Commit 7ed4e635 authored by Harry Wentland's avatar Harry Wentland Committed by Alex Deucher

drm/amd/display: Add DCN2 HW Sequencer and Resource

Add DCN2 resource definition and HW Sequencer changes.
Signed-off-by: default avatarHarry Wentland <harry.wentland@amd.com>
Signed-off-by: default avatarAlex Deucher <alexander.deucher@amd.com>
parent 18eaea4b
......@@ -46,6 +46,9 @@
#if defined(CONFIG_DRM_AMD_DC_DCN1_0)
#include "dcn10/dcn10_resource.h"
#endif
#if defined(CONFIG_DRM_AMD_DC_DCN2_0)
#include "dcn20/dcn20_resource.h"
#endif
#include "dce120/dce120_resource.h"
#define DC_LOGGER_INIT(logger)
......@@ -97,6 +100,12 @@ enum dce_version resource_parse_asic_id(struct hw_asic_id asic_id)
dc_version = DCN_VERSION_1_01;
break;
#endif
#if defined(CONFIG_DRM_AMD_DC_DCN2_0)
case FAMILY_NV:
dc_version = DCN_VERSION_2_0;
break;
#endif
default:
dc_version = DCE_VERSION_UNKNOWN;
break;
......@@ -151,6 +160,12 @@ struct resource_pool *dc_create_resource_pool(struct dc *dc,
#endif
#if defined(CONFIG_DRM_AMD_DC_DCN2_0)
case DCN_VERSION_2_0:
res_pool = dcn20_create_resource_pool(init_data, dc);
break;
#endif
default:
break;
}
......
......@@ -726,6 +726,56 @@ static bool dcn10_is_dmcu_initialized(struct dmcu *dmcu)
#endif //(CONFIG_DRM_AMD_DC_DCN1_0)
#if defined(CONFIG_DRM_AMD_DC_DCN2_0)
static bool dcn20_lock_phy(struct dmcu *dmcu)
{
struct dce_dmcu *dmcu_dce = TO_DCE_DMCU(dmcu);
/* If microcontroller is not running, do nothing */
if (dmcu->dmcu_state != DMCU_RUNNING)
return false;
/* waitDMCUReadyForCmd */
REG_WAIT(MASTER_COMM_CNTL_REG, MASTER_COMM_INTERRUPT, 0, 1, 10000);
/* setDMCUParam_Cmd */
REG_UPDATE(MASTER_COMM_CMD_REG, MASTER_COMM_CMD_REG_BYTE0, MCP_SYNC_PHY_LOCK);
/* notifyDMCUMsg */
REG_UPDATE(MASTER_COMM_CNTL_REG, MASTER_COMM_INTERRUPT, 1);
/* waitDMCUReadyForCmd */
REG_WAIT(MASTER_COMM_CNTL_REG, MASTER_COMM_INTERRUPT, 0, 1, 10000);
return true;
}
static bool dcn20_unlock_phy(struct dmcu *dmcu)
{
struct dce_dmcu *dmcu_dce = TO_DCE_DMCU(dmcu);
/* If microcontroller is not running, do nothing */
if (dmcu->dmcu_state != DMCU_RUNNING)
return false;
/* waitDMCUReadyForCmd */
REG_WAIT(MASTER_COMM_CNTL_REG, MASTER_COMM_INTERRUPT, 0, 1, 10000);
/* setDMCUParam_Cmd */
REG_UPDATE(MASTER_COMM_CMD_REG, MASTER_COMM_CMD_REG_BYTE0, MCP_SYNC_PHY_UNLOCK);
/* notifyDMCUMsg */
REG_UPDATE(MASTER_COMM_CNTL_REG, MASTER_COMM_INTERRUPT, 1);
/* waitDMCUReadyForCmd */
REG_WAIT(MASTER_COMM_CNTL_REG, MASTER_COMM_INTERRUPT, 0, 1, 10000);
return true;
}
#endif //(CONFIG_DRM_AMD_DC_DCN2_0)
static const struct dmcu_funcs dce_funcs = {
.dmcu_init = dce_dmcu_init,
.load_iram = dce_dmcu_load_iram,
......@@ -750,6 +800,21 @@ static const struct dmcu_funcs dcn10_funcs = {
};
#endif
#if defined(CONFIG_DRM_AMD_DC_DCN2_0)
static const struct dmcu_funcs dcn20_funcs = {
.dmcu_init = dcn10_dmcu_init,
.load_iram = dcn10_dmcu_load_iram,
.set_psr_enable = dcn10_dmcu_set_psr_enable,
.setup_psr = dcn10_dmcu_setup_psr,
.get_psr_state = dcn10_get_dmcu_psr_state,
.set_psr_wait_loop = dcn10_psr_wait_loop,
.get_psr_wait_loop = dcn10_get_psr_wait_loop,
.is_dmcu_initialized = dcn10_is_dmcu_initialized,
.lock_phy = dcn20_lock_phy,
.unlock_phy = dcn20_unlock_phy
};
#endif
static void dce_dmcu_construct(
struct dce_dmcu *dmcu_dce,
struct dc_context *ctx,
......@@ -812,6 +877,29 @@ struct dmcu *dcn10_dmcu_create(
}
#endif
#if defined(CONFIG_DRM_AMD_DC_DCN2_0)
struct dmcu *dcn20_dmcu_create(
struct dc_context *ctx,
const struct dce_dmcu_registers *regs,
const struct dce_dmcu_shift *dmcu_shift,
const struct dce_dmcu_mask *dmcu_mask)
{
struct dce_dmcu *dmcu_dce = kzalloc(sizeof(*dmcu_dce), GFP_KERNEL);
if (dmcu_dce == NULL) {
BREAK_TO_DEBUGGER();
return NULL;
}
dce_dmcu_construct(
dmcu_dce, ctx, regs, dmcu_shift, dmcu_mask);
dmcu_dce->base.funcs = &dcn20_funcs;
return &dmcu_dce->base;
}
#endif
void dce_dmcu_destroy(struct dmcu **dmcu)
{
struct dce_dmcu *dmcu_dce = TO_DCE_DMCU(*dmcu);
......
......@@ -261,6 +261,14 @@ struct dmcu *dcn10_dmcu_create(
const struct dce_dmcu_shift *dmcu_shift,
const struct dce_dmcu_mask *dmcu_mask);
#if defined(CONFIG_DRM_AMD_DC_DCN2_0)
struct dmcu *dcn20_dmcu_create(
struct dc_context *ctx,
const struct dce_dmcu_registers *regs,
const struct dce_dmcu_shift *dmcu_shift,
const struct dce_dmcu_mask *dmcu_mask);
#endif
void dce_dmcu_destroy(struct dmcu **dmcu);
static const uint32_t abm_gain_stepsize = 0x0060;
......
......@@ -199,6 +199,70 @@
SR(DC_IP_REQUEST_CNTL), \
BL_REG_LIST()
#if defined(CONFIG_DRM_AMD_DC_DCN2_0)
#define HWSEQ_DCN2_REG_LIST()\
HWSEQ_DCN_REG_LIST(), \
HWSEQ_PIXEL_RATE_REG_LIST(OTG), \
HWSEQ_PHYPLL_REG_LIST(OTG), \
SR(MICROSECOND_TIME_BASE_DIV), \
SR(MILLISECOND_TIME_BASE_DIV), \
SR(DISPCLK_FREQ_CHANGE_CNTL), \
SR(RBBMIF_TIMEOUT_DIS), \
SR(RBBMIF_TIMEOUT_DIS_2), \
SR(DCHUBBUB_CRC_CTRL), \
SR(DPP_TOP0_DPP_CRC_CTRL), \
SR(DPP_TOP0_DPP_CRC_VAL_B_A), \
SR(DPP_TOP0_DPP_CRC_VAL_R_G), \
SR(MPC_CRC_CTRL), \
SR(MPC_CRC_RESULT_GB), \
SR(MPC_CRC_RESULT_C), \
SR(MPC_CRC_RESULT_AR), \
SR(DOMAIN0_PG_CONFIG), \
SR(DOMAIN1_PG_CONFIG), \
SR(DOMAIN2_PG_CONFIG), \
SR(DOMAIN3_PG_CONFIG), \
SR(DOMAIN4_PG_CONFIG), \
SR(DOMAIN5_PG_CONFIG), \
SR(DOMAIN6_PG_CONFIG), \
SR(DOMAIN7_PG_CONFIG), \
SR(DOMAIN8_PG_CONFIG), \
SR(DOMAIN9_PG_CONFIG), \
SR(DOMAIN10_PG_CONFIG), \
SR(DOMAIN11_PG_CONFIG), \
SR(DOMAIN16_PG_CONFIG), \
SR(DOMAIN17_PG_CONFIG), \
SR(DOMAIN18_PG_CONFIG), \
SR(DOMAIN19_PG_CONFIG), \
SR(DOMAIN20_PG_CONFIG), \
SR(DOMAIN21_PG_CONFIG), \
SR(DOMAIN0_PG_STATUS), \
SR(DOMAIN1_PG_STATUS), \
SR(DOMAIN2_PG_STATUS), \
SR(DOMAIN3_PG_STATUS), \
SR(DOMAIN4_PG_STATUS), \
SR(DOMAIN5_PG_STATUS), \
SR(DOMAIN6_PG_STATUS), \
SR(DOMAIN7_PG_STATUS), \
SR(DOMAIN8_PG_STATUS), \
SR(DOMAIN9_PG_STATUS), \
SR(DOMAIN10_PG_STATUS), \
SR(DOMAIN11_PG_STATUS), \
SR(DOMAIN16_PG_STATUS), \
SR(DOMAIN17_PG_STATUS), \
SR(DOMAIN18_PG_STATUS), \
SR(DOMAIN19_PG_STATUS), \
SR(DOMAIN20_PG_STATUS), \
SR(DOMAIN21_PG_STATUS), \
SR(D1VGA_CONTROL), \
SR(D2VGA_CONTROL), \
SR(D3VGA_CONTROL), \
SR(D4VGA_CONTROL), \
SR(D5VGA_CONTROL), \
SR(D6VGA_CONTROL), \
SR(DC_IP_REQUEST_CNTL), \
BL_REG_LIST()
#endif
struct dce_hwseq_registers {
/* Backlight registers */
......@@ -453,6 +517,69 @@ struct dce_hwseq_registers {
HWS_SF(, LVTMA_PWRSEQ_CNTL, LVTMA_DIGON_OVRD, mask_sh), \
HWS_SF(, LVTMA_PWRSEQ_STATE, LVTMA_PWRSEQ_TARGET_STATE_R, mask_sh)
#if defined(CONFIG_DRM_AMD_DC_DCN2_0)
#define HWSEQ_DCN2_MASK_SH_LIST(mask_sh)\
HWSEQ_DCN_MASK_SH_LIST(mask_sh), \
HWS_SF(, DCHUBBUB_GLOBAL_TIMER_CNTL, DCHUBBUB_GLOBAL_TIMER_REFDIV, mask_sh), \
HWS_SF(, DOMAIN0_PG_CONFIG, DOMAIN0_POWER_FORCEON, mask_sh), \
HWS_SF(, DOMAIN0_PG_CONFIG, DOMAIN0_POWER_GATE, mask_sh), \
HWS_SF(, DOMAIN1_PG_CONFIG, DOMAIN1_POWER_FORCEON, mask_sh), \
HWS_SF(, DOMAIN1_PG_CONFIG, DOMAIN1_POWER_GATE, mask_sh), \
HWS_SF(, DOMAIN2_PG_CONFIG, DOMAIN2_POWER_FORCEON, mask_sh), \
HWS_SF(, DOMAIN2_PG_CONFIG, DOMAIN2_POWER_GATE, mask_sh), \
HWS_SF(, DOMAIN3_PG_CONFIG, DOMAIN3_POWER_FORCEON, mask_sh), \
HWS_SF(, DOMAIN3_PG_CONFIG, DOMAIN3_POWER_GATE, mask_sh), \
HWS_SF(, DOMAIN4_PG_CONFIG, DOMAIN4_POWER_FORCEON, mask_sh), \
HWS_SF(, DOMAIN4_PG_CONFIG, DOMAIN4_POWER_GATE, mask_sh), \
HWS_SF(, DOMAIN5_PG_CONFIG, DOMAIN5_POWER_FORCEON, mask_sh), \
HWS_SF(, DOMAIN5_PG_CONFIG, DOMAIN5_POWER_GATE, mask_sh), \
HWS_SF(, DOMAIN6_PG_CONFIG, DOMAIN6_POWER_FORCEON, mask_sh), \
HWS_SF(, DOMAIN6_PG_CONFIG, DOMAIN6_POWER_GATE, mask_sh), \
HWS_SF(, DOMAIN7_PG_CONFIG, DOMAIN7_POWER_FORCEON, mask_sh), \
HWS_SF(, DOMAIN7_PG_CONFIG, DOMAIN7_POWER_GATE, mask_sh), \
HWS_SF(, DOMAIN8_PG_CONFIG, DOMAIN8_POWER_FORCEON, mask_sh), \
HWS_SF(, DOMAIN8_PG_CONFIG, DOMAIN8_POWER_GATE, mask_sh), \
HWS_SF(, DOMAIN9_PG_CONFIG, DOMAIN9_POWER_FORCEON, mask_sh), \
HWS_SF(, DOMAIN9_PG_CONFIG, DOMAIN9_POWER_GATE, mask_sh), \
HWS_SF(, DOMAIN10_PG_CONFIG, DOMAIN10_POWER_FORCEON, mask_sh), \
HWS_SF(, DOMAIN10_PG_CONFIG, DOMAIN10_POWER_GATE, mask_sh), \
HWS_SF(, DOMAIN11_PG_CONFIG, DOMAIN11_POWER_FORCEON, mask_sh), \
HWS_SF(, DOMAIN11_PG_CONFIG, DOMAIN11_POWER_GATE, mask_sh), \
HWS_SF(, DOMAIN16_PG_CONFIG, DOMAIN16_POWER_FORCEON, mask_sh), \
HWS_SF(, DOMAIN16_PG_CONFIG, DOMAIN16_POWER_GATE, mask_sh), \
HWS_SF(, DOMAIN17_PG_CONFIG, DOMAIN17_POWER_FORCEON, mask_sh), \
HWS_SF(, DOMAIN17_PG_CONFIG, DOMAIN17_POWER_GATE, mask_sh), \
HWS_SF(, DOMAIN18_PG_CONFIG, DOMAIN18_POWER_FORCEON, mask_sh), \
HWS_SF(, DOMAIN18_PG_CONFIG, DOMAIN18_POWER_GATE, mask_sh), \
HWS_SF(, DOMAIN19_PG_CONFIG, DOMAIN19_POWER_FORCEON, mask_sh), \
HWS_SF(, DOMAIN19_PG_CONFIG, DOMAIN19_POWER_GATE, mask_sh), \
HWS_SF(, DOMAIN20_PG_CONFIG, DOMAIN20_POWER_FORCEON, mask_sh), \
HWS_SF(, DOMAIN20_PG_CONFIG, DOMAIN20_POWER_GATE, mask_sh), \
HWS_SF(, DOMAIN21_PG_CONFIG, DOMAIN21_POWER_FORCEON, mask_sh), \
HWS_SF(, DOMAIN21_PG_CONFIG, DOMAIN21_POWER_GATE, mask_sh), \
HWS_SF(, DOMAIN0_PG_STATUS, DOMAIN0_PGFSM_PWR_STATUS, mask_sh), \
HWS_SF(, DOMAIN1_PG_STATUS, DOMAIN1_PGFSM_PWR_STATUS, mask_sh), \
HWS_SF(, DOMAIN2_PG_STATUS, DOMAIN2_PGFSM_PWR_STATUS, mask_sh), \
HWS_SF(, DOMAIN3_PG_STATUS, DOMAIN3_PGFSM_PWR_STATUS, mask_sh), \
HWS_SF(, DOMAIN4_PG_STATUS, DOMAIN4_PGFSM_PWR_STATUS, mask_sh), \
HWS_SF(, DOMAIN5_PG_STATUS, DOMAIN5_PGFSM_PWR_STATUS, mask_sh), \
HWS_SF(, DOMAIN6_PG_STATUS, DOMAIN6_PGFSM_PWR_STATUS, mask_sh), \
HWS_SF(, DOMAIN7_PG_STATUS, DOMAIN7_PGFSM_PWR_STATUS, mask_sh), \
HWS_SF(, DOMAIN8_PG_STATUS, DOMAIN8_PGFSM_PWR_STATUS, mask_sh), \
HWS_SF(, DOMAIN9_PG_STATUS, DOMAIN9_PGFSM_PWR_STATUS, mask_sh), \
HWS_SF(, DOMAIN10_PG_STATUS, DOMAIN10_PGFSM_PWR_STATUS, mask_sh), \
HWS_SF(, DOMAIN11_PG_STATUS, DOMAIN11_PGFSM_PWR_STATUS, mask_sh), \
HWS_SF(, DOMAIN16_PG_STATUS, DOMAIN16_PGFSM_PWR_STATUS, mask_sh), \
HWS_SF(, DOMAIN17_PG_STATUS, DOMAIN17_PGFSM_PWR_STATUS, mask_sh), \
HWS_SF(, DOMAIN18_PG_STATUS, DOMAIN18_PGFSM_PWR_STATUS, mask_sh), \
HWS_SF(, DOMAIN19_PG_STATUS, DOMAIN19_PGFSM_PWR_STATUS, mask_sh), \
HWS_SF(, DOMAIN20_PG_STATUS, DOMAIN20_PGFSM_PWR_STATUS, mask_sh), \
HWS_SF(, DOMAIN21_PG_STATUS, DOMAIN21_PGFSM_PWR_STATUS, mask_sh), \
HWS_SF(, DC_IP_REQUEST_CNTL, IP_REQUEST_EN, mask_sh), \
HWS_SF(, LVTMA_PWRSEQ_CNTL, LVTMA_BLON, mask_sh), \
HWS_SF(, LVTMA_PWRSEQ_STATE, LVTMA_PWRSEQ_TARGET_STATE_R, mask_sh)
#endif
#define HWSEQ_REG_FIELD_LIST(type) \
type DCFE_CLOCK_ENABLE; \
type DCFEV_CLOCK_ENABLE; \
......
......@@ -666,7 +666,26 @@ void dce110_enable_stream(struct pipe_ctx *pipe_ctx)
/* update AVI info frame (HDMI, DP)*/
/* TODO: FPGA may change to hwss.update_info_frame */
dce110_update_info_frame(pipe_ctx);
#if defined(CONFIG_DRM_AMD_DC_DCN2_0)
if (pipe_ctx->stream_res.stream_enc->funcs->set_dynamic_metadata != NULL &&
pipe_ctx->plane_res.hubp != NULL) {
if (pipe_ctx->stream->dmdata_address.quad_part != 0) {
/* if using dynamic meta, don't set up generic infopackets */
pipe_ctx->stream_res.encoder_info_frame.hdrsmd.valid = false;
pipe_ctx->stream_res.stream_enc->funcs->set_dynamic_metadata(
pipe_ctx->stream_res.stream_enc,
true, pipe_ctx->plane_res.hubp->inst,
dc_is_dp_signal(pipe_ctx->stream->signal) ?
dmdata_dp : dmdata_hdmi);
} else
pipe_ctx->stream_res.stream_enc->funcs->set_dynamic_metadata(
pipe_ctx->stream_res.stream_enc,
false, pipe_ctx->plane_res.hubp->inst,
dc_is_dp_signal(pipe_ctx->stream->signal) ?
dmdata_dp : dmdata_hdmi);
}
#endif
/* enable early control to avoid corruption on DP monitor*/
active_total_with_borders =
......@@ -951,6 +970,10 @@ static void set_pme_wa_enable_by_version(struct dc *dc)
if (pp_smu) {
if (pp_smu->ctx.ver == PP_SMU_VER_RV && pp_smu->rv_funcs.set_pme_wa_enable)
pp_smu->rv_funcs.set_pme_wa_enable(&(pp_smu->ctx));
#ifdef CONFIG_DRM_AMD_DC_DCN2_0
else if (pp_smu->ctx.ver == PP_SMU_VER_NV && pp_smu->nv_funcs.set_pme_wa_enable)
pp_smu->nv_funcs.set_pme_wa_enable(&(pp_smu->ctx));
#endif
}
}
......@@ -1337,6 +1360,9 @@ static enum dc_status apply_single_controller_ctx_to_hw(
struct dc_stream_state *stream = pipe_ctx->stream;
struct drr_params params = {0};
unsigned int event_triggers = 0;
#if defined(CONFIG_DRM_AMD_DC_DCN2_0)
struct pipe_ctx *odm_pipe = dc_res_get_odm_bottom_pipe(pipe_ctx);
#endif
if (dc->hwss.disable_stream_gating) {
dc->hwss.disable_stream_gating(dc, pipe_ctx);
......@@ -1402,6 +1428,20 @@ static enum dc_status apply_single_controller_ctx_to_hw(
pipe_ctx->stream_res.opp,
&stream->bit_depth_params,
&stream->clamping);
#if defined(CONFIG_DRM_AMD_DC_DCN2_0)
if (odm_pipe) {
odm_pipe->stream_res.opp->funcs->opp_set_dyn_expansion(
odm_pipe->stream_res.opp,
COLOR_SPACE_YCBCR601,
stream->timing.display_color_depth,
stream->signal);
odm_pipe->stream_res.opp->funcs->opp_program_fmt(
odm_pipe->stream_res.opp,
&stream->bit_depth_params,
&stream->clamping);
}
#endif
if (!stream->dpms_off)
core_link_enable_stream(context, pipe_ctx);
......
......@@ -49,6 +49,7 @@
#include "clk_mgr.h"
#define DC_LOGGER_INIT(logger)
#define CTX \
......@@ -346,6 +347,7 @@ void dcn10_log_hw_state(struct dc *dc,
}
DTN_INFO("\n");
DTN_INFO("\nCALCULATED Clocks: dcfclk_khz:%d dcfclk_deep_sleep_khz:%d dispclk_khz:%d\n"
"dppclk_khz:%d max_supported_dppclk_khz:%d fclk_khz:%d socclk_khz:%d\n\n",
dc->current_state->bw_ctx.bw.dcn.clk.dcfclk_khz,
......@@ -1952,7 +1954,12 @@ static void update_dpp(struct dpp *dpp, struct dc_plane_state *plane_state)
plane_state->format,
EXPANSION_MODE_ZERO,
plane_state->input_csc_color_matrix,
#ifdef CONFIG_DRM_AMD_DC_DCN2_0
plane_state->color_space,
NULL);
#else
plane_state->color_space);
#endif
//set scale and bias registers
dcn10_build_prescale_params(&bns_params, plane_state);
......@@ -2406,6 +2413,12 @@ static void dcn10_apply_ctx_for_surface(
&pipe_ctx->ttu_regs);
}
#if defined(CONFIG_DRM_AMD_DC_DCN2_0)
/* Program secondary blending tree and writeback pipes */
if ((stream->num_wb_info > 0) && (dc->hwss.program_all_writeback_pipes_in_tree))
dc->hwss.program_all_writeback_pipes_in_tree(dc, stream, context);
#endif
if (interdependent_update)
lock_all_pipes(dc, context, false);
else
......
#
# Makefile for DCN.
DCN20 = dcn20_resource.o dcn20_hwseq.o dcn20_dpp.o dcn20_dpp_cm.o dcn20_hubp.o \
dcn20_mpc.o dcn20_opp.o dcn20_hubbub.o dcn20_optc.o dcn20_mmhubbub.o \
dcn20_stream_encoder.o dcn20_link_encoder.o dcn20_dccg.o \
dcn20_vmid.o dcn20_dwb.o dcn20_dwb_scl.o
CFLAGS_dcn20_resource.o := -mhard-float -msse -mpreferred-stack-boundary=4
AMD_DAL_DCN20 = $(addprefix $(AMDDALPATH)/dc/dcn20/,$(DCN20))
AMD_DISPLAY_FILES += $(AMD_DAL_DCN20)
/*
* Copyright 2016 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
* Authors: AMD
*
*/
#include "dm_services.h"
#include "dm_helpers.h"
#include "core_types.h"
#include "resource.h"
#include "dcn20/dcn20_resource.h"
#include "dce110/dce110_hw_sequencer.h"
#include "dcn10/dcn10_hw_sequencer.h"
#include "dcn20_hwseq.h"
#include "dce/dce_hwseq.h"
#include "abm.h"
#include "clk_mgr.h"
#include "dmcu.h"
#include "hubp.h"
#include "timing_generator.h"
#include "opp.h"
#include "ipp.h"
#include "mpc.h"
#include "mcif_wb.h"
#include "reg_helper.h"
#include "dcn10/dcn10_cm_common.h"
#include "dcn10/dcn10_hubbub.h"
#include "dcn10/dcn10_optc.h"
#include "dc_link_dp.h"
#include "vm_helper.h"
#include "dccg.h"
#define DC_LOGGER_INIT(logger)
#define CTX \
hws->ctx
#define REG(reg)\
hws->regs->reg
#undef FN
#define FN(reg_name, field_name) \
hws->shifts->field_name, hws->masks->field_name
static void bios_golden_init(struct dc *dc)
{
struct dc_bios *bp = dc->ctx->dc_bios;
int i;
/* initialize dcn global */
bp->funcs->enable_disp_power_gating(bp,
CONTROLLER_ID_D0, ASIC_PIPE_INIT);
for (i = 0; i < dc->res_pool->pipe_count; i++) {
/* initialize dcn per pipe */
bp->funcs->enable_disp_power_gating(bp,
CONTROLLER_ID_D0 + i, ASIC_PIPE_DISABLE);
}
}
static void enable_power_gating_plane(
struct dce_hwseq *hws,
bool enable)
{
bool force_on = 1; /* disable power gating */
if (enable)
force_on = 0;
/* DCHUBP0/1/2/3/4/5 */
REG_UPDATE(DOMAIN0_PG_CONFIG, DOMAIN0_POWER_FORCEON, force_on);
REG_UPDATE(DOMAIN2_PG_CONFIG, DOMAIN2_POWER_FORCEON, force_on);
REG_UPDATE(DOMAIN4_PG_CONFIG, DOMAIN4_POWER_FORCEON, force_on);
REG_UPDATE(DOMAIN6_PG_CONFIG, DOMAIN6_POWER_FORCEON, force_on);
REG_UPDATE(DOMAIN8_PG_CONFIG, DOMAIN8_POWER_FORCEON, force_on);
/*Do not power gate DCHUB5, should be left at HW default, power on permanently*/
/*REG_UPDATE(DOMAIN10_PG_CONFIG, DOMAIN10_POWER_FORCEON, force_on);*/
/* DPP0/1/2/3/4/5 */
REG_UPDATE(DOMAIN1_PG_CONFIG, DOMAIN1_POWER_FORCEON, force_on);
REG_UPDATE(DOMAIN3_PG_CONFIG, DOMAIN3_POWER_FORCEON, force_on);
REG_UPDATE(DOMAIN5_PG_CONFIG, DOMAIN5_POWER_FORCEON, force_on);
REG_UPDATE(DOMAIN7_PG_CONFIG, DOMAIN7_POWER_FORCEON, force_on);
REG_UPDATE(DOMAIN9_PG_CONFIG, DOMAIN9_POWER_FORCEON, force_on);
/*Do not power gate DPP5, should be left at HW default, power on permanently*/
/*REG_UPDATE(DOMAIN11_PG_CONFIG, DOMAIN11_POWER_FORCEON, force_on);*/
REG_UPDATE(DOMAIN16_PG_CONFIG, DOMAIN16_POWER_FORCEON, force_on);
REG_UPDATE(DOMAIN17_PG_CONFIG, DOMAIN17_POWER_FORCEON, force_on);
REG_UPDATE(DOMAIN18_PG_CONFIG, DOMAIN18_POWER_FORCEON, force_on);
REG_UPDATE(DOMAIN19_PG_CONFIG, DOMAIN19_POWER_FORCEON, force_on);
REG_UPDATE(DOMAIN20_PG_CONFIG, DOMAIN20_POWER_FORCEON, force_on);
REG_UPDATE(DOMAIN21_PG_CONFIG, DOMAIN21_POWER_FORCEON, force_on);
}
static void dcn20_dccg_init(struct dce_hwseq *hws)
{
/*
* set MICROSECOND_TIME_BASE_DIV
* 100Mhz refclk -> 0x120264
* 27Mhz refclk -> 0x12021b
* 48Mhz refclk -> 0x120230
*
*/
REG_WRITE(MICROSECOND_TIME_BASE_DIV, 0x120264);
/*
* set MILLISECOND_TIME_BASE_DIV
* 100Mhz refclk -> 0x1186a0
* 27Mhz refclk -> 0x106978
* 48Mhz refclk -> 0x10bb80
*
*/
REG_WRITE(MILLISECOND_TIME_BASE_DIV, 0x1186a0);
/* This value is dependent on the hardware pipeline delay so set once per SOC */
REG_WRITE(DISPCLK_FREQ_CHANGE_CNTL, 0x801003c);
}
static void disable_vga(
struct dce_hwseq *hws)
{
REG_WRITE(D1VGA_CONTROL, 0);
REG_WRITE(D2VGA_CONTROL, 0);
REG_WRITE(D3VGA_CONTROL, 0);
REG_WRITE(D4VGA_CONTROL, 0);
REG_WRITE(D5VGA_CONTROL, 0);
REG_WRITE(D6VGA_CONTROL, 0);
}
void dcn20_program_tripleBuffer(
const struct dc *dc,
struct pipe_ctx *pipe_ctx,
bool enableTripleBuffer)
{
if (pipe_ctx->plane_res.hubp && pipe_ctx->plane_res.hubp->funcs) {
pipe_ctx->plane_res.hubp->funcs->hubp_enable_tripleBuffer(
pipe_ctx->plane_res.hubp,
enableTripleBuffer);
}
}
/* Blank pixel data during initialization */
static void dcn20_init_blank(
struct dc *dc,
struct timing_generator *tg)
{
enum dc_color_space color_space;
struct tg_color black_color = {0};
struct output_pixel_processor *opp = NULL;
struct output_pixel_processor *bottom_opp = NULL;
uint32_t num_opps, opp_id_src0, opp_id_src1;
uint32_t otg_active_width, otg_active_height;
/* program opp dpg blank color */
color_space = COLOR_SPACE_SRGB;
color_space_to_black_color(dc, color_space, &black_color);
/* get the OTG active size */
tg->funcs->get_otg_active_size(tg,
&otg_active_width,
&otg_active_height);
/* get the OPTC source */
tg->funcs->get_optc_source(tg, &num_opps, &opp_id_src0, &opp_id_src1);
ASSERT(opp_id_src0 < dc->res_pool->res_cap->num_opp);
opp = dc->res_pool->opps[opp_id_src0];
if (num_opps == 2) {
otg_active_width = otg_active_width / 2;
ASSERT(opp_id_src1 < dc->res_pool->res_cap->num_opp);
bottom_opp = dc->res_pool->opps[opp_id_src1];
}
opp->funcs->opp_set_disp_pattern_generator(
opp,
CONTROLLER_DP_TEST_PATTERN_SOLID_COLOR,
COLOR_DEPTH_UNDEFINED,
&black_color,
otg_active_width,
otg_active_height);
if (num_opps == 2) {
bottom_opp->funcs->opp_set_disp_pattern_generator(
bottom_opp,
CONTROLLER_DP_TEST_PATTERN_SOLID_COLOR,
COLOR_DEPTH_UNDEFINED,
&black_color,
otg_active_width,
otg_active_height);
}
dcn20_hwss_wait_for_blank_complete(opp);
}
static void dcn20_dpp_pg_control(
struct dce_hwseq *hws,
unsigned int dpp_inst,
bool power_on)
{
uint32_t power_gate = power_on ? 0 : 1;
uint32_t pwr_status = power_on ? 0 : 2;
if (hws->ctx->dc->debug.disable_dpp_power_gate)
return;
if (REG(DOMAIN1_PG_CONFIG) == 0)
return;
switch (dpp_inst) {
case 0: /* DPP0 */
REG_UPDATE(DOMAIN1_PG_CONFIG,
DOMAIN1_POWER_GATE, power_gate);
REG_WAIT(DOMAIN1_PG_STATUS,
DOMAIN1_PGFSM_PWR_STATUS, pwr_status,
1, 1000);
break;
case 1: /* DPP1 */
REG_UPDATE(DOMAIN3_PG_CONFIG,
DOMAIN3_POWER_GATE, power_gate);
REG_WAIT(DOMAIN3_PG_STATUS,
DOMAIN3_PGFSM_PWR_STATUS, pwr_status,
1, 1000);
break;
case 2: /* DPP2 */
REG_UPDATE(DOMAIN5_PG_CONFIG,
DOMAIN5_POWER_GATE, power_gate);
REG_WAIT(DOMAIN5_PG_STATUS,
DOMAIN5_PGFSM_PWR_STATUS, pwr_status,
1, 1000);
break;
case 3: /* DPP3 */
REG_UPDATE(DOMAIN7_PG_CONFIG,
DOMAIN7_POWER_GATE, power_gate);
REG_WAIT(DOMAIN7_PG_STATUS,
DOMAIN7_PGFSM_PWR_STATUS, pwr_status,
1, 1000);
break;
case 4: /* DPP4 */
REG_UPDATE(DOMAIN9_PG_CONFIG,
DOMAIN9_POWER_GATE, power_gate);
REG_WAIT(DOMAIN9_PG_STATUS,
DOMAIN9_PGFSM_PWR_STATUS, pwr_status,
1, 1000);
break;
case 5: /* DPP5 */
/*
* Do not power gate DPP5, should be left at HW default, power on permanently.
* PG on Pipe5 is De-featured, attempting to put it to PG state may result in hard
* reset.
* REG_UPDATE(DOMAIN11_PG_CONFIG,
* DOMAIN11_POWER_GATE, power_gate);
*
* REG_WAIT(DOMAIN11_PG_STATUS,
* DOMAIN11_PGFSM_PWR_STATUS, pwr_status,
* 1, 1000);
*/
break;
default:
BREAK_TO_DEBUGGER();
break;
}
}
static void dcn20_hubp_pg_control(
struct dce_hwseq *hws,
unsigned int hubp_inst,
bool power_on)
{
uint32_t power_gate = power_on ? 0 : 1;
uint32_t pwr_status = power_on ? 0 : 2;
if (hws->ctx->dc->debug.disable_hubp_power_gate)
return;
if (REG(DOMAIN0_PG_CONFIG) == 0)
return;
switch (hubp_inst) {
case 0: /* DCHUBP0 */
REG_UPDATE(DOMAIN0_PG_CONFIG,
DOMAIN0_POWER_GATE, power_gate);
REG_WAIT(DOMAIN0_PG_STATUS,
DOMAIN0_PGFSM_PWR_STATUS, pwr_status,
1, 1000);
break;
case 1: /* DCHUBP1 */
REG_UPDATE(DOMAIN2_PG_CONFIG,
DOMAIN2_POWER_GATE, power_gate);
REG_WAIT(DOMAIN2_PG_STATUS,
DOMAIN2_PGFSM_PWR_STATUS, pwr_status,
1, 1000);
break;
case 2: /* DCHUBP2 */
REG_UPDATE(DOMAIN4_PG_CONFIG,
DOMAIN4_POWER_GATE, power_gate);
REG_WAIT(DOMAIN4_PG_STATUS,
DOMAIN4_PGFSM_PWR_STATUS, pwr_status,
1, 1000);
break;
case 3: /* DCHUBP3 */
REG_UPDATE(DOMAIN6_PG_CONFIG,
DOMAIN6_POWER_GATE, power_gate);
REG_WAIT(DOMAIN6_PG_STATUS,
DOMAIN6_PGFSM_PWR_STATUS, pwr_status,
1, 1000);
break;
case 4: /* DCHUBP4 */
REG_UPDATE(DOMAIN8_PG_CONFIG,
DOMAIN8_POWER_GATE, power_gate);
REG_WAIT(DOMAIN8_PG_STATUS,
DOMAIN8_PGFSM_PWR_STATUS, pwr_status,
1, 1000);
break;
case 5: /* DCHUBP5 */
/*
* Do not power gate DCHUB5, should be left at HW default, power on permanently.
* PG on Pipe5 is De-featured, attempting to put it to PG state may result in hard
* reset.
* REG_UPDATE(DOMAIN10_PG_CONFIG,
* DOMAIN10_POWER_GATE, power_gate);
*
* REG_WAIT(DOMAIN10_PG_STATUS,
* DOMAIN10_PGFSM_PWR_STATUS, pwr_status,
* 1, 1000);
*/
break;
default:
BREAK_TO_DEBUGGER();
break;
}
}
static void dcn20_plane_atomic_power_down(struct dc *dc, struct pipe_ctx *pipe_ctx)
{
struct dce_hwseq *hws = dc->hwseq;
struct dpp *dpp = pipe_ctx->plane_res.dpp;
DC_LOGGER_INIT(dc->ctx->logger);
if (REG(DC_IP_REQUEST_CNTL)) {
REG_SET(DC_IP_REQUEST_CNTL, 0,
IP_REQUEST_EN, 1);
dcn20_dpp_pg_control(hws, dpp->inst, false);
dcn20_hubp_pg_control(hws, pipe_ctx->plane_res.hubp->inst, false);
dpp->funcs->dpp_reset(dpp);
REG_SET(DC_IP_REQUEST_CNTL, 0,
IP_REQUEST_EN, 0);
DC_LOG_DEBUG(
"Power gated front end %d\n", pipe_ctx->pipe_idx);
}
}
/* disable HW used by plane.
* note: cannot disable until disconnect is complete
*/
static void dcn20_plane_atomic_disable(struct dc *dc, struct pipe_ctx *pipe_ctx)
{
struct hubp *hubp = pipe_ctx->plane_res.hubp;
struct dpp *dpp = pipe_ctx->plane_res.dpp;
int opp_id = hubp->opp_id;
dc->hwss.wait_for_mpcc_disconnect(dc, dc->res_pool, pipe_ctx);
hubp->funcs->hubp_clk_cntl(hubp, false);
dpp->funcs->dpp_dppclk_control(dpp, false, false);
if (opp_id != 0xf && pipe_ctx->stream_res.opp->mpc_tree_params.opp_list == NULL)
pipe_ctx->stream_res.opp->funcs->opp_pipe_clock_control(
pipe_ctx->stream_res.opp,
false);
hubp->power_gated = true;
dc->optimized_required = false; /* We're powering off, no need to optimize */
dcn20_plane_atomic_power_down(dc, pipe_ctx);
pipe_ctx->stream = NULL;
memset(&pipe_ctx->stream_res, 0, sizeof(pipe_ctx->stream_res));
memset(&pipe_ctx->plane_res, 0, sizeof(pipe_ctx->plane_res));
pipe_ctx->top_pipe = NULL;
pipe_ctx->bottom_pipe = NULL;
pipe_ctx->plane_state = NULL;
}
static void dcn20_disable_plane(struct dc *dc, struct pipe_ctx *pipe_ctx)
{
DC_LOGGER_INIT(dc->ctx->logger);
if (!pipe_ctx->plane_res.hubp || pipe_ctx->plane_res.hubp->power_gated)
return;
dcn20_plane_atomic_disable(dc, pipe_ctx);
//apply_DEGVIDCN10_253_wa(dc);
DC_LOG_DC("Power down front end %d\n",
pipe_ctx->pipe_idx);
}
static void dcn20_init_hw(struct dc *dc)
{
int i, j;
struct abm *abm = dc->res_pool->abm;
struct dmcu *dmcu = dc->res_pool->dmcu;
struct dce_hwseq *hws = dc->hwseq;
struct dc_bios *dcb = dc->ctx->dc_bios;
struct resource_pool *res_pool = dc->res_pool;
struct dc_state *context = dc->current_state;
if (dc->clk_mgr && dc->clk_mgr->funcs->init_clocks)
dc->clk_mgr->funcs->init_clocks(dc->clk_mgr);
// Initialize the dccg
if (res_pool->dccg->funcs->dccg_init)
res_pool->dccg->funcs->dccg_init(res_pool->dccg);
//Enable ability to power gate / don't force power on permanently
enable_power_gating_plane(dc->hwseq, true);
if (IS_FPGA_MAXIMUS_DC(dc->ctx->dce_environment)) {
REG_WRITE(RBBMIF_TIMEOUT_DIS, 0xFFFFFFFF);
REG_WRITE(RBBMIF_TIMEOUT_DIS_2, 0xFFFFFFFF);
dcn20_dccg_init(hws);
REG_UPDATE(DCHUBBUB_GLOBAL_TIMER_CNTL, DCHUBBUB_GLOBAL_TIMER_REFDIV, 2);
REG_UPDATE(DCHUBBUB_GLOBAL_TIMER_CNTL, DCHUBBUB_GLOBAL_TIMER_ENABLE, 1);
REG_WRITE(REFCLK_CNTL, 0);
} else {
if (!dcb->funcs->is_accelerated_mode(dcb)) {
bios_golden_init(dc);
disable_vga(dc->hwseq);
}
for (i = 0; i < dc->link_count; i++) {
/* Power up AND update implementation according to the
* required signal (which may be different from the
* default signal on connector).
*/
struct dc_link *link = dc->links[i];
if (link->link_enc->connector.id == CONNECTOR_ID_EDP)
dc->hwss.edp_power_control(link, true);
link->link_enc->funcs->hw_init(link->link_enc);
}
}
/* Blank pixel data with OPP DPG */
for (i = 0; i < dc->res_pool->timing_generator_count; i++) {
struct timing_generator *tg = dc->res_pool->timing_generators[i];
if (tg->funcs->is_tg_enabled(tg)) {
dcn20_init_blank(dc, tg);
}
}
for (i = 0; i < res_pool->timing_generator_count; i++) {
struct timing_generator *tg = dc->res_pool->timing_generators[i];
if (tg->funcs->is_tg_enabled(tg))
tg->funcs->lock(tg);
}
for (i = 0; i < dc->res_pool->pipe_count; i++) {
struct dpp *dpp = res_pool->dpps[i];
dpp->funcs->dpp_reset(dpp);
}
/* Reset all MPCC muxes */
res_pool->mpc->funcs->mpc_init(res_pool->mpc);
/* initialize OPP mpc_tree parameter */
for (i = 0; i < dc->res_pool->res_cap->num_opp; i++) {
res_pool->opps[i]->mpc_tree_params.opp_id = res_pool->opps[i]->inst;
res_pool->opps[i]->mpc_tree_params.opp_list = NULL;
for (j = 0; j < MAX_PIPES; j++)
res_pool->opps[i]->mpcc_disconnect_pending[j] = false;
}
for (i = 0; i < dc->res_pool->pipe_count; i++) {
struct timing_generator *tg = dc->res_pool->timing_generators[i];
struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
struct hubp *hubp = dc->res_pool->hubps[i];
struct dpp *dpp = dc->res_pool->dpps[i];
pipe_ctx->stream_res.tg = tg;
pipe_ctx->pipe_idx = i;
pipe_ctx->plane_res.hubp = hubp;
pipe_ctx->plane_res.dpp = dpp;
pipe_ctx->plane_res.mpcc_inst = dpp->inst;
hubp->mpcc_id = dpp->inst;
hubp->opp_id = 0xf;
hubp->power_gated = false;
pipe_ctx->stream_res.opp = NULL;
//dc->res_pool->opps[i]->mpc_tree_params.opp_id = dc->res_pool->opps[i]->inst;
//dc->res_pool->opps[i]->mpc_tree_params.opp_list = NULL;
dc->res_pool->opps[i]->mpcc_disconnect_pending[pipe_ctx->plane_res.mpcc_inst] = true;
pipe_ctx->stream_res.opp = dc->res_pool->opps[i];
/*to do*/
hwss1_plane_atomic_disconnect(dc, pipe_ctx);
}
/* initialize DWB pointer to MCIF_WB */
for (i = 0; i < res_pool->res_cap->num_dwb; i++)
res_pool->dwbc[i]->mcif = res_pool->mcif_wb[i];
for (i = 0; i < dc->res_pool->timing_generator_count; i++) {
struct timing_generator *tg = dc->res_pool->timing_generators[i];
if (tg->funcs->is_tg_enabled(tg))
tg->funcs->unlock(tg);
}
for (i = 0; i < dc->res_pool->pipe_count; i++) {
struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
dc->hwss.disable_plane(dc, pipe_ctx);
pipe_ctx->stream_res.tg = NULL;
pipe_ctx->plane_res.hubp = NULL;
}
for (i = 0; i < dc->res_pool->timing_generator_count; i++) {
struct timing_generator *tg = dc->res_pool->timing_generators[i];
tg->funcs->tg_init(tg);
}
/* end of FPGA. Below if real ASIC */
if (IS_FPGA_MAXIMUS_DC(dc->ctx->dce_environment))
return;
for (i = 0; i < res_pool->audio_count; i++) {
struct audio *audio = res_pool->audios[i];
audio->funcs->hw_init(audio);
}
if (abm != NULL) {
abm->funcs->init_backlight(abm);
abm->funcs->abm_init(abm);
}
if (dmcu != NULL)
dmcu->funcs->dmcu_init(dmcu);
/* power AFMT HDMI memory TODO: may move to dis/en output save power*/
REG_WRITE(DIO_MEM_PWR_CTRL, 0);
if (!dc->debug.disable_clock_gate) {
/* enable all DCN clock gating */
REG_WRITE(DCCG_GATE_DISABLE_CNTL, 0);
REG_WRITE(DCCG_GATE_DISABLE_CNTL2, 0);
REG_UPDATE(DCFCLK_CNTL, DCFCLK_GATE_DIS, 0);
}
}
enum dc_status dcn20_enable_stream_timing(
struct pipe_ctx *pipe_ctx,
struct dc_state *context,
struct dc *dc)
{
struct dc_stream_state *stream = pipe_ctx->stream;
enum dc_color_space color_space;
struct tg_color black_color = {0};
struct drr_params params = {0};
unsigned int event_triggers = 0;
int width = stream->timing.h_addressable + stream->timing.h_border_left + stream->timing.h_border_right;
int height = stream->timing.v_addressable + stream->timing.v_border_bottom + stream->timing.v_border_top;
enum controller_dp_test_pattern dpg_pattern = CONTROLLER_DP_TEST_PATTERN_SOLID_COLOR;
#if defined(CONFIG_DRM_AMD_DC_DCN2_0)
struct pipe_ctx *odm_pipe = dc_res_get_odm_bottom_pipe(pipe_ctx);
#endif
/* by upper caller loop, pipe0 is parent pipe and be called first.
* back end is set up by for pipe0. Other children pipe share back end
* with pipe 0. No program is needed.
*/
if (pipe_ctx->top_pipe != NULL)
return DC_OK;
/* TODO check if timing_changed, disable stream if timing changed */
if (odm_pipe)
pipe_ctx->stream_res.tg->funcs->set_odm_combine(
pipe_ctx->stream_res.tg,
odm_pipe->stream_res.opp->inst,
pipe_ctx->stream->timing.h_addressable/2);
/* HW program guide assume display already disable
* by unplug sequence. OTG assume stop.
*/
pipe_ctx->stream_res.tg->funcs->enable_optc_clock(pipe_ctx->stream_res.tg, true);
if (false == pipe_ctx->clock_source->funcs->program_pix_clk(
pipe_ctx->clock_source,
&pipe_ctx->stream_res.pix_clk_params,
&pipe_ctx->pll_settings)) {
BREAK_TO_DEBUGGER();
return DC_ERROR_UNEXPECTED;
}
pipe_ctx->stream_res.tg->funcs->program_timing(
pipe_ctx->stream_res.tg,
&stream->timing,
pipe_ctx->pipe_dlg_param.vready_offset,
pipe_ctx->pipe_dlg_param.vstartup_start,
pipe_ctx->pipe_dlg_param.vupdate_offset,
pipe_ctx->pipe_dlg_param.vupdate_width,
pipe_ctx->stream->signal,
true);
if (pipe_ctx->stream_res.tg->funcs->setup_global_lock)
pipe_ctx->stream_res.tg->funcs->setup_global_lock(
pipe_ctx->stream_res.tg);
/* program otg blank color */
color_space = stream->output_color_space;
color_space_to_black_color(dc, color_space, &black_color);
if (odm_pipe) {
if (dc->debug.visual_confirm != VISUAL_CONFIRM_DISABLE)
dpg_pattern = CONTROLLER_DP_TEST_PATTERN_COLORRAMP;
width /= 2;
odm_pipe->stream_res.opp->funcs->opp_pipe_clock_control(
odm_pipe->stream_res.opp,
true);
odm_pipe->stream_res.opp->funcs->opp_set_disp_pattern_generator(
odm_pipe->stream_res.opp,
dpg_pattern,
stream->timing.display_color_depth,
&black_color,
width,
height);
}
if (dc->debug.visual_confirm != VISUAL_CONFIRM_DISABLE)
dpg_pattern = CONTROLLER_DP_TEST_PATTERN_COLORSQUARES;
pipe_ctx->stream_res.opp->funcs->opp_pipe_clock_control(
pipe_ctx->stream_res.opp,
true);
pipe_ctx->stream_res.opp->funcs->opp_set_disp_pattern_generator(
pipe_ctx->stream_res.opp,
dpg_pattern,
stream->timing.display_color_depth,
&black_color,
width,
height);
/* VTG is within DCHUB command block. DCFCLK is always on */
if (false == pipe_ctx->stream_res.tg->funcs->enable_crtc(pipe_ctx->stream_res.tg)) {
BREAK_TO_DEBUGGER();
return DC_ERROR_UNEXPECTED;
}
dcn20_hwss_wait_for_blank_complete(pipe_ctx->stream_res.opp);
params.vertical_total_min = stream->adjust.v_total_min;
params.vertical_total_max = stream->adjust.v_total_max;
if (pipe_ctx->stream_res.tg->funcs->set_drr)
pipe_ctx->stream_res.tg->funcs->set_drr(
pipe_ctx->stream_res.tg, &params);
// DRR should set trigger event to monitor surface update event
if (stream->adjust.v_total_min != 0 && stream->adjust.v_total_max != 0)
event_triggers = 0x80;
if (pipe_ctx->stream_res.tg->funcs->set_static_screen_control)
pipe_ctx->stream_res.tg->funcs->set_static_screen_control(
pipe_ctx->stream_res.tg, event_triggers);
/* TODO program crtc source select for non-virtual signal*/
/* TODO program FMT */
/* TODO setup link_enc */
/* TODO set stream attributes */
/* TODO program audio */
/* TODO enable stream if timing changed */
/* TODO unblank stream if DP */
return DC_OK;
}
void dcn20_program_output_csc(struct dc *dc,
struct pipe_ctx *pipe_ctx,
enum dc_color_space colorspace,
uint16_t *matrix,
int opp_id)
{
struct mpc *mpc = dc->res_pool->mpc;
enum mpc_output_csc_mode ocsc_mode = MPC_OUTPUT_CSC_COEF_A;
if (pipe_ctx->stream->csc_color_matrix.enable_adjustment == true) {
if (mpc->funcs->set_output_csc != NULL)
mpc->funcs->set_output_csc(mpc,
opp_id,
matrix,
ocsc_mode);
} else {
if (mpc->funcs->set_ocsc_default != NULL)
mpc->funcs->set_ocsc_default(mpc,
opp_id,
colorspace,
ocsc_mode);
}
}
bool dcn20_set_output_transfer_func(struct pipe_ctx *pipe_ctx,
const struct dc_stream_state *stream)
{
int mpcc_id = pipe_ctx->plane_res.hubp->inst;
struct mpc *mpc = pipe_ctx->stream_res.opp->ctx->dc->res_pool->mpc;
struct pwl_params *params = NULL;
/*
* program OGAM only for the top pipe
* if there is a pipe split then fix diagnostic is required:
* how to pass OGAM parameter for stream.
* if programming for all pipes is required then remove condition
* pipe_ctx->top_pipe == NULL ,but then fix the diagnostic.
*/
if ((pipe_ctx->top_pipe == NULL || dc_res_is_odm_head_pipe(pipe_ctx))
&& mpc->funcs->set_output_gamma && stream->out_transfer_func) {
if (stream->out_transfer_func->type == TF_TYPE_HWPWL)
params = &stream->out_transfer_func->pwl;
else if (pipe_ctx->stream->out_transfer_func->type ==
TF_TYPE_DISTRIBUTED_POINTS &&
cm_helper_translate_curve_to_hw_format(
stream->out_transfer_func,
&mpc->blender_params, false))
params = &mpc->blender_params;
/*
* there is no ROM
*/
if (stream->out_transfer_func->type == TF_TYPE_PREDEFINED)
BREAK_TO_DEBUGGER();
}
/*
* if above if is not executed then 'params' equal to 0 and set in bypass
*/
mpc->funcs->set_output_gamma(mpc, mpcc_id, params);
return true;
}
static bool dcn20_set_blend_lut(
struct pipe_ctx *pipe_ctx, const struct dc_plane_state *plane_state)
{
struct dpp *dpp_base = pipe_ctx->plane_res.dpp;
bool result = true;
struct pwl_params *blend_lut = NULL;
if (plane_state->blend_tf) {
if (plane_state->blend_tf->type == TF_TYPE_HWPWL)
blend_lut = &plane_state->blend_tf->pwl;
else if (plane_state->blend_tf->type == TF_TYPE_DISTRIBUTED_POINTS) {
cm_helper_translate_curve_to_hw_format(
plane_state->blend_tf,
&dpp_base->regamma_params, false);
blend_lut = &dpp_base->regamma_params;
}
}
result = dpp_base->funcs->dpp_program_blnd_lut(dpp_base, blend_lut);
return result;
}
static bool dcn20_set_shaper_3dlut(
struct pipe_ctx *pipe_ctx, const struct dc_plane_state *plane_state)
{
struct dpp *dpp_base = pipe_ctx->plane_res.dpp;
bool result = true;
struct pwl_params *shaper_lut = NULL;
if (plane_state->in_shaper_func) {
if (plane_state->in_shaper_func->type == TF_TYPE_HWPWL)
shaper_lut = &plane_state->in_shaper_func->pwl;
else if (plane_state->in_shaper_func->type == TF_TYPE_DISTRIBUTED_POINTS) {
cm_helper_translate_curve_to_hw_format(
plane_state->in_shaper_func,
&dpp_base->shaper_params, true);
shaper_lut = &dpp_base->shaper_params;
}
}
result = dpp_base->funcs->dpp_program_shaper_lut(dpp_base, shaper_lut);
if (plane_state->lut3d_func &&
plane_state->lut3d_func->initialized == true)
result = dpp_base->funcs->dpp_program_3dlut(dpp_base,
&plane_state->lut3d_func->lut_3d);
else
result = dpp_base->funcs->dpp_program_3dlut(dpp_base, NULL);
if (plane_state->lut3d_func &&
plane_state->lut3d_func->initialized == true &&
plane_state->lut3d_func->hdr_multiplier != 0)
dpp_base->funcs->dpp_set_hdr_multiplier(dpp_base,
plane_state->lut3d_func->hdr_multiplier);
else
dpp_base->funcs->dpp_set_hdr_multiplier(dpp_base, 0x1f000);
return result;
}
bool dcn20_set_input_transfer_func(struct pipe_ctx *pipe_ctx,
const struct dc_plane_state *plane_state)
{
struct dpp *dpp_base = pipe_ctx->plane_res.dpp;
const struct dc_transfer_func *tf = NULL;
bool result = true;
bool use_degamma_ram = false;
if (dpp_base == NULL || plane_state == NULL)
return false;
dcn20_set_shaper_3dlut(pipe_ctx, plane_state);
dcn20_set_blend_lut(pipe_ctx, plane_state);
if (plane_state->in_transfer_func)
tf = plane_state->in_transfer_func;
if (tf == NULL) {
dpp_base->funcs->dpp_set_degamma(dpp_base,
IPP_DEGAMMA_MODE_BYPASS);
return true;
}
if (tf->type == TF_TYPE_HWPWL || tf->type == TF_TYPE_DISTRIBUTED_POINTS)
use_degamma_ram = true;
if (use_degamma_ram == true) {
if (tf->type == TF_TYPE_HWPWL)
dpp_base->funcs->dpp_program_degamma_pwl(dpp_base,
&tf->pwl);
else if (tf->type == TF_TYPE_DISTRIBUTED_POINTS) {
cm_helper_translate_curve_to_degamma_hw_format(tf,
&dpp_base->degamma_params);
dpp_base->funcs->dpp_program_degamma_pwl(dpp_base,
&dpp_base->degamma_params);
}
return true;
}
/* handle here the optimized cases when de-gamma ROM could be used.
*
*/
if (tf->type == TF_TYPE_PREDEFINED) {
switch (tf->tf) {
case TRANSFER_FUNCTION_SRGB:
dpp_base->funcs->dpp_set_degamma(dpp_base,
IPP_DEGAMMA_MODE_HW_sRGB);
break;
case TRANSFER_FUNCTION_BT709:
dpp_base->funcs->dpp_set_degamma(dpp_base,
IPP_DEGAMMA_MODE_HW_xvYCC);
break;
case TRANSFER_FUNCTION_LINEAR:
dpp_base->funcs->dpp_set_degamma(dpp_base,
IPP_DEGAMMA_MODE_BYPASS);
break;
case TRANSFER_FUNCTION_PQ:
default:
result = false;
break;
}
} else if (tf->type == TF_TYPE_BYPASS)
dpp_base->funcs->dpp_set_degamma(dpp_base,
IPP_DEGAMMA_MODE_BYPASS);
else {
/*
* if we are here, we did not handle correctly.
* fix is required for this use case
*/
BREAK_TO_DEBUGGER();
dpp_base->funcs->dpp_set_degamma(dpp_base,
IPP_DEGAMMA_MODE_BYPASS);
}
return result;
}
static void dcn20_update_odm(struct dc *dc, struct dc_state *context, struct pipe_ctx *pipe_ctx)
{
struct pipe_ctx *combine_pipe = dc_res_get_odm_bottom_pipe(pipe_ctx);
if (combine_pipe)
pipe_ctx->stream_res.tg->funcs->set_odm_combine(
pipe_ctx->stream_res.tg,
combine_pipe->stream_res.opp->inst,
pipe_ctx->plane_res.scl_data.h_active);
else
pipe_ctx->stream_res.tg->funcs->set_odm_bypass(
pipe_ctx->stream_res.tg, &pipe_ctx->stream->timing);
}
void dcn20_blank_pixel_data(
struct dc *dc,
struct pipe_ctx *pipe_ctx,
bool blank)
{
enum dc_color_space color_space;
struct tg_color black_color = {0};
struct stream_resource *stream_res = &pipe_ctx->stream_res;
struct dc_stream_state *stream = pipe_ctx->stream;
enum controller_dp_test_pattern test_pattern = CONTROLLER_DP_TEST_PATTERN_SOLID_COLOR;
struct pipe_ctx *bot_odm_pipe = dc_res_get_odm_bottom_pipe(pipe_ctx);
int width = stream->timing.h_addressable + stream->timing.h_border_left + stream->timing.h_border_right;
int height = stream->timing.v_addressable + stream->timing.v_border_bottom + stream->timing.v_border_top;
/* program opp dpg blank color */
color_space = stream->output_color_space;
color_space_to_black_color(dc, color_space, &black_color);
if (bot_odm_pipe)
width = width / 2;
if (blank) {
if (stream_res->abm)
stream_res->abm->funcs->set_abm_immediate_disable(stream_res->abm);
} else
test_pattern = CONTROLLER_DP_TEST_PATTERN_VIDEOMODE;
stream_res->opp->funcs->opp_set_disp_pattern_generator(
stream_res->opp,
test_pattern,
stream->timing.display_color_depth,
&black_color,
width,
height);
if (bot_odm_pipe) {
bot_odm_pipe->stream_res.opp->funcs->opp_set_disp_pattern_generator(
bot_odm_pipe->stream_res.opp,
test_pattern,
stream->timing.display_color_depth,
&black_color,
width,
height);
}
if (!blank)
if (stream_res->abm) {
stream_res->abm->funcs->set_pipe(stream_res->abm, stream_res->tg->inst + 1);
stream_res->abm->funcs->set_abm_level(stream_res->abm, stream->abm_level);
}
}
static void dcn20_power_on_plane(
struct dce_hwseq *hws,
struct pipe_ctx *pipe_ctx)
{
DC_LOGGER_INIT(hws->ctx->logger);
if (REG(DC_IP_REQUEST_CNTL)) {
REG_SET(DC_IP_REQUEST_CNTL, 0,
IP_REQUEST_EN, 1);
dcn20_dpp_pg_control(hws, pipe_ctx->plane_res.dpp->inst, true);
dcn20_hubp_pg_control(hws, pipe_ctx->plane_res.hubp->inst, true);
REG_SET(DC_IP_REQUEST_CNTL, 0,
IP_REQUEST_EN, 0);
DC_LOG_DEBUG(
"Un-gated front end for pipe %d\n", pipe_ctx->plane_res.hubp->inst);
}
}
static void dcn20_enable_plane(
struct dc *dc,
struct pipe_ctx *pipe_ctx,
struct dc_state *context)
{
//if (dc->debug.sanity_checks) {
// dcn10_verify_allow_pstate_change_high(dc);
//}
dcn20_power_on_plane(dc->hwseq, pipe_ctx);
/* enable DCFCLK current DCHUB */
pipe_ctx->plane_res.hubp->funcs->hubp_clk_cntl(pipe_ctx->plane_res.hubp, true);
/* make sure OPP_PIPE_CLOCK_EN = 1 */
pipe_ctx->stream_res.opp->funcs->opp_pipe_clock_control(
pipe_ctx->stream_res.opp,
true);
/* TODO: enable/disable in dm as per update type.
if (plane_state) {
DC_LOG_DC(dc->ctx->logger,
"Pipe:%d 0x%x: addr hi:0x%x, "
"addr low:0x%x, "
"src: %d, %d, %d,"
" %d; dst: %d, %d, %d, %d;\n",
pipe_ctx->pipe_idx,
plane_state,
plane_state->address.grph.addr.high_part,
plane_state->address.grph.addr.low_part,
plane_state->src_rect.x,
plane_state->src_rect.y,
plane_state->src_rect.width,
plane_state->src_rect.height,
plane_state->dst_rect.x,
plane_state->dst_rect.y,
plane_state->dst_rect.width,
plane_state->dst_rect.height);
DC_LOG_DC(dc->ctx->logger,
"Pipe %d: width, height, x, y format:%d\n"
"viewport:%d, %d, %d, %d\n"
"recout: %d, %d, %d, %d\n",
pipe_ctx->pipe_idx,
plane_state->format,
pipe_ctx->plane_res.scl_data.viewport.width,
pipe_ctx->plane_res.scl_data.viewport.height,
pipe_ctx->plane_res.scl_data.viewport.x,
pipe_ctx->plane_res.scl_data.viewport.y,
pipe_ctx->plane_res.scl_data.recout.width,
pipe_ctx->plane_res.scl_data.recout.height,
pipe_ctx->plane_res.scl_data.recout.x,
pipe_ctx->plane_res.scl_data.recout.y);
print_rq_dlg_ttu(dc, pipe_ctx);
}
*/
if (dc->vm_config.valid) {
struct vm_system_aperture_param apt;
apt.sys_default.quad_part = 0;
apt.sys_high.quad_part = 0;
apt.sys_low.quad_part = 0;
apt.sys_high.quad_part = dc->vm_config.pa_config.system_aperture.start_addr;
apt.sys_low.quad_part = dc->vm_config.pa_config.system_aperture.end_addr;
// Program system aperture settings
pipe_ctx->plane_res.hubp->funcs->hubp_set_vm_system_aperture_settings(pipe_ctx->plane_res.hubp, &apt);
}
// if (dc->debug.sanity_checks) {
// dcn10_verify_allow_pstate_change_high(dc);
// }
}
void dcn20_program_pipe(
struct dc *dc,
struct pipe_ctx *pipe_ctx,
struct dc_state *context)
{
pipe_ctx->plane_state->update_flags.bits.full_update =
context->commit_hints.full_update_needed ? 1 : pipe_ctx->plane_state->update_flags.bits.full_update;
if (pipe_ctx->plane_state->update_flags.bits.full_update)
dcn20_enable_plane(dc, pipe_ctx, context);
update_dchubp_dpp(dc, pipe_ctx, context);
set_hdr_multiplier(pipe_ctx);
if (pipe_ctx->plane_state->update_flags.bits.full_update ||
pipe_ctx->plane_state->update_flags.bits.in_transfer_func_change ||
pipe_ctx->plane_state->update_flags.bits.gamma_change)
dc->hwss.set_input_transfer_func(pipe_ctx, pipe_ctx->plane_state);
/* dcn10_translate_regamma_to_hw_format takes 750us to finish
* only do gamma programming for full update.
* TODO: This can be further optimized/cleaned up
* Always call this for now since it does memcmp inside before
* doing heavy calculation and programming
*/
if (pipe_ctx->plane_state->update_flags.bits.full_update)
dc->hwss.set_output_transfer_func(pipe_ctx, pipe_ctx->stream);
}
static void dcn20_program_all_pipe_in_tree(
struct dc *dc,
struct pipe_ctx *pipe_ctx,
struct dc_state *context)
{
if (pipe_ctx->top_pipe == NULL) {
bool blank = !is_pipe_tree_visible(pipe_ctx);
pipe_ctx->stream_res.tg->funcs->program_global_sync(
pipe_ctx->stream_res.tg,
pipe_ctx->pipe_dlg_param.vready_offset,
pipe_ctx->pipe_dlg_param.vstartup_start,
pipe_ctx->pipe_dlg_param.vupdate_offset,
pipe_ctx->pipe_dlg_param.vupdate_width);
dc->hwss.blank_pixel_data(dc, pipe_ctx, blank);
if (dc->hwss.update_odm)
dc->hwss.update_odm(dc, context, pipe_ctx);
}
if (pipe_ctx->plane_state != NULL)
dcn20_program_pipe(dc, pipe_ctx, context);
if (pipe_ctx->bottom_pipe != NULL && pipe_ctx->bottom_pipe != pipe_ctx)
dcn20_program_all_pipe_in_tree(dc, pipe_ctx->bottom_pipe, context);
}
static void dcn20_pipe_control_lock_global(
struct dc *dc,
struct pipe_ctx *pipe,
bool lock)
{
if (lock)
pipe->stream_res.tg->funcs->lock_global(pipe->stream_res.tg);
else
pipe->stream_res.tg->funcs->unlock(pipe->stream_res.tg);
}
static void dcn20_pipe_control_lock(
struct dc *dc,
struct pipe_ctx *pipe,
bool lock)
{
bool flip_immediate = false;
/* use TG master update lock to lock everything on the TG
* therefore only top pipe need to lock
*/
if (pipe->top_pipe)
return;
if (pipe->plane_state != NULL)
flip_immediate = pipe->plane_state->flip_immediate;
/* In flip immediate and pipe splitting case, we need to use GSL
* for synchronization. Only do setup on locking and on flip type change.
*/
if (lock && pipe->bottom_pipe != NULL)
if ((flip_immediate && pipe->stream_res.gsl_group == 0) ||
(!flip_immediate && pipe->stream_res.gsl_group > 0))
dcn20_setup_gsl_group_as_lock(dc, pipe);
if (pipe->plane_state != NULL && pipe->plane_state->triplebuffer_flips) {
if (lock)
pipe->stream_res.tg->funcs->triplebuffer_lock(pipe->stream_res.tg);
else
pipe->stream_res.tg->funcs->triplebuffer_unlock(pipe->stream_res.tg);
} else {
if (lock)
pipe->stream_res.tg->funcs->lock(pipe->stream_res.tg);
else
pipe->stream_res.tg->funcs->unlock(pipe->stream_res.tg);
}
}
static void dcn20_apply_ctx_for_surface(
struct dc *dc,
const struct dc_stream_state *stream,
int num_planes,
struct dc_state *context)
{
int i;
struct timing_generator *tg;
bool removed_pipe[6] = { false };
struct pipe_ctx *top_pipe_to_program =
find_top_pipe_for_stream(dc, context, stream);
DC_LOGGER_INIT(dc->ctx->logger);
if (!top_pipe_to_program)
return;
tg = top_pipe_to_program->stream_res.tg;
dcn20_pipe_control_lock(dc, top_pipe_to_program, true);
if (num_planes == 0) {
/* OTG blank before remove all front end */
dc->hwss.blank_pixel_data(dc, top_pipe_to_program, true);
}
/* Disconnect unused mpcc */
for (i = 0; i < dc->res_pool->pipe_count; i++) {
struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
struct pipe_ctx *old_pipe_ctx =
&dc->current_state->res_ctx.pipe_ctx[i];
/*
* Powergate reused pipes that are not powergated
* fairly hacky right now, using opp_id as indicator
* TODO: After move dc_post to dc_update, this will
* be removed.
*/
if (pipe_ctx->plane_state && !old_pipe_ctx->plane_state) {
if (old_pipe_ctx->stream_res.tg == tg &&
old_pipe_ctx->plane_res.hubp &&
old_pipe_ctx->plane_res.hubp->opp_id != 0xf) {
dcn20_disable_plane(dc, old_pipe_ctx);
/*
* power down fe will unlock when calling reset, need
* to lock it back here. Messy, need rework.
*/
pipe_ctx->stream_res.tg->funcs->lock(pipe_ctx->stream_res.tg);
}
}
if (!pipe_ctx->plane_state &&
old_pipe_ctx->plane_state &&
old_pipe_ctx->stream_res.tg == tg) {
dc->hwss.plane_atomic_disconnect(dc, old_pipe_ctx);
removed_pipe[i] = true;
DC_LOG_DC("Reset mpcc for pipe %d\n",
old_pipe_ctx->pipe_idx);
}
}
if (num_planes > 0)
dcn20_program_all_pipe_in_tree(dc, top_pipe_to_program, context);
/* Program secondary blending tree and writeback pipes */
if ((stream->num_wb_info > 0) && (dc->hwss.program_all_writeback_pipes_in_tree))
dc->hwss.program_all_writeback_pipes_in_tree(dc, stream, context);
dcn20_pipe_control_lock(dc, top_pipe_to_program, false);
if (top_pipe_to_program->plane_state &&
top_pipe_to_program->plane_state->update_flags.bits.full_update)
for (i = 0; i < dc->res_pool->pipe_count; i++) {
struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
/* Skip inactive pipes and ones already updated */
if (!pipe_ctx->stream || pipe_ctx->stream == stream
|| !pipe_ctx->plane_state)
continue;
pipe_ctx->stream_res.tg->funcs->lock(pipe_ctx->stream_res.tg);
pipe_ctx->plane_res.hubp->funcs->hubp_setup_interdependent(
pipe_ctx->plane_res.hubp,
&pipe_ctx->dlg_regs,
&pipe_ctx->ttu_regs);
}
for (i = 0; i < dc->res_pool->pipe_count; i++) {
struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
if (!pipe_ctx->stream || pipe_ctx->stream == stream
|| !pipe_ctx->plane_state)
continue;
dcn20_pipe_control_lock(dc, pipe_ctx, false);
}
for (i = 0; i < dc->res_pool->pipe_count; i++)
if (removed_pipe[i])
dcn20_disable_plane(dc, &dc->current_state->res_ctx.pipe_ctx[i]);
}
void dcn20_prepare_bandwidth(
struct dc *dc,
struct dc_state *context)
{
struct hubbub *hubbub = dc->res_pool->hubbub;
/* program dchubbub watermarks */
hubbub->funcs->program_watermarks(hubbub,
&context->bw_ctx.bw.dcn.watermarks,
dc->res_pool->ref_clocks.dchub_ref_clock_inKhz / 1000,
false);
dc->clk_mgr->funcs->update_clocks(
dc->clk_mgr,
context,
false);
}
void dcn20_optimize_bandwidth(
struct dc *dc,
struct dc_state *context)
{
struct hubbub *hubbub = dc->res_pool->hubbub;
/* program dchubbub watermarks */
hubbub->funcs->program_watermarks(hubbub,
&context->bw_ctx.bw.dcn.watermarks,
dc->res_pool->ref_clocks.dchub_ref_clock_inKhz / 1000,
true);
dc->clk_mgr->funcs->update_clocks(
dc->clk_mgr,
context,
true);
}
bool dcn20_update_bandwidth(
struct dc *dc,
struct dc_state *context)
{
int i;
/* recalculate DML parameters */
if (!dc->res_pool->funcs->validate_bandwidth(dc, context)) {
return false;
}
/* apply updated bandwidth parameters */
dc->hwss.prepare_bandwidth(dc, context);
/* update hubp configs for all pipes */
for (i = 0; i < dc->res_pool->pipe_count; i++) {
struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
if (pipe_ctx->plane_state == NULL)
continue;
if (pipe_ctx->top_pipe == NULL) {
bool blank = !is_pipe_tree_visible(pipe_ctx);
pipe_ctx->stream_res.tg->funcs->program_global_sync(
pipe_ctx->stream_res.tg,
pipe_ctx->pipe_dlg_param.vready_offset,
pipe_ctx->pipe_dlg_param.vstartup_start,
pipe_ctx->pipe_dlg_param.vupdate_offset,
pipe_ctx->pipe_dlg_param.vupdate_width);
dc->hwss.blank_pixel_data(dc, pipe_ctx, blank);
}
pipe_ctx->plane_res.hubp->funcs->hubp_setup(
pipe_ctx->plane_res.hubp,
&pipe_ctx->dlg_regs,
&pipe_ctx->ttu_regs,
&pipe_ctx->rq_regs,
&pipe_ctx->pipe_dlg_param);
}
return true;
}
static void dcn20_enable_writeback(
struct dc *dc,
const struct dc_stream_status *stream_status,
struct dc_writeback_info *wb_info)
{
struct dwbc *dwb;
struct mcif_wb *mcif_wb;
struct timing_generator *optc;
ASSERT(wb_info->dwb_pipe_inst < MAX_DWB_PIPES);
ASSERT(wb_info->wb_enabled);
dwb = dc->res_pool->dwbc[wb_info->dwb_pipe_inst];
mcif_wb = dc->res_pool->mcif_wb[wb_info->dwb_pipe_inst];
/* set the OPTC source mux */
ASSERT(stream_status->primary_otg_inst < MAX_PIPES);
optc = dc->res_pool->timing_generators[stream_status->primary_otg_inst];
optc->funcs->set_dwb_source(optc, wb_info->dwb_pipe_inst);
/* set MCIF_WB buffer and arbitration configuration */
mcif_wb->funcs->config_mcif_buf(mcif_wb, &wb_info->mcif_buf_params, wb_info->dwb_params.dest_height);
mcif_wb->funcs->config_mcif_arb(mcif_wb, &dc->current_state->bw_ctx.bw.dcn.bw_writeback.mcif_wb_arb[wb_info->dwb_pipe_inst]);
/* Enable MCIF_WB */
mcif_wb->funcs->enable_mcif(mcif_wb);
/* Enable DWB */
dwb->funcs->enable(dwb, &wb_info->dwb_params);
/* TODO: add sequence to enable/disable warmup */
}
void dcn20_disable_writeback(
struct dc *dc,
unsigned int dwb_pipe_inst)
{
struct dwbc *dwb;
struct mcif_wb *mcif_wb;
ASSERT(dwb_pipe_inst < MAX_DWB_PIPES);
dwb = dc->res_pool->dwbc[dwb_pipe_inst];
mcif_wb = dc->res_pool->mcif_wb[dwb_pipe_inst];
dwb->funcs->disable(dwb);
mcif_wb->funcs->disable_mcif(mcif_wb);
}
bool dcn20_hwss_wait_for_blank_complete(
struct output_pixel_processor *opp)
{
int counter;
for (counter = 0; counter < 1000; counter++) {
if (opp->funcs->dpg_is_blanked(opp))
break;
udelay(100);
}
if (counter == 1000) {
dm_error("DC: failed to blank crtc!\n");
return false;
}
return true;
}
bool dcn20_dmdata_status_done(struct pipe_ctx *pipe_ctx)
{
struct hubp *hubp = pipe_ctx->plane_res.hubp;
if (!hubp)
return false;
return hubp->funcs->dmdata_status_done(hubp);
}
static void dcn20_disable_stream_gating(struct dc *dc, struct pipe_ctx *pipe_ctx)
{
}
static void dcn20_enable_stream_gating(struct dc *dc, struct pipe_ctx *pipe_ctx)
{
}
void dcn20_set_dmdata_attributes(struct pipe_ctx *pipe_ctx)
{
struct dc_dmdata_attributes attr = { 0 };
struct hubp *hubp = pipe_ctx->plane_res.hubp;
attr.dmdata_mode = DMDATA_HW_MODE;
attr.dmdata_size =
dc_is_hdmi_signal(pipe_ctx->stream->signal) ? 32 : 36;
attr.address.quad_part =
pipe_ctx->stream->dmdata_address.quad_part;
attr.dmdata_dl_delta = 0;
attr.dmdata_qos_mode = 0;
attr.dmdata_qos_level = 0;
attr.dmdata_repeat = 1; /* always repeat */
attr.dmdata_updated = 1;
attr.dmdata_sw_data = NULL;
hubp->funcs->dmdata_set_attributes(hubp, &attr);
}
void dcn20_disable_stream(struct pipe_ctx *pipe_ctx, int option)
{
dce110_disable_stream(pipe_ctx, option);
}
static void dcn20_init_dchub(struct dce_hwseq *hws, struct dc *dc, struct dc_addr_space_config *config)
{
struct hubbub_addr_config hubbub_config;
hubbub_config.pa_config.system_aperture.fb_top = config->pa_config.system_aperture.fb_top;
hubbub_config.pa_config.system_aperture.fb_offset = config->pa_config.system_aperture.fb_offset;
hubbub_config.pa_config.system_aperture.fb_base = config->pa_config.system_aperture.fb_base;
hubbub_config.pa_config.system_aperture.agp_top = config->pa_config.system_aperture.agp_top;
hubbub_config.pa_config.system_aperture.agp_bot = config->pa_config.system_aperture.agp_bot;
hubbub_config.pa_config.system_aperture.agp_base = config->pa_config.system_aperture.agp_base;
hubbub_config.pa_config.gart_config.page_table_start_addr = config->pa_config.gart_config.page_table_start_addr;
hubbub_config.pa_config.gart_config.page_table_end_addr = config->pa_config.gart_config.page_table_end_addr;
hubbub_config.pa_config.gart_config.page_table_base_addr = config->pa_config.gart_config.page_table_base_addr;
hubbub_config.va_config.page_table_start_addr = config->va_config.page_table_start_addr;
hubbub_config.va_config.page_table_end_addr = config->va_config.page_table_end_addr;
hubbub_config.va_config.page_table_block_size = config->va_config.page_table_block_size_in_bytes;
hubbub_config.va_config.page_table_depth = config->va_config.page_table_depth;
dc->res_pool->hubbub->funcs->init_dchub(dc->res_pool->hubbub, &hubbub_config);
}
static bool patch_address_for_sbs_tb_stereo(
struct pipe_ctx *pipe_ctx, PHYSICAL_ADDRESS_LOC *addr)
{
struct dc_plane_state *plane_state = pipe_ctx->plane_state;
bool sec_split = pipe_ctx->top_pipe &&
pipe_ctx->top_pipe->plane_state == pipe_ctx->plane_state;
if (sec_split && plane_state->address.type == PLN_ADDR_TYPE_GRPH_STEREO &&
(pipe_ctx->stream->timing.timing_3d_format ==
TIMING_3D_FORMAT_SIDE_BY_SIDE ||
pipe_ctx->stream->timing.timing_3d_format ==
TIMING_3D_FORMAT_TOP_AND_BOTTOM)) {
*addr = plane_state->address.grph_stereo.left_addr;
plane_state->address.grph_stereo.left_addr =
plane_state->address.grph_stereo.right_addr;
return true;
}
if (pipe_ctx->stream->view_format != VIEW_3D_FORMAT_NONE &&
plane_state->address.type != PLN_ADDR_TYPE_GRPH_STEREO) {
plane_state->address.type = PLN_ADDR_TYPE_GRPH_STEREO;
plane_state->address.grph_stereo.right_addr =
plane_state->address.grph_stereo.left_addr;
}
return false;
}
static void dcn20_update_plane_addr(const struct dc *dc, struct pipe_ctx *pipe_ctx)
{
bool addr_patched = false;
PHYSICAL_ADDRESS_LOC addr;
struct dc_plane_state *plane_state = pipe_ctx->plane_state;
uint8_t vmid;
if (plane_state == NULL)
return;
addr_patched = patch_address_for_sbs_tb_stereo(pipe_ctx, &addr);
// Call Helper to assign correct VMID to this PTB
vmid = get_vmid_for_ptb(dc->vm_helper,
plane_state->address.page_table_base.quad_part,
pipe_ctx->pipe_idx);
// Call hubbub to program PTB of VMID
if (dc->res_pool->hubbub->funcs->setup_vmid_ptb)
dc->res_pool->hubbub->funcs->setup_vmid_ptb(dc->res_pool->hubbub,
plane_state->address.page_table_base.quad_part,
vmid);
pipe_ctx->plane_res.hubp->funcs->hubp_program_surface_flip_and_addr(
pipe_ctx->plane_res.hubp,
&plane_state->address,
plane_state->flip_immediate,
vmid);
plane_state->status.requested_address = plane_state->address;
if (plane_state->flip_immediate)
plane_state->status.current_address = plane_state->address;
if (addr_patched)
pipe_ctx->plane_state->address.grph_stereo.left_addr = addr;
}
void dcn20_unblank_stream(struct pipe_ctx *pipe_ctx,
struct dc_link_settings *link_settings)
{
struct encoder_unblank_param params = { { 0 } };
struct dc_stream_state *stream = pipe_ctx->stream;
struct dc_link *link = stream->link;
params.odm = dc_res_get_odm_bottom_pipe(pipe_ctx);
/* only 3 items below are used by unblank */
params.timing = pipe_ctx->stream->timing;
params.link_settings.link_rate = link_settings->link_rate;
if (dc_is_dp_signal(pipe_ctx->stream->signal)) {
if (optc1_is_two_pixels_per_containter(&stream->timing) || params.odm)
params.timing.pix_clk_100hz /= 2;
pipe_ctx->stream_res.stream_enc->funcs->dp_set_odm_combine(
pipe_ctx->stream_res.stream_enc, params.odm);
pipe_ctx->stream_res.stream_enc->funcs->dp_unblank(pipe_ctx->stream_res.stream_enc, &params);
}
if (link->local_sink && link->local_sink->sink_signal == SIGNAL_TYPE_EDP) {
link->dc->hwss.edp_backlight_control(link, true);
}
}
void dcn20_setup_vupdate_interrupt(struct pipe_ctx *pipe_ctx)
{
struct timing_generator *tg = pipe_ctx->stream_res.tg;
int start_position = get_vupdate_offset_from_vsync(pipe_ctx);
uint32_t start_line;
if (start_position < 0)
start_line = pipe_ctx->stream->timing.v_total + start_position - 1;
else
start_line = start_position;
if (tg->funcs->setup_vertical_interrupt2)
tg->funcs->setup_vertical_interrupt2(tg, start_line);
}
static void dcn20_reset_back_end_for_pipe(
struct dc *dc,
struct pipe_ctx *pipe_ctx,
struct dc_state *context)
{
int i;
DC_LOGGER_INIT(dc->ctx->logger);
if (pipe_ctx->stream_res.stream_enc == NULL) {
pipe_ctx->stream = NULL;
return;
}
if (!IS_FPGA_MAXIMUS_DC(dc->ctx->dce_environment)) {
/* DPMS may already disable */
if (!pipe_ctx->stream->dpms_off)
core_link_disable_stream(pipe_ctx, FREE_ACQUIRED_RESOURCE);
else if (pipe_ctx->stream_res.audio) {
dc->hwss.disable_audio_stream(pipe_ctx, FREE_ACQUIRED_RESOURCE);
}
}
/* by upper caller loop, parent pipe: pipe0, will be reset last.
* back end share by all pipes and will be disable only when disable
* parent pipe.
*/
if (pipe_ctx->top_pipe == NULL) {
pipe_ctx->stream_res.tg->funcs->disable_crtc(pipe_ctx->stream_res.tg);
pipe_ctx->stream_res.tg->funcs->enable_optc_clock(pipe_ctx->stream_res.tg, false);
if (pipe_ctx->stream_res.tg->funcs->set_odm_bypass)
pipe_ctx->stream_res.tg->funcs->set_odm_bypass(
pipe_ctx->stream_res.tg, &pipe_ctx->stream->timing);
}
for (i = 0; i < dc->res_pool->pipe_count; i++)
if (&dc->current_state->res_ctx.pipe_ctx[i] == pipe_ctx)
break;
if (i == dc->res_pool->pipe_count)
return;
pipe_ctx->stream = NULL;
DC_LOG_DEBUG("Reset back end for pipe %d, tg:%d\n",
pipe_ctx->pipe_idx, pipe_ctx->stream_res.tg->inst);
}
static void dcn20_reset_hw_ctx_wrap(
struct dc *dc,
struct dc_state *context)
{
int i;
/* Reset Back End*/
for (i = dc->res_pool->pipe_count - 1; i >= 0 ; i--) {
struct pipe_ctx *pipe_ctx_old =
&dc->current_state->res_ctx.pipe_ctx[i];
struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
if (!pipe_ctx_old->stream)
continue;
if (pipe_ctx_old->top_pipe)
continue;
if (!pipe_ctx->stream ||
pipe_need_reprogram(pipe_ctx_old, pipe_ctx)) {
struct clock_source *old_clk = pipe_ctx_old->clock_source;
dcn20_reset_back_end_for_pipe(dc, pipe_ctx_old, dc->current_state);
if (dc->hwss.enable_stream_gating)
dc->hwss.enable_stream_gating(dc, pipe_ctx);
if (old_clk)
old_clk->funcs->cs_power_down(old_clk);
}
}
}
static void dcn20_update_mpcc(struct dc *dc, struct pipe_ctx *pipe_ctx)
{
struct hubp *hubp = pipe_ctx->plane_res.hubp;
struct mpcc_blnd_cfg blnd_cfg = { {0} };
bool per_pixel_alpha = pipe_ctx->plane_state->per_pixel_alpha && pipe_ctx->bottom_pipe;
int mpcc_id;
struct mpcc *new_mpcc;
struct mpc *mpc = dc->res_pool->mpc;
struct mpc_tree *mpc_tree_params = &(pipe_ctx->stream_res.opp->mpc_tree_params);
// input to MPCC is always RGB, by default leave black_color at 0
if (dc->debug.visual_confirm == VISUAL_CONFIRM_HDR) {
dcn10_get_hdr_visual_confirm_color(
pipe_ctx, &blnd_cfg.black_color);
} else if (dc->debug.visual_confirm == VISUAL_CONFIRM_SURFACE) {
dcn10_get_surface_visual_confirm_color(
pipe_ctx, &blnd_cfg.black_color);
}
if (per_pixel_alpha)
blnd_cfg.alpha_mode = MPCC_ALPHA_BLEND_MODE_PER_PIXEL_ALPHA;
else
blnd_cfg.alpha_mode = MPCC_ALPHA_BLEND_MODE_GLOBAL_ALPHA;
blnd_cfg.overlap_only = false;
blnd_cfg.global_gain = 0xff;
if (pipe_ctx->plane_state->global_alpha)
blnd_cfg.global_alpha = pipe_ctx->plane_state->global_alpha_value;
else
blnd_cfg.global_alpha = 0xff;
blnd_cfg.background_color_bpc = 4;
blnd_cfg.bottom_gain_mode = 0;
blnd_cfg.top_gain = 0x1f000;
blnd_cfg.bottom_inside_gain = 0x1f000;
blnd_cfg.bottom_outside_gain = 0x1f000;
blnd_cfg.pre_multiplied_alpha = per_pixel_alpha;
/*
* TODO: remove hack
* Note: currently there is a bug in init_hw such that
* on resume from hibernate, BIOS sets up MPCC0, and
* we do mpcc_remove but the mpcc cannot go to idle
* after remove. This cause us to pick mpcc1 here,
* which causes a pstate hang for yet unknown reason.
*/
mpcc_id = hubp->inst;
/* If there is no full update, don't need to touch MPC tree*/
if (!pipe_ctx->plane_state->update_flags.bits.full_update) {
mpc->funcs->update_blending(mpc, &blnd_cfg, mpcc_id);
return;
}
/* check if this MPCC is already being used */
new_mpcc = mpc->funcs->get_mpcc_for_dpp(mpc_tree_params, mpcc_id);
/* remove MPCC if being used */
if (new_mpcc != NULL)
mpc->funcs->remove_mpcc(mpc, mpc_tree_params, new_mpcc);
else
if (dc->debug.sanity_checks)
mpc->funcs->assert_mpcc_idle_before_connect(
dc->res_pool->mpc, mpcc_id);
/* Call MPC to insert new plane */
new_mpcc = mpc->funcs->insert_plane(dc->res_pool->mpc,
mpc_tree_params,
&blnd_cfg,
NULL,
NULL,
hubp->inst,
mpcc_id);
ASSERT(new_mpcc != NULL);
hubp->opp_id = pipe_ctx->stream_res.opp->inst;
hubp->mpcc_id = mpcc_id;
}
static int find_free_gsl_group(const struct dc *dc)
{
if (dc->res_pool->gsl_groups.gsl_0 == 0)
return 1;
if (dc->res_pool->gsl_groups.gsl_1 == 0)
return 2;
if (dc->res_pool->gsl_groups.gsl_2 == 0)
return 3;
return 0;
}
/* NOTE: This is not a generic setup_gsl function (hence the suffix as_lock)
* This is only used to lock pipes in pipe splitting case with immediate flip
* Ordinary MPC/OTG locks suppress VUPDATE which doesn't help with immediate,
* so we get tearing with freesync since we cannot flip multiple pipes
* atomically.
* We use GSL for this:
* - immediate flip: find first available GSL group if not already assigned
* program gsl with that group, set current OTG as master
* and always us 0x4 = AND of flip_ready from all pipes
* - vsync flip: disable GSL if used
*
* Groups in stream_res are stored as +1 from HW registers, i.e.
* gsl_0 <=> pipe_ctx->stream_res.gsl_group == 1
* Using a magic value like -1 would require tracking all inits/resets
*/
void dcn20_setup_gsl_group_as_lock(
const struct dc *dc,
struct pipe_ctx *pipe_ctx)
{
struct gsl_params gsl;
int group_idx;
memset(&gsl, 0, sizeof(struct gsl_params));
if (pipe_ctx->plane_state->flip_immediate) {
/* return if group already assigned since GSL was set up
* for vsync flip, we would unassign so it can't be "left over"
*/
if (pipe_ctx->stream_res.gsl_group > 0)
return;
group_idx = find_free_gsl_group(dc);
ASSERT(group_idx != 0);
pipe_ctx->stream_res.gsl_group = group_idx;
/* set gsl group reg field and mark resource used */
switch (group_idx) {
case 1:
gsl.gsl0_en = 1;
dc->res_pool->gsl_groups.gsl_0 = 1;
break;
case 2:
gsl.gsl1_en = 1;
dc->res_pool->gsl_groups.gsl_1 = 1;
break;
case 3:
gsl.gsl2_en = 1;
dc->res_pool->gsl_groups.gsl_2 = 1;
break;
default:
BREAK_TO_DEBUGGER();
return; // invalid case
}
gsl.gsl_master_en = 1;
} else {
group_idx = pipe_ctx->stream_res.gsl_group;
if (group_idx == 0)
return; // if not in use, just return
pipe_ctx->stream_res.gsl_group = 0;
/* unset gsl group reg field and mark resource free */
switch (group_idx) {
case 1:
gsl.gsl0_en = 0;
dc->res_pool->gsl_groups.gsl_0 = 0;
break;
case 2:
gsl.gsl1_en = 0;
dc->res_pool->gsl_groups.gsl_1 = 0;
break;
case 3:
gsl.gsl2_en = 0;
dc->res_pool->gsl_groups.gsl_2 = 0;
break;
default:
BREAK_TO_DEBUGGER();
return;
}
gsl.gsl_master_en = 0;
}
/* at this point we want to program whether it's to enable or disable */
if (pipe_ctx->stream_res.tg->funcs->set_gsl != NULL &&
pipe_ctx->stream_res.tg->funcs->set_gsl_source_select != NULL) {
pipe_ctx->stream_res.tg->funcs->set_gsl(
pipe_ctx->stream_res.tg,
&gsl);
pipe_ctx->stream_res.tg->funcs->set_gsl_source_select(
pipe_ctx->stream_res.tg, group_idx,
pipe_ctx->plane_state->flip_immediate ? 4 : 0);
} else
BREAK_TO_DEBUGGER();
}
static void dcn20_set_flip_control_gsl(
struct pipe_ctx *pipe_ctx,
bool flip_immediate)
{
if (pipe_ctx && pipe_ctx->plane_res.hubp->funcs->hubp_set_flip_control_surface_gsl)
pipe_ctx->plane_res.hubp->funcs->hubp_set_flip_control_surface_gsl(
pipe_ctx->plane_res.hubp, flip_immediate);
}
void dcn20_hw_sequencer_construct(struct dc *dc)
{
dcn10_hw_sequencer_construct(dc);
dc->hwss.init_hw = dcn20_init_hw;
dc->hwss.init_pipes = NULL;
dc->hwss.unblank_stream = dcn20_unblank_stream;
dc->hwss.update_plane_addr = dcn20_update_plane_addr;
dc->hwss.disable_plane = dcn20_disable_plane,
dc->hwss.enable_stream_timing = dcn20_enable_stream_timing;
dc->hwss.program_triplebuffer = dcn20_program_tripleBuffer;
dc->hwss.set_input_transfer_func = dcn20_set_input_transfer_func;
dc->hwss.set_output_transfer_func = dcn20_set_output_transfer_func;
dc->hwss.apply_ctx_for_surface = dcn20_apply_ctx_for_surface;
dc->hwss.pipe_control_lock = dcn20_pipe_control_lock;
dc->hwss.pipe_control_lock_global = dcn20_pipe_control_lock_global;
dc->hwss.optimize_bandwidth = dcn20_optimize_bandwidth;
dc->hwss.prepare_bandwidth = dcn20_prepare_bandwidth;
dc->hwss.update_bandwidth = dcn20_update_bandwidth;
dc->hwss.enable_writeback = dcn20_enable_writeback;
dc->hwss.disable_writeback = dcn20_disable_writeback;
dc->hwss.program_output_csc = dcn20_program_output_csc;
dc->hwss.update_odm = dcn20_update_odm;
dc->hwss.blank_pixel_data = dcn20_blank_pixel_data;
dc->hwss.dmdata_status_done = dcn20_dmdata_status_done;
dc->hwss.disable_stream = dcn20_disable_stream;
dc->hwss.init_dchub = dcn20_init_dchub;
dc->hwss.disable_stream_gating = dcn20_disable_stream_gating;
dc->hwss.enable_stream_gating = dcn20_enable_stream_gating;
dc->hwss.setup_vupdate_interrupt = dcn20_setup_vupdate_interrupt;
dc->hwss.reset_hw_ctx_wrap = dcn20_reset_hw_ctx_wrap;
dc->hwss.update_mpcc = dcn20_update_mpcc;
dc->hwss.set_flip_control_gsl = dcn20_set_flip_control_gsl;
}
/*
* Copyright 2016 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
* Authors: AMD
*
*/
#ifndef __DC_HWSS_DCN20_H__
#define __DC_HWSS_DCN20_H__
struct dc;
void dcn20_hw_sequencer_construct(struct dc *dc);
enum dc_status dcn20_enable_stream_timing(
struct pipe_ctx *pipe_ctx,
struct dc_state *context,
struct dc *dc);
void dcn20_blank_pixel_data(
struct dc *dc,
struct pipe_ctx *pipe_ctx,
bool blank);
void dcn20_program_output_csc(struct dc *dc,
struct pipe_ctx *pipe_ctx,
enum dc_color_space colorspace,
uint16_t *matrix,
int opp_id);
void dcn20_prepare_bandwidth(
struct dc *dc,
struct dc_state *context);
void dcn20_optimize_bandwidth(
struct dc *dc,
struct dc_state *context);
bool dcn20_update_bandwidth(
struct dc *dc,
struct dc_state *context);
void dcn20_disable_writeback(
struct dc *dc,
unsigned int dwb_pipe_inst);
bool dcn20_hwss_wait_for_blank_complete(
struct output_pixel_processor *opp);
bool dcn20_set_output_transfer_func(struct pipe_ctx *pipe_ctx,
const struct dc_stream_state *stream);
bool dcn20_set_input_transfer_func(struct pipe_ctx *pipe_ctx,
const struct dc_plane_state *plane_state);
bool dcn20_dmdata_status_done(struct pipe_ctx *pipe_ctx);
void dcn20_set_dmdata_attributes(struct pipe_ctx *pipe_ctx);
void dcn20_disable_stream(struct pipe_ctx *pipe_ctx, int option);
void dcn20_program_tripleBuffer(
const struct dc *dc,
struct pipe_ctx *pipe_ctx,
bool enableTripleBuffer);
void dcn20_setup_vupdate_interrupt(struct pipe_ctx *pipe_ctx);
void dcn20_setup_gsl_group_as_lock(const struct dc *dc,
struct pipe_ctx *pipe_ctx);
#endif /* __DC_HWSS_DCN20_H__ */
/*
* Copyright 2016 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
* Authors: AMD
*
*/
#include "dm_services.h"
#include "dc.h"
#include "resource.h"
#include "include/irq_service_interface.h"
#include "dcn20/dcn20_resource.h"
#include "dcn10/dcn10_hubp.h"
#include "dcn10/dcn10_ipp.h"
#include "dcn20_hubbub.h"
#include "dcn20_mpc.h"
#include "dcn20_hubp.h"
#include "irq/dcn20/irq_service_dcn20.h"
#include "dcn20_dpp.h"
#include "dcn20_optc.h"
#include "dcn20_hwseq.h"
#include "dce110/dce110_hw_sequencer.h"
#include "dcn20_opp.h"
#include "dcn20_link_encoder.h"
#include "dcn20_stream_encoder.h"
#include "dce/dce_clock_source.h"
#include "dce/dce_audio.h"
#include "dce/dce_hwseq.h"
#include "virtual/virtual_stream_encoder.h"
#include "dce110/dce110_resource.h"
#include "dml/display_mode_vba.h"
#include "dcn20_dccg.h"
#include "dcn20_vmid.h"
#include "navi10_ip_offset.h"
#include "dcn/dcn_2_0_0_offset.h"
#include "dcn/dcn_2_0_0_sh_mask.h"
#include "nbio/nbio_2_3_offset.h"
#include "mmhub/mmhub_2_0_0_offset.h"
#include "mmhub/mmhub_2_0_0_sh_mask.h"
#include "reg_helper.h"
#include "dce/dce_abm.h"
#include "dce/dce_dmcu.h"
#include "dce/dce_aux.h"
#include "dce/dce_i2c.h"
#include "vm_helper.h"
#include "amdgpu_socbb.h"
#define SOC_BOUNDING_BOX_VALID false
#define DC_LOGGER_INIT(logger)
struct _vcs_dpi_ip_params_st dcn2_0_ip = {
.odm_capable = 1,
.gpuvm_enable = 0,
.hostvm_enable = 0,
.gpuvm_max_page_table_levels = 4,
.hostvm_max_page_table_levels = 4,
.hostvm_cached_page_table_levels = 0,
.pte_group_size_bytes = 2048,
.num_dsc = 0,
.rob_buffer_size_kbytes = 168,
.det_buffer_size_kbytes = 164,
.dpte_buffer_size_in_pte_reqs_luma = 84,
.pde_proc_buffer_size_64k_reqs = 48,
.dpp_output_buffer_pixels = 2560,
.opp_output_buffer_lines = 1,
.pixel_chunk_size_kbytes = 8,
.pte_chunk_size_kbytes = 2,
.meta_chunk_size_kbytes = 2,
.writeback_chunk_size_kbytes = 2,
.line_buffer_size_bits = 789504,
.is_line_buffer_bpp_fixed = 0,
.line_buffer_fixed_bpp = 0,
.dcc_supported = true,
.max_line_buffer_lines = 12,
.writeback_luma_buffer_size_kbytes = 12,
.writeback_chroma_buffer_size_kbytes = 8,
.writeback_chroma_line_buffer_width_pixels = 4,
.writeback_max_hscl_ratio = 1,
.writeback_max_vscl_ratio = 1,
.writeback_min_hscl_ratio = 1,
.writeback_min_vscl_ratio = 1,
.writeback_max_hscl_taps = 12,
.writeback_max_vscl_taps = 12,
.writeback_line_buffer_luma_buffer_size = 0,
.writeback_line_buffer_chroma_buffer_size = 14643,
.cursor_buffer_size = 8,
.cursor_chunk_size = 2,
.max_num_otg = 6,
.max_num_dpp = 6,
.max_num_wb = 1,
.max_dchub_pscl_bw_pix_per_clk = 4,
.max_pscl_lb_bw_pix_per_clk = 2,
.max_lb_vscl_bw_pix_per_clk = 4,
.max_vscl_hscl_bw_pix_per_clk = 4,
.max_hscl_ratio = 8,
.max_vscl_ratio = 8,
.hscl_mults = 4,
.vscl_mults = 4,
.max_hscl_taps = 8,
.max_vscl_taps = 8,
.dispclk_ramp_margin_percent = 1,
.underscan_factor = 1.10,
.min_vblank_lines = 32, //
.dppclk_delay_subtotal = 77, //
.dppclk_delay_scl_lb_only = 16,
.dppclk_delay_scl = 50,
.dppclk_delay_cnvc_formatter = 8,
.dppclk_delay_cnvc_cursor = 6,
.dispclk_delay_subtotal = 87, //
.dcfclk_cstate_latency = 10, // SRExitTime
.max_inter_dcn_tile_repeaters = 8,
.xfc_supported = true,
.xfc_fill_bw_overhead_percent = 10.0,
.xfc_fill_constant_bytes = 0,
};
struct _vcs_dpi_soc_bounding_box_st dcn2_0_soc = { 0 };
#ifndef mmDP0_DP_DPHY_INTERNAL_CTRL
#define mmDP0_DP_DPHY_INTERNAL_CTRL 0x210f
#define mmDP0_DP_DPHY_INTERNAL_CTRL_BASE_IDX 2
#define mmDP1_DP_DPHY_INTERNAL_CTRL 0x220f
#define mmDP1_DP_DPHY_INTERNAL_CTRL_BASE_IDX 2
#define mmDP2_DP_DPHY_INTERNAL_CTRL 0x230f
#define mmDP2_DP_DPHY_INTERNAL_CTRL_BASE_IDX 2
#define mmDP3_DP_DPHY_INTERNAL_CTRL 0x240f
#define mmDP3_DP_DPHY_INTERNAL_CTRL_BASE_IDX 2
#define mmDP4_DP_DPHY_INTERNAL_CTRL 0x250f
#define mmDP4_DP_DPHY_INTERNAL_CTRL_BASE_IDX 2
#define mmDP5_DP_DPHY_INTERNAL_CTRL 0x260f
#define mmDP5_DP_DPHY_INTERNAL_CTRL_BASE_IDX 2
#define mmDP6_DP_DPHY_INTERNAL_CTRL 0x270f
#define mmDP6_DP_DPHY_INTERNAL_CTRL_BASE_IDX 2
#endif
enum dcn20_clk_src_array_id {
DCN20_CLK_SRC_PLL0,
DCN20_CLK_SRC_PLL1,
DCN20_CLK_SRC_PLL2,
DCN20_CLK_SRC_PLL3,
DCN20_CLK_SRC_PLL4,
DCN20_CLK_SRC_PLL5,
DCN20_CLK_SRC_TOTAL
};
/* begin *********************
* macros to expend register list macro defined in HW object header file */
/* DCN */
/* TODO awful hack. fixup dcn20_dwb.h */
#undef BASE_INNER
#define BASE_INNER(seg) DCN_BASE__INST0_SEG ## seg
#define BASE(seg) BASE_INNER(seg)
#define SR(reg_name)\
.reg_name = BASE(mm ## reg_name ## _BASE_IDX) + \
mm ## reg_name
#define SRI(reg_name, block, id)\
.reg_name = BASE(mm ## block ## id ## _ ## reg_name ## _BASE_IDX) + \
mm ## block ## id ## _ ## reg_name
#define SRIR(var_name, reg_name, block, id)\
.var_name = BASE(mm ## block ## id ## _ ## reg_name ## _BASE_IDX) + \
mm ## block ## id ## _ ## reg_name
#define SRII(reg_name, block, id)\
.reg_name[id] = BASE(mm ## block ## id ## _ ## reg_name ## _BASE_IDX) + \
mm ## block ## id ## _ ## reg_name
#define DCCG_SRII(reg_name, block, id)\
.block ## _ ## reg_name[id] = BASE(mm ## block ## id ## _ ## reg_name ## _BASE_IDX) + \
mm ## block ## id ## _ ## reg_name
/* NBIO */
#define NBIO_BASE_INNER(seg) \
NBIO_BASE__INST0_SEG ## seg
#define NBIO_BASE(seg) \
NBIO_BASE_INNER(seg)
#define NBIO_SR(reg_name)\
.reg_name = NBIO_BASE(mm ## reg_name ## _BASE_IDX) + \
mm ## reg_name
/* MMHUB */
#define MMHUB_BASE_INNER(seg) \
MMHUB_BASE__INST0_SEG ## seg
#define MMHUB_BASE(seg) \
MMHUB_BASE_INNER(seg)
#define MMHUB_SR(reg_name)\
.reg_name = MMHUB_BASE(mmMM ## reg_name ## _BASE_IDX) + \
mmMM ## reg_name
static const struct bios_registers bios_regs = {
NBIO_SR(BIOS_SCRATCH_3),
NBIO_SR(BIOS_SCRATCH_6)
};
#define clk_src_regs(index, pllid)\
[index] = {\
CS_COMMON_REG_LIST_DCN2_0(index, pllid),\
}
static const struct dce110_clk_src_regs clk_src_regs[] = {
clk_src_regs(0, A),
clk_src_regs(1, B),
clk_src_regs(2, C),
clk_src_regs(3, D),
clk_src_regs(4, E),
clk_src_regs(5, F)
};
static const struct dce110_clk_src_shift cs_shift = {
CS_COMMON_MASK_SH_LIST_DCN2_0(__SHIFT)
};
static const struct dce110_clk_src_mask cs_mask = {
CS_COMMON_MASK_SH_LIST_DCN2_0(_MASK)
};
static const struct dce_dmcu_registers dmcu_regs = {
DMCU_DCN10_REG_LIST()
};
static const struct dce_dmcu_shift dmcu_shift = {
DMCU_MASK_SH_LIST_DCN10(__SHIFT)
};
static const struct dce_dmcu_mask dmcu_mask = {
DMCU_MASK_SH_LIST_DCN10(_MASK)
};
/*
static const struct dce_abm_registers abm_regs = {
ABM_DCN10_REG_LIST(0)
};
static const struct dce_abm_shift abm_shift = {
ABM_MASK_SH_LIST_DCN10(__SHIFT)
};
static const struct dce_abm_mask abm_mask = {
ABM_MASK_SH_LIST_DCN10(_MASK)
};
*/
#define audio_regs(id)\
[id] = {\
AUD_COMMON_REG_LIST(id)\
}
static const struct dce_audio_registers audio_regs[] = {
audio_regs(0),
audio_regs(1),
audio_regs(2),
audio_regs(3),
audio_regs(4),
audio_regs(5),
audio_regs(6),
};
#define DCE120_AUD_COMMON_MASK_SH_LIST(mask_sh)\
SF(AZF0ENDPOINT0_AZALIA_F0_CODEC_ENDPOINT_INDEX, AZALIA_ENDPOINT_REG_INDEX, mask_sh),\
SF(AZF0ENDPOINT0_AZALIA_F0_CODEC_ENDPOINT_DATA, AZALIA_ENDPOINT_REG_DATA, mask_sh),\
AUD_COMMON_MASK_SH_LIST_BASE(mask_sh)
static const struct dce_audio_shift audio_shift = {
DCE120_AUD_COMMON_MASK_SH_LIST(__SHIFT)
};
static const struct dce_aduio_mask audio_mask = {
DCE120_AUD_COMMON_MASK_SH_LIST(_MASK)
};
#define stream_enc_regs(id)\
[id] = {\
SE_DCN2_REG_LIST(id)\
}
static const struct dcn10_stream_enc_registers stream_enc_regs[] = {
stream_enc_regs(0),
stream_enc_regs(1),
stream_enc_regs(2),
stream_enc_regs(3),
stream_enc_regs(4),
stream_enc_regs(5),
};
static const struct dcn10_stream_encoder_shift se_shift = {
SE_COMMON_MASK_SH_LIST_DCN20(__SHIFT)
};
static const struct dcn10_stream_encoder_mask se_mask = {
SE_COMMON_MASK_SH_LIST_DCN20(_MASK)
};
#define aux_regs(id)\
[id] = {\
DCN2_AUX_REG_LIST(id)\
}
static const struct dcn10_link_enc_aux_registers link_enc_aux_regs[] = {
aux_regs(0),
aux_regs(1),
aux_regs(2),
aux_regs(3),
aux_regs(4),
aux_regs(5)
};
#define hpd_regs(id)\
[id] = {\
HPD_REG_LIST(id)\
}
static const struct dcn10_link_enc_hpd_registers link_enc_hpd_regs[] = {
hpd_regs(0),
hpd_regs(1),
hpd_regs(2),
hpd_regs(3),
hpd_regs(4),
hpd_regs(5)
};
#define link_regs(id, phyid)\
[id] = {\
LE_DCN10_REG_LIST(id), \
UNIPHY_DCN2_REG_LIST(phyid), \
SRI(DP_DPHY_INTERNAL_CTRL, DP, id) \
}
static const struct dcn10_link_enc_registers link_enc_regs[] = {
link_regs(0, A),
link_regs(1, B),
link_regs(2, C),
link_regs(3, D),
link_regs(4, E),
link_regs(5, F)
};
static const struct dcn10_link_enc_shift le_shift = {
LINK_ENCODER_MASK_SH_LIST_DCN20(__SHIFT)
};
static const struct dcn10_link_enc_mask le_mask = {
LINK_ENCODER_MASK_SH_LIST_DCN20(_MASK)
};
#define ipp_regs(id)\
[id] = {\
IPP_REG_LIST_DCN20(id),\
}
static const struct dcn10_ipp_registers ipp_regs[] = {
ipp_regs(0),
ipp_regs(1),
ipp_regs(2),
ipp_regs(3),
ipp_regs(4),
ipp_regs(5),
};
static const struct dcn10_ipp_shift ipp_shift = {
IPP_MASK_SH_LIST_DCN20(__SHIFT)
};
static const struct dcn10_ipp_mask ipp_mask = {
IPP_MASK_SH_LIST_DCN20(_MASK),
};
#define opp_regs(id)\
[id] = {\
OPP_REG_LIST_DCN20(id),\
}
static const struct dcn20_opp_registers opp_regs[] = {
opp_regs(0),
opp_regs(1),
opp_regs(2),
opp_regs(3),
opp_regs(4),
opp_regs(5),
};
static const struct dcn20_opp_shift opp_shift = {
OPP_MASK_SH_LIST_DCN20(__SHIFT)
};
static const struct dcn20_opp_mask opp_mask = {
OPP_MASK_SH_LIST_DCN20(_MASK)
};
#define aux_engine_regs(id)\
[id] = {\
AUX_COMMON_REG_LIST0(id), \
.AUXN_IMPCAL = 0, \
.AUXP_IMPCAL = 0, \
.AUX_RESET_MASK = DP_AUX0_AUX_CONTROL__AUX_RESET_MASK, \
}
static const struct dce110_aux_registers aux_engine_regs[] = {
aux_engine_regs(0),
aux_engine_regs(1),
aux_engine_regs(2),
aux_engine_regs(3),
aux_engine_regs(4),
aux_engine_regs(5)
};
#define tf_regs(id)\
[id] = {\
TF_REG_LIST_DCN20(id),\
}
static const struct dcn2_dpp_registers tf_regs[] = {
tf_regs(0),
tf_regs(1),
tf_regs(2),
tf_regs(3),
tf_regs(4),
tf_regs(5),
};
static const struct dcn2_dpp_shift tf_shift = {
TF_REG_LIST_SH_MASK_DCN20(__SHIFT)
};
static const struct dcn2_dpp_mask tf_mask = {
TF_REG_LIST_SH_MASK_DCN20(_MASK)
};
static const struct dcn20_mpc_registers mpc_regs = {
MPC_REG_LIST_DCN2_0(0),
MPC_REG_LIST_DCN2_0(1),
MPC_REG_LIST_DCN2_0(2),
MPC_REG_LIST_DCN2_0(3),
MPC_REG_LIST_DCN2_0(4),
MPC_REG_LIST_DCN2_0(5),
MPC_OUT_MUX_REG_LIST_DCN2_0(0),
MPC_OUT_MUX_REG_LIST_DCN2_0(1),
MPC_OUT_MUX_REG_LIST_DCN2_0(2),
MPC_OUT_MUX_REG_LIST_DCN2_0(3),
MPC_OUT_MUX_REG_LIST_DCN2_0(4),
MPC_OUT_MUX_REG_LIST_DCN2_0(5),
};
static const struct dcn20_mpc_shift mpc_shift = {
MPC_COMMON_MASK_SH_LIST_DCN2_0(__SHIFT)
};
static const struct dcn20_mpc_mask mpc_mask = {
MPC_COMMON_MASK_SH_LIST_DCN2_0(_MASK)
};
#define tg_regs(id)\
[id] = {TG_COMMON_REG_LIST_DCN2_0(id)}
static const struct dcn_optc_registers tg_regs[] = {
tg_regs(0),
tg_regs(1),
tg_regs(2),
tg_regs(3),
tg_regs(4),
tg_regs(5)
};
static const struct dcn_optc_shift tg_shift = {
TG_COMMON_MASK_SH_LIST_DCN2_0(__SHIFT)
};
static const struct dcn_optc_mask tg_mask = {
TG_COMMON_MASK_SH_LIST_DCN2_0(_MASK)
};
#define hubp_regs(id)\
[id] = {\
HUBP_REG_LIST_DCN20(id)\
}
static const struct dcn_hubp2_registers hubp_regs[] = {
hubp_regs(0),
hubp_regs(1),
hubp_regs(2),
hubp_regs(3),
hubp_regs(4),
hubp_regs(5)
};
static const struct dcn_hubp2_shift hubp_shift = {
HUBP_MASK_SH_LIST_DCN20(__SHIFT)
};
static const struct dcn_hubp2_mask hubp_mask = {
HUBP_MASK_SH_LIST_DCN20(_MASK)
};
static const struct dcn_hubbub_registers hubbub_reg = {
HUBBUB_REG_LIST_DCN20(0)
};
static const struct dcn_hubbub_shift hubbub_shift = {
HUBBUB_MASK_SH_LIST_DCN20(__SHIFT)
};
static const struct dcn_hubbub_mask hubbub_mask = {
HUBBUB_MASK_SH_LIST_DCN20(_MASK)
};
#define vmid_regs(id)\
[id] = {\
DCN20_VMID_REG_LIST(id)\
}
static const struct dcn_vmid_registers vmid_regs[] = {
vmid_regs(0),
vmid_regs(1),
vmid_regs(2),
vmid_regs(3),
vmid_regs(4),
vmid_regs(5),
vmid_regs(6),
vmid_regs(7),
vmid_regs(8),
vmid_regs(9),
vmid_regs(10),
vmid_regs(11),
vmid_regs(12),
vmid_regs(13),
vmid_regs(14),
vmid_regs(15)
};
static const struct dcn20_vmid_shift vmid_shifts = {
DCN20_VMID_MASK_SH_LIST(__SHIFT)
};
static const struct dcn20_vmid_mask vmid_masks = {
DCN20_VMID_MASK_SH_LIST(_MASK)
};
static const struct dccg_registers dccg_regs = {
DCCG_REG_LIST_DCN2()
};
static const struct dccg_shift dccg_shift = {
DCCG_MASK_SH_LIST_DCN2(__SHIFT)
};
static const struct dccg_mask dccg_mask = {
DCCG_MASK_SH_LIST_DCN2(_MASK)
};
static const struct resource_caps res_cap_nv10 = {
.num_timing_generator = 6,
.num_opp = 6,
.num_video_plane = 6,
.num_audio = 7,
.num_stream_encoder = 6,
.num_pll = 6,
.num_dwb = 1,
.num_ddc = 6,
.num_vmid = 16,
};
static const struct dc_plane_cap plane_cap = {
.type = DC_PLANE_TYPE_DCN_UNIVERSAL,
.blends_with_above = true,
.blends_with_below = true,
.supports_argb8888 = true,
.per_pixel_alpha = true,
.supports_argb8888 = true,
.supports_nv12 = true
};
static const struct dc_debug_options debug_defaults_drv = {
.disable_dmcu = true,
.force_abm_enable = false,
.timing_trace = false,
.clock_trace = true,
.disable_pplib_clock_request = true,
.pipe_split_policy = MPC_SPLIT_DYNAMIC,
.force_single_disp_pipe_split = true,
.disable_dcc = DCC_ENABLE,
.vsr_support = true,
.performance_trace = false,
.max_downscale_src_width = 5120,/*upto 5K*/
.disable_pplib_wm_range = false,
.scl_reset_length10 = true,
.sanity_checks = true,
.disable_tri_buf = true,
};
static const struct dc_debug_options debug_defaults_diags = {
.disable_dmcu = true,
.force_abm_enable = false,
.timing_trace = true,
.clock_trace = true,
.disable_dpp_power_gate = true,
.disable_hubp_power_gate = true,
.disable_clock_gate = true,
.disable_pplib_clock_request = true,
.disable_pplib_wm_range = true,
.disable_stutter = true,
.scl_reset_length10 = true,
};
void dcn20_dpp_destroy(struct dpp **dpp)
{
kfree(TO_DCN20_DPP(*dpp));
*dpp = NULL;
}
struct dpp *dcn20_dpp_create(
struct dc_context *ctx,
uint32_t inst)
{
struct dcn20_dpp *dpp =
kzalloc(sizeof(struct dcn20_dpp), GFP_KERNEL);
if (!dpp)
return NULL;
if (dpp2_construct(dpp, ctx, inst,
&tf_regs[inst], &tf_shift, &tf_mask))
return &dpp->base;
BREAK_TO_DEBUGGER();
kfree(dpp);
return NULL;
}
struct input_pixel_processor *dcn20_ipp_create(
struct dc_context *ctx, uint32_t inst)
{
struct dcn10_ipp *ipp =
kzalloc(sizeof(struct dcn10_ipp), GFP_KERNEL);
if (!ipp) {
BREAK_TO_DEBUGGER();
return NULL;
}
dcn20_ipp_construct(ipp, ctx, inst,
&ipp_regs[inst], &ipp_shift, &ipp_mask);
return &ipp->base;
}
struct output_pixel_processor *dcn20_opp_create(
struct dc_context *ctx, uint32_t inst)
{
struct dcn20_opp *opp =
kzalloc(sizeof(struct dcn20_opp), GFP_KERNEL);
if (!opp) {
BREAK_TO_DEBUGGER();
return NULL;
}
dcn20_opp_construct(opp, ctx, inst,
&opp_regs[inst], &opp_shift, &opp_mask);
return &opp->base;
}
struct dce_aux *dcn20_aux_engine_create(
struct dc_context *ctx,
uint32_t inst)
{
struct aux_engine_dce110 *aux_engine =
kzalloc(sizeof(struct aux_engine_dce110), GFP_KERNEL);
if (!aux_engine)
return NULL;
dce110_aux_engine_construct(aux_engine, ctx, inst,
SW_AUX_TIMEOUT_PERIOD_MULTIPLIER * AUX_TIMEOUT_PERIOD,
&aux_engine_regs[inst]);
return &aux_engine->base;
}
#define i2c_inst_regs(id) { I2C_HW_ENGINE_COMMON_REG_LIST(id) }
static const struct dce_i2c_registers i2c_hw_regs[] = {
i2c_inst_regs(1),
i2c_inst_regs(2),
i2c_inst_regs(3),
i2c_inst_regs(4),
i2c_inst_regs(5),
i2c_inst_regs(6),
};
static const struct dce_i2c_shift i2c_shifts = {
I2C_COMMON_MASK_SH_LIST_DCN2(__SHIFT)
};
static const struct dce_i2c_mask i2c_masks = {
I2C_COMMON_MASK_SH_LIST_DCN2(_MASK)
};
struct dce_i2c_hw *dcn20_i2c_hw_create(
struct dc_context *ctx,
uint32_t inst)
{
struct dce_i2c_hw *dce_i2c_hw =
kzalloc(sizeof(struct dce_i2c_hw), GFP_KERNEL);
if (!dce_i2c_hw)
return NULL;
dcn2_i2c_hw_construct(dce_i2c_hw, ctx, inst,
&i2c_hw_regs[inst], &i2c_shifts, &i2c_masks);
return dce_i2c_hw;
}
struct mpc *dcn20_mpc_create(struct dc_context *ctx)
{
struct dcn20_mpc *mpc20 = kzalloc(sizeof(struct dcn20_mpc),
GFP_KERNEL);
if (!mpc20)
return NULL;
dcn20_mpc_construct(mpc20, ctx,
&mpc_regs,
&mpc_shift,
&mpc_mask,
6);
return &mpc20->base;
}
struct hubbub *dcn20_hubbub_create(struct dc_context *ctx)
{
int i;
struct dcn20_hubbub *hubbub = kzalloc(sizeof(struct dcn20_hubbub),
GFP_KERNEL);
if (!hubbub)
return NULL;
hubbub2_construct(hubbub, ctx,
&hubbub_reg,
&hubbub_shift,
&hubbub_mask);
for (i = 0; i < res_cap_nv10.num_vmid; i++) {
struct dcn20_vmid *vmid = &hubbub->vmid[i];
vmid->ctx = ctx;
vmid->regs = &vmid_regs[i];
vmid->shifts = &vmid_shifts;
vmid->masks = &vmid_masks;
}
return &hubbub->base;
}
struct timing_generator *dcn20_timing_generator_create(
struct dc_context *ctx,
uint32_t instance)
{
struct optc *tgn10 =
kzalloc(sizeof(struct optc), GFP_KERNEL);
if (!tgn10)
return NULL;
tgn10->base.inst = instance;
tgn10->base.ctx = ctx;
tgn10->tg_regs = &tg_regs[instance];
tgn10->tg_shift = &tg_shift;
tgn10->tg_mask = &tg_mask;
dcn20_timing_generator_init(tgn10);
return &tgn10->base;
}
static const struct encoder_feature_support link_enc_feature = {
.max_hdmi_deep_color = COLOR_DEPTH_121212,
.max_hdmi_pixel_clock = 600000,
.hdmi_ycbcr420_supported = true,
.dp_ycbcr420_supported = true,
.flags.bits.IS_HBR2_CAPABLE = true,
.flags.bits.IS_HBR3_CAPABLE = true,
.flags.bits.IS_TPS3_CAPABLE = true,
.flags.bits.IS_TPS4_CAPABLE = true
};
struct link_encoder *dcn20_link_encoder_create(
const struct encoder_init_data *enc_init_data)
{
struct dcn20_link_encoder *enc20 =
kzalloc(sizeof(struct dcn20_link_encoder), GFP_KERNEL);
if (!enc20)
return NULL;
dcn20_link_encoder_construct(enc20,
enc_init_data,
&link_enc_feature,
&link_enc_regs[enc_init_data->transmitter],
&link_enc_aux_regs[enc_init_data->channel - 1],
&link_enc_hpd_regs[enc_init_data->hpd_source],
&le_shift,
&le_mask);
return &enc20->enc10.base;
}
struct clock_source *dcn20_clock_source_create(
struct dc_context *ctx,
struct dc_bios *bios,
enum clock_source_id id,
const struct dce110_clk_src_regs *regs,
bool dp_clk_src)
{
struct dce110_clk_src *clk_src =
kzalloc(sizeof(struct dce110_clk_src), GFP_KERNEL);
if (!clk_src)
return NULL;
if (dcn20_clk_src_construct(clk_src, ctx, bios, id,
regs, &cs_shift, &cs_mask)) {
clk_src->base.dp_clk_src = dp_clk_src;
return &clk_src->base;
}
BREAK_TO_DEBUGGER();
return NULL;
}
static void read_dce_straps(
struct dc_context *ctx,
struct resource_straps *straps)
{
generic_reg_get(ctx, mmDC_PINSTRAPS + BASE(mmDC_PINSTRAPS_BASE_IDX),
FN(DC_PINSTRAPS, DC_PINSTRAPS_AUDIO), &straps->dc_pinstraps_audio);
}
static struct audio *dcn20_create_audio(
struct dc_context *ctx, unsigned int inst)
{
return dce_audio_create(ctx, inst,
&audio_regs[inst], &audio_shift, &audio_mask);
}
struct stream_encoder *dcn20_stream_encoder_create(
enum engine_id eng_id,
struct dc_context *ctx)
{
struct dcn10_stream_encoder *enc1 =
kzalloc(sizeof(struct dcn10_stream_encoder), GFP_KERNEL);
if (!enc1)
return NULL;
dcn20_stream_encoder_construct(enc1, ctx, ctx->dc_bios, eng_id,
&stream_enc_regs[eng_id],
&se_shift, &se_mask);
return &enc1->base;
}
static const struct dce_hwseq_registers hwseq_reg = {
HWSEQ_DCN2_REG_LIST()
};
static const struct dce_hwseq_shift hwseq_shift = {
HWSEQ_DCN2_MASK_SH_LIST(__SHIFT)
};
static const struct dce_hwseq_mask hwseq_mask = {
HWSEQ_DCN2_MASK_SH_LIST(_MASK)
};
struct dce_hwseq *dcn20_hwseq_create(
struct dc_context *ctx)
{
struct dce_hwseq *hws = kzalloc(sizeof(struct dce_hwseq), GFP_KERNEL);
if (hws) {
hws->ctx = ctx;
hws->regs = &hwseq_reg;
hws->shifts = &hwseq_shift;
hws->masks = &hwseq_mask;
}
return hws;
}
static const struct resource_create_funcs res_create_funcs = {
.read_dce_straps = read_dce_straps,
.create_audio = dcn20_create_audio,
.create_stream_encoder = dcn20_stream_encoder_create,
.create_hwseq = dcn20_hwseq_create,
};
static const struct resource_create_funcs res_create_maximus_funcs = {
.read_dce_straps = NULL,
.create_audio = NULL,
.create_stream_encoder = NULL,
.create_hwseq = dcn20_hwseq_create,
};
void dcn20_clock_source_destroy(struct clock_source **clk_src)
{
kfree(TO_DCE110_CLK_SRC(*clk_src));
*clk_src = NULL;
}
static void destruct(struct dcn20_resource_pool *pool)
{
unsigned int i;
for (i = 0; i < pool->base.stream_enc_count; i++) {
if (pool->base.stream_enc[i] != NULL) {
kfree(DCN10STRENC_FROM_STRENC(pool->base.stream_enc[i]));
pool->base.stream_enc[i] = NULL;
}
}
if (pool->base.mpc != NULL) {
kfree(TO_DCN20_MPC(pool->base.mpc));
pool->base.mpc = NULL;
}
if (pool->base.hubbub != NULL) {
kfree(pool->base.hubbub);
pool->base.hubbub = NULL;
}
for (i = 0; i < pool->base.pipe_count; i++) {
if (pool->base.dpps[i] != NULL)
dcn20_dpp_destroy(&pool->base.dpps[i]);
if (pool->base.ipps[i] != NULL)
pool->base.ipps[i]->funcs->ipp_destroy(&pool->base.ipps[i]);
if (pool->base.hubps[i] != NULL) {
kfree(TO_DCN20_HUBP(pool->base.hubps[i]));
pool->base.hubps[i] = NULL;
}
if (pool->base.irqs != NULL) {
dal_irq_service_destroy(&pool->base.irqs);
}
}
for (i = 0; i < pool->base.res_cap->num_ddc; i++) {
if (pool->base.engines[i] != NULL)
dce110_engine_destroy(&pool->base.engines[i]);
if (pool->base.hw_i2cs[i] != NULL) {
kfree(pool->base.hw_i2cs[i]);
pool->base.hw_i2cs[i] = NULL;
}
if (pool->base.sw_i2cs[i] != NULL) {
kfree(pool->base.sw_i2cs[i]);
pool->base.sw_i2cs[i] = NULL;
}
}
for (i = 0; i < pool->base.res_cap->num_opp; i++) {
if (pool->base.opps[i] != NULL)
pool->base.opps[i]->funcs->opp_destroy(&pool->base.opps[i]);
}
for (i = 0; i < pool->base.res_cap->num_timing_generator; i++) {
if (pool->base.timing_generators[i] != NULL) {
kfree(DCN10TG_FROM_TG(pool->base.timing_generators[i]));
pool->base.timing_generators[i] = NULL;
}
}
for (i = 0; i < pool->base.audio_count; i++) {
if (pool->base.audios[i])
dce_aud_destroy(&pool->base.audios[i]);
}
for (i = 0; i < pool->base.clk_src_count; i++) {
if (pool->base.clock_sources[i] != NULL) {
dcn20_clock_source_destroy(&pool->base.clock_sources[i]);
pool->base.clock_sources[i] = NULL;
}
}
if (pool->base.dp_clock_source != NULL) {
dcn20_clock_source_destroy(&pool->base.dp_clock_source);
pool->base.dp_clock_source = NULL;
}
if (pool->base.abm != NULL)
dce_abm_destroy(&pool->base.abm);
if (pool->base.dmcu != NULL)
dce_dmcu_destroy(&pool->base.dmcu);
if (pool->base.dccg != NULL)
dcn_dccg_destroy(&pool->base.dccg);
if (pool->base.pp_smu != NULL)
dcn20_pp_smu_destroy(&pool->base.pp_smu);
}
struct hubp *dcn20_hubp_create(
struct dc_context *ctx,
uint32_t inst)
{
struct dcn20_hubp *hubp2 =
kzalloc(sizeof(struct dcn20_hubp), GFP_KERNEL);
if (!hubp2)
return NULL;
if (hubp2_construct(hubp2, ctx, inst,
&hubp_regs[inst], &hubp_shift, &hubp_mask))
return &hubp2->base;
BREAK_TO_DEBUGGER();
kfree(hubp2);
return NULL;
}
static void get_pixel_clock_parameters(
struct pipe_ctx *pipe_ctx,
struct pixel_clk_params *pixel_clk_params)
{
const struct dc_stream_state *stream = pipe_ctx->stream;
bool odm_combine = dc_res_get_odm_bottom_pipe(pipe_ctx) != NULL;
pixel_clk_params->requested_pix_clk_100hz = stream->timing.pix_clk_100hz;
pixel_clk_params->encoder_object_id = stream->link->link_enc->id;
pixel_clk_params->signal_type = pipe_ctx->stream->signal;
pixel_clk_params->controller_id = pipe_ctx->stream_res.tg->inst + 1;
/* TODO: un-hardcode*/
pixel_clk_params->requested_sym_clk = LINK_RATE_LOW *
LINK_RATE_REF_FREQ_IN_KHZ;
pixel_clk_params->flags.ENABLE_SS = 0;
pixel_clk_params->color_depth =
stream->timing.display_color_depth;
pixel_clk_params->flags.DISPLAY_BLANKED = 1;
pixel_clk_params->pixel_encoding = stream->timing.pixel_encoding;
if (stream->timing.pixel_encoding == PIXEL_ENCODING_YCBCR422)
pixel_clk_params->color_depth = COLOR_DEPTH_888;
if (optc1_is_two_pixels_per_containter(&stream->timing) || odm_combine)
pixel_clk_params->requested_pix_clk_100hz /= 2;
if (stream->timing.timing_3d_format == TIMING_3D_FORMAT_HW_FRAME_PACKING)
pixel_clk_params->requested_pix_clk_100hz *= 2;
}
static void build_clamping_params(struct dc_stream_state *stream)
{
stream->clamping.clamping_level = CLAMPING_FULL_RANGE;
stream->clamping.c_depth = stream->timing.display_color_depth;
stream->clamping.pixel_encoding = stream->timing.pixel_encoding;
}
static enum dc_status build_pipe_hw_param(struct pipe_ctx *pipe_ctx)
{
get_pixel_clock_parameters(pipe_ctx, &pipe_ctx->stream_res.pix_clk_params);
pipe_ctx->clock_source->funcs->get_pix_clk_dividers(
pipe_ctx->clock_source,
&pipe_ctx->stream_res.pix_clk_params,
&pipe_ctx->pll_settings);
pipe_ctx->stream->clamping.pixel_encoding = pipe_ctx->stream->timing.pixel_encoding;
resource_build_bit_depth_reduction_params(pipe_ctx->stream,
&pipe_ctx->stream->bit_depth_params);
build_clamping_params(pipe_ctx->stream);
return DC_OK;
}
enum dc_status dcn20_build_mapped_resource(const struct dc *dc, struct dc_state *context, struct dc_stream_state *stream)
{
enum dc_status status = DC_OK;
struct pipe_ctx *pipe_ctx = resource_get_head_pipe_for_stream(&context->res_ctx, stream);
/*TODO Seems unneeded anymore */
/* if (old_context && resource_is_stream_unchanged(old_context, stream)) {
if (stream != NULL && old_context->streams[i] != NULL) {
todo: shouldn't have to copy missing parameter here
resource_build_bit_depth_reduction_params(stream,
&stream->bit_depth_params);
stream->clamping.pixel_encoding =
stream->timing.pixel_encoding;
resource_build_bit_depth_reduction_params(stream,
&stream->bit_depth_params);
build_clamping_params(stream);
continue;
}
}
*/
if (!pipe_ctx)
return DC_ERROR_UNEXPECTED;
status = build_pipe_hw_param(pipe_ctx);
return status;
}
enum dc_status dcn20_add_stream_to_ctx(struct dc *dc, struct dc_state *new_ctx, struct dc_stream_state *dc_stream)
{
enum dc_status result = DC_ERROR_UNEXPECTED;
result = resource_map_pool_resources(dc, new_ctx, dc_stream);
if (result == DC_OK)
result = resource_map_phy_clock_resources(dc, new_ctx, dc_stream);
if (result == DC_OK)
result = dcn20_build_mapped_resource(dc, new_ctx, dc_stream);
return result;
}
enum dc_status dcn20_remove_stream_from_ctx(struct dc *dc, struct dc_state *new_ctx, struct dc_stream_state *dc_stream)
{
struct pipe_ctx *pipe_ctx = NULL;
int i;
/* Remove DSC */
for (i = 0; i < MAX_PIPES; i++) {
if (new_ctx->res_ctx.pipe_ctx[i].stream == dc_stream && !new_ctx->res_ctx.pipe_ctx[i].top_pipe) {
pipe_ctx = &new_ctx->res_ctx.pipe_ctx[i];
break;
}
}
if (!pipe_ctx)
return DC_ERROR_UNEXPECTED;
return DC_OK;
}
static void swizzle_to_dml_params(
enum swizzle_mode_values swizzle,
unsigned int *sw_mode)
{
switch (swizzle) {
case DC_SW_LINEAR:
*sw_mode = dm_sw_linear;
break;
case DC_SW_4KB_S:
*sw_mode = dm_sw_4kb_s;
break;
case DC_SW_4KB_S_X:
*sw_mode = dm_sw_4kb_s_x;
break;
case DC_SW_4KB_D:
*sw_mode = dm_sw_4kb_d;
break;
case DC_SW_4KB_D_X:
*sw_mode = dm_sw_4kb_d_x;
break;
case DC_SW_64KB_S:
*sw_mode = dm_sw_64kb_s;
break;
case DC_SW_64KB_S_X:
*sw_mode = dm_sw_64kb_s_x;
break;
case DC_SW_64KB_S_T:
*sw_mode = dm_sw_64kb_s_t;
break;
case DC_SW_64KB_D:
*sw_mode = dm_sw_64kb_d;
break;
case DC_SW_64KB_D_X:
*sw_mode = dm_sw_64kb_d_x;
break;
case DC_SW_64KB_D_T:
*sw_mode = dm_sw_64kb_d_t;
break;
case DC_SW_64KB_R_X:
*sw_mode = dm_sw_64kb_r_x;
break;
case DC_SW_VAR_S:
*sw_mode = dm_sw_var_s;
break;
case DC_SW_VAR_S_X:
*sw_mode = dm_sw_var_s_x;
break;
case DC_SW_VAR_D:
*sw_mode = dm_sw_var_d;
break;
case DC_SW_VAR_D_X:
*sw_mode = dm_sw_var_d_x;
break;
default:
ASSERT(0); /* Not supported */
break;
}
}
static bool dcn20_split_stream_for_combine(
struct resource_context *res_ctx,
const struct resource_pool *pool,
struct pipe_ctx *primary_pipe,
struct pipe_ctx *secondary_pipe,
bool is_odm_combine)
{
int pipe_idx = secondary_pipe->pipe_idx;
struct scaler_data *sd = &primary_pipe->plane_res.scl_data;
struct pipe_ctx *sec_bot_pipe = secondary_pipe->bottom_pipe;
int new_width;
*secondary_pipe = *primary_pipe;
secondary_pipe->bottom_pipe = sec_bot_pipe;
secondary_pipe->pipe_idx = pipe_idx;
secondary_pipe->plane_res.mi = pool->mis[secondary_pipe->pipe_idx];
secondary_pipe->plane_res.hubp = pool->hubps[secondary_pipe->pipe_idx];
secondary_pipe->plane_res.ipp = pool->ipps[secondary_pipe->pipe_idx];
secondary_pipe->plane_res.xfm = pool->transforms[secondary_pipe->pipe_idx];
secondary_pipe->plane_res.dpp = pool->dpps[secondary_pipe->pipe_idx];
secondary_pipe->plane_res.mpcc_inst = pool->dpps[secondary_pipe->pipe_idx]->inst;
if (primary_pipe->bottom_pipe && primary_pipe->bottom_pipe != secondary_pipe) {
ASSERT(!secondary_pipe->bottom_pipe);
secondary_pipe->bottom_pipe = primary_pipe->bottom_pipe;
secondary_pipe->bottom_pipe->top_pipe = secondary_pipe;
}
primary_pipe->bottom_pipe = secondary_pipe;
secondary_pipe->top_pipe = primary_pipe;
if (is_odm_combine) {
bool is_add_dsc = true;
if (primary_pipe->plane_state) {
/* HACTIVE halved for odm combine */
sd->h_active /= 2;
/* Copy scl_data to secondary pipe */
secondary_pipe->plane_res.scl_data = *sd;
/* Calculate new vp and recout for left pipe */
/* Need at least 16 pixels width per side */
if (sd->recout.x + 16 >= sd->h_active)
return false;
new_width = sd->h_active - sd->recout.x;
sd->viewport.width -= dc_fixpt_floor(dc_fixpt_mul_int(
sd->ratios.horz, sd->recout.width - new_width));
sd->viewport_c.width -= dc_fixpt_floor(dc_fixpt_mul_int(
sd->ratios.horz_c, sd->recout.width - new_width));
sd->recout.width = new_width;
/* Calculate new vp and recout for right pipe */
sd = &secondary_pipe->plane_res.scl_data;
new_width = sd->recout.width + sd->recout.x - sd->h_active;
/* Need at least 16 pixels width per side */
if (new_width <= 16)
return false;
sd->viewport.width -= dc_fixpt_floor(dc_fixpt_mul_int(
sd->ratios.horz, sd->recout.width - new_width));
sd->viewport_c.width -= dc_fixpt_floor(dc_fixpt_mul_int(
sd->ratios.horz_c, sd->recout.width - new_width));
sd->recout.width = new_width;
sd->viewport.x += dc_fixpt_floor(dc_fixpt_mul_int(
sd->ratios.horz, sd->h_active - sd->recout.x));
sd->viewport_c.x += dc_fixpt_floor(dc_fixpt_mul_int(
sd->ratios.horz_c, sd->h_active - sd->recout.x));
sd->recout.x = 0;
}
secondary_pipe->stream_res.opp = pool->opps[secondary_pipe->pipe_idx];
} else {
ASSERT(primary_pipe->plane_state);
resource_build_scaling_params(primary_pipe);
resource_build_scaling_params(secondary_pipe);
}
return true;
}
void dcn20_populate_dml_writeback_from_context(
struct dc *dc, struct resource_context *res_ctx, display_e2e_pipe_params_st *pipes)
{
int pipe_cnt, i;
for (i = 0, pipe_cnt = 0; i < dc->res_pool->pipe_count; i++) {
struct dc_writeback_info *wb_info = &res_ctx->pipe_ctx[i].stream->writeback_info[0];
if (!res_ctx->pipe_ctx[i].stream)
continue;
/* Set writeback information */
pipes[pipe_cnt].dout.wb_enable = (wb_info->wb_enabled == true) ? 1 : 0;
pipes[pipe_cnt].dout.num_active_wb++;
pipes[pipe_cnt].dout.wb.wb_src_height = wb_info->dwb_params.cnv_params.crop_height;
pipes[pipe_cnt].dout.wb.wb_src_width = wb_info->dwb_params.cnv_params.crop_width;
pipes[pipe_cnt].dout.wb.wb_dst_width = wb_info->dwb_params.dest_width;
pipes[pipe_cnt].dout.wb.wb_dst_height = wb_info->dwb_params.dest_height;
pipes[pipe_cnt].dout.wb.wb_htaps_luma = 1;
pipes[pipe_cnt].dout.wb.wb_vtaps_luma = 1;
pipes[pipe_cnt].dout.wb.wb_htaps_chroma = wb_info->dwb_params.scaler_taps.h_taps_c;
pipes[pipe_cnt].dout.wb.wb_vtaps_chroma = wb_info->dwb_params.scaler_taps.v_taps_c;
pipes[pipe_cnt].dout.wb.wb_hratio = 1.0;
pipes[pipe_cnt].dout.wb.wb_vratio = 1.0;
if (wb_info->dwb_params.out_format == dwb_scaler_mode_yuv420) {
if (wb_info->dwb_params.output_depth == DWB_OUTPUT_PIXEL_DEPTH_8BPC)
pipes[pipe_cnt].dout.wb.wb_pixel_format = dm_420_8;
else
pipes[pipe_cnt].dout.wb.wb_pixel_format = dm_420_10;
} else
pipes[pipe_cnt].dout.wb.wb_pixel_format = dm_444_32;
pipe_cnt++;
}
}
int dcn20_populate_dml_pipes_from_context(
struct dc *dc, struct resource_context *res_ctx, display_e2e_pipe_params_st *pipes)
{
int pipe_cnt, i;
bool synchronized_vblank = true;
for (i = 0, pipe_cnt = -1; i < dc->res_pool->pipe_count; i++) {
if (!res_ctx->pipe_ctx[i].stream)
continue;
if (pipe_cnt < 0) {
pipe_cnt = i;
continue;
}
if (!resource_are_streams_timing_synchronizable(
res_ctx->pipe_ctx[pipe_cnt].stream,
res_ctx->pipe_ctx[i].stream)) {
synchronized_vblank = false;
break;
}
}
for (i = 0, pipe_cnt = 0; i < dc->res_pool->pipe_count; i++) {
struct dc_crtc_timing *timing = &res_ctx->pipe_ctx[i].stream->timing;
struct dc_link *link;
if (!res_ctx->pipe_ctx[i].stream)
continue;
/* todo:
pipes[pipe_cnt].pipe.src.dynamic_metadata_enable = 0;
pipes[pipe_cnt].pipe.src.dcc = 0;
pipes[pipe_cnt].pipe.src.vm = 0;*/
if (res_ctx->pipe_ctx[i].stream->use_dynamic_meta) {
pipes[pipe_cnt].pipe.src.dynamic_metadata_enable = true;
/* 1/2 vblank */
pipes[pipe_cnt].pipe.src.dynamic_metadata_lines_before_active =
(timing->v_total - timing->v_addressable
- timing->v_border_top - timing->v_border_bottom) / 2;
/* 36 bytes dp, 32 hdmi */
pipes[pipe_cnt].pipe.src.dynamic_metadata_xmit_bytes =
dc_is_dp_signal(res_ctx->pipe_ctx[i].stream->signal) ? 36 : 32;
}
pipes[pipe_cnt].pipe.src.dcc = false;
pipes[pipe_cnt].pipe.src.dcc_rate = 1;
pipes[pipe_cnt].pipe.dest.synchronized_vblank_all_planes = synchronized_vblank;
pipes[pipe_cnt].pipe.dest.hblank_start = timing->h_total - timing->h_front_porch;
pipes[pipe_cnt].pipe.dest.hblank_end = pipes[pipe_cnt].pipe.dest.hblank_start
- timing->h_addressable
- timing->h_border_left
- timing->h_border_right;
pipes[pipe_cnt].pipe.dest.vblank_start = timing->v_total - timing->v_front_porch;
pipes[pipe_cnt].pipe.dest.vblank_end = pipes[pipe_cnt].pipe.dest.vblank_start
- timing->v_addressable
- timing->v_border_top
- timing->v_border_bottom;
pipes[pipe_cnt].pipe.dest.htotal = timing->h_total;
pipes[pipe_cnt].pipe.dest.vtotal = timing->v_total;
pipes[pipe_cnt].pipe.dest.hactive = timing->h_addressable;
pipes[pipe_cnt].pipe.dest.vactive = timing->v_addressable;
pipes[pipe_cnt].pipe.dest.interlaced = timing->flags.INTERLACE;
pipes[pipe_cnt].pipe.dest.pixel_rate_mhz = timing->pix_clk_100hz/10000.0;
if (timing->timing_3d_format == TIMING_3D_FORMAT_HW_FRAME_PACKING)
pipes[pipe_cnt].pipe.dest.pixel_rate_mhz *= 2;
pipes[pipe_cnt].pipe.dest.otg_inst = res_ctx->pipe_ctx[i].stream_res.tg->inst;
link = res_ctx->pipe_ctx[i].stream->link;
if (link->cur_link_settings.lane_count != LANE_COUNT_UNKNOWN) {
pipes[pipe_cnt].dout.dp_lanes = link->cur_link_settings.lane_count;
} else if (link->verified_link_cap.lane_count != LANE_COUNT_UNKNOWN) {
pipes[pipe_cnt].dout.dp_lanes = link->verified_link_cap.lane_count;
} else {
/* Unknown link capabilities, so assume max */
pipes[pipe_cnt].dout.dp_lanes = 4;
}
pipes[pipe_cnt].dout.output_bpp = res_ctx->pipe_ctx[i].stream->timing.display_color_depth;
switch (res_ctx->pipe_ctx[i].stream->signal) {
case SIGNAL_TYPE_DISPLAY_PORT_MST:
case SIGNAL_TYPE_DISPLAY_PORT:
pipes[pipe_cnt].dout.output_type = dm_dp;
break;
case SIGNAL_TYPE_EDP:
pipes[pipe_cnt].dout.output_type = dm_edp;
break;
case SIGNAL_TYPE_HDMI_TYPE_A:
case SIGNAL_TYPE_DVI_SINGLE_LINK:
case SIGNAL_TYPE_DVI_DUAL_LINK:
pipes[pipe_cnt].dout.output_type = dm_hdmi;
break;
default:
/* In case there is no signal, set dp with 4 lanes to allow max config */
pipes[pipe_cnt].dout.output_type = dm_dp;
pipes[pipe_cnt].dout.dp_lanes = 4;
}
switch (res_ctx->pipe_ctx[i].stream->timing.pixel_encoding) {
case PIXEL_ENCODING_RGB:
case PIXEL_ENCODING_YCBCR444:
pipes[pipe_cnt].dout.output_format = dm_444;
break;
case PIXEL_ENCODING_YCBCR420:
pipes[pipe_cnt].dout.output_format = dm_420;
break;
case PIXEL_ENCODING_YCBCR422:
if (true) /* todo */
pipes[pipe_cnt].dout.output_format = dm_s422;
else
pipes[pipe_cnt].dout.output_format = dm_n422;
break;
default:
pipes[pipe_cnt].dout.output_format = dm_444;
}
pipes[pipe_cnt].pipe.src.hsplit_grp = res_ctx->pipe_ctx[i].pipe_idx;
if (res_ctx->pipe_ctx[i].top_pipe && res_ctx->pipe_ctx[i].top_pipe->plane_state
== res_ctx->pipe_ctx[i].plane_state)
pipes[pipe_cnt].pipe.src.hsplit_grp = res_ctx->pipe_ctx[i].top_pipe->pipe_idx;
/* todo: default max for now, until there is logic reflecting this in dc*/
pipes[pipe_cnt].dout.output_bpc = 12;
/*
* Use max cursor settings for calculations to minimize
* bw calculations due to cursor on/off
*/
pipes[pipe_cnt].pipe.src.num_cursors = 2;
pipes[pipe_cnt].pipe.src.cur0_src_width = 128;
pipes[pipe_cnt].pipe.src.cur0_bpp = dm_cur_64bit;
pipes[pipe_cnt].pipe.src.cur1_src_width = 128;
pipes[pipe_cnt].pipe.src.cur1_bpp = dm_cur_64bit;
if (!res_ctx->pipe_ctx[i].plane_state) {
pipes[pipe_cnt].pipe.src.source_scan = dm_horz;
pipes[pipe_cnt].pipe.src.sw_mode = dm_sw_linear;
pipes[pipe_cnt].pipe.src.macro_tile_size = dm_64k_tile;
pipes[pipe_cnt].pipe.src.viewport_width = timing->h_addressable;
if (pipes[pipe_cnt].pipe.src.viewport_width > 1920)
pipes[pipe_cnt].pipe.src.viewport_width = 1920;
pipes[pipe_cnt].pipe.src.viewport_height = timing->v_addressable;
if (pipes[pipe_cnt].pipe.src.viewport_height > 1080)
pipes[pipe_cnt].pipe.src.viewport_height = 1080;
pipes[pipe_cnt].pipe.src.data_pitch = ((pipes[pipe_cnt].pipe.src.viewport_width + 63) / 64) * 64; /* linear sw only */
pipes[pipe_cnt].pipe.src.source_format = dm_444_32;
pipes[pipe_cnt].pipe.dest.recout_width = pipes[pipe_cnt].pipe.src.viewport_width; /*vp_width/hratio*/
pipes[pipe_cnt].pipe.dest.recout_height = pipes[pipe_cnt].pipe.src.viewport_height; /*vp_height/vratio*/
pipes[pipe_cnt].pipe.dest.full_recout_width = pipes[pipe_cnt].pipe.dest.recout_width; /*when is_hsplit != 1*/
pipes[pipe_cnt].pipe.dest.full_recout_height = pipes[pipe_cnt].pipe.dest.recout_height; /*when is_hsplit != 1*/
pipes[pipe_cnt].pipe.scale_ratio_depth.lb_depth = dm_lb_16;
pipes[pipe_cnt].pipe.scale_ratio_depth.hscl_ratio = 1.0;
pipes[pipe_cnt].pipe.scale_ratio_depth.vscl_ratio = 1.0;
pipes[pipe_cnt].pipe.scale_ratio_depth.scl_enable = 0; /*Lb only or Full scl*/
pipes[pipe_cnt].pipe.scale_taps.htaps = 1;
pipes[pipe_cnt].pipe.scale_taps.vtaps = 1;
pipes[pipe_cnt].pipe.src.is_hsplit = 0;
pipes[pipe_cnt].pipe.dest.odm_combine = 0;
} else {
struct dc_plane_state *pln = res_ctx->pipe_ctx[i].plane_state;
struct scaler_data *scl = &res_ctx->pipe_ctx[i].plane_res.scl_data;
pipes[pipe_cnt].pipe.src.macro_tile_size =
swizzle_mode_to_macro_tile_size(pln->tiling_info.gfx9.swizzle);
pipes[pipe_cnt].pipe.src.immediate_flip = pln->flip_immediate;
pipes[pipe_cnt].pipe.src.is_hsplit = (res_ctx->pipe_ctx[i].bottom_pipe
&& res_ctx->pipe_ctx[i].bottom_pipe->plane_state == pln)
|| (res_ctx->pipe_ctx[i].top_pipe
&& res_ctx->pipe_ctx[i].top_pipe->plane_state == pln);
pipes[pipe_cnt].pipe.dest.odm_combine = (res_ctx->pipe_ctx[i].bottom_pipe
&& res_ctx->pipe_ctx[i].bottom_pipe->plane_state == pln
&& res_ctx->pipe_ctx[i].bottom_pipe->stream_res.opp
!= res_ctx->pipe_ctx[i].stream_res.opp)
|| (res_ctx->pipe_ctx[i].top_pipe
&& res_ctx->pipe_ctx[i].top_pipe->plane_state == pln
&& res_ctx->pipe_ctx[i].top_pipe->stream_res.opp
!= res_ctx->pipe_ctx[i].stream_res.opp);
pipes[pipe_cnt].pipe.src.source_scan = pln->rotation == ROTATION_ANGLE_90
|| pln->rotation == ROTATION_ANGLE_270 ? dm_vert : dm_horz;
pipes[pipe_cnt].pipe.src.viewport_y_y = scl->viewport.y;
pipes[pipe_cnt].pipe.src.viewport_y_c = scl->viewport_c.y;
pipes[pipe_cnt].pipe.src.viewport_width = scl->viewport.width;
pipes[pipe_cnt].pipe.src.viewport_width_c = scl->viewport_c.width;
pipes[pipe_cnt].pipe.src.viewport_height = scl->viewport.height;
pipes[pipe_cnt].pipe.src.viewport_height_c = scl->viewport_c.height;
if (pln->format >= SURFACE_PIXEL_FORMAT_VIDEO_BEGIN) {
pipes[pipe_cnt].pipe.src.data_pitch = pln->plane_size.video.luma_pitch;
pipes[pipe_cnt].pipe.src.data_pitch_c = pln->plane_size.video.chroma_pitch;
pipes[pipe_cnt].pipe.src.meta_pitch = pln->dcc.video.meta_pitch_l;
pipes[pipe_cnt].pipe.src.meta_pitch_c = pln->dcc.video.meta_pitch_c;
} else {
pipes[pipe_cnt].pipe.src.data_pitch = pln->plane_size.grph.surface_pitch;
pipes[pipe_cnt].pipe.src.meta_pitch = pln->dcc.grph.meta_pitch;
}
pipes[pipe_cnt].pipe.src.dcc = pln->dcc.enable;
pipes[pipe_cnt].pipe.dest.recout_width = scl->recout.width;
pipes[pipe_cnt].pipe.dest.recout_height = scl->recout.height;
pipes[pipe_cnt].pipe.dest.full_recout_width = scl->recout.width;
pipes[pipe_cnt].pipe.dest.full_recout_height = scl->recout.height;
if (res_ctx->pipe_ctx[i].bottom_pipe && res_ctx->pipe_ctx[i].bottom_pipe->plane_state == pln) {
pipes[pipe_cnt].pipe.dest.full_recout_width +=
res_ctx->pipe_ctx[i].bottom_pipe->plane_res.scl_data.recout.width;
pipes[pipe_cnt].pipe.dest.full_recout_height +=
res_ctx->pipe_ctx[i].bottom_pipe->plane_res.scl_data.recout.height;
} else if (res_ctx->pipe_ctx[i].top_pipe && res_ctx->pipe_ctx[i].top_pipe->plane_state == pln) {
pipes[pipe_cnt].pipe.dest.full_recout_width +=
res_ctx->pipe_ctx[i].top_pipe->plane_res.scl_data.recout.width;
pipes[pipe_cnt].pipe.dest.full_recout_height +=
res_ctx->pipe_ctx[i].top_pipe->plane_res.scl_data.recout.height;
}
pipes[pipe_cnt].pipe.scale_ratio_depth.lb_depth = dm_lb_10;
pipes[pipe_cnt].pipe.scale_ratio_depth.hscl_ratio = (double) scl->ratios.horz.value / (1ULL<<32);
pipes[pipe_cnt].pipe.scale_ratio_depth.hscl_ratio_c = (double) scl->ratios.horz_c.value / (1ULL<<32);
pipes[pipe_cnt].pipe.scale_ratio_depth.vscl_ratio = (double) scl->ratios.vert.value / (1ULL<<32);
pipes[pipe_cnt].pipe.scale_ratio_depth.vscl_ratio_c = (double) scl->ratios.vert_c.value / (1ULL<<32);
pipes[pipe_cnt].pipe.scale_ratio_depth.scl_enable =
scl->ratios.vert.value != dc_fixpt_one.value
|| scl->ratios.horz.value != dc_fixpt_one.value
|| scl->ratios.vert_c.value != dc_fixpt_one.value
|| scl->ratios.horz_c.value != dc_fixpt_one.value /*Lb only or Full scl*/
|| dc->debug.always_scale; /*support always scale*/
pipes[pipe_cnt].pipe.scale_taps.htaps = scl->taps.h_taps;
pipes[pipe_cnt].pipe.scale_taps.htaps_c = scl->taps.h_taps_c;
pipes[pipe_cnt].pipe.scale_taps.vtaps = scl->taps.v_taps;
pipes[pipe_cnt].pipe.scale_taps.vtaps_c = scl->taps.v_taps_c;
swizzle_to_dml_params(pln->tiling_info.gfx9.swizzle,
&pipes[pipe_cnt].pipe.src.sw_mode);
switch (pln->format) {
case SURFACE_PIXEL_FORMAT_VIDEO_420_YCbCr:
case SURFACE_PIXEL_FORMAT_VIDEO_420_YCrCb:
pipes[pipe_cnt].pipe.src.source_format = dm_420_8;
break;
case SURFACE_PIXEL_FORMAT_VIDEO_420_10bpc_YCbCr:
case SURFACE_PIXEL_FORMAT_VIDEO_420_10bpc_YCrCb:
pipes[pipe_cnt].pipe.src.source_format = dm_420_10;
break;
case SURFACE_PIXEL_FORMAT_GRPH_ARGB16161616:
case SURFACE_PIXEL_FORMAT_GRPH_ARGB16161616F:
case SURFACE_PIXEL_FORMAT_GRPH_ABGR16161616F:
pipes[pipe_cnt].pipe.src.source_format = dm_444_64;
break;
case SURFACE_PIXEL_FORMAT_GRPH_ARGB1555:
case SURFACE_PIXEL_FORMAT_GRPH_RGB565:
pipes[pipe_cnt].pipe.src.source_format = dm_444_16;
break;
case SURFACE_PIXEL_FORMAT_GRPH_PALETA_256_COLORS:
pipes[pipe_cnt].pipe.src.source_format = dm_444_8;
break;
default:
pipes[pipe_cnt].pipe.src.source_format = dm_444_32;
break;
}
}
pipe_cnt++;
}
/* populate writeback information */
dc->res_pool->funcs->populate_dml_writeback_from_context(dc, res_ctx, pipes);
return pipe_cnt;
}
unsigned int dcn20_calc_max_scaled_time(
unsigned int time_per_pixel,
enum mmhubbub_wbif_mode mode,
unsigned int urgent_watermark)
{
unsigned int time_per_byte = 0;
unsigned int total_y_free_entry = 0x200; /* two memory piece for luma */
unsigned int total_c_free_entry = 0x140; /* two memory piece for chroma */
unsigned int small_free_entry, max_free_entry;
unsigned int buf_lh_capability;
unsigned int max_scaled_time;
if (mode == PACKED_444) /* packed mode */
time_per_byte = time_per_pixel/4;
else if (mode == PLANAR_420_8BPC)
time_per_byte = time_per_pixel;
else if (mode == PLANAR_420_10BPC) /* p010 */
time_per_byte = time_per_pixel * 819/1024;
if (time_per_byte == 0)
time_per_byte = 1;
small_free_entry = (total_y_free_entry > total_c_free_entry) ? total_c_free_entry : total_y_free_entry;
max_free_entry = (mode == PACKED_444) ? total_y_free_entry + total_c_free_entry : small_free_entry;
buf_lh_capability = max_free_entry*time_per_byte*32/16; /* there is 4bit fraction */
max_scaled_time = buf_lh_capability - urgent_watermark;
return max_scaled_time;
}
void dcn20_set_mcif_arb_params(
struct dc *dc,
struct dc_state *context,
display_e2e_pipe_params_st *pipes,
int pipe_cnt)
{
enum mmhubbub_wbif_mode wbif_mode;
struct mcif_arb_params *wb_arb_params;
int i, j, k, dwb_pipe;
/* Writeback MCIF_WB arbitration parameters */
dwb_pipe = 0;
for (i = 0; i < dc->res_pool->pipe_count; i++) {
if (!context->res_ctx.pipe_ctx[i].stream)
continue;
for (j = 0; j < MAX_DWB_PIPES; j++) {
if (context->res_ctx.pipe_ctx[i].stream->writeback_info[j].wb_enabled == false)
continue;
//wb_arb_params = &context->res_ctx.pipe_ctx[i].stream->writeback_info[j].mcif_arb_params;
wb_arb_params = &context->bw_ctx.bw.dcn.bw_writeback.mcif_wb_arb[dwb_pipe];
if (context->res_ctx.pipe_ctx[i].stream->writeback_info[j].dwb_params.out_format == dwb_scaler_mode_yuv420) {
if (context->res_ctx.pipe_ctx[i].stream->writeback_info[j].dwb_params.output_depth == DWB_OUTPUT_PIXEL_DEPTH_8BPC)
wbif_mode = PLANAR_420_8BPC;
else
wbif_mode = PLANAR_420_10BPC;
} else
wbif_mode = PACKED_444;
for (k = 0; k < sizeof(wb_arb_params->cli_watermark)/sizeof(wb_arb_params->cli_watermark[0]); k++) {
wb_arb_params->cli_watermark[k] = get_wm_writeback_urgent(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
wb_arb_params->pstate_watermark[k] = get_wm_writeback_dram_clock_change(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
}
wb_arb_params->time_per_pixel = 16.0 / context->res_ctx.pipe_ctx[i].stream->phy_pix_clk; /* 4 bit fraction, ms */
wb_arb_params->slice_lines = 32;
wb_arb_params->arbitration_slice = 2;
wb_arb_params->max_scaled_time = dcn20_calc_max_scaled_time(wb_arb_params->time_per_pixel,
wbif_mode,
wb_arb_params->cli_watermark[0]); /* assume 4 watermark sets have the same value */
dwb_pipe++;
if (dwb_pipe >= MAX_DWB_PIPES)
return;
}
if (dwb_pipe >= MAX_DWB_PIPES)
return;
}
}
bool dcn20_validate_bandwidth(struct dc *dc, struct dc_state *context)
{
int pipe_cnt, i, pipe_idx, vlevel, vlevel_unsplit;
int pipe_split_from[MAX_PIPES];
bool odm_capable = context->bw_ctx.dml.ip.odm_capable;
bool force_split = false;
int split_threshold = dc->res_pool->pipe_count / 2;
bool avoid_split = dc->debug.pipe_split_policy != MPC_SPLIT_DYNAMIC;
display_e2e_pipe_params_st *pipes = kzalloc(dc->res_pool->pipe_count * sizeof(display_e2e_pipe_params_st), GFP_KERNEL);
ASSERT(pipes);
if (!pipes)
return false;
for (i = 0; i < dc->res_pool->pipe_count; i++) {
struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
struct pipe_ctx *hsplit_pipe = pipe->bottom_pipe;
if (!hsplit_pipe || hsplit_pipe->plane_state != pipe->plane_state)
continue;
/* merge previously split pipe since mode support needs to make the decision */
pipe->bottom_pipe = hsplit_pipe->bottom_pipe;
if (hsplit_pipe->bottom_pipe)
hsplit_pipe->bottom_pipe->top_pipe = pipe;
hsplit_pipe->plane_state = NULL;
hsplit_pipe->stream = NULL;
hsplit_pipe->top_pipe = NULL;
hsplit_pipe->bottom_pipe = NULL;
/* Clear plane_res and stream_res */
memset(&hsplit_pipe->plane_res, 0, sizeof(hsplit_pipe->plane_res));
memset(&hsplit_pipe->stream_res, 0, sizeof(hsplit_pipe->stream_res));
if (pipe->plane_state)
resource_build_scaling_params(pipe);
}
pipe_cnt = dcn20_populate_dml_pipes_from_context(dc, &context->res_ctx, pipes);
if (!pipe_cnt)
goto validate_pass;
context->bw_ctx.dml.ip.odm_capable = 0;
vlevel = dml_get_voltage_level(&context->bw_ctx.dml, pipes, pipe_cnt);
context->bw_ctx.dml.ip.odm_capable = odm_capable;
if (vlevel > context->bw_ctx.dml.soc.num_states && odm_capable)
vlevel = dml_get_voltage_level(&context->bw_ctx.dml, pipes, pipe_cnt);
if (vlevel > context->bw_ctx.dml.soc.num_states)
goto validate_fail;
if ((context->stream_count > split_threshold && dc->current_state->stream_count <= split_threshold)
|| (context->stream_count <= split_threshold && dc->current_state->stream_count > split_threshold))
context->commit_hints.full_update_needed = true;
/*initialize pipe_just_split_from to invalid idx*/
for (i = 0; i < MAX_PIPES; i++)
pipe_split_from[i] = -1;
/* Single display only conditionals get set here */
for (i = 0; i < dc->res_pool->pipe_count; i++) {
struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
bool exit_loop = false;
if (!pipe->stream || pipe->top_pipe)
continue;
if (dc->debug.force_single_disp_pipe_split) {
if (!force_split)
force_split = true;
else {
force_split = false;
exit_loop = true;
}
}
if (dc->debug.pipe_split_policy == MPC_SPLIT_AVOID_MULT_DISP) {
if (avoid_split)
avoid_split = false;
else {
avoid_split = true;
exit_loop = true;
}
}
if (exit_loop)
break;
}
if (context->stream_count > split_threshold)
avoid_split = true;
vlevel_unsplit = vlevel;
for (i = 0, pipe_idx = 0; i < dc->res_pool->pipe_count; i++) {
if (!context->res_ctx.pipe_ctx[i].stream)
continue;
for (; vlevel_unsplit <= context->bw_ctx.dml.soc.num_states; vlevel_unsplit++)
if (context->bw_ctx.dml.vba.NoOfDPP[vlevel_unsplit][0][pipe_idx] == 1)
break;
pipe_idx++;
}
for (i = 0, pipe_idx = -1; i < dc->res_pool->pipe_count; i++) {
struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
struct pipe_ctx *hsplit_pipe = pipe->bottom_pipe;
bool need_split = true;
bool need_split3d;
if (!pipe->stream || pipe_split_from[i] >= 0)
continue;
pipe_idx++;
if (dc->debug.force_odm_combine & (1 << pipe->stream_res.tg->inst)) {
force_split = true;
context->bw_ctx.dml.vba.ODMCombineEnabled[pipe_idx] = true;
context->bw_ctx.dml.vba.ODMCombineEnablePerState[vlevel][pipe_idx] = true;
}
if (force_split && context->bw_ctx.dml.vba.NoOfDPP[vlevel][context->bw_ctx.dml.vba.maxMpcComb][pipe_idx] == 1)
context->bw_ctx.dml.vba.RequiredDPPCLK[vlevel][context->bw_ctx.dml.vba.maxMpcComb][pipe_idx] /= 2;
if (!pipe->top_pipe && !pipe->plane_state && context->bw_ctx.dml.vba.ODMCombineEnabled[pipe_idx]) {
hsplit_pipe = find_idle_secondary_pipe(&context->res_ctx, dc->res_pool, pipe);
ASSERT(hsplit_pipe);
if (!dcn20_split_stream_for_combine(
&context->res_ctx, dc->res_pool,
pipe, hsplit_pipe,
true))
goto validate_fail;
pipe_split_from[hsplit_pipe->pipe_idx] = pipe_idx;
dcn20_build_mapped_resource(dc, context, pipe->stream);
}
if (!pipe->plane_state)
continue;
/* Skip 2nd half of already split pipe */
if (pipe->top_pipe && pipe->plane_state == pipe->top_pipe->plane_state)
continue;
need_split3d = ((pipe->stream->view_format ==
VIEW_3D_FORMAT_SIDE_BY_SIDE ||
pipe->stream->view_format ==
VIEW_3D_FORMAT_TOP_AND_BOTTOM) &&
(pipe->stream->timing.timing_3d_format ==
TIMING_3D_FORMAT_TOP_AND_BOTTOM ||
pipe->stream->timing.timing_3d_format ==
TIMING_3D_FORMAT_SIDE_BY_SIDE));
if (avoid_split && vlevel_unsplit <= context->bw_ctx.dml.soc.num_states && !force_split && !need_split3d) {
need_split = false;
vlevel = vlevel_unsplit;
context->bw_ctx.dml.vba.maxMpcComb = 0;
} else
need_split = context->bw_ctx.dml.vba.NoOfDPP[vlevel][context->bw_ctx.dml.vba.maxMpcComb][pipe_idx];
if (need_split3d || need_split || force_split) {
if (!hsplit_pipe || hsplit_pipe->plane_state != pipe->plane_state) {
/* pipe not split previously needs split */
hsplit_pipe = find_idle_secondary_pipe(&context->res_ctx, dc->res_pool, pipe);
ASSERT(hsplit_pipe || force_split);
if (!hsplit_pipe)
continue;
if (!dcn20_split_stream_for_combine(
&context->res_ctx, dc->res_pool,
pipe, hsplit_pipe,
context->bw_ctx.dml.vba.ODMCombineEnabled[pipe_idx]))
goto validate_fail;
pipe_split_from[hsplit_pipe->pipe_idx] = pipe_idx;
}
} else if (hsplit_pipe && hsplit_pipe->plane_state != pipe->plane_state) {
/* We do not support mpo + odm at the moment */
if (context->bw_ctx.dml.vba.ODMCombineEnabled[pipe_idx])
goto validate_fail;
} else if (hsplit_pipe) {
/* merge should already have been done */
ASSERT(0);
}
}
for (i = 0, pipe_idx = 0, pipe_cnt = 0; i < dc->res_pool->pipe_count; i++) {
if (!context->res_ctx.pipe_ctx[i].stream)
continue;
pipes[pipe_cnt].clks_cfg.refclk_mhz = dc->res_pool->ref_clocks.dchub_ref_clock_inKhz / 1000.0;
pipes[pipe_cnt].clks_cfg.dispclk_mhz = context->bw_ctx.dml.vba.RequiredDISPCLK[vlevel][context->bw_ctx.dml.vba.maxMpcComb];
if (pipe_split_from[i] < 0) {
pipes[pipe_cnt].clks_cfg.dppclk_mhz =
context->bw_ctx.dml.vba.RequiredDPPCLK[vlevel][context->bw_ctx.dml.vba.maxMpcComb][pipe_idx];
if (context->bw_ctx.dml.vba.BlendingAndTiming[pipe_idx] == pipe_idx)
pipes[pipe_cnt].pipe.dest.odm_combine =
context->bw_ctx.dml.vba.ODMCombineEnablePerState[vlevel][pipe_idx];
else
pipes[pipe_cnt].pipe.dest.odm_combine = 0;
pipe_idx++;
} else {
pipes[pipe_cnt].clks_cfg.dppclk_mhz =
context->bw_ctx.dml.vba.RequiredDPPCLK[vlevel][context->bw_ctx.dml.vba.maxMpcComb][pipe_split_from[i]];
if (context->bw_ctx.dml.vba.BlendingAndTiming[pipe_split_from[i]] == pipe_split_from[i])
pipes[pipe_cnt].pipe.dest.odm_combine =
context->bw_ctx.dml.vba.ODMCombineEnablePerState[vlevel][pipe_split_from[i]];
else
pipes[pipe_cnt].pipe.dest.odm_combine = 0;
}
pipe_cnt++;
}
if (pipe_cnt != pipe_idx)
pipe_cnt = dcn20_populate_dml_pipes_from_context(dc, &context->res_ctx, pipes);
/* only pipe 0 is read for voltage and dcf/soc clocks */
if (vlevel < 1) {
pipes[0].clks_cfg.voltage = 1;
pipes[0].clks_cfg.dcfclk_mhz = context->bw_ctx.dml.soc.clock_limits[1].dcfclk_mhz;
pipes[0].clks_cfg.socclk_mhz = context->bw_ctx.dml.soc.clock_limits[1].socclk_mhz;
}
context->bw_ctx.bw.dcn.watermarks.b.urgent_ns = get_wm_urgent(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
context->bw_ctx.bw.dcn.watermarks.b.cstate_pstate.cstate_enter_plus_exit_ns = get_wm_stutter_enter_exit(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
context->bw_ctx.bw.dcn.watermarks.b.cstate_pstate.cstate_exit_ns = get_wm_stutter_exit(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
context->bw_ctx.bw.dcn.watermarks.b.cstate_pstate.pstate_change_ns = get_wm_dram_clock_change(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
context->bw_ctx.bw.dcn.watermarks.b.pte_meta_urgent_ns = get_wm_memory_trip(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
if (vlevel < 2) {
pipes[0].clks_cfg.voltage = 2;
pipes[0].clks_cfg.dcfclk_mhz = context->bw_ctx.dml.soc.clock_limits[2].dcfclk_mhz;
pipes[0].clks_cfg.socclk_mhz = context->bw_ctx.dml.soc.clock_limits[2].socclk_mhz;
}
context->bw_ctx.bw.dcn.watermarks.c.urgent_ns = get_wm_urgent(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
context->bw_ctx.bw.dcn.watermarks.c.cstate_pstate.cstate_enter_plus_exit_ns = get_wm_stutter_enter_exit(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
context->bw_ctx.bw.dcn.watermarks.c.cstate_pstate.cstate_exit_ns = get_wm_stutter_exit(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
context->bw_ctx.bw.dcn.watermarks.c.cstate_pstate.pstate_change_ns = get_wm_dram_clock_change(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
context->bw_ctx.bw.dcn.watermarks.c.pte_meta_urgent_ns = get_wm_memory_trip(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
if (vlevel < 3) {
pipes[0].clks_cfg.voltage = 3;
pipes[0].clks_cfg.dcfclk_mhz = context->bw_ctx.dml.soc.clock_limits[2].dcfclk_mhz;
pipes[0].clks_cfg.socclk_mhz = context->bw_ctx.dml.soc.clock_limits[2].socclk_mhz;
}
context->bw_ctx.bw.dcn.watermarks.d.urgent_ns = get_wm_urgent(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
context->bw_ctx.bw.dcn.watermarks.d.cstate_pstate.cstate_enter_plus_exit_ns = get_wm_stutter_enter_exit(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
context->bw_ctx.bw.dcn.watermarks.d.cstate_pstate.cstate_exit_ns = get_wm_stutter_exit(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
context->bw_ctx.bw.dcn.watermarks.d.cstate_pstate.pstate_change_ns = get_wm_dram_clock_change(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
context->bw_ctx.bw.dcn.watermarks.d.pte_meta_urgent_ns = get_wm_memory_trip(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
pipes[0].clks_cfg.voltage = vlevel;
pipes[0].clks_cfg.dcfclk_mhz = context->bw_ctx.dml.soc.clock_limits[vlevel].dcfclk_mhz;
pipes[0].clks_cfg.socclk_mhz = context->bw_ctx.dml.soc.clock_limits[vlevel].socclk_mhz;
context->bw_ctx.bw.dcn.watermarks.a.urgent_ns = get_wm_urgent(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
context->bw_ctx.bw.dcn.watermarks.a.cstate_pstate.cstate_enter_plus_exit_ns = get_wm_stutter_enter_exit(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
context->bw_ctx.bw.dcn.watermarks.a.cstate_pstate.cstate_exit_ns = get_wm_stutter_exit(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
context->bw_ctx.bw.dcn.watermarks.a.cstate_pstate.pstate_change_ns = get_wm_dram_clock_change(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
context->bw_ctx.bw.dcn.watermarks.a.pte_meta_urgent_ns = get_wm_memory_trip(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
/* Writeback MCIF_WB arbitration parameters */
dc->res_pool->funcs->set_mcif_arb_params(dc, context, pipes, pipe_cnt);
context->bw_ctx.bw.dcn.clk.dispclk_khz = context->bw_ctx.dml.vba.DISPCLK * 1000;
context->bw_ctx.bw.dcn.clk.dcfclk_khz = context->bw_ctx.dml.vba.DCFCLK * 1000;
context->bw_ctx.bw.dcn.clk.socclk_khz = context->bw_ctx.dml.vba.SOCCLK * 1000;
context->bw_ctx.bw.dcn.clk.dramclk_khz = context->bw_ctx.dml.vba.DRAMSpeed * 1000;
context->bw_ctx.bw.dcn.clk.dcfclk_deep_sleep_khz = context->bw_ctx.dml.vba.DCFCLKDeepSleep * 1000;
context->bw_ctx.bw.dcn.clk.fclk_khz = context->bw_ctx.dml.vba.FabricClock * 1000;
context->bw_ctx.bw.dcn.clk.p_state_change_support =
context->bw_ctx.dml.vba.DRAMClockChangeSupport[vlevel][context->bw_ctx.dml.vba.maxMpcComb]
!= dm_dram_clock_change_unsupported;
context->bw_ctx.bw.dcn.clk.dppclk_khz = 0;
for (i = 0, pipe_idx = 0; i < dc->res_pool->pipe_count; i++) {
if (!context->res_ctx.pipe_ctx[i].stream)
continue;
pipes[pipe_idx].pipe.dest.vstartup_start = context->bw_ctx.dml.vba.VStartup[pipe_idx];
pipes[pipe_idx].pipe.dest.vupdate_offset = context->bw_ctx.dml.vba.VUpdateOffsetPix[pipe_idx];
pipes[pipe_idx].pipe.dest.vupdate_width = context->bw_ctx.dml.vba.VUpdateWidthPix[pipe_idx];
pipes[pipe_idx].pipe.dest.vready_offset = context->bw_ctx.dml.vba.VReadyOffsetPix[pipe_idx];
if (context->bw_ctx.bw.dcn.clk.dppclk_khz < pipes[pipe_idx].clks_cfg.dppclk_mhz * 1000)
context->bw_ctx.bw.dcn.clk.dppclk_khz = pipes[pipe_idx].clks_cfg.dppclk_mhz * 1000;
context->res_ctx.pipe_ctx[i].plane_res.bw.dppclk_khz =
pipes[pipe_idx].clks_cfg.dppclk_mhz * 1000;
context->res_ctx.pipe_ctx[i].pipe_dlg_param = pipes[pipe_idx].pipe.dest;
pipe_idx++;
}
for (i = 0, pipe_idx = 0; i < dc->res_pool->pipe_count; i++) {
bool cstate_en = context->bw_ctx.dml.vba.PrefetchMode[vlevel][context->bw_ctx.dml.vba.maxMpcComb] != 2;
if (!context->res_ctx.pipe_ctx[i].stream)
continue;
context->bw_ctx.dml.funcs.rq_dlg_get_dlg_reg(&context->bw_ctx.dml,
&context->res_ctx.pipe_ctx[i].dlg_regs,
&context->res_ctx.pipe_ctx[i].ttu_regs,
pipes,
pipe_cnt,
pipe_idx,
cstate_en,
context->bw_ctx.bw.dcn.clk.p_state_change_support);
context->bw_ctx.dml.funcs.rq_dlg_get_rq_reg(&context->bw_ctx.dml,
&context->res_ctx.pipe_ctx[i].rq_regs,
pipes[pipe_idx].pipe);
pipe_idx++;
}
validate_pass:
kfree(pipes);
return true;
validate_fail:
kfree(pipes);
return false;
}
enum dc_status dcn20_validate_global(struct dc *dc, struct dc_state *new_ctx)
{
enum dc_status result = DC_OK;
int i, j;
/* Validate DSC */
for (i = 0; i < new_ctx->stream_count; i++) {
struct dc_stream_state *stream = new_ctx->streams[i];
for (j = 0; j < dc->res_pool->pipe_count; j++) {
struct pipe_ctx *pipe_ctx = &new_ctx->res_ctx.pipe_ctx[j];
if (pipe_ctx->stream != stream)
continue;
}
}
return result;
}
struct pipe_ctx *dcn20_acquire_idle_pipe_for_layer(
struct dc_state *state,
const struct resource_pool *pool,
struct dc_stream_state *stream)
{
struct resource_context *res_ctx = &state->res_ctx;
struct pipe_ctx *head_pipe = resource_get_head_pipe_for_stream(res_ctx, stream);
struct pipe_ctx *idle_pipe = find_idle_secondary_pipe(res_ctx, pool, head_pipe);
if (!head_pipe)
ASSERT(0);
if (!idle_pipe)
return false;
idle_pipe->stream = head_pipe->stream;
idle_pipe->stream_res.tg = head_pipe->stream_res.tg;
idle_pipe->stream_res.opp = head_pipe->stream_res.opp;
idle_pipe->plane_res.hubp = pool->hubps[idle_pipe->pipe_idx];
idle_pipe->plane_res.ipp = pool->ipps[idle_pipe->pipe_idx];
idle_pipe->plane_res.dpp = pool->dpps[idle_pipe->pipe_idx];
idle_pipe->plane_res.mpcc_inst = pool->dpps[idle_pipe->pipe_idx]->inst;
return idle_pipe;
}
bool dcn20_get_dcc_compression_cap(const struct dc *dc,
const struct dc_dcc_surface_param *input,
struct dc_surface_dcc_cap *output)
{
return dc->res_pool->hubbub->funcs->get_dcc_compression_cap(
dc->res_pool->hubbub,
input,
output);
}
static void dcn20_destroy_resource_pool(struct resource_pool **pool)
{
struct dcn20_resource_pool *dcn20_pool = TO_DCN20_RES_POOL(*pool);
destruct(dcn20_pool);
kfree(dcn20_pool);
*pool = NULL;
}
static struct dc_cap_funcs cap_funcs = {
.get_dcc_compression_cap = dcn20_get_dcc_compression_cap
};
enum dc_status dcn20_get_default_swizzle_mode(struct dc_plane_state *plane_state)
{
enum dc_status result = DC_OK;
enum surface_pixel_format surf_pix_format = plane_state->format;
unsigned int bpp = resource_pixel_format_to_bpp(surf_pix_format);
enum swizzle_mode_values swizzle = DC_SW_LINEAR;
if (bpp == 64)
swizzle = DC_SW_64KB_D;
else
swizzle = DC_SW_64KB_S;
plane_state->tiling_info.gfx9.swizzle = swizzle;
return result;
}
static struct resource_funcs dcn20_res_pool_funcs = {
.destroy = dcn20_destroy_resource_pool,
.link_enc_create = dcn20_link_encoder_create,
.validate_bandwidth = dcn20_validate_bandwidth,
.validate_global = dcn20_validate_global,
.acquire_idle_pipe_for_layer = dcn20_acquire_idle_pipe_for_layer,
.add_stream_to_ctx = dcn20_add_stream_to_ctx,
.remove_stream_from_ctx = dcn20_remove_stream_from_ctx,
.populate_dml_writeback_from_context = dcn20_populate_dml_writeback_from_context,
.get_default_swizzle_mode = dcn20_get_default_swizzle_mode,
.set_mcif_arb_params = dcn20_set_mcif_arb_params
};
struct pp_smu_funcs *dcn20_pp_smu_create(struct dc_context *ctx)
{
struct pp_smu_funcs *pp_smu = kzalloc(sizeof(*pp_smu), GFP_KERNEL);
if (!pp_smu)
return pp_smu;
dm_pp_get_funcs(ctx, pp_smu);
if (pp_smu->ctx.ver != PP_SMU_VER_NV)
pp_smu = memset(pp_smu, 0, sizeof(struct pp_smu_funcs));
return pp_smu;
}
void dcn20_pp_smu_destroy(struct pp_smu_funcs **pp_smu)
{
if (pp_smu && *pp_smu) {
kfree(*pp_smu);
*pp_smu = NULL;
}
}
static void cap_soc_clocks(
struct _vcs_dpi_soc_bounding_box_st *bb,
struct pp_smu_nv_clock_table max_clocks)
{
int i;
// First pass - cap all clocks higher than the reported max
for (i = 0; i < bb->num_states; i++) {
if ((bb->clock_limits[i].dcfclk_mhz > (max_clocks.dcfClockInKhz / 1000))
&& max_clocks.dcfClockInKhz != 0)
bb->clock_limits[i].dcfclk_mhz = (max_clocks.dcfClockInKhz / 1000);
if ((bb->clock_limits[i].dram_speed_mts > (max_clocks.uClockInKhz / 1000) * 16)
&& max_clocks.uClockInKhz != 0)
bb->clock_limits[i].dram_speed_mts = (max_clocks.uClockInKhz / 1000) * 16;
if ((bb->clock_limits[i].fabricclk_mhz > (max_clocks.fabricClockInKhz / 1000))
&& max_clocks.fabricClockInKhz != 0)
bb->clock_limits[i].fabricclk_mhz = (max_clocks.fabricClockInKhz / 1000);
if ((bb->clock_limits[i].dispclk_mhz > (max_clocks.displayClockInKhz / 1000))
&& max_clocks.displayClockInKhz != 0)
bb->clock_limits[i].dispclk_mhz = (max_clocks.displayClockInKhz / 1000);
if ((bb->clock_limits[i].dppclk_mhz > (max_clocks.dppClockInKhz / 1000))
&& max_clocks.dppClockInKhz != 0)
bb->clock_limits[i].dppclk_mhz = (max_clocks.dppClockInKhz / 1000);
if ((bb->clock_limits[i].phyclk_mhz > (max_clocks.phyClockInKhz / 1000))
&& max_clocks.phyClockInKhz != 0)
bb->clock_limits[i].phyclk_mhz = (max_clocks.phyClockInKhz / 1000);
if ((bb->clock_limits[i].socclk_mhz > (max_clocks.socClockInKhz / 1000))
&& max_clocks.socClockInKhz != 0)
bb->clock_limits[i].socclk_mhz = (max_clocks.socClockInKhz / 1000);
if ((bb->clock_limits[i].dscclk_mhz > (max_clocks.dscClockInKhz / 1000))
&& max_clocks.dscClockInKhz != 0)
bb->clock_limits[i].dscclk_mhz = (max_clocks.dscClockInKhz / 1000);
}
// Second pass - remove all duplicate clock states
for (i = bb->num_states - 1; i > 1; i--) {
bool duplicate = true;
if (bb->clock_limits[i-1].dcfclk_mhz != bb->clock_limits[i].dcfclk_mhz)
duplicate = false;
if (bb->clock_limits[i-1].dispclk_mhz != bb->clock_limits[i].dispclk_mhz)
duplicate = false;
if (bb->clock_limits[i-1].dppclk_mhz != bb->clock_limits[i].dppclk_mhz)
duplicate = false;
if (bb->clock_limits[i-1].dram_speed_mts != bb->clock_limits[i].dram_speed_mts)
duplicate = false;
if (bb->clock_limits[i-1].dscclk_mhz != bb->clock_limits[i].dscclk_mhz)
duplicate = false;
if (bb->clock_limits[i-1].fabricclk_mhz != bb->clock_limits[i].fabricclk_mhz)
duplicate = false;
if (bb->clock_limits[i-1].phyclk_mhz != bb->clock_limits[i].phyclk_mhz)
duplicate = false;
if (bb->clock_limits[i-1].socclk_mhz != bb->clock_limits[i].socclk_mhz)
duplicate = false;
if (duplicate)
bb->num_states--;
}
}
static void update_bounding_box(struct dc *dc, struct _vcs_dpi_soc_bounding_box_st *bb,
struct pp_smu_nv_clock_table *max_clocks, unsigned int *uclk_states, unsigned int num_states)
{
struct _vcs_dpi_voltage_scaling_st calculated_states[MAX_CLOCK_LIMIT_STATES] = {0};
int i, j;
int num_calculated_states = 0;
if (num_states == 0)
return;
for (i = 0; i < num_states; i++) {
// Find lowest pre-silicon DPM that has equal or higher uCLK
for (j = 0; j < bb->num_states; j++) {
if (bb->clock_limits[j].dram_speed_mts * 1000 / 16 >= uclk_states[i])
break;
}
// If for some reason the available uCLK is higher than all pre-silicon'
// DPM targets, then we just use the highest one
if (j >= bb->num_states)
j = bb->num_states;
// Copy that state
memcpy(&calculated_states[num_calculated_states], &bb->clock_limits[j],
sizeof(calculated_states[num_calculated_states]));
// Cap uClk to actual
calculated_states[num_calculated_states].dram_speed_mts = uclk_states[i] * 16 / 1000;
// Phy clock can be set to max for all states, since there's nothing to optimize
// for spreadsheet and we request voltage for phy clock by frequency anyway
calculated_states[num_calculated_states].phyclk_mhz = max_clocks->phyClockInKhz / 1000;
calculated_states[num_calculated_states].state = num_calculated_states;
num_calculated_states++;
}
if (max_clocks->dcfClockInKhz > 0)
calculated_states[num_calculated_states - 1].dcfclk_mhz = max_clocks->dcfClockInKhz / 1000;
if (max_clocks->displayClockInKhz > 0) {
calculated_states[num_calculated_states - 1].dispclk_mhz = max_clocks->displayClockInKhz / 1000;
calculated_states[num_calculated_states - 1].dppclk_mhz = max_clocks->displayClockInKhz / 1000;
// DSC always runs at 1/3 of disp clock
calculated_states[num_calculated_states - 1].dscclk_mhz = max_clocks->displayClockInKhz / (1000 * 3);
}
if (max_clocks->socClockInKhz > 0)
calculated_states[num_calculated_states - 1].socclk_mhz = max_clocks->socClockInKhz / 1000;
memcpy(bb->clock_limits, calculated_states, sizeof(bb->clock_limits));
bb->num_states = num_calculated_states;
}
static void patch_bounding_box(struct dc *dc, struct _vcs_dpi_soc_bounding_box_st *bb)
{
kernel_fpu_begin();
if ((int)(bb->sr_exit_time_us * 1000) != dc->bb_overrides.sr_exit_time_ns
&& dc->bb_overrides.sr_exit_time_ns) {
bb->sr_exit_time_us = dc->bb_overrides.sr_exit_time_ns / 1000.0;
}
if ((int)(bb->sr_enter_plus_exit_time_us * 1000)
!= dc->bb_overrides.sr_enter_plus_exit_time_ns
&& dc->bb_overrides.sr_enter_plus_exit_time_ns) {
bb->sr_enter_plus_exit_time_us =
dc->bb_overrides.sr_enter_plus_exit_time_ns / 1000.0;
}
if ((int)(bb->urgent_latency_us * 1000) != dc->bb_overrides.urgent_latency_ns
&& dc->bb_overrides.urgent_latency_ns) {
bb->urgent_latency_us = dc->bb_overrides.urgent_latency_ns / 1000.0;
}
if ((int)(bb->dram_clock_change_latency_us * 1000)
!= dc->bb_overrides.dram_clock_change_latency_ns
&& dc->bb_overrides.dram_clock_change_latency_ns) {
bb->dram_clock_change_latency_us =
dc->bb_overrides.dram_clock_change_latency_ns / 1000.0;
}
kernel_fpu_end();
}
#define fixed16_to_double(x) (((double) x) / ((double) (1 << 16)))
#define fixed16_to_double_to_cpu(x) fixed16_to_double(le32_to_cpu(x))
static bool init_soc_bounding_box(struct dc *dc,
struct dcn20_resource_pool *pool)
{
const struct gpu_info_soc_bounding_box_v1_0 *bb = dc->soc_bounding_box;
DC_LOGGER_INIT(dc->ctx->logger);
if (!bb && !SOC_BOUNDING_BOX_VALID) {
DC_LOG_ERROR("%s: not valid soc bounding box/n", __func__);
return false;
}
if (bb && !SOC_BOUNDING_BOX_VALID) {
int i;
dcn2_0_soc.sr_exit_time_us =
fixed16_to_double_to_cpu(bb->sr_exit_time_us);
dcn2_0_soc.sr_enter_plus_exit_time_us =
fixed16_to_double_to_cpu(bb->sr_enter_plus_exit_time_us);
dcn2_0_soc.urgent_latency_us =
fixed16_to_double_to_cpu(bb->urgent_latency_us);
dcn2_0_soc.urgent_latency_pixel_data_only_us =
fixed16_to_double_to_cpu(bb->urgent_latency_pixel_data_only_us);
dcn2_0_soc.urgent_latency_pixel_mixed_with_vm_data_us =
fixed16_to_double_to_cpu(bb->urgent_latency_pixel_mixed_with_vm_data_us);
dcn2_0_soc.urgent_latency_vm_data_only_us =
fixed16_to_double_to_cpu(bb->urgent_latency_vm_data_only_us);
dcn2_0_soc.urgent_out_of_order_return_per_channel_pixel_only_bytes =
le32_to_cpu(bb->urgent_out_of_order_return_per_channel_pixel_only_bytes);
dcn2_0_soc.urgent_out_of_order_return_per_channel_pixel_and_vm_bytes =
le32_to_cpu(bb->urgent_out_of_order_return_per_channel_pixel_and_vm_bytes);
dcn2_0_soc.urgent_out_of_order_return_per_channel_vm_only_bytes =
le32_to_cpu(bb->urgent_out_of_order_return_per_channel_vm_only_bytes);
dcn2_0_soc.pct_ideal_dram_sdp_bw_after_urgent_pixel_only =
fixed16_to_double_to_cpu(bb->pct_ideal_dram_sdp_bw_after_urgent_pixel_only);
dcn2_0_soc.pct_ideal_dram_sdp_bw_after_urgent_pixel_and_vm =
fixed16_to_double_to_cpu(bb->pct_ideal_dram_sdp_bw_after_urgent_pixel_and_vm);
dcn2_0_soc.pct_ideal_dram_sdp_bw_after_urgent_vm_only =
fixed16_to_double_to_cpu(bb->pct_ideal_dram_sdp_bw_after_urgent_vm_only);
dcn2_0_soc.max_avg_sdp_bw_use_normal_percent =
fixed16_to_double_to_cpu(bb->max_avg_sdp_bw_use_normal_percent);
dcn2_0_soc.max_avg_dram_bw_use_normal_percent =
fixed16_to_double_to_cpu(bb->max_avg_dram_bw_use_normal_percent);
dcn2_0_soc.writeback_latency_us =
fixed16_to_double_to_cpu(bb->writeback_latency_us);
dcn2_0_soc.ideal_dram_bw_after_urgent_percent =
fixed16_to_double_to_cpu(bb->ideal_dram_bw_after_urgent_percent);
dcn2_0_soc.max_request_size_bytes =
le32_to_cpu(bb->max_request_size_bytes);
dcn2_0_soc.dram_channel_width_bytes =
le32_to_cpu(bb->dram_channel_width_bytes);
dcn2_0_soc.fabric_datapath_to_dcn_data_return_bytes =
le32_to_cpu(bb->fabric_datapath_to_dcn_data_return_bytes);
dcn2_0_soc.dcn_downspread_percent =
fixed16_to_double_to_cpu(bb->dcn_downspread_percent);
dcn2_0_soc.downspread_percent =
fixed16_to_double_to_cpu(bb->downspread_percent);
dcn2_0_soc.dram_page_open_time_ns =
fixed16_to_double_to_cpu(bb->dram_page_open_time_ns);
dcn2_0_soc.dram_rw_turnaround_time_ns =
fixed16_to_double_to_cpu(bb->dram_rw_turnaround_time_ns);
dcn2_0_soc.dram_return_buffer_per_channel_bytes =
le32_to_cpu(bb->dram_return_buffer_per_channel_bytes);
dcn2_0_soc.round_trip_ping_latency_dcfclk_cycles =
le32_to_cpu(bb->round_trip_ping_latency_dcfclk_cycles);
dcn2_0_soc.urgent_out_of_order_return_per_channel_bytes =
le32_to_cpu(bb->urgent_out_of_order_return_per_channel_bytes);
dcn2_0_soc.channel_interleave_bytes =
le32_to_cpu(bb->channel_interleave_bytes);
dcn2_0_soc.num_banks =
le32_to_cpu(bb->num_banks);
dcn2_0_soc.num_chans =
le32_to_cpu(bb->num_chans);
dcn2_0_soc.vmm_page_size_bytes =
le32_to_cpu(bb->vmm_page_size_bytes);
dcn2_0_soc.dram_clock_change_latency_us =
fixed16_to_double_to_cpu(bb->dram_clock_change_latency_us);
dcn2_0_soc.writeback_dram_clock_change_latency_us =
fixed16_to_double_to_cpu(bb->writeback_dram_clock_change_latency_us);
dcn2_0_soc.return_bus_width_bytes =
le32_to_cpu(bb->return_bus_width_bytes);
dcn2_0_soc.dispclk_dppclk_vco_speed_mhz =
le32_to_cpu(bb->dispclk_dppclk_vco_speed_mhz);
dcn2_0_soc.xfc_bus_transport_time_us =
le32_to_cpu(bb->xfc_bus_transport_time_us);
dcn2_0_soc.xfc_xbuf_latency_tolerance_us =
le32_to_cpu(bb->xfc_xbuf_latency_tolerance_us);
dcn2_0_soc.use_urgent_burst_bw =
le32_to_cpu(bb->use_urgent_burst_bw);
dcn2_0_soc.num_states =
le32_to_cpu(bb->num_states);
for (i = 0; i < dcn2_0_soc.num_states; i++) {
dcn2_0_soc.clock_limits[i].state =
le32_to_cpu(bb->clock_limits[i].state);
dcn2_0_soc.clock_limits[i].dcfclk_mhz =
fixed16_to_double_to_cpu(bb->clock_limits[i].dcfclk_mhz);
dcn2_0_soc.clock_limits[i].fabricclk_mhz =
fixed16_to_double_to_cpu(bb->clock_limits[i].fabricclk_mhz);
dcn2_0_soc.clock_limits[i].dispclk_mhz =
fixed16_to_double_to_cpu(bb->clock_limits[i].dispclk_mhz);
dcn2_0_soc.clock_limits[i].dppclk_mhz =
fixed16_to_double_to_cpu(bb->clock_limits[i].dppclk_mhz);
dcn2_0_soc.clock_limits[i].phyclk_mhz =
fixed16_to_double_to_cpu(bb->clock_limits[i].phyclk_mhz);
dcn2_0_soc.clock_limits[i].socclk_mhz =
fixed16_to_double_to_cpu(bb->clock_limits[i].socclk_mhz);
dcn2_0_soc.clock_limits[i].dscclk_mhz =
fixed16_to_double_to_cpu(bb->clock_limits[i].dscclk_mhz);
dcn2_0_soc.clock_limits[i].dram_speed_mts =
fixed16_to_double_to_cpu(bb->clock_limits[i].dram_speed_mts);
}
}
if (pool->base.pp_smu) {
struct pp_smu_nv_clock_table max_clocks = {0};
unsigned int uclk_states[8] = {0};
unsigned int num_states = 0;
enum pp_smu_status status;
bool clock_limits_available = false;
bool uclk_states_available = false;
if (pool->base.pp_smu->nv_funcs.get_uclk_dpm_states) {
status = (pool->base.pp_smu->nv_funcs.get_uclk_dpm_states)
(&pool->base.pp_smu->nv_funcs.pp_smu, uclk_states, &num_states);
uclk_states_available = (status == PP_SMU_RESULT_OK);
}
if (pool->base.pp_smu->nv_funcs.get_maximum_sustainable_clocks) {
status = (*pool->base.pp_smu->nv_funcs.get_maximum_sustainable_clocks)
(&pool->base.pp_smu->nv_funcs.pp_smu, &max_clocks);
clock_limits_available = (status == PP_SMU_RESULT_OK);
}
if (clock_limits_available && uclk_states_available)
update_bounding_box(dc, &dcn2_0_soc, &max_clocks, uclk_states, num_states);
else if (clock_limits_available)
cap_soc_clocks(&dcn2_0_soc, max_clocks);
}
dcn2_0_ip.max_num_otg = pool->base.res_cap->num_timing_generator;
dcn2_0_ip.max_num_dpp = pool->base.pipe_count;
patch_bounding_box(dc, &dcn2_0_soc);
return true;
}
static bool construct(
uint8_t num_virtual_links,
struct dc *dc,
struct dcn20_resource_pool *pool)
{
int i;
struct dc_context *ctx = dc->ctx;
struct irq_service_init_data init_data;
ctx->dc_bios->regs = &bios_regs;
pool->base.res_cap = &res_cap_nv10;
pool->base.funcs = &dcn20_res_pool_funcs;
/*************************************************
* Resource + asic cap harcoding *
*************************************************/
pool->base.underlay_pipe_index = NO_UNDERLAY_PIPE;
pool->base.pipe_count = 6;
pool->base.mpcc_count = 6;
dc->caps.max_downscale_ratio = 200;
dc->caps.i2c_speed_in_khz = 100;
dc->caps.max_cursor_size = 256;
dc->caps.dmdata_alloc_size = 2048;
dc->caps.max_slave_planes = 1;
dc->caps.post_blend_color_processing = true;
dc->caps.force_dp_tps4_for_cp2520 = true;
dc->caps.hw_3d_lut = true;
if (dc->ctx->dce_environment == DCE_ENV_PRODUCTION_DRV)
dc->debug = debug_defaults_drv;
else if (dc->ctx->dce_environment == DCE_ENV_FPGA_MAXIMUS) {
pool->base.pipe_count = 4;
pool->base.mpcc_count = pool->base.pipe_count;
dc->debug = debug_defaults_diags;
} else
dc->debug = debug_defaults_diags;
//dcn2.0x
dc->work_arounds.dedcn20_305_wa = true;
// Init the vm_helper
if (dc->vm_helper)
init_vm_helper(dc->vm_helper, 16, pool->base.pipe_count);
/*************************************************
* Create resources *
*************************************************/
pool->base.clock_sources[DCN20_CLK_SRC_PLL0] =
dcn20_clock_source_create(ctx, ctx->dc_bios,
CLOCK_SOURCE_COMBO_PHY_PLL0,
&clk_src_regs[0], false);
pool->base.clock_sources[DCN20_CLK_SRC_PLL1] =
dcn20_clock_source_create(ctx, ctx->dc_bios,
CLOCK_SOURCE_COMBO_PHY_PLL1,
&clk_src_regs[1], false);
pool->base.clock_sources[DCN20_CLK_SRC_PLL2] =
dcn20_clock_source_create(ctx, ctx->dc_bios,
CLOCK_SOURCE_COMBO_PHY_PLL2,
&clk_src_regs[2], false);
pool->base.clock_sources[DCN20_CLK_SRC_PLL3] =
dcn20_clock_source_create(ctx, ctx->dc_bios,
CLOCK_SOURCE_COMBO_PHY_PLL3,
&clk_src_regs[3], false);
pool->base.clock_sources[DCN20_CLK_SRC_PLL4] =
dcn20_clock_source_create(ctx, ctx->dc_bios,
CLOCK_SOURCE_COMBO_PHY_PLL4,
&clk_src_regs[4], false);
pool->base.clock_sources[DCN20_CLK_SRC_PLL5] =
dcn20_clock_source_create(ctx, ctx->dc_bios,
CLOCK_SOURCE_COMBO_PHY_PLL5,
&clk_src_regs[5], false);
pool->base.clk_src_count = DCN20_CLK_SRC_TOTAL;
/* todo: not reuse phy_pll registers */
pool->base.dp_clock_source =
dcn20_clock_source_create(ctx, ctx->dc_bios,
CLOCK_SOURCE_ID_DP_DTO,
&clk_src_regs[0], true);
for (i = 0; i < pool->base.clk_src_count; i++) {
if (pool->base.clock_sources[i] == NULL) {
dm_error("DC: failed to create clock sources!\n");
BREAK_TO_DEBUGGER();
goto create_fail;
}
}
pool->base.dccg = dccg2_create(ctx, &dccg_regs, &dccg_shift, &dccg_mask);
if (pool->base.dccg == NULL) {
dm_error("DC: failed to create dccg!\n");
BREAK_TO_DEBUGGER();
goto create_fail;
}
pool->base.dmcu = dcn20_dmcu_create(ctx,
&dmcu_regs,
&dmcu_shift,
&dmcu_mask);
if (pool->base.dmcu == NULL) {
dm_error("DC: failed to create dmcu!\n");
BREAK_TO_DEBUGGER();
goto create_fail;
}
/*pool->base.abm = dce_abm_create(ctx,
&abm_regs,
&abm_shift,
&abm_mask);
if (pool->base.abm == NULL) {
dm_error("DC: failed to create abm!\n");
BREAK_TO_DEBUGGER();
goto create_fail;
}*/
pool->base.pp_smu = dcn20_pp_smu_create(ctx);
if (!init_soc_bounding_box(dc, pool)) {
dm_error("DC: failed to initialize soc bounding box!\n");
BREAK_TO_DEBUGGER();
goto create_fail;
}
dml_init_instance(&dc->dml, &dcn2_0_soc, &dcn2_0_ip, DML_PROJECT_NAVI10);
if (!dc->debug.disable_pplib_wm_range) {
struct pp_smu_wm_range_sets ranges = {0};
int i = 0;
ranges.num_reader_wm_sets = 0;
if (dcn2_0_soc.num_states == 1) {
ranges.reader_wm_sets[0].wm_inst = i;
ranges.reader_wm_sets[0].min_drain_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MIN;
ranges.reader_wm_sets[0].max_drain_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MAX;
ranges.reader_wm_sets[0].min_fill_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MIN;
ranges.reader_wm_sets[0].max_fill_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MAX;
ranges.num_reader_wm_sets = 1;
} else if (dcn2_0_soc.num_states > 1) {
for (i = 0; i < 4 && i < dcn2_0_soc.num_states - 1; i++) {
ranges.reader_wm_sets[i].wm_inst = i;
ranges.reader_wm_sets[i].min_drain_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MIN;
ranges.reader_wm_sets[i].max_drain_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MAX;
ranges.reader_wm_sets[i].min_fill_clk_mhz = dcn2_0_soc.clock_limits[i].dram_speed_mts / 16;
ranges.reader_wm_sets[i].max_fill_clk_mhz = dcn2_0_soc.clock_limits[i + 1].dram_speed_mts / 16;
ranges.num_reader_wm_sets = i + 1;
}
}
ranges.reader_wm_sets[0].min_drain_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MIN;
ranges.reader_wm_sets[0].min_fill_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MIN;
ranges.reader_wm_sets[ranges.num_reader_wm_sets - 1].max_drain_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MAX;
ranges.reader_wm_sets[ranges.num_reader_wm_sets - 1].max_fill_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MAX;
ranges.num_writer_wm_sets = 1;
ranges.writer_wm_sets[0].wm_inst = 0;
ranges.writer_wm_sets[0].min_fill_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MIN;
ranges.writer_wm_sets[0].max_fill_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MAX;
ranges.writer_wm_sets[0].min_drain_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MIN;
ranges.writer_wm_sets[0].max_drain_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MAX;
/* Notify PP Lib/SMU which Watermarks to use for which clock ranges */
if (pool->base.pp_smu->nv_funcs.set_wm_ranges)
pool->base.pp_smu->nv_funcs.set_wm_ranges(&pool->base.pp_smu->nv_funcs.pp_smu, &ranges);
}
init_data.ctx = dc->ctx;
pool->base.irqs = dal_irq_service_dcn20_create(&init_data);
if (!pool->base.irqs)
goto create_fail;
/* mem input -> ipp -> dpp -> opp -> TG */
for (i = 0; i < pool->base.pipe_count; i++) {
pool->base.hubps[i] = dcn20_hubp_create(ctx, i);
if (pool->base.hubps[i] == NULL) {
BREAK_TO_DEBUGGER();
dm_error(
"DC: failed to create memory input!\n");
goto create_fail;
}
pool->base.ipps[i] = dcn20_ipp_create(ctx, i);
if (pool->base.ipps[i] == NULL) {
BREAK_TO_DEBUGGER();
dm_error(
"DC: failed to create input pixel processor!\n");
goto create_fail;
}
pool->base.dpps[i] = dcn20_dpp_create(ctx, i);
if (pool->base.dpps[i] == NULL) {
BREAK_TO_DEBUGGER();
dm_error(
"DC: failed to create dpps!\n");
goto create_fail;
}
}
for (i = 0; i < pool->base.res_cap->num_ddc; i++) {
pool->base.engines[i] = dcn20_aux_engine_create(ctx, i);
if (pool->base.engines[i] == NULL) {
BREAK_TO_DEBUGGER();
dm_error(
"DC:failed to create aux engine!!\n");
goto create_fail;
}
pool->base.hw_i2cs[i] = dcn20_i2c_hw_create(ctx, i);
if (pool->base.hw_i2cs[i] == NULL) {
BREAK_TO_DEBUGGER();
dm_error(
"DC:failed to create hw i2c!!\n");
goto create_fail;
}
pool->base.sw_i2cs[i] = NULL;
}
for (i = 0; i < pool->base.res_cap->num_opp; i++) {
pool->base.opps[i] = dcn20_opp_create(ctx, i);
if (pool->base.opps[i] == NULL) {
BREAK_TO_DEBUGGER();
dm_error(
"DC: failed to create output pixel processor!\n");
goto create_fail;
}
}
for (i = 0; i < pool->base.res_cap->num_timing_generator; i++) {
pool->base.timing_generators[i] = dcn20_timing_generator_create(
ctx, i);
if (pool->base.timing_generators[i] == NULL) {
BREAK_TO_DEBUGGER();
dm_error("DC: failed to create tg!\n");
goto create_fail;
}
}
pool->base.timing_generator_count = i;
pool->base.mpc = dcn20_mpc_create(ctx);
if (pool->base.mpc == NULL) {
BREAK_TO_DEBUGGER();
dm_error("DC: failed to create mpc!\n");
goto create_fail;
}
pool->base.hubbub = dcn20_hubbub_create(ctx);
if (pool->base.hubbub == NULL) {
BREAK_TO_DEBUGGER();
dm_error("DC: failed to create hubbub!\n");
goto create_fail;
}
if (!resource_construct(num_virtual_links, dc, &pool->base,
(!IS_FPGA_MAXIMUS_DC(dc->ctx->dce_environment) ?
&res_create_funcs : &res_create_maximus_funcs)))
goto create_fail;
dcn20_hw_sequencer_construct(dc);
dc->caps.max_planes = pool->base.pipe_count;
for (i = 0; i < dc->caps.max_planes; ++i)
dc->caps.planes[i] = plane_cap;
dc->cap_funcs = cap_funcs;
return true;
create_fail:
destruct(pool);
return false;
}
struct resource_pool *dcn20_create_resource_pool(
const struct dc_init_data *init_data,
struct dc *dc)
{
struct dcn20_resource_pool *pool =
kzalloc(sizeof(struct dcn20_resource_pool), GFP_KERNEL);
if (!pool)
return NULL;
if (construct(init_data->num_virtual_links, dc, pool))
return &pool->base;
BREAK_TO_DEBUGGER();
kfree(pool);
return NULL;
}
/*
* Copyright 2017 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
* Authors: AMD
*
*/
#ifndef __DC_RESOURCE_DCN20_H__
#define __DC_RESOURCE_DCN20_H__
#include "core_types.h"
#define TO_DCN20_RES_POOL(pool)\
container_of(pool, struct dcn20_resource_pool, base)
struct dc;
struct resource_pool;
struct _vcs_dpi_display_pipe_params_st;
struct dcn20_resource_pool {
struct resource_pool base;
};
struct resource_pool *dcn20_create_resource_pool(
const struct dc_init_data *init_data,
struct dc *dc);
struct link_encoder *dcn20_link_encoder_create(
const struct encoder_init_data *enc_init_data);
unsigned int dcn20_calc_max_scaled_time(
unsigned int time_per_pixel,
enum mmhubbub_wbif_mode mode,
unsigned int urgent_watermark);
int dcn20_populate_dml_pipes_from_context(
struct dc *dc, struct resource_context *res_ctx, display_e2e_pipe_params_st *pipes);
struct pipe_ctx *dcn20_acquire_idle_pipe_for_layer(
struct dc_state *state,
const struct resource_pool *pool,
struct dc_stream_state *stream);
void dcn20_populate_dml_writeback_from_context(
struct dc *dc, struct resource_context *res_ctx, display_e2e_pipe_params_st *pipes);
struct stream_encoder *dcn20_stream_encoder_create(
enum engine_id eng_id,
struct dc_context *ctx);
struct dce_hwseq *dcn20_hwseq_create(
struct dc_context *ctx);
bool dcn20_get_dcc_compression_cap(const struct dc *dc,
const struct dc_dcc_surface_param *input,
struct dc_surface_dcc_cap *output);
void dcn20_dpp_destroy(struct dpp **dpp);
struct dpp *dcn20_dpp_create(
struct dc_context *ctx,
uint32_t inst);
struct input_pixel_processor *dcn20_ipp_create(
struct dc_context *ctx, uint32_t inst);
struct output_pixel_processor *dcn20_opp_create(
struct dc_context *ctx, uint32_t inst);
struct dce_aux *dcn20_aux_engine_create(
struct dc_context *ctx, uint32_t inst);
struct dce_i2c_hw *dcn20_i2c_hw_create(
struct dc_context *ctx,
uint32_t inst);
void dcn20_clock_source_destroy(struct clock_source **clk_src);
struct display_stream_compressor *dcn20_dsc_create(
struct dc_context *ctx, uint32_t inst);
void dcn20_dsc_destroy(struct display_stream_compressor **dsc);
struct pp_smu_funcs *dcn20_pp_smu_create(struct dc_context *ctx);
void dcn20_pp_smu_destroy(struct pp_smu_funcs **pp_smu);
struct hubp *dcn20_hubp_create(
struct dc_context *ctx,
uint32_t inst);
struct timing_generator *dcn20_timing_generator_create(
struct dc_context *ctx,
uint32_t instance);
struct mpc *dcn20_mpc_create(struct dc_context *ctx);
struct hubbub *dcn20_hubbub_create(struct dc_context *ctx);
bool dcn20_dwbc_create(struct dc_context *ctx, struct resource_pool *pool);
bool dcn20_mmhubbub_create(struct dc_context *ctx, struct resource_pool *pool);
void dcn20_set_mcif_arb_params(
struct dc *dc,
struct dc_state *context,
display_e2e_pipe_params_st *pipes,
int pipe_cnt);
bool dcn20_validate_bandwidth(struct dc *dc, struct dc_state *context);
enum dc_status dcn20_build_mapped_resource(const struct dc *dc, struct dc_state *context, struct dc_stream_state *stream);
enum dc_status dcn20_validate_global(struct dc *dc, struct dc_state *new_ctx);
enum dc_status dcn20_add_stream_to_ctx(struct dc *dc, struct dc_state *new_ctx, struct dc_stream_state *dc_stream);
enum dc_status dcn20_remove_stream_from_ctx(struct dc *dc, struct dc_state *new_ctx, struct dc_stream_state *dc_stream);
enum dc_status dcn20_get_default_swizzle_mode(struct dc_plane_state *plane_state);
void dcn20_patch_bounding_box(
struct dc *dc,
struct _vcs_dpi_soc_bounding_box_st *bb);
void dcn20_cap_soc_clocks(
struct _vcs_dpi_soc_bounding_box_st *bb,
struct pp_smu_nv_clock_table max_clocks);
#endif /* __DC_RESOURCE_DCN20_H__ */
......@@ -65,11 +65,18 @@ struct dce_hwseq {
struct pipe_ctx;
struct dc_state;
#if defined(CONFIG_DRM_AMD_DC_DCN2_0)
struct dc_stream_status;
struct dc_writeback_info;
#endif
struct dchub_init_data;
struct dc_static_screen_events;
struct resource_pool;
struct resource_context;
struct stream_resource;
#ifdef CONFIG_DRM_AMD_DC_DCN2_0
struct dc_addr_space_config;
#endif
struct hw_sequencer_funcs {
......@@ -102,6 +109,16 @@ struct hw_sequencer_funcs {
uint16_t *matrix,
int opp_id);
#if defined(CONFIG_DRM_AMD_DC_DCN2_0)
void (*program_triplebuffer)(
const struct dc *dc,
struct pipe_ctx *pipe_ctx,
bool enableTripleBuffer);
void (*set_flip_control_gsl)(
struct pipe_ctx *pipe_ctx,
bool flip_immediate);
#endif
void (*update_plane_addr)(
const struct dc *dc,
struct pipe_ctx *pipe_ctx);
......@@ -114,6 +131,13 @@ struct hw_sequencer_funcs {
struct dce_hwseq *hws,
struct dchub_init_data *dh_data);
#ifdef CONFIG_DRM_AMD_DC_DCN2_0
void (*init_dchub)(
struct dce_hwseq *hws,
struct dc *dc,
struct dc_addr_space_config *dh_data);
#endif
void (*update_mpcc)(
struct dc *dc,
struct pipe_ctx *pipe_ctx);
......@@ -197,6 +221,13 @@ struct hw_sequencer_funcs {
struct dc *dc,
struct dc_state *context);
#if defined(CONFIG_DRM_AMD_DC_DCN2_0)
bool (*update_bandwidth)(
struct dc *dc,
struct dc_state *context);
bool (*dmdata_status_done)(struct pipe_ctx *pipe_ctx);
#endif
void (*set_drr)(struct pipe_ctx **pipe_ctx, int num_pipes,
int vmin, int vmax);
......@@ -241,6 +272,21 @@ struct hw_sequencer_funcs {
void (*setup_periodic_interrupt)(struct pipe_ctx *pipe_ctx, enum vline_select vline);
void (*setup_vupdate_interrupt)(struct pipe_ctx *pipe_ctx);
#if defined(CONFIG_DRM_AMD_DC_DCN2_0)
void (*update_odm)(struct dc *dc, struct dc_state *context, struct pipe_ctx *pipe_ctx);
void (*program_all_writeback_pipes_in_tree)(
struct dc *dc,
const struct dc_stream_state *stream,
struct dc_state *context);
void (*update_writeback)(struct dc *dc,
const struct dc_stream_status *stream_status,
struct dc_writeback_info *wb_info);
void (*enable_writeback)(struct dc *dc,
const struct dc_stream_status *stream_status,
struct dc_writeback_info *wb_info);
void (*disable_writeback)(struct dc *dc,
unsigned int dwb_pipe_inst);
#endif
};
void color_space_to_black_color(
......
......@@ -44,6 +44,9 @@ struct resource_caps {
int num_pll;
int num_dwb;
int num_ddc;
#ifdef CONFIG_DRM_AMD_DC_DCN2_0
int num_vmid;
#endif
};
struct resource_straps {
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment