERM;
}
/* Create UUID value to find match in registry. */
uuid_uuid_to_string(uuid_obj, sz_uuid, MAXUUIDLEN);
if ((strlen(sz_reg_key) + MAXUUIDLEN) < DCD_MAXPATHLENGTH)
strncat(sz_reg_key, sz_uuid, MAXUUIDLEN);
else
status = -EPERM;
}
if (DSP_SUCCEEDED(status)) {
spin_lock(&dbdcd_lock);
list_for_each_entry(dcd_key, &reg_key_list, link) {
/* See if the name matches. */
if (!strncmp(dcd_key->name, sz_reg_key,
strlen(sz_reg_key) + 1))
break;
}
spin_unlock(&dbdcd_lock);
}
if (&dcd_key->link == &reg_key_list)
status = -ENOKEY;
/* If can't find, phases might be registered as generic LIBRARYTYPE */
if (DSP_FAILED(status) && phase != NLDR_NOPHASE) {
if (phase_split)
*phase_split = false;
strncpy(sz_reg_key, DCD_REGKEY, strlen(DCD_REGKEY) + 1);
if ((strlen(sz_reg_key) + strlen("_\0")) <
DCD_MAXPATHLENGTH) {
strncat(sz_reg_key, "_\0", 2);
} else {
status = -EPERM;
}
sprintf(sz_obj_type, "%d", DSP_DCDLIBRARYTYPE);
if ((strlen(sz_reg_key) + strlen(sz_obj_type))
< DCD_MAXPATHLENGTH) {
strncat(sz_reg_key, sz_obj_type,
strlen(sz_obj_type) + 1);
} else {
status = -EPERM;
}
uuid_uuid_to_string(uuid_obj, sz_uuid, MAXUUIDLEN);
if ((strlen(sz_reg_key) + MAXUUIDLEN) < DCD_MAXPATHLENGTH)
strncat(sz_reg_key, sz_uuid, MAXUUIDLEN);
else
status = -EPERM;
spin_lock(&dbdcd_lock);
list_for_each_entry(dcd_key, &reg_key_list, link) {
/* See if the name matches. */
if (!strncmp(dcd_key->name, sz_reg_key,
strlen(sz_reg_key) + 1))
break;
}
spin_unlock(&dbdcd_lock);
status = (&dcd_key->link != &reg_key_list) ?
0 : -ENOKEY;
}
if (DSP_SUCCEEDED(status))
memcpy(pstrLibName, dcd_key->path, strlen(dcd_key->path) + 1);
return status;
}
/*
* ======== dcd_init ========
* Purpose:
* Initialize the DCD module.
*/
bool dcd_init(void)
{
bool init_cod;
bool ret = true;
DBC_REQUIRE(refs >= 0);
if (refs == 0) {
/* Initialize required modules. */
init_cod = cod_init();
if (!init_cod) {
ret = false;
/* Exit initialized modules. */
if (init_cod)
cod_exit();
}
INIT_LIST_HEAD(&reg_key_list);
}
if (ret)
refs++;
DBC_ENSURE((ret && (refs > 0)) || (!ret && (refs == 0)));
return ret;
}
/*
* ======== dcd_register_object ========
* Purpose:
* Registers a node or a processor with the DCD.
* If psz_path_name == NULL, unregister the specified DCD object.
*/
int dcd_register_object(IN struct dsp_uuid *uuid_obj,
IN enum dsp_dcdobjtype obj_type,
IN char *psz_path_name)
{
int status = 0;
char sz_reg_key[DCD_MAXPATHLENGTH];
char sz_uuid[MAXUUIDLEN + 1];
u32 dw_path_size = 0;
u32 dw_key_len; /* Len of REG key. */
char sz_obj_type[MAX_INT2CHAR_LENGTH]; /* str. rep. of obj_type. */
struct dcd_key_elem *dcd_key = NULL;
DBC_REQUIRE(refs > 0);
DBC_REQUIRE(uuid_obj != NULL);
DBC_REQUIRE((obj_type == DSP_DCDNODETYPE) ||
(obj_type == DSP_DCDPROCESSORTYPE) ||
(obj_type == DSP_DCDLIBRARYTYPE) ||
(obj_type == DSP_DCDCREATELIBTYPE) ||
(obj_type == DSP_DCDEXECUTELIBTYPE) ||
(obj_type == DSP_DCDDELETELIBTYPE));
dev_dbg(bridge, "%s: object UUID %p, obj_type %d, szPathName %s\n",
__func__, uuid_obj, obj_type, psz_path_name);
/*
* Pre-determine final key length. It's length of DCD_REGKEY +
* "_\0" + length of sz_obj_type string + terminating NULL.
*/
dw_key_len = strlen(DCD_REGKEY) + 1 + sizeof(sz_obj_type) + 1;
DBC_ASSERT(dw_key_len < DCD_MAXPATHLENGTH);
/* Create proper REG key; concatenate DCD_REGKEY with obj_type. */
strncpy(sz_reg_key, DCD_REGKEY, strlen(DCD_REGKEY) + 1);
if ((strlen(sz_reg_key) + strlen("_\0")) < DCD_MAXPATHLENGTH)
strncat(sz_reg_key, "_\0", 2);
else {
status = -EPERM;
goto func_end;
}
status = snprintf(sz_obj_type, MAX_INT2CHAR_LENGTH, "%d", obj_type);
if (status == -1) {
status = -EPERM;
} else {
status = 0;
if ((strlen(sz_reg_key) + strlen(sz_obj_type)) <
DCD_MAXPATHLENGTH) {
strncat(sz_reg_key, sz_obj_type,
strlen(sz_obj_type) + 1);
} else
status = -EPERM;
/* Create UUID value to set in registry. */
uuid_uuid_to_string(uuid_obj, sz_uuid, MAXUUIDLEN);
if ((strlen(sz_reg_key) + MAXUUIDLEN) < DCD_MAXPATHLENGTH)
strncat(sz_reg_key, sz_uuid, MAXUUIDLEN);
else
status = -EPERM;
}
if (DSP_FAILED(status))
goto func_end;
/*
* If psz_path_name != NULL, perform registration, otherwise,
* perform unregistration.
*/
if (psz_path_name) {
dw_path_size = strlen(psz_path_name) + 1;
spin_lock(&dbdcd_lock);
list_for_each_entry(dcd_key, &reg_key_list, link) {
/* See if the name matches. */
if (!strncmp(dcd_key->name, sz_reg_key,
strlen(sz_reg_key) + 1))
break;
}
spin_unlock(&dbdcd_lock);
if (&dcd_key->link == &reg_key_list) {
/*
* Add new reg value (UUID+obj_type)
* with COFF path info
*/
dcd_key = kmalloc(sizeof(struct dcd_key_elem),
GFP_KERNEL);
if (!dcd_key) {
status = -ENOMEM;
goto func_end;
}
dcd_key->path = kmalloc(strlen(sz_reg_key) + 1,
GFP_KERNEL);
if (!dcd_key->path) {
kfree(dcd_key);
status = -ENOMEM;
goto func_end;
}
strncpy(dcd_key->name, sz_reg_key,
strlen(sz_reg_key) + 1);
strncpy(dcd_key->path, psz_path_name ,
dw_path_size);
spin_lock(&dbdcd_lock);
list_add_tail(&dcd_key->link, &reg_key_list);
spin_unlock(&dbdcd_lock);
} else {
/* Make sure the new data is the same. */
if (strncmp(dcd_key->path, psz_path_name,
dw_path_size)) {
/* The caller needs a different data size! */
kfree(dcd_key->path);
dcd_key->path = kmalloc(dw_path_size,
GFP_KERNEL);
if (dcd_key->path == NULL) {
status = -ENOMEM;
goto func_end;
}
}
/* We have a match! Copy out the data. */
memcpy(dcd_key->path, psz_path_name, dw_path_size);
}
dev_dbg(bridge, "%s: psz_path_name=%s, dw_path_size=%d\n",
__func__, psz_path_name, dw_path_size);
} else {
/* Deregister an existing object */
spin_lock(&dbdcd_lock);
list_for_each_entry(dcd_key, &reg_key_list, link) {
if (!strncmp(dcd_key->name, sz_reg_key,
strlen(sz_reg_key) + 1)) {
list_del(&dcd_key->link);
kfree(dcd_key->path);
kfree(dcd_key);
break;
}
}
spin_unlock(&dbdcd_lock);
if (&dcd_key->link == &reg_key_list)
status = -EPERM;
}
if (DSP_SUCCEEDED(status)) {
/*
* Because the node database has been updated through a
* successful object registration/de-registration operation,
* we need to reset the object enumeration counter to allow
* current enumerations to reflect this update in the node
* database.
*/
enum_refs = 0;
}
func_end:
return status;
}
/*
* ======== dcd_unregister_object ========
* Call DCD_Register object with psz_path_name set to NULL to
* perform actual object de-registration.
*/
int dcd_unregister_object(IN struct dsp_uuid *uuid_obj,
IN enum dsp_dcdobjtype obj_type)
{
int status = 0;
DBC_REQUIRE(refs > 0);
DBC_REQUIRE(uuid_obj != NULL);
DBC_REQUIRE((obj_type == DSP_DCDNODETYPE) ||
(obj_type == DSP_DCDPROCESSORTYPE) ||
(obj_type == DSP_DCDLIBRARYTYPE) ||
(obj_type == DSP_DCDCREATELIBTYPE) ||
(obj_type == DSP_DCDEXECUTELIBTYPE) ||
(obj_type == DSP_DCDDELETELIBTYPE));
/*
* When dcd_register_object is called with NULL as pathname,
* it indicates an unregister object operation.
*/
status = dcd_register_object(uuid_obj, obj_type, NULL);
return status;
}
/*
**********************************************************************
* DCD Helper Functions
**********************************************************************
*/
/*
* ======== atoi ========
* Purpose:
* This function converts strings in decimal or hex format to integers.
*/
static s32 atoi(char *psz_buf)
{
char *pch = psz_buf;
s32 base = 0;
while (isspace(*pch))
pch++;
if (*pch == '-' || *pch == '+') {
base = 10;
pch++;
} else if (*pch && tolower(pch[strlen(pch) - 1]) == 'h') {
base = 16;
}
return simple_strtoul(pch, NULL, base);
}
/*
* ======== get_attrs_from_buf ========
* Purpose:
* Parse the content of a buffer filled with DSP-side data and
* retrieve an object's attributes from it. IMPORTANT: Assume the
* buffer has been converted from DSP format to GPP format.
*/
static int get_attrs_from_buf(char *psz_buf, u32 ul_buf_size,
enum dsp_dcdobjtype obj_type,
struct dcd_genericobj *pGenObj)
{
int status = 0;
char seps[] = ", ";
char *psz_cur;
char *token;
s32 token_len = 0;
u32 i = 0;
#ifdef _DB_TIOMAP
s32 entry_id;
#endif
DBC_REQUIRE(psz_buf != NULL);
DBC_REQUIRE(ul_buf_size != 0);
DBC_REQUIRE((obj_type == DSP_DCDNODETYPE)
|| (obj_type == DSP_DCDPROCESSORTYPE));
DBC_REQUIRE(pGenObj != NULL);
switch (obj_type) {
case DSP_DCDNODETYPE:
/*
* Parse COFF sect buffer to retrieve individual tokens used
* to fill in object attrs.
*/
psz_cur = psz_buf;
token = strsep(&psz_cur, seps);
/* u32 cb_struct */
pGenObj->obj_data.node_obj.ndb_props.cb_struct =
(u32) atoi(token);
token = strsep(&psz_cur, seps);
/* dsp_uuid ui_node_id */
uuid_uuid_from_string(token,
&pGenObj->obj_data.node_obj.ndb_props.
ui_node_id);
token = strsep(&psz_cur, seps);
/* ac_name */
DBC_REQUIRE(token);
token_len = strlen(token);
if (token_len > DSP_MAXNAMELEN - 1)
token_len = DSP_MAXNAMELEN - 1;
strncpy(pGenObj->obj_data.node_obj.ndb_props.ac_name,
token, token_len);
pGenObj->obj_data.node_obj.ndb_props.ac_name[token_len] = '\0';
token = strsep(&psz_cur, seps);
/* u32 ntype */
pGenObj->obj_data.node_obj.ndb_props.ntype = atoi(token);
token = strsep(&psz_cur, seps);
/* u32 cache_on_gpp */
pGenObj->obj_data.node_obj.ndb_props.cache_on_gpp = atoi(token);
token = strsep(&psz_cur, seps);
/* dsp_resourcereqmts dsp_resource_reqmts */
pGenObj->obj_data.node_obj.ndb_props.dsp_resource_reqmts.
cb_struct = (u32) atoi(token);
token = strsep(&psz_cur, seps);
pGenObj->obj_data.node_obj.ndb_props.
dsp_resource_reqmts.static_data_size = atoi(token);
token = strsep(&psz_cur, seps);
pGenObj->obj_data.node_obj.ndb_props.
dsp_resource_reqmts.global_data_size = atoi(token);
token = strsep(&psz_cur, seps);
pGenObj->obj_data.node_obj.ndb_props.
dsp_resource_reqmts.program_mem_size = atoi(token);
token = strsep(&psz_cur, seps);
pGenObj->obj_data.node_obj.ndb_props.
dsp_resource_reqmts.uwc_execution_time = atoi(token);
token = strsep(&psz_cur, seps);
pGenObj->obj_data.node_obj.ndb_props.
dsp_resource_reqmts.uwc_period = atoi(token);
token = strsep(&psz_cur, seps);
pGenObj->obj_data.node_obj.ndb_props.
dsp_resource_reqmts.uwc_deadline = atoi(token);
token = strsep(&psz_cur, seps);
pGenObj->obj_data.node_obj.ndb_props.
dsp_resource_reqmts.avg_exection_time = atoi(token);
token = strsep(&psz_cur, seps);
pGenObj->obj_data.node_obj.ndb_props.
dsp_resource_reqmts.minimum_period = atoi(token);
token = strsep(&psz_cur, seps);
/* s32 prio */
pGenObj->obj_data.node_obj.ndb_props.prio = atoi(token);
token = strsep(&psz_cur, seps);
/* u32 stack_size */
pGenObj->obj_data.node_obj.ndb_props.stack_size = atoi(token);
token = strsep(&psz_cur, seps);
/* u32 sys_stack_size */
pGenObj->obj_data.node_obj.ndb_props.sys_stack_size =
atoi(token);
token = strsep(&psz_cur, seps);
/* u32 stack_seg */
pGenObj->obj_data.node_obj.ndb_props.stack_seg = atoi(token);
token = strsep(&psz_cur, seps);
/* u32 message_depth */
pGenObj->obj_data.node_obj.ndb_props.message_depth =
atoi(token);
token = strsep(&psz_cur, seps);
/* u32 num_input_streams */
pGenObj->obj_data.node_obj.ndb_props.num_input_streams =
atoi(token);
token = strsep(&psz_cur, seps);
/* u32 num_output_streams */
pGenObj->obj_data.node_obj.ndb_props.num_output_streams =
atoi(token);
token = strsep(&psz_cur, seps);
/* u32 utimeout */
pGenObj->obj_data.node_obj.ndb_props.utimeout = atoi(token);
token = strsep(&psz_cur, seps);
/* char *pstr_create_phase_fxn */
DBC_REQUIRE(token);
token_len = strlen(token);
pGenObj->obj_data.node_obj.pstr_create_phase_fxn =
kzalloc(token_len + 1, GFP_KERNEL);
strncpy(pGenObj->obj_data.node_obj.pstr_create_phase_fxn,
token, token_len);
pGenObj->obj_data.node_obj.pstr_create_phase_fxn[token_len] =
'\0';
token = strsep(&psz_cur, seps);
/* char *pstr_execute_phase_fxn */
DBC_REQUIRE(token);
token_len = strlen(token);
pGenObj->obj_data.node_obj.pstr_execute_phase_fxn =
kzalloc(token_len + 1, GFP_KERNEL);
strncpy(pGenObj->obj_data.node_obj.pstr_execute_phase_fxn,
token, token_len);
pGenObj->obj_data.node_obj.pstr_execute_phase_fxn[token_len] =
'\0';
token = strsep(&psz_cur, seps);
/* char *pstr_delete_phase_fxn */
DBC_REQUIRE(token);
token_len = strlen(token);
pGenObj->obj_data.node_obj.pstr_delete_phase_fxn =
kzalloc(token_len + 1, GFP_KERNEL);
strncpy(pGenObj->obj_data.node_obj.pstr_delete_phase_fxn,
token, token_len);
pGenObj->obj_data.node_obj.pstr_delete_phase_fxn[token_len] =
'\0';
token = strsep(&psz_cur, seps);
/* Segment id for message buffers */
pGenObj->obj_data.node_obj.msg_segid = atoi(token);
token = strsep(&psz_cur, seps);
/* Message notification type */
pGenObj->obj_data.node_obj.msg_notify_type = atoi(token);
token = strsep(&psz_cur, seps);
/* char *pstr_i_alg_name */
if (token) {
token_len = strlen(token);
pGenObj->obj_data.node_obj.pstr_i_alg_name =
kzalloc(token_len + 1, GFP_KERNEL);
strncpy(pGenObj->obj_data.node_obj.pstr_i_alg_name,
token, token_len);
pGenObj->obj_data.node_obj.pstr_i_alg_name[token_len] =
'\0';
token = strsep(&psz_cur, seps);
}
/* Load type (static, dynamic, or overlay) */
if (token) {
pGenObj->obj_data.node_obj.us_load_type = atoi(token);
token = strsep(&psz_cur, seps);
}
/* Dynamic load data requirements */
if (token) {
pGenObj->obj_data.node_obj.ul_data_mem_seg_mask =
atoi(token);
token = strsep(&psz_cur, seps);
}
/* Dynamic load code requirements */
if (token) {
pGenObj->obj_data.node_obj.ul_code_mem_seg_mask =
atoi(token);
token = strsep(&psz_cur, seps);
}
/* Extract node profiles into node properties */
if (token) {
pGenObj->obj_data.node_obj.ndb_props.count_profiles =
atoi(token);
for (i = 0;
i <
pGenObj->obj_data.node_obj.
ndb_props.count_profiles; i++) {
token = strsep(&psz_cur, seps);
if (token) {
/* Heap Size for the node */
pGenObj->obj_data.node_obj.
ndb_props.node_profiles[i].
ul_heap_size = atoi(token);
}
}
}
token = strsep(&psz_cur, seps);
if (token) {
pGenObj->obj_data.node_obj.ndb_props.stack_seg_name =
(u32) (token);
}
break;
case DSP_DCDPROCESSORTYPE:
/*
* Parse COFF sect buffer to retrieve individual tokens used
* to fill in object attrs.
*/
psz_cur = psz_buf;
token = strsep(&psz_cur, seps);
pGenObj->obj_data.proc_info.cb_struct = atoi(token);
token = strsep(&psz_cur, seps);
pGenObj->obj_data.proc_info.processor_family = atoi(token);
token = strsep(&psz_cur, seps);
pGenObj->obj_data.proc_info.processor_type = atoi(token);
token = strsep(&psz_cur, seps);
pGenObj->obj_data.proc_info.clock_rate = atoi(token);
token = strsep(&psz_cur, seps);
pGenObj->obj_data.proc_info.ul_internal_mem_size = atoi(token);
token = strsep(&psz_cur, seps);
pGenObj->obj_data.proc_info.ul_external_mem_size = atoi(token);
token = strsep(&psz_cur, seps);
pGenObj->obj_data.proc_info.processor_id = atoi(token);
token = strsep(&psz_cur, seps);
pGenObj->obj_data.proc_info.ty_running_rtos = atoi(token);
token = strsep(&psz_cur, seps);
pGenObj->obj_data.proc_info.node_min_priority = atoi(token);
token = strsep(&psz_cur, seps);
pGenObj->obj_data.proc_info.node_max_priority = atoi(token);
#ifdef _DB_TIOMAP
/* Proc object may contain additional(extended) attributes. */
/* attr must match proc.hxx */
for (entry_id = 0; entry_id < 7; entry_id++) {
token = strsep(&psz_cur, seps);
pGenObj->obj_data.ext_proc_obj.ty_tlb[entry_id].
ul_gpp_phys = atoi(token);
token = strsep(&psz_cur, seps);
pGenObj->obj_data.ext_proc_obj.ty_tlb[entry_id].
ul_dsp_virt = atoi(token);
}
#endif
break;
default:
status = -EPERM;
break;
}
return status;
}
/*
* ======== CompressBuffer ========
* Purpose:
* Compress the DSP buffer, if necessary, to conform to PC format.
*/
static void compress_buf(char *psz_buf, u32 ul_buf_size, s32 cCharSize)
{
char *p;
char ch;
char *q;
p = psz_buf;
if (p == NULL)
return;
for (q = psz_buf; q < (psz_buf + ul_buf_size);) {
ch = dsp_char2_gpp_char(q, cCharSize);
if (ch == '\\') {
q += cCharSize;
ch = dsp_char2_gpp_char(q, cCharSize);
switch (ch) {
case 't':
*p = '\t';
break;
case 'n':
*p = '\n';
break;
case 'r':
*p = '\r';
break;
case '0':
*p = '\0';
break;
default:
*p = ch;
break;
}
} else {
*p = ch;
}
p++;
q += cCharSize;
}
/* NULL out remainder of buffer. */
while (p < q)
*p++ = '\0';
}
/*
* ======== dsp_char2_gpp_char ========
* Purpose:
* Convert DSP char to host GPP char in a portable manner
*/
static char dsp_char2_gpp_char(char *pWord, s32 cDspCharSize)
{
char ch = '\0';
char *ch_src;
s32 i;
for (ch_src = pWord, i = cDspCharSize; i > 0; i--)
ch |= *ch_src++;
return ch;
}
/*
* ======== get_dep_lib_info ========
*/
static int get_dep_lib_info(IN struct dcd_manager *hdcd_mgr,
IN struct dsp_uuid *uuid_obj,
IN OUT u16 *pNumLibs,
OPTIONAL OUT u16 *pNumPersLibs,
OPTIONAL OUT struct dsp_uuid *pDepLibUuids,
OPTIONAL OUT bool *pPersistentDepLibs,
enum nldr_phase phase)
{
struct dcd_manager *dcd_mgr_obj = hdcd_mgr;
char *psz_coff_buf = NULL;
char *psz_cur;
char *psz_file_name = NULL;
struct cod_libraryobj *lib = NULL;
u32 ul_addr = 0; /* Used by cod_get_section */
u32 ul_len = 0; /* Used by cod_get_section */
u32 dw_data_size = COD_MAXPATHLENGTH;
char seps[] = ", ";
char *token = NULL;
bool get_uuids = (pDepLibUuids != NULL);
u16 dep_libs = 0;
int status = 0;
DBC_REQUIRE(refs > 0);
DBC_REQUIRE(hdcd_mgr);
DBC_REQUIRE(pNumLibs != NULL);
DBC_REQUIRE(uuid_obj != NULL);
/* Initialize to 0 dependent libraries, if only counting number of
* dependent libraries */
if (!get_uuids) {
*pNumLibs = 0;
*pNumPersLibs = 0;
}
/* Allocate a buffer for file name */
psz_file_name = kzalloc(dw_data_size, GFP_KERNEL);
if (psz_file_name == NULL) {
status = -ENOMEM;
} else {
/* Get the name of the library */
status = dcd_get_library_name(hdcd_mgr, uuid_obj, psz_file_name,
&dw_data_size, phase, NULL);
}
/* Open the library */
if (DSP_SUCCEEDED(status)) {
status = cod_open(dcd_mgr_obj->cod_mgr, psz_file_name,
COD_NOLOAD, &lib);
}
if (DSP_SUCCEEDED(status)) {
/* Get dependent library section information. */
status = cod_get_section(lib, DEPLIBSECT, &ul_addr, &ul_len);
if (DSP_FAILED(status)) {
/* Ok, no dependent libraries */
ul_len = 0;
status = 0;
}
}
if (DSP_FAILED(status) || !(ul_len > 0))
goto func_cont;
/* Allocate zeroed buffer. */
psz_coff_buf = kzalloc(ul_len + 4, GFP_KERNEL);
if (psz_coff_buf == NULL)
status = -ENOMEM;
/* Read section contents. */
status = cod_read_section(lib, DEPLIBSECT, psz_coff_buf, ul_len);
if (DSP_FAILED(status))
goto func_cont;
/* Compress and format DSP buffer to conform to PC format. */
compress_buf(psz_coff_buf, ul_len, DSPWORDSIZE);
/* Read from buffer */
psz_cur = psz_coff_buf;
while ((token = strsep(&psz_cur, seps)) && *token != '\0') {
if (get_uuids) {
if (dep_libs >= *pNumLibs) {
/* Gone beyond the limit */
break;
} else {
/* Retrieve UUID string. */
uuid_uuid_from_string(token,
&(pDepLibUuids
[dep_libs]));
/* Is this library persistent? */
token = strsep(&psz_cur, seps);
pPersistentDepLibs[dep_libs] = atoi(token);
dep_libs++;
}
} else {
/* Advanc to next token */
token = strsep(&psz_cur, seps);
if (atoi(token))
(*pNumPersLibs)++;
/* Just counting number of dependent libraries */
(*pNumLibs)++;
}
}
func_cont:
if (lib)
cod_close(lib);
/* Free previously allocated dynamic buffers. */
kfree(psz_file_name);
kfree(psz_coff_buf);
return status;
}
/*
* disp.c
*
* DSP-BIOS Bridge driver support functions for TI OMAP processors.
*
* Node Dispatcher interface. Communicates with Resource Manager Server
* (RMS) on DSP. Access to RMS is synchronized in NODE.
*
* Copyright (C) 2005-2006 Texas Instruments, Inc.
*
* This package is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
* THIS PACKAGE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED
* WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR A PARTICULAR PURPOSE.
*/
/* ----------------------------------- Host OS */
#include <dspbridge/host_os.h>
/* ----------------------------------- DSP/BIOS Bridge */
#include <dspbridge/std.h>
#include <dspbridge/dbdefs.h>
/* ----------------------------------- Trace & Debug */
#include <dspbridge/dbc.h>
/* ----------------------------------- OS Adaptation Layer */
#include <dspbridge/sync.h>
/* ----------------------------------- Link Driver */
#include <dspbridge/dspdefs.h>
/* ----------------------------------- Platform Manager */
#include <dspbridge/dev.h>
#include <dspbridge/chnldefs.h>
/* ----------------------------------- Resource Manager */
#include <dspbridge/nodedefs.h>
#include <dspbridge/nodepriv.h>
#include <dspbridge/rms_sh.h>
/* ----------------------------------- This */
#include <dspbridge/disp.h>
/* Size of a reply from RMS */
#define REPLYSIZE (3 * sizeof(rms_word))
/* Reserved channel offsets for communication with RMS */
#define CHNLTORMSOFFSET 0
#define CHNLFROMRMSOFFSET 1
#define CHNLIOREQS 1
#define SWAP_WORD(x) (((u32)(x) >> 16) | ((u32)(x) << 16))
/*
* ======== disp_object ========
*/
struct disp_object {
struct dev_object *hdev_obj; /* Device for this processor */
/* Function interface to Bridge driver */
struct bridge_drv_interface *intf_fxns;
struct chnl_mgr *hchnl_mgr; /* Channel manager */
struct chnl_object *chnl_to_dsp; /* Chnl for commands to RMS */
struct chnl_object *chnl_from_dsp; /* Chnl for replies from RMS */
u8 *pbuf; /* Buffer for commands, replies */
u32 ul_bufsize; /* pbuf size in bytes */
u32 ul_bufsize_rms; /* pbuf size in RMS words */
u32 char_size; /* Size of DSP character */
u32 word_size; /* Size of DSP word */
u32 data_mau_size; /* Size of DSP Data MAU */
};
static u32 refs;
static void delete_disp(struct disp_object *disp_obj);
static int fill_stream_def(rms_word *pdw_buf, u32 *ptotal, u32 offset,
struct node_strmdef strm_def, u32 max,
u32 chars_in_rms_word);
static int send_message(struct disp_object *disp_obj, u32 dwTimeout,
u32 ul_bytes, OUT u32 *pdw_arg);
/*
* ======== disp_create ========
* Create a NODE Dispatcher object.
*/
int disp_create(OUT struct disp_object **phDispObject,
struct dev_object *hdev_obj,
IN CONST struct disp_attr *pDispAttrs)
{
struct disp_object *disp_obj;
struct bridge_drv_interface *intf_fxns;
u32 ul_chnl_id;
struct chnl_attr chnl_attr_obj;
int status = 0;
u8 dev_type;
DBC_REQUIRE(refs > 0);
DBC_REQUIRE(phDispObject != NULL);
DBC_REQUIRE(pDispAttrs != NULL);
DBC_REQUIRE(hdev_obj != NULL);
*phDispObject = NULL;
/* Allocate Node Dispatcher object */
disp_obj = kzalloc(sizeof(struct disp_object), GFP_KERNEL);
if (disp_obj == NULL)
status = -ENOMEM;
else
disp_obj->hdev_obj = hdev_obj;
/* Get Channel manager and Bridge function interface */
if (DSP_SUCCEEDED(status)) {
status = dev_get_chnl_mgr(hdev_obj, &(disp_obj->hchnl_mgr));
if (DSP_SUCCEEDED(status)) {
(void)dev_get_intf_fxns(hdev_obj, &intf_fxns);
disp_obj->intf_fxns = intf_fxns;
}
}
/* check device type and decide if streams or messag'ing is used for
* RMS/EDS */
if (DSP_FAILED(status))
goto func_cont;
status = dev_get_dev_type(hdev_obj, &dev_type);
if (DSP_FAILED(status))
goto func_cont;
if (dev_type != DSP_UNIT) {
status = -EPERM;
goto func_cont;
}
disp_obj->char_size = DSPWORDSIZE;
disp_obj->word_size = DSPWORDSIZE;
disp_obj->data_mau_size = DSPWORDSIZE;
/* Open channels for communicating with the RMS */
chnl_attr_obj.uio_reqs = CHNLIOREQS;
chnl_attr_obj.event_obj = NULL;
ul_chnl_id = pDispAttrs->ul_chnl_offset + CHNLTORMSOFFSET;
status = (*intf_fxns->pfn_chnl_open) (&(disp_obj->chnl_to_dsp),
disp_obj->hchnl_mgr,
CHNL_MODETODSP, ul_chnl_id,
&chnl_attr_obj);
if (DSP_SUCCEEDED(status)) {
ul_chnl_id = pDispAttrs->ul_chnl_offset + CHNLFROMRMSOFFSET;
status =
(*intf_fxns->pfn_chnl_open) (&(disp_obj->chnl_from_dsp),
disp_obj->hchnl_mgr,
CHNL_MODEFROMDSP, ul_chnl_id,
&chnl_attr_obj);
}
if (DSP_SUCCEEDED(status)) {
/* Allocate buffer for commands, replies */
disp_obj->ul_bufsize = pDispAttrs->ul_chnl_buf_size;
disp_obj->ul_bufsize_rms = RMS_COMMANDBUFSIZE;
disp_obj->pbuf = kzalloc(disp_obj->ul_bufsize, GFP_KERNEL);
if (disp_obj->pbuf == NULL)
status = -ENOMEM;
}
func_cont:
if (DSP_SUCCEEDED(status))
*phDispObject = disp_obj;
else
delete_disp(disp_obj);
DBC_ENSURE(((DSP_FAILED(status)) && ((*phDispObject == NULL))) ||
((DSP_SUCCEEDED(status)) && *phDispObject));
return status;
}
/*
* ======== disp_delete ========
* Delete the NODE Dispatcher.
*/
void disp_delete(struct disp_object *disp_obj)
{
DBC_REQUIRE(refs > 0);
DBC_REQUIRE(disp_obj);
delete_disp(disp_obj);
}
/*
* ======== disp_exit ========
* Discontinue usage of DISP module.
*/
void disp_exit(void)
{
DBC_REQUIRE(refs > 0);
refs--;
DBC_ENSURE(refs >= 0);
}
/*
* ======== disp_init ========
* Initialize the DISP module.
*/
bool disp_init(void)
{
bool ret = true;
DBC_REQUIRE(refs >= 0);
if (ret)
refs++;
DBC_ENSURE((ret && (refs > 0)) || (!ret && (refs >= 0)));
return ret;
}
/*
* ======== disp_node_change_priority ========
* Change the priority of a node currently running on the target.
*/
int disp_node_change_priority(struct disp_object *disp_obj,
struct node_object *hnode,
u32 ulRMSFxn, nodeenv node_env, s32 prio)
{
u32 dw_arg;
struct rms_command *rms_cmd;
int status = 0;
DBC_REQUIRE(refs > 0);
DBC_REQUIRE(disp_obj);
DBC_REQUIRE(hnode != NULL);
/* Send message to RMS to change priority */
rms_cmd = (struct rms_command *)(disp_obj->pbuf);
rms_cmd->fxn = (rms_word) (ulRMSFxn);
rms_cmd->arg1 = (rms_word) node_env;
rms_cmd->arg2 = prio;
status = send_message(disp_obj, node_get_timeout(hnode),
sizeof(struct rms_command), &dw_arg);
return status;
}
/*
* ======== disp_node_create ========
* Create a node on the DSP by remotely calling the node's create function.
*/
int disp_node_create(struct disp_object *disp_obj,
struct node_object *hnode, u32 ulRMSFxn,
u32 ul_create_fxn,
IN CONST struct node_createargs *pargs,
OUT nodeenv *pNodeEnv)
{
struct node_msgargs node_msg_args;
struct node_taskargs task_arg_obj;
struct rms_command *rms_cmd;
struct rms_msg_args *pmsg_args;
struct rms_more_task_args *more_task_args;
enum node_type node_type;
u32 dw_length;
rms_word *pdw_buf = NULL;
u32 ul_bytes;
u32 i;
u32 total;
u32 chars_in_rms_word;
s32 task_args_offset;
s32 sio_in_def_offset;
s32 sio_out_def_offset;
s32 sio_defs_offset;
s32 args_offset = -1;
s32 offset;
struct node_strmdef strm_def;
u32 max;
int status = 0;
struct dsp_nodeinfo node_info;
u8 dev_type;
DBC_REQUIRE(refs > 0);
DBC_REQUIRE(disp_obj);
DBC_REQUIRE(hnode != NULL);
DBC_REQUIRE(node_get_type(hnode) != NODE_DEVICE);
DBC_REQUIRE(pNodeEnv != NULL);
status = dev_get_dev_type(disp_obj->hdev_obj, &dev_type);
if (DSP_FAILED(status))
goto func_end;
if (dev_type != DSP_UNIT) {
dev_dbg(bridge, "%s: unknown device type = 0x%x\n",
__func__, dev_type);
goto func_end;
}
DBC_REQUIRE(pargs != NULL);
node_type = node_get_type(hnode);
node_msg_args = pargs->asa.node_msg_args;
max = disp_obj->ul_bufsize_rms; /*Max # of RMS words that can be sent */
DBC_ASSERT(max == RMS_COMMANDBUFSIZE);
chars_in_rms_word = sizeof(rms_word) / disp_obj->char_size;
/* Number of RMS words needed to hold arg data */
dw_length =
(node_msg_args.arg_length + chars_in_rms_word -
1) / chars_in_rms_word;
/* Make sure msg args and command fit in buffer */
total = sizeof(struct rms_command) / sizeof(rms_word) +
sizeof(struct rms_msg_args)
/ sizeof(rms_word) - 1 + dw_length;
if (total >= max) {
status = -EPERM;
dev_dbg(bridge, "%s: Message args too large for buffer! size "
"= %d, max = %d\n", __func__, total, max);
}
/*
* Fill in buffer to send to RMS.
* The buffer will have the following format:
*
* RMS command:
* Address of RMS_CreateNode()
* Address of node's create function
* dummy argument
* node type
*
* Message Args:
* max number of messages
* segid for message buffer allocation
* notification type to use when message is received
* length of message arg data
* message args data
*
* Task Args (if task or socket node):
* priority
* stack size
* system stack size
* stack segment
* misc
* number of input streams
* pSTRMInDef[] - offsets of STRM definitions for input streams
* number of output streams
* pSTRMOutDef[] - offsets of STRM definitions for output
* streams
* STRMInDef[] - array of STRM definitions for input streams
* STRMOutDef[] - array of STRM definitions for output streams
*
* Socket Args (if DAIS socket node):
*
*/
if (DSP_SUCCEEDED(status)) {
total = 0; /* Total number of words in buffer so far */
pdw_buf = (rms_word *) disp_obj->pbuf;
rms_cmd = (struct rms_command *)pdw_buf;
rms_cmd->fxn = (rms_word) (ulRMSFxn);
rms_cmd->arg1 = (rms_word) (ul_create_fxn);
if (node_get_load_type(hnode) == NLDR_DYNAMICLOAD) {
/* Flush ICACHE on Load */
rms_cmd->arg2 = 1; /* dummy argument */
} else {
/* Do not flush ICACHE */
rms_cmd->arg2 = 0; /* dummy argument */
}
rms_cmd->data = node_get_type(hnode);
/*
* args_offset is the offset of the data field in struct
* rms_command structure. We need this to calculate stream
* definition offsets.
*/
args_offset = 3;
total += sizeof(struct rms_command) / sizeof(rms_word);
/* Message args */
pmsg_args = (struct rms_msg_args *)(pdw_buf + total);
pmsg_args->max_msgs = node_msg_args.max_msgs;
pmsg_args->segid = node_msg_args.seg_id;
pmsg_args->notify_type = node_msg_args.notify_type;
pmsg_args->arg_length = node_msg_args.arg_length;
total += sizeof(struct rms_msg_args) / sizeof(rms_word) - 1;
memcpy(pdw_buf + total, node_msg_args.pdata,
node_msg_args.arg_length);
total += dw_length;
}
if (DSP_FAILED(status))
goto func_end;
/* If node is a task node, copy task create arguments into buffer */
if (node_type == NODE_TASK || node_type == NODE_DAISSOCKET) {
task_arg_obj = pargs->asa.task_arg_obj;
task_args_offset = total;
total += sizeof(struct rms_more_task_args) / sizeof(rms_word) +
1 + task_arg_obj.num_inputs + task_arg_obj.num_outputs;
/* Copy task arguments */
if (total < max) {
total = task_args_offset;
more_task_args = (struct rms_more_task_args *)(pdw_buf +
total);
/*
* Get some important info about the node. Note that we
* don't just reach into the hnode struct because
* that would break the node object's abstraction.
*/
get_node_info(hnode, &node_info);
more_task_args->priority = node_info.execution_priority;
more_task_args->stack_size = task_arg_obj.stack_size;
more_task_args->sysstack_size =
task_arg_obj.sys_stack_size;
more_task_args->stack_seg = task_arg_obj.stack_seg;
more_task_args->heap_addr = task_arg_obj.udsp_heap_addr;
more_task_args->heap_size = task_arg_obj.heap_size;
more_task_args->misc = task_arg_obj.ul_dais_arg;
more_task_args->num_input_streams =
task_arg_obj.num_inputs;
total +=
sizeof(struct rms_more_task_args) /
sizeof(rms_word);
dev_dbg(bridge, "%s: udsp_heap_addr %x, heap_size %x\n",
__func__, task_arg_obj.udsp_heap_addr,
task_arg_obj.heap_size);
/* Keep track of pSIOInDef[] and pSIOOutDef[]
* positions in the buffer, since this needs to be
* filled in later. */
sio_in_def_offset = total;
total += task_arg_obj.num_inputs;
pdw_buf[total++] = task_arg_obj.num_outputs;
sio_out_def_offset = total;
total += task_arg_obj.num_outputs;
sio_defs_offset = total;
/* Fill SIO defs and offsets */
offset = sio_defs_offset;
for (i = 0; i < task_arg_obj.num_inputs; i++) {
if (DSP_FAILED(status))
break;
pdw_buf[sio_in_def_offset + i] =
(offset - args_offset)
* (sizeof(rms_word) / DSPWORDSIZE);
strm_def = task_arg_obj.strm_in_def[i];
status =
fill_stream_def(pdw_buf, &total, offset,
strm_def, max,
chars_in_rms_word);
offset = total;
}
for (i = 0; (i < task_arg_obj.num_outputs) &&
(DSP_SUCCEEDED(status)); i++) {
pdw_buf[sio_out_def_offset + i] =
(offset - args_offset)
* (sizeof(rms_word) / DSPWORDSIZE);
strm_def = task_arg_obj.strm_out_def[i];
status =
fill_stream_def(pdw_buf, &total, offset,
strm_def, max,
chars_in_rms_word);
offset = total;
}
} else {
/* Args won't fit */
status = -EPERM;
}
}
if (DSP_SUCCEEDED(status)) {
ul_bytes = total * sizeof(rms_word);
DBC_ASSERT(ul_bytes < (RMS_COMMANDBUFSIZE * sizeof(rms_word)));
status = send_message(disp_obj, node_get_timeout(hnode),
ul_bytes, pNodeEnv);
if (DSP_SUCCEEDED(status)) {
/*
* Message successfully received from RMS.
* Return the status of the Node's create function
* on the DSP-side
*/
status = (((rms_word *) (disp_obj->pbuf))[0]);
if (DSP_FAILED(status))
dev_dbg(bridge, "%s: DSP-side failed: 0x%x\n",
__func__, status);
}
}
func_end:
return status;
}
/*
* ======== disp_node_delete ========
* purpose:
* Delete a node on the DSP by remotely calling the node's delete function.
*
*/
int disp_node_delete(struct disp_object *disp_obj,
struct node_object *hnode, u32 ulRMSFxn,
u32 ul_delete_fxn, nodeenv node_env)
{
u32 dw_arg;
struct rms_command *rms_cmd;
int status = 0;
u8 dev_type;
DBC_REQUIRE(refs > 0);
DBC_REQUIRE(disp_obj);
DBC_REQUIRE(hnode != NULL);
status = dev_get_dev_type(disp_obj->hdev_obj, &dev_type);
if (DSP_SUCCEEDED(status)) {
if (dev_type == DSP_UNIT) {
/*
* Fill in buffer to send to RMS
*/
rms_cmd = (struct rms_command *)disp_obj->pbuf;
rms_cmd->fxn = (rms_word) (ulRMSFxn);
rms_cmd->arg1 = (rms_word) node_env;
rms_cmd->arg2 = (rms_word) (ul_delete_fxn);
rms_cmd->data = node_get_type(hnode);
status = send_message(disp_obj, node_get_timeout(hnode),
sizeof(struct rms_command),
&dw_arg);
if (DSP_SUCCEEDED(status)) {
/*
* Message successfully received from RMS.
* Return the status of the Node's delete
* function on the DSP-side
*/
status = (((rms_word *) (disp_obj->pbuf))[0]);
if (DSP_FAILED(status))
dev_dbg(bridge, "%s: DSP-side failed: "
"0x%x\n", __func__, status);
}
}
}
return status;
}
/*
* ======== disp_node_run ========
* purpose:
* Start execution of a node's execute phase, or resume execution of a node
* that has been suspended (via DISP_NodePause()) on the DSP.
*/
int disp_node_run(struct disp_object *disp_obj,
struct node_object *hnode, u32 ulRMSFxn,
u32 ul_execute_fxn, nodeenv node_env)
{
u32 dw_arg;
struct rms_command *rms_cmd;
int status = 0;
u8 dev_type;
DBC_REQUIRE(refs > 0);
DBC_REQUIRE(disp_obj);
DBC_REQUIRE(hnode != NULL);
status = dev_get_dev_type(disp_obj->hdev_obj, &dev_type);
if (DSP_SUCCEEDED(status)) {
if (dev_type == DSP_UNIT) {
/*
* Fill in buffer to send to RMS.
*/
rms_cmd = (struct rms_command *)disp_obj->pbuf;
rms_cmd->fxn = (rms_word) (ulRMSFxn);
rms_cmd->arg1 = (rms_word) node_env;
rms_cmd->arg2 = (rms_word) (ul_execute_fxn);
rms_cmd->data = node_get_type(hnode);
status = send_message(disp_obj, node_get_timeout(hnode),
sizeof(struct rms_command),
&dw_arg);
if (DSP_SUCCEEDED(status)) {
/*
* Message successfully received from RMS.
* Return the status of the Node's execute
* function on the DSP-side
*/
status = (((rms_word *) (disp_obj->pbuf))[0]);
if (DSP_FAILED(status))
dev_dbg(bridge, "%s: DSP-side failed: "
"0x%x\n", __func__, status);
}
}
}
return status;
}
/*
* ======== delete_disp ========
* purpose:
* Frees the resources allocated for the dispatcher.
*/
static void delete_disp(struct disp_object *disp_obj)
{
int status = 0;
struct bridge_drv_interface *intf_fxns;
if (disp_obj) {
intf_fxns = disp_obj->intf_fxns;
/* Free Node Dispatcher resources */
if (disp_obj->chnl_from_dsp) {
/* Channel close can fail only if the channel handle
* is invalid. */
status = (*intf_fxns->pfn_chnl_close)
(disp_obj->chnl_from_dsp);
if (DSP_FAILED(status)) {
dev_dbg(bridge, "%s: Failed to close channel "
"from RMS: 0x%x\n", __func__, status);
}
}
if (disp_obj->chnl_to_dsp) {
status =
(*intf_fxns->pfn_chnl_close) (disp_obj->
chnl_to_dsp);
if (DSP_FAILED(status)) {
dev_dbg(bridge, "%s: Failed to close channel to"
" RMS: 0x%x\n", __func__, status);
}
}
kfree(disp_obj->pbuf);
kfree(disp_obj);
}
}
/*
* ======== fill_stream_def ========
* purpose:
* Fills stream definitions.
*/
static int fill_stream_def(rms_word *pdw_buf, u32 *ptotal, u32 offset,
struct node_strmdef strm_def, u32 max,
u32 chars_in_rms_word)
{
struct rms_strm_def *strm_def_obj;
u32 total = *ptotal;
u32 name_len;
u32 dw_length;
int status = 0;
if (total + sizeof(struct rms_strm_def) / sizeof(rms_word) >= max) {
status = -EPERM;
} else {
strm_def_obj = (struct rms_strm_def *)(pdw_buf + total);
strm_def_obj->bufsize = strm_def.buf_size;
strm_def_obj->nbufs = strm_def.num_bufs;
strm_def_obj->segid = strm_def.seg_id;
strm_def_obj->align = strm_def.buf_alignment;
strm_def_obj->timeout = strm_def.utimeout;
}
if (DSP_SUCCEEDED(status)) {
/*
* Since we haven't added the device name yet, subtract
* 1 from total.
*/
total += sizeof(struct rms_strm_def) / sizeof(rms_word) - 1;
DBC_REQUIRE(strm_def.sz_device);
dw_length = strlen(strm_def.sz_device) + 1;
/* Number of RMS_WORDS needed to hold device name */
name_len =
(dw_length + chars_in_rms_word - 1) / chars_in_rms_word;
if (total + name_len >= max) {
status = -EPERM;
} else {
/*
* Zero out last word, since the device name may not
* extend to completely fill this word.
*/
pdw_buf[total + name_len - 1] = 0;
/** TODO USE SERVICES * */
memcpy(pdw_buf + total, strm_def.sz_device, dw_length);
total += name_len;
*ptotal = total;
}
}
return status;
}
/*
* ======== send_message ======
* Send command message to RMS, get reply from RMS.
*/
static int send_message(struct disp_object *disp_obj, u32 dwTimeout,
u32 ul_bytes, u32 *pdw_arg)
{
struct bridge_drv_interface *intf_fxns;
struct chnl_object *chnl_obj;
u32 dw_arg = 0;
u8 *pbuf;
struct chnl_ioc chnl_ioc_obj;
int status = 0;
DBC_REQUIRE(pdw_arg != NULL);
*pdw_arg = (u32) NULL;
intf_fxns = disp_obj->intf_fxns;
chnl_obj = disp_obj->chnl_to_dsp;
pbuf = disp_obj->pbuf;
/* Send the command */
status = (*intf_fxns->pfn_chnl_add_io_req) (chnl_obj, pbuf, ul_bytes, 0,
0L, dw_arg);
if (DSP_FAILED(status))
goto func_end;
status =
(*intf_fxns->pfn_chnl_get_ioc) (chnl_obj, dwTimeout, &chnl_ioc_obj);
if (DSP_SUCCEEDED(status)) {
if (!CHNL_IS_IO_COMPLETE(chnl_ioc_obj)) {
if (CHNL_IS_TIMED_OUT(chnl_ioc_obj))
status = -ETIME;
else
status = -EPERM;
}
}
/* Get the reply */
if (DSP_FAILED(status))
goto func_end;
chnl_obj = disp_obj->chnl_from_dsp;
ul_bytes = REPLYSIZE;
status = (*intf_fxns->pfn_chnl_add_io_req) (chnl_obj, pbuf, ul_bytes,
0, 0L, dw_arg);
if (DSP_FAILED(status))
goto func_end;
status =
(*intf_fxns->pfn_chnl_get_ioc) (chnl_obj, dwTimeout, &chnl_ioc_obj);
if (DSP_SUCCEEDED(status)) {
if (CHNL_IS_TIMED_OUT(chnl_ioc_obj)) {
status = -ETIME;
} else if (chnl_ioc_obj.byte_size < ul_bytes) {
/* Did not get all of the reply from the RMS */
status = -EPERM;
} else {
if (CHNL_IS_IO_COMPLETE(chnl_ioc_obj)) {
DBC_ASSERT(chnl_ioc_obj.pbuf == pbuf);
status = (*((rms_word *) chnl_ioc_obj.pbuf));
*pdw_arg =
(((rms_word *) (chnl_ioc_obj.pbuf))[1]);
} else {
status = -EPERM;
}
}
}
func_end:
return status;
}
/*
* drv.c
*
* DSP-BIOS Bridge driver support functions for TI OMAP processors.
*
* DSP/BIOS Bridge resource allocation module.
*
* Copyright (C) 2005-2006 Texas Instruments, Inc.
*
* This package is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
* THIS PACKAGE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED
* WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR A PARTICULAR PURPOSE.
*/
/* ----------------------------------- Host OS */
#include <dspbridge/host_os.h>
/* ----------------------------------- DSP/BIOS Bridge */
#include <dspbridge/std.h>
#include <dspbridge/dbdefs.h>
/* ----------------------------------- Trace & Debug */
#include <dspbridge/dbc.h>
/* ----------------------------------- OS Adaptation Layer */
#include <dspbridge/cfg.h>
#include <dspbridge/list.h>
/* ----------------------------------- This */
#include <dspbridge/drv.h>
#include <dspbridge/dev.h>
#include <dspbridge/node.h>
#include <dspbridge/proc.h>
#include <dspbridge/strm.h>
#include <dspbridge/nodepriv.h>
#include <dspbridge/dspchnl.h>
#include <dspbridge/resourcecleanup.h>
/* ----------------------------------- Defines, Data Structures, Typedefs */
struct drv_object {
struct lst_list *dev_list;
struct lst_list *dev_node_string;
};
/*
* This is the Device Extension. Named with the Prefix
* DRV_ since it is living in this module
*/
struct drv_ext {
struct list_head link;
char sz_string[MAXREGPATHLENGTH];
};
/* ----------------------------------- Globals */
static s32 refs;
static bool ext_phys_mem_pool_enabled;
struct ext_phys_mem_pool {
u32 phys_mem_base;
u32 phys_mem_size;
u32 virt_mem_base;
u32 next_phys_alloc_ptr;
};
static struct ext_phys_mem_pool ext_mem_pool;
/* ----------------------------------- Function Prototypes */
static int request_bridge_resources(struct cfg_hostres *res);
/* GPP PROCESS CLEANUP CODE */
static int drv_proc_free_node_res(void *hPCtxt);
/* Allocate and add a node resource element
* This function is called from .Node_Allocate. */
int drv_insert_node_res_element(void *hnode, void *hNodeRes,
void *hPCtxt)
{
struct node_res_object **node_res_obj =
(struct node_res_object **)hNodeRes;
struct process_context *ctxt = (struct process_context *)hPCtxt;
int status = 0;
struct node_res_object *temp_node_res = NULL;
*node_res_obj = kzalloc(sizeof(struct node_res_object), GFP_KERNEL);
if (*node_res_obj == NULL)
status = -EFAULT;
if (DSP_SUCCEEDED(status)) {
if (mutex_lock_interruptible(&ctxt->node_mutex)) {
kfree(*node_res_obj);
return -EPERM;
}
(*node_res_obj)->hnode = hnode;
if (ctxt->node_list != NULL) {
temp_node_res = ctxt->node_list;
while (temp_node_res->next != NULL)
temp_node_res = temp_node_res->next;
temp_node_res->next = *node_res_obj;
} else {
ctxt->node_list = *node_res_obj;
}
mutex_unlock(&ctxt->node_mutex);
}
return status;
}
/* Release all Node resources and its context
* This is called from .Node_Delete. */
int drv_remove_node_res_element(void *hNodeRes, void *hPCtxt)
{
struct node_res_object *node_res_obj =
(struct node_res_object *)hNodeRes;
struct process_context *ctxt = (struct process_context *)hPCtxt;
struct node_res_object *temp_node;
int status = 0;
if (mutex_lock_interruptible(&ctxt->node_mutex))
return -EPERM;
temp_node = ctxt->node_list;
if (temp_node == node_res_obj) {
ctxt->node_list = node_res_obj->next;
} else {
while (temp_node && temp_node->next != node_res_obj)
temp_node = temp_node->next;
if (!temp_node)
status = -ENOENT;
else
temp_node->next = node_res_obj->next;
}
mutex_unlock(&ctxt->node_mutex);
kfree(node_res_obj);
return status;
}
/* Actual Node De-Allocation */
static int drv_proc_free_node_res(void *hPCtxt)
{
struct process_context *ctxt = (struct process_context *)hPCtxt;
int status = 0;
struct node_res_object *node_list = NULL;
struct node_res_object *node_res_obj = NULL;
u32 node_state;
node_list = ctxt->node_list;
while (node_list != NULL) {
node_res_obj = node_list;
node_list = node_list->next;
if (node_res_obj->node_allocated) {
node_state = node_get_state(node_res_obj->hnode);
if (node_state <= NODE_DELETING) {
if ((node_state == NODE_RUNNING) ||
(node_state == NODE_PAUSED) ||
(node_state == NODE_TERMINATING))
status = node_terminate
(node_res_obj->hnode, &status);
status = node_delete(node_res_obj->hnode, ctxt);
}
}
}
return status;
}
/* Release all Mapped and Reserved DMM resources */
int drv_remove_all_dmm_res_elements(void *hPCtxt)
{
struct process_context *ctxt = (struct process_context *)hPCtxt;
int status = 0;
struct dmm_map_object *temp_map, *map_obj;
struct dmm_rsv_object *temp_rsv, *rsv_obj;
/* Free DMM mapped memory resources */
list_for_each_entry_safe(map_obj, temp_map, &ctxt->dmm_map_list, link) {
status = proc_un_map(ctxt->hprocessor,
(void *)map_obj->dsp_addr, ctxt);
if (DSP_FAILED(status))
pr_err("%s: proc_un_map failed!"
" status = 0x%xn", __func__, status);
}
/* Free DMM reserved memory resources */
list_for_each_entry_safe(rsv_obj, temp_rsv, &ctxt->dmm_rsv_list, link) {
status = proc_un_reserve_memory(ctxt->hprocessor, (void *)
rsv_obj->dsp_reserved_addr,
ctxt);
if (DSP_FAILED(status))
pr_err("%s: proc_un_reserve_memory failed!"
" status = 0x%xn", __func__, status);
}
return status;
}
/* Update Node allocation status */
void drv_proc_node_update_status(void *hNodeRes, s32 status)
{
struct node_res_object *node_res_obj =
(struct node_res_object *)hNodeRes;
DBC_ASSERT(hNodeRes != NULL);
node_res_obj->node_allocated = status;
}
/* Update Node Heap status */
void drv_proc_node_update_heap_status(void *hNodeRes, s32 status)
{
struct node_res_object *node_res_obj =
(struct node_res_object *)hNodeRes;
DBC_ASSERT(hNodeRes != NULL);
node_res_obj->heap_allocated = status;
}
/* Release all Node resources and its context
* This is called from .bridge_release.
*/
int drv_remove_all_node_res_elements(void *hPCtxt)
{
struct process_context *ctxt = (struct process_context *)hPCtxt;
int status = 0;
struct node_res_object *temp_node2 = NULL;
struct node_res_object *temp_node = NULL;
drv_proc_free_node_res(ctxt);
temp_node = ctxt->node_list;
while (temp_node != NULL) {
temp_node2 = temp_node;
temp_node = temp_node->next;
kfree(temp_node2);
}
ctxt->node_list = NULL;
return status;
}
/* Getting the node resource element */
int drv_get_node_res_element(void *hnode, void *hNodeRes,
void *hPCtxt)
{
struct node_res_object **node_res = (struct node_res_object **)hNodeRes;
struct process_context *ctxt = (struct process_context *)hPCtxt;
int status = 0;
struct node_res_object *temp_node2 = NULL;
struct node_res_object *temp_node = NULL;
if (mutex_lock_interruptible(&ctxt->node_mutex))
return -EPERM;
temp_node = ctxt->node_list;
while ((temp_node != NULL) && (temp_node->hnode != hnode)) {
temp_node2 = temp_node;
temp_node = temp_node->next;
}
mutex_unlock(&ctxt->node_mutex);
if (temp_node != NULL)
*node_res = temp_node;
else
status = -ENOENT;
return status;
}
/* Allocate the STRM resource element
* This is called after the actual resource is allocated
*/
int drv_proc_insert_strm_res_element(void *hStreamHandle,
void *hstrm_res, void *hPCtxt)
{
struct strm_res_object **pstrm_res =
(struct strm_res_object **)hstrm_res;
struct process_context *ctxt = (struct process_context *)hPCtxt;
int status = 0;
struct strm_res_object *temp_strm_res = NULL;
*pstrm_res = kzalloc(sizeof(struct strm_res_object), GFP_KERNEL);
if (*pstrm_res == NULL)
status = -EFAULT;
if (DSP_SUCCEEDED(status)) {
if (mutex_lock_interruptible(&ctxt->strm_mutex)) {
kfree(*pstrm_res);
return -EPERM;
}
(*pstrm_res)->hstream = hStreamHandle;
if (ctxt->pstrm_list != NULL) {
temp_strm_res = ctxt->pstrm_list;
while (temp_strm_res->next != NULL)
temp_strm_res = temp_strm_res->next;
temp_strm_res->next = *pstrm_res;
} else {
ctxt->pstrm_list = *pstrm_res;
}
mutex_unlock(&ctxt->strm_mutex);
}
return status;
}
/* Release Stream resource element context
* This function called after the actual resource is freed
*/
int drv_proc_remove_strm_res_element(void *hstrm_res, void *hPCtxt)
{
struct strm_res_object *pstrm_res = (struct strm_res_object *)hstrm_res;
struct process_context *ctxt = (struct process_context *)hPCtxt;
struct strm_res_object *temp_strm_res;
int status = 0;
if (mutex_lock_interruptible(&ctxt->strm_mutex))
return -EPERM;
temp_strm_res = ctxt->pstrm_list;
if (ctxt->pstrm_list == pstrm_res) {
ctxt->pstrm_list = pstrm_res->next;
} else {
while (temp_strm_res && temp_strm_res->next != pstrm_res)
temp_strm_res = temp_strm_res->next;
if (temp_strm_res == NULL)
status = -ENOENT;
else
temp_strm_res->next = pstrm_res->next;
}
mutex_unlock(&ctxt->strm_mutex);
kfree(pstrm_res);
return status;
}
/* Release all Stream resources and its context
* This is called from .bridge_release.
*/
int drv_remove_all_strm_res_elements(void *hPCtxt)
{
struct process_context *ctxt = (struct process_context *)hPCtxt;
int status = 0;
struct strm_res_object *strm_res = NULL;
struct strm_res_object *strm_tmp = NULL;
struct stream_info strm_info;
struct dsp_streaminfo user;
u8 **ap_buffer = NULL;
u8 *buf_ptr;
u32 ul_bytes;
u32 dw_arg;
s32 ul_buf_size;
strm_tmp = ctxt->pstrm_list;
while (strm_tmp) {
strm_res = strm_tmp;
strm_tmp = strm_tmp->next;
if (strm_res->num_bufs) {
ap_buffer = kmalloc((strm_res->num_bufs *
sizeof(u8 *)), GFP_KERNEL);
if (ap_buffer) {
status = strm_free_buffer(strm_res->hstream,
ap_buffer,
strm_res->num_bufs,
ctxt);
kfree(ap_buffer);
}
}
strm_info.user_strm = &user;
user.number_bufs_in_stream = 0;
strm_get_info(strm_res->hstream, &strm_info, sizeof(strm_info));
while (user.number_bufs_in_stream--)
strm_reclaim(strm_res->hstream, &buf_ptr, &ul_bytes,
(u32 *) &ul_buf_size, &dw_arg);
status = strm_close(strm_res->hstream, ctxt);
}
return status;
}
/* Getting the stream resource element */
int drv_get_strm_res_element(void *hStrm, void *hstrm_res,
void *hPCtxt)
{
struct strm_res_object **strm_res =
(struct strm_res_object **)hstrm_res;
struct process_context *ctxt = (struct process_context *)hPCtxt;
int status = 0;
struct strm_res_object *temp_strm2 = NULL;
struct strm_res_object *temp_strm;
if (mutex_lock_interruptible(&ctxt->strm_mutex))
return -EPERM;
temp_strm = ctxt->pstrm_list;
while ((temp_strm != NULL) && (temp_strm->hstream != hStrm)) {
temp_strm2 = temp_strm;
temp_strm = temp_strm->next;
}
mutex_unlock(&ctxt->strm_mutex);
if (temp_strm != NULL)
*strm_res = temp_strm;
else
status = -ENOENT;
return status;
}
/* Updating the stream resource element */
int drv_proc_update_strm_res(u32 num_bufs, void *hstrm_res)
{
int status = 0;
struct strm_res_object **strm_res =
(struct strm_res_object **)hstrm_res;
(*strm_res)->num_bufs = num_bufs;
return status;
}
/* GPP PROCESS CLEANUP CODE END */
/*
* ======== = drv_create ======== =
* Purpose:
* DRV Object gets created only once during Driver Loading.
*/
int drv_create(OUT struct drv_object **phDRVObject)
{
int status = 0;
struct drv_object *pdrv_object = NULL;
DBC_REQUIRE(phDRVObject != NULL);
DBC_REQUIRE(refs > 0);
pdrv_object = kzalloc(sizeof(struct drv_object), GFP_KERNEL);
if (pdrv_object) {
/* Create and Initialize List of device objects */
pdrv_object->dev_list = kzalloc(sizeof(struct lst_list),
GFP_KERNEL);
if (pdrv_object->dev_list) {
/* Create and Initialize List of device Extension */
pdrv_object->dev_node_string =
kzalloc(sizeof(struct lst_list), GFP_KERNEL);
if (!(pdrv_object->dev_node_string)) {
status = -EPERM;
} else {
INIT_LIST_HEAD(&pdrv_object->
dev_node_string->head);
INIT_LIST_HEAD(&pdrv_object->dev_list->head);
}
} else {
status = -ENOMEM;
}
} else {
status = -ENOMEM;
}
/* Store the DRV Object in the Registry */
if (DSP_SUCCEEDED(status))
status = cfg_set_object((u32) pdrv_object, REG_DRV_OBJECT);
if (DSP_SUCCEEDED(status)) {
*phDRVObject = pdrv_object;
} else {
kfree(pdrv_object->dev_list);
kfree(pdrv_object->dev_node_string);
/* Free the DRV Object */
kfree(pdrv_object);
}
DBC_ENSURE(DSP_FAILED(status) || pdrv_object);
return status;
}
/*
* ======== drv_exit ========
* Purpose:
* Discontinue usage of the DRV module.
*/
void drv_exit(void)
{
DBC_REQUIRE(refs > 0);
refs--;
DBC_ENSURE(refs >= 0);
}
/*
* ======== = drv_destroy ======== =
* purpose:
* Invoked during bridge de-initialization
*/
int drv_destroy(struct drv_object *hDRVObject)
{
int status = 0;
struct drv_object *pdrv_object = (struct drv_object *)hDRVObject;
DBC_REQUIRE(refs > 0);
DBC_REQUIRE(pdrv_object);
/*
* Delete the List if it exists.Should not come here
* as the drv_remove_dev_object and the Last drv_request_resources
* removes the list if the lists are empty.
*/
kfree(pdrv_object->dev_list);
kfree(pdrv_object->dev_node_string);
kfree(pdrv_object);
/* Update the DRV Object in Registry to be 0 */
(void)cfg_set_object(0, REG_DRV_OBJECT);
return status;
}
/*
* ======== drv_get_dev_object ========
* Purpose:
* Given a index, returns a handle to DevObject from the list.
*/
int drv_get_dev_object(u32 index, struct drv_object *hdrv_obj,
struct dev_object **phDevObject)
{
int status = 0;
#ifdef CONFIG_BRIDGE_DEBUG
/* used only for Assertions and debug messages */
struct drv_object *pdrv_obj = (struct drv_object *)hdrv_obj;
#endif
struct dev_object *dev_obj;
u32 i;
DBC_REQUIRE(pdrv_obj);
DBC_REQUIRE(phDevObject != NULL);
DBC_REQUIRE(index >= 0);
DBC_REQUIRE(refs > 0);
DBC_ASSERT(!(LST_IS_EMPTY(pdrv_obj->dev_list)));
dev_obj = (struct dev_object *)drv_get_first_dev_object();
for (i = 0; i < index; i++) {
dev_obj =
(struct dev_object *)drv_get_next_dev_object((u32) dev_obj);
}
if (dev_obj) {
*phDevObject = (struct dev_object *)dev_obj;
} else {
*phDevObject = NULL;
status = -EPERM;
}
return status;
}
/*
* ======== drv_get_first_dev_object ========
* Purpose:
* Retrieve the first Device Object handle from an internal linked list of
* of DEV_OBJECTs maintained by DRV.
*/
u32 drv_get_first_dev_object(void)
{
u32 dw_dev_object = 0;
struct drv_object *pdrv_obj;
if (DSP_SUCCEEDED(cfg_get_object((u32 *) &pdrv_obj, REG_DRV_OBJECT))) {
if ((pdrv_obj->dev_list != NULL) &&
!LST_IS_EMPTY(pdrv_obj->dev_list))
dw_dev_object = (u32) lst_first(pdrv_obj->dev_list);
}
return dw_dev_object;
}
/*
* ======== DRV_GetFirstDevNodeString ========
* Purpose:
* Retrieve the first Device Extension from an internal linked list of
* of Pointer to dev_node Strings maintained by DRV.
*/
u32 drv_get_first_dev_extension(void)
{
u32 dw_dev_extension = 0;
struct drv_object *pdrv_obj;
if (DSP_SUCCEEDED(cfg_get_object((u32 *) &pdrv_obj, REG_DRV_OBJECT))) {
if ((pdrv_obj->dev_node_string != NULL) &&
!LST_IS_EMPTY(pdrv_obj->dev_node_string)) {
dw_dev_extension =
(u32) lst_first(pdrv_obj->dev_node_string);
}
}
return dw_dev_extension;
}
/*
* ======== drv_get_next_dev_object ========
* Purpose:
* Retrieve the next Device Object handle from an internal linked list of
* of DEV_OBJECTs maintained by DRV, after having previously called
* drv_get_first_dev_object() and zero or more DRV_GetNext.
*/
u32 drv_get_next_dev_object(u32 hdev_obj)
{
u32 dw_next_dev_object = 0;
struct drv_object *pdrv_obj;
DBC_REQUIRE(hdev_obj != 0);
if (DSP_SUCCEEDED(cfg_get_object((u32 *) &pdrv_obj, REG_DRV_OBJECT))) {
if ((pdrv_obj->dev_list != NULL) &&
!LST_IS_EMPTY(pdrv_obj->dev_list)) {
dw_next_dev_object = (u32) lst_next(pdrv_obj->dev_list,
(struct list_head *)
hdev_obj);
}
}
return dw_next_dev_object;
}
/*
* ======== drv_get_next_dev_extension ========
* Purpose:
* Retrieve the next Device Extension from an internal linked list of
* of pointer to DevNodeString maintained by DRV, after having previously
* called drv_get_first_dev_extension() and zero or more
* drv_get_next_dev_extension().
*/
u32 drv_get_next_dev_extension(u32 hDevExtension)
{
u32 dw_dev_extension = 0;
struct drv_object *pdrv_obj;
DBC_REQUIRE(hDevExtension != 0);
if (DSP_SUCCEEDED(cfg_get_object((u32 *) &pdrv_obj, REG_DRV_OBJECT))) {
if ((pdrv_obj->dev_node_string != NULL) &&
!LST_IS_EMPTY(pdrv_obj->dev_node_string)) {
dw_dev_extension =
(u32) lst_next(pdrv_obj->dev_node_string,
(struct list_head *)hDevExtension);
}
}
return dw_dev_extension;
}
/*
* ======== drv_init ========
* Purpose:
* Initialize DRV module private state.
*/
int drv_init(void)
{
s32 ret = 1; /* function return value */
DBC_REQUIRE(refs >= 0);
if (ret)
refs++;
DBC_ENSURE((ret && (refs > 0)) || (!ret && (refs >= 0)));
return ret;
}
/*
* ======== drv_insert_dev_object ========
* Purpose:
* Insert a DevObject into the list of Manager object.
*/
int drv_insert_dev_object(struct drv_object *hDRVObject,
struct dev_object *hdev_obj)
{
int status = 0;
struct drv_object *pdrv_object = (struct drv_object *)hDRVObject;
DBC_REQUIRE(refs > 0);
DBC_REQUIRE(hdev_obj != NULL);
DBC_REQUIRE(pdrv_object);
DBC_ASSERT(pdrv_object->dev_list);
lst_put_tail(pdrv_object->dev_list, (struct list_head *)hdev_obj);
DBC_ENSURE(DSP_SUCCEEDED(status)
&& !LST_IS_EMPTY(pdrv_object->dev_list));
return status;
}
/*
* ======== drv_remove_dev_object ========
* Purpose:
* Search for and remove a DeviceObject from the given list of DRV
* objects.
*/
int drv_remove_dev_object(struct drv_object *hDRVObject,
struct dev_object *hdev_obj)
{
int status = -EPERM;
struct drv_object *pdrv_object = (struct drv_object *)hDRVObject;
struct list_head *cur_elem;
DBC_REQUIRE(refs > 0);
DBC_REQUIRE(pdrv_object);
DBC_REQUIRE(hdev_obj != NULL);
DBC_REQUIRE(pdrv_object->dev_list != NULL);
DBC_REQUIRE(!LST_IS_EMPTY(pdrv_object->dev_list));
/* Search list for p_proc_object: */
for (cur_elem = lst_first(pdrv_object->dev_list); cur_elem != NULL;
cur_elem = lst_next(pdrv_object->dev_list, cur_elem)) {
/* If found, remove it. */
if ((struct dev_object *)cur_elem == hdev_obj) {
lst_remove_elem(pdrv_object->dev_list, cur_elem);
status = 0;
break;
}
}
/* Remove list if empty. */
if (LST_IS_EMPTY(pdrv_object->dev_list)) {
kfree(pdrv_object->dev_list);
pdrv_object->dev_list = NULL;
}
DBC_ENSURE((pdrv_object->dev_list == NULL) ||
!LST_IS_EMPTY(pdrv_object->dev_list));
return status;
}
/*
* ======== drv_request_resources ========
* Purpose:
* Requests resources from the OS.
*/
int drv_request_resources(u32 dw_context, u32 *pDevNodeString)
{
int status = 0;
struct drv_object *pdrv_object;
struct drv_ext *pszdev_node;
DBC_REQUIRE(dw_context != 0);
DBC_REQUIRE(pDevNodeString != NULL);
/*
* Allocate memory to hold the string. This will live untill
* it is freed in the Release resources. Update the driver object
* list.
*/
status = cfg_get_object((u32 *) &pdrv_object, REG_DRV_OBJECT);
if (DSP_SUCCEEDED(status)) {
pszdev_node = kzalloc(sizeof(struct drv_ext), GFP_KERNEL);
if (pszdev_node) {
lst_init_elem(&pszdev_node->link);
strncpy(pszdev_node->sz_string,
(char *)dw_context, MAXREGPATHLENGTH - 1);
pszdev_node->sz_string[MAXREGPATHLENGTH - 1] = '\0';
/* Update the Driver Object List */
*pDevNodeString = (u32) pszdev_node->sz_string;
lst_put_tail(pdrv_object->dev_node_string,
(struct list_head *)pszdev_node);
} else {
status = -ENOMEM;
*pDevNodeString = 0;
}
} else {
dev_dbg(bridge, "%s: Failed to get Driver Object from Registry",
__func__);
*pDevNodeString = 0;
}
DBC_ENSURE((DSP_SUCCEEDED(status) && pDevNodeString != NULL &&
!LST_IS_EMPTY(pdrv_object->dev_node_string)) ||
(DSP_FAILED(status) && *pDevNodeString == 0));
return status;
}
/*
* ======== drv_release_resources ========
* Purpose:
* Releases resources from the OS.
*/
int drv_release_resources(u32 dw_context, struct drv_object *hdrv_obj)
{
int status = 0;
struct drv_object *pdrv_object = (struct drv_object *)hdrv_obj;
struct drv_ext *pszdev_node;
/*
* Irrespective of the status go ahead and clean it
* The following will over write the status.
*/
for (pszdev_node = (struct drv_ext *)drv_get_first_dev_extension();
pszdev_node != NULL; pszdev_node = (struct drv_ext *)
drv_get_next_dev_extension((u32) pszdev_node)) {
if (!pdrv_object->dev_node_string) {
/* When this could happen? */
continue;
}
if ((u32) pszdev_node == dw_context) {
/* Found it */
/* Delete from the Driver object list */
lst_remove_elem(pdrv_object->dev_node_string,
(struct list_head *)pszdev_node);
kfree((void *)pszdev_node);
break;
}
/* Delete the List if it is empty */
if (LST_IS_EMPTY(pdrv_object->dev_node_string)) {
kfree(pdrv_object->dev_node_string);
pdrv_object->dev_node_string = NULL;
}
}
return status;
}
/*
* ======== request_bridge_resources ========
* Purpose:
* Reserves shared memory for bridge.
*/
static int request_bridge_resources(struct cfg_hostres *res)
{
int status = 0;
struct cfg_hostres *host_res = res;
/* num_mem_windows must not be more than CFG_MAXMEMREGISTERS */
host_res->num_mem_windows = 2;
/* First window is for DSP internal memory */
host_res->dw_sys_ctrl_base = ioremap(OMAP_SYSC_BASE, OMAP_SYSC_SIZE);
dev_dbg(bridge, "dw_mem_base[0] 0x%x\n", host_res->dw_mem_base[0]);
dev_dbg(bridge, "dw_mem_base[3] 0x%x\n", host_res->dw_mem_base[3]);
dev_dbg(bridge, "dw_dmmu_base %p\n", host_res->dw_dmmu_base);
/* for 24xx base port is not mapping the mamory for DSP
* internal memory TODO Do a ioremap here */
/* Second window is for DSP external memory shared with MPU */
/* These are hard-coded values */
host_res->birq_registers = 0;
host_res->birq_attrib = 0;
host_res->dw_offset_for_monitor = 0;
host_res->dw_chnl_offset = 0;
/* CHNL_MAXCHANNELS */
host_res->dw_num_chnls = CHNL_MAXCHANNELS;
host_res->dw_chnl_buf_size = 0x400;
return status;
}
/*
* ======== drv_request_bridge_res_dsp ========
* Purpose:
* Reserves shared memory for bridge.
*/
int drv_request_bridge_res_dsp(void **phost_resources)
{
int status = 0;
struct cfg_hostres *host_res;
u32 dw_buff_size;
u32 dma_addr;
u32 shm_size;
struct drv_data *drv_datap = dev_get_drvdata(bridge);
dw_buff_size = sizeof(struct cfg_hostres);
host_res = kzalloc(dw_buff_size, GFP_KERNEL);
if (host_res != NULL) {
request_bridge_resources(host_res);
/* num_mem_windows must not be more than CFG_MAXMEMREGISTERS */
host_res->num_mem_windows = 4;
host_res->dw_mem_base[0] = 0;
host_res->dw_mem_base[2] = (u32) ioremap(OMAP_DSP_MEM1_BASE,
OMAP_DSP_MEM1_SIZE);
host_res->dw_mem_base[3] = (u32) ioremap(OMAP_DSP_MEM2_BASE,
OMAP_DSP_MEM2_SIZE);
host_res->dw_mem_base[4] = (u32) ioremap(OMAP_DSP_MEM3_BASE,
OMAP_DSP_MEM3_SIZE);
host_res->dw_per_base = ioremap(OMAP_PER_CM_BASE,
OMAP_PER_CM_SIZE);
host_res->dw_per_pm_base = (u32) ioremap(OMAP_PER_PRM_BASE,
OMAP_PER_PRM_SIZE);
host_res->dw_core_pm_base = (u32) ioremap(OMAP_CORE_PRM_BASE,
OMAP_CORE_PRM_SIZE);
host_res->dw_dmmu_base = ioremap(OMAP_DMMU_BASE,
OMAP_DMMU_SIZE);
dev_dbg(bridge, "dw_mem_base[0] 0x%x\n",
host_res->dw_mem_base[0]);
dev_dbg(bridge, "dw_mem_base[1] 0x%x\n",
host_res->dw_mem_base[1]);
dev_dbg(bridge, "dw_mem_base[2] 0x%x\n",
host_res->dw_mem_base[2]);
dev_dbg(bridge, "dw_mem_base[3] 0x%x\n",
host_res->dw_mem_base[3]);
dev_dbg(bridge, "dw_mem_base[4] 0x%x\n",
host_res->dw_mem_base[4]);
dev_dbg(bridge, "dw_dmmu_base %p\n", host_res->dw_dmmu_base);
shm_size = drv_datap->shm_size;
if (shm_size >= 0x10000) {
/* Allocate Physically contiguous,
* non-cacheable memory */
host_res->dw_mem_base[1] =
(u32) mem_alloc_phys_mem(shm_size, 0x100000,
&dma_addr);
if (host_res->dw_mem_base[1] == 0) {
status = -ENOMEM;
pr_err("shm reservation Failed\n");
} else {
host_res->dw_mem_length[1] = shm_size;
host_res->dw_mem_phys[1] = dma_addr;
dev_dbg(bridge, "%s: Bridge shm address 0x%x "
"dma_addr %x size %x\n", __func__,
host_res->dw_mem_base[1],
dma_addr, shm_size);
}
}
if (DSP_SUCCEEDED(status)) {
/* These are hard-coded values */
host_res->birq_registers = 0;
host_res->birq_attrib = 0;
host_res->dw_offset_for_monitor = 0;
host_res->dw_chnl_offset = 0;
/* CHNL_MAXCHANNELS */
host_res->dw_num_chnls = CHNL_MAXCHANNELS;
host_res->dw_chnl_buf_size = 0x400;
dw_buff_size = sizeof(struct cfg_hostres);
}
*phost_resources = host_res;
}
/* End Mem alloc */
return status;
}
void mem_ext_phys_pool_init(u32 poolPhysBase, u32 poolSize)
{
u32 pool_virt_base;
/* get the virtual address for the physical memory pool passed */
pool_virt_base = (u32) ioremap(poolPhysBase, poolSize);
if ((void **)pool_virt_base == NULL) {
pr_err("%s: external physical memory map failed\n", __func__);
ext_phys_mem_pool_enabled = false;
} else {
ext_mem_pool.phys_mem_base = poolPhysBase;
ext_mem_pool.phys_mem_size = poolSize;
ext_mem_pool.virt_mem_base = pool_virt_base;
ext_mem_pool.next_phys_alloc_ptr = poolPhysBase;
ext_phys_mem_pool_enabled = true;
}
}
void mem_ext_phys_pool_release(void)
{
if (ext_phys_mem_pool_enabled) {
iounmap((void *)(ext_mem_pool.virt_mem_base));
ext_phys_mem_pool_enabled = false;
}
}
/*
* ======== mem_ext_phys_mem_alloc ========
* Purpose:
* Allocate physically contiguous, uncached memory from external memory pool
*/
static void *mem_ext_phys_mem_alloc(u32 bytes, u32 align, OUT u32 * pPhysAddr)
{
u32 new_alloc_ptr;
u32 offset;
u32 virt_addr;
if (align == 0)
align = 1;
if (bytes > ((ext_mem_pool.phys_mem_base + ext_mem_pool.phys_mem_size)
- ext_mem_pool.next_phys_alloc_ptr)) {
pPhysAddr = NULL;
return NULL;
} else {
offset = (ext_mem_pool.next_phys_alloc_ptr & (align - 1));
if (offset == 0)
new_alloc_ptr = ext_mem_pool.next_phys_alloc_ptr;
else
new_alloc_ptr = (ext_mem_pool.next_phys_alloc_ptr) +
(align - offset);
if ((new_alloc_ptr + bytes) <=
(ext_mem_pool.phys_mem_base + ext_mem_pool.phys_mem_size)) {
/* we can allocate */
*pPhysAddr = new_alloc_ptr;
ext_mem_pool.next_phys_alloc_ptr =
new_alloc_ptr + bytes;
virt_addr =
ext_mem_pool.virt_mem_base + (new_alloc_ptr -
ext_mem_pool.
phys_mem_base);
return (void *)virt_addr;
} else {
*pPhysAddr = 0;
return NULL;
}
}
}
/*
* ======== mem_alloc_phys_mem ========
* Purpose:
* Allocate physically contiguous, uncached memory
*/
void *mem_alloc_phys_mem(u32 byte_size, u32 ulAlign, OUT u32 * pPhysicalAddress)
{
void *va_mem = NULL;
dma_addr_t pa_mem;
if (byte_size > 0) {
if (ext_phys_mem_pool_enabled) {
va_mem = mem_ext_phys_mem_alloc(byte_size, ulAlign,
(u32 *) &pa_mem);
} else
va_mem = dma_alloc_coherent(NULL, byte_size, &pa_mem,
GFP_KERNEL);
if (va_mem == NULL)
*pPhysicalAddress = 0;
else
*pPhysicalAddress = pa_mem;
}
return va_mem;
}
/*
* ======== mem_free_phys_mem ========
* Purpose:
* Free the given block of physically contiguous memory.
*/
void mem_free_phys_mem(void *pVirtualAddress, u32 pPhysicalAddress,
u32 byte_size)
{
DBC_REQUIRE(pVirtualAddress != NULL);
if (!ext_phys_mem_pool_enabled)
dma_free_coherent(NULL, byte_size, pVirtualAddress,
pPhysicalAddress);
}
/*
* drv_interface.c
*
* DSP-BIOS Bridge driver support functions for TI OMAP processors.
*
* DSP/BIOS Bridge driver interface.
*
* Copyright (C) 2005-2006 Texas Instruments, Inc.
*
* This package is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
* THIS PACKAGE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED
* WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR A PARTICULAR PURPOSE.
*/
/* ----------------------------------- Host OS */
#include <dspbridge/host_os.h>
#include <linux/platform_device.h>
#include <linux/pm.h>
#ifdef MODULE
#include <linux/module.h>
#endif
#include <linux/device.h>
#include <linux/init.h>
#include <linux/moduleparam.h>
#include <linux/cdev.h>
/* ----------------------------------- DSP/BIOS Bridge */
#include <dspbridge/std.h>
#include <dspbridge/dbdefs.h>
/* ----------------------------------- Trace & Debug */
#include <dspbridge/dbc.h>
/* ----------------------------------- OS Adaptation Layer */
#include <dspbridge/services.h>
#include <dspbridge/clk.h>
#include <dspbridge/sync.h>
/* ----------------------------------- Platform Manager */
#include <dspbridge/dspapi-ioctl.h>
#include <dspbridge/dspapi.h>
#include <dspbridge/dspdrv.h>
/* ----------------------------------- Resource Manager */
#include <dspbridge/pwr.h>
/* ----------------------------------- This */
#include <drv_interface.h>
#include <dspbridge/cfg.h>
#include <dspbridge/resourcecleanup.h>
#include <dspbridge/chnl.h>
#include <dspbridge/proc.h>
#include <dspbridge/dev.h>
#include <dspbridge/drvdefs.h>
#include <dspbridge/drv.h>
#ifdef CONFIG_BRIDGE_DVFS
#include <mach-omap2/omap3-opp.h>
#endif
#define BRIDGE_NAME "C6410"
/* ----------------------------------- Globals */
#define DRIVER_NAME "DspBridge"
#define DSPBRIDGE_VERSION "0.3"
s32 dsp_debug;
struct platform_device *omap_dspbridge_dev;
struct device *bridge;
/* This is a test variable used by Bridge to test different sleep states */
s32 dsp_test_sleepstate;
static struct cdev bridge_cdev;
static struct class *bridge_class;
static u32 driver_context;
static s32 driver_major;
static char *base_img;
char *iva_img;
static s32 shm_size = 0x500000; /* 5 MB */
static int tc_wordswapon; /* Default value is always false */
#ifdef CONFIG_BRIDGE_RECOVERY
#define REC_TIMEOUT 5000 /*recovery timeout in msecs */
static atomic_t bridge_cref; /* number of bridge open handles */
static struct workqueue_struct *bridge_rec_queue;
static struct work_struct bridge_recovery_work;
static DECLARE_COMPLETION(bridge_comp);
static DECLARE_COMPLETION(bridge_open_comp);
static bool recover;
#endif
#ifdef CONFIG_PM
struct omap34_xx_bridge_suspend_data {
int suspended;
wait_queue_head_t suspend_wq;
};
static struct omap34_xx_bridge_suspend_data bridge_suspend_data;
static int omap34_xxbridge_suspend_lockout(struct omap34_xx_bridge_suspend_data
*s, struct file *f)
{
if ((s)->suspended) {
if ((f)->f_flags & O_NONBLOCK)
return -EPERM;
wait_event_interruptible((s)->suspend_wq, (s)->suspended == 0);
}
return 0;
}
#endif
module_param(dsp_debug, int, 0);
MODULE_PARM_DESC(dsp_debug, "Wait after loading DSP image. default = false");
module_param(dsp_test_sleepstate, int, 0);
MODULE_PARM_DESC(dsp_test_sleepstate, "DSP Sleep state = 0");
module_param(base_img, charp, 0);
MODULE_PARM_DESC(base_img, "DSP base image, default = NULL");
module_param(shm_size, int, 0);
MODULE_PARM_DESC(shm_size, "shm size, default = 4 MB, minimum = 64 KB");
module_param(tc_wordswapon, int, 0);
MODULE_PARM_DESC(tc_wordswapon, "TC Word Swap Option. default = 0");
MODULE_AUTHOR("Texas Instruments");
MODULE_LICENSE("GPL");
MODULE_VERSION(DSPBRIDGE_VERSION);
static char *driver_name = DRIVER_NAME;
static const struct file_operations bridge_fops = {
.open = bridge_open,
.release = bridge_release,
.unlocked_ioctl = bridge_ioctl,
.mmap = bridge_mmap,
};
#ifdef CONFIG_PM
static u32 time_out = 1000;
#ifdef CONFIG_BRIDGE_DVFS
s32 dsp_max_opps = VDD1_OPP5;
#endif
/* Maximum Opps that can be requested by IVA */
/*vdd1 rate table */
#ifdef CONFIG_BRIDGE_DVFS
const struct omap_opp vdd1_rate_table_bridge[] = {
{0, 0, 0},
/*OPP1 */
{S125M, VDD1_OPP1, 0},
/*OPP2 */
{S250M, VDD1_OPP2, 0},
/*OPP3 */
{S500M, VDD1_OPP3, 0},
/*OPP4 */
{S550M, VDD1_OPP4, 0},
/*OPP5 */
{S600M, VDD1_OPP5, 0},
};
#endif
#endif
struct dspbridge_platform_data *omap_dspbridge_pdata;
u32 vdd1_dsp_freq[6][4] = {
{0, 0, 0, 0},
/*OPP1 */
{0, 90000, 0, 86000},
/*OPP2 */
{0, 180000, 80000, 170000},
/*OPP3 */
{0, 360000, 160000, 340000},
/*OPP4 */
{0, 396000, 325000, 376000},
/*OPP5 */
{0, 430000, 355000, 430000},
};
#ifdef CONFIG_BRIDGE_RECOVERY
static void bridge_recover(struct work_struct *work)
{
struct dev_object *dev;
struct cfg_devnode *dev_node;
if (atomic_read(&bridge_cref)) {
INIT_COMPLETION(bridge_comp);
while (!wait_for_completion_timeout(&bridge_comp,
msecs_to_jiffies(REC_TIMEOUT)))
pr_info("%s:%d handle(s) still opened\n",
__func__, atomic_read(&bridge_cref));
}
dev = dev_get_first();
dev_get_dev_node(dev, &dev_node);
if (!dev_node || DSP_FAILED(proc_auto_start(dev_node, dev)))
pr_err("DSP could not be restarted\n");
recover = false;
complete_all(&bridge_open_comp);
}
void bridge_recover_schedule(void)
{
INIT_COMPLETION(bridge_open_comp);
recover = true;
queue_work(bridge_rec_queue, &bridge_recovery_work);
}
#endif
#ifdef CONFIG_BRIDGE_DVFS
static int dspbridge_scale_notification(struct notifier_block *op,
unsigned long val, void *ptr)
{
struct dspbridge_platform_data *pdata =
omap_dspbridge_dev->dev.platform_data;
if (CPUFREQ_POSTCHANGE == val && pdata->dsp_get_opp)
pwr_pm_post_scale(PRCM_VDD1, pdata->dsp_get_opp());
return 0;
}
static struct notifier_block iva_clk_notifier = {
.notifier_call = dspbridge_scale_notification,
NULL,
};
#endif
/**
* omap3_bridge_startup() - perform low lever initializations
* @pdev: pointer to platform device
*
* Initializes recovery, PM and DVFS required data, before calling
* clk and memory init routines.
*/
static int omap3_bridge_startup(struct platform_device *pdev)
{
struct dspbridge_platform_data *pdata = pdev->dev.platform_data;
struct drv_data *drv_datap = NULL;
u32 phys_membase, phys_memsize;
int err;
#ifdef CONFIG_BRIDGE_RECOVERY
bridge_rec_queue = create_workqueue("bridge_rec_queue");
INIT_WORK(&bridge_recovery_work, bridge_recover);
INIT_COMPLETION(bridge_comp);
#endif
#ifdef CONFIG_PM
/* Initialize the wait queue */
bridge_suspend_data.suspended = 0;
init_waitqueue_head(&bridge_suspend_data.suspend_wq);
#ifdef CONFIG_BRIDGE_DVFS
for (i = 0; i < 6; i++)
pdata->mpu_speed[i] = vdd1_rate_table_bridge[i].rate;
err = cpufreq_register_notifier(&iva_clk_notifier,
CPUFREQ_TRANSITION_NOTIFIER);
if (err)
pr_err("%s: clk_notifier_register failed for iva2_ck\n",
__func__);
#endif
#endif
dsp_clk_init();
services_init();
drv_datap = kzalloc(sizeof(struct drv_data), GFP_KERNEL);
if (!drv_datap) {
err = -ENOMEM;
goto err1;
}
drv_datap->shm_size = shm_size;
drv_datap->tc_wordswapon = tc_wordswapon;
if (base_img) {
drv_datap->base_img = kmalloc(strlen(base_img) + 1, GFP_KERNEL);
if (!drv_datap->base_img) {
err = -ENOMEM;
goto err2;
}
strncpy(drv_datap->base_img, base_img, strlen(base_img) + 1);
}
dev_set_drvdata(bridge, drv_datap);
if (shm_size < 0x10000) { /* 64 KB */
err = -EINVAL;
pr_err("%s: shm size must be at least 64 KB\n", __func__);
goto err3;
}
dev_dbg(bridge, "%s: requested shm_size = 0x%x\n", __func__, shm_size);
phys_membase = pdata->phys_mempool_base;
phys_memsize = pdata->phys_mempool_size;
if (phys_membase > 0 && phys_memsize > 0)
mem_ext_phys_pool_init(phys_membase, phys_memsize);
if (tc_wordswapon)
dev_dbg(bridge, "%s: TC Word Swap is enabled\n", __func__);
driver_context = dsp_init(&err);
if (err) {
pr_err("DSP Bridge driver initialization failed\n");
goto err4;
}
return 0;
err4:
mem_ext_phys_pool_release();
err3:
kfree(drv_datap->base_img);
err2:
kfree(drv_datap);
err1:
#ifdef CONFIG_BRIDGE_DVFS
cpufreq_unregister_notifier(&iva_clk_notifier,
CPUFREQ_TRANSITION_NOTIFIER);
#endif
dsp_clk_exit();
services_exit();
return err;
}
static int __devinit omap34_xx_bridge_probe(struct platform_device *pdev)
{
int err;
dev_t dev = 0;
#ifdef CONFIG_BRIDGE_DVFS
int i = 0;
#endif
omap_dspbridge_dev = pdev;
/* Global bridge device */
bridge = &omap_dspbridge_dev->dev;
/* Bridge low level initializations */
err = omap3_bridge_startup(pdev);
if (err)
goto err1;
/* use 2.6 device model */
err = alloc_chrdev_region(&dev, 0, 1, driver_name);
if (err) {
pr_err("%s: Can't get major %d\n", __func__, driver_major);
goto err1;
}
cdev_init(&bridge_cdev, &bridge_fops);
bridge_cdev.owner = THIS_MODULE;
err = cdev_add(&bridge_cdev, dev, 1);
if (err) {
pr_err("%s: Failed to add bridge device\n", __func__);
goto err2;
}
/* udev support */
bridge_class = class_create(THIS_MODULE, "ti_bridge");
if (IS_ERR(bridge_class)) {
pr_err("%s: Error creating bridge class\n", __func__);
goto err3;
}
driver_major = MAJOR(dev);
device_create(bridge_class, NULL, MKDEV(driver_major, 0),
NULL, "DspBridge");
pr_info("DSP Bridge driver loaded\n");
return 0;
err3:
cdev_del(&bridge_cdev);
err2:
unregister_chrdev_region(dev, 1);
err1:
return err;
}
static int __devexit omap34_xx_bridge_remove(struct platform_device *pdev)
{
dev_t devno;
bool ret;
int status = 0;
void *hdrv_obj = NULL;
status = cfg_get_object((u32 *) &hdrv_obj, REG_DRV_OBJECT);
if (DSP_FAILED(status))
goto func_cont;
#ifdef CONFIG_BRIDGE_DVFS
if (cpufreq_unregister_notifier(&iva_clk_notifier,
CPUFREQ_TRANSITION_NOTIFIER))
pr_err("%s: cpufreq_unregister_notifier failed for iva2_ck\n",
__func__);
#endif /* #ifdef CONFIG_BRIDGE_DVFS */
if (driver_context) {
/* Put the DSP in reset state */
ret = dsp_deinit(driver_context);
driver_context = 0;
DBC_ASSERT(ret == true);
}
func_cont:
mem_ext_phys_pool_release();
dsp_clk_exit();
services_exit();
devno = MKDEV(driver_major, 0);
cdev_del(&bridge_cdev);
unregister_chrdev_region(devno, 1);
if (bridge_class) {
/* remove the device from sysfs */
device_destroy(bridge_class, MKDEV(driver_major, 0));
class_destroy(bridge_class);
}
return 0;
}
#ifdef CONFIG_PM
static int BRIDGE_SUSPEND(struct platform_device *pdev, pm_message_t state)
{
u32 status;
u32 command = PWR_EMERGENCYDEEPSLEEP;
status = pwr_sleep_dsp(command, time_out);
if (DSP_FAILED(status))
return -1;
bridge_suspend_data.suspended = 1;
return 0;
}
static int BRIDGE_RESUME(struct platform_device *pdev)
{
u32 status;
status = pwr_wake_dsp(time_out);
if (DSP_FAILED(status))
return -1;
bridge_suspend_data.suspended = 0;
wake_up(&bridge_suspend_data.suspend_wq);
return 0;
}
#else
#define BRIDGE_SUSPEND NULL
#define BRIDGE_RESUME NULL
#endif
static struct platform_driver bridge_driver = {
.driver = {
.name = BRIDGE_NAME,
},
.probe = omap34_xx_bridge_probe,
.remove = __devexit_p(omap34_xx_bridge_remove),
.suspend = BRIDGE_SUSPEND,
.resume = BRIDGE_RESUME,
};
static int __init bridge_init(void)
{
return platform_driver_register(&bridge_driver);
}
static void __exit bridge_exit(void)
{
platform_driver_unregister(&bridge_driver);
}
/*
* This function is called when an application opens handle to the
* bridge driver.
*/
static int bridge_open(struct inode *ip, struct file *filp)
{
int status = 0;
struct process_context *pr_ctxt = NULL;
/*
* Allocate a new process context and insert it into global
* process context list.
*/
#ifdef CONFIG_BRIDGE_RECOVERY
if (recover) {
if (filp->f_flags & O_NONBLOCK ||
wait_for_completion_interruptible(&bridge_open_comp))
return -EBUSY;
}
#endif
pr_ctxt = kzalloc(sizeof(struct process_context), GFP_KERNEL);
if (pr_ctxt) {
pr_ctxt->res_state = PROC_RES_ALLOCATED;
spin_lock_init(&pr_ctxt->dmm_map_lock);
INIT_LIST_HEAD(&pr_ctxt->dmm_map_list);
spin_lock_init(&pr_ctxt->dmm_rsv_lock);
INIT_LIST_HEAD(&pr_ctxt->dmm_rsv_list);
mutex_init(&pr_ctxt->node_mutex);
mutex_init(&pr_ctxt->strm_mutex);
} else {
status = -ENOMEM;
}
filp->private_data = pr_ctxt;
#ifdef CONFIG_BRIDGE_RECOVERY
if (!status)
atomic_inc(&bridge_cref);
#endif
return status;
}
/*
* This function is called when an application closes handle to the bridge
* driver.
*/
static int bridge_release(struct inode *ip, struct file *filp)
{
int status = 0;
struct process_context *pr_ctxt;
if (!filp->private_data) {
status = -EIO;
goto err;
}
pr_ctxt = filp->private_data;
flush_signals(current);
drv_remove_all_resources(pr_ctxt);
proc_detach(pr_ctxt);
kfree(pr_ctxt);
filp->private_data = NULL;
err:
#ifdef CONFIG_BRIDGE_RECOVERY
if (!atomic_dec_return(&bridge_cref))
complete(&bridge_comp);
#endif
return status;
}
/* This function provides IO interface to the bridge driver. */
static long bridge_ioctl(struct file *filp, unsigned int code,
unsigned long args)
{
int status;
u32 retval = 0;
union Trapped_Args buf_in;
DBC_REQUIRE(filp != NULL);
#ifdef CONFIG_BRIDGE_RECOVERY
if (recover) {
status = -EIO;
goto err;
}
#endif
#ifdef CONFIG_PM
status = omap34_xxbridge_suspend_lockout(&bridge_suspend_data, filp);
if (status != 0)
return status;
#endif
if (!filp->private_data) {
status = -EIO;
goto err;
}
status = copy_from_user(&buf_in, (union Trapped_Args *)args,
sizeof(union Trapped_Args));
if (!status) {
status = api_call_dev_ioctl(code, &buf_in, &retval,
filp->private_data);
if (DSP_SUCCEEDED(status)) {
status = retval;
} else {
dev_dbg(bridge, "%s: IOCTL Failed, code: 0x%x "
"status 0x%x\n", __func__, code, status);
status = -1;
}
}
err:
return status;
}
/* This function maps kernel space memory to user space memory. */
static int bridge_mmap(struct file *filp, struct vm_area_struct *vma)
{
u32 offset = vma->vm_pgoff << PAGE_SHIFT;
u32 status;
DBC_ASSERT(vma->vm_start < vma->vm_end);
vma->vm_flags |= VM_RESERVED | VM_IO;
vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
dev_dbg(bridge, "%s: vm filp %p offset %x start %lx end %lx page_prot "
"%lx flags %lx\n", __func__, filp, offset,
vma->vm_start, vma->vm_end, vma->vm_page_prot, vma->vm_flags);
status = remap_pfn_range(vma, vma->vm_start, vma->vm_pgoff,
vma->vm_end - vma->vm_start,
vma->vm_page_prot);
if (status != 0)
status = -EAGAIN;
return status;
}
/* To remove all process resources before removing the process from the
* process context list */
int drv_remove_all_resources(void *hPCtxt)
{
int status = 0;
struct process_context *ctxt = (struct process_context *)hPCtxt;
drv_remove_all_strm_res_elements(ctxt);
drv_remove_all_node_res_elements(ctxt);
drv_remove_all_dmm_res_elements(ctxt);
ctxt->res_state = PROC_RES_FREED;
return status;
}
/* Bridge driver initialization and de-initialization functions */
module_init(bridge_init);
module_exit(bridge_exit);
/*
* drv_interface.h
*
* DSP-BIOS Bridge driver support functions for TI OMAP processors.
*
* Copyright (C) 2005-2006 Texas Instruments, Inc.
*
* This package is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
* THIS PACKAGE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED
* WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR A PARTICULAR PURPOSE.
*/
#ifndef _DRV_INTERFACE_H_
#define _DRV_INTERFACE_H_
/* Prototypes for all functions in this bridge */
static int __init bridge_init(void); /* Initialize bridge */
static void __exit bridge_exit(void); /* Opposite of initialize */
static int bridge_open(struct inode *, struct file *); /* Open */
static int bridge_release(struct inode *, struct file *); /* Release */
static long bridge_ioctl(struct file *, unsigned int, unsigned long);
static int bridge_mmap(struct file *filp, struct vm_area_struct *vma);
#endif /* ifndef _DRV_INTERFACE_H_ */
/*
* dspdrv.c
*
* DSP-BIOS Bridge driver support functions for TI OMAP processors.
*
* Interface to allocate and free bridge resources.
*
* Copyright (C) 2005-2006 Texas Instruments, Inc.
*
* This package is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
* THIS PACKAGE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED
* WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR A PARTICULAR PURPOSE.
*/
/* ----------------------------------- Host OS */
#include <dspbridge/host_os.h>
/* ----------------------------------- DSP/BIOS Bridge */
#include <dspbridge/std.h>
#include <dspbridge/dbdefs.h>
/* ----------------------------------- Trace & Debug */
#include <dspbridge/dbc.h>
/* ----------------------------------- OS Adaptation Layer */
#include <dspbridge/cfg.h>
/* ----------------------------------- Platform Manager */
#include <dspbridge/drv.h>
#include <dspbridge/dev.h>
#include <dspbridge/dspapi.h>
/* ----------------------------------- Resource Manager */
#include <dspbridge/mgr.h>
/* ----------------------------------- This */
#include <dspbridge/dspdrv.h>
/*
* ======== dsp_init ========
* Allocates bridge resources. Loads a base image onto DSP, if specified.
*/
u32 dsp_init(OUT u32 *init_status)
{
char dev_node[MAXREGPATHLENGTH] = "TIOMAP1510";
int status = -EPERM;
struct drv_object *drv_obj = NULL;
u32 device_node;
u32 device_node_string;
if (!api_init())
goto func_cont;
status = drv_create(&drv_obj);
if (DSP_FAILED(status)) {
api_exit();
goto func_cont;
}
/* End drv_create */
/* Request Resources */
status = drv_request_resources((u32) &dev_node, &device_node_string);
if (DSP_SUCCEEDED(status)) {
/* Attempt to Start the Device */
status = dev_start_device((struct cfg_devnode *)
device_node_string);
if (DSP_FAILED(status))
(void)drv_release_resources
((u32) device_node_string, drv_obj);
} else {
dev_dbg(bridge, "%s: drv_request_resources Failed\n", __func__);
status = -EPERM;
}
/* Unwind whatever was loaded */
if (DSP_FAILED(status)) {
/* irrespective of the status of dev_remove_device we conitinue
* unloading. Get the Driver Object iterate through and remove.
* Reset the status to E_FAIL to avoid going through
* api_init_complete2. */
for (device_node = drv_get_first_dev_extension();
device_node != 0;
device_node = drv_get_next_dev_extension(device_node)) {
(void)dev_remove_device((struct cfg_devnode *)
device_node);
(void)drv_release_resources((u32) device_node, drv_obj);
}
/* Remove the Driver Object */
(void)drv_destroy(drv_obj);
drv_obj = NULL;
api_exit();
dev_dbg(bridge, "%s: Logical device failed init\n", __func__);
} /* Unwinding the loaded drivers */
func_cont:
/* Attempt to Start the Board */
if (DSP_SUCCEEDED(status)) {
/* BRD_AutoStart could fail if the dsp execuetable is not the
* correct one. We should not propagate that error
* into the device loader. */
(void)api_init_complete2();
} else {
dev_dbg(bridge, "%s: Failed\n", __func__);
} /* End api_init_complete2 */
DBC_ENSURE((DSP_SUCCEEDED(status) && drv_obj != NULL) ||
(DSP_FAILED(status) && drv_obj == NULL));
*init_status = status;
/* Return the Driver Object */
return (u32) drv_obj;
}
/*
* ======== dsp_deinit ========
* Frees the resources allocated for bridge.
*/
bool dsp_deinit(u32 deviceContext)
{
bool ret = true;
u32 device_node;
struct mgr_object *mgr_obj = NULL;
while ((device_node = drv_get_first_dev_extension()) != 0) {
(void)dev_remove_device((struct cfg_devnode *)device_node);
(void)drv_release_resources((u32) device_node,
(struct drv_object *)deviceContext);
}
(void)drv_destroy((struct drv_object *)deviceContext);
/* Get the Manager Object from Registry
* MGR Destroy will unload the DCD dll */
if (DSP_SUCCEEDED(cfg_get_object((u32 *) &mgr_obj, REG_MGR_OBJECT)))
(void)mgr_destroy(mgr_obj);
api_exit();
return ret;
}
/*
* mgr.c
*
* DSP-BIOS Bridge driver support functions for TI OMAP processors.
*
* Implementation of Manager interface to the device object at the
* driver level. This queries the NDB data base and retrieves the
* data about Node and Processor.
*
* Copyright (C) 2005-2006 Texas Instruments, Inc.
*
* This package is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
* THIS PACKAGE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED
* WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR A PARTICULAR PURPOSE.
*/
/* ----------------------------------- DSP/BIOS Bridge */
#include <dspbridge/std.h>
#include <dspbridge/dbdefs.h>
/* ----------------------------------- Trace & Debug */
#include <dspbridge/dbc.h>
/* ----------------------------------- OS Adaptation Layer */
#include <dspbridge/cfg.h>
#include <dspbridge/sync.h>
/* ----------------------------------- Others */
#include <dspbridge/dbdcd.h>
#include <dspbridge/drv.h>
#include <dspbridge/dev.h>
/* ----------------------------------- This */
#include <dspbridge/mgr.h>
/* ----------------------------------- Defines, Data Structures, Typedefs */
#define ZLDLLNAME ""
struct mgr_object {
struct dcd_manager *hdcd_mgr; /* Proc/Node data manager */
};
/* ----------------------------------- Globals */
static u32 refs;
/*
* ========= mgr_create =========
* Purpose:
* MGR Object gets created only once during driver Loading.
*/
int mgr_create(OUT struct mgr_object **phMgrObject,
struct cfg_devnode *dev_node_obj)
{
int status = 0;
struct mgr_object *pmgr_obj = NULL;
DBC_REQUIRE(phMgrObject != NULL);
DBC_REQUIRE(refs > 0);
pmgr_obj = kzalloc(sizeof(struct mgr_object), GFP_KERNEL);
if (pmgr_obj) {
status = dcd_create_manager(ZLDLLNAME, &pmgr_obj->hdcd_mgr);
if (DSP_SUCCEEDED(status)) {
/* If succeeded store the handle in the MGR Object */
status = cfg_set_object((u32) pmgr_obj, REG_MGR_OBJECT);
if (DSP_SUCCEEDED(status)) {
*phMgrObject = pmgr_obj;
} else {
dcd_destroy_manager(pmgr_obj->hdcd_mgr);
kfree(pmgr_obj);
}
} else {
/* failed to Create DCD Manager */
kfree(pmgr_obj);
}
} else {
status = -ENOMEM;
}
DBC_ENSURE(DSP_FAILED(status) || pmgr_obj);
return status;
}
/*
* ========= mgr_destroy =========
* This function is invoked during bridge driver unloading.Frees MGR object.
*/
int mgr_destroy(struct mgr_object *hmgr_obj)
{
int status = 0;
struct mgr_object *pmgr_obj = (struct mgr_object *)hmgr_obj;
DBC_REQUIRE(refs > 0);
DBC_REQUIRE(hmgr_obj);
/* Free resources */
if (hmgr_obj->hdcd_mgr)
dcd_destroy_manager(hmgr_obj->hdcd_mgr);
kfree(pmgr_obj);
/* Update the Registry with NULL for MGR Object */
(void)cfg_set_object(0, REG_MGR_OBJECT);
return status;
}
/*
* ======== mgr_enum_node_info ========
* Enumerate and get configuration information about nodes configured
* in the node database.
*/
int mgr_enum_node_info(u32 node_id, OUT struct dsp_ndbprops *pndb_props,
u32 undb_props_size, OUT u32 *pu_num_nodes)
{
int status = 0;
struct dsp_uuid node_uuid, temp_uuid;
u32 temp_index = 0;
u32 node_index = 0;
struct dcd_genericobj gen_obj;
struct mgr_object *pmgr_obj = NULL;
DBC_REQUIRE(pndb_props != NULL);
DBC_REQUIRE(pu_num_nodes != NULL);
DBC_REQUIRE(undb_props_size >= sizeof(struct dsp_ndbprops));
DBC_REQUIRE(refs > 0);
*pu_num_nodes = 0;
/* Get The Manager Object from the Registry */
status = cfg_get_object((u32 *) &pmgr_obj, REG_MGR_OBJECT);
if (DSP_FAILED(status))
goto func_cont;
DBC_ASSERT(pmgr_obj);
/* Forever loop till we hit failed or no more items in the
* Enumeration. We will exit the loop other than 0; */
while (status == 0) {
status = dcd_enumerate_object(temp_index++, DSP_DCDNODETYPE,
&temp_uuid);
if (status == 0) {
node_index++;
if (node_id == (node_index - 1))
node_uuid = temp_uuid;
}
}
if (DSP_SUCCEEDED(status)) {
if (node_id > (node_index - 1)) {
status = -EINVAL;
} else {
status = dcd_get_object_def(pmgr_obj->hdcd_mgr,
(struct dsp_uuid *)
&node_uuid, DSP_DCDNODETYPE,
&gen_obj);
if (DSP_SUCCEEDED(status)) {
/* Get the Obj def */
*pndb_props =
gen_obj.obj_data.node_obj.ndb_props;
*pu_num_nodes = node_index;
}
}
}
func_cont:
DBC_ENSURE((DSP_SUCCEEDED(status) && *pu_num_nodes > 0) ||
(DSP_FAILED(status) && *pu_num_nodes == 0));
return status;
}
/*
* ======== mgr_enum_processor_info ========
* Enumerate and get configuration information about available
* DSP processors.
*/
int mgr_enum_processor_info(u32 processor_id,
OUT struct dsp_processorinfo *
processor_info, u32 processor_info_size,
OUT u8 *pu_num_procs)
{
int status = 0;
int status1 = 0;
int status2 = 0;
struct dsp_uuid temp_uuid;
u32 temp_index = 0;
u32 proc_index = 0;
struct dcd_genericobj gen_obj;
struct mgr_object *pmgr_obj = NULL;
struct mgr_processorextinfo *ext_info;
struct dev_object *hdev_obj;
struct drv_object *hdrv_obj;
u8 dev_type;
struct cfg_devnode *dev_node;
bool proc_detect = false;
DBC_REQUIRE(processor_info != NULL);
DBC_REQUIRE(pu_num_procs != NULL);
DBC_REQUIRE(processor_info_size >= sizeof(struct dsp_processorinfo));
DBC_REQUIRE(refs > 0);
*pu_num_procs = 0;
status = cfg_get_object((u32 *) &hdrv_obj, REG_DRV_OBJECT);
if (DSP_SUCCEEDED(status)) {
status = drv_get_dev_object(processor_id, hdrv_obj, &hdev_obj);
if (DSP_SUCCEEDED(status)) {
status = dev_get_dev_type(hdev_obj, (u8 *) &dev_type);
status = dev_get_dev_node(hdev_obj, &dev_node);
if (dev_type != DSP_UNIT)
status = -EPERM;
if (DSP_SUCCEEDED(status))
processor_info->processor_type = DSPTYPE64;
}
}
if (DSP_FAILED(status))
goto func_end;
/* Get The Manager Object from the Registry */
if (DSP_FAILED(cfg_get_object((u32 *) &pmgr_obj, REG_MGR_OBJECT))) {
dev_dbg(bridge, "%s: Failed to get MGR Object\n", __func__);
goto func_end;
}
DBC_ASSERT(pmgr_obj);
/* Forever loop till we hit no more items in the
* Enumeration. We will exit the loop other than 0; */
while (status1 == 0) {
status1 = dcd_enumerate_object(temp_index++,
DSP_DCDPROCESSORTYPE,
&temp_uuid);
if (status1 != 0)
break;
proc_index++;
/* Get the Object properties to find the Device/Processor
* Type */
if (proc_detect != false)
continue;
status2 = dcd_get_object_def(pmgr_obj->hdcd_mgr,
(struct dsp_uuid *)&temp_uuid,
DSP_DCDPROCESSORTYPE, &gen_obj);
if (DSP_SUCCEEDED(status2)) {
/* Get the Obj def */
if (processor_info_size <
sizeof(struct mgr_processorextinfo)) {
*processor_info = gen_obj.obj_data.proc_info;
} else {
/* extended info */
ext_info = (struct mgr_processorextinfo *)
processor_info;
*ext_info = gen_obj.obj_data.ext_proc_obj;
}
dev_dbg(bridge, "%s: Got proctype from DCD %x\n",
__func__, processor_info->processor_type);
/* See if we got the needed processor */
if (dev_type == DSP_UNIT) {
if (processor_info->processor_type ==
DSPPROCTYPE_C64)
proc_detect = true;
} else if (dev_type == IVA_UNIT) {
if (processor_info->processor_type ==
IVAPROCTYPE_ARM7)
proc_detect = true;
}
/* User applciatiuons aonly check for chip type, so
* this clumsy overwrite */
processor_info->processor_type = DSPTYPE64;
} else {
dev_dbg(bridge, "%s: Failed to get DCD processor info "
"%x\n", __func__, status2);
status = -EPERM;
}
}
*pu_num_procs = proc_index;
if (proc_detect == false) {
dev_dbg(bridge, "%s: Failed to get proc info from DCD, so use "
"CFG registry\n", __func__);
processor_info->processor_type = DSPTYPE64;
}
func_end:
return status;
}
/*
* ======== mgr_exit ========
* Decrement reference count, and free resources when reference count is
* 0.
*/
void mgr_exit(void)
{
DBC_REQUIRE(refs > 0);
refs--;
if (refs == 0)
dcd_exit();
DBC_ENSURE(refs >= 0);
}
/*
* ======== mgr_get_dcd_handle ========
* Retrieves the MGR handle. Accessor Function.
*/
int mgr_get_dcd_handle(struct mgr_object *hMGRHandle,
OUT u32 *phDCDHandle)
{
int status = -EPERM;
struct mgr_object *pmgr_obj = (struct mgr_object *)hMGRHandle;
DBC_REQUIRE(refs > 0);
DBC_REQUIRE(phDCDHandle != NULL);
*phDCDHandle = (u32) NULL;
if (pmgr_obj) {
*phDCDHandle = (u32) pmgr_obj->hdcd_mgr;
status = 0;
}
DBC_ENSURE((DSP_SUCCEEDED(status) && *phDCDHandle != (u32) NULL) ||
(DSP_FAILED(status) && *phDCDHandle == (u32) NULL));
return status;
}
/*
* ======== mgr_init ========
* Initialize MGR's private state, keeping a reference count on each call.
*/
bool mgr_init(void)
{
bool ret = true;
bool init_dcd = false;
DBC_REQUIRE(refs >= 0);
if (refs == 0) {
init_dcd = dcd_init(); /* DCD Module */
if (!init_dcd)
ret = false;
}
if (ret)
refs++;
DBC_ENSURE((ret && (refs > 0)) || (!ret && (refs >= 0)));
return ret;
}
/*
* ======== mgr_wait_for_bridge_events ========
* Block on any Bridge event(s)
*/
int mgr_wait_for_bridge_events(struct dsp_notification **anotifications,
u32 count, OUT u32 *pu_index,
u32 utimeout)
{
int status;
struct sync_object *sync_events[MAX_EVENTS];
u32 i;
DBC_REQUIRE(count < MAX_EVENTS);
for (i = 0; i < count; i++)
sync_events[i] = anotifications[i]->handle;
status = sync_wait_on_multiple_events(sync_events, count, utimeout,
pu_index);
return status;
}
/*
* nldr.c
*
* DSP-BIOS Bridge driver support functions for TI OMAP processors.
*
* DSP/BIOS Bridge dynamic + overlay Node loader.
*
* Copyright (C) 2005-2006 Texas Instruments, Inc.
*
* This package is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
* THIS PACKAGE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED
* WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR A PARTICULAR PURPOSE.
*/
#include <dspbridge/host_os.h>
#include <dspbridge/std.h>
#include <dspbridge/dbdefs.h>
#include <dspbridge/dbc.h>
/* Platform manager */
#include <dspbridge/cod.h>
#include <dspbridge/dev.h>
/* Resource manager */
#include <dspbridge/dbll.h>
#include <dspbridge/dbdcd.h>
#include <dspbridge/rmm.h>
#include <dspbridge/uuidutil.h>
#include <dspbridge/nldr.h>
/* Name of section containing dynamic load mem */
#define DYNMEMSECT ".dspbridge_mem"
/* Name of section containing dependent library information */
#define DEPLIBSECT ".dspbridge_deplibs"
/* Max depth of recursion for loading node's dependent libraries */
#define MAXDEPTH 5
/* Max number of persistent libraries kept by a node */
#define MAXLIBS 5
/*
* Defines for extracting packed dynamic load memory requirements from two
* masks.
* These defines must match node.cdb and dynm.cdb
* Format of data/code mask is:
* uuuuuuuu|fueeeeee|fudddddd|fucccccc|
* where
* u = unused
* cccccc = prefered/required dynamic mem segid for create phase data/code
* dddddd = prefered/required dynamic mem segid for delete phase data/code
* eeeeee = prefered/req. dynamic mem segid for execute phase data/code
* f = flag indicating if memory is preferred or required:
* f = 1 if required, f = 0 if preferred.
*
* The 6 bits of the segid are interpreted as follows:
*
* If the 6th bit (bit 5) is not set, then this specifies a memory segment
* between 0 and 31 (a maximum of 32 dynamic loading memory segments).
* If the 6th bit (bit 5) is set, segid has the following interpretation:
* segid = 32 - Any internal memory segment can be used.
* segid = 33 - Any external memory segment can be used.
* segid = 63 - Any memory segment can be used (in this case the
* required/preferred flag is irrelevant).
*
*/
/* Maximum allowed dynamic loading memory segments */
#define MAXMEMSEGS 32
#define MAXSEGID 3 /* Largest possible (real) segid */
#define MEMINTERNALID 32 /* Segid meaning use internal mem */
#define MEMEXTERNALID 33 /* Segid meaning use external mem */
#define NULLID 63 /* Segid meaning no memory req/pref */
#define FLAGBIT 7 /* 7th bit is pref./req. flag */
#define SEGMASK 0x3f /* Bits 0 - 5 */
#define CREATEBIT 0 /* Create segid starts at bit 0 */
#define DELETEBIT 8 /* Delete segid starts at bit 8 */
#define EXECUTEBIT 16 /* Execute segid starts at bit 16 */
/*
* Masks that define memory type. Must match defines in dynm.cdb.
*/
#define DYNM_CODE 0x2
#define DYNM_DATA 0x4
#define DYNM_CODEDATA (DYNM_CODE | DYNM_DATA)
#define DYNM_INTERNAL 0x8
#define DYNM_EXTERNAL 0x10
/*
* Defines for packing memory requirement/preference flags for code and
* data of each of the node's phases into one mask.
* The bit is set if the segid is required for loading code/data of the
* given phase. The bit is not set, if the segid is preferred only.
*
* These defines are also used as indeces into a segid array for the node.
* eg node's segid[CREATEDATAFLAGBIT] is the memory segment id that the
* create phase data is required or preferred to be loaded into.
*/
#define CREATEDATAFLAGBIT 0
#define CREATECODEFLAGBIT 1
#define EXECUTEDATAFLAGBIT 2
#define EXECUTECODEFLAGBIT 3
#define DELETEDATAFLAGBIT 4
#define DELETECODEFLAGBIT 5
#define MAXFLAGS 6
#define IS_INTERNAL(nldr_obj, segid) (((segid) <= MAXSEGID && \
nldr_obj->seg_table[(segid)] & DYNM_INTERNAL) || \
(segid) == MEMINTERNALID)
#define IS_EXTERNAL(nldr_obj, segid) (((segid) <= MAXSEGID && \
nldr_obj->seg_table[(segid)] & DYNM_EXTERNAL) || \
(segid) == MEMEXTERNALID)
#define SWAPLONG(x) ((((x) << 24) & 0xFF000000) | (((x) << 8) & 0xFF0000L) | \
(((x) >> 8) & 0xFF00L) | (((x) >> 24) & 0xFF))
#define SWAPWORD(x) ((((x) << 8) & 0xFF00) | (((x) >> 8) & 0xFF))
/*
* These names may be embedded in overlay sections to identify which
* node phase the section should be overlayed.
*/
#define PCREATE "create"
#define PDELETE "delete"
#define PEXECUTE "execute"
#define IS_EQUAL_UUID(uuid1, uuid2) (\
((uuid1).ul_data1 == (uuid2).ul_data1) && \
((uuid1).us_data2 == (uuid2).us_data2) && \
((uuid1).us_data3 == (uuid2).us_data3) && \
((uuid1).uc_data4 == (uuid2).uc_data4) && \
((uuid1).uc_data5 == (uuid2).uc_data5) && \
(strncmp((void *)(uuid1).uc_data6, (void *)(uuid2).uc_data6, 6)) == 0)
/*
* ======== mem_seg_info ========
* Format of dynamic loading memory segment info in coff file.
* Must match dynm.h55.
*/
struct mem_seg_info {
u32 segid; /* Dynamic loading memory segment number */
u32 base;
u32 len;
u32 type; /* Mask of DYNM_CODE, DYNM_INTERNAL, etc. */
};
/*
* ======== lib_node ========
* For maintaining a tree of library dependencies.
*/
struct lib_node {
struct dbll_library_obj *lib; /* The library */
u16 dep_libs; /* Number of dependent libraries */
struct lib_node *dep_libs_tree; /* Dependent libraries of lib */
};
/*
* ======== ovly_sect ========
* Information needed to overlay a section.
*/
struct ovly_sect {
struct ovly_sect *next_sect;
u32 sect_load_addr; /* Load address of section */
u32 sect_run_addr; /* Run address of section */
u32 size; /* Size of section */
u16 page; /* DBL_CODE, DBL_DATA */
};
/*
* ======== ovly_node ========
* For maintaining a list of overlay nodes, with sections that need to be
* overlayed for each of the nodes phases.
*/
struct ovly_node {
struct dsp_uuid uuid;
char *node_name;
struct ovly_sect *create_sects_list;
struct ovly_sect *delete_sects_list;
struct ovly_sect *execute_sects_list;
struct ovly_sect *other_sects_list;
u16 create_sects;
u16 delete_sects;
u16 execute_sects;
u16 other_sects;
u16 create_ref;
u16 delete_ref;
u16 execute_ref;
u16 other_ref;
};
/*
* ======== nldr_object ========
* Overlay loader object.
*/
struct nldr_object {
struct dev_object *hdev_obj; /* Device object */
struct dcd_manager *hdcd_mgr; /* Proc/Node data manager */
struct dbll_tar_obj *dbll; /* The DBL loader */
struct dbll_library_obj *base_lib; /* Base image library */
struct rmm_target_obj *rmm; /* Remote memory manager for DSP */
struct dbll_fxns ldr_fxns; /* Loader function table */
struct dbll_attrs ldr_attrs; /* attrs to pass to loader functions */
nldr_ovlyfxn ovly_fxn; /* "write" for overlay nodes */
nldr_writefxn write_fxn; /* "write" for dynamic nodes */
struct ovly_node *ovly_table; /* Table of overlay nodes */
u16 ovly_nodes; /* Number of overlay nodes in base */
u16 ovly_nid; /* Index for tracking overlay nodes */
u16 dload_segs; /* Number of dynamic load mem segs */
u32 *seg_table; /* memtypes of dynamic memory segs
* indexed by segid
*/
u16 us_dsp_mau_size; /* Size of DSP MAU */
u16 us_dsp_word_size; /* Size of DSP word */
};
/*
* ======== nldr_nodeobject ========
* Dynamic node object. This object is created when a node is allocated.
*/
struct nldr_nodeobject {
struct nldr_object *nldr_obj; /* Dynamic loader handle */
void *priv_ref; /* Handle to pass to dbl_write_fxn */
struct dsp_uuid uuid; /* Node's UUID */
bool dynamic; /* Dynamically loaded node? */
bool overlay; /* Overlay node? */
bool *pf_phase_split; /* Multiple phase libraries? */
struct lib_node root; /* Library containing node phase */
struct lib_node create_lib; /* Library with create phase lib */
struct lib_node execute_lib; /* Library with execute phase lib */
struct lib_node delete_lib; /* Library with delete phase lib */
/* libs remain loaded until Delete */
struct lib_node pers_lib_table[MAXLIBS];
s32 pers_libs; /* Number of persistent libraries */
/* Path in lib dependency tree */
struct dbll_library_obj *lib_path[MAXDEPTH + 1];
enum nldr_phase phase; /* Node phase currently being loaded */
/*
* Dynamic loading memory segments for data and code of each phase.
*/
u16 seg_id[MAXFLAGS];
/*
* Mask indicating whether each mem segment specified in seg_id[]
* is preferred or required.
* For example
* if (code_data_flag_mask & (1 << EXECUTEDATAFLAGBIT)) != 0,
* then it is required to load execute phase data into the memory
* specified by seg_id[EXECUTEDATAFLAGBIT].
*/
u32 code_data_flag_mask;
};
/* Dynamic loader function table */
static struct dbll_fxns ldr_fxns = {
(dbll_close_fxn) dbll_close,
(dbll_create_fxn) dbll_create,
(dbll_delete_fxn) dbll_delete,
(dbll_exit_fxn) dbll_exit,
(dbll_get_attrs_fxn) dbll_get_attrs,
(dbll_get_addr_fxn) dbll_get_addr,
(dbll_get_c_addr_fxn) dbll_get_c_addr,
(dbll_get_sect_fxn) dbll_get_sect,
(dbll_init_fxn) dbll_init,
(dbll_load_fxn) dbll_load,
(dbll_load_sect_fxn) dbll_load_sect,
(dbll_open_fxn) dbll_open,
(dbll_read_sect_fxn) dbll_read_sect,
(dbll_set_attrs_fxn) dbll_set_attrs,
(dbll_unload_fxn) dbll_unload,
(dbll_unload_sect_fxn) dbll_unload_sect,
};
static u32 refs; /* module reference count */
static int add_ovly_info(void *handle, struct dbll_sect_info *sect_info,
u32 addr, u32 bytes);
static int add_ovly_node(struct dsp_uuid *uuid_obj,
enum dsp_dcdobjtype obj_type, IN void *handle);
static int add_ovly_sect(struct nldr_object *nldr_obj,
struct ovly_sect **pList,
struct dbll_sect_info *pSectInfo,
bool *pExists, u32 addr, u32 bytes);
static s32 fake_ovly_write(void *handle, u32 dspAddr, void *buf, u32 bytes,
s32 mtype);
static void free_sects(struct nldr_object *nldr_obj,
struct ovly_sect *phase_sects, u16 alloc_num);
static bool get_symbol_value(void *handle, void *parg, void *rmm_handle,
char *symName, struct dbll_sym_val **sym);
static int load_lib(struct nldr_nodeobject *nldr_node_obj,
struct lib_node *root, struct dsp_uuid uuid,
bool rootPersistent,
struct dbll_library_obj **lib_path,
enum nldr_phase phase, u16 depth);
static int load_ovly(struct nldr_nodeobject *nldr_node_obj,
enum nldr_phase phase);
static int remote_alloc(void **pRef, u16 mem_sect_type, u32 size,
u32 align, u32 *dspAddr, OPTIONAL s32 segmentId,
OPTIONAL s32 req, bool reserve);
static int remote_free(void **pRef, u16 space, u32 dspAddr, u32 size,
bool reserve);
static void unload_lib(struct nldr_nodeobject *nldr_node_obj,
struct lib_node *root);
static void unload_ovly(struct nldr_nodeobject *nldr_node_obj,
enum nldr_phase phase);
static bool find_in_persistent_lib_array(struct nldr_nodeobject *nldr_node_obj,
struct dbll_library_obj *lib);
static u32 find_lcm(u32 a, u32 b);
static u32 find_gcf(u32 a, u32 b);
/*
* ======== nldr_allocate ========
*/
int nldr_allocate(struct nldr_object *nldr_obj, void *priv_ref,
IN CONST struct dcd_nodeprops *node_props,
OUT struct nldr_nodeobject **phNldrNode,
IN bool *pf_phase_split)
{
struct nldr_nodeobject *nldr_node_obj = NULL;
int status = 0;
DBC_REQUIRE(refs > 0);
DBC_REQUIRE(node_props != NULL);
DBC_REQUIRE(phNldrNode != NULL);
DBC_REQUIRE(nldr_obj);
/* Initialize handle in case of failure */
*phNldrNode = NULL;
/* Allocate node object */
nldr_node_obj = kzalloc(sizeof(struct nldr_nodeobject), GFP_KERNEL);
if (nldr_node_obj == NULL) {
status = -ENOMEM;
} else {
nldr_node_obj->pf_phase_split = pf_phase_split;
nldr_node_obj->pers_libs = 0;
nldr_node_obj->nldr_obj = nldr_obj;
nldr_node_obj->priv_ref = priv_ref;
/* Save node's UUID. */
nldr_node_obj->uuid = node_props->ndb_props.ui_node_id;
/*
* Determine if node is a dynamically loaded node from
* ndb_props.
*/
if (node_props->us_load_type == NLDR_DYNAMICLOAD) {
/* Dynamic node */
nldr_node_obj->dynamic = true;
/*
* Extract memory requirements from ndb_props masks
*/
/* Create phase */
nldr_node_obj->seg_id[CREATEDATAFLAGBIT] = (u16)
(node_props->ul_data_mem_seg_mask >> CREATEBIT) &
SEGMASK;
nldr_node_obj->code_data_flag_mask |=
((node_props->ul_data_mem_seg_mask >>
(CREATEBIT + FLAGBIT)) & 1) << CREATEDATAFLAGBIT;
nldr_node_obj->seg_id[CREATECODEFLAGBIT] = (u16)
(node_props->ul_code_mem_seg_mask >>
CREATEBIT) & SEGMASK;
nldr_node_obj->code_data_flag_mask |=
((node_props->ul_code_mem_seg_mask >>
(CREATEBIT + FLAGBIT)) & 1) << CREATECODEFLAGBIT;
/* Execute phase */
nldr_node_obj->seg_id[EXECUTEDATAFLAGBIT] = (u16)
(node_props->ul_data_mem_seg_mask >>
EXECUTEBIT) & SEGMASK;
nldr_node_obj->code_data_flag_mask |=
((node_props->ul_data_mem_seg_mask >>
(EXECUTEBIT + FLAGBIT)) & 1) <<
EXECUTEDATAFLAGBIT;
nldr_node_obj->seg_id[EXECUTECODEFLAGBIT] = (u16)
(node_props->ul_code_mem_seg_mask >>
EXECUTEBIT) & SEGMASK;
nldr_node_obj->code_data_flag_mask |=
((node_props->ul_code_mem_seg_mask >>
(EXECUTEBIT + FLAGBIT)) & 1) <<
EXECUTECODEFLAGBIT;
/* Delete phase */
nldr_node_obj->seg_id[DELETEDATAFLAGBIT] = (u16)
(node_props->ul_data_mem_seg_mask >> DELETEBIT) &
SEGMASK;
nldr_node_obj->code_data_flag_mask |=
((node_props->ul_data_mem_seg_mask >>
(DELETEBIT + FLAGBIT)) & 1) << DELETEDATAFLAGBIT;
nldr_node_obj->seg_id[DELETECODEFLAGBIT] = (u16)
(node_props->ul_code_mem_seg_mask >>
DELETEBIT) & SEGMASK;
nldr_node_obj->code_data_flag_mask |=
((node_props->ul_code_mem_seg_mask >>
(DELETEBIT + FLAGBIT)) & 1) << DELETECODEFLAGBIT;
} else {
/* Non-dynamically loaded nodes are part of the
* base image */
nldr_node_obj->root.lib = nldr_obj->base_lib;
/* Check for overlay node */
if (node_props->us_load_type == NLDR_OVLYLOAD)
nldr_node_obj->overlay = true;
}
*phNldrNode = (struct nldr_nodeobject *)nldr_node_obj;
}
/* Cleanup on failure */
if (DSP_FAILED(status) && nldr_node_obj)
kfree(nldr_node_obj);
DBC_ENSURE((DSP_SUCCEEDED(status) && *phNldrNode)
|| (DSP_FAILED(status) && *phNldrNode == NULL));
return status;
}
/*
* ======== nldr_create ========
*/
int nldr_create(OUT struct nldr_object **phNldr,
struct dev_object *hdev_obj,
IN CONST struct nldr_attrs *pattrs)
{
struct cod_manager *cod_mgr; /* COD manager */
char *psz_coff_buf = NULL;
char sz_zl_file[COD_MAXPATHLENGTH];
struct nldr_object *nldr_obj = NULL;
struct dbll_attrs save_attrs;
struct dbll_attrs new_attrs;
dbll_flags flags;
u32 ul_entry;
u16 dload_segs = 0;
struct mem_seg_info *mem_info_obj;
u32 ul_len = 0;
u32 ul_addr;
struct rmm_segment *rmm_segs = NULL;
u16 i;
int status = 0;
DBC_REQUIRE(refs > 0);
DBC_REQUIRE(phNldr != NULL);
DBC_REQUIRE(hdev_obj != NULL);
DBC_REQUIRE(pattrs != NULL);
DBC_REQUIRE(pattrs->pfn_ovly != NULL);
DBC_REQUIRE(pattrs->pfn_write != NULL);
/* Allocate dynamic loader object */
nldr_obj = kzalloc(sizeof(struct nldr_object), GFP_KERNEL);
if (nldr_obj) {
nldr_obj->hdev_obj = hdev_obj;
/* warning, lazy status checking alert! */
dev_get_cod_mgr(hdev_obj, &cod_mgr);
if (cod_mgr) {
status = cod_get_loader(cod_mgr, &nldr_obj->dbll);
DBC_ASSERT(DSP_SUCCEEDED(status));
status = cod_get_base_lib(cod_mgr, &nldr_obj->base_lib);
DBC_ASSERT(DSP_SUCCEEDED(status));
status =
cod_get_base_name(cod_mgr, sz_zl_file,
COD_MAXPATHLENGTH);
DBC_ASSERT(DSP_SUCCEEDED(status));
}
status = 0;
/* end lazy status checking */
nldr_obj->us_dsp_mau_size = pattrs->us_dsp_mau_size;
nldr_obj->us_dsp_word_size = pattrs->us_dsp_word_size;
nldr_obj->ldr_fxns = ldr_fxns;
if (!(nldr_obj->ldr_fxns.init_fxn()))
status = -ENOMEM;
} else {
status = -ENOMEM;
}
/* Create the DCD Manager */
if (DSP_SUCCEEDED(status))
status = dcd_create_manager(NULL, &nldr_obj->hdcd_mgr);
/* Get dynamic loading memory sections from base lib */
if (DSP_SUCCEEDED(status)) {
status =
nldr_obj->ldr_fxns.get_sect_fxn(nldr_obj->base_lib,
DYNMEMSECT, &ul_addr,
&ul_len);
if (DSP_SUCCEEDED(status)) {
psz_coff_buf =
kzalloc(ul_len * nldr_obj->us_dsp_mau_size,
GFP_KERNEL);
if (!psz_coff_buf)
status = -ENOMEM;
} else {
/* Ok to not have dynamic loading memory */
status = 0;
ul_len = 0;
dev_dbg(bridge, "%s: failed - no dynamic loading mem "
"segments: 0x%x\n", __func__, status);
}
}
if (DSP_SUCCEEDED(status) && ul_len > 0) {
/* Read section containing dynamic load mem segments */
status =
nldr_obj->ldr_fxns.read_sect_fxn(nldr_obj->base_lib,
DYNMEMSECT, psz_coff_buf,
ul_len);
}
if (DSP_SUCCEEDED(status) && ul_len > 0) {
/* Parse memory segment data */
dload_segs = (u16) (*((u32 *) psz_coff_buf));
if (dload_segs > MAXMEMSEGS)
status = -EBADF;
}
/* Parse dynamic load memory segments */
if (DSP_SUCCEEDED(status) && dload_segs > 0) {
rmm_segs = kzalloc(sizeof(struct rmm_segment) * dload_segs,
GFP_KERNEL);
nldr_obj->seg_table =
kzalloc(sizeof(u32) * dload_segs, GFP_KERNEL);
if (rmm_segs == NULL || nldr_obj->seg_table == NULL) {
status = -ENOMEM;
} else {
nldr_obj->dload_segs = dload_segs;
mem_info_obj = (struct mem_seg_info *)(psz_coff_buf +
sizeof(u32));
for (i = 0; i < dload_segs; i++) {
rmm_segs[i].base = (mem_info_obj + i)->base;
rmm_segs[i].length = (mem_info_obj + i)->len;
rmm_segs[i].space = 0;
nldr_obj->seg_table[i] =
(mem_info_obj + i)->type;
dev_dbg(bridge,
"(proc) DLL MEMSEGMENT: %d, "
"Base: 0x%x, Length: 0x%x\n", i,
rmm_segs[i].base, rmm_segs[i].length);
}
}
}
/* Create Remote memory manager */
if (DSP_SUCCEEDED(status))
status = rmm_create(&nldr_obj->rmm, rmm_segs, dload_segs);
if (DSP_SUCCEEDED(status)) {
/* set the alloc, free, write functions for loader */
nldr_obj->ldr_fxns.get_attrs_fxn(nldr_obj->dbll, &save_attrs);
new_attrs = save_attrs;
new_attrs.alloc = (dbll_alloc_fxn) remote_alloc;
new_attrs.free = (dbll_free_fxn) remote_free;
new_attrs.sym_lookup = (dbll_sym_lookup) get_symbol_value;
new_attrs.sym_handle = nldr_obj;
new_attrs.write = (dbll_write_fxn) pattrs->pfn_write;
nldr_obj->ovly_fxn = pattrs->pfn_ovly;
nldr_obj->write_fxn = pattrs->pfn_write;
nldr_obj->ldr_attrs = new_attrs;
}
kfree(rmm_segs);
kfree(psz_coff_buf);
/* Get overlay nodes */
if (DSP_SUCCEEDED(status)) {
status =
cod_get_base_name(cod_mgr, sz_zl_file, COD_MAXPATHLENGTH);
/* lazy check */
DBC_ASSERT(DSP_SUCCEEDED(status));
/* First count number of overlay nodes */
status =
dcd_get_objects(nldr_obj->hdcd_mgr, sz_zl_file,
add_ovly_node, (void *)nldr_obj);
/* Now build table of overlay nodes */
if (DSP_SUCCEEDED(status) && nldr_obj->ovly_nodes > 0) {
/* Allocate table for overlay nodes */
nldr_obj->ovly_table =
kzalloc(sizeof(struct ovly_node) *
nldr_obj->ovly_nodes, GFP_KERNEL);
/* Put overlay nodes in the table */
nldr_obj->ovly_nid = 0;
status = dcd_get_objects(nldr_obj->hdcd_mgr, sz_zl_file,
add_ovly_node,
(void *)nldr_obj);
}
}
/* Do a fake reload of the base image to get overlay section info */
if (DSP_SUCCEEDED(status) && nldr_obj->ovly_nodes > 0) {
save_attrs.write = fake_ovly_write;
save_attrs.log_write = add_ovly_info;
save_attrs.log_write_handle = nldr_obj;
flags = DBLL_CODE | DBLL_DATA | DBLL_SYMB;
status = nldr_obj->ldr_fxns.load_fxn(nldr_obj->base_lib, flags,
&save_attrs, &ul_entry);
}
if (DSP_SUCCEEDED(status)) {
*phNldr = (struct nldr_object *)nldr_obj;
} else {
if (nldr_obj)
nldr_delete((struct nldr_object *)nldr_obj);
*phNldr = NULL;
}
/* FIXME:Temp. Fix. Must be removed */
DBC_ENSURE((DSP_SUCCEEDED(status) && *phNldr)
|| (DSP_FAILED(status) && (*phNldr == NULL)));
return status;
}
/*
* ======== nldr_delete ========
*/
void nldr_delete(struct nldr_object *nldr_obj)
{
struct ovly_sect *ovly_section;
struct ovly_sect *next;
u16 i;
DBC_REQUIRE(refs > 0);
DBC_REQUIRE(nldr_obj);
nldr_obj->ldr_fxns.exit_fxn();
if (nldr_obj->rmm)
rmm_delete(nldr_obj->rmm);
kfree(nldr_obj->seg_table);
if (nldr_obj->hdcd_mgr)
dcd_destroy_manager(nldr_obj->hdcd_mgr);
/* Free overlay node information */
if (nldr_obj->ovly_table) {
for (i = 0; i < nldr_obj->ovly_nodes; i++) {
ovly_section =
nldr_obj->ovly_table[i].create_sects_list;
while (ovly_section) {
next = ovly_section->next_sect;
kfree(ovly_section);
ovly_section = next;
}
ovly_section =
nldr_obj->ovly_table[i].delete_sects_list;
while (ovly_section) {
next = ovly_section->next_sect;
kfree(ovly_section);
ovly_section = next;
}
ovly_section =
nldr_obj->ovly_table[i].execute_sects_list;
while (ovly_section) {
next = ovly_section->next_sect;
kfree(ovly_section);
ovly_section = next;
}
ovly_section = nldr_obj->ovly_table[i].other_sects_list;
while (ovly_section) {
next = ovly_section->next_sect;
kfree(ovly_section);
ovly_section = next;
}
}
kfree(nldr_obj->ovly_table);
}
kfree(nldr_obj);
}
/*
* ======== nldr_exit ========
* Discontinue usage of NLDR module.
*/
void nldr_exit(void)
{
DBC_REQUIRE(refs > 0);
refs--;
if (refs == 0)
rmm_exit();
DBC_ENSURE(refs >= 0);
}
/*
* ======== nldr_get_fxn_addr ========
*/
int nldr_get_fxn_addr(struct nldr_nodeobject *nldr_node_obj,
char *pstrFxn, u32 * pulAddr)
{
struct dbll_sym_val *dbll_sym;
struct nldr_object *nldr_obj;
int status = 0;
bool status1 = false;
s32 i = 0;
struct lib_node root = { NULL, 0, NULL };
DBC_REQUIRE(refs > 0);
DBC_REQUIRE(nldr_node_obj);
DBC_REQUIRE(pulAddr != NULL);
DBC_REQUIRE(pstrFxn != NULL);
nldr_obj = nldr_node_obj->nldr_obj;
/* Called from node_create(), node_delete(), or node_run(). */
if (nldr_node_obj->dynamic && *nldr_node_obj->pf_phase_split) {
switch (nldr_node_obj->phase) {
case NLDR_CREATE:
root = nldr_node_obj->create_lib;
break;
case NLDR_EXECUTE:
root = nldr_node_obj->execute_lib;
break;
case NLDR_DELETE:
root = nldr_node_obj->delete_lib;
break;
default:
DBC_ASSERT(false);
break;
}
} else {
/* for Overlay nodes or non-split Dynamic nodes */
root = nldr_node_obj->root;
}
status1 =
nldr_obj->ldr_fxns.get_c_addr_fxn(root.lib, pstrFxn, &dbll_sym);
if (!status1)
status1 =
nldr_obj->ldr_fxns.get_addr_fxn(root.lib, pstrFxn,
&dbll_sym);
/* If symbol not found, check dependent libraries */
if (!status1) {
for (i = 0; i < root.dep_libs; i++) {
status1 =
nldr_obj->ldr_fxns.get_addr_fxn(root.dep_libs_tree
[i].lib, pstrFxn,
&dbll_sym);
if (!status1) {
status1 =
nldr_obj->ldr_fxns.
get_c_addr_fxn(root.dep_libs_tree[i].lib,
pstrFxn, &dbll_sym);
}
if (status1) {
/* Symbol found */
break;
}
}
}
/* Check persistent libraries */
if (!status1) {
for (i = 0; i < nldr_node_obj->pers_libs; i++) {
status1 =
nldr_obj->ldr_fxns.
get_addr_fxn(nldr_node_obj->pers_lib_table[i].lib,
pstrFxn, &dbll_sym);
if (!status1) {
status1 =
nldr_obj->ldr_fxns.
get_c_addr_fxn(nldr_node_obj->pers_lib_table
[i].lib, pstrFxn, &dbll_sym);
}
if (status1) {
/* Symbol found */
break;
}
}
}
if (status1)
*pulAddr = dbll_sym->value;
else
status = -ESPIPE;
return status;
}
/*
* ======== nldr_get_rmm_manager ========
* Given a NLDR object, retrieve RMM Manager Handle
*/
int nldr_get_rmm_manager(struct nldr_object *hNldrObject,
OUT struct rmm_target_obj **phRmmMgr)
{
int status = 0;
struct nldr_object *nldr_obj = hNldrObject;
DBC_REQUIRE(phRmmMgr != NULL);
if (hNldrObject) {
*phRmmMgr = nldr_obj->rmm;
} else {
*phRmmMgr = NULL;
status = -EFAULT;
}
DBC_ENSURE(DSP_SUCCEEDED(status) || ((phRmmMgr != NULL) &&
(*phRmmMgr == NULL)));
return status;
}
/*
* ======== nldr_init ========
* Initialize the NLDR module.
*/
bool nldr_init(void)
{
DBC_REQUIRE(refs >= 0);
if (refs == 0)
rmm_init();
refs++;
DBC_ENSURE(refs > 0);
return true;
}
/*
* ======== nldr_load ========
*/
int nldr_load(struct nldr_nodeobject *nldr_node_obj,
enum nldr_phase phase)
{
struct nldr_object *nldr_obj;
struct dsp_uuid lib_uuid;
int status = 0;
DBC_REQUIRE(refs > 0);
DBC_REQUIRE(nldr_node_obj);
nldr_obj = nldr_node_obj->nldr_obj;
if (nldr_node_obj->dynamic) {
nldr_node_obj->phase = phase;
lib_uuid = nldr_node_obj->uuid;
/* At this point, we may not know if node is split into
* different libraries. So we'll go ahead and load the
* library, and then save the pointer to the appropriate
* location after we know. */
status =
load_lib(nldr_node_obj, &nldr_node_obj->root, lib_uuid,
false, nldr_node_obj->lib_path, phase, 0);
if (DSP_SUCCEEDED(status)) {
if (*nldr_node_obj->pf_phase_split) {
switch (phase) {
case NLDR_CREATE:
nldr_node_obj->create_lib =
nldr_node_obj->root;
break;
case NLDR_EXECUTE:
nldr_node_obj->execute_lib =
nldr_node_obj->root;
break;
case NLDR_DELETE:
nldr_node_obj->delete_lib =
nldr_node_obj->root;
break;
default:
DBC_ASSERT(false);
break;
}
}
}
} else {
if (nldr_node_obj->overlay)
status = load_ovly(nldr_node_obj, phase);
}
return status;
}
/*
* ======== nldr_unload ========
*/
int nldr_unload(struct nldr_nodeobject *nldr_node_obj,
enum nldr_phase phase)
{
int status = 0;
struct lib_node *root_lib = NULL;
s32 i = 0;
DBC_REQUIRE(refs > 0);
DBC_REQUIRE(nldr_node_obj);
if (nldr_node_obj != NULL) {
if (nldr_node_obj->dynamic) {
if (*nldr_node_obj->pf_phase_split) {
switch (phase) {
case NLDR_CREATE:
root_lib = &nldr_node_obj->create_lib;
break;
case NLDR_EXECUTE:
root_lib = &nldr_node_obj->execute_lib;
break;
case NLDR_DELETE:
root_lib = &nldr_node_obj->delete_lib;
/* Unload persistent libraries */
for (i = 0;
i < nldr_node_obj->pers_libs;
i++) {
unload_lib(nldr_node_obj,
&nldr_node_obj->
pers_lib_table[i]);
}
nldr_node_obj->pers_libs = 0;
break;
default:
DBC_ASSERT(false);
break;
}
} else {
/* Unload main library */
root_lib = &nldr_node_obj->root;
}
if (root_lib)
unload_lib(nldr_node_obj, root_lib);
} else {
if (nldr_node_obj->overlay)
unload_ovly(nldr_node_obj, phase);
}
}
return status;
}
/*
* ======== add_ovly_info ========
*/
static int add_ovly_info(void *handle, struct dbll_sect_info *sect_info,
u32 addr, u32 bytes)
{
char *node_name;
char *sect_name = (char *)sect_info->name;
bool sect_exists = false;
char seps = ':';
char *pch;
u16 i;
struct nldr_object *nldr_obj = (struct nldr_object *)handle;
int status = 0;
/* Is this an overlay section (load address != run address)? */
if (sect_info->sect_load_addr == sect_info->sect_run_addr)
goto func_end;
/* Find the node it belongs to */
for (i = 0; i < nldr_obj->ovly_nodes; i++) {
node_name = nldr_obj->ovly_table[i].node_name;
DBC_REQUIRE(node_name);
if (strncmp(node_name, sect_name + 1, strlen(node_name)) == 0) {
/* Found the node */
break;
}
}
if (!(i < nldr_obj->ovly_nodes))
goto func_end;
/* Determine which phase this section belongs to */
for (pch = sect_name + 1; *pch && *pch != seps; pch++)
;;
if (*pch) {
pch++; /* Skip over the ':' */
if (strncmp(pch, PCREATE, strlen(PCREATE)) == 0) {
status =
add_ovly_sect(nldr_obj,
&nldr_obj->
ovly_table[i].create_sects_list,
sect_info, &sect_exists, addr, bytes);
if (DSP_SUCCEEDED(status) && !sect_exists)
nldr_obj->ovly_table[i].create_sects++;
} else if (strncmp(pch, PDELETE, strlen(PDELETE)) == 0) {
status =
add_ovly_sect(nldr_obj,
&nldr_obj->
ovly_table[i].delete_sects_list,
sect_info, &sect_exists, addr, bytes);
if (DSP_SUCCEEDED(status) && !sect_exists)
nldr_obj->ovly_table[i].delete_sects++;
} else if (strncmp(pch, PEXECUTE, strlen(PEXECUTE)) == 0) {
status =
add_ovly_sect(nldr_obj,
&nldr_obj->
ovly_table[i].execute_sects_list,
sect_info, &sect_exists, addr, bytes);
if (DSP_SUCCEEDED(status) && !sect_exists)
nldr_obj->ovly_table[i].execute_sects++;
} else {
/* Put in "other" sectins */
status =
add_ovly_sect(nldr_obj,
&nldr_obj->
ovly_table[i].other_sects_list,
sect_info, &sect_exists, addr, bytes);
if (DSP_SUCCEEDED(status) && !sect_exists)
nldr_obj->ovly_table[i].other_sects++;
}
}
func_end:
return status;
}
/*
* ======== add_ovly_node =========
* Callback function passed to dcd_get_objects.
*/
static int add_ovly_node(struct dsp_uuid *uuid_obj,
enum dsp_dcdobjtype obj_type, IN void *handle)
{
struct nldr_object *nldr_obj = (struct nldr_object *)handle;
char *node_name = NULL;
char *pbuf = NULL;
u32 len;
struct dcd_genericobj obj_def;
int status = 0;
if (obj_type != DSP_DCDNODETYPE)
goto func_end;
status =
dcd_get_object_def(nldr_obj->hdcd_mgr, uuid_obj, obj_type,
&obj_def);
if (DSP_FAILED(status))
goto func_end;
/* If overlay node, add to the list */
if (obj_def.obj_data.node_obj.us_load_type == NLDR_OVLYLOAD) {
if (nldr_obj->ovly_table == NULL) {
nldr_obj->ovly_nodes++;
} else {
/* Add node to table */
nldr_obj->ovly_table[nldr_obj->ovly_nid].uuid =
*uuid_obj;
DBC_REQUIRE(obj_def.obj_data.node_obj.ndb_props.
ac_name);
len =
strlen(obj_def.obj_data.node_obj.ndb_props.ac_name);
node_name = obj_def.obj_data.node_obj.ndb_props.ac_name;
pbuf = kzalloc(len + 1, GFP_KERNEL);
if (pbuf == NULL) {
status = -ENOMEM;
} else {
strncpy(pbuf, node_name, len);
nldr_obj->ovly_table[nldr_obj->ovly_nid].
node_name = pbuf;
nldr_obj->ovly_nid++;
}
}
}
/* These were allocated in dcd_get_object_def */
kfree(obj_def.obj_data.node_obj.pstr_create_phase_fxn);
kfree(obj_def.obj_data.node_obj.pstr_execute_phase_fxn);
kfree(obj_def.obj_data.node_obj.pstr_delete_phase_fxn);
kfree(obj_def.obj_data.node_obj.pstr_i_alg_name);
func_end:
return status;
}
/*
* ======== add_ovly_sect ========
*/
static int add_ovly_sect(struct nldr_object *nldr_obj,
struct ovly_sect **pList,
struct dbll_sect_info *pSectInfo,
bool *pExists, u32 addr, u32 bytes)
{
struct ovly_sect *new_sect = NULL;
struct ovly_sect *last_sect;
struct ovly_sect *ovly_section;
int status = 0;
ovly_section = last_sect = *pList;
*pExists = false;
while (ovly_section) {
/*
* Make sure section has not already been added. Multiple
* 'write' calls may be made to load the section.
*/
if (ovly_section->sect_load_addr == addr) {
/* Already added */
*pExists = true;
break;
}
last_sect = ovly_section;
ovly_section = ovly_section->next_sect;
}
if (!ovly_section) {
/* New section */
new_sect = kzalloc(sizeof(struct ovly_sect), GFP_KERNEL);
if (new_sect == NULL) {
status = -ENOMEM;
} else {
new_sect->sect_load_addr = addr;
new_sect->sect_run_addr = pSectInfo->sect_run_addr +
(addr - pSectInfo->sect_load_addr);
new_sect->size = bytes;
new_sect->page = pSectInfo->type;
}
/* Add to the list */
if (DSP_SUCCEEDED(status)) {
if (*pList == NULL) {
/* First in the list */
*pList = new_sect;
} else {
last_sect->next_sect = new_sect;
}
}
}
return status;
}
/*
* ======== fake_ovly_write ========
*/
static s32 fake_ovly_write(void *handle, u32 dspAddr, void *buf, u32 bytes,
s32 mtype)
{
return (s32) bytes;
}
/*
* ======== free_sects ========
*/
static void free_sects(struct nldr_object *nldr_obj,
struct ovly_sect *phase_sects, u16 alloc_num)
{
struct ovly_sect *ovly_section = phase_sects;
u16 i = 0;
bool ret;
while (ovly_section && i < alloc_num) {
/* 'Deallocate' */
/* segid - page not supported yet */
/* Reserved memory */
ret =
rmm_free(nldr_obj->rmm, 0, ovly_section->sect_run_addr,
ovly_section->size, true);
DBC_ASSERT(ret);
ovly_section = ovly_section->next_sect;
i++;
}
}
/*
* ======== get_symbol_value ========
* Find symbol in library's base image. If not there, check dependent
* libraries.
*/
static bool get_symbol_value(void *handle, void *parg, void *rmm_handle,
char *name, struct dbll_sym_val **sym)
{
struct nldr_object *nldr_obj = (struct nldr_object *)handle;
struct nldr_nodeobject *nldr_node_obj =
(struct nldr_nodeobject *)rmm_handle;
struct lib_node *root = (struct lib_node *)parg;
u16 i;
bool status = false;
/* check the base image */
status = nldr_obj->ldr_fxns.get_addr_fxn(nldr_obj->base_lib, name, sym);
if (!status)
status =
nldr_obj->ldr_fxns.get_c_addr_fxn(nldr_obj->base_lib, name,
sym);
/*
* Check in root lib itself. If the library consists of
* multiple object files linked together, some symbols in the
* library may need to be resolved.
*/
if (!status) {
status = nldr_obj->ldr_fxns.get_addr_fxn(root->lib, name, sym);
if (!status) {
status =
nldr_obj->ldr_fxns.get_c_addr_fxn(root->lib, name,
sym);
}
}
/*
* Check in root lib's dependent libraries, but not dependent
* libraries' dependents.
*/
if (!status) {
for (i = 0; i < root->dep_libs; i++) {
status =
nldr_obj->ldr_fxns.get_addr_fxn(root->dep_libs_tree
[i].lib, name, sym);
if (!status) {
status =
nldr_obj->ldr_fxns.
get_c_addr_fxn(root->dep_libs_tree[i].lib,
name, sym);
}
if (status) {
/* Symbol found */
break;
}
}
}
/*
* Check in persistent libraries
*/
if (!status) {
for (i = 0; i < nldr_node_obj->pers_libs; i++) {
status =
nldr_obj->ldr_fxns.
get_addr_fxn(nldr_node_obj->pers_lib_table[i].lib,
name, sym);
if (!status) {
status = nldr_obj->ldr_fxns.get_c_addr_fxn
(nldr_node_obj->pers_lib_table[i].lib, name,
sym);
}
if (status) {
/* Symbol found */
break;
}
}
}
return status;
}
/*
* ======== load_lib ========
* Recursively load library and all its dependent libraries. The library
* we're loading is specified by a uuid.
*/
static int load_lib(struct nldr_nodeobject *nldr_node_obj,
struct lib_node *root, struct dsp_uuid uuid,
bool rootPersistent,
struct dbll_library_obj **lib_path,
enum nldr_phase phase, u16 depth)
{
struct nldr_object *nldr_obj = nldr_node_obj->nldr_obj;
u16 nd_libs = 0; /* Number of dependent libraries */
u16 np_libs = 0; /* Number of persistent libraries */
u16 nd_libs_loaded = 0; /* Number of dep. libraries loaded */
u16 i;
u32 entry;
u32 dw_buf_size = NLDR_MAXPATHLENGTH;
dbll_flags flags = DBLL_SYMB | DBLL_CODE | DBLL_DATA | DBLL_DYNAMIC;
struct dbll_attrs new_attrs;
char *psz_file_name = NULL;
struct dsp_uuid *dep_lib_uui_ds = NULL;
bool *persistent_dep_libs = NULL;
int status = 0;
bool lib_status = false;
struct lib_node *dep_lib;
if (depth > MAXDEPTH) {
/* Error */
DBC_ASSERT(false);
}
root->lib = NULL;
/* Allocate a buffer for library file name of size DBL_MAXPATHLENGTH */
psz_file_name = kzalloc(DBLL_MAXPATHLENGTH, GFP_KERNEL);
if (psz_file_name == NULL)
status = -ENOMEM;
if (DSP_SUCCEEDED(status)) {
/* Get the name of the library */
if (depth == 0) {
status =
dcd_get_library_name(nldr_node_obj->nldr_obj->
hdcd_mgr, &uuid, psz_file_name,
&dw_buf_size, phase,
nldr_node_obj->pf_phase_split);
} else {
/* Dependent libraries are registered with a phase */
status =
dcd_get_library_name(nldr_node_obj->nldr_obj->
hdcd_mgr, &uuid, psz_file_name,
&dw_buf_size, NLDR_NOPHASE,
NULL);
}
}
if (DSP_SUCCEEDED(status)) {
/* Open the library, don't load symbols */
status =
nldr_obj->ldr_fxns.open_fxn(nldr_obj->dbll, psz_file_name,
DBLL_NOLOAD, &root->lib);
}
/* Done with file name */
kfree(psz_file_name);
/* Check to see if library not already loaded */
if (DSP_SUCCEEDED(status) && rootPersistent) {
lib_status =
find_in_persistent_lib_array(nldr_node_obj, root->lib);
/* Close library */
if (lib_status) {
nldr_obj->ldr_fxns.close_fxn(root->lib);
return 0;
}
}
if (DSP_SUCCEEDED(status)) {
/* Check for circular dependencies. */
for (i = 0; i < depth; i++) {
if (root->lib == lib_path[i]) {
/* This condition could be checked by a
* tool at build time. */
status = -EILSEQ;
}
}
}
if (DSP_SUCCEEDED(status)) {
/* Add library to current path in dependency tree */
lib_path[depth] = root->lib;
depth++;
/* Get number of dependent libraries */
status =
dcd_get_num_dep_libs(nldr_node_obj->nldr_obj->hdcd_mgr,
&uuid, &nd_libs, &np_libs, phase);
}
DBC_ASSERT(nd_libs >= np_libs);
if (DSP_SUCCEEDED(status)) {
if (!(*nldr_node_obj->pf_phase_split))
np_libs = 0;
/* nd_libs = #of dependent libraries */
root->dep_libs = nd_libs - np_libs;
if (nd_libs > 0) {
dep_lib_uui_ds = kzalloc(sizeof(struct dsp_uuid) *
nd_libs, GFP_KERNEL);
persistent_dep_libs =
kzalloc(sizeof(bool) * nd_libs, GFP_KERNEL);
if (!dep_lib_uui_ds || !persistent_dep_libs)
status = -ENOMEM;
if (root->dep_libs > 0) {
/* Allocate arrays for dependent lib UUIDs,
* lib nodes */
root->dep_libs_tree = kzalloc
(sizeof(struct lib_node) *
(root->dep_libs), GFP_KERNEL);
if (!(root->dep_libs_tree))
status = -ENOMEM;
}
if (DSP_SUCCEEDED(status)) {
/* Get the dependent library UUIDs */
status =
dcd_get_dep_libs(nldr_node_obj->
nldr_obj->hdcd_mgr, &uuid,
nd_libs, dep_lib_uui_ds,
persistent_dep_libs,
phase);
}
}
}
/*
* Recursively load dependent libraries.
*/
if (DSP_SUCCEEDED(status)) {
for (i = 0; i < nd_libs; i++) {
/* If root library is NOT persistent, and dep library
* is, then record it. If root library IS persistent,
* the deplib is already included */
if (!rootPersistent && persistent_dep_libs[i] &&
*nldr_node_obj->pf_phase_split) {
if ((nldr_node_obj->pers_libs) >= MAXLIBS) {
status = -EILSEQ;
break;
}
/* Allocate library outside of phase */
dep_lib =
&nldr_node_obj->pers_lib_table
[nldr_node_obj->pers_libs];
} else {
if (rootPersistent)
persistent_dep_libs[i] = true;
/* Allocate library within phase */
dep_lib = &root->dep_libs_tree[nd_libs_loaded];
}
status = load_lib(nldr_node_obj, dep_lib,
dep_lib_uui_ds[i],
persistent_dep_libs[i], lib_path,
phase, depth);
if (DSP_SUCCEEDED(status)) {
if ((status != 0) &&
!rootPersistent && persistent_dep_libs[i] &&
*nldr_node_obj->pf_phase_split) {
(nldr_node_obj->pers_libs)++;
} else {
if (!persistent_dep_libs[i] ||
!(*nldr_node_obj->pf_phase_split)) {
nd_libs_loaded++;
}
}
} else {
break;
}
}
}
/* Now we can load the root library */
if (DSP_SUCCEEDED(status)) {
new_attrs = nldr_obj->ldr_attrs;
new_attrs.sym_arg = root;
new_attrs.rmm_handle = nldr_node_obj;
new_attrs.input_params = nldr_node_obj->priv_ref;
new_attrs.base_image = false;
status =
nldr_obj->ldr_fxns.load_fxn(root->lib, flags, &new_attrs,
&entry);
}
/*
* In case of failure, unload any dependent libraries that
* were loaded, and close the root library.
* (Persistent libraries are unloaded from the very top)
*/
if (DSP_FAILED(status)) {
if (phase != NLDR_EXECUTE) {
for (i = 0; i < nldr_node_obj->pers_libs; i++)
unload_lib(nldr_node_obj,
&nldr_node_obj->pers_lib_table[i]);
nldr_node_obj->pers_libs = 0;
}
for (i = 0; i < nd_libs_loaded; i++)
unload_lib(nldr_node_obj, &root->dep_libs_tree[i]);
if (root->lib)
nldr_obj->ldr_fxns.close_fxn(root->lib);
}
/* Going up one node in the dependency tree */
depth--;
kfree(dep_lib_uui_ds);
dep_lib_uui_ds = NULL;
kfree(persistent_dep_libs);
persistent_dep_libs = NULL;
return status;
}
/*
* ======== load_ovly ========
*/
static int load_ovly(struct nldr_nodeobject *nldr_node_obj,
enum nldr_phase phase)
{
struct nldr_object *nldr_obj = nldr_node_obj->nldr_obj;
struct ovly_node *po_node = NULL;
struct ovly_sect *phase_sects = NULL;
struct ovly_sect *other_sects_list = NULL;
u16 i;
u16 alloc_num = 0;
u16 other_alloc = 0;
u16 *ref_count = NULL;
u16 *other_ref = NULL;
u32 bytes;
struct ovly_sect *ovly_section;
int status = 0;
/* Find the node in the table */
for (i = 0; i < nldr_obj->ovly_nodes; i++) {
if (IS_EQUAL_UUID
(nldr_node_obj->uuid, nldr_obj->ovly_table[i].uuid)) {
/* Found it */
po_node = &(nldr_obj->ovly_table[i]);
break;
}
}
DBC_ASSERT(i < nldr_obj->ovly_nodes);
if (!po_node) {
status = -ENOENT;
goto func_end;
}
switch (phase) {
case NLDR_CREATE:
ref_count = &(po_node->create_ref);
other_ref = &(po_node->other_ref);
phase_sects = po_node->create_sects_list;
other_sects_list = po_node->other_sects_list;
break;
case NLDR_EXECUTE:
ref_count = &(po_node->execute_ref);
phase_sects = po_node->execute_sects_list;
break;
case NLDR_DELETE:
ref_count = &(po_node->delete_ref);
phase_sects = po_node->delete_sects_list;
break;
default:
DBC_ASSERT(false);
break;
}
if (ref_count == NULL)
goto func_end;
if (*ref_count != 0)
goto func_end;
/* 'Allocate' memory for overlay sections of this phase */
ovly_section = phase_sects;
while (ovly_section) {
/* allocate *//* page not supported yet */
/* reserve *//* align */
status = rmm_alloc(nldr_obj->rmm, 0, ovly_section->size, 0,
&(ovly_section->sect_run_addr), true);
if (DSP_SUCCEEDED(status)) {
ovly_section = ovly_section->next_sect;
alloc_num++;
} else {
break;
}
}
if (other_ref && *other_ref == 0) {
/* 'Allocate' memory for other overlay sections
* (create phase) */
if (DSP_SUCCEEDED(status)) {
ovly_section = other_sects_list;
while (ovly_section) {
/* page not supported *//* align */
/* reserve */
status =
rmm_alloc(nldr_obj->rmm, 0,
ovly_section->size, 0,
&(ovly_section->sect_run_addr),
true);
if (DSP_SUCCEEDED(status)) {
ovly_section = ovly_section->next_sect;
other_alloc++;
} else {
break;
}
}
}
}
if (*ref_count == 0) {
if (DSP_SUCCEEDED(status)) {
/* Load sections for this phase */
ovly_section = phase_sects;
while (ovly_section && DSP_SUCCEEDED(status)) {
bytes =
(*nldr_obj->ovly_fxn) (nldr_node_obj->
priv_ref,
ovly_section->
sect_run_addr,
ovly_section->
sect_load_addr,
ovly_section->size,
ovly_section->page);
if (bytes != ovly_section->size)
status = -EPERM;
ovly_section = ovly_section->next_sect;
}
}
}
if (other_ref && *other_ref == 0) {
if (DSP_SUCCEEDED(status)) {
/* Load other sections (create phase) */
ovly_section = other_sects_list;
while (ovly_section && DSP_SUCCEEDED(status)) {
bytes =
(*nldr_obj->ovly_fxn) (nldr_node_obj->
priv_ref,
ovly_section->
sect_run_addr,
ovly_section->
sect_load_addr,
ovly_section->size,
ovly_section->page);
if (bytes != ovly_section->size)
status = -EPERM;
ovly_section = ovly_section->next_sect;
}
}
}
if (DSP_FAILED(status)) {
/* 'Deallocate' memory */
free_sects(nldr_obj, phase_sects, alloc_num);
free_sects(nldr_obj, other_sects_list, other_alloc);
}
func_end:
if (DSP_SUCCEEDED(status) && (ref_count != NULL)) {
*ref_count += 1;
if (other_ref)
*other_ref += 1;
}
return status;
}
/*
* ======== remote_alloc ========
*/
static int remote_alloc(void **pRef, u16 space, u32 size,
u32 align, u32 *dspAddr,
OPTIONAL s32 segmentId, OPTIONAL s32 req,
bool reserve)
{
struct nldr_nodeobject *hnode = (struct nldr_nodeobject *)pRef;
struct nldr_object *nldr_obj;
struct rmm_target_obj *rmm;
u16 mem_phase_bit = MAXFLAGS;
u16 segid = 0;
u16 i;
u16 mem_sect_type;
u32 word_size;
struct rmm_addr *rmm_addr_obj = (struct rmm_addr *)dspAddr;
bool mem_load_req = false;
int status = -ENOMEM; /* Set to fail */
DBC_REQUIRE(hnode);
DBC_REQUIRE(space == DBLL_CODE || space == DBLL_DATA ||
space == DBLL_BSS);
nldr_obj = hnode->nldr_obj;
rmm = nldr_obj->rmm;
/* Convert size to DSP words */
word_size =
(size + nldr_obj->us_dsp_word_size -
1) / nldr_obj->us_dsp_word_size;
/* Modify memory 'align' to account for DSP cache line size */
align = find_lcm(GEM_CACHE_LINE_SIZE, align);
dev_dbg(bridge, "%s: memory align to 0x%x\n", __func__, align);
if (segmentId != -1) {
rmm_addr_obj->segid = segmentId;
segid = segmentId;
mem_load_req = req;
} else {
switch (hnode->phase) {
case NLDR_CREATE:
mem_phase_bit = CREATEDATAFLAGBIT;
break;
case NLDR_DELETE:
mem_phase_bit = DELETEDATAFLAGBIT;
break;
case NLDR_EXECUTE:
mem_phase_bit = EXECUTEDATAFLAGBIT;
break;
default:
DBC_ASSERT(false);
break;
}
if (space == DBLL_CODE)
mem_phase_bit++;
if (mem_phase_bit < MAXFLAGS)
segid = hnode->seg_id[mem_phase_bit];
/* Determine if there is a memory loading requirement */
if ((hnode->code_data_flag_mask >> mem_phase_bit) & 0x1)
mem_load_req = true;
}
mem_sect_type = (space == DBLL_CODE) ? DYNM_CODE : DYNM_DATA;
/* Find an appropriate segment based on space */
if (segid == NULLID) {
/* No memory requirements of preferences */
DBC_ASSERT(!mem_load_req);
goto func_cont;
}
if (segid <= MAXSEGID) {
DBC_ASSERT(segid < nldr_obj->dload_segs);
/* Attempt to allocate from segid first. */
rmm_addr_obj->segid = segid;
status =
rmm_alloc(rmm, segid, word_size, align, dspAddr, false);
if (DSP_FAILED(status)) {
dev_dbg(bridge, "%s: Unable allocate from segment %d\n",
__func__, segid);
}
} else {
/* segid > MAXSEGID ==> Internal or external memory */
DBC_ASSERT(segid == MEMINTERNALID || segid == MEMEXTERNALID);
/* Check for any internal or external memory segment,
* depending on segid. */
mem_sect_type |= segid == MEMINTERNALID ?
DYNM_INTERNAL : DYNM_EXTERNAL;
for (i = 0; i < nldr_obj->dload_segs; i++) {
if ((nldr_obj->seg_table[i] & mem_sect_type) !=
mem_sect_type)
continue;
status = rmm_alloc(rmm, i, word_size, align, dspAddr,
false);
if (DSP_SUCCEEDED(status)) {
/* Save segid for freeing later */
rmm_addr_obj->segid = i;
break;
}
}
}
func_cont:
/* Haven't found memory yet, attempt to find any segment that works */
if (status == -ENOMEM && !mem_load_req) {
dev_dbg(bridge, "%s: Preferred segment unavailable, trying "
"another\n", __func__);
for (i = 0; i < nldr_obj->dload_segs; i++) {
/* All bits of mem_sect_type must be set */
if ((nldr_obj->seg_table[i] & mem_sect_type) !=
mem_sect_type)
continue;
status = rmm_alloc(rmm, i, word_size, align, dspAddr,
false);
if (DSP_SUCCEEDED(status)) {
/* Save segid */
rmm_addr_obj->segid = i;
break;
}
}
}
return status;
}
static int remote_free(void **pRef, u16 space, u32 dspAddr,
u32 size, bool reserve)
{
struct nldr_object *nldr_obj = (struct nldr_object *)pRef;
struct rmm_target_obj *rmm;
u32 word_size;
int status = -ENOMEM; /* Set to fail */
DBC_REQUIRE(nldr_obj);
rmm = nldr_obj->rmm;
/* Convert size to DSP words */
word_size =
(size + nldr_obj->us_dsp_word_size -
1) / nldr_obj->us_dsp_word_size;
if (rmm_free(rmm, space, dspAddr, word_size, reserve))
status = 0;
return status;
}
/*
* ======== unload_lib ========
*/
static void unload_lib(struct nldr_nodeobject *nldr_node_obj,
struct lib_node *root)
{
struct dbll_attrs new_attrs;
struct nldr_object *nldr_obj = nldr_node_obj->nldr_obj;
u16 i;
DBC_ASSERT(root != NULL);
/* Unload dependent libraries */
for (i = 0; i < root->dep_libs; i++)
unload_lib(nldr_node_obj, &root->dep_libs_tree[i]);
root->dep_libs = 0;
new_attrs = nldr_obj->ldr_attrs;
new_attrs.rmm_handle = nldr_obj->rmm;
new_attrs.input_params = nldr_node_obj->priv_ref;
new_attrs.base_image = false;
new_attrs.sym_arg = root;
if (root->lib) {
/* Unload the root library */
nldr_obj->ldr_fxns.unload_fxn(root->lib, &new_attrs);
nldr_obj->ldr_fxns.close_fxn(root->lib);
}
/* Free dependent library list */
kfree(root->dep_libs_tree);
root->dep_libs_tree = NULL;
}
/*
* ======== unload_ovly ========
*/
static void unload_ovly(struct nldr_nodeobject *nldr_node_obj,
enum nldr_phase phase)
{
struct nldr_object *nldr_obj = nldr_node_obj->nldr_obj;
struct ovly_node *po_node = NULL;
struct ovly_sect *phase_sects = NULL;
struct ovly_sect *other_sects_list = NULL;
u16 i;
u16 alloc_num = 0;
u16 other_alloc = 0;
u16 *ref_count = NULL;
u16 *other_ref = NULL;
/* Find the node in the table */
for (i = 0; i < nldr_obj->ovly_nodes; i++) {
if (IS_EQUAL_UUID
(nldr_node_obj->uuid, nldr_obj->ovly_table[i].uuid)) {
/* Found it */
po_node = &(nldr_obj->ovly_table[i]);
break;
}
}
DBC_ASSERT(i < nldr_obj->ovly_nodes);
if (!po_node)
/* TODO: Should we print warning here? */
return;
switch (phase) {
case NLDR_CREATE:
ref_count = &(po_node->create_ref);
phase_sects = po_node->create_sects_list;
alloc_num = po_node->create_sects;
break;
case NLDR_EXECUTE:
ref_count = &(po_node->execute_ref);
phase_sects = po_node->execute_sects_list;
alloc_num = po_node->execute_sects;
break;
case NLDR_DELETE:
ref_count = &(po_node->delete_ref);
other_ref = &(po_node->other_ref);
phase_sects = po_node->delete_sects_list;
/* 'Other' overlay sections are unloaded in the delete phase */
other_sects_list = po_node->other_sects_list;
alloc_num = po_node->delete_sects;
other_alloc = po_node->other_sects;
break;
default:
DBC_ASSERT(false);
break;
}
DBC_ASSERT(ref_count && (*ref_count > 0));
if (ref_count && (*ref_count > 0)) {
*ref_count -= 1;
if (other_ref) {
DBC_ASSERT(*other_ref > 0);
*other_ref -= 1;
}
}
if (ref_count && *ref_count == 0) {
/* 'Deallocate' memory */
free_sects(nldr_obj, phase_sects, alloc_num);
}
if (other_ref && *other_ref == 0)
free_sects(nldr_obj, other_sects_list, other_alloc);
}
/*
* ======== find_in_persistent_lib_array ========
*/
static bool find_in_persistent_lib_array(struct nldr_nodeobject *nldr_node_obj,
struct dbll_library_obj *lib)
{
s32 i = 0;
for (i = 0; i < nldr_node_obj->pers_libs; i++) {
if (lib == nldr_node_obj->pers_lib_table[i].lib)
return true;
}
return false;
}
/*
* ================ Find LCM (Least Common Multiplier ===
*/
static u32 find_lcm(u32 a, u32 b)
{
u32 ret;
ret = a * b / find_gcf(a, b);
return ret;
}
/*
* ================ Find GCF (Greatest Common Factor ) ===
*/
static u32 find_gcf(u32 a, u32 b)
{
u32 c;
/* Get the GCF (Greatest common factor between the numbers,
* using Euclidian Algo */
while ((c = (a % b))) {
a = b;
b = c;
}
return b;
}
/**
* nldr_find_addr() - Find the closest symbol to the given address based on
* dynamic node object.
*
* @nldr_node: Dynamic node object
* @sym_addr: Given address to find the dsp symbol
* @offset_range: offset range to look for dsp symbol
* @offset_output: Symbol Output address
* @sym_name: String with the dsp symbol
*
* This function finds the node library for a given address and
* retrieves the dsp symbol by calling dbll_find_dsp_symbol.
*/
int nldr_find_addr(struct nldr_nodeobject *nldr_node, u32 sym_addr,
u32 offset_range, void *offset_output, char *sym_name)
{
int status = 0;
bool status1 = false;
s32 i = 0;
struct lib_node root = { NULL, 0, NULL };
DBC_REQUIRE(refs > 0);
DBC_REQUIRE(offset_output != NULL);
DBC_REQUIRE(sym_name != NULL);
pr_debug("%s(0x%x, 0x%x, 0x%x, 0x%x, %s)\n", __func__, (u32) nldr_node,
sym_addr, offset_range, (u32) offset_output, sym_name);
if (nldr_node->dynamic && *nldr_node->pf_phase_split) {
switch (nldr_node->phase) {
case NLDR_CREATE:
root = nldr_node->create_lib;
break;
case NLDR_EXECUTE:
root = nldr_node->execute_lib;
break;
case NLDR_DELETE:
root = nldr_node->delete_lib;
break;
default:
DBC_ASSERT(false);
break;
}
} else {
/* for Overlay nodes or non-split Dynamic nodes */
root = nldr_node->root;
}
status1 = dbll_find_dsp_symbol(root.lib, sym_addr,
offset_range, offset_output, sym_name);
/* If symbol not found, check dependent libraries */
if (!status1)
for (i = 0; i < root.dep_libs; i++) {
status1 = dbll_find_dsp_symbol(
root.dep_libs_tree[i].lib, sym_addr,
offset_range, offset_output, sym_name);
if (status1)
/* Symbol found */
break;
}
/* Check persistent libraries */
if (!status1)
for (i = 0; i < nldr_node->pers_libs; i++) {
status1 = dbll_find_dsp_symbol(
nldr_node->pers_lib_table[i].lib, sym_addr,
offset_range, offset_output, sym_name);
if (status1)
/* Symbol found */
break;
}
if (!status1) {
pr_debug("%s: Address 0x%x not found in range %d.\n",
__func__, sym_addr, offset_range);
status = -ESPIPE;
}
return status;
}
/*
* node.c
*
* DSP-BIOS Bridge driver support functions for TI OMAP processors.
*
* DSP/BIOS Bridge Node Manager.
*
* Copyright (C) 2005-2006 Texas Instruments, Inc.
*
* This package is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
* THIS PACKAGE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED
* WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR A PARTICULAR PURPOSE.
*/
/* ----------------------------------- Host OS */
#include <dspbridge/host_os.h>
/* ----------------------------------- DSP/BIOS Bridge */
#include <dspbridge/std.h>
#include <dspbridge/dbdefs.h>
/* ----------------------------------- Trace & Debug */
#include <dspbridge/dbc.h>
/* ----------------------------------- OS Adaptation Layer */
#include <dspbridge/cfg.h>
#include <dspbridge/list.h>
#include <dspbridge/memdefs.h>
#include <dspbridge/proc.h>
#include <dspbridge/strm.h>
#include <dspbridge/sync.h>
#include <dspbridge/ntfy.h>
/* ----------------------------------- Platform Manager */
#include <dspbridge/cmm.h>
#include <dspbridge/cod.h>
#include <dspbridge/dev.h>
#include <dspbridge/msg.h>
/* ----------------------------------- Resource Manager */
#include <dspbridge/dbdcd.h>
#include <dspbridge/disp.h>
#include <dspbridge/rms_sh.h>
/* ----------------------------------- Link Driver */
#include <dspbridge/dspdefs.h>
#include <dspbridge/dspioctl.h>
/* ----------------------------------- Others */
#include <dspbridge/gb.h>
#include <dspbridge/uuidutil.h>
/* ----------------------------------- This */
#include <dspbridge/nodepriv.h>
#include <dspbridge/node.h>
#include <dspbridge/dmm.h>
/* Static/Dynamic Loader includes */
#include <dspbridge/dbll.h>
#include <dspbridge/nldr.h>
#include <dspbridge/drv.h>
#include <dspbridge/drvdefs.h>
#include <dspbridge/resourcecleanup.h>
#include <_tiomap.h>
#define HOSTPREFIX "/host"
#define PIPEPREFIX "/dbpipe"
#define MAX_INPUTS(h) \
((h)->dcd_props.obj_data.node_obj.ndb_props.num_input_streams)
#define MAX_OUTPUTS(h) \
((h)->dcd_props.obj_data.node_obj.ndb_props.num_output_streams)
#define NODE_GET_PRIORITY(h) ((h)->prio)
#define NODE_SET_PRIORITY(hnode, prio) ((hnode)->prio = prio)
#define NODE_SET_STATE(hnode, state) ((hnode)->node_state = state)
#define MAXPIPES 100 /* Max # of /pipe connections (CSL limit) */
#define MAXDEVSUFFIXLEN 2 /* Max(Log base 10 of MAXPIPES, MAXSTREAMS) */
#define PIPENAMELEN (sizeof(PIPEPREFIX) + MAXDEVSUFFIXLEN)
#define HOSTNAMELEN (sizeof(HOSTPREFIX) + MAXDEVSUFFIXLEN)
#define MAXDEVNAMELEN 32 /* dsp_ndbprops.ac_name size */
#define CREATEPHASE 1
#define EXECUTEPHASE 2
#define DELETEPHASE 3
/* Define default STRM parameters */
/*
* TBD: Put in header file, make global DSP_STRMATTRS with defaults,
* or make defaults configurable.
*/
#define DEFAULTBUFSIZE 32
#define DEFAULTNBUFS 2
#define DEFAULTSEGID 0
#define DEFAULTALIGNMENT 0
#define DEFAULTTIMEOUT 10000
#define RMSQUERYSERVER 0
#define RMSCONFIGURESERVER 1
#define RMSCREATENODE 2
#define RMSEXECUTENODE 3
#define RMSDELETENODE 4
#define RMSCHANGENODEPRIORITY 5
#define RMSREADMEMORY 6
#define RMSWRITEMEMORY 7
#define RMSCOPY 8
#define MAXTIMEOUT 2000
#define NUMRMSFXNS 9
#define PWR_TIMEOUT 500 /* default PWR timeout in msec */
#define STACKSEGLABEL "L1DSRAM_HEAP" /* Label for DSP Stack Segment Addr */
/*
* ======== node_mgr ========
*/
struct node_mgr {
struct dev_object *hdev_obj; /* Device object */
/* Function interface to Bridge driver */
struct bridge_drv_interface *intf_fxns;
struct dcd_manager *hdcd_mgr; /* Proc/Node data manager */
struct disp_object *disp_obj; /* Node dispatcher */
struct lst_list *node_list; /* List of all allocated nodes */
u32 num_nodes; /* Number of nodes in node_list */
u32 num_created; /* Number of nodes *created* on DSP */
struct gb_t_map *pipe_map; /* Pipe connection bit map */
struct gb_t_map *pipe_done_map; /* Pipes that are half free */
struct gb_t_map *chnl_map; /* Channel allocation bit map */
struct gb_t_map *dma_chnl_map; /* DMA Channel allocation bit map */
struct gb_t_map *zc_chnl_map; /* Zero-Copy Channel alloc bit map */
struct ntfy_object *ntfy_obj; /* Manages registered notifications */
struct mutex node_mgr_lock; /* For critical sections */
u32 ul_fxn_addrs[NUMRMSFXNS]; /* RMS function addresses */
struct msg_mgr *msg_mgr_obj;
/* Processor properties needed by Node Dispatcher */
u32 ul_num_chnls; /* Total number of channels */
u32 ul_chnl_offset; /* Offset of chnl ids rsvd for RMS */
u32 ul_chnl_buf_size; /* Buffer size for data to RMS */
int proc_family; /* eg, 5000 */
int proc_type; /* eg, 5510 */
u32 udsp_word_size; /* Size of DSP word on host bytes */
u32 udsp_data_mau_size; /* Size of DSP data MAU */
u32 udsp_mau_size; /* Size of MAU */
s32 min_pri; /* Minimum runtime priority for node */
s32 max_pri; /* Maximum runtime priority for node */
struct strm_mgr *strm_mgr_obj; /* STRM manager */
/* Loader properties */
struct nldr_object *nldr_obj; /* Handle to loader */
struct node_ldr_fxns nldr_fxns; /* Handle to loader functions */
bool loader_init; /* Loader Init function succeeded? */
};
/*
* ======== connecttype ========
*/
enum connecttype {
NOTCONNECTED = 0,
NODECONNECT,
HOSTCONNECT,
DEVICECONNECT,
};
/*
* ======== stream_chnl ========
*/
struct stream_chnl {
enum connecttype type; /* Type of stream connection */
u32 dev_id; /* pipe or channel id */
};
/*
* ======== node_object ========
*/
struct node_object {
struct list_head list_elem;
struct node_mgr *hnode_mgr; /* The manager of this node */
struct proc_object *hprocessor; /* Back pointer to processor */
struct dsp_uuid node_uuid; /* Node's ID */
s32 prio; /* Node's current priority */
u32 utimeout; /* Timeout for blocking NODE calls */
u32 heap_size; /* Heap Size */
u32 udsp_heap_virt_addr; /* Heap Size */
u32 ugpp_heap_virt_addr; /* Heap Size */
enum node_type ntype; /* Type of node: message, task, etc */
enum node_state node_state; /* NODE_ALLOCATED, NODE_CREATED, ... */
u32 num_inputs; /* Current number of inputs */
u32 num_outputs; /* Current number of outputs */
u32 max_input_index; /* Current max input stream index */
u32 max_output_index; /* Current max output stream index */
struct stream_chnl *inputs; /* Node's input streams */
struct stream_chnl *outputs; /* Node's output streams */
struct node_createargs create_args; /* Args for node create func */
nodeenv node_env; /* Environment returned by RMS */
struct dcd_genericobj dcd_props; /* Node properties from DCD */
struct dsp_cbdata *pargs; /* Optional args to pass to node */
struct ntfy_object *ntfy_obj; /* Manages registered notifications */
char *pstr_dev_name; /* device name, if device node */
struct sync_object *sync_done; /* Synchronize node_terminate */
s32 exit_status; /* execute function return status */
/* Information needed for node_get_attr() */
void *device_owner; /* If dev node, task that owns it */
u32 num_gpp_inputs; /* Current # of from GPP streams */
u32 num_gpp_outputs; /* Current # of to GPP streams */
/* Current stream connections */
struct dsp_streamconnect *stream_connect;
/* Message queue */
struct msg_queue *msg_queue_obj;
/* These fields used for SM messaging */
struct cmm_xlatorobject *xlator; /* Node's SM addr translator */
/* Handle to pass to dynamic loader */
struct nldr_nodeobject *nldr_node_obj;
bool loaded; /* Code is (dynamically) loaded */
bool phase_split; /* Phases split in many libs or ovly */
};
/* Default buffer attributes */
static struct dsp_bufferattr node_dfltbufattrs = {
0, /* cb_struct */
1, /* segment_id */
0, /* buf_alignment */
};
static void delete_node(struct node_object *hnode,
struct process_context *pr_ctxt);
static void delete_node_mgr(struct node_mgr *hnode_mgr);
static void fill_stream_connect(struct node_object *hNode1,
struct node_object *hNode2, u32 uStream1,
u32 uStream2);
static void fill_stream_def(struct node_object *hnode,
struct node_strmdef *pstrm_def,
struct dsp_strmattr *pattrs);
static void free_stream(struct node_mgr *hnode_mgr, struct stream_chnl stream);
static int get_fxn_address(struct node_object *hnode, u32 * pulFxnAddr,
u32 uPhase);
static int get_node_props(struct dcd_manager *hdcd_mgr,
struct node_object *hnode,
CONST struct dsp_uuid *pNodeId,
struct dcd_genericobj *pdcdProps);
static int get_proc_props(struct node_mgr *hnode_mgr,
struct dev_object *hdev_obj);
static int get_rms_fxns(struct node_mgr *hnode_mgr);
static u32 ovly(void *priv_ref, u32 ulDspRunAddr, u32 ulDspLoadAddr,
u32 ul_num_bytes, u32 nMemSpace);
static u32 mem_write(void *priv_ref, u32 ulDspAddr, void *pbuf,
u32 ul_num_bytes, u32 nMemSpace);
static u32 refs; /* module reference count */
/* Dynamic loader functions. */
static struct node_ldr_fxns nldr_fxns = {
nldr_allocate,
nldr_create,
nldr_delete,
nldr_exit,
nldr_get_fxn_addr,
nldr_init,
nldr_load,
nldr_unload,
};
enum node_state node_get_state(void *hnode)
{
struct node_object *pnode = (struct node_object *)hnode;
if (!pnode)
return -1;
else
return pnode->node_state;
}
/*
* ======== node_allocate ========
* Purpose:
* Allocate GPP resources to manage a node on the DSP.
*/
int node_allocate(struct proc_object *hprocessor,
IN CONST struct dsp_uuid *pNodeId,
OPTIONAL IN CONST struct dsp_cbdata *pargs,
OPTIONAL IN CONST struct dsp_nodeattrin *attr_in,
OUT struct node_object **ph_node,
struct process_context *pr_ctxt)
{
struct node_mgr *hnode_mgr;
struct dev_object *hdev_obj;
struct node_object *pnode = NULL;
enum node_type node_type = NODE_TASK;
struct node_msgargs *pmsg_args;
struct node_taskargs *ptask_args;
u32 num_streams;
struct bridge_drv_interface *intf_fxns;
int status = 0;
struct cmm_object *hcmm_mgr = NULL; /* Shared memory manager hndl */
u32 proc_id;
u32 pul_value;
u32 dynext_base;
u32 off_set = 0;
u32 ul_stack_seg_addr, ul_stack_seg_val;
u32 ul_gpp_mem_base;
struct cfg_hostres *host_res;
struct bridge_dev_context *pbridge_context;
u32 mapped_addr = 0;
u32 map_attrs = 0x0;
struct dsp_processorstate proc_state;
#ifdef DSP_DMM_DEBUG
struct dmm_object *dmm_mgr;
struct proc_object *p_proc_object = (struct proc_object *)hprocessor;
#endif
void *node_res;
DBC_REQUIRE(refs > 0);
DBC_REQUIRE(hprocessor != NULL);
DBC_REQUIRE(ph_node != NULL);
DBC_REQUIRE(pNodeId != NULL);
*ph_node = NULL;
status = proc_get_processor_id(hprocessor, &proc_id);
if (proc_id != DSP_UNIT)
goto func_end;
status = proc_get_dev_object(hprocessor, &hdev_obj);
if (DSP_SUCCEEDED(status)) {
status = dev_get_node_manager(hdev_obj, &hnode_mgr);
if (hnode_mgr == NULL)
status = -EPERM;
}
if (DSP_FAILED(status))
goto func_end;
status = dev_get_bridge_context(hdev_obj, &pbridge_context);
if (!pbridge_context) {
status = -EFAULT;
goto func_end;
}
status = proc_get_state(hprocessor, &proc_state,
sizeof(struct dsp_processorstate));
if (DSP_FAILED(status))
goto func_end;
/* If processor is in error state then don't attempt
to send the message */
if (proc_state.proc_state == PROC_ERROR) {
status = -EPERM;
goto func_end;
}
/* Assuming that 0 is not a valid function address */
if (hnode_mgr->ul_fxn_addrs[0] == 0) {
/* No RMS on target - we currently can't handle this */
pr_err("%s: Failed, no RMS in base image\n", __func__);
status = -EPERM;
} else {
/* Validate attr_in fields, if non-NULL */
if (attr_in) {
/* Check if attr_in->prio is within range */
if (attr_in->prio < hnode_mgr->min_pri ||
attr_in->prio > hnode_mgr->max_pri)
status = -EDOM;
}
}
/* Allocate node object and fill in */
if (DSP_FAILED(status))
goto func_end;
pnode = kzalloc(sizeof(struct node_object), GFP_KERNEL);
if (pnode == NULL) {
status = -ENOMEM;
goto func_end;
}
pnode->hnode_mgr = hnode_mgr;
/* This critical section protects get_node_props */
mutex_lock(&hnode_mgr->node_mgr_lock);
/* Get dsp_ndbprops from node database */
status = get_node_props(hnode_mgr->hdcd_mgr, pnode, pNodeId,
&(pnode->dcd_props));
if (DSP_FAILED(status))
goto func_cont;
pnode->node_uuid = *pNodeId;
pnode->hprocessor = hprocessor;
pnode->ntype = pnode->dcd_props.obj_data.node_obj.ndb_props.ntype;
pnode->utimeout = pnode->dcd_props.obj_data.node_obj.ndb_props.utimeout;
pnode->prio = pnode->dcd_props.obj_data.node_obj.ndb_props.prio;
/* Currently only C64 DSP builds support Node Dynamic * heaps */
/* Allocate memory for node heap */
pnode->create_args.asa.task_arg_obj.heap_size = 0;
pnode->create_args.asa.task_arg_obj.udsp_heap_addr = 0;
pnode->create_args.asa.task_arg_obj.udsp_heap_res_addr = 0;
pnode->create_args.asa.task_arg_obj.ugpp_heap_addr = 0;
if (!attr_in)
goto func_cont;
/* Check if we have a user allocated node heap */
if (!(attr_in->pgpp_virt_addr))
goto func_cont;
/* check for page aligned Heap size */
if (((attr_in->heap_size) & (PG_SIZE4K - 1))) {
pr_err("%s: node heap size not aligned to 4K, size = 0x%x \n",
__func__, attr_in->heap_size);
status = -EINVAL;
} else {
pnode->create_args.asa.task_arg_obj.heap_size =
attr_in->heap_size;
pnode->create_args.asa.task_arg_obj.ugpp_heap_addr =
(u32) attr_in->pgpp_virt_addr;
}
if (DSP_FAILED(status))
goto func_cont;
status = proc_reserve_memory(hprocessor,
pnode->create_args.asa.task_arg_obj.
heap_size + PAGE_SIZE,
(void **)&(pnode->create_args.asa.
task_arg_obj.udsp_heap_res_addr),
pr_ctxt);
if (DSP_FAILED(status)) {
pr_err("%s: Failed to reserve memory for heap: 0x%x\n",
__func__, status);
goto func_cont;
}
#ifdef DSP_DMM_DEBUG
status = dmm_get_handle(p_proc_object, &dmm_mgr);
if (!dmm_mgr) {
status = DSP_EHANDLE;
goto func_cont;
}
dmm_mem_map_dump(dmm_mgr);
#endif
map_attrs |= DSP_MAPLITTLEENDIAN;
map_attrs |= DSP_MAPELEMSIZE32;
map_attrs |= DSP_MAPVIRTUALADDR;
status = proc_map(hprocessor, (void *)attr_in->pgpp_virt_addr,
pnode->create_args.asa.task_arg_obj.heap_size,
(void *)pnode->create_args.asa.task_arg_obj.
udsp_heap_res_addr, (void **)&mapped_addr, map_attrs,
pr_ctxt);
if (DSP_FAILED(status))
pr_err("%s: Failed to map memory for Heap: 0x%x\n",
__func__, status);
else
pnode->create_args.asa.task_arg_obj.udsp_heap_addr =
(u32) mapped_addr;
func_cont:
mutex_unlock(&hnode_mgr->node_mgr_lock);
if (attr_in != NULL) {
/* Overrides of NBD properties */
pnode->utimeout = attr_in->utimeout;
pnode->prio = attr_in->prio;
}
/* Create object to manage notifications */
if (DSP_SUCCEEDED(status)) {
pnode->ntfy_obj = kmalloc(sizeof(struct ntfy_object),
GFP_KERNEL);
if (pnode->ntfy_obj)
ntfy_init(pnode->ntfy_obj);
else
status = -ENOMEM;
}
if (DSP_SUCCEEDED(status)) {
node_type = node_get_type(pnode);
/* Allocate dsp_streamconnect array for device, task, and
* dais socket nodes. */
if (node_type != NODE_MESSAGE) {
num_streams = MAX_INPUTS(pnode) + MAX_OUTPUTS(pnode);
pnode->stream_connect = kzalloc(num_streams *
sizeof(struct dsp_streamconnect),
GFP_KERNEL);
if (num_streams > 0 && pnode->stream_connect == NULL)
status = -ENOMEM;
}
if (DSP_SUCCEEDED(status) && (node_type == NODE_TASK ||
node_type == NODE_DAISSOCKET)) {
/* Allocate arrays for maintainig stream connections */
pnode->inputs = kzalloc(MAX_INPUTS(pnode) *
sizeof(struct stream_chnl), GFP_KERNEL);
pnode->outputs = kzalloc(MAX_OUTPUTS(pnode) *
sizeof(struct stream_chnl), GFP_KERNEL);
ptask_args = &(pnode->create_args.asa.task_arg_obj);
ptask_args->strm_in_def = kzalloc(MAX_INPUTS(pnode) *
sizeof(struct node_strmdef),
GFP_KERNEL);
ptask_args->strm_out_def = kzalloc(MAX_OUTPUTS(pnode) *
sizeof(struct node_strmdef),
GFP_KERNEL);
if ((MAX_INPUTS(pnode) > 0 && (pnode->inputs == NULL ||
ptask_args->strm_in_def
== NULL))
|| (MAX_OUTPUTS(pnode) > 0
&& (pnode->outputs == NULL
|| ptask_args->strm_out_def == NULL)))
status = -ENOMEM;
}
}
if (DSP_SUCCEEDED(status) && (node_type != NODE_DEVICE)) {
/* Create an event that will be posted when RMS_EXIT is
* received. */
pnode->sync_done = kzalloc(sizeof(struct sync_object),
GFP_KERNEL);
if (pnode->sync_done)
sync_init_event(pnode->sync_done);
else
status = -ENOMEM;
if (DSP_SUCCEEDED(status)) {
/*Get the shared mem mgr for this nodes dev object */
status = cmm_get_handle(hprocessor, &hcmm_mgr);
if (DSP_SUCCEEDED(status)) {
/* Allocate a SM addr translator for this node
* w/ deflt attr */
status = cmm_xlator_create(&pnode->xlator,
hcmm_mgr, NULL);
}
}
if (DSP_SUCCEEDED(status)) {
/* Fill in message args */
if ((pargs != NULL) && (pargs->cb_data > 0)) {
pmsg_args =
&(pnode->create_args.asa.node_msg_args);
pmsg_args->pdata = kzalloc(pargs->cb_data,
GFP_KERNEL);
if (pmsg_args->pdata == NULL) {
status = -ENOMEM;
} else {
pmsg_args->arg_length = pargs->cb_data;
memcpy(pmsg_args->pdata,
pargs->node_data,
pargs->cb_data);
}
}
}
}
if (DSP_SUCCEEDED(status) && node_type != NODE_DEVICE) {
/* Create a message queue for this node */
intf_fxns = hnode_mgr->intf_fxns;
status =
(*intf_fxns->pfn_msg_create_queue) (hnode_mgr->msg_mgr_obj,
&pnode->msg_queue_obj,
0,
pnode->create_args.asa.
node_msg_args.max_msgs,
pnode);
}
if (DSP_SUCCEEDED(status)) {
/* Create object for dynamic loading */
status = hnode_mgr->nldr_fxns.pfn_allocate(hnode_mgr->nldr_obj,
(void *)pnode,
&pnode->dcd_props.
obj_data.node_obj,
&pnode->
nldr_node_obj,
&pnode->phase_split);
}
/* Compare value read from Node Properties and check if it is same as
* STACKSEGLABEL, if yes read the Address of STACKSEGLABEL, calculate
* GPP Address, Read the value in that address and override the
* stack_seg value in task args */
if (DSP_SUCCEEDED(status) &&
(char *)pnode->dcd_props.obj_data.node_obj.ndb_props.
stack_seg_name != NULL) {
if (strcmp((char *)
pnode->dcd_props.obj_data.node_obj.ndb_props.
stack_seg_name, STACKSEGLABEL) == 0) {
status =
hnode_mgr->nldr_fxns.
pfn_get_fxn_addr(pnode->nldr_node_obj, "DYNEXT_BEG",
&dynext_base);
if (DSP_FAILED(status))
pr_err("%s: Failed to get addr for DYNEXT_BEG"
" status = 0x%x\n", __func__, status);
status =
hnode_mgr->nldr_fxns.
pfn_get_fxn_addr(pnode->nldr_node_obj,
"L1DSRAM_HEAP", &pul_value);
if (DSP_FAILED(status))
pr_err("%s: Failed to get addr for L1DSRAM_HEAP"
" status = 0x%x\n", __func__, status);
host_res = pbridge_context->resources;
if (!host_res)
status = -EPERM;
if (DSP_FAILED(status)) {
pr_err("%s: Failed to get host resource, status"
" = 0x%x\n", __func__, status);
goto func_end;
}
ul_gpp_mem_base = (u32) host_res->dw_mem_base[1];
off_set = pul_value - dynext_base;
ul_stack_seg_addr = ul_gpp_mem_base + off_set;
ul_stack_seg_val = (u32) *((reg_uword32 *)
((u32)
(ul_stack_seg_addr)));
dev_dbg(bridge, "%s: StackSegVal = 0x%x, StackSegAddr ="
" 0x%x\n", __func__, ul_stack_seg_val,
ul_stack_seg_addr);
pnode->create_args.asa.task_arg_obj.stack_seg =
ul_stack_seg_val;
}
}
if (DSP_SUCCEEDED(status)) {
/* Add the node to the node manager's list of allocated
* nodes. */
lst_init_elem((struct list_head *)pnode);
NODE_SET_STATE(pnode, NODE_ALLOCATED);
mutex_lock(&hnode_mgr->node_mgr_lock);
lst_put_tail(hnode_mgr->node_list, (struct list_head *) pnode);
++(hnode_mgr->num_nodes);
/* Exit critical section */
mutex_unlock(&hnode_mgr->node_mgr_lock);
/* Preset this to assume phases are split
* (for overlay and dll) */
pnode->phase_split = true;
if (DSP_SUCCEEDED(status))
*ph_node = pnode;
/* Notify all clients registered for DSP_NODESTATECHANGE. */
proc_notify_all_clients(hprocessor, DSP_NODESTATECHANGE);
} else {
/* Cleanup */
if (pnode)
delete_node(pnode, pr_ctxt);
}
if (DSP_SUCCEEDED(status)) {
drv_insert_node_res_element(*ph_node, &node_res, pr_ctxt);
drv_proc_node_update_heap_status(node_res, true);
drv_proc_node_update_status(node_res, true);
}
DBC_ENSURE((DSP_FAILED(status) && (*ph_node == NULL)) ||
(DSP_SUCCEEDED(status) && *ph_node));
func_end:
dev_dbg(bridge, "%s: hprocessor: %p pNodeId: %p pargs: %p attr_in: %p "
"ph_node: %p status: 0x%x\n", __func__, hprocessor,
pNodeId, pargs, attr_in, ph_node, status);
return status;
}
/*
* ======== node_alloc_msg_buf ========
* Purpose:
* Allocates buffer for zero copy messaging.
*/
DBAPI node_alloc_msg_buf(struct node_object *hnode, u32 usize,
OPTIONAL IN OUT struct dsp_bufferattr *pattr,
OUT u8 **pbuffer)
{
struct node_object *pnode = (struct node_object *)hnode;
int status = 0;
bool va_flag = false;
bool set_info;
u32 proc_id;
DBC_REQUIRE(refs > 0);
DBC_REQUIRE(pbuffer != NULL);
DBC_REQUIRE(usize > 0);
if (!pnode)
status = -EFAULT;
else if (node_get_type(pnode) == NODE_DEVICE)
status = -EPERM;
if (DSP_FAILED(status))
goto func_end;
if (pattr == NULL)
pattr = &node_dfltbufattrs; /* set defaults */
status = proc_get_processor_id(pnode->hprocessor, &proc_id);
if (proc_id != DSP_UNIT) {
DBC_ASSERT(NULL);
goto func_end;
}
/* If segment ID includes MEM_SETVIRTUALSEGID then pbuffer is a
* virt address, so set this info in this node's translator
* object for future ref. If MEM_GETVIRTUALSEGID then retrieve
* virtual address from node's translator. */
if ((pattr->segment_id & MEM_SETVIRTUALSEGID) ||
(pattr->segment_id & MEM_GETVIRTUALSEGID)) {
va_flag = true;
set_info = (pattr->segment_id & MEM_SETVIRTUALSEGID) ?
true : false;
/* Clear mask bits */
pattr->segment_id &= ~MEM_MASKVIRTUALSEGID;
/* Set/get this node's translators virtual address base/size */
status = cmm_xlator_info(pnode->xlator, pbuffer, usize,
pattr->segment_id, set_info);
}
if (DSP_SUCCEEDED(status) && (!va_flag)) {
if (pattr->segment_id != 1) {
/* Node supports single SM segment only. */
status = -EBADR;
}
/* Arbitrary SM buffer alignment not supported for host side
* allocs, but guaranteed for the following alignment
* values. */
switch (pattr->buf_alignment) {
case 0:
case 1:
case 2:
case 4:
break;
default:
/* alignment value not suportted */
status = -EPERM;
break;
}
if (DSP_SUCCEEDED(status)) {
/* allocate physical buffer from seg_id in node's
* translator */
(void)cmm_xlator_alloc_buf(pnode->xlator, pbuffer,
usize);
if (*pbuffer == NULL) {
pr_err("%s: error - Out of shared memory\n",
__func__);
status = -ENOMEM;
}
}
}
func_end:
return status;
}
/*
* ======== node_change_priority ========
* Purpose:
* Change the priority of a node in the allocated state, or that is
* currently running or paused on the target.
*/
int node_change_priority(struct node_object *hnode, s32 prio)
{
struct node_object *pnode = (struct node_object *)hnode;
struct node_mgr *hnode_mgr = NULL;
enum node_type node_type;
enum node_state state;
int status = 0;
u32 proc_id;
DBC_REQUIRE(refs > 0);
if (!hnode || !hnode->hnode_mgr) {
status = -EFAULT;
} else {
hnode_mgr = hnode->hnode_mgr;
node_type = node_get_type(hnode);
if (node_type != NODE_TASK && node_type != NODE_DAISSOCKET)
status = -EPERM;
else if (prio < hnode_mgr->min_pri || prio > hnode_mgr->max_pri)
status = -EDOM;
}
if (DSP_FAILED(status))
goto func_end;
/* Enter critical section */
mutex_lock(&hnode_mgr->node_mgr_lock);
state = node_get_state(hnode);
if (state == NODE_ALLOCATED || state == NODE_PAUSED) {
NODE_SET_PRIORITY(hnode, prio);
} else {
if (state != NODE_RUNNING) {
status = -EBADR;
goto func_cont;
}
status = proc_get_processor_id(pnode->hprocessor, &proc_id);
if (proc_id == DSP_UNIT) {
status =
disp_node_change_priority(hnode_mgr->disp_obj,
hnode,
hnode_mgr->ul_fxn_addrs
[RMSCHANGENODEPRIORITY],
hnode->node_env, prio);
}
if (DSP_SUCCEEDED(status))
NODE_SET_PRIORITY(hnode, prio);
}
func_cont:
/* Leave critical section */
mutex_unlock(&hnode_mgr->node_mgr_lock);
func_end:
return status;
}
/*
* ======== node_connect ========
* Purpose:
* Connect two nodes on the DSP, or a node on the DSP to the GPP.
*/
int node_connect(struct node_object *hNode1, u32 uStream1,
struct node_object *hNode2,
u32 uStream2, OPTIONAL IN struct dsp_strmattr *pattrs,
OPTIONAL IN struct dsp_cbdata *conn_param)
{
struct node_mgr *hnode_mgr;
char *pstr_dev_name = NULL;
enum node_type node1_type = NODE_TASK;
enum node_type node2_type = NODE_TASK;
struct node_strmdef *pstrm_def;
struct node_strmdef *input = NULL;
struct node_strmdef *output = NULL;
struct node_object *dev_node_obj;
struct node_object *hnode;
struct stream_chnl *pstream;
u32 pipe_id = GB_NOBITS;
u32 chnl_id = GB_NOBITS;
s8 chnl_mode;
u32 dw_length;
int status = 0;
DBC_REQUIRE(refs > 0);
if ((hNode1 != (struct node_object *)DSP_HGPPNODE && !hNode1) ||
(hNode2 != (struct node_object *)DSP_HGPPNODE && !hNode2))
status = -EFAULT;
if (DSP_SUCCEEDED(status)) {
/* The two nodes must be on the same processor */
if (hNode1 != (struct node_object *)DSP_HGPPNODE &&
hNode2 != (struct node_object *)DSP_HGPPNODE &&
hNode1->hnode_mgr != hNode2->hnode_mgr)
status = -EPERM;
/* Cannot connect a node to itself */
if (hNode1 == hNode2)
status = -EPERM;
}
if (DSP_SUCCEEDED(status)) {
/* node_get_type() will return NODE_GPP if hnode =
* DSP_HGPPNODE. */
node1_type = node_get_type(hNode1);
node2_type = node_get_type(hNode2);
/* Check stream indices ranges */
if ((node1_type != NODE_GPP && node1_type != NODE_DEVICE &&
uStream1 >= MAX_OUTPUTS(hNode1)) || (node2_type != NODE_GPP
&& node2_type !=
NODE_DEVICE
&& uStream2 >=
MAX_INPUTS(hNode2)))
status = -EINVAL;
}
if (DSP_SUCCEEDED(status)) {
/*
* Only the following types of connections are allowed:
* task/dais socket < == > task/dais socket
* task/dais socket < == > device
* task/dais socket < == > GPP
*
* ie, no message nodes, and at least one task or dais
* socket node.
*/
if (node1_type == NODE_MESSAGE || node2_type == NODE_MESSAGE ||
(node1_type != NODE_TASK && node1_type != NODE_DAISSOCKET &&
node2_type != NODE_TASK && node2_type != NODE_DAISSOCKET))
status = -EPERM;
}
/*
* Check stream mode. Default is STRMMODE_PROCCOPY.
*/
if (DSP_SUCCEEDED(status) && pattrs) {
if (pattrs->strm_mode != STRMMODE_PROCCOPY)
status = -EPERM; /* illegal stream mode */
}
if (DSP_FAILED(status))
goto func_end;
if (node1_type != NODE_GPP) {
hnode_mgr = hNode1->hnode_mgr;
} else {
DBC_ASSERT(hNode2 != (struct node_object *)DSP_HGPPNODE);
hnode_mgr = hNode2->hnode_mgr;
}
/* Enter critical section */
mutex_lock(&hnode_mgr->node_mgr_lock);
/* Nodes must be in the allocated state */
if (node1_type != NODE_GPP && node_get_state(hNode1) != NODE_ALLOCATED)
status = -EBADR;
if (node2_type != NODE_GPP && node_get_state(hNode2) != NODE_ALLOCATED)
status = -EBADR;
if (DSP_SUCCEEDED(status)) {
/* Check that stream indices for task and dais socket nodes
* are not already be used. (Device nodes checked later) */
if (node1_type == NODE_TASK || node1_type == NODE_DAISSOCKET) {
output =
&(hNode1->create_args.asa.
task_arg_obj.strm_out_def[uStream1]);
if (output->sz_device != NULL)
status = -EISCONN;
}
if (node2_type == NODE_TASK || node2_type == NODE_DAISSOCKET) {
input =
&(hNode2->create_args.asa.
task_arg_obj.strm_in_def[uStream2]);
if (input->sz_device != NULL)
status = -EISCONN;
}
}
/* Connecting two task nodes? */
if (DSP_SUCCEEDED(status) && ((node1_type == NODE_TASK ||
node1_type == NODE_DAISSOCKET)
&& (node2_type == NODE_TASK
|| node2_type == NODE_DAISSOCKET))) {
/* Find available pipe */
pipe_id = gb_findandset(hnode_mgr->pipe_map);
if (pipe_id == GB_NOBITS) {
status = -ECONNREFUSED;
} else {
hNode1->outputs[uStream1].type = NODECONNECT;
hNode2->inputs[uStream2].type = NODECONNECT;
hNode1->outputs[uStream1].dev_id = pipe_id;
hNode2->inputs[uStream2].dev_id = pipe_id;
output->sz_device = kzalloc(PIPENAMELEN + 1,
GFP_KERNEL);
input->sz_device = kzalloc(PIPENAMELEN + 1, GFP_KERNEL);
if (output->sz_device == NULL ||
input->sz_device == NULL) {
/* Undo the connection */
kfree(output->sz_device);
kfree(input->sz_device);
output->sz_device = NULL;
input->sz_device = NULL;
gb_clear(hnode_mgr->pipe_map, pipe_id);
status = -ENOMEM;
} else {
/* Copy "/dbpipe<pipId>" name to device names */
sprintf(output->sz_device, "%s%d",
PIPEPREFIX, pipe_id);
strcpy(input->sz_device, output->sz_device);
}
}
}
/* Connecting task node to host? */
if (DSP_SUCCEEDED(status) && (node1_type == NODE_GPP ||
node2_type == NODE_GPP)) {
if (node1_type == NODE_GPP) {
chnl_mode = CHNL_MODETODSP;
} else {
DBC_ASSERT(node2_type == NODE_GPP);
chnl_mode = CHNL_MODEFROMDSP;
}
/* Reserve a channel id. We need to put the name "/host<id>"
* in the node's create_args, but the host
* side channel will not be opened until DSPStream_Open is
* called for this node. */
if (pattrs) {
if (pattrs->strm_mode == STRMMODE_RDMA) {
chnl_id =
gb_findandset(hnode_mgr->dma_chnl_map);
/* dma chans are 2nd transport chnl set
* ids(e.g. 16-31) */
(chnl_id != GB_NOBITS) ?
(chnl_id =
chnl_id +
hnode_mgr->ul_num_chnls) : chnl_id;
} else if (pattrs->strm_mode == STRMMODE_ZEROCOPY) {
chnl_id = gb_findandset(hnode_mgr->zc_chnl_map);
/* zero-copy chans are 3nd transport set
* (e.g. 32-47) */
(chnl_id != GB_NOBITS) ? (chnl_id = chnl_id +
(2 *
hnode_mgr->
ul_num_chnls))
: chnl_id;
} else { /* must be PROCCOPY */
DBC_ASSERT(pattrs->strm_mode ==
STRMMODE_PROCCOPY);
chnl_id = gb_findandset(hnode_mgr->chnl_map);
/* e.g. 0-15 */
}
} else {
/* default to PROCCOPY */
chnl_id = gb_findandset(hnode_mgr->chnl_map);
}
if (chnl_id == GB_NOBITS) {
status = -ECONNREFUSED;
goto func_cont2;
}
pstr_dev_name = kzalloc(HOSTNAMELEN + 1, GFP_KERNEL);
if (pstr_dev_name != NULL)
goto func_cont2;
if (pattrs) {
if (pattrs->strm_mode == STRMMODE_RDMA) {
gb_clear(hnode_mgr->dma_chnl_map, chnl_id -
hnode_mgr->ul_num_chnls);
} else if (pattrs->strm_mode == STRMMODE_ZEROCOPY) {
gb_clear(hnode_mgr->zc_chnl_map, chnl_id -
(2 * hnode_mgr->ul_num_chnls));
} else {
DBC_ASSERT(pattrs->strm_mode ==
STRMMODE_PROCCOPY);
gb_clear(hnode_mgr->chnl_map, chnl_id);
}
} else {
gb_clear(hnode_mgr->chnl_map, chnl_id);
}
status = -ENOMEM;
func_cont2:
if (DSP_SUCCEEDED(status)) {
if (hNode1 == (struct node_object *)DSP_HGPPNODE) {
hNode2->inputs[uStream2].type = HOSTCONNECT;
hNode2->inputs[uStream2].dev_id = chnl_id;
input->sz_device = pstr_dev_name;
} else {
hNode1->outputs[uStream1].type = HOSTCONNECT;
hNode1->outputs[uStream1].dev_id = chnl_id;
output->sz_device = pstr_dev_name;
}
sprintf(pstr_dev_name, "%s%d", HOSTPREFIX, chnl_id);
}
}
/* Connecting task node to device node? */
if (DSP_SUCCEEDED(status) && ((node1_type == NODE_DEVICE) ||
(node2_type == NODE_DEVICE))) {
if (node2_type == NODE_DEVICE) {
/* node1 == > device */
dev_node_obj = hNode2;
hnode = hNode1;
pstream = &(hNode1->outputs[uStream1]);
pstrm_def = output;
} else {
/* device == > node2 */
dev_node_obj = hNode1;
hnode = hNode2;
pstream = &(hNode2->inputs[uStream2]);
pstrm_def = input;
}
/* Set up create args */
pstream->type = DEVICECONNECT;
dw_length = strlen(dev_node_obj->pstr_dev_name);
if (conn_param != NULL) {
pstrm_def->sz_device = kzalloc(dw_length + 1 +
conn_param->cb_data,
GFP_KERNEL);
} else {
pstrm_def->sz_device = kzalloc(dw_length + 1,
GFP_KERNEL);
}
if (pstrm_def->sz_device == NULL) {
status = -ENOMEM;
} else {
/* Copy device name */
strncpy(pstrm_def->sz_device,
dev_node_obj->pstr_dev_name, dw_length);
if (conn_param != NULL) {
strncat(pstrm_def->sz_device,
(char *)conn_param->node_data,
(u32) conn_param->cb_data);
}
dev_node_obj->device_owner = hnode;
}
}
if (DSP_SUCCEEDED(status)) {
/* Fill in create args */
if (node1_type == NODE_TASK || node1_type == NODE_DAISSOCKET) {
hNode1->create_args.asa.task_arg_obj.num_outputs++;
fill_stream_def(hNode1, output, pattrs);
}
if (node2_type == NODE_TASK || node2_type == NODE_DAISSOCKET) {
hNode2->create_args.asa.task_arg_obj.num_inputs++;
fill_stream_def(hNode2, input, pattrs);
}
/* Update hNode1 and hNode2 stream_connect */
if (node1_type != NODE_GPP && node1_type != NODE_DEVICE) {
hNode1->num_outputs++;
if (uStream1 > hNode1->max_output_index)
hNode1->max_output_index = uStream1;
}
if (node2_type != NODE_GPP && node2_type != NODE_DEVICE) {
hNode2->num_inputs++;
if (uStream2 > hNode2->max_input_index)
hNode2->max_input_index = uStream2;
}
fill_stream_connect(hNode1, hNode2, uStream1, uStream2);
}
/* end of sync_enter_cs */
/* Exit critical section */
mutex_unlock(&hnode_mgr->node_mgr_lock);
func_end:
dev_dbg(bridge, "%s: hNode1: %p uStream1: %d hNode2: %p uStream2: %d"
"pattrs: %p status: 0x%x\n", __func__, hNode1,
uStream1, hNode2, uStream2, pattrs, status);
return status;
}
/*
* ======== node_create ========
* Purpose:
* Create a node on the DSP by remotely calling the node's create function.
*/
int node_create(struct node_object *hnode)
{
struct node_object *pnode = (struct node_object *)hnode;
struct node_mgr *hnode_mgr;
struct bridge_drv_interface *intf_fxns;
u32 ul_create_fxn;
enum node_type node_type;
int status = 0;
int status1 = 0;
struct dsp_cbdata cb_data;
u32 proc_id = 255;
struct dsp_processorstate proc_state;
struct proc_object *hprocessor;
#if defined(CONFIG_BRIDGE_DVFS) && !defined(CONFIG_CPU_FREQ)
struct dspbridge_platform_data *pdata =
omap_dspbridge_dev->dev.platform_data;
#endif
DBC_REQUIRE(refs > 0);
if (!pnode) {
status = -EFAULT;
goto func_end;
}
hprocessor = hnode->hprocessor;
status = proc_get_state(hprocessor, &proc_state,
sizeof(struct dsp_processorstate));
if (DSP_FAILED(status))
goto func_end;
/* If processor is in error state then don't attempt to create
new node */
if (proc_state.proc_state == PROC_ERROR) {
status = -EPERM;
goto func_end;
}
/* create struct dsp_cbdata struct for PWR calls */
cb_data.cb_data = PWR_TIMEOUT;
node_type = node_get_type(hnode);
hnode_mgr = hnode->hnode_mgr;
intf_fxns = hnode_mgr->intf_fxns;
/* Get access to node dispatcher */
mutex_lock(&hnode_mgr->node_mgr_lock);
/* Check node state */
if (node_get_state(hnode) != NODE_ALLOCATED)
status = -EBADR;
if (DSP_SUCCEEDED(status))
status = proc_get_processor_id(pnode->hprocessor, &proc_id);
if (DSP_FAILED(status))
goto func_cont2;
if (proc_id != DSP_UNIT)
goto func_cont2;
/* Make sure streams are properly connected */
if ((hnode->num_inputs && hnode->max_input_index >
hnode->num_inputs - 1) ||
(hnode->num_outputs && hnode->max_output_index >
hnode->num_outputs - 1))
status = -ENOTCONN;
if (DSP_SUCCEEDED(status)) {
/* If node's create function is not loaded, load it */
/* Boost the OPP level to max level that DSP can be requested */
#if defined(CONFIG_BRIDGE_DVFS) && !defined(CONFIG_CPU_FREQ)
if (pdata->cpu_set_freq)
(*pdata->cpu_set_freq) (pdata->mpu_speed[VDD1_OPP3]);
#endif
status = hnode_mgr->nldr_fxns.pfn_load(hnode->nldr_node_obj,
NLDR_CREATE);
/* Get address of node's create function */
if (DSP_SUCCEEDED(status)) {
hnode->loaded = true;
if (node_type != NODE_DEVICE) {
status = get_fxn_address(hnode, &ul_create_fxn,
CREATEPHASE);
}
} else {
pr_err("%s: failed to load create code: 0x%x\n",
__func__, status);
}
/* Request the lowest OPP level */
#if defined(CONFIG_BRIDGE_DVFS) && !defined(CONFIG_CPU_FREQ)
if (pdata->cpu_set_freq)
(*pdata->cpu_set_freq) (pdata->mpu_speed[VDD1_OPP1]);
#endif
/* Get address of iAlg functions, if socket node */
if (DSP_SUCCEEDED(status)) {
if (node_type == NODE_DAISSOCKET) {
status = hnode_mgr->nldr_fxns.pfn_get_fxn_addr
(hnode->nldr_node_obj,
hnode->dcd_props.obj_data.node_obj.
pstr_i_alg_name,
&hnode->create_args.asa.
task_arg_obj.ul_dais_arg);
}
}
}
if (DSP_SUCCEEDED(status)) {
if (node_type != NODE_DEVICE) {
status = disp_node_create(hnode_mgr->disp_obj, hnode,
hnode_mgr->ul_fxn_addrs
[RMSCREATENODE],
ul_create_fxn,
&(hnode->create_args),
&(hnode->node_env));
if (DSP_SUCCEEDED(status)) {
/* Set the message queue id to the node env
* pointer */
intf_fxns = hnode_mgr->intf_fxns;
(*intf_fxns->pfn_msg_set_queue_id) (hnode->
msg_queue_obj,
hnode->node_env);
}
}
}
/* Phase II/Overlays: Create, execute, delete phases possibly in
* different files/sections. */
if (hnode->loaded && hnode->phase_split) {
/* If create code was dynamically loaded, we can now unload
* it. */
status1 = hnode_mgr->nldr_fxns.pfn_unload(hnode->nldr_node_obj,
NLDR_CREATE);
hnode->loaded = false;
}
if (DSP_FAILED(status1))
pr_err("%s: Failed to unload create code: 0x%x\n",
__func__, status1);
func_cont2:
/* Update node state and node manager state */
if (DSP_SUCCEEDED(status)) {
NODE_SET_STATE(hnode, NODE_CREATED);
hnode_mgr->num_created++;
goto func_cont;
}
if (status != -EBADR) {
/* Put back in NODE_ALLOCATED state if error occurred */
NODE_SET_STATE(hnode, NODE_ALLOCATED);
}
func_cont:
/* Free access to node dispatcher */
mutex_unlock(&hnode_mgr->node_mgr_lock);
func_end:
if (DSP_SUCCEEDED(status)) {
proc_notify_clients(hnode->hprocessor, DSP_NODESTATECHANGE);
ntfy_notify(hnode->ntfy_obj, DSP_NODESTATECHANGE);
}
dev_dbg(bridge, "%s: hnode: %p status: 0x%x\n", __func__,
hnode, status);
return status;
}
/*
* ======== node_create_mgr ========
* Purpose:
* Create a NODE Manager object.
*/
int node_create_mgr(OUT struct node_mgr **phNodeMgr,
struct dev_object *hdev_obj)
{
u32 i;
struct node_mgr *node_mgr_obj = NULL;
struct disp_attr disp_attr_obj;
char *sz_zl_file = "";
struct nldr_attrs nldr_attrs_obj;
int status = 0;
u8 dev_type;
DBC_REQUIRE(refs > 0);
DBC_REQUIRE(phNodeMgr != NULL);
DBC_REQUIRE(hdev_obj != NULL);
*phNodeMgr = NULL;
/* Allocate Node manager object */
node_mgr_obj = kzalloc(sizeof(struct node_mgr), GFP_KERNEL);
if (node_mgr_obj) {
node_mgr_obj->hdev_obj = hdev_obj;
node_mgr_obj->node_list = kzalloc(sizeof(struct lst_list),
GFP_KERNEL);
node_mgr_obj->pipe_map = gb_create(MAXPIPES);
node_mgr_obj->pipe_done_map = gb_create(MAXPIPES);
if (node_mgr_obj->node_list == NULL
|| node_mgr_obj->pipe_map == NULL
|| node_mgr_obj->pipe_done_map == NULL) {
status = -ENOMEM;
} else {
INIT_LIST_HEAD(&node_mgr_obj->node_list->head);
node_mgr_obj->ntfy_obj = kmalloc(
sizeof(struct ntfy_object), GFP_KERNEL);
if (node_mgr_obj->ntfy_obj)
ntfy_init(node_mgr_obj->ntfy_obj);
else
status = -ENOMEM;
}
node_mgr_obj->num_created = 0;
} else {
status = -ENOMEM;
}
/* get devNodeType */
if (DSP_SUCCEEDED(status))
status = dev_get_dev_type(hdev_obj, &dev_type);
/* Create the DCD Manager */
if (DSP_SUCCEEDED(status)) {
status =
dcd_create_manager(sz_zl_file, &node_mgr_obj->hdcd_mgr);
if (DSP_SUCCEEDED(status))
status = get_proc_props(node_mgr_obj, hdev_obj);
}
/* Create NODE Dispatcher */
if (DSP_SUCCEEDED(status)) {
disp_attr_obj.ul_chnl_offset = node_mgr_obj->ul_chnl_offset;
disp_attr_obj.ul_chnl_buf_size = node_mgr_obj->ul_chnl_buf_size;
disp_attr_obj.proc_family = node_mgr_obj->proc_family;
disp_attr_obj.proc_type = node_mgr_obj->proc_type;
status =
disp_create(&node_mgr_obj->disp_obj, hdev_obj,
&disp_attr_obj);
}
/* Create a STRM Manager */
if (DSP_SUCCEEDED(status))
status = strm_create(&node_mgr_obj->strm_mgr_obj, hdev_obj);
if (DSP_SUCCEEDED(status)) {
dev_get_intf_fxns(hdev_obj, &node_mgr_obj->intf_fxns);
/* Get msg_ctrl queue manager */
dev_get_msg_mgr(hdev_obj, &node_mgr_obj->msg_mgr_obj);
mutex_init(&node_mgr_obj->node_mgr_lock);
node_mgr_obj->chnl_map = gb_create(node_mgr_obj->ul_num_chnls);
/* dma chnl map. ul_num_chnls is # per transport */
node_mgr_obj->dma_chnl_map =
gb_create(node_mgr_obj->ul_num_chnls);
node_mgr_obj->zc_chnl_map =
gb_create(node_mgr_obj->ul_num_chnls);
if ((node_mgr_obj->chnl_map == NULL)
|| (node_mgr_obj->dma_chnl_map == NULL)
|| (node_mgr_obj->zc_chnl_map == NULL)) {
status = -ENOMEM;
} else {
/* Block out reserved channels */
for (i = 0; i < node_mgr_obj->ul_chnl_offset; i++)
gb_set(node_mgr_obj->chnl_map, i);
/* Block out channels reserved for RMS */
gb_set(node_mgr_obj->chnl_map,
node_mgr_obj->ul_chnl_offset);
gb_set(node_mgr_obj->chnl_map,
node_mgr_obj->ul_chnl_offset + 1);
}
}
if (DSP_SUCCEEDED(status)) {
/* NO RM Server on the IVA */
if (dev_type != IVA_UNIT) {
/* Get addresses of any RMS functions loaded */
status = get_rms_fxns(node_mgr_obj);
}
}
/* Get loader functions and create loader */
if (DSP_SUCCEEDED(status))
node_mgr_obj->nldr_fxns = nldr_fxns; /* Dyn loader funcs */
if (DSP_SUCCEEDED(status)) {
nldr_attrs_obj.pfn_ovly = ovly;
nldr_attrs_obj.pfn_write = mem_write;
nldr_attrs_obj.us_dsp_word_size = node_mgr_obj->udsp_word_size;
nldr_attrs_obj.us_dsp_mau_size = node_mgr_obj->udsp_mau_size;
node_mgr_obj->loader_init = node_mgr_obj->nldr_fxns.pfn_init();
status =
node_mgr_obj->nldr_fxns.pfn_create(&node_mgr_obj->nldr_obj,
hdev_obj,
&nldr_attrs_obj);
}
if (DSP_SUCCEEDED(status))
*phNodeMgr = node_mgr_obj;
else
delete_node_mgr(node_mgr_obj);
DBC_ENSURE((DSP_FAILED(status) && (*phNodeMgr == NULL)) ||
(DSP_SUCCEEDED(status) && *phNodeMgr));
return status;
}
/*
* ======== node_delete ========
* Purpose:
* Delete a node on the DSP by remotely calling the node's delete function.
* Loads the node's delete function if necessary. Free GPP side resources
* after node's delete function returns.
*/
int node_delete(struct node_object *hnode,
struct process_context *pr_ctxt)
{
struct node_object *pnode = (struct node_object *)hnode;
struct node_mgr *hnode_mgr;
struct proc_object *hprocessor;
struct disp_object *disp_obj;
u32 ul_delete_fxn;
enum node_type node_type;
enum node_state state;
int status = 0;
int status1 = 0;
struct dsp_cbdata cb_data;
u32 proc_id;
struct bridge_drv_interface *intf_fxns;
void *node_res;
struct dsp_processorstate proc_state;
DBC_REQUIRE(refs > 0);
if (!hnode) {
status = -EFAULT;
goto func_end;
}
/* create struct dsp_cbdata struct for PWR call */
cb_data.cb_data = PWR_TIMEOUT;
hnode_mgr = hnode->hnode_mgr;
hprocessor = hnode->hprocessor;
disp_obj = hnode_mgr->disp_obj;
node_type = node_get_type(hnode);
intf_fxns = hnode_mgr->intf_fxns;
/* Enter critical section */
mutex_lock(&hnode_mgr->node_mgr_lock);
state = node_get_state(hnode);
/* Execute delete phase code for non-device node in all cases
* except when the node was only allocated. Delete phase must be
* executed even if create phase was executed, but failed.
* If the node environment pointer is non-NULL, the delete phase
* code must be executed. */
if (!(state == NODE_ALLOCATED && hnode->node_env == (u32) NULL) &&
node_type != NODE_DEVICE) {
status = proc_get_processor_id(pnode->hprocessor, &proc_id);
if (DSP_FAILED(status))
goto func_cont1;
if (proc_id == DSP_UNIT || proc_id == IVA_UNIT) {
/* If node has terminated, execute phase code will
* have already been unloaded in node_on_exit(). If the
* node is PAUSED, the execute phase is loaded, and it
* is now ok to unload it. If the node is running, we
* will unload the execute phase only after deleting
* the node. */
if (state == NODE_PAUSED && hnode->loaded &&
hnode->phase_split) {
/* Ok to unload execute code as long as node
* is not * running */
status1 =
hnode_mgr->nldr_fxns.
pfn_unload(hnode->nldr_node_obj,
NLDR_EXECUTE);
hnode->loaded = false;
NODE_SET_STATE(hnode, NODE_DONE);
}
/* Load delete phase code if not loaded or if haven't
* * unloaded EXECUTE phase */
if ((!(hnode->loaded) || (state == NODE_RUNNING)) &&
hnode->phase_split) {
status =
hnode_mgr->nldr_fxns.
pfn_load(hnode->nldr_node_obj, NLDR_DELETE);
if (DSP_SUCCEEDED(status))
hnode->loaded = true;
else
pr_err("%s: fail - load delete code:"
" 0x%x\n", __func__, status);
}
}
func_cont1:
if (DSP_SUCCEEDED(status)) {
/* Unblock a thread trying to terminate the node */
(void)sync_set_event(hnode->sync_done);
if (proc_id == DSP_UNIT) {
/* ul_delete_fxn = address of node's delete
* function */
status = get_fxn_address(hnode, &ul_delete_fxn,
DELETEPHASE);
} else if (proc_id == IVA_UNIT)
ul_delete_fxn = (u32) hnode->node_env;
if (DSP_SUCCEEDED(status)) {
status = proc_get_state(hprocessor,
&proc_state,
sizeof(struct
dsp_processorstate));
if (proc_state.proc_state != PROC_ERROR) {
status =
disp_node_delete(disp_obj, hnode,
hnode_mgr->
ul_fxn_addrs
[RMSDELETENODE],
ul_delete_fxn,
hnode->node_env);
} else
NODE_SET_STATE(hnode, NODE_DONE);
/* Unload execute, if not unloaded, and delete
* function */
if (state == NODE_RUNNING &&
hnode->phase_split) {
status1 =
hnode_mgr->nldr_fxns.
pfn_unload(hnode->nldr_node_obj,
NLDR_EXECUTE);
}
if (DSP_FAILED(status1))
pr_err("%s: fail - unload execute code:"
" 0x%x\n", __func__, status1);
status1 =
hnode_mgr->nldr_fxns.pfn_unload(hnode->
nldr_node_obj,
NLDR_DELETE);
hnode->loaded = false;
if (DSP_FAILED(status1))
pr_err("%s: fail - unload delete code: "
"0x%x\n", __func__, status1);
}
}
}
/* Free host side resources even if a failure occurred */
/* Remove node from hnode_mgr->node_list */
lst_remove_elem(hnode_mgr->node_list, (struct list_head *)hnode);
hnode_mgr->num_nodes--;
/* Decrement count of nodes created on DSP */
if ((state != NODE_ALLOCATED) || ((state == NODE_ALLOCATED) &&
(hnode->node_env != (u32) NULL)))
hnode_mgr->num_created--;
/* Free host-side resources allocated by node_create()
* delete_node() fails if SM buffers not freed by client! */
if (drv_get_node_res_element(hnode, &node_res, pr_ctxt) !=
-ENOENT)
drv_proc_node_update_status(node_res, false);
delete_node(hnode, pr_ctxt);
drv_remove_node_res_element(node_res, pr_ctxt);
/* Exit critical section */
mutex_unlock(&hnode_mgr->node_mgr_lock);
proc_notify_clients(hprocessor, DSP_NODESTATECHANGE);
func_end:
dev_dbg(bridge, "%s: hnode: %p status 0x%x\n", __func__, hnode, status);
return status;
}
/*
* ======== node_delete_mgr ========
* Purpose:
* Delete the NODE Manager.
*/
int node_delete_mgr(struct node_mgr *hnode_mgr)
{
int status = 0;
DBC_REQUIRE(refs > 0);
if (hnode_mgr)
delete_node_mgr(hnode_mgr);
else
status = -EFAULT;
return status;
}
/*
* ======== node_enum_nodes ========
* Purpose:
* Enumerate currently allocated nodes.
*/
int node_enum_nodes(struct node_mgr *hnode_mgr, void **node_tab,
u32 node_tab_size, OUT u32 *pu_num_nodes,
OUT u32 *pu_allocated)
{
struct node_object *hnode;
u32 i;
int status = 0;
DBC_REQUIRE(refs > 0);
DBC_REQUIRE(node_tab != NULL || node_tab_size == 0);
DBC_REQUIRE(pu_num_nodes != NULL);
DBC_REQUIRE(pu_allocated != NULL);
if (!hnode_mgr) {
status = -EFAULT;
goto func_end;
}
/* Enter critical section */
mutex_lock(&hnode_mgr->node_mgr_lock);
if (hnode_mgr->num_nodes > node_tab_size) {
*pu_allocated = hnode_mgr->num_nodes;
*pu_num_nodes = 0;
status = -EINVAL;
} else {
hnode = (struct node_object *)lst_first(hnode_mgr->
node_list);
for (i = 0; i < hnode_mgr->num_nodes; i++) {
DBC_ASSERT(hnode);
node_tab[i] = hnode;
hnode = (struct node_object *)lst_next
(hnode_mgr->node_list,
(struct list_head *)hnode);
}
*pu_allocated = *pu_num_nodes = hnode_mgr->num_nodes;
}
/* end of sync_enter_cs */
/* Exit critical section */
mutex_unlock(&hnode_mgr->node_mgr_lock);
func_end:
return status;
}
/*
* ======== node_exit ========
* Purpose:
* Discontinue usage of NODE module.
*/
void node_exit(void)
{
DBC_REQUIRE(refs > 0);
refs--;
DBC_ENSURE(refs >= 0);
}
/*
* ======== node_free_msg_buf ========
* Purpose:
* Frees the message buffer.
*/
int node_free_msg_buf(struct node_object *hnode, IN u8 * pbuffer,
OPTIONAL struct dsp_bufferattr *pattr)
{
struct node_object *pnode = (struct node_object *)hnode;
int status = 0;
u32 proc_id;
DBC_REQUIRE(refs > 0);
DBC_REQUIRE(pbuffer != NULL);
DBC_REQUIRE(pnode != NULL);
DBC_REQUIRE(pnode->xlator != NULL);
if (!hnode) {
status = -EFAULT;
goto func_end;
}
status = proc_get_processor_id(pnode->hprocessor, &proc_id);
if (proc_id == DSP_UNIT) {
if (DSP_SUCCEEDED(status)) {
if (pattr == NULL) {
/* set defaults */
pattr = &node_dfltbufattrs;
}
/* Node supports single SM segment only */
if (pattr->segment_id != 1)
status = -EBADR;
/* pbuffer is clients Va. */
status = cmm_xlator_free_buf(pnode->xlator, pbuffer);
}
} else {
DBC_ASSERT(NULL); /* BUG */
}
func_end:
return status;
}
/*
* ======== node_get_attr ========
* Purpose:
* Copy the current attributes of the specified node into a dsp_nodeattr
* structure.
*/
int node_get_attr(struct node_object *hnode,
OUT struct dsp_nodeattr *pattr, u32 attr_size)
{
struct node_mgr *hnode_mgr;
int status = 0;
DBC_REQUIRE(refs > 0);
DBC_REQUIRE(pattr != NULL);
DBC_REQUIRE(attr_size >= sizeof(struct dsp_nodeattr));
if (!hnode) {
status = -EFAULT;
} else {
hnode_mgr = hnode->hnode_mgr;
/* Enter hnode_mgr critical section (since we're accessing
* data that could be changed by node_change_priority() and
* node_connect(). */
mutex_lock(&hnode_mgr->node_mgr_lock);
pattr->cb_struct = sizeof(struct dsp_nodeattr);
/* dsp_nodeattrin */
pattr->in_node_attr_in.cb_struct =
sizeof(struct dsp_nodeattrin);
pattr->in_node_attr_in.prio = hnode->prio;
pattr->in_node_attr_in.utimeout = hnode->utimeout;
pattr->in_node_attr_in.heap_size =
hnode->create_args.asa.task_arg_obj.heap_size;
pattr->in_node_attr_in.pgpp_virt_addr = (void *)
hnode->create_args.asa.task_arg_obj.ugpp_heap_addr;
pattr->node_attr_inputs = hnode->num_gpp_inputs;
pattr->node_attr_outputs = hnode->num_gpp_outputs;
/* dsp_nodeinfo */
get_node_info(hnode, &(pattr->node_info));
/* end of sync_enter_cs */
/* Exit critical section */
mutex_unlock(&hnode_mgr->node_mgr_lock);
}
return status;
}
/*
* ======== node_get_channel_id ========
* Purpose:
* Get the channel index reserved for a stream connection between the
* host and a node.
*/
int node_get_channel_id(struct node_object *hnode, u32 dir, u32 index,
OUT u32 *pulId)
{
enum node_type node_type;
int status = -EINVAL;
DBC_REQUIRE(refs > 0);
DBC_REQUIRE(dir == DSP_TONODE || dir == DSP_FROMNODE);
DBC_REQUIRE(pulId != NULL);
if (!hnode) {
status = -EFAULT;
return status;
}
node_type = node_get_type(hnode);
if (node_type != NODE_TASK && node_type != NODE_DAISSOCKET) {
status = -EPERM;
return status;
}
if (dir == DSP_TONODE) {
if (index < MAX_INPUTS(hnode)) {
if (hnode->inputs[index].type == HOSTCONNECT) {
*pulId = hnode->inputs[index].dev_id;
status = 0;
}
}
} else {
DBC_ASSERT(dir == DSP_FROMNODE);
if (index < MAX_OUTPUTS(hnode)) {
if (hnode->outputs[index].type == HOSTCONNECT) {
*pulId = hnode->outputs[index].dev_id;
status = 0;
}
}
}
return status;
}
/*
* ======== node_get_message ========
* Purpose:
* Retrieve a message from a node on the DSP.
*/
int node_get_message(struct node_object *hnode,
OUT struct dsp_msg *pmsg, u32 utimeout)
{
struct node_mgr *hnode_mgr;
enum node_type node_type;
struct bridge_drv_interface *intf_fxns;
int status = 0;
void *tmp_buf;
struct dsp_processorstate proc_state;
struct proc_object *hprocessor;
DBC_REQUIRE(refs > 0);
DBC_REQUIRE(pmsg != NULL);
if (!hnode) {
status = -EFAULT;
goto func_end;
}
hprocessor = hnode->hprocessor;
status = proc_get_state(hprocessor, &proc_state,
sizeof(struct dsp_processorstate));
if (DSP_FAILED(status))
goto func_end;
/* If processor is in error state then don't attempt to get the
message */
if (proc_state.proc_state == PROC_ERROR) {
status = -EPERM;
goto func_end;
}
hnode_mgr = hnode->hnode_mgr;
node_type = node_get_type(hnode);
if (node_type != NODE_MESSAGE && node_type != NODE_TASK &&
node_type != NODE_DAISSOCKET) {
status = -EPERM;
goto func_end;
}
/* This function will block unless a message is available. Since
* DSPNode_RegisterNotify() allows notification when a message
* is available, the system can be designed so that
* DSPNode_GetMessage() is only called when a message is
* available. */
intf_fxns = hnode_mgr->intf_fxns;
status =
(*intf_fxns->pfn_msg_get) (hnode->msg_queue_obj, pmsg, utimeout);
/* Check if message contains SM descriptor */
if (DSP_FAILED(status) || !(pmsg->dw_cmd & DSP_RMSBUFDESC))
goto func_end;
/* Translate DSP byte addr to GPP Va. */
tmp_buf = cmm_xlator_translate(hnode->xlator,
(void *)(pmsg->dw_arg1 *
hnode->hnode_mgr->
udsp_word_size), CMM_DSPPA2PA);
if (tmp_buf != NULL) {
/* now convert this GPP Pa to Va */
tmp_buf = cmm_xlator_translate(hnode->xlator, tmp_buf,
CMM_PA2VA);
if (tmp_buf != NULL) {
/* Adjust SM size in msg */
pmsg->dw_arg1 = (u32) tmp_buf;
pmsg->dw_arg2 *= hnode->hnode_mgr->udsp_word_size;
} else {
status = -ESRCH;
}
} else {
status = -ESRCH;
}
func_end:
dev_dbg(bridge, "%s: hnode: %p pmsg: %p utimeout: 0x%x\n", __func__,
hnode, pmsg, utimeout);
return status;
}
/*
* ======== node_get_nldr_obj ========
*/
int node_get_nldr_obj(struct node_mgr *hnode_mgr,
struct nldr_object **phNldrObj)
{
int status = 0;
struct node_mgr *node_mgr_obj = hnode_mgr;
DBC_REQUIRE(phNldrObj != NULL);
if (!hnode_mgr)
status = -EFAULT;
else
*phNldrObj = node_mgr_obj->nldr_obj;
DBC_ENSURE(DSP_SUCCEEDED(status) || ((phNldrObj != NULL) &&
(*phNldrObj == NULL)));
return status;
}
/*
* ======== node_get_strm_mgr ========
* Purpose:
* Returns the Stream manager.
*/
int node_get_strm_mgr(struct node_object *hnode,
struct strm_mgr **phStrmMgr)
{
int status = 0;
DBC_REQUIRE(refs > 0);
if (!hnode)
status = -EFAULT;
else
*phStrmMgr = hnode->hnode_mgr->strm_mgr_obj;
return status;
}
/*
* ======== node_get_load_type ========
*/
enum nldr_loadtype node_get_load_type(struct node_object *hnode)
{
DBC_REQUIRE(refs > 0);
DBC_REQUIRE(hnode);
if (!hnode) {
dev_dbg(bridge, "%s: Failed. hnode: %p\n", __func__, hnode);
return -1;
} else {
return hnode->dcd_props.obj_data.node_obj.us_load_type;
}
}
/*
* ======== node_get_timeout ========
* Purpose:
* Returns the timeout value for this node.
*/
u32 node_get_timeout(struct node_object *hnode)
{
DBC_REQUIRE(refs > 0);
DBC_REQUIRE(hnode);
if (!hnode) {
dev_dbg(bridge, "%s: failed. hnode: %p\n", __func__, hnode);
return 0;
} else {
return hnode->utimeout;
}
}
/*
* ======== node_get_type ========
* Purpose:
* Returns the node type.
*/
enum node_type node_get_type(struct node_object *hnode)
{
enum node_type node_type;
if (hnode == (struct node_object *)DSP_HGPPNODE)
node_type = NODE_GPP;
else {
if (!hnode)
node_type = -1;
else
node_type = hnode->ntype;
}
return node_type;
}
/*
* ======== node_init ========
* Purpose:
* Initialize the NODE module.
*/
bool node_init(void)
{
DBC_REQUIRE(refs >= 0);
refs++;
return true;
}
/*
* ======== node_on_exit ========
* Purpose:
* Gets called when RMS_EXIT is received for a node.
*/
void node_on_exit(struct node_object *hnode, s32 nStatus)
{
if (!hnode)
return;
/* Set node state to done */
NODE_SET_STATE(hnode, NODE_DONE);
hnode->exit_status = nStatus;
if (hnode->loaded && hnode->phase_split) {
(void)hnode->hnode_mgr->nldr_fxns.pfn_unload(hnode->
nldr_node_obj,
NLDR_EXECUTE);
hnode->loaded = false;
}
/* Unblock call to node_terminate */
(void)sync_set_event(hnode->sync_done);
/* Notify clients */
proc_notify_clients(hnode->hprocessor, DSP_NODESTATECHANGE);
ntfy_notify(hnode->ntfy_obj, DSP_NODESTATECHANGE);
}
/*
* ======== node_pause ========
* Purpose:
* Suspend execution of a node currently running on the DSP.
*/
int node_pause(struct node_object *hnode)
{
struct node_object *pnode = (struct node_object *)hnode;
enum node_type node_type;
enum node_state state;
struct node_mgr *hnode_mgr;
int status = 0;
u32 proc_id;
struct dsp_processorstate proc_state;
struct proc_object *hprocessor;
DBC_REQUIRE(refs > 0);
if (!hnode) {
status = -EFAULT;
} else {
node_type = node_get_type(hnode);
if (node_type != NODE_TASK && node_type != NODE_DAISSOCKET)
status = -EPERM;
}
if (DSP_FAILED(status))
goto func_end;
status = proc_get_processor_id(pnode->hprocessor, &proc_id);
if (proc_id == IVA_UNIT)
status = -ENOSYS;
if (DSP_SUCCEEDED(status)) {
hnode_mgr = hnode->hnode_mgr;
/* Enter critical section */
mutex_lock(&hnode_mgr->node_mgr_lock);
state = node_get_state(hnode);
/* Check node state */
if (state != NODE_RUNNING)
status = -EBADR;
if (DSP_FAILED(status))
goto func_cont;
hprocessor = hnode->hprocessor;
status = proc_get_state(hprocessor, &proc_state,
sizeof(struct dsp_processorstate));
if (DSP_FAILED(status))
goto func_cont;
/* If processor is in error state then don't attempt
to send the message */
if (proc_state.proc_state == PROC_ERROR) {
status = -EPERM;
goto func_cont;
}
status = disp_node_change_priority(hnode_mgr->disp_obj, hnode,
hnode_mgr->ul_fxn_addrs[RMSCHANGENODEPRIORITY],
hnode->node_env, NODE_SUSPENDEDPRI);
/* Update state */
if (DSP_SUCCEEDED(status))
NODE_SET_STATE(hnode, NODE_PAUSED);
func_cont:
/* End of sync_enter_cs */
/* Leave critical section */
mutex_unlock(&hnode_mgr->node_mgr_lock);
if (DSP_SUCCEEDED(status)) {
proc_notify_clients(hnode->hprocessor,
DSP_NODESTATECHANGE);
ntfy_notify(hnode->ntfy_obj, DSP_NODESTATECHANGE);
}
}
func_end:
dev_dbg(bridge, "%s: hnode: %p status 0x%x\n", __func__, hnode, status);
return status;
}
/*
* ======== node_put_message ========
* Purpose:
* Send a message to a message node, task node, or XDAIS socket node. This
* function will block until the message stream can accommodate the
* message, or a timeout occurs.
*/
int node_put_message(struct node_object *hnode,
IN CONST struct dsp_msg *pmsg, u32 utimeout)
{
struct node_mgr *hnode_mgr = NULL;
enum node_type node_type;
struct bridge_drv_interface *intf_fxns;
enum node_state state;
int status = 0;
void *tmp_buf;
struct dsp_msg new_msg;
struct dsp_processorstate proc_state;
struct proc_object *hprocessor;
DBC_REQUIRE(refs > 0);
DBC_REQUIRE(pmsg != NULL);
if (!hnode) {
status = -EFAULT;
goto func_end;
}
hprocessor = hnode->hprocessor;
status = proc_get_state(hprocessor, &proc_state,
sizeof(struct dsp_processorstate));
if (DSP_FAILED(status))
goto func_end;
/* If processor is in bad state then don't attempt sending the
message */
if (proc_state.proc_state == PROC_ERROR) {
status = -EPERM;
goto func_end;
}
hnode_mgr = hnode->hnode_mgr;
node_type = node_get_type(hnode);
if (node_type != NODE_MESSAGE && node_type != NODE_TASK &&
node_type != NODE_DAISSOCKET)
status = -EPERM;
if (DSP_SUCCEEDED(status)) {
/* Check node state. Can't send messages to a node after
* we've sent the RMS_EXIT command. There is still the
* possibility that node_terminate can be called after we've
* checked the state. Could add another SYNC object to
* prevent this (can't use node_mgr_lock, since we don't
* want to block other NODE functions). However, the node may
* still exit on its own, before this message is sent. */
mutex_lock(&hnode_mgr->node_mgr_lock);
state = node_get_state(hnode);
if (state == NODE_TERMINATING || state == NODE_DONE)
status = -EBADR;
/* end of sync_enter_cs */
mutex_unlock(&hnode_mgr->node_mgr_lock);
}
if (DSP_FAILED(status))
goto func_end;
/* assign pmsg values to new msg */
new_msg = *pmsg;
/* Now, check if message contains a SM buffer descriptor */
if (pmsg->dw_cmd & DSP_RMSBUFDESC) {
/* Translate GPP Va to DSP physical buf Ptr. */
tmp_buf = cmm_xlator_translate(hnode->xlator,
(void *)new_msg.dw_arg1,
CMM_VA2DSPPA);
if (tmp_buf != NULL) {
/* got translation, convert to MAUs in msg */
if (hnode->hnode_mgr->udsp_word_size != 0) {
new_msg.dw_arg1 =
(u32) tmp_buf /
hnode->hnode_mgr->udsp_word_size;
/* MAUs */
new_msg.dw_arg2 /= hnode->hnode_mgr->
udsp_word_size;
} else {
pr_err("%s: udsp_word_size is zero!\n",
__func__);
status = -EPERM; /* bad DSPWordSize */
}
} else { /* failed to translate buffer address */
status = -ESRCH;
}
}
if (DSP_SUCCEEDED(status)) {
intf_fxns = hnode_mgr->intf_fxns;
status = (*intf_fxns->pfn_msg_put) (hnode->msg_queue_obj,
&new_msg, utimeout);
}
func_end:
dev_dbg(bridge, "%s: hnode: %p pmsg: %p utimeout: 0x%x, "
"status 0x%x\n", __func__, hnode, pmsg, utimeout, status);
return status;
}
/*
* ======== node_register_notify ========
* Purpose:
* Register to be notified on specific events for this node.
*/
int node_register_notify(struct node_object *hnode, u32 event_mask,
u32 notify_type,
struct dsp_notification *hnotification)
{
struct bridge_drv_interface *intf_fxns;
int status = 0;
DBC_REQUIRE(refs > 0);
DBC_REQUIRE(hnotification != NULL);
if (!hnode) {
status = -EFAULT;
} else {
/* Check if event mask is a valid node related event */
if (event_mask & ~(DSP_NODESTATECHANGE | DSP_NODEMESSAGEREADY))
status = -EINVAL;
/* Check if notify type is valid */
if (notify_type != DSP_SIGNALEVENT)
status = -EINVAL;
/* Only one Notification can be registered at a
* time - Limitation */
if (event_mask == (DSP_NODESTATECHANGE | DSP_NODEMESSAGEREADY))
status = -EINVAL;
}
if (DSP_SUCCEEDED(status)) {
if (event_mask == DSP_NODESTATECHANGE) {
status = ntfy_register(hnode->ntfy_obj, hnotification,
event_mask & DSP_NODESTATECHANGE,
notify_type);
} else {
/* Send Message part of event mask to msg_ctrl */
intf_fxns = hnode->hnode_mgr->intf_fxns;
status = (*intf_fxns->pfn_msg_register_notify)
(hnode->msg_queue_obj,
event_mask & DSP_NODEMESSAGEREADY, notify_type,
hnotification);
}
}
dev_dbg(bridge, "%s: hnode: %p event_mask: 0x%x notify_type: 0x%x "
"hnotification: %p status 0x%x\n", __func__, hnode,
event_mask, notify_type, hnotification, status);
return status;
}
/*
* ======== node_run ========
* Purpose:
* Start execution of a node's execute phase, or resume execution of a node
* that has been suspended (via NODE_NodePause()) on the DSP. Load the
* node's execute function if necessary.
*/
int node_run(struct node_object *hnode)
{
struct node_object *pnode = (struct node_object *)hnode;
struct node_mgr *hnode_mgr;
enum node_type node_type;
enum node_state state;
u32 ul_execute_fxn;
u32 ul_fxn_addr;
int status = 0;
u32 proc_id;
struct bridge_drv_interface *intf_fxns;
struct dsp_processorstate proc_state;
struct proc_object *hprocessor;
DBC_REQUIRE(refs > 0);
if (!hnode) {
status = -EFAULT;
goto func_end;
}
hprocessor = hnode->hprocessor;
status = proc_get_state(hprocessor, &proc_state,
sizeof(struct dsp_processorstate));
if (DSP_FAILED(status))
goto func_end;
/* If processor is in error state then don't attempt to run the node */
if (proc_state.proc_state == PROC_ERROR) {
status = -EPERM;
goto func_end;
}
node_type = node_get_type(hnode);
if (node_type == NODE_DEVICE)
status = -EPERM;
if (DSP_FAILED(status))
goto func_end;
hnode_mgr = hnode->hnode_mgr;
if (!hnode_mgr) {
status = -EFAULT;
goto func_end;
}
intf_fxns = hnode_mgr->intf_fxns;
/* Enter critical section */
mutex_lock(&hnode_mgr->node_mgr_lock);
state = node_get_state(hnode);
if (state != NODE_CREATED && state != NODE_PAUSED)
status = -EBADR;
if (DSP_SUCCEEDED(status))
status = proc_get_processor_id(pnode->hprocessor, &proc_id);
if (DSP_FAILED(status))
goto func_cont1;
if ((proc_id != DSP_UNIT) && (proc_id != IVA_UNIT))
goto func_cont1;
if (state == NODE_CREATED) {
/* If node's execute function is not loaded, load it */
if (!(hnode->loaded) && hnode->phase_split) {
status =
hnode_mgr->nldr_fxns.pfn_load(hnode->nldr_node_obj,
NLDR_EXECUTE);
if (DSP_SUCCEEDED(status)) {
hnode->loaded = true;
} else {
pr_err("%s: fail - load execute code: 0x%x\n",
__func__, status);
}
}
if (DSP_SUCCEEDED(status)) {
/* Get address of node's execute function */
if (proc_id == IVA_UNIT)
ul_execute_fxn = (u32) hnode->node_env;
else {
status = get_fxn_address(hnode, &ul_execute_fxn,
EXECUTEPHASE);
}
}
if (DSP_SUCCEEDED(status)) {
ul_fxn_addr = hnode_mgr->ul_fxn_addrs[RMSEXECUTENODE];
status =
disp_node_run(hnode_mgr->disp_obj, hnode,
ul_fxn_addr, ul_execute_fxn,
hnode->node_env);
}
} else if (state == NODE_PAUSED) {
ul_fxn_addr = hnode_mgr->ul_fxn_addrs[RMSCHANGENODEPRIORITY];
status = disp_node_change_priority(hnode_mgr->disp_obj, hnode,
ul_fxn_addr, hnode->node_env,
NODE_GET_PRIORITY(hnode));
} else {
/* We should never get here */
DBC_ASSERT(false);
}
func_cont1:
/* Update node state. */
if (DSP_SUCCEEDED(status))
NODE_SET_STATE(hnode, NODE_RUNNING);
else /* Set state back to previous value */
NODE_SET_STATE(hnode, state);
/*End of sync_enter_cs */
/* Exit critical section */
mutex_unlock(&hnode_mgr->node_mgr_lock);
if (DSP_SUCCEEDED(status)) {
proc_notify_clients(hnode->hprocessor, DSP_NODESTATECHANGE);
ntfy_notify(hnode->ntfy_obj, DSP_NODESTATECHANGE);
}
func_end:
dev_dbg(bridge, "%s: hnode: %p status 0x%x\n", __func__, hnode, status);
return status;
}
/*
* ======== node_terminate ========
* Purpose:
* Signal a node running on the DSP that it should exit its execute phase
* function.
*/
int node_terminate(struct node_object *hnode, OUT int *pstatus)
{
struct node_object *pnode = (struct node_object *)hnode;
struct node_mgr *hnode_mgr = NULL;
enum node_type node_type;
struct bridge_drv_interface *intf_fxns;
enum node_state state;
struct dsp_msg msg, killmsg;
int status = 0;
u32 proc_id, kill_time_out;
struct deh_mgr *hdeh_mgr;
struct dsp_processorstate proc_state;
DBC_REQUIRE(refs > 0);
DBC_REQUIRE(pstatus != NULL);
if (!hnode || !hnode->hnode_mgr) {
status = -EFAULT;
goto func_end;
}
if (pnode->hprocessor == NULL) {
status = -EFAULT;
goto func_end;
}
status = proc_get_processor_id(pnode->hprocessor, &proc_id);
if (DSP_SUCCEEDED(status)) {
hnode_mgr = hnode->hnode_mgr;
node_type = node_get_type(hnode);
if (node_type != NODE_TASK && node_type != NODE_DAISSOCKET)
status = -EPERM;
}
if (DSP_SUCCEEDED(status)) {
/* Check node state */
mutex_lock(&hnode_mgr->node_mgr_lock);
state = node_get_state(hnode);
if (state != NODE_RUNNING) {
status = -EBADR;
/* Set the exit status if node terminated on
* its own. */
if (state == NODE_DONE)
*pstatus = hnode->exit_status;
} else {
NODE_SET_STATE(hnode, NODE_TERMINATING);
}
/* end of sync_enter_cs */
mutex_unlock(&hnode_mgr->node_mgr_lock);
}
if (DSP_SUCCEEDED(status)) {
/*
* Send exit message. Do not change state to NODE_DONE
* here. That will be done in callback.
*/
status = proc_get_state(pnode->hprocessor, &proc_state,
sizeof(struct dsp_processorstate));
if (DSP_FAILED(status))
goto func_cont;
/* If processor is in error state then don't attempt to send
* A kill task command */
if (proc_state.proc_state == PROC_ERROR) {
status = -EPERM;
goto func_cont;
}
msg.dw_cmd = RMS_EXIT;
msg.dw_arg1 = hnode->node_env;
killmsg.dw_cmd = RMS_KILLTASK;
killmsg.dw_arg1 = hnode->node_env;
intf_fxns = hnode_mgr->intf_fxns;
if (hnode->utimeout > MAXTIMEOUT)
kill_time_out = MAXTIMEOUT;
else
kill_time_out = (hnode->utimeout) * 2;
status = (*intf_fxns->pfn_msg_put) (hnode->msg_queue_obj, &msg,
hnode->utimeout);
if (DSP_FAILED(status))
goto func_cont;
/*
* Wait on synchronization object that will be
* posted in the callback on receiving RMS_EXIT
* message, or by node_delete. Check for valid hnode,
* in case posted by node_delete().
*/
status = sync_wait_on_event(hnode->sync_done,
kill_time_out / 2);
if (status != ETIME)
goto func_cont;
status = (*intf_fxns->pfn_msg_put)(hnode->msg_queue_obj,
&killmsg, hnode->utimeout);
if (DSP_FAILED(status))
goto func_cont;
status = sync_wait_on_event(hnode->sync_done,
kill_time_out / 2);
if (DSP_FAILED(status)) {
/*
* Here it goes the part of the simulation of
* the DSP exception.
*/
dev_get_deh_mgr(hnode_mgr->hdev_obj, &hdeh_mgr);
if (!hdeh_mgr)
goto func_cont;
(*intf_fxns->pfn_deh_notify)(hdeh_mgr, DSP_SYSERROR,
DSP_EXCEPTIONABORT);
}
}
func_cont:
if (DSP_SUCCEEDED(status)) {
/* Enter CS before getting exit status, in case node was
* deleted. */
mutex_lock(&hnode_mgr->node_mgr_lock);
/* Make sure node wasn't deleted while we blocked */
if (!hnode) {
status = -EPERM;
} else {
*pstatus = hnode->exit_status;
dev_dbg(bridge, "%s: hnode: %p env 0x%x status 0x%x\n",
__func__, hnode, hnode->node_env, status);
}
mutex_unlock(&hnode_mgr->node_mgr_lock);
} /*End of sync_enter_cs */
func_end:
return status;
}
/*
* ======== delete_node ========
* Purpose:
* Free GPP resources allocated in node_allocate() or node_connect().
*/
static void delete_node(struct node_object *hnode,
struct process_context *pr_ctxt)
{
struct node_mgr *hnode_mgr;
struct cmm_xlatorobject *xlator;
struct bridge_drv_interface *intf_fxns;
u32 i;
enum node_type node_type;
struct stream_chnl stream;
struct node_msgargs node_msg_args;
struct node_taskargs task_arg_obj;
#ifdef DSP_DMM_DEBUG
struct dmm_object *dmm_mgr;
struct proc_object *p_proc_object =
(struct proc_object *)hnode->hprocessor;
#endif
int status;
if (!hnode)
goto func_end;
hnode_mgr = hnode->hnode_mgr;
if (!hnode_mgr)
goto func_end;
xlator = hnode->xlator;
node_type = node_get_type(hnode);
if (node_type != NODE_DEVICE) {
node_msg_args = hnode->create_args.asa.node_msg_args;
kfree(node_msg_args.pdata);
/* Free msg_ctrl queue */
if (hnode->msg_queue_obj) {
intf_fxns = hnode_mgr->intf_fxns;
(*intf_fxns->pfn_msg_delete_queue) (hnode->
msg_queue_obj);
hnode->msg_queue_obj = NULL;
}
kfree(hnode->sync_done);
/* Free all stream info */
if (hnode->inputs) {
for (i = 0; i < MAX_INPUTS(hnode); i++) {
stream = hnode->inputs[i];
free_stream(hnode_mgr, stream);
}
kfree(hnode->inputs);
hnode->inputs = NULL;
}
if (hnode->outputs) {
for (i = 0; i < MAX_OUTPUTS(hnode); i++) {
stream = hnode->outputs[i];
free_stream(hnode_mgr, stream);
}
kfree(hnode->outputs);
hnode->outputs = NULL;
}
task_arg_obj = hnode->create_args.asa.task_arg_obj;
if (task_arg_obj.strm_in_def) {
for (i = 0; i < MAX_INPUTS(hnode); i++) {
kfree(task_arg_obj.strm_in_def[i].sz_device);
task_arg_obj.strm_in_def[i].sz_device = NULL;
}
kfree(task_arg_obj.strm_in_def);
task_arg_obj.strm_in_def = NULL;
}
if (task_arg_obj.strm_out_def) {
for (i = 0; i < MAX_OUTPUTS(hnode); i++) {
kfree(task_arg_obj.strm_out_def[i].sz_device);
task_arg_obj.strm_out_def[i].sz_device = NULL;
}
kfree(task_arg_obj.strm_out_def);
task_arg_obj.strm_out_def = NULL;
}
if (task_arg_obj.udsp_heap_res_addr) {
status = proc_un_map(hnode->hprocessor, (void *)
task_arg_obj.udsp_heap_addr,
pr_ctxt);
status = proc_un_reserve_memory(hnode->hprocessor,
(void *)
task_arg_obj.
udsp_heap_res_addr,
pr_ctxt);
#ifdef DSP_DMM_DEBUG
status = dmm_get_handle(p_proc_object, &dmm_mgr);
if (dmm_mgr)
dmm_mem_map_dump(dmm_mgr);
else
status = DSP_EHANDLE;
#endif
}
}
if (node_type != NODE_MESSAGE) {
kfree(hnode->stream_connect);
hnode->stream_connect = NULL;
}
kfree(hnode->pstr_dev_name);
hnode->pstr_dev_name = NULL;
if (hnode->ntfy_obj) {
ntfy_delete(hnode->ntfy_obj);
kfree(hnode->ntfy_obj);
hnode->ntfy_obj = NULL;
}
/* These were allocated in dcd_get_object_def (via node_allocate) */
kfree(hnode->dcd_props.obj_data.node_obj.pstr_create_phase_fxn);
hnode->dcd_props.obj_data.node_obj.pstr_create_phase_fxn = NULL;
kfree(hnode->dcd_props.obj_data.node_obj.pstr_execute_phase_fxn);
hnode->dcd_props.obj_data.node_obj.pstr_execute_phase_fxn = NULL;
kfree(hnode->dcd_props.obj_data.node_obj.pstr_delete_phase_fxn);
hnode->dcd_props.obj_data.node_obj.pstr_delete_phase_fxn = NULL;
kfree(hnode->dcd_props.obj_data.node_obj.pstr_i_alg_name);
hnode->dcd_props.obj_data.node_obj.pstr_i_alg_name = NULL;
/* Free all SM address translator resources */
if (xlator) {
(void)cmm_xlator_delete(xlator, TRUE); /* force free */
xlator = NULL;
}
kfree(hnode->nldr_node_obj);
hnode->nldr_node_obj = NULL;
hnode->hnode_mgr = NULL;
kfree(hnode);
hnode = NULL;
func_end:
return;
}
/*
* ======== delete_node_mgr ========
* Purpose:
* Frees the node manager.
*/
static void delete_node_mgr(struct node_mgr *hnode_mgr)
{
struct node_object *hnode;
if (hnode_mgr) {
/* Free resources */
if (hnode_mgr->hdcd_mgr)
dcd_destroy_manager(hnode_mgr->hdcd_mgr);
/* Remove any elements remaining in lists */
if (hnode_mgr->node_list) {
while ((hnode = (struct node_object *)
lst_get_head(hnode_mgr->node_list)))
delete_node(hnode, NULL);
DBC_ASSERT(LST_IS_EMPTY(hnode_mgr->node_list));
kfree(hnode_mgr->node_list);
}
mutex_destroy(&hnode_mgr->node_mgr_lock);
if (hnode_mgr->ntfy_obj) {
ntfy_delete(hnode_mgr->ntfy_obj);
kfree(hnode_mgr->ntfy_obj);
}
if (hnode_mgr->pipe_map)
gb_delete(hnode_mgr->pipe_map);
if (hnode_mgr->pipe_done_map)
gb_delete(hnode_mgr->pipe_done_map);
if (hnode_mgr->chnl_map)
gb_delete(hnode_mgr->chnl_map);
if (hnode_mgr->dma_chnl_map)
gb_delete(hnode_mgr->dma_chnl_map);
if (hnode_mgr->zc_chnl_map)
gb_delete(hnode_mgr->zc_chnl_map);
if (hnode_mgr->disp_obj)
disp_delete(hnode_mgr->disp_obj);
if (hnode_mgr->strm_mgr_obj)
strm_delete(hnode_mgr->strm_mgr_obj);
/* Delete the loader */
if (hnode_mgr->nldr_obj)
hnode_mgr->nldr_fxns.pfn_delete(hnode_mgr->nldr_obj);
if (hnode_mgr->loader_init)
hnode_mgr->nldr_fxns.pfn_exit();
kfree(hnode_mgr);
}
}
/*
* ======== fill_stream_connect ========
* Purpose:
* Fills stream information.
*/
static void fill_stream_connect(struct node_object *hNode1,
struct node_object *hNode2,
u32 uStream1, u32 uStream2)
{
u32 strm_index;
struct dsp_streamconnect *strm1 = NULL;
struct dsp_streamconnect *strm2 = NULL;
enum node_type node1_type = NODE_TASK;
enum node_type node2_type = NODE_TASK;
node1_type = node_get_type(hNode1);
node2_type = node_get_type(hNode2);
if (hNode1 != (struct node_object *)DSP_HGPPNODE) {
if (node1_type != NODE_DEVICE) {
strm_index = hNode1->num_inputs +
hNode1->num_outputs - 1;
strm1 = &(hNode1->stream_connect[strm_index]);
strm1->cb_struct = sizeof(struct dsp_streamconnect);
strm1->this_node_stream_index = uStream1;
}
if (hNode2 != (struct node_object *)DSP_HGPPNODE) {
/* NODE == > NODE */
if (node1_type != NODE_DEVICE) {
strm1->connected_node = hNode2;
strm1->ui_connected_node_id = hNode2->node_uuid;
strm1->connected_node_stream_index = uStream2;
strm1->connect_type = CONNECTTYPE_NODEOUTPUT;
}
if (node2_type != NODE_DEVICE) {
strm_index = hNode2->num_inputs +
hNode2->num_outputs - 1;
strm2 = &(hNode2->stream_connect[strm_index]);
strm2->cb_struct =
sizeof(struct dsp_streamconnect);
strm2->this_node_stream_index = uStream2;
strm2->connected_node = hNode1;
strm2->ui_connected_node_id = hNode1->node_uuid;
strm2->connected_node_stream_index = uStream1;
strm2->connect_type = CONNECTTYPE_NODEINPUT;
}
} else if (node1_type != NODE_DEVICE)
strm1->connect_type = CONNECTTYPE_GPPOUTPUT;
} else {
/* GPP == > NODE */
DBC_ASSERT(hNode2 != (struct node_object *)DSP_HGPPNODE);
strm_index = hNode2->num_inputs + hNode2->num_outputs - 1;
strm2 = &(hNode2->stream_connect[strm_index]);
strm2->cb_struct = sizeof(struct dsp_streamconnect);
strm2->this_node_stream_index = uStream2;
strm2->connect_type = CONNECTTYPE_GPPINPUT;
}
}
/*
* ======== fill_stream_def ========
* Purpose:
* Fills Stream attributes.
*/
static void fill_stream_def(struct node_object *hnode,
struct node_strmdef *pstrm_def,
struct dsp_strmattr *pattrs)
{
struct node_mgr *hnode_mgr = hnode->hnode_mgr;
if (pattrs != NULL) {
pstrm_def->num_bufs = pattrs->num_bufs;
pstrm_def->buf_size =
pattrs->buf_size / hnode_mgr->udsp_data_mau_size;
pstrm_def->seg_id = pattrs->seg_id;
pstrm_def->buf_alignment = pattrs->buf_alignment;
pstrm_def->utimeout = pattrs->utimeout;
} else {
pstrm_def->num_bufs = DEFAULTNBUFS;
pstrm_def->buf_size =
DEFAULTBUFSIZE / hnode_mgr->udsp_data_mau_size;
pstrm_def->seg_id = DEFAULTSEGID;
pstrm_def->buf_alignment = DEFAULTALIGNMENT;
pstrm_def->utimeout = DEFAULTTIMEOUT;
}
}
/*
* ======== free_stream ========
* Purpose:
* Updates the channel mask and frees the pipe id.
*/
static void free_stream(struct node_mgr *hnode_mgr, struct stream_chnl stream)
{
/* Free up the pipe id unless other node has not yet been deleted. */
if (stream.type == NODECONNECT) {
if (gb_test(hnode_mgr->pipe_done_map, stream.dev_id)) {
/* The other node has already been deleted */
gb_clear(hnode_mgr->pipe_done_map, stream.dev_id);
gb_clear(hnode_mgr->pipe_map, stream.dev_id);
} else {
/* The other node has not been deleted yet */
gb_set(hnode_mgr->pipe_done_map, stream.dev_id);
}
} else if (stream.type == HOSTCONNECT) {
if (stream.dev_id < hnode_mgr->ul_num_chnls) {
gb_clear(hnode_mgr->chnl_map, stream.dev_id);
} else if (stream.dev_id < (2 * hnode_mgr->ul_num_chnls)) {
/* dsp-dma */
gb_clear(hnode_mgr->dma_chnl_map, stream.dev_id -
(1 * hnode_mgr->ul_num_chnls));
} else if (stream.dev_id < (3 * hnode_mgr->ul_num_chnls)) {
/* zero-copy */
gb_clear(hnode_mgr->zc_chnl_map, stream.dev_id -
(2 * hnode_mgr->ul_num_chnls));
}
}
}
/*
* ======== get_fxn_address ========
* Purpose:
* Retrieves the address for create, execute or delete phase for a node.
*/
static int get_fxn_address(struct node_object *hnode, u32 * pulFxnAddr,
u32 uPhase)
{
char *pstr_fxn_name = NULL;
struct node_mgr *hnode_mgr = hnode->hnode_mgr;
int status = 0;
DBC_REQUIRE(node_get_type(hnode) == NODE_TASK ||
node_get_type(hnode) == NODE_DAISSOCKET ||
node_get_type(hnode) == NODE_MESSAGE);
switch (uPhase) {
case CREATEPHASE:
pstr_fxn_name =
hnode->dcd_props.obj_data.node_obj.pstr_create_phase_fxn;
break;
case EXECUTEPHASE:
pstr_fxn_name =
hnode->dcd_props.obj_data.node_obj.pstr_execute_phase_fxn;
break;
case DELETEPHASE:
pstr_fxn_name =
hnode->dcd_props.obj_data.node_obj.pstr_delete_phase_fxn;
break;
default:
/* Should never get here */
DBC_ASSERT(false);
break;
}
status =
hnode_mgr->nldr_fxns.pfn_get_fxn_addr(hnode->nldr_node_obj,
pstr_fxn_name, pulFxnAddr);
return status;
}
/*
* ======== get_node_info ========
* Purpose:
* Retrieves the node information.
*/
void get_node_info(struct node_object *hnode, struct dsp_nodeinfo *pNodeInfo)
{
u32 i;
DBC_REQUIRE(hnode);
DBC_REQUIRE(pNodeInfo != NULL);
pNodeInfo->cb_struct = sizeof(struct dsp_nodeinfo);
pNodeInfo->nb_node_database_props =
hnode->dcd_props.obj_data.node_obj.ndb_props;
pNodeInfo->execution_priority = hnode->prio;
pNodeInfo->device_owner = hnode->device_owner;
pNodeInfo->number_streams = hnode->num_inputs + hnode->num_outputs;
pNodeInfo->node_env = hnode->node_env;
pNodeInfo->ns_execution_state = node_get_state(hnode);
/* Copy stream connect data */
for (i = 0; i < hnode->num_inputs + hnode->num_outputs; i++)
pNodeInfo->sc_stream_connection[i] = hnode->stream_connect[i];
}
/*
* ======== get_node_props ========
* Purpose:
* Retrieve node properties.
*/
static int get_node_props(struct dcd_manager *hdcd_mgr,
struct node_object *hnode,
CONST struct dsp_uuid *pNodeId,
struct dcd_genericobj *pdcdProps)
{
u32 len;
struct node_msgargs *pmsg_args;
struct node_taskargs *task_arg_obj;
enum node_type node_type = NODE_TASK;
struct dsp_ndbprops *pndb_props =
&(pdcdProps->obj_data.node_obj.ndb_props);
int status = 0;
char sz_uuid[MAXUUIDLEN];
status = dcd_get_object_def(hdcd_mgr, (struct dsp_uuid *)pNodeId,
DSP_DCDNODETYPE, pdcdProps);
if (DSP_SUCCEEDED(status)) {
hnode->ntype = node_type = pndb_props->ntype;
/* Create UUID value to set in registry. */
uuid_uuid_to_string((struct dsp_uuid *)pNodeId, sz_uuid,
MAXUUIDLEN);
dev_dbg(bridge, "(node) UUID: %s\n", sz_uuid);
/* Fill in message args that come from NDB */
if (node_type != NODE_DEVICE) {
pmsg_args = &(hnode->create_args.asa.node_msg_args);
pmsg_args->seg_id =
pdcdProps->obj_data.node_obj.msg_segid;
pmsg_args->notify_type =
pdcdProps->obj_data.node_obj.msg_notify_type;
pmsg_args->max_msgs = pndb_props->message_depth;
dev_dbg(bridge, "(node) Max Number of Messages: 0x%x\n",
pmsg_args->max_msgs);
} else {
/* Copy device name */
DBC_REQUIRE(pndb_props->ac_name);
len = strlen(pndb_props->ac_name);
DBC_ASSERT(len < MAXDEVNAMELEN);
hnode->pstr_dev_name = kzalloc(len + 1, GFP_KERNEL);
if (hnode->pstr_dev_name == NULL) {
status = -ENOMEM;
} else {
strncpy(hnode->pstr_dev_name,
pndb_props->ac_name, len);
}
}
}
if (DSP_SUCCEEDED(status)) {
/* Fill in create args that come from NDB */
if (node_type == NODE_TASK || node_type == NODE_DAISSOCKET) {
task_arg_obj = &(hnode->create_args.asa.task_arg_obj);
task_arg_obj->prio = pndb_props->prio;
task_arg_obj->stack_size = pndb_props->stack_size;
task_arg_obj->sys_stack_size =
pndb_props->sys_stack_size;
task_arg_obj->stack_seg = pndb_props->stack_seg;
dev_dbg(bridge, "(node) Priority: 0x%x Stack Size: "
"0x%x words System Stack Size: 0x%x words "
"Stack Segment: 0x%x profile count : 0x%x\n",
task_arg_obj->prio, task_arg_obj->stack_size,
task_arg_obj->sys_stack_size,
task_arg_obj->stack_seg,
pndb_props->count_profiles);
}
}
return status;
}
/*
* ======== get_proc_props ========
* Purpose:
* Retrieve the processor properties.
*/
static int get_proc_props(struct node_mgr *hnode_mgr,
struct dev_object *hdev_obj)
{
struct cfg_hostres *host_res;
struct bridge_dev_context *pbridge_context;
int status = 0;
status = dev_get_bridge_context(hdev_obj, &pbridge_context);
if (!pbridge_context)
status = -EFAULT;
if (DSP_SUCCEEDED(status)) {
host_res = pbridge_context->resources;
if (!host_res)
return -EPERM;
hnode_mgr->ul_chnl_offset = host_res->dw_chnl_offset;
hnode_mgr->ul_chnl_buf_size = host_res->dw_chnl_buf_size;
hnode_mgr->ul_num_chnls = host_res->dw_num_chnls;
/*
* PROC will add an API to get dsp_processorinfo.
* Fill in default values for now.
*/
/* TODO -- Instead of hard coding, take from registry */
hnode_mgr->proc_family = 6000;
hnode_mgr->proc_type = 6410;
hnode_mgr->min_pri = DSP_NODE_MIN_PRIORITY;
hnode_mgr->max_pri = DSP_NODE_MAX_PRIORITY;
hnode_mgr->udsp_word_size = DSPWORDSIZE;
hnode_mgr->udsp_data_mau_size = DSPWORDSIZE;
hnode_mgr->udsp_mau_size = 1;
}
return status;
}
/*
* ======== node_get_uuid_props ========
* Purpose:
* Fetch Node UUID properties from DCD/DOF file.
*/
int node_get_uuid_props(void *hprocessor,
IN CONST struct dsp_uuid *pNodeId,
OUT struct dsp_ndbprops *node_props)
{
struct node_mgr *hnode_mgr = NULL;
struct dev_object *hdev_obj;
int status = 0;
struct dcd_nodeprops dcd_node_props;
struct dsp_processorstate proc_state;
DBC_REQUIRE(refs > 0);
DBC_REQUIRE(hprocessor != NULL);
DBC_REQUIRE(pNodeId != NULL);
if (hprocessor == NULL || pNodeId == NULL) {
status = -EFAULT;
goto func_end;
}
status = proc_get_state(hprocessor, &proc_state,
sizeof(struct dsp_processorstate));
if (DSP_FAILED(status))
goto func_end;
/* If processor is in error state then don't attempt
to send the message */
if (proc_state.proc_state == PROC_ERROR) {
status = -EPERM;
goto func_end;
}
status = proc_get_dev_object(hprocessor, &hdev_obj);
if (hdev_obj) {
status = dev_get_node_manager(hdev_obj, &hnode_mgr);
if (hnode_mgr == NULL) {
status = -EFAULT;
goto func_end;
}
}
/*
* Enter the critical section. This is needed because
* dcd_get_object_def will ultimately end up calling dbll_open/close,
* which needs to be protected in order to not corrupt the zlib manager
* (COD).
*/
mutex_lock(&hnode_mgr->node_mgr_lock);
dcd_node_props.pstr_create_phase_fxn = NULL;
dcd_node_props.pstr_execute_phase_fxn = NULL;
dcd_node_props.pstr_delete_phase_fxn = NULL;
dcd_node_props.pstr_i_alg_name = NULL;
status = dcd_get_object_def(hnode_mgr->hdcd_mgr,
(struct dsp_uuid *)pNodeId, DSP_DCDNODETYPE,
(struct dcd_genericobj *)&dcd_node_props);
if (DSP_SUCCEEDED(status)) {
*node_props = dcd_node_props.ndb_props;
kfree(dcd_node_props.pstr_create_phase_fxn);
kfree(dcd_node_props.pstr_execute_phase_fxn);
kfree(dcd_node_props.pstr_delete_phase_fxn);
kfree(dcd_node_props.pstr_i_alg_name);
}
/* Leave the critical section, we're done. */
mutex_unlock(&hnode_mgr->node_mgr_lock);
func_end:
return status;
}
/*
* ======== get_rms_fxns ========
* Purpose:
* Retrieve the RMS functions.
*/
static int get_rms_fxns(struct node_mgr *hnode_mgr)
{
s32 i;
struct dev_object *dev_obj = hnode_mgr->hdev_obj;
int status = 0;
static char *psz_fxns[NUMRMSFXNS] = {
"RMS_queryServer", /* RMSQUERYSERVER */
"RMS_configureServer", /* RMSCONFIGURESERVER */
"RMS_createNode", /* RMSCREATENODE */
"RMS_executeNode", /* RMSEXECUTENODE */
"RMS_deleteNode", /* RMSDELETENODE */
"RMS_changeNodePriority", /* RMSCHANGENODEPRIORITY */
"RMS_readMemory", /* RMSREADMEMORY */
"RMS_writeMemory", /* RMSWRITEMEMORY */
"RMS_copy", /* RMSCOPY */
};
for (i = 0; i < NUMRMSFXNS; i++) {
status = dev_get_symbol(dev_obj, psz_fxns[i],
&(hnode_mgr->ul_fxn_addrs[i]));
if (DSP_FAILED(status)) {
if (status == -ESPIPE) {
/*
* May be loaded dynamically (in the future),
* but return an error for now.
*/
dev_dbg(bridge, "%s: RMS function: %s currently"
" not loaded\n", __func__, psz_fxns[i]);
} else {
dev_dbg(bridge, "%s: Symbol not found: %s "
"status = 0x%x\n", __func__,
psz_fxns[i], status);
break;
}
}
}
return status;
}
/*
* ======== ovly ========
* Purpose:
* Called during overlay.Sends command to RMS to copy a block of data.
*/
static u32 ovly(void *priv_ref, u32 ulDspRunAddr, u32 ulDspLoadAddr,
u32 ul_num_bytes, u32 nMemSpace)
{
struct node_object *hnode = (struct node_object *)priv_ref;
struct node_mgr *hnode_mgr;
u32 ul_bytes = 0;
u32 ul_size;
u32 ul_timeout;
int status = 0;
struct bridge_dev_context *hbridge_context;
/* Function interface to Bridge driver*/
struct bridge_drv_interface *intf_fxns;
DBC_REQUIRE(hnode);
hnode_mgr = hnode->hnode_mgr;
ul_size = ul_num_bytes / hnode_mgr->udsp_word_size;
ul_timeout = hnode->utimeout;
/* Call new MemCopy function */
intf_fxns = hnode_mgr->intf_fxns;
status = dev_get_bridge_context(hnode_mgr->hdev_obj, &hbridge_context);
if (DSP_SUCCEEDED(status)) {
status =
(*intf_fxns->pfn_brd_mem_copy) (hbridge_context,
ulDspRunAddr, ulDspLoadAddr,
ul_num_bytes, (u32) nMemSpace);
if (DSP_SUCCEEDED(status))
ul_bytes = ul_num_bytes;
else
pr_debug("%s: failed to copy brd memory, status 0x%x\n",
__func__, status);
} else {
pr_debug("%s: failed to get Bridge context, status 0x%x\n",
__func__, status);
}
return ul_bytes;
}
/*
* ======== mem_write ========
*/
static u32 mem_write(void *priv_ref, u32 ulDspAddr, void *pbuf,
u32 ul_num_bytes, u32 nMemSpace)
{
struct node_object *hnode = (struct node_object *)priv_ref;
struct node_mgr *hnode_mgr;
u16 mem_sect_type;
u32 ul_timeout;
int status = 0;
struct bridge_dev_context *hbridge_context;
/* Function interface to Bridge driver */
struct bridge_drv_interface *intf_fxns;
DBC_REQUIRE(hnode);
DBC_REQUIRE(nMemSpace & DBLL_CODE || nMemSpace & DBLL_DATA);
hnode_mgr = hnode->hnode_mgr;
ul_timeout = hnode->utimeout;
mem_sect_type = (nMemSpace & DBLL_CODE) ? RMS_CODE : RMS_DATA;
/* Call new MemWrite function */
intf_fxns = hnode_mgr->intf_fxns;
status = dev_get_bridge_context(hnode_mgr->hdev_obj, &hbridge_context);
status = (*intf_fxns->pfn_brd_mem_write) (hbridge_context, pbuf,
ulDspAddr, ul_num_bytes, mem_sect_type);
return ul_num_bytes;
}
/*
* ======== node_find_addr ========
*/
int node_find_addr(struct node_mgr *node_mgr, u32 sym_addr,
u32 offset_range, void *sym_addr_output, char *sym_name)
{
struct node_object *node_obj;
int status = -ENOENT;
u32 n;
pr_debug("%s(0x%x, 0x%x, 0x%x, 0x%x, %s)\n", __func__,
(unsigned int) node_mgr,
sym_addr, offset_range,
(unsigned int) sym_addr_output, sym_name);
node_obj = (struct node_object *)(node_mgr->node_list->head.next);
for (n = 0; n < node_mgr->num_nodes; n++) {
status = nldr_find_addr(node_obj->nldr_node_obj, sym_addr,
offset_range, sym_addr_output, sym_name);
if (DSP_SUCCEEDED(status))
break;
node_obj = (struct node_object *) (node_obj->list_elem.next);
}
return status;
}
/*
* proc.c
*
* DSP-BIOS Bridge driver support functions for TI OMAP processors.
*
* Processor interface at the driver level.
*
* Copyright (C) 2005-2006 Texas Instruments, Inc.
*
* This package is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
* THIS PACKAGE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED
* WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR A PARTICULAR PURPOSE.
*/
/* ------------------------------------ Host OS */
#include <linux/dma-mapping.h>
#include <linux/scatterlist.h>
#include <dspbridge/host_os.h>
/* ----------------------------------- DSP/BIOS Bridge */
#include <dspbridge/std.h>
#include <dspbridge/dbdefs.h>
/* ----------------------------------- Trace & Debug */
#include <dspbridge/dbc.h>
/* ----------------------------------- OS Adaptation Layer */
#include <dspbridge/cfg.h>
#include <dspbridge/list.h>
#include <dspbridge/ntfy.h>
#include <dspbridge/sync.h>
/* ----------------------------------- Bridge Driver */
#include <dspbridge/dspdefs.h>
#include <dspbridge/dspdeh.h>
/* ----------------------------------- Platform Manager */
#include <dspbridge/cod.h>
#include <dspbridge/dev.h>
#include <dspbridge/procpriv.h>
#include <dspbridge/dmm.h>
/* ----------------------------------- Resource Manager */
#include <dspbridge/mgr.h>
#include <dspbridge/node.h>
#include <dspbridge/nldr.h>
#include <dspbridge/rmm.h>
/* ----------------------------------- Others */
#include <dspbridge/dbdcd.h>
#include <dspbridge/msg.h>
#include <dspbridge/dspioctl.h>
#include <dspbridge/drv.h>
/* ----------------------------------- This */
#include <dspbridge/proc.h>
#include <dspbridge/pwr.h>
#include <dspbridge/resourcecleanup.h>
/* ----------------------------------- Defines, Data Structures, Typedefs */
#define MAXCMDLINELEN 255
#define PROC_ENVPROCID "PROC_ID=%d"
#define MAXPROCIDLEN (8 + 5)
#define PROC_DFLT_TIMEOUT 10000 /* Time out in milliseconds */
#define PWR_TIMEOUT 500 /* Sleep/wake timout in msec */
#define EXTEND "_EXT_END" /* Extmem end addr in DSP binary */
#define DSP_CACHE_LINE 128
#define BUFMODE_MASK (3 << 14)
/* Buffer modes from DSP perspective */
#define RBUF 0x4000 /* Input buffer */
#define WBUF 0x8000 /* Output Buffer */
extern struct device *bridge;
/* ----------------------------------- Globals */
/* The proc_object structure. */
struct proc_object {
struct list_head link; /* Link to next proc_object */
struct dev_object *hdev_obj; /* Device this PROC represents */
u32 process; /* Process owning this Processor */
struct mgr_object *hmgr_obj; /* Manager Object Handle */
u32 attach_count; /* Processor attach count */
u32 processor_id; /* Processor number */
u32 utimeout; /* Time out count */
enum dsp_procstate proc_state; /* Processor state */
u32 ul_unit; /* DDSP unit number */
bool is_already_attached; /*
* True if the Device below has
* GPP Client attached
*/
struct ntfy_object *ntfy_obj; /* Manages notifications */
/* Bridge Context Handle */
struct bridge_dev_context *hbridge_context;
/* Function interface to Bridge driver */
struct bridge_drv_interface *intf_fxns;
char *psz_last_coff;
struct list_head proc_list;
};
static u32 refs;
DEFINE_MUTEX(proc_lock); /* For critical sections */
/* ----------------------------------- Function Prototypes */
static int proc_monitor(struct proc_object *hprocessor);
static s32 get_envp_count(char **envp);
static char **prepend_envp(char **new_envp, char **envp, s32 envp_elems,
s32 cnew_envp, char *szVar);
/* remember mapping information */
static struct dmm_map_object *add_mapping_info(struct process_context *pr_ctxt,
u32 mpu_addr, u32 dsp_addr, u32 size)
{
struct dmm_map_object *map_obj;
u32 num_usr_pgs = size / PG_SIZE4K;
pr_debug("%s: adding map info: mpu_addr 0x%x virt 0x%x size 0x%x\n",
__func__, mpu_addr,
dsp_addr, size);
map_obj = kzalloc(sizeof(struct dmm_map_object), GFP_KERNEL);
if (!map_obj) {
pr_err("%s: kzalloc failed\n", __func__);
return NULL;
}
INIT_LIST_HEAD(&map_obj->link);
map_obj->pages = kcalloc(num_usr_pgs, sizeof(struct page *),
GFP_KERNEL);
if (!map_obj->pages) {
pr_err("%s: kzalloc failed\n", __func__);
kfree(map_obj);
return NULL;
}
map_obj->mpu_addr = mpu_addr;
map_obj->dsp_addr = dsp_addr;
map_obj->size = size;
map_obj->num_usr_pgs = num_usr_pgs;
spin_lock(&pr_ctxt->dmm_map_lock);
list_add(&map_obj->link, &pr_ctxt->dmm_map_list);
spin_unlock(&pr_ctxt->dmm_map_lock);
return map_obj;
}
static int match_exact_map_obj(struct dmm_map_object *map_obj,
u32 dsp_addr, u32 size)
{
if (map_obj->dsp_addr == dsp_addr && map_obj->size != size)
pr_err("%s: addr match (0x%x), size don't (0x%x != 0x%x)\n",
__func__, dsp_addr, map_obj->size, size);
return map_obj->dsp_addr == dsp_addr &&
map_obj->size == size;
}
static void remove_mapping_information(struct process_context *pr_ctxt,
u32 dsp_addr, u32 size)
{
struct dmm_map_object *map_obj;
pr_debug("%s: looking for virt 0x%x size 0x%x\n", __func__,
dsp_addr, size);
spin_lock(&pr_ctxt->dmm_map_lock);
list_for_each_entry(map_obj, &pr_ctxt->dmm_map_list, link) {
pr_debug("%s: candidate: mpu_addr 0x%x virt 0x%x size 0x%x\n",
__func__,
map_obj->mpu_addr,
map_obj->dsp_addr,
map_obj->size);
if (match_exact_map_obj(map_obj, dsp_addr, size)) {
pr_debug("%s: match, deleting map info\n", __func__);
list_del(&map_obj->link);
kfree(map_obj->dma_info.sg);
kfree(map_obj->pages);
kfree(map_obj);
goto out;
}
pr_debug("%s: candidate didn't match\n", __func__);
}
pr_err("%s: failed to find given map info\n", __func__);
out:
spin_unlock(&pr_ctxt->dmm_map_lock);
}
static int match_containing_map_obj(struct dmm_map_object *map_obj,
u32 mpu_addr, u32 size)
{
u32 map_obj_end = map_obj->mpu_addr + map_obj->size;
return mpu_addr >= map_obj->mpu_addr &&
mpu_addr + size <= map_obj_end;
}
static struct dmm_map_object *find_containing_mapping(
struct process_context *pr_ctxt,
u32 mpu_addr, u32 size)
{
struct dmm_map_object *map_obj;
pr_debug("%s: looking for mpu_addr 0x%x size 0x%x\n", __func__,
mpu_addr, size);
spin_lock(&pr_ctxt->dmm_map_lock);
list_for_each_entry(map_obj, &pr_ctxt->dmm_map_list, link) {
pr_debug("%s: candidate: mpu_addr 0x%x virt 0x%x size 0x%x\n",
__func__,
map_obj->mpu_addr,
map_obj->dsp_addr,
map_obj->size);
if (match_containing_map_obj(map_obj, mpu_addr, size)) {
pr_debug("%s: match!\n", __func__);
goto out;
}
pr_debug("%s: no match!\n", __func__);
}
map_obj = NULL;
out:
spin_unlock(&pr_ctxt->dmm_map_lock);
return map_obj;
}
static int find_first_page_in_cache(struct dmm_map_object *map_obj,
unsigned long mpu_addr)
{
u32 mapped_base_page = map_obj->mpu_addr >> PAGE_SHIFT;
u32 requested_base_page = mpu_addr >> PAGE_SHIFT;
int pg_index = requested_base_page - mapped_base_page;
if (pg_index < 0 || pg_index >= map_obj->num_usr_pgs) {
pr_err("%s: failed (got %d)\n", __func__, pg_index);
return -1;
}
pr_debug("%s: first page is %d\n", __func__, pg_index);
return pg_index;
}
static inline struct page *get_mapping_page(struct dmm_map_object *map_obj,
int pg_i)
{
pr_debug("%s: looking for pg_i %d, num_usr_pgs: %d\n", __func__,
pg_i, map_obj->num_usr_pgs);
if (pg_i < 0 || pg_i >= map_obj->num_usr_pgs) {
pr_err("%s: requested pg_i %d is out of mapped range\n",
__func__, pg_i);
return NULL;
}
return map_obj->pages[pg_i];
}
/*
* ======== proc_attach ========
* Purpose:
* Prepare for communication with a particular DSP processor, and return
* a handle to the processor object.
*/
int
proc_attach(u32 processor_id,
OPTIONAL CONST struct dsp_processorattrin *attr_in,
void **ph_processor, struct process_context *pr_ctxt)
{
int status = 0;
struct dev_object *hdev_obj;
struct proc_object *p_proc_object = NULL;
struct mgr_object *hmgr_obj = NULL;
struct drv_object *hdrv_obj = NULL;
u8 dev_type;
DBC_REQUIRE(refs > 0);
DBC_REQUIRE(ph_processor != NULL);
if (pr_ctxt->hprocessor) {
*ph_processor = pr_ctxt->hprocessor;
return status;
}
/* Get the Driver and Manager Object Handles */
status = cfg_get_object((u32 *) &hdrv_obj, REG_DRV_OBJECT);
if (DSP_SUCCEEDED(status))
status = cfg_get_object((u32 *) &hmgr_obj, REG_MGR_OBJECT);
if (DSP_SUCCEEDED(status)) {
/* Get the Device Object */
status = drv_get_dev_object(processor_id, hdrv_obj, &hdev_obj);
}
if (DSP_SUCCEEDED(status))
status = dev_get_dev_type(hdev_obj, &dev_type);
if (DSP_FAILED(status))
goto func_end;
/* If we made it this far, create the Proceesor object: */
p_proc_object = kzalloc(sizeof(struct proc_object), GFP_KERNEL);
/* Fill out the Processor Object: */
if (p_proc_object == NULL) {
status = -ENOMEM;
goto func_end;
}
p_proc_object->hdev_obj = hdev_obj;
p_proc_object->hmgr_obj = hmgr_obj;
p_proc_object->processor_id = dev_type;
/* Store TGID instead of process handle */
p_proc_object->process = current->tgid;
INIT_LIST_HEAD(&p_proc_object->proc_list);
if (attr_in)
p_proc_object->utimeout = attr_in->utimeout;
else
p_proc_object->utimeout = PROC_DFLT_TIMEOUT;
status = dev_get_intf_fxns(hdev_obj, &p_proc_object->intf_fxns);
if (DSP_SUCCEEDED(status)) {
status = dev_get_bridge_context(hdev_obj,
&p_proc_object->hbridge_context);
if (DSP_FAILED(status))
kfree(p_proc_object);
} else
kfree(p_proc_object);
if (DSP_FAILED(status))
goto func_end;
/* Create the Notification Object */
/* This is created with no event mask, no notify mask
* and no valid handle to the notification. They all get
* filled up when proc_register_notify is called */
p_proc_object->ntfy_obj = kmalloc(sizeof(struct ntfy_object),
GFP_KERNEL);
if (p_proc_object->ntfy_obj)
ntfy_init(p_proc_object->ntfy_obj);
else
status = -ENOMEM;
if (DSP_SUCCEEDED(status)) {
/* Insert the Processor Object into the DEV List.
* Return handle to this Processor Object:
* Find out if the Device is already attached to a
* Processor. If so, return AlreadyAttached status */
lst_init_elem(&p_proc_object->link);
status = dev_insert_proc_object(p_proc_object->hdev_obj,
(u32) p_proc_object,
&p_proc_object->
is_already_attached);
if (DSP_SUCCEEDED(status)) {
if (p_proc_object->is_already_attached)
status = 0;
} else {
if (p_proc_object->ntfy_obj) {
ntfy_delete(p_proc_object->ntfy_obj);
kfree(p_proc_object->ntfy_obj);
}
kfree(p_proc_object);
}
if (DSP_SUCCEEDED(status)) {
*ph_processor = (void *)p_proc_object;
pr_ctxt->hprocessor = *ph_processor;
(void)proc_notify_clients(p_proc_object,
DSP_PROCESSORATTACH);
}
} else {
/* Don't leak memory if DSP_FAILED */
kfree(p_proc_object);
}
func_end:
DBC_ENSURE((status == -EPERM && *ph_processor == NULL) ||
(DSP_SUCCEEDED(status) && p_proc_object) ||
(status == 0 && p_proc_object));
return status;
}
static int get_exec_file(struct cfg_devnode *dev_node_obj,
struct dev_object *hdev_obj,
u32 size, char *execFile)
{
u8 dev_type;
s32 len;
dev_get_dev_type(hdev_obj, (u8 *) &dev_type);
if (dev_type == DSP_UNIT) {
return cfg_get_exec_file(dev_node_obj, size, execFile);
} else if (dev_type == IVA_UNIT) {
if (iva_img) {
len = strlen(iva_img);
strncpy(execFile, iva_img, len + 1);
return 0;
}
}
return -ENOENT;
}
/*
* ======== proc_auto_start ======== =
* Purpose:
* A Particular device gets loaded with the default image
* if the AutoStart flag is set.
* Parameters:
* hdev_obj: Handle to the Device
* Returns:
* 0: On Successful Loading
* -EPERM General Failure
* Requires:
* hdev_obj != NULL
* Ensures:
*/
int proc_auto_start(struct cfg_devnode *dev_node_obj,
struct dev_object *hdev_obj)
{
int status = -EPERM;
struct proc_object *p_proc_object;
char sz_exec_file[MAXCMDLINELEN];
char *argv[2];
struct mgr_object *hmgr_obj = NULL;
u8 dev_type;
DBC_REQUIRE(refs > 0);
DBC_REQUIRE(dev_node_obj != NULL);
DBC_REQUIRE(hdev_obj != NULL);
/* Create a Dummy PROC Object */
status = cfg_get_object((u32 *) &hmgr_obj, REG_MGR_OBJECT);
if (DSP_FAILED(status))
goto func_end;
p_proc_object = kzalloc(sizeof(struct proc_object), GFP_KERNEL);
if (p_proc_object == NULL) {
status = -ENOMEM;
goto func_end;
}
p_proc_object->hdev_obj = hdev_obj;
p_proc_object->hmgr_obj = hmgr_obj;
status = dev_get_intf_fxns(hdev_obj, &p_proc_object->intf_fxns);
if (DSP_SUCCEEDED(status))
status = dev_get_bridge_context(hdev_obj,
&p_proc_object->hbridge_context);
if (DSP_FAILED(status))
goto func_cont;
/* Stop the Device, put it into standby mode */
status = proc_stop(p_proc_object);
if (DSP_FAILED(status))
goto func_cont;
/* Get the default executable for this board... */
dev_get_dev_type(hdev_obj, (u8 *) &dev_type);
p_proc_object->processor_id = dev_type;
status = get_exec_file(dev_node_obj, hdev_obj, sizeof(sz_exec_file),
sz_exec_file);
if (DSP_SUCCEEDED(status)) {
argv[0] = sz_exec_file;
argv[1] = NULL;
/* ...and try to load it: */
status = proc_load(p_proc_object, 1, (CONST char **)argv, NULL);
if (DSP_SUCCEEDED(status))
status = proc_start(p_proc_object);
}
kfree(p_proc_object->psz_last_coff);
p_proc_object->psz_last_coff = NULL;
func_cont:
kfree(p_proc_object);
func_end:
return status;
}
/*
* ======== proc_ctrl ========
* Purpose:
* Pass control information to the GPP device driver managing the
* DSP processor.
*
* This will be an OEM-only function, and not part of the DSP/BIOS Bridge
* application developer's API.
* Call the bridge_dev_ctrl fxn with the Argument. This is a Synchronous
* Operation. arg can be null.
*/
int proc_ctrl(void *hprocessor, u32 dw_cmd, IN struct dsp_cbdata * arg)
{
int status = 0;
struct proc_object *p_proc_object = hprocessor;
u32 timeout = 0;
DBC_REQUIRE(refs > 0);
if (p_proc_object) {
/* intercept PWR deep sleep command */
if (dw_cmd == BRDIOCTL_DEEPSLEEP) {
timeout = arg->cb_data;
status = pwr_sleep_dsp(PWR_DEEPSLEEP, timeout);
}
/* intercept PWR emergency sleep command */
else if (dw_cmd == BRDIOCTL_EMERGENCYSLEEP) {
timeout = arg->cb_data;
status = pwr_sleep_dsp(PWR_EMERGENCYDEEPSLEEP, timeout);
} else if (dw_cmd == PWR_DEEPSLEEP) {
/* timeout = arg->cb_data; */
status = pwr_sleep_dsp(PWR_DEEPSLEEP, timeout);
}
/* intercept PWR wake commands */
else if (dw_cmd == BRDIOCTL_WAKEUP) {
timeout = arg->cb_data;
status = pwr_wake_dsp(timeout);
} else if (dw_cmd == PWR_WAKEUP) {
/* timeout = arg->cb_data; */
status = pwr_wake_dsp(timeout);
} else
if (DSP_SUCCEEDED((*p_proc_object->intf_fxns->pfn_dev_cntrl)
(p_proc_object->hbridge_context, dw_cmd,
arg))) {
status = 0;
} else {
status = -EPERM;
}
} else {
status = -EFAULT;
}
return status;
}
/*
* ======== proc_detach ========
* Purpose:
* Destroys the Processor Object. Removes the notification from the Dev
* List.
*/
int proc_detach(struct process_context *pr_ctxt)
{
int status = 0;
struct proc_object *p_proc_object = NULL;
DBC_REQUIRE(refs > 0);
p_proc_object = (struct proc_object *)pr_ctxt->hprocessor;
if (p_proc_object) {
/* Notify the Client */
ntfy_notify(p_proc_object->ntfy_obj, DSP_PROCESSORDETACH);
/* Remove the notification memory */
if (p_proc_object->ntfy_obj) {
ntfy_delete(p_proc_object->ntfy_obj);
kfree(p_proc_object->ntfy_obj);
}
kfree(p_proc_object->psz_last_coff);
p_proc_object->psz_last_coff = NULL;
/* Remove the Proc from the DEV List */
(void)dev_remove_proc_object(p_proc_object->hdev_obj,
(u32) p_proc_object);
/* Free the Processor Object */
kfree(p_proc_object);
pr_ctxt->hprocessor = NULL;
} else {
status = -EFAULT;
}
return status;
}
/*
* ======== proc_enum_nodes ========
* Purpose:
* Enumerate and get configuration information about nodes allocated
* on a DSP processor.
*/
int proc_enum_nodes(void *hprocessor, void **node_tab,
IN u32 node_tab_size, OUT u32 *pu_num_nodes,
OUT u32 *pu_allocated)
{
int status = -EPERM;
struct proc_object *p_proc_object = (struct proc_object *)hprocessor;
struct node_mgr *hnode_mgr = NULL;
DBC_REQUIRE(refs > 0);
DBC_REQUIRE(node_tab != NULL || node_tab_size == 0);
DBC_REQUIRE(pu_num_nodes != NULL);
DBC_REQUIRE(pu_allocated != NULL);
if (p_proc_object) {
if (DSP_SUCCEEDED(dev_get_node_manager(p_proc_object->hdev_obj,
&hnode_mgr))) {
if (hnode_mgr) {
status = node_enum_nodes(hnode_mgr, node_tab,
node_tab_size,
pu_num_nodes,
pu_allocated);
}
}
} else {
status = -EFAULT;
}
return status;
}
/* Cache operation against kernel address instead of users */
static int build_dma_sg(struct dmm_map_object *map_obj, unsigned long start,
ssize_t len, int pg_i)
{
struct page *page;
unsigned long offset;
ssize_t rest;
int ret = 0, i = 0;
struct scatterlist *sg = map_obj->dma_info.sg;
while (len) {
page = get_mapping_page(map_obj, pg_i);
if (!page) {
pr_err("%s: no page for %08lx\n", __func__, start);
ret = -EINVAL;
goto out;
} else if (IS_ERR(page)) {
pr_err("%s: err page for %08lx(%lu)\n", __func__, start,
PTR_ERR(page));
ret = PTR_ERR(page);
goto out;
}
offset = start & ~PAGE_MASK;
rest = min_t(ssize_t, PAGE_SIZE - offset, len);
sg_set_page(&sg[i], page, rest, offset);
len -= rest;
start += rest;
pg_i++, i++;
}
if (i != map_obj->dma_info.num_pages) {
pr_err("%s: bad number of sg iterations\n", __func__);
ret = -EFAULT;
goto out;
}
out:
return ret;
}
static int memory_regain_ownership(struct dmm_map_object *map_obj,
unsigned long start, ssize_t len, enum dma_data_direction dir)
{
int ret = 0;
unsigned long first_data_page = start >> PAGE_SHIFT;
unsigned long last_data_page = ((u32)(start + len - 1) >> PAGE_SHIFT);
/* calculating the number of pages this area spans */
unsigned long num_pages = last_data_page - first_data_page + 1;
struct bridge_dma_map_info *dma_info = &map_obj->dma_info;
if (!dma_info->sg)
goto out;
if (dma_info->dir != dir || dma_info->num_pages != num_pages) {
pr_err("%s: dma info doesn't match given params\n", __func__);
return -EINVAL;
}
dma_unmap_sg(bridge, dma_info->sg, num_pages, dma_info->dir);
pr_debug("%s: dma_map_sg unmapped\n", __func__);
kfree(dma_info->sg);
map_obj->dma_info.sg = NULL;
out:
return ret;
}
/* Cache operation against kernel address instead of users */
static int memory_give_ownership(struct dmm_map_object *map_obj,
unsigned long start, ssize_t len, enum dma_data_direction dir)
{
int pg_i, ret, sg_num;
struct scatterlist *sg;
unsigned long first_data_page = start >> PAGE_SHIFT;
unsigned long last_data_page = ((u32)(start + len - 1) >> PAGE_SHIFT);
/* calculating the number of pages this area spans */
unsigned long num_pages = last_data_page - first_data_page + 1;
pg_i = find_first_page_in_cache(map_obj, start);
if (pg_i < 0) {
pr_err("%s: failed to find first page in cache\n", __func__);
ret = -EINVAL;
goto out;
}
sg = kcalloc(num_pages, sizeof(*sg), GFP_KERNEL);
if (!sg) {
pr_err("%s: kcalloc failed\n", __func__);
ret = -ENOMEM;
goto out;
}
sg_init_table(sg, num_pages);
/* cleanup a previous sg allocation */
/* this may happen if application doesn't signal for e/o DMA */
kfree(map_obj->dma_info.sg);
map_obj->dma_info.sg = sg;
map_obj->dma_info.dir = dir;
map_obj->dma_info.num_pages = num_pages;
ret = build_dma_sg(map_obj, start, len, pg_i);
if (ret)
goto kfree_sg;
sg_num = dma_map_sg(bridge, sg, num_pages, dir);
if (sg_num < 1) {
pr_err("%s: dma_map_sg failed: %d\n", __func__, sg_num);
ret = -EFAULT;
goto kfree_sg;
}
pr_debug("%s: dma_map_sg mapped %d elements\n", __func__, sg_num);
map_obj->dma_info.sg_num = sg_num;
return 0;
kfree_sg:
kfree(sg);
map_obj->dma_info.sg = NULL;
out:
return ret;
}
int proc_begin_dma(void *hprocessor, void *pmpu_addr, u32 ul_size,
enum dma_data_direction dir)
{
/* Keep STATUS here for future additions to this function */
int status = 0;
struct process_context *pr_ctxt = (struct process_context *) hprocessor;
struct dmm_map_object *map_obj;
DBC_REQUIRE(refs > 0);
if (!pr_ctxt) {
status = -EFAULT;
goto err_out;
}
pr_debug("%s: addr 0x%x, size 0x%x, type %d\n", __func__,
(u32)pmpu_addr,
ul_size, dir);
/* find requested memory are in cached mapping information */
map_obj = find_containing_mapping(pr_ctxt, (u32) pmpu_addr, ul_size);
if (!map_obj) {
pr_err("%s: find_containing_mapping failed\n", __func__);
status = -EFAULT;
goto err_out;
}
if (memory_give_ownership(map_obj, (u32) pmpu_addr, ul_size, dir)) {
pr_err("%s: InValid address parameters %p %x\n",
__func__, pmpu_addr, ul_size);
status = -EFAULT;
}
err_out:
return status;
}
int proc_end_dma(void *hprocessor, void *pmpu_addr, u32 ul_size,
enum dma_data_direction dir)
{
/* Keep STATUS here for future additions to this function */
int status = 0;
struct process_context *pr_ctxt = (struct process_context *) hprocessor;
struct dmm_map_object *map_obj;
DBC_REQUIRE(refs > 0);
if (!pr_ctxt) {
status = -EFAULT;
goto err_out;
}
pr_debug("%s: addr 0x%x, size 0x%x, type %d\n", __func__,
(u32)pmpu_addr,
ul_size, dir);
/* find requested memory are in cached mapping information */
map_obj = find_containing_mapping(pr_ctxt, (u32) pmpu_addr, ul_size);
if (!map_obj) {
pr_err("%s: find_containing_mapping failed\n", __func__);
status = -EFAULT;
goto err_out;
}
if (memory_regain_ownership(map_obj, (u32) pmpu_addr, ul_size, dir)) {
pr_err("%s: InValid address parameters %p %x\n",
__func__, pmpu_addr, ul_size);
status = -EFAULT;
goto err_out;
}
err_out:
return status;
}
/*
* ======== proc_flush_memory ========
* Purpose:
* Flush cache
*/
int proc_flush_memory(void *hprocessor, void *pmpu_addr,
u32 ul_size, u32 ul_flags)
{
enum dma_data_direction dir = DMA_BIDIRECTIONAL;
return proc_begin_dma(hprocessor, pmpu_addr, ul_size, dir);
}
/*
* ======== proc_invalidate_memory ========
* Purpose:
* Invalidates the memory specified
*/
int proc_invalidate_memory(void *hprocessor, void *pmpu_addr, u32 size)
{
enum dma_data_direction dir = DMA_FROM_DEVICE;
return proc_begin_dma(hprocessor, pmpu_addr, size, dir);
}
/*
* ======== proc_get_resource_info ========
* Purpose:
* Enumerate the resources currently available on a processor.
*/
int proc_get_resource_info(void *hprocessor, u32 resource_type,
OUT struct dsp_resourceinfo *resource_info,
u32 resource_info_size)
{
int status = -EPERM;
struct proc_object *p_proc_object = (struct proc_object *)hprocessor;
struct node_mgr *hnode_mgr = NULL;
struct nldr_object *nldr_obj = NULL;
struct rmm_target_obj *rmm = NULL;
struct io_mgr *hio_mgr = NULL; /* IO manager handle */
DBC_REQUIRE(refs > 0);
DBC_REQUIRE(resource_info != NULL);
DBC_REQUIRE(resource_info_size >= sizeof(struct dsp_resourceinfo));
if (!p_proc_object) {
status = -EFAULT;
goto func_end;
}
switch (resource_type) {
case DSP_RESOURCE_DYNDARAM:
case DSP_RESOURCE_DYNSARAM:
case DSP_RESOURCE_DYNEXTERNAL:
case DSP_RESOURCE_DYNSRAM:
status = dev_get_node_manager(p_proc_object->hdev_obj,
&hnode_mgr);
if (!hnode_mgr) {
status = -EFAULT;
goto func_end;
}
status = node_get_nldr_obj(hnode_mgr, &nldr_obj);
if (DSP_SUCCEEDED(status)) {
status = nldr_get_rmm_manager(nldr_obj, &rmm);
if (rmm) {
if (!rmm_stat(rmm,
(enum dsp_memtype)resource_type,
(struct dsp_memstat *)
&(resource_info->result.
mem_stat)))
status = -EINVAL;
} else {
status = -EFAULT;
}
}
break;
case DSP_RESOURCE_PROCLOAD:
status = dev_get_io_mgr(p_proc_object->hdev_obj, &hio_mgr);
if (hio_mgr)
status =
p_proc_object->intf_fxns->
pfn_io_get_proc_load(hio_mgr,
(struct dsp_procloadstat *)
&(resource_info->result.
proc_load_stat));
else
status = -EFAULT;
break;
default:
status = -EPERM;
break;
}
func_end:
return status;
}
/*
* ======== proc_exit ========
* Purpose:
* Decrement reference count, and free resources when reference count is
* 0.
*/
void proc_exit(void)
{
DBC_REQUIRE(refs > 0);
refs--;
DBC_ENSURE(refs >= 0);
}
/*
* ======== proc_get_dev_object ========
* Purpose:
* Return the Dev Object handle for a given Processor.
*
*/
int proc_get_dev_object(void *hprocessor,
struct dev_object **phDevObject)
{
int status = -EPERM;
struct proc_object *p_proc_object = (struct proc_object *)hprocessor;
DBC_REQUIRE(refs > 0);
DBC_REQUIRE(phDevObject != NULL);
if (p_proc_object) {
*phDevObject = p_proc_object->hdev_obj;
status = 0;
} else {
*phDevObject = NULL;
status = -EFAULT;
}
DBC_ENSURE((DSP_SUCCEEDED(status) && *phDevObject != NULL) ||
(DSP_FAILED(status) && *phDevObject == NULL));
return status;
}
/*
* ======== proc_get_state ========
* Purpose:
* Report the state of the specified DSP processor.
*/
int proc_get_state(void *hprocessor,
OUT struct dsp_processorstate *proc_state_obj,
u32 state_info_size)
{
int status = 0;
struct proc_object *p_proc_object = (struct proc_object *)hprocessor;
int brd_status;
struct deh_mgr *hdeh_mgr;
DBC_REQUIRE(refs > 0);
DBC_REQUIRE(proc_state_obj != NULL);
DBC_REQUIRE(state_info_size >= sizeof(struct dsp_processorstate));
if (p_proc_object) {
/* First, retrieve BRD state information */
status = (*p_proc_object->intf_fxns->pfn_brd_status)
(p_proc_object->hbridge_context, &brd_status);
if (DSP_SUCCEEDED(status)) {
switch (brd_status) {
case BRD_STOPPED:
proc_state_obj->proc_state = PROC_STOPPED;
break;
case BRD_SLEEP_TRANSITION:
case BRD_DSP_HIBERNATION:
/* Fall through */
case BRD_RUNNING:
proc_state_obj->proc_state = PROC_RUNNING;
break;
case BRD_LOADED:
proc_state_obj->proc_state = PROC_LOADED;
break;
case BRD_ERROR:
proc_state_obj->proc_state = PROC_ERROR;
break;
default:
proc_state_obj->proc_state = 0xFF;
status = -EPERM;
break;
}
}
/* Next, retrieve error information, if any */
status = dev_get_deh_mgr(p_proc_object->hdev_obj, &hdeh_mgr);
if (DSP_SUCCEEDED(status) && hdeh_mgr)
status = (*p_proc_object->intf_fxns->pfn_deh_get_info)
(hdeh_mgr, &(proc_state_obj->err_info));
} else {
status = -EFAULT;
}
dev_dbg(bridge, "%s, results: status: 0x%x proc_state_obj: 0x%x\n",
__func__, status, proc_state_obj->proc_state);
return status;
}
/*
* ======== proc_get_trace ========
* Purpose:
* Retrieve the current contents of the trace buffer, located on the
* Processor. Predefined symbols for the trace buffer must have been
* configured into the DSP executable.
* Details:
* We support using the symbols SYS_PUTCBEG and SYS_PUTCEND to define a
* trace buffer, only. Treat it as an undocumented feature.
* This call is destructive, meaning the processor is placed in the monitor
* state as a result of this function.
*/
int proc_get_trace(void *hprocessor, u8 * pbuf, u32 max_size)
{
int status;
status = -ENOSYS;
return status;
}
/*
* ======== proc_init ========
* Purpose:
* Initialize PROC's private state, keeping a reference count on each call
*/
bool proc_init(void)
{
bool ret = true;
DBC_REQUIRE(refs >= 0);
if (ret)
refs++;
DBC_ENSURE((ret && (refs > 0)) || (!ret && (refs >= 0)));
return ret;
}
/*
* ======== proc_load ========
* Purpose:
* Reset a processor and load a new base program image.
* This will be an OEM-only function, and not part of the DSP/BIOS Bridge
* application developer's API.
*/
int proc_load(void *hprocessor, IN CONST s32 argc_index,
IN CONST char **user_args, IN CONST char **user_envp)
{
int status = 0;
struct proc_object *p_proc_object = (struct proc_object *)hprocessor;
struct io_mgr *hio_mgr; /* IO manager handle */
struct msg_mgr *hmsg_mgr;
struct cod_manager *cod_mgr; /* Code manager handle */
char *pargv0; /* temp argv[0] ptr */
char **new_envp; /* Updated envp[] array. */
char sz_proc_id[MAXPROCIDLEN]; /* Size of "PROC_ID=<n>" */
s32 envp_elems; /* Num elements in envp[]. */
s32 cnew_envp; /* " " in new_envp[] */
s32 nproc_id = 0; /* Anticipate MP version. */
struct dcd_manager *hdcd_handle;
struct dmm_object *dmm_mgr;
u32 dw_ext_end;
u32 proc_id;
int brd_state;
struct drv_data *drv_datap = dev_get_drvdata(bridge);
#ifdef OPT_LOAD_TIME_INSTRUMENTATION
struct timeval tv1;
struct timeval tv2;
#endif
#if defined(CONFIG_BRIDGE_DVFS) && !defined(CONFIG_CPU_FREQ)
struct dspbridge_platform_data *pdata =
omap_dspbridge_dev->dev.platform_data;
#endif
DBC_REQUIRE(refs > 0);
DBC_REQUIRE(argc_index > 0);
DBC_REQUIRE(user_args != NULL);
#ifdef OPT_LOAD_TIME_INSTRUMENTATION
do_gettimeofday(&tv1);
#endif
if (!p_proc_object) {
status = -EFAULT;
goto func_end;
}
dev_get_cod_mgr(p_proc_object->hdev_obj, &cod_mgr);
if (!cod_mgr) {
status = -EPERM;
goto func_end;
}
status = proc_stop(hprocessor);
if (DSP_FAILED(status))
goto func_end;
/* Place the board in the monitor state. */
status = proc_monitor(hprocessor);
if (DSP_FAILED(status))
goto func_end;
/* Save ptr to original argv[0]. */
pargv0 = (char *)user_args[0];
/*Prepend "PROC_ID=<nproc_id>"to envp array for target. */
envp_elems = get_envp_count((char **)user_envp);
cnew_envp = (envp_elems ? (envp_elems + 1) : (envp_elems + 2));
new_envp = kzalloc(cnew_envp * sizeof(char **), GFP_KERNEL);
if (new_envp) {
status = snprintf(sz_proc_id, MAXPROCIDLEN, PROC_ENVPROCID,
nproc_id);
if (status == -1) {
dev_dbg(bridge, "%s: Proc ID string overflow\n",
__func__);
status = -EPERM;
} else {
new_envp =
prepend_envp(new_envp, (char **)user_envp,
envp_elems, cnew_envp, sz_proc_id);
/* Get the DCD Handle */
status = mgr_get_dcd_handle(p_proc_object->hmgr_obj,
(u32 *) &hdcd_handle);
if (DSP_SUCCEEDED(status)) {
/* Before proceeding with new load,
* check if a previously registered COFF
* exists.
* If yes, unregister nodes in previously
* registered COFF. If any error occurred,
* set previously registered COFF to NULL. */
if (p_proc_object->psz_last_coff != NULL) {
status =
dcd_auto_unregister(hdcd_handle,
p_proc_object->
psz_last_coff);
/* Regardless of auto unregister status,
* free previously allocated
* memory. */
kfree(p_proc_object->psz_last_coff);
p_proc_object->psz_last_coff = NULL;
}
}
/* On success, do cod_open_base() */
status = cod_open_base(cod_mgr, (char *)user_args[0],
COD_SYMB);
}
} else {
status = -ENOMEM;
}
if (DSP_SUCCEEDED(status)) {
/* Auto-register data base */
/* Get the DCD Handle */
status = mgr_get_dcd_handle(p_proc_object->hmgr_obj,
(u32 *) &hdcd_handle);
if (DSP_SUCCEEDED(status)) {
/* Auto register nodes in specified COFF
* file. If registration did not fail,
* (status = 0 or -EACCES)
* save the name of the COFF file for
* de-registration in the future. */
status =
dcd_auto_register(hdcd_handle,
(char *)user_args[0]);
if (status == -EACCES)
status = 0;
if (DSP_FAILED(status)) {
status = -EPERM;
} else {
DBC_ASSERT(p_proc_object->psz_last_coff ==
NULL);
/* Allocate memory for pszLastCoff */
p_proc_object->psz_last_coff =
kzalloc((strlen(user_args[0]) +
1), GFP_KERNEL);
/* If memory allocated, save COFF file name */
if (p_proc_object->psz_last_coff) {
strncpy(p_proc_object->psz_last_coff,
(char *)user_args[0],
(strlen((char *)user_args[0]) +
1));
}
}
}
}
/* Update shared memory address and size */
if (DSP_SUCCEEDED(status)) {
/* Create the message manager. This must be done
* before calling the IOOnLoaded function. */
dev_get_msg_mgr(p_proc_object->hdev_obj, &hmsg_mgr);
if (!hmsg_mgr) {
status = msg_create(&hmsg_mgr, p_proc_object->hdev_obj,
(msg_onexit) node_on_exit);
DBC_ASSERT(DSP_SUCCEEDED(status));
dev_set_msg_mgr(p_proc_object->hdev_obj, hmsg_mgr);
}
}
if (DSP_SUCCEEDED(status)) {
/* Set the Device object's message manager */
status = dev_get_io_mgr(p_proc_object->hdev_obj, &hio_mgr);
if (hio_mgr)
status = (*p_proc_object->intf_fxns->pfn_io_on_loaded)
(hio_mgr);
else
status = -EFAULT;
}
if (DSP_SUCCEEDED(status)) {
/* Now, attempt to load an exec: */
/* Boost the OPP level to Maximum level supported by baseport */
#if defined(CONFIG_BRIDGE_DVFS) && !defined(CONFIG_CPU_FREQ)
if (pdata->cpu_set_freq)
(*pdata->cpu_set_freq) (pdata->mpu_speed[VDD1_OPP5]);
#endif
status = cod_load_base(cod_mgr, argc_index, (char **)user_args,
dev_brd_write_fxn,
p_proc_object->hdev_obj, NULL);
if (DSP_FAILED(status)) {
if (status == -EBADF) {
dev_dbg(bridge, "%s: Failure to Load the EXE\n",
__func__);
}
if (status == -ESPIPE) {
pr_err("%s: Couldn't parse the file\n",
__func__);
}
}
/* Requesting the lowest opp supported */
#if defined(CONFIG_BRIDGE_DVFS) && !defined(CONFIG_CPU_FREQ)
if (pdata->cpu_set_freq)
(*pdata->cpu_set_freq) (pdata->mpu_speed[VDD1_OPP1]);
#endif
}
if (DSP_SUCCEEDED(status)) {
/* Update the Processor status to loaded */
status = (*p_proc_object->intf_fxns->pfn_brd_set_state)
(p_proc_object->hbridge_context, BRD_LOADED);
if (DSP_SUCCEEDED(status)) {
p_proc_object->proc_state = PROC_LOADED;
if (p_proc_object->ntfy_obj)
proc_notify_clients(p_proc_object,
DSP_PROCESSORSTATECHANGE);
}
}
if (DSP_SUCCEEDED(status)) {
status = proc_get_processor_id(hprocessor, &proc_id);
if (proc_id == DSP_UNIT) {
/* Use all available DSP address space after EXTMEM
* for DMM */
if (DSP_SUCCEEDED(status))
status = cod_get_sym_value(cod_mgr, EXTEND,
&dw_ext_end);
/* Reset DMM structs and add an initial free chunk */
if (DSP_SUCCEEDED(status)) {
status =
dev_get_dmm_mgr(p_proc_object->hdev_obj,
&dmm_mgr);
if (dmm_mgr) {
/* Set dw_ext_end to DMM START u8
* address */
dw_ext_end =
(dw_ext_end + 1) * DSPWORDSIZE;
/* DMM memory is from EXT_END */
status = dmm_create_tables(dmm_mgr,
dw_ext_end,
DMMPOOLSIZE);
} else {
status = -EFAULT;
}
}
}
}
/* Restore the original argv[0] */
kfree(new_envp);
user_args[0] = pargv0;
if (DSP_SUCCEEDED(status)) {
if (DSP_SUCCEEDED((*p_proc_object->intf_fxns->pfn_brd_status)
(p_proc_object->hbridge_context, &brd_state))) {
pr_info("%s: Processor Loaded %s\n", __func__, pargv0);
kfree(drv_datap->base_img);
drv_datap->base_img = kmalloc(strlen(pargv0) + 1,
GFP_KERNEL);
if (drv_datap->base_img)
strncpy(drv_datap->base_img, pargv0,
strlen(pargv0) + 1);
else
status = -ENOMEM;
DBC_ASSERT(brd_state == BRD_LOADED);
}
}
func_end:
if (DSP_FAILED(status))
pr_err("%s: Processor failed to load\n", __func__);
DBC_ENSURE((DSP_SUCCEEDED(status)
&& p_proc_object->proc_state == PROC_LOADED)
|| DSP_FAILED(status));
#ifdef OPT_LOAD_TIME_INSTRUMENTATION
do_gettimeofday(&tv2);
if (tv2.tv_usec < tv1.tv_usec) {
tv2.tv_usec += 1000000;
tv2.tv_sec--;
}
dev_dbg(bridge, "%s: time to load %d sec and %d usec\n", __func__,
tv2.tv_sec - tv1.tv_sec, tv2.tv_usec - tv1.tv_usec);
#endif
return status;
}
/*
* ======== proc_map ========
* Purpose:
* Maps a MPU buffer to DSP address space.
*/
int proc_map(void *hprocessor, void *pmpu_addr, u32 ul_size,
void *req_addr, void **pp_map_addr, u32 ul_map_attr,
struct process_context *pr_ctxt)
{
u32 va_align;
u32 pa_align;
struct dmm_object *dmm_mgr;
u32 size_align;
int status = 0;
struct proc_object *p_proc_object = (struct proc_object *)hprocessor;
struct dmm_map_object *map_obj;
u32 tmp_addr = 0;
#ifdef CONFIG_BRIDGE_CACHE_LINE_CHECK
if ((ul_map_attr & BUFMODE_MASK) != RBUF) {
if (!IS_ALIGNED((u32)pmpu_addr, DSP_CACHE_LINE) ||
!IS_ALIGNED(ul_size, DSP_CACHE_LINE)) {
pr_err("%s: not aligned: 0x%x (%d)\n", __func__,
(u32)pmpu_addr, ul_size);
return -EFAULT;
}
}
#endif
/* Calculate the page-aligned PA, VA and size */
va_align = PG_ALIGN_LOW((u32) req_addr, PG_SIZE4K);
pa_align = PG_ALIGN_LOW((u32) pmpu_addr, PG_SIZE4K);
size_align = PG_ALIGN_HIGH(ul_size + (u32) pmpu_addr - pa_align,
PG_SIZE4K);
if (!p_proc_object) {
status = -EFAULT;
goto func_end;
}
/* Critical section */
mutex_lock(&proc_lock);
dmm_get_handle(p_proc_object, &dmm_mgr);
if (dmm_mgr)
status = dmm_map_memory(dmm_mgr, va_align, size_align);
else
status = -EFAULT;
/* Add mapping to the page tables. */
if (DSP_SUCCEEDED(status)) {
/* Mapped address = MSB of VA | LSB of PA */
tmp_addr = (va_align | ((u32) pmpu_addr & (PG_SIZE4K - 1)));
/* mapped memory resource tracking */
map_obj = add_mapping_info(pr_ctxt, pa_align, tmp_addr,
size_align);
if (!map_obj)
status = -ENOMEM;
else
status = (*p_proc_object->intf_fxns->pfn_brd_mem_map)
(p_proc_object->hbridge_context, pa_align, va_align,
size_align, ul_map_attr, map_obj->pages);
}
if (DSP_SUCCEEDED(status)) {
/* Mapped address = MSB of VA | LSB of PA */
*pp_map_addr = (void *) tmp_addr;
} else {
remove_mapping_information(pr_ctxt, tmp_addr, size_align);
dmm_un_map_memory(dmm_mgr, va_align, &size_align);
}
mutex_unlock(&proc_lock);
if (DSP_FAILED(status))
goto func_end;
func_end:
dev_dbg(bridge, "%s: hprocessor %p, pmpu_addr %p, ul_size %x, "
"req_addr %p, ul_map_attr %x, pp_map_addr %p, va_align %x, "
"pa_align %x, size_align %x status 0x%x\n", __func__,
hprocessor, pmpu_addr, ul_size, req_addr, ul_map_attr,
pp_map_addr, va_align, pa_align, size_align, status);
return status;
}
/*
* ======== proc_register_notify ========
* Purpose:
* Register to be notified of specific processor events.
*/
int proc_register_notify(void *hprocessor, u32 event_mask,
u32 notify_type, struct dsp_notification
* hnotification)
{
int status = 0;
struct proc_object *p_proc_object = (struct proc_object *)hprocessor;
struct deh_mgr *hdeh_mgr;
DBC_REQUIRE(hnotification != NULL);
DBC_REQUIRE(refs > 0);
/* Check processor handle */
if (!p_proc_object) {
status = -EFAULT;
goto func_end;
}
/* Check if event mask is a valid processor related event */
if (event_mask & ~(DSP_PROCESSORSTATECHANGE | DSP_PROCESSORATTACH |
DSP_PROCESSORDETACH | DSP_PROCESSORRESTART |
DSP_MMUFAULT | DSP_SYSERROR | DSP_PWRERROR |
DSP_WDTOVERFLOW))
status = -EINVAL;
/* Check if notify type is valid */
if (notify_type != DSP_SIGNALEVENT)
status = -EINVAL;
if (DSP_SUCCEEDED(status)) {
/* If event mask is not DSP_SYSERROR, DSP_MMUFAULT,
* or DSP_PWRERROR then register event immediately. */
if (event_mask &
~(DSP_SYSERROR | DSP_MMUFAULT | DSP_PWRERROR |
DSP_WDTOVERFLOW)) {
status = ntfy_register(p_proc_object->ntfy_obj,
hnotification, event_mask,
notify_type);
/* Special case alert, special case alert!
* If we're trying to *deregister* (i.e. event_mask
* is 0), a DSP_SYSERROR or DSP_MMUFAULT notification,
* we have to deregister with the DEH manager.
* There's no way to know, based on event_mask which
* manager the notification event was registered with,
* so if we're trying to deregister and ntfy_register
* failed, we'll give the deh manager a shot.
*/
if ((event_mask == 0) && DSP_FAILED(status)) {
status =
dev_get_deh_mgr(p_proc_object->hdev_obj,
&hdeh_mgr);
DBC_ASSERT(p_proc_object->
intf_fxns->pfn_deh_register_notify);
status =
(*p_proc_object->
intf_fxns->pfn_deh_register_notify)
(hdeh_mgr, event_mask, notify_type,
hnotification);
}
} else {
status = dev_get_deh_mgr(p_proc_object->hdev_obj,
&hdeh_mgr);
DBC_ASSERT(p_proc_object->
intf_fxns->pfn_deh_register_notify);
status =
(*p_proc_object->intf_fxns->pfn_deh_register_notify)
(hdeh_mgr, event_mask, notify_type, hnotification);
}
}
func_end:
return status;
}
/*
* ======== proc_reserve_memory ========
* Purpose:
* Reserve a virtually contiguous region of DSP address space.
*/
int proc_reserve_memory(void *hprocessor, u32 ul_size,
void **pp_rsv_addr,
struct process_context *pr_ctxt)
{
struct dmm_object *dmm_mgr;
int status = 0;
struct proc_object *p_proc_object = (struct proc_object *)hprocessor;
struct dmm_rsv_object *rsv_obj;
if (!p_proc_object) {
status = -EFAULT;
goto func_end;
}
status = dmm_get_handle(p_proc_object, &dmm_mgr);
if (!dmm_mgr) {
status = -EFAULT;
goto func_end;
}
status = dmm_reserve_memory(dmm_mgr, ul_size, (u32 *) pp_rsv_addr);
if (status != 0)
goto func_end;
/*
* A successful reserve should be followed by insertion of rsv_obj
* into dmm_rsv_list, so that reserved memory resource tracking
* remains uptodate
*/
rsv_obj = kmalloc(sizeof(struct dmm_rsv_object), GFP_KERNEL);
if (rsv_obj) {
rsv_obj->dsp_reserved_addr = (u32) *pp_rsv_addr;
spin_lock(&pr_ctxt->dmm_rsv_lock);
list_add(&rsv_obj->link, &pr_ctxt->dmm_rsv_list);
spin_unlock(&pr_ctxt->dmm_rsv_lock);
}
func_end:
dev_dbg(bridge, "%s: hprocessor: 0x%p ul_size: 0x%x pp_rsv_addr: 0x%p "
"status 0x%x\n", __func__, hprocessor,
ul_size, pp_rsv_addr, status);
return status;
}
/*
* ======== proc_start ========
* Purpose:
* Start a processor running.
*/
int proc_start(void *hprocessor)
{
int status = 0;
struct proc_object *p_proc_object = (struct proc_object *)hprocessor;
struct cod_manager *cod_mgr; /* Code manager handle */
u32 dw_dsp_addr; /* Loaded code's entry point. */
int brd_state;
DBC_REQUIRE(refs > 0);
if (!p_proc_object) {
status = -EFAULT;
goto func_end;
}
/* Call the bridge_brd_start */
if (p_proc_object->proc_state != PROC_LOADED) {
status = -EBADR;
goto func_end;
}
status = dev_get_cod_mgr(p_proc_object->hdev_obj, &cod_mgr);
if (!cod_mgr) {
status = -EFAULT;
goto func_cont;
}
status = cod_get_entry(cod_mgr, &dw_dsp_addr);
if (DSP_FAILED(status))
goto func_cont;
status = (*p_proc_object->intf_fxns->pfn_brd_start)
(p_proc_object->hbridge_context, dw_dsp_addr);
if (DSP_FAILED(status))
goto func_cont;
/* Call dev_create2 */
status = dev_create2(p_proc_object->hdev_obj);
if (DSP_SUCCEEDED(status)) {
p_proc_object->proc_state = PROC_RUNNING;
/* Deep sleep switces off the peripheral clocks.
* we just put the DSP CPU in idle in the idle loop.
* so there is no need to send a command to DSP */
if (p_proc_object->ntfy_obj) {
proc_notify_clients(p_proc_object,
DSP_PROCESSORSTATECHANGE);
}
} else {
/* Failed to Create Node Manager and DISP Object
* Stop the Processor from running. Put it in STOPPED State */
(void)(*p_proc_object->intf_fxns->
pfn_brd_stop) (p_proc_object->hbridge_context);
p_proc_object->proc_state = PROC_STOPPED;
}
func_cont:
if (DSP_SUCCEEDED(status)) {
if (DSP_SUCCEEDED((*p_proc_object->intf_fxns->pfn_brd_status)
(p_proc_object->hbridge_context, &brd_state))) {
pr_info("%s: dsp in running state\n", __func__);
DBC_ASSERT(brd_state != BRD_HIBERNATION);
}
} else {
pr_err("%s: Failed to start the dsp\n", __func__);
}
func_end:
DBC_ENSURE((DSP_SUCCEEDED(status) && p_proc_object->proc_state ==
PROC_RUNNING) || DSP_FAILED(status));
return status;
}
/*
* ======== proc_stop ========
* Purpose:
* Stop a processor running.
*/
int proc_stop(void *hprocessor)
{
int status = 0;
struct proc_object *p_proc_object = (struct proc_object *)hprocessor;
struct msg_mgr *hmsg_mgr;
struct node_mgr *hnode_mgr;
void *hnode;
u32 node_tab_size = 1;
u32 num_nodes = 0;
u32 nodes_allocated = 0;
int brd_state;
DBC_REQUIRE(refs > 0);
if (!p_proc_object) {
status = -EFAULT;
goto func_end;
}
if (DSP_SUCCEEDED((*p_proc_object->intf_fxns->pfn_brd_status)
(p_proc_object->hbridge_context, &brd_state))) {
if (brd_state == BRD_ERROR)
bridge_deh_release_dummy_mem();
}
/* check if there are any running nodes */
status = dev_get_node_manager(p_proc_object->hdev_obj, &hnode_mgr);
if (DSP_SUCCEEDED(status) && hnode_mgr) {
status = node_enum_nodes(hnode_mgr, &hnode, node_tab_size,
&num_nodes, &nodes_allocated);
if ((status == -EINVAL) || (nodes_allocated > 0)) {
pr_err("%s: Can't stop device, active nodes = %d \n",
__func__, nodes_allocated);
return -EBADR;
}
}
/* Call the bridge_brd_stop */
/* It is OK to stop a device that does n't have nodes OR not started */
status =
(*p_proc_object->intf_fxns->
pfn_brd_stop) (p_proc_object->hbridge_context);
if (DSP_SUCCEEDED(status)) {
dev_dbg(bridge, "%s: processor in standby mode\n", __func__);
p_proc_object->proc_state = PROC_STOPPED;
/* Destory the Node Manager, msg_ctrl Manager */
if (DSP_SUCCEEDED(dev_destroy2(p_proc_object->hdev_obj))) {
/* Destroy the msg_ctrl by calling msg_delete */
dev_get_msg_mgr(p_proc_object->hdev_obj, &hmsg_mgr);
if (hmsg_mgr) {
msg_delete(hmsg_mgr);
dev_set_msg_mgr(p_proc_object->hdev_obj, NULL);
}
if (DSP_SUCCEEDED
((*p_proc_object->
intf_fxns->pfn_brd_status) (p_proc_object->
hbridge_context,
&brd_state)))
DBC_ASSERT(brd_state == BRD_STOPPED);
}
} else {
pr_err("%s: Failed to stop the processor\n", __func__);
}
func_end:
return status;
}
/*
* ======== proc_un_map ========
* Purpose:
* Removes a MPU buffer mapping from the DSP address space.
*/
int proc_un_map(void *hprocessor, void *map_addr,
struct process_context *pr_ctxt)
{
int status = 0;
struct proc_object *p_proc_object = (struct proc_object *)hprocessor;
struct dmm_object *dmm_mgr;
u32 va_align;
u32 size_align;
va_align = PG_ALIGN_LOW((u32) map_addr, PG_SIZE4K);
if (!p_proc_object) {
status = -EFAULT;
goto func_end;
}
status = dmm_get_handle(hprocessor, &dmm_mgr);
if (!dmm_mgr) {
status = -EFAULT;
goto func_end;
}
/* Critical section */
mutex_lock(&proc_lock);
/*
* Update DMM structures. Get the size to unmap.
* This function returns error if the VA is not mapped
*/
status = dmm_un_map_memory(dmm_mgr, (u32) va_align, &size_align);
/* Remove mapping from the page tables. */
if (DSP_SUCCEEDED(status)) {
status = (*p_proc_object->intf_fxns->pfn_brd_mem_un_map)
(p_proc_object->hbridge_context, va_align, size_align);
}
mutex_unlock(&proc_lock);
if (DSP_FAILED(status))
goto func_end;
/*
* A successful unmap should be followed by removal of map_obj
* from dmm_map_list, so that mapped memory resource tracking
* remains uptodate
*/
remove_mapping_information(pr_ctxt, (u32) map_addr, size_align);
func_end:
dev_dbg(bridge, "%s: hprocessor: 0x%p map_addr: 0x%p status: 0x%x\n",
__func__, hprocessor, map_addr, status);
return status;
}
/*
* ======== proc_un_reserve_memory ========
* Purpose:
* Frees a previously reserved region of DSP address space.
*/
int proc_un_reserve_memory(void *hprocessor, void *prsv_addr,
struct process_context *pr_ctxt)
{
struct dmm_object *dmm_mgr;
int status = 0;
struct proc_object *p_proc_object = (struct proc_object *)hprocessor;
struct dmm_rsv_object *rsv_obj;
if (!p_proc_object) {
status = -EFAULT;
goto func_end;
}
status = dmm_get_handle(p_proc_object, &dmm_mgr);
if (!dmm_mgr) {
status = -EFAULT;
goto func_end;
}
status = dmm_un_reserve_memory(dmm_mgr, (u32) prsv_addr);
if (status != 0)
goto func_end;
/*
* A successful unreserve should be followed by removal of rsv_obj
* from dmm_rsv_list, so that reserved memory resource tracking
* remains uptodate
*/
spin_lock(&pr_ctxt->dmm_rsv_lock);
list_for_each_entry(rsv_obj, &pr_ctxt->dmm_rsv_list, link) {
if (rsv_obj->dsp_reserved_addr == (u32) prsv_addr) {
list_del(&rsv_obj->link);
kfree(rsv_obj);
break;
}
}
spin_unlock(&pr_ctxt->dmm_rsv_lock);
func_end:
dev_dbg(bridge, "%s: hprocessor: 0x%p prsv_addr: 0x%p status: 0x%x\n",
__func__, hprocessor, prsv_addr, status);
return status;
}
/*
* ======== = proc_monitor ======== ==
* Purpose:
* Place the Processor in Monitor State. This is an internal
* function and a requirement before Processor is loaded.
* This does a bridge_brd_stop, dev_destroy2 and bridge_brd_monitor.
* In dev_destroy2 we delete the node manager.
* Parameters:
* p_proc_object: Pointer to Processor Object
* Returns:
* 0: Processor placed in monitor mode.
* !0: Failed to place processor in monitor mode.
* Requires:
* Valid Processor Handle
* Ensures:
* Success: ProcObject state is PROC_IDLE
*/
static int proc_monitor(struct proc_object *p_proc_object)
{
int status = -EPERM;
struct msg_mgr *hmsg_mgr;
int brd_state;
DBC_REQUIRE(refs > 0);
DBC_REQUIRE(p_proc_object);
/* This is needed only when Device is loaded when it is
* already 'ACTIVE' */
/* Destory the Node Manager, msg_ctrl Manager */
if (DSP_SUCCEEDED(dev_destroy2(p_proc_object->hdev_obj))) {
/* Destroy the msg_ctrl by calling msg_delete */
dev_get_msg_mgr(p_proc_object->hdev_obj, &hmsg_mgr);
if (hmsg_mgr) {
msg_delete(hmsg_mgr);
dev_set_msg_mgr(p_proc_object->hdev_obj, NULL);
}
}
/* Place the Board in the Monitor State */
if (DSP_SUCCEEDED((*p_proc_object->intf_fxns->pfn_brd_monitor)
(p_proc_object->hbridge_context))) {
status = 0;
if (DSP_SUCCEEDED((*p_proc_object->intf_fxns->pfn_brd_status)
(p_proc_object->hbridge_context, &brd_state)))
DBC_ASSERT(brd_state == BRD_IDLE);
}
DBC_ENSURE((DSP_SUCCEEDED(status) && brd_state == BRD_IDLE) ||
DSP_FAILED(status));
return status;
}
/*
* ======== get_envp_count ========
* Purpose:
* Return the number of elements in the envp array, including the
* terminating NULL element.
*/
static s32 get_envp_count(char **envp)
{
s32 ret = 0;
if (envp) {
while (*envp++)
ret++;
ret += 1; /* Include the terminating NULL in the count. */
}
return ret;
}
/*
* ======== prepend_envp ========
* Purpose:
* Prepend an environment variable=value pair to the new envp array, and
* copy in the existing var=value pairs in the old envp array.
*/
static char **prepend_envp(char **new_envp, char **envp, s32 envp_elems,
s32 cnew_envp, char *szVar)
{
char **pp_envp = new_envp;
DBC_REQUIRE(new_envp);
/* Prepend new environ var=value string */
*new_envp++ = szVar;
/* Copy user's environment into our own. */
while (envp_elems--)
*new_envp++ = *envp++;
/* Ensure NULL terminates the new environment strings array. */
if (envp_elems == 0)
*new_envp = NULL;
return pp_envp;
}
/*
* ======== proc_notify_clients ========
* Purpose:
* Notify the processor the events.
*/
int proc_notify_clients(void *hProc, u32 uEvents)
{
int status = 0;
struct proc_object *p_proc_object = (struct proc_object *)hProc;
DBC_REQUIRE(p_proc_object);
DBC_REQUIRE(IS_VALID_PROC_EVENT(uEvents));
DBC_REQUIRE(refs > 0);
if (!p_proc_object) {
status = -EFAULT;
goto func_end;
}
ntfy_notify(p_proc_object->ntfy_obj, uEvents);
func_end:
return status;
}
/*
* ======== proc_notify_all_clients ========
* Purpose:
* Notify the processor the events. This includes notifying all clients
* attached to a particulat DSP.
*/
int proc_notify_all_clients(void *hProc, u32 uEvents)
{
int status = 0;
struct proc_object *p_proc_object = (struct proc_object *)hProc;
DBC_REQUIRE(IS_VALID_PROC_EVENT(uEvents));
DBC_REQUIRE(refs > 0);
if (!p_proc_object) {
status = -EFAULT;
goto func_end;
}
dev_notify_clients(p_proc_object->hdev_obj, uEvents);
func_end:
return status;
}
/*
* ======== proc_get_processor_id ========
* Purpose:
* Retrieves the processor ID.
*/
int proc_get_processor_id(void *hProc, u32 * procID)
{
int status = 0;
struct proc_object *p_proc_object = (struct proc_object *)hProc;
if (p_proc_object)
*procID = p_proc_object->processor_id;
else
status = -EFAULT;
return status;
}
/*
* pwr.c
*
* DSP-BIOS Bridge driver support functions for TI OMAP processors.
*
* PWR API for controlling DSP power states.
*
* Copyright (C) 2005-2006 Texas Instruments, Inc.
*
* This package is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
* THIS PACKAGE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED
* WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR A PARTICULAR PURPOSE.
*/
/* ----------------------------------- Host OS */
#include <dspbridge/host_os.h>
/* ----------------------------------- This */
#include <dspbridge/pwr.h>
/* ----------------------------------- Resource Manager */
#include <dspbridge/devdefs.h>
#include <dspbridge/drv.h>
/* ----------------------------------- Platform Manager */
#include <dspbridge/dev.h>
/* ----------------------------------- Link Driver */
#include <dspbridge/dspioctl.h>
/*
* ======== pwr_sleep_dsp ========
* Send command to DSP to enter sleep state.
*/
int pwr_sleep_dsp(IN CONST u32 sleepCode, IN CONST u32 timeout)
{
struct bridge_drv_interface *intf_fxns;
struct bridge_dev_context *dw_context;
int status = -EPERM;
struct dev_object *hdev_obj = NULL;
u32 ioctlcode = 0;
u32 arg = timeout;
for (hdev_obj = (struct dev_object *)drv_get_first_dev_object();
hdev_obj != NULL;
hdev_obj =
(struct dev_object *)drv_get_next_dev_object((u32) hdev_obj)) {
if (DSP_FAILED(dev_get_bridge_context(hdev_obj,
(struct bridge_dev_context **)
&dw_context))) {
continue;
}
if (DSP_FAILED(dev_get_intf_fxns(hdev_obj,
(struct bridge_drv_interface **)
&intf_fxns))) {
continue;
}
if (sleepCode == PWR_DEEPSLEEP)
ioctlcode = BRDIOCTL_DEEPSLEEP;
else if (sleepCode == PWR_EMERGENCYDEEPSLEEP)
ioctlcode = BRDIOCTL_EMERGENCYSLEEP;
else
status = -EINVAL;
if (status != -EINVAL) {
status = (*intf_fxns->pfn_dev_cntrl) (dw_context,
ioctlcode,
(void *)&arg);
}
}
return status;
}
/*
* ======== pwr_wake_dsp ========
* Send command to DSP to wake it from sleep.
*/
int pwr_wake_dsp(IN CONST u32 timeout)
{
struct bridge_drv_interface *intf_fxns;
struct bridge_dev_context *dw_context;
int status = -EPERM;
struct dev_object *hdev_obj = NULL;
u32 arg = timeout;
for (hdev_obj = (struct dev_object *)drv_get_first_dev_object();
hdev_obj != NULL;
hdev_obj = (struct dev_object *)drv_get_next_dev_object
((u32) hdev_obj)) {
if (DSP_SUCCEEDED(dev_get_bridge_context(hdev_obj,
(struct bridge_dev_context
**)&dw_context))) {
if (DSP_SUCCEEDED
(dev_get_intf_fxns
(hdev_obj,
(struct bridge_drv_interface **)&intf_fxns))) {
status =
(*intf_fxns->pfn_dev_cntrl) (dw_context,
BRDIOCTL_WAKEUP,
(void *)&arg);
}
}
}
return status;
}
/*
* ======== pwr_pm_pre_scale========
* Sends pre-notification message to DSP.
*/
int pwr_pm_pre_scale(IN u16 voltage_domain, u32 level)
{
struct bridge_drv_interface *intf_fxns;
struct bridge_dev_context *dw_context;
int status = -EPERM;
struct dev_object *hdev_obj = NULL;
u32 arg[2];
arg[0] = voltage_domain;
arg[1] = level;
for (hdev_obj = (struct dev_object *)drv_get_first_dev_object();
hdev_obj != NULL;
hdev_obj = (struct dev_object *)drv_get_next_dev_object
((u32) hdev_obj)) {
if (DSP_SUCCEEDED(dev_get_bridge_context(hdev_obj,
(struct bridge_dev_context
**)&dw_context))) {
if (DSP_SUCCEEDED
(dev_get_intf_fxns
(hdev_obj,
(struct bridge_drv_interface **)&intf_fxns))) {
status =
(*intf_fxns->pfn_dev_cntrl) (dw_context,
BRDIOCTL_PRESCALE_NOTIFY,
(void *)&arg);
}
}
}
return status;
}
/*
* ======== pwr_pm_post_scale========
* Sends post-notification message to DSP.
*/
int pwr_pm_post_scale(IN u16 voltage_domain, u32 level)
{
struct bridge_drv_interface *intf_fxns;
struct bridge_dev_context *dw_context;
int status = -EPERM;
struct dev_object *hdev_obj = NULL;
u32 arg[2];
arg[0] = voltage_domain;
arg[1] = level;
for (hdev_obj = (struct dev_object *)drv_get_first_dev_object();
hdev_obj != NULL;
hdev_obj = (struct dev_object *)drv_get_next_dev_object
((u32) hdev_obj)) {
if (DSP_SUCCEEDED(dev_get_bridge_context(hdev_obj,
(struct bridge_dev_context
**)&dw_context))) {
if (DSP_SUCCEEDED
(dev_get_intf_fxns
(hdev_obj,
(struct bridge_drv_interface **)&intf_fxns))) {
status =
(*intf_fxns->pfn_dev_cntrl) (dw_context,
BRDIOCTL_POSTSCALE_NOTIFY,
(void *)&arg);
}
}
}
return status;
}
/*
* rmm.c
*
* DSP-BIOS Bridge driver support functions for TI OMAP processors.
*
* Copyright (C) 2005-2006 Texas Instruments, Inc.
*
* This package is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
* THIS PACKAGE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED
* WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR A PARTICULAR PURPOSE.
*/
/*
* This memory manager provides general heap management and arbitrary
* alignment for any number of memory segments.
*
* Notes:
*
* Memory blocks are allocated from the end of the first free memory
* block large enough to satisfy the request. Alignment requirements
* are satisfied by "sliding" the block forward until its base satisfies
* the alignment specification; if this is not possible then the next
* free block large enough to hold the request is tried.
*
* Since alignment can cause the creation of a new free block - the
* unused memory formed between the start of the original free block
* and the start of the allocated block - the memory manager must free
* this memory to prevent a memory leak.
*
* Overlay memory is managed by reserving through rmm_alloc, and freeing
* it through rmm_free. The memory manager prevents DSP code/data that is
* overlayed from being overwritten as long as the memory it runs at has
* been allocated, and not yet freed.
*/
/* ----------------------------------- DSP/BIOS Bridge */
#include <dspbridge/std.h>
#include <dspbridge/dbdefs.h>
/* ----------------------------------- Trace & Debug */
#include <dspbridge/dbc.h>
/* ----------------------------------- OS Adaptation Layer */
#include <dspbridge/list.h>
/* ----------------------------------- This */
#include <dspbridge/rmm.h>
/*
* ======== rmm_header ========
* This header is used to maintain a list of free memory blocks.
*/
struct rmm_header {
struct rmm_header *next; /* form a free memory link list */
u32 size; /* size of the free memory */
u32 addr; /* DSP address of memory block */
};
/*
* ======== rmm_ovly_sect ========
* Keeps track of memory occupied by overlay section.
*/
struct rmm_ovly_sect {
struct list_head list_elem;
u32 addr; /* Start of memory section */
u32 size; /* Length (target MAUs) of section */
s32 page; /* Memory page */
};
/*
* ======== rmm_target_obj ========
*/
struct rmm_target_obj {
struct rmm_segment *seg_tab;
struct rmm_header **free_list;
u32 num_segs;
struct lst_list *ovly_list; /* List of overlay memory in use */
};
static u32 refs; /* module reference count */
static bool alloc_block(struct rmm_target_obj *target, u32 segid, u32 size,
u32 align, u32 *dspAddr);
static bool free_block(struct rmm_target_obj *target, u32 segid, u32 addr,
u32 size);
/*
* ======== rmm_alloc ========
*/
int rmm_alloc(struct rmm_target_obj *target, u32 segid, u32 size,
u32 align, u32 *dspAddr, bool reserve)
{
struct rmm_ovly_sect *sect;
struct rmm_ovly_sect *prev_sect = NULL;
struct rmm_ovly_sect *new_sect;
u32 addr;
int status = 0;
DBC_REQUIRE(target);
DBC_REQUIRE(dspAddr != NULL);
DBC_REQUIRE(size > 0);
DBC_REQUIRE(reserve || (target->num_segs > 0));
DBC_REQUIRE(refs > 0);
if (!reserve) {
if (!alloc_block(target, segid, size, align, dspAddr)) {
status = -ENOMEM;
} else {
/* Increment the number of allocated blocks in this
* segment */
target->seg_tab[segid].number++;
}
goto func_end;
}
/* An overlay section - See if block is already in use. If not,
* insert into the list in ascending address size. */
addr = *dspAddr;
sect = (struct rmm_ovly_sect *)lst_first(target->ovly_list);
/* Find place to insert new list element. List is sorted from
* smallest to largest address. */
while (sect != NULL) {
if (addr <= sect->addr) {
/* Check for overlap with sect */
if ((addr + size > sect->addr) || (prev_sect &&
(prev_sect->addr +
prev_sect->size >
addr))) {
status = -ENXIO;
}
break;
}
prev_sect = sect;
sect = (struct rmm_ovly_sect *)lst_next(target->ovly_list,
(struct list_head *)
sect);
}
if (DSP_SUCCEEDED(status)) {
/* No overlap - allocate list element for new section. */
new_sect = kzalloc(sizeof(struct rmm_ovly_sect), GFP_KERNEL);
if (new_sect == NULL) {
status = -ENOMEM;
} else {
lst_init_elem((struct list_head *)new_sect);
new_sect->addr = addr;
new_sect->size = size;
new_sect->page = segid;
if (sect == NULL) {
/* Put new section at the end of the list */
lst_put_tail(target->ovly_list,
(struct list_head *)new_sect);
} else {
/* Put new section just before sect */
lst_insert_before(target->ovly_list,
(struct list_head *)new_sect,
(struct list_head *)sect);
}
}
}
func_end:
return status;
}
/*
* ======== rmm_create ========
*/
int rmm_create(struct rmm_target_obj **target_obj,
struct rmm_segment seg_tab[], u32 num_segs)
{
struct rmm_header *hptr;
struct rmm_segment *sptr, *tmp;
struct rmm_target_obj *target;
s32 i;
int status = 0;
DBC_REQUIRE(target_obj != NULL);
DBC_REQUIRE(num_segs == 0 || seg_tab != NULL);
/* Allocate DBL target object */
target = kzalloc(sizeof(struct rmm_target_obj), GFP_KERNEL);
if (target == NULL)
status = -ENOMEM;
if (DSP_FAILED(status))
goto func_cont;
target->num_segs = num_segs;
if (!(num_segs > 0))
goto func_cont;
/* Allocate the memory for freelist from host's memory */
target->free_list = kzalloc(num_segs * sizeof(struct rmm_header *),
GFP_KERNEL);
if (target->free_list == NULL) {
status = -ENOMEM;
} else {
/* Allocate headers for each element on the free list */
for (i = 0; i < (s32) num_segs; i++) {
target->free_list[i] =
kzalloc(sizeof(struct rmm_header), GFP_KERNEL);
if (target->free_list[i] == NULL) {
status = -ENOMEM;
break;
}
}
/* Allocate memory for initial segment table */
target->seg_tab = kzalloc(num_segs * sizeof(struct rmm_segment),
GFP_KERNEL);
if (target->seg_tab == NULL) {
status = -ENOMEM;
} else {
/* Initialize segment table and free list */
sptr = target->seg_tab;
for (i = 0, tmp = seg_tab; num_segs > 0;
num_segs--, i++) {
*sptr = *tmp;
hptr = target->free_list[i];
hptr->addr = tmp->base;
hptr->size = tmp->length;
hptr->next = NULL;
tmp++;
sptr++;
}
}
}
func_cont:
/* Initialize overlay memory list */
if (DSP_SUCCEEDED(status)) {
target->ovly_list = kzalloc(sizeof(struct lst_list),
GFP_KERNEL);
if (target->ovly_list == NULL)
status = -ENOMEM;
else
INIT_LIST_HEAD(&target->ovly_list->head);
}
if (DSP_SUCCEEDED(status)) {
*target_obj = target;
} else {
*target_obj = NULL;
if (target)
rmm_delete(target);
}
DBC_ENSURE((DSP_SUCCEEDED(status) && *target_obj)
|| (DSP_FAILED(status) && *target_obj == NULL));
return status;
}
/*
* ======== rmm_delete ========
*/
void rmm_delete(struct rmm_target_obj *target)
{
struct rmm_ovly_sect *ovly_section;
struct rmm_header *hptr;
struct rmm_header *next;
u32 i;
DBC_REQUIRE(target);
kfree(target->seg_tab);
if (target->ovly_list) {
while ((ovly_section = (struct rmm_ovly_sect *)lst_get_head
(target->ovly_list))) {
kfree(ovly_section);
}
DBC_ASSERT(LST_IS_EMPTY(target->ovly_list));
kfree(target->ovly_list);
}
if (target->free_list != NULL) {
/* Free elements on freelist */
for (i = 0; i < target->num_segs; i++) {
hptr = next = target->free_list[i];
while (next) {
hptr = next;
next = hptr->next;
kfree(hptr);
}
}
kfree(target->free_list);
}
kfree(target);
}
/*
* ======== rmm_exit ========
*/
void rmm_exit(void)
{
DBC_REQUIRE(refs > 0);
refs--;
DBC_ENSURE(refs >= 0);
}
/*
* ======== rmm_free ========
*/
bool rmm_free(struct rmm_target_obj *target, u32 segid, u32 addr, u32 size,
bool reserved)
{
struct rmm_ovly_sect *sect;
bool ret = true;
DBC_REQUIRE(target);
DBC_REQUIRE(reserved || segid < target->num_segs);
DBC_REQUIRE(reserved || (addr >= target->seg_tab[segid].base &&
(addr + size) <= (target->seg_tab[segid].base +
target->seg_tab[segid].
length)));
/*
* Free or unreserve memory.
*/
if (!reserved) {
ret = free_block(target, segid, addr, size);
if (ret)
target->seg_tab[segid].number--;
} else {
/* Unreserve memory */
sect = (struct rmm_ovly_sect *)lst_first(target->ovly_list);
while (sect != NULL) {
if (addr == sect->addr) {
DBC_ASSERT(size == sect->size);
/* Remove from list */
lst_remove_elem(target->ovly_list,
(struct list_head *)sect);
kfree(sect);
break;
}
sect =
(struct rmm_ovly_sect *)lst_next(target->ovly_list,
(struct list_head
*)sect);
}
if (sect == NULL)
ret = false;
}
return ret;
}
/*
* ======== rmm_init ========
*/
bool rmm_init(void)
{
DBC_REQUIRE(refs >= 0);
refs++;
return true;
}
/*
* ======== rmm_stat ========
*/
bool rmm_stat(struct rmm_target_obj *target, enum dsp_memtype segid,
struct dsp_memstat *pMemStatBuf)
{
struct rmm_header *head;
bool ret = false;
u32 max_free_size = 0;
u32 total_free_size = 0;
u32 free_blocks = 0;
DBC_REQUIRE(pMemStatBuf != NULL);
DBC_ASSERT(target != NULL);
if ((u32) segid < target->num_segs) {
head = target->free_list[segid];
/* Collect data from free_list */
while (head != NULL) {
max_free_size = max(max_free_size, head->size);
total_free_size += head->size;
free_blocks++;
head = head->next;
}
/* ul_size */
pMemStatBuf->ul_size = target->seg_tab[segid].length;
/* ul_num_free_blocks */
pMemStatBuf->ul_num_free_blocks = free_blocks;
/* ul_total_free_size */
pMemStatBuf->ul_total_free_size = total_free_size;
/* ul_len_max_free_block */
pMemStatBuf->ul_len_max_free_block = max_free_size;
/* ul_num_alloc_blocks */
pMemStatBuf->ul_num_alloc_blocks =
target->seg_tab[segid].number;
ret = true;
}
return ret;
}
/*
* ======== balloc ========
* This allocation function allocates memory from the lowest addresses
* first.
*/
static bool alloc_block(struct rmm_target_obj *target, u32 segid, u32 size,
u32 align, u32 *dspAddr)
{
struct rmm_header *head;
struct rmm_header *prevhead = NULL;
struct rmm_header *next;
u32 tmpalign;
u32 alignbytes;
u32 hsize;
u32 allocsize;
u32 addr;
alignbytes = (align == 0) ? 1 : align;
prevhead = NULL;
head = target->free_list[segid];
do {
hsize = head->size;
next = head->next;
addr = head->addr; /* alloc from the bottom */
/* align allocation */
(tmpalign = (u32) addr % alignbytes);
if (tmpalign != 0)
tmpalign = alignbytes - tmpalign;
allocsize = size + tmpalign;
if (hsize >= allocsize) { /* big enough */
if (hsize == allocsize && prevhead != NULL) {
prevhead->next = next;
kfree(head);
} else {
head->size = hsize - allocsize;
head->addr += allocsize;
}
/* free up any hole created by alignment */
if (tmpalign)
free_block(target, segid, addr, tmpalign);
*dspAddr = addr + tmpalign;
return true;
}
prevhead = head;
head = next;
} while (head != NULL);
return false;
}
/*
* ======== free_block ========
* TO DO: free_block() allocates memory, which could result in failure.
* Could allocate an rmm_header in rmm_alloc(), to be kept in a pool.
* free_block() could use an rmm_header from the pool, freeing as blocks
* are coalesced.
*/
static bool free_block(struct rmm_target_obj *target, u32 segid, u32 addr,
u32 size)
{
struct rmm_header *head;
struct rmm_header *thead;
struct rmm_header *rhead;
bool ret = true;
/* Create a memory header to hold the newly free'd block. */
rhead = kzalloc(sizeof(struct rmm_header), GFP_KERNEL);
if (rhead == NULL) {
ret = false;
} else {
/* search down the free list to find the right place for addr */
head = target->free_list[segid];
if (addr >= head->addr) {
while (head->next != NULL && addr > head->next->addr)
head = head->next;
thead = head->next;
head->next = rhead;
rhead->next = thead;
rhead->addr = addr;
rhead->size = size;
} else {
*rhead = *head;
head->next = rhead;
head->addr = addr;
head->size = size;
thead = rhead->next;
}
/* join with upper block, if possible */
if (thead != NULL && (rhead->addr + rhead->size) ==
thead->addr) {
head->next = rhead->next;
thead->size = size + thead->size;
thead->addr = addr;
kfree(rhead);
rhead = thead;
}
/* join with the lower block, if possible */
if ((head->addr + head->size) == rhead->addr) {
head->next = rhead->next;
head->size = head->size + rhead->size;
kfree(rhead);
}
}
return ret;
}
/*
* strm.c
*
* DSP-BIOS Bridge driver support functions for TI OMAP processors.
*
* DSP/BIOS Bridge Stream Manager.
*
* Copyright (C) 2005-2006 Texas Instruments, Inc.
*
* This package is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
* THIS PACKAGE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED
* WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR A PARTICULAR PURPOSE.
*/
/* ----------------------------------- Host OS */
#include <dspbridge/host_os.h>
/* ----------------------------------- DSP/BIOS Bridge */
#include <dspbridge/std.h>
#include <dspbridge/dbdefs.h>
/* ----------------------------------- Trace & Debug */
#include <dspbridge/dbc.h>
/* ----------------------------------- OS Adaptation Layer */
#include <dspbridge/sync.h>
/* ----------------------------------- Bridge Driver */
#include <dspbridge/dspdefs.h>
/* ----------------------------------- Resource Manager */
#include <dspbridge/nodepriv.h>
/* ----------------------------------- Others */
#include <dspbridge/cmm.h>
/* ----------------------------------- This */
#include <dspbridge/strm.h>
#include <dspbridge/cfg.h>
#include <dspbridge/resourcecleanup.h>
/* ----------------------------------- Defines, Data Structures, Typedefs */
#define DEFAULTTIMEOUT 10000
#define DEFAULTNUMBUFS 2
/*
* ======== strm_mgr ========
* The strm_mgr contains device information needed to open the underlying
* channels of a stream.
*/
struct strm_mgr {
struct dev_object *dev_obj; /* Device for this processor */
struct chnl_mgr *hchnl_mgr; /* Channel manager */
/* Function interface to Bridge driver */
struct bridge_drv_interface *intf_fxns;
};
/*
* ======== strm_object ========
* This object is allocated in strm_open().
*/
struct strm_object {
struct strm_mgr *strm_mgr_obj;
struct chnl_object *chnl_obj;
u32 dir; /* DSP_TONODE or DSP_FROMNODE */
u32 utimeout;
u32 num_bufs; /* Max # of bufs allowed in stream */
u32 un_bufs_in_strm; /* Current # of bufs in stream */
u32 ul_n_bytes; /* bytes transferred since idled */
/* STREAM_IDLE, STREAM_READY, ... */
enum dsp_streamstate strm_state;
void *user_event; /* Saved for strm_get_info() */
enum dsp_strmmode strm_mode; /* STRMMODE_[PROCCOPY][ZEROCOPY]... */
u32 udma_chnl_id; /* DMA chnl id */
u32 udma_priority; /* DMA priority:DMAPRI_[LOW][HIGH] */
u32 segment_id; /* >0 is SM segment.=0 is local heap */
u32 buf_alignment; /* Alignment for stream bufs */
/* Stream's SM address translator */
struct cmm_xlatorobject *xlator;
};
/* ----------------------------------- Globals */
static u32 refs; /* module reference count */
/* ----------------------------------- Function Prototypes */
static int delete_strm(struct strm_object *hStrm);
static void delete_strm_mgr(struct strm_mgr *strm_mgr_obj);
/*
* ======== strm_allocate_buffer ========
* Purpose:
* Allocates buffers for a stream.
*/
int strm_allocate_buffer(struct strm_object *hStrm, u32 usize,
OUT u8 **ap_buffer, u32 num_bufs,
struct process_context *pr_ctxt)
{
int status = 0;
u32 alloc_cnt = 0;
u32 i;
void *hstrm_res;
DBC_REQUIRE(refs > 0);
DBC_REQUIRE(ap_buffer != NULL);
if (hStrm) {
/*
* Allocate from segment specified at time of stream open.
*/
if (usize == 0)
status = -EINVAL;
} else {
status = -EFAULT;
}
if (DSP_FAILED(status))
goto func_end;
for (i = 0; i < num_bufs; i++) {
DBC_ASSERT(hStrm->xlator != NULL);
(void)cmm_xlator_alloc_buf(hStrm->xlator, &ap_buffer[i], usize);
if (ap_buffer[i] == NULL) {
status = -ENOMEM;
alloc_cnt = i;
break;
}
}
if (DSP_FAILED(status))
strm_free_buffer(hStrm, ap_buffer, alloc_cnt, pr_ctxt);
if (DSP_FAILED(status))
goto func_end;
if (drv_get_strm_res_element(hStrm, &hstrm_res, pr_ctxt) !=
-ENOENT)
drv_proc_update_strm_res(num_bufs, hstrm_res);
func_end:
return status;
}
/*
* ======== strm_close ========
* Purpose:
* Close a stream opened with strm_open().
*/
int strm_close(struct strm_object *hStrm,
struct process_context *pr_ctxt)
{
struct bridge_drv_interface *intf_fxns;
struct chnl_info chnl_info_obj;
int status = 0;
void *hstrm_res;
DBC_REQUIRE(refs > 0);
if (!hStrm) {
status = -EFAULT;
} else {
/* Have all buffers been reclaimed? If not, return
* -EPIPE */
intf_fxns = hStrm->strm_mgr_obj->intf_fxns;
status =
(*intf_fxns->pfn_chnl_get_info) (hStrm->chnl_obj,
&chnl_info_obj);
DBC_ASSERT(DSP_SUCCEEDED(status));
if (chnl_info_obj.cio_cs > 0 || chnl_info_obj.cio_reqs > 0)
status = -EPIPE;
else
status = delete_strm(hStrm);
}
if (DSP_FAILED(status))
goto func_end;
if (drv_get_strm_res_element(hStrm, &hstrm_res, pr_ctxt) !=
-ENOENT)
drv_proc_remove_strm_res_element(hstrm_res, pr_ctxt);
func_end:
DBC_ENSURE(status == 0 || status == -EFAULT ||
status == -EPIPE || status == -EPERM);
dev_dbg(bridge, "%s: hStrm: %p, status 0x%x\n", __func__,
hStrm, status);
return status;
}
/*
* ======== strm_create ========
* Purpose:
* Create a STRM manager object.
*/
int strm_create(OUT struct strm_mgr **phStrmMgr,
struct dev_object *dev_obj)
{
struct strm_mgr *strm_mgr_obj;
int status = 0;
DBC_REQUIRE(refs > 0);
DBC_REQUIRE(phStrmMgr != NULL);
DBC_REQUIRE(dev_obj != NULL);
*phStrmMgr = NULL;
/* Allocate STRM manager object */
strm_mgr_obj = kzalloc(sizeof(struct strm_mgr), GFP_KERNEL);
if (strm_mgr_obj == NULL)
status = -ENOMEM;
else
strm_mgr_obj->dev_obj = dev_obj;
/* Get Channel manager and Bridge function interface */
if (DSP_SUCCEEDED(status)) {
status = dev_get_chnl_mgr(dev_obj, &(strm_mgr_obj->hchnl_mgr));
if (DSP_SUCCEEDED(status)) {
(void)dev_get_intf_fxns(dev_obj,
&(strm_mgr_obj->intf_fxns));
DBC_ASSERT(strm_mgr_obj->intf_fxns != NULL);
}
}
if (DSP_SUCCEEDED(status))
*phStrmMgr = strm_mgr_obj;
else
delete_strm_mgr(strm_mgr_obj);
DBC_ENSURE((DSP_SUCCEEDED(status) && *phStrmMgr) ||
(DSP_FAILED(status) && *phStrmMgr == NULL));
return status;
}
/*
* ======== strm_delete ========
* Purpose:
* Delete the STRM Manager Object.
*/
void strm_delete(struct strm_mgr *strm_mgr_obj)
{
DBC_REQUIRE(refs > 0);
DBC_REQUIRE(strm_mgr_obj);
delete_strm_mgr(strm_mgr_obj);
}
/*
* ======== strm_exit ========
* Purpose:
* Discontinue usage of STRM module.
*/
void strm_exit(void)
{
DBC_REQUIRE(refs > 0);
refs--;
DBC_ENSURE(refs >= 0);
}
/*
* ======== strm_free_buffer ========
* Purpose:
* Frees the buffers allocated for a stream.
*/
int strm_free_buffer(struct strm_object *hStrm, u8 ** ap_buffer,
u32 num_bufs, struct process_context *pr_ctxt)
{
int status = 0;
u32 i = 0;
void *hstrm_res = NULL;
DBC_REQUIRE(refs > 0);
DBC_REQUIRE(ap_buffer != NULL);
if (!hStrm)
status = -EFAULT;
if (DSP_SUCCEEDED(status)) {
for (i = 0; i < num_bufs; i++) {
DBC_ASSERT(hStrm->xlator != NULL);
status =
cmm_xlator_free_buf(hStrm->xlator, ap_buffer[i]);
if (DSP_FAILED(status))
break;
ap_buffer[i] = NULL;
}
}
if (drv_get_strm_res_element(hStrm, hstrm_res, pr_ctxt) !=
-ENOENT)
drv_proc_update_strm_res(num_bufs - i, hstrm_res);
return status;
}
/*
* ======== strm_get_info ========
* Purpose:
* Retrieves information about a stream.
*/
int strm_get_info(struct strm_object *hStrm,
OUT struct stream_info *stream_info,
u32 stream_info_size)
{
struct bridge_drv_interface *intf_fxns;
struct chnl_info chnl_info_obj;
int status = 0;
void *virt_base = NULL; /* NULL if no SM used */
DBC_REQUIRE(refs > 0);
DBC_REQUIRE(stream_info != NULL);
DBC_REQUIRE(stream_info_size >= sizeof(struct stream_info));
if (!hStrm) {
status = -EFAULT;
} else {
if (stream_info_size < sizeof(struct stream_info)) {
/* size of users info */
status = -EINVAL;
}
}
if (DSP_FAILED(status))
goto func_end;
intf_fxns = hStrm->strm_mgr_obj->intf_fxns;
status =
(*intf_fxns->pfn_chnl_get_info) (hStrm->chnl_obj, &chnl_info_obj);
if (DSP_FAILED(status))
goto func_end;
if (hStrm->xlator) {
/* We have a translator */
DBC_ASSERT(hStrm->segment_id > 0);
cmm_xlator_info(hStrm->xlator, (u8 **) &virt_base, 0,
hStrm->segment_id, false);
}
stream_info->segment_id = hStrm->segment_id;
stream_info->strm_mode = hStrm->strm_mode;
stream_info->virt_base = virt_base;
stream_info->user_strm->number_bufs_allowed = hStrm->num_bufs;
stream_info->user_strm->number_bufs_in_stream = chnl_info_obj.cio_cs +
chnl_info_obj.cio_reqs;
/* # of bytes transferred since last call to DSPStream_Idle() */
stream_info->user_strm->ul_number_bytes = chnl_info_obj.bytes_tx;
stream_info->user_strm->sync_object_handle = chnl_info_obj.event_obj;
/* Determine stream state based on channel state and info */
if (chnl_info_obj.dw_state & CHNL_STATEEOS) {
stream_info->user_strm->ss_stream_state = STREAM_DONE;
} else {
if (chnl_info_obj.cio_cs > 0)
stream_info->user_strm->ss_stream_state = STREAM_READY;
else if (chnl_info_obj.cio_reqs > 0)
stream_info->user_strm->ss_stream_state =
STREAM_PENDING;
else
stream_info->user_strm->ss_stream_state = STREAM_IDLE;
}
func_end:
return status;
}
/*
* ======== strm_idle ========
* Purpose:
* Idles a particular stream.
*/
int strm_idle(struct strm_object *hStrm, bool fFlush)
{
struct bridge_drv_interface *intf_fxns;
int status = 0;
DBC_REQUIRE(refs > 0);
if (!hStrm) {
status = -EFAULT;
} else {
intf_fxns = hStrm->strm_mgr_obj->intf_fxns;
status = (*intf_fxns->pfn_chnl_idle) (hStrm->chnl_obj,
hStrm->utimeout, fFlush);
}
dev_dbg(bridge, "%s: hStrm: %p fFlush: 0x%x status: 0x%x\n",
__func__, hStrm, fFlush, status);
return status;
}
/*
* ======== strm_init ========
* Purpose:
* Initialize the STRM module.
*/
bool strm_init(void)
{
bool ret = true;
DBC_REQUIRE(refs >= 0);
if (ret)
refs++;
DBC_ENSURE((ret && (refs > 0)) || (!ret && (refs >= 0)));
return ret;
}
/*
* ======== strm_issue ========
* Purpose:
* Issues a buffer on a stream
*/
int strm_issue(struct strm_object *hStrm, IN u8 *pbuf, u32 ul_bytes,
u32 ul_buf_size, u32 dw_arg)
{
struct bridge_drv_interface *intf_fxns;
int status = 0;
void *tmp_buf = NULL;
DBC_REQUIRE(refs > 0);
DBC_REQUIRE(pbuf != NULL);
if (!hStrm) {
status = -EFAULT;
} else {
intf_fxns = hStrm->strm_mgr_obj->intf_fxns;
if (hStrm->segment_id != 0) {
tmp_buf = cmm_xlator_translate(hStrm->xlator,
(void *)pbuf,
CMM_VA2DSPPA);
if (tmp_buf == NULL)
status = -ESRCH;
}
if (DSP_SUCCEEDED(status)) {
status = (*intf_fxns->pfn_chnl_add_io_req)
(hStrm->chnl_obj, pbuf, ul_bytes, ul_buf_size,
(u32) tmp_buf, dw_arg);
}
if (status == -EIO)
status = -ENOSR;
}
dev_dbg(bridge, "%s: hStrm: %p pbuf: %p ul_bytes: 0x%x dw_arg: 0x%x "
"status: 0x%x\n", __func__, hStrm, pbuf,
ul_bytes, dw_arg, status);
return status;
}
/*
* ======== strm_open ========
* Purpose:
* Open a stream for sending/receiving data buffers to/from a task or
* XDAIS socket node on the DSP.
*/
int strm_open(struct node_object *hnode, u32 dir, u32 index,
IN struct strm_attr *pattr,
OUT struct strm_object **phStrm,
struct process_context *pr_ctxt)
{
struct strm_mgr *strm_mgr_obj;
struct bridge_drv_interface *intf_fxns;
u32 ul_chnl_id;
struct strm_object *strm_obj = NULL;
s8 chnl_mode;
struct chnl_attr chnl_attr_obj;
int status = 0;
struct cmm_object *hcmm_mgr = NULL; /* Shared memory manager hndl */
void *hstrm_res;
DBC_REQUIRE(refs > 0);
DBC_REQUIRE(phStrm != NULL);
DBC_REQUIRE(pattr != NULL);
*phStrm = NULL;
if (dir != DSP_TONODE && dir != DSP_FROMNODE) {
status = -EPERM;
} else {
/* Get the channel id from the node (set in node_connect()) */
status = node_get_channel_id(hnode, dir, index, &ul_chnl_id);
}
if (DSP_SUCCEEDED(status))
status = node_get_strm_mgr(hnode, &strm_mgr_obj);
if (DSP_SUCCEEDED(status)) {
strm_obj = kzalloc(sizeof(struct strm_object), GFP_KERNEL);
if (strm_obj == NULL) {
status = -ENOMEM;
} else {
strm_obj->strm_mgr_obj = strm_mgr_obj;
strm_obj->dir = dir;
strm_obj->strm_state = STREAM_IDLE;
strm_obj->user_event = pattr->user_event;
if (pattr->stream_attr_in != NULL) {
strm_obj->utimeout =
pattr->stream_attr_in->utimeout;
strm_obj->num_bufs =
pattr->stream_attr_in->num_bufs;
strm_obj->strm_mode =
pattr->stream_attr_in->strm_mode;
strm_obj->segment_id =
pattr->stream_attr_in->segment_id;
strm_obj->buf_alignment =
pattr->stream_attr_in->buf_alignment;
strm_obj->udma_chnl_id =
pattr->stream_attr_in->udma_chnl_id;
strm_obj->udma_priority =
pattr->stream_attr_in->udma_priority;
chnl_attr_obj.uio_reqs =
pattr->stream_attr_in->num_bufs;
} else {
strm_obj->utimeout = DEFAULTTIMEOUT;
strm_obj->num_bufs = DEFAULTNUMBUFS;
strm_obj->strm_mode = STRMMODE_PROCCOPY;
strm_obj->segment_id = 0; /* local mem */
strm_obj->buf_alignment = 0;
strm_obj->udma_chnl_id = 0;
strm_obj->udma_priority = 0;
chnl_attr_obj.uio_reqs = DEFAULTNUMBUFS;
}
chnl_attr_obj.reserved1 = NULL;
/* DMA chnl flush timeout */
chnl_attr_obj.reserved2 = strm_obj->utimeout;
chnl_attr_obj.event_obj = NULL;
if (pattr->user_event != NULL)
chnl_attr_obj.event_obj = pattr->user_event;
}
}
if (DSP_FAILED(status))
goto func_cont;
if ((pattr->virt_base == NULL) || !(pattr->ul_virt_size > 0))
goto func_cont;
/* No System DMA */
DBC_ASSERT(strm_obj->strm_mode != STRMMODE_LDMA);
/* Get the shared mem mgr for this streams dev object */
status = dev_get_cmm_mgr(strm_mgr_obj->dev_obj, &hcmm_mgr);
if (DSP_SUCCEEDED(status)) {
/*Allocate a SM addr translator for this strm. */
status = cmm_xlator_create(&strm_obj->xlator, hcmm_mgr, NULL);
if (DSP_SUCCEEDED(status)) {
DBC_ASSERT(strm_obj->segment_id > 0);
/* Set translators Virt Addr attributes */
status = cmm_xlator_info(strm_obj->xlator,
(u8 **) &pattr->virt_base,
pattr->ul_virt_size,
strm_obj->segment_id, true);
}
}
func_cont:
if (DSP_SUCCEEDED(status)) {
/* Open channel */
chnl_mode = (dir == DSP_TONODE) ?
CHNL_MODETODSP : CHNL_MODEFROMDSP;
intf_fxns = strm_mgr_obj->intf_fxns;
status = (*intf_fxns->pfn_chnl_open) (&(strm_obj->chnl_obj),
strm_mgr_obj->hchnl_mgr,
chnl_mode, ul_chnl_id,
&chnl_attr_obj);
if (DSP_FAILED(status)) {
/*
* over-ride non-returnable status codes so we return
* something documented
*/
if (status != -ENOMEM && status !=
-EINVAL && status != -EPERM) {
/*
* We got a status that's not return-able.
* Assert that we got something we were
* expecting (-EFAULT isn't acceptable,
* strm_mgr_obj->hchnl_mgr better be valid or we
* assert here), and then return -EPERM.
*/
DBC_ASSERT(status == -ENOSR ||
status == -ECHRNG ||
status == -EALREADY ||
status == -EIO);
status = -EPERM;
}
}
}
if (DSP_SUCCEEDED(status)) {
*phStrm = strm_obj;
drv_proc_insert_strm_res_element(*phStrm, &hstrm_res, pr_ctxt);
} else {
(void)delete_strm(strm_obj);
}
/* ensure we return a documented error code */
DBC_ENSURE((DSP_SUCCEEDED(status) && *phStrm) ||
(*phStrm == NULL && (status == -EFAULT ||
status == -EPERM
|| status == -EINVAL)));
dev_dbg(bridge, "%s: hnode: %p dir: 0x%x index: 0x%x pattr: %p "
"phStrm: %p status: 0x%x\n", __func__,
hnode, dir, index, pattr, phStrm, status);
return status;
}
/*
* ======== strm_reclaim ========
* Purpose:
* Relcaims a buffer from a stream.
*/
int strm_reclaim(struct strm_object *hStrm, OUT u8 ** buf_ptr,
u32 *pulBytes, u32 *pulBufSize, u32 *pdw_arg)
{
struct bridge_drv_interface *intf_fxns;
struct chnl_ioc chnl_ioc_obj;
int status = 0;
void *tmp_buf = NULL;
DBC_REQUIRE(refs > 0);
DBC_REQUIRE(buf_ptr != NULL);
DBC_REQUIRE(pulBytes != NULL);
DBC_REQUIRE(pdw_arg != NULL);
if (!hStrm) {
status = -EFAULT;
goto func_end;
}
intf_fxns = hStrm->strm_mgr_obj->intf_fxns;
status =
(*intf_fxns->pfn_chnl_get_ioc) (hStrm->chnl_obj, hStrm->utimeout,
&chnl_ioc_obj);
if (DSP_SUCCEEDED(status)) {
*pulBytes = chnl_ioc_obj.byte_size;
if (pulBufSize)
*pulBufSize = chnl_ioc_obj.buf_size;
*pdw_arg = chnl_ioc_obj.dw_arg;
if (!CHNL_IS_IO_COMPLETE(chnl_ioc_obj)) {
if (CHNL_IS_TIMED_OUT(chnl_ioc_obj)) {
status = -ETIME;
} else {
/* Allow reclaims after idle to succeed */
if (!CHNL_IS_IO_CANCELLED(chnl_ioc_obj))
status = -EPERM;
}
}
/* Translate zerocopy buffer if channel not canceled. */
if (DSP_SUCCEEDED(status)
&& (!CHNL_IS_IO_CANCELLED(chnl_ioc_obj))
&& (hStrm->strm_mode == STRMMODE_ZEROCOPY)) {
/*
* This is a zero-copy channel so chnl_ioc_obj.pbuf
* contains the DSP address of SM. We need to
* translate it to a virtual address for the user
* thread to access.
* Note: Could add CMM_DSPPA2VA to CMM in the future.
*/
tmp_buf = cmm_xlator_translate(hStrm->xlator,
chnl_ioc_obj.pbuf,
CMM_DSPPA2PA);
if (tmp_buf != NULL) {
/* now convert this GPP Pa to Va */
tmp_buf = cmm_xlator_translate(hStrm->xlator,
tmp_buf,
CMM_PA2VA);
}
if (tmp_buf == NULL)
status = -ESRCH;
chnl_ioc_obj.pbuf = tmp_buf;
}
*buf_ptr = chnl_ioc_obj.pbuf;
}
func_end:
/* ensure we return a documented return code */
DBC_ENSURE(DSP_SUCCEEDED(status) || status == -EFAULT ||
status == -ETIME || status == -ESRCH ||
status == -EPERM);
dev_dbg(bridge, "%s: hStrm: %p buf_ptr: %p pulBytes: %p pdw_arg: %p "
"status 0x%x\n", __func__, hStrm,
buf_ptr, pulBytes, pdw_arg, status);
return status;
}
/*
* ======== strm_register_notify ========
* Purpose:
* Register to be notified on specific events for this stream.
*/
int strm_register_notify(struct strm_object *hStrm, u32 event_mask,
u32 notify_type, struct dsp_notification
* hnotification)
{
struct bridge_drv_interface *intf_fxns;
int status = 0;
DBC_REQUIRE(refs > 0);
DBC_REQUIRE(hnotification != NULL);
if (!hStrm) {
status = -EFAULT;
} else if ((event_mask & ~((DSP_STREAMIOCOMPLETION) |
DSP_STREAMDONE)) != 0) {
status = -EINVAL;
} else {
if (notify_type != DSP_SIGNALEVENT)
status = -ENOSYS;
}
if (DSP_SUCCEEDED(status)) {
intf_fxns = hStrm->strm_mgr_obj->intf_fxns;
status =
(*intf_fxns->pfn_chnl_register_notify) (hStrm->chnl_obj,
event_mask,
notify_type,
hnotification);
}
/* ensure we return a documented return code */
DBC_ENSURE(DSP_SUCCEEDED(status) || status == -EFAULT ||
status == -ETIME || status == -ESRCH ||
status == -ENOSYS || status == -EPERM);
return status;
}
/*
* ======== strm_select ========
* Purpose:
* Selects a ready stream.
*/
int strm_select(IN struct strm_object **strm_tab, u32 nStrms,
OUT u32 *pmask, u32 utimeout)
{
u32 index;
struct chnl_info chnl_info_obj;
struct bridge_drv_interface *intf_fxns;
struct sync_object **sync_events = NULL;
u32 i;
int status = 0;
DBC_REQUIRE(refs > 0);
DBC_REQUIRE(strm_tab != NULL);
DBC_REQUIRE(pmask != NULL);
DBC_REQUIRE(nStrms > 0);
*pmask = 0;
for (i = 0; i < nStrms; i++) {
if (!strm_tab[i]) {
status = -EFAULT;
break;
}
}
if (DSP_FAILED(status))
goto func_end;
/* Determine which channels have IO ready */
for (i = 0; i < nStrms; i++) {
intf_fxns = strm_tab[i]->strm_mgr_obj->intf_fxns;
status = (*intf_fxns->pfn_chnl_get_info) (strm_tab[i]->chnl_obj,
&chnl_info_obj);
if (DSP_FAILED(status)) {
break;
} else {
if (chnl_info_obj.cio_cs > 0)
*pmask |= (1 << i);
}
}
if (DSP_SUCCEEDED(status) && utimeout > 0 && *pmask == 0) {
/* Non-zero timeout */
sync_events = kmalloc(nStrms * sizeof(struct sync_object *),
GFP_KERNEL);
if (sync_events == NULL) {
status = -ENOMEM;
} else {
for (i = 0; i < nStrms; i++) {
intf_fxns =
strm_tab[i]->strm_mgr_obj->intf_fxns;
status = (*intf_fxns->pfn_chnl_get_info)
(strm_tab[i]->chnl_obj, &chnl_info_obj);
if (DSP_FAILED(status))
break;
else
sync_events[i] =
chnl_info_obj.sync_event;
}
}
if (DSP_SUCCEEDED(status)) {
status =
sync_wait_on_multiple_events(sync_events, nStrms,
utimeout, &index);
if (DSP_SUCCEEDED(status)) {
/* Since we waited on the event, we have to
* reset it */
sync_set_event(sync_events[index]);
*pmask = 1 << index;
}
}
}
func_end:
kfree(sync_events);
DBC_ENSURE((DSP_SUCCEEDED(status) && (*pmask != 0 || utimeout == 0)) ||
(DSP_FAILED(status) && *pmask == 0));
return status;
}
/*
* ======== delete_strm ========
* Purpose:
* Frees the resources allocated for a stream.
*/
static int delete_strm(struct strm_object *hStrm)
{
struct bridge_drv_interface *intf_fxns;
int status = 0;
if (hStrm) {
if (hStrm->chnl_obj) {
intf_fxns = hStrm->strm_mgr_obj->intf_fxns;
/* Channel close can fail only if the channel handle
* is invalid. */
status = (*intf_fxns->pfn_chnl_close) (hStrm->chnl_obj);
/* Free all SM address translator resources */
if (DSP_SUCCEEDED(status)) {
if (hStrm->xlator) {
/* force free */
(void)cmm_xlator_delete(hStrm->xlator,
true);
}
}
}
kfree(hStrm);
} else {
status = -EFAULT;
}
return status;
}
/*
* ======== delete_strm_mgr ========
* Purpose:
* Frees stream manager.
*/
static void delete_strm_mgr(struct strm_mgr *strm_mgr_obj)
{
if (strm_mgr_obj)
kfree(strm_mgr_obj);
}
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment