Commit 7f79695c authored by Martin Schwidefsky's avatar Martin Schwidefsky

s390/fpu: improve kernel_fpu_[begin|end]

In case of nested user of the FPU or vector registers in the kernel
the current code uses the mask of the FPU/vector registers of the
previous contexts to decide which registers to save and restore.
E.g. if the previous context used KERNEL_VXR_V0V7 and the next
context wants to use KERNEL_VXR_V24V31 the first 8 vector registers
are stored to the FPU state structure. But this is not necessary
as the next context does not use these registers.

Rework the FPU/vector register save and restore code. The new code
does a few things differently:
1) A lowcore field is used instead of a per-cpu variable.
2) The kernel_fpu_end function now has two parameters just like
   kernel_fpu_begin. The register flags are required by both
   functions to save / restore the minimal register set.
3) The inline functions kernel_fpu_begin/kernel_fpu_end now do the
   update of the register masks. If the user space FPU registers
   have already been stored neither save_fpu_regs nor the
   __kernel_fpu_begin/__kernel_fpu_end functions have to be called
   for the first context. In this case kernel_fpu_begin adds 7
   instructions and kernel_fpu_end adds 4 instructions.
3) The inline assemblies in __kernel_fpu_begin / __kernel_fpu_end
   to save / restore the vector registers are simplified a bit.
Signed-off-by: default avatarMartin Schwidefsky <schwidefsky@de.ibm.com>
parent 0eab11c7
......@@ -67,7 +67,7 @@ u32 crc32c_le_vgfm_16(u32 crc, unsigned char const *buf, size_t size);
\
kernel_fpu_begin(&vxstate, KERNEL_VXR_LOW); \
crc = ___crc32_vx(crc, data, aligned); \
kernel_fpu_end(&vxstate); \
kernel_fpu_end(&vxstate, KERNEL_VXR_LOW); \
\
if (remaining) \
crc = ___crc32_sw(crc, data + aligned, remaining); \
......
......@@ -64,18 +64,18 @@ static inline int test_fp_ctl(u32 fpc)
return rc;
}
#define KERNEL_VXR_V0V7 1
#define KERNEL_VXR_V8V15 2
#define KERNEL_VXR_V16V23 4
#define KERNEL_VXR_V24V31 8
#define KERNEL_FPR 16
#define KERNEL_FPC 256
#define KERNEL_FPC 1
#define KERNEL_VXR_V0V7 2
#define KERNEL_VXR_V8V15 4
#define KERNEL_VXR_V16V23 8
#define KERNEL_VXR_V24V31 16
#define KERNEL_VXR_LOW (KERNEL_VXR_V0V7|KERNEL_VXR_V8V15)
#define KERNEL_VXR_MID (KERNEL_VXR_V8V15|KERNEL_VXR_V16V23)
#define KERNEL_VXR_HIGH (KERNEL_VXR_V16V23|KERNEL_VXR_V24V31)
#define KERNEL_FPU_MASK (KERNEL_VXR_LOW|KERNEL_VXR_HIGH|KERNEL_FPR)
#define KERNEL_VXR (KERNEL_VXR_LOW|KERNEL_VXR_HIGH)
#define KERNEL_FPR (KERNEL_FPC|KERNEL_VXR_V0V7)
struct kernel_fpu;
......@@ -87,18 +87,28 @@ struct kernel_fpu;
* Prefer using the kernel_fpu_begin()/kernel_fpu_end() pair of functions.
*/
void __kernel_fpu_begin(struct kernel_fpu *state, u32 flags);
void __kernel_fpu_end(struct kernel_fpu *state);
void __kernel_fpu_end(struct kernel_fpu *state, u32 flags);
static inline void kernel_fpu_begin(struct kernel_fpu *state, u32 flags)
{
preempt_disable();
__kernel_fpu_begin(state, flags);
state->mask = S390_lowcore.fpu_flags;
if (!test_cpu_flag(CIF_FPU))
/* Save user space FPU state and register contents */
save_fpu_regs();
else if (state->mask & flags)
/* Save FPU/vector register in-use by the kernel */
__kernel_fpu_begin(state, flags);
S390_lowcore.fpu_flags |= flags;
}
static inline void kernel_fpu_end(struct kernel_fpu *state)
static inline void kernel_fpu_end(struct kernel_fpu *state, u32 flags)
{
__kernel_fpu_end(state);
S390_lowcore.fpu_flags = state->mask;
if (state->mask & flags)
/* Restore FPU/vector register in-use by the kernel */
__kernel_fpu_end(state, flags);
preempt_enable();
}
......
......@@ -129,7 +129,8 @@ struct lowcore {
__u8 pad_0x0390[0x0398-0x0390]; /* 0x0390 */
__u64 gmap; /* 0x0398 */
__u32 spinlock_lockval; /* 0x03a0 */
__u8 pad_0x03a0[0x0400-0x03a4]; /* 0x03a4 */
__u32 fpu_flags; /* 0x03a4 */
__u8 pad_0x03a8[0x0400-0x03a8]; /* 0x03a8 */
/* Per cpu primary space access list */
__u32 paste[16]; /* 0x0400 */
......
......@@ -10,240 +10,167 @@
#include <asm/fpu/types.h>
#include <asm/fpu/api.h>
/*
* Per-CPU variable to maintain FPU register ranges that are in use
* by the kernel.
*/
static DEFINE_PER_CPU(u32, kernel_fpu_state);
#define KERNEL_FPU_STATE_MASK (KERNEL_FPU_MASK|KERNEL_FPC)
asm(".include \"asm/vx-insn.h\"\n");
void __kernel_fpu_begin(struct kernel_fpu *state, u32 flags)
{
if (!__this_cpu_read(kernel_fpu_state)) {
/*
* Save user space FPU state and register contents. Multiple
* calls because of interruptions do not matter and return
* immediately. This also sets CIF_FPU to lazy restore FP/VX
* register contents when returning to user space.
*/
save_fpu_regs();
}
/* Update flags to use the vector facility for KERNEL_FPR */
if (MACHINE_HAS_VX && (state->mask & KERNEL_FPR)) {
flags |= KERNEL_VXR_LOW | KERNEL_FPC;
flags &= ~KERNEL_FPR;
}
/* Save and update current kernel VX state */
state->mask = __this_cpu_read(kernel_fpu_state);
__this_cpu_or(kernel_fpu_state, flags & KERNEL_FPU_STATE_MASK);
/*
* If this is the first call to __kernel_fpu_begin(), no additional
* work is required.
* Limit the save to the FPU/vector registers already
* in use by the previous context
*/
if (!(state->mask & KERNEL_FPU_STATE_MASK))
return;
flags &= state->mask;
/*
* If KERNEL_FPR is still set, the vector facility is not available
* and, thus, save floating-point control and registers only.
*/
if (state->mask & KERNEL_FPR) {
asm volatile("stfpc %0" : "=Q" (state->fpc));
asm volatile("std 0,%0" : "=Q" (state->fprs[0]));
asm volatile("std 1,%0" : "=Q" (state->fprs[1]));
asm volatile("std 2,%0" : "=Q" (state->fprs[2]));
asm volatile("std 3,%0" : "=Q" (state->fprs[3]));
asm volatile("std 4,%0" : "=Q" (state->fprs[4]));
asm volatile("std 5,%0" : "=Q" (state->fprs[5]));
asm volatile("std 6,%0" : "=Q" (state->fprs[6]));
asm volatile("std 7,%0" : "=Q" (state->fprs[7]));
asm volatile("std 8,%0" : "=Q" (state->fprs[8]));
asm volatile("std 9,%0" : "=Q" (state->fprs[9]));
asm volatile("std 10,%0" : "=Q" (state->fprs[10]));
asm volatile("std 11,%0" : "=Q" (state->fprs[11]));
asm volatile("std 12,%0" : "=Q" (state->fprs[12]));
asm volatile("std 13,%0" : "=Q" (state->fprs[13]));
asm volatile("std 14,%0" : "=Q" (state->fprs[14]));
asm volatile("std 15,%0" : "=Q" (state->fprs[15]));
if (flags & KERNEL_FPC)
/* Save floating point control */
asm volatile("stfpc %0" : "=m" (state->fpc));
if (!MACHINE_HAS_VX) {
if (flags & KERNEL_VXR_V0V7) {
/* Save floating-point registers */
asm volatile("std 0,%0" : "=Q" (state->fprs[0]));
asm volatile("std 1,%0" : "=Q" (state->fprs[1]));
asm volatile("std 2,%0" : "=Q" (state->fprs[2]));
asm volatile("std 3,%0" : "=Q" (state->fprs[3]));
asm volatile("std 4,%0" : "=Q" (state->fprs[4]));
asm volatile("std 5,%0" : "=Q" (state->fprs[5]));
asm volatile("std 6,%0" : "=Q" (state->fprs[6]));
asm volatile("std 7,%0" : "=Q" (state->fprs[7]));
asm volatile("std 8,%0" : "=Q" (state->fprs[8]));
asm volatile("std 9,%0" : "=Q" (state->fprs[9]));
asm volatile("std 10,%0" : "=Q" (state->fprs[10]));
asm volatile("std 11,%0" : "=Q" (state->fprs[11]));
asm volatile("std 12,%0" : "=Q" (state->fprs[12]));
asm volatile("std 13,%0" : "=Q" (state->fprs[13]));
asm volatile("std 14,%0" : "=Q" (state->fprs[14]));
asm volatile("std 15,%0" : "=Q" (state->fprs[15]));
}
return;
}
/*
* If this is a nested call to __kernel_fpu_begin(), check the saved
* state mask to save and later restore the vector registers that
* are already in use. Let's start with checking floating-point
* controls.
*/
if (state->mask & KERNEL_FPC)
asm volatile("stfpc %0" : "=m" (state->fpc));
/* Test and save vector registers */
asm volatile (
/*
* Test if any vector register must be saved and, if so,
* test if all register can be saved.
*/
" tmll %[m],15\n" /* KERNEL_VXR_MASK */
" jz 20f\n" /* no work -> done */
" la 1,%[vxrs]\n" /* load save area */
" jo 18f\n" /* -> save V0..V31 */
" tmll %[m],30\n" /* KERNEL_VXR */
" jz 7f\n" /* no work -> done */
" jo 5f\n" /* -> save V0..V31 */
/*
* Test if V8..V23 can be saved at once... this speeds up
* for KERNEL_fpu_MID only. Otherwise continue to split the
* range of vector registers into two halves and test them
* separately.
* Test for special case KERNEL_FPU_MID only. In this
* case a vstm V8..V23 is the best instruction
*/
" tmll %[m],6\n" /* KERNEL_VXR_MID */
" jo 17f\n" /* -> save V8..V23 */
" chi %[m],12\n" /* KERNEL_VXR_MID */
" jne 0f\n" /* -> save V8..V23 */
" VSTM 8,23,128,1\n" /* vstm %v8,%v23,128(%r1) */
" j 7f\n"
/* Test and save the first half of 16 vector registers */
"1: tmll %[m],3\n" /* KERNEL_VXR_LOW */
" jz 10f\n" /* -> KERNEL_VXR_HIGH */
"0: tmll %[m],6\n" /* KERNEL_VXR_LOW */
" jz 3f\n" /* -> KERNEL_VXR_HIGH */
" jo 2f\n" /* 11 -> save V0..V15 */
" brc 4,3f\n" /* 01 -> save V0..V7 */
" brc 2,4f\n" /* 10 -> save V8..V15 */
" brc 2,1f\n" /* 10 -> save V8..V15 */
" VSTM 0,7,0,1\n" /* vstm %v0,%v7,0(%r1) */
" j 3f\n"
"1: VSTM 8,15,128,1\n" /* vstm %v8,%v15,128(%r1) */
" j 3f\n"
"2: VSTM 0,15,0,1\n" /* vstm %v0,%v15,0(%r1) */
/* Test and save the second half of 16 vector registers */
"10: tmll %[m],12\n" /* KERNEL_VXR_HIGH */
" jo 19f\n" /* 11 -> save V16..V31 */
" brc 4,11f\n" /* 01 -> save V16..V23 */
" brc 2,12f\n" /* 10 -> save V24..V31 */
" j 20f\n" /* 00 -> done */
/*
* Below are the vstm combinations to save multiple vector
* registers at once.
*/
"2: .word 0xe70f,0x1000,0x003e\n" /* vstm 0,15,0(1) */
" j 10b\n" /* -> VXR_HIGH */
"3: .word 0xe707,0x1000,0x003e\n" /* vstm 0,7,0(1) */
" j 10b\n" /* -> VXR_HIGH */
"4: .word 0xe78f,0x1080,0x003e\n" /* vstm 8,15,128(1) */
" j 10b\n" /* -> VXR_HIGH */
"\n"
"11: .word 0xe707,0x1100,0x0c3e\n" /* vstm 16,23,256(1) */
" j 20f\n" /* -> done */
"12: .word 0xe78f,0x1180,0x0c3e\n" /* vstm 24,31,384(1) */
" j 20f\n" /* -> done */
"\n"
"17: .word 0xe787,0x1080,0x043e\n" /* vstm 8,23,128(1) */
" nill %[m],249\n" /* m &= ~VXR_MID */
" j 1b\n" /* -> VXR_LOW */
"\n"
"18: .word 0xe70f,0x1000,0x003e\n" /* vstm 0,15,0(1) */
"19: .word 0xe70f,0x1100,0x0c3e\n" /* vstm 16,31,256(1) */
"20:"
"3: tmll %[m],24\n" /* KERNEL_VXR_HIGH */
" jz 7f\n"
" jo 6f\n" /* 11 -> save V16..V31 */
" brc 2,4f\n" /* 10 -> save V24..V31 */
" VSTM 16,23,256,1\n" /* vstm %v16,%v23,256(%r1) */
" j 7f\n"
"4: VSTM 24,31,384,1\n" /* vstm %v24,%v31,384(%r1) */
" j 7f\n"
"5: VSTM 0,15,0,1\n" /* vstm %v0,%v15,0(%r1) */
"6: VSTM 16,31,256,1\n" /* vstm %v16,%v31,256(%r1) */
"7:"
: [vxrs] "=Q" (*(struct vx_array *) &state->vxrs)
: [m] "d" (state->mask)
: [m] "d" (flags)
: "1", "cc");
}
EXPORT_SYMBOL(__kernel_fpu_begin);
void __kernel_fpu_end(struct kernel_fpu *state)
void __kernel_fpu_end(struct kernel_fpu *state, u32 flags)
{
/* Just update the per-CPU state if there is nothing to restore */
if (!(state->mask & KERNEL_FPU_STATE_MASK))
goto update_fpu_state;
/*
* If KERNEL_FPR is specified, the vector facility is not available
* and, thus, restore floating-point control and registers only.
* Limit the restore to the FPU/vector registers of the
* previous context that have been overwritte by the
* current context
*/
if (state->mask & KERNEL_FPR) {
asm volatile("lfpc %0" : : "Q" (state->fpc));
asm volatile("ld 0,%0" : : "Q" (state->fprs[0]));
asm volatile("ld 1,%0" : : "Q" (state->fprs[1]));
asm volatile("ld 2,%0" : : "Q" (state->fprs[2]));
asm volatile("ld 3,%0" : : "Q" (state->fprs[3]));
asm volatile("ld 4,%0" : : "Q" (state->fprs[4]));
asm volatile("ld 5,%0" : : "Q" (state->fprs[5]));
asm volatile("ld 6,%0" : : "Q" (state->fprs[6]));
asm volatile("ld 7,%0" : : "Q" (state->fprs[7]));
asm volatile("ld 8,%0" : : "Q" (state->fprs[8]));
asm volatile("ld 9,%0" : : "Q" (state->fprs[9]));
asm volatile("ld 10,%0" : : "Q" (state->fprs[10]));
asm volatile("ld 11,%0" : : "Q" (state->fprs[11]));
asm volatile("ld 12,%0" : : "Q" (state->fprs[12]));
asm volatile("ld 13,%0" : : "Q" (state->fprs[13]));
asm volatile("ld 14,%0" : : "Q" (state->fprs[14]));
asm volatile("ld 15,%0" : : "Q" (state->fprs[15]));
goto update_fpu_state;
}
flags &= state->mask;
/* Test and restore floating-point controls */
if (state->mask & KERNEL_FPC)
if (flags & KERNEL_FPC)
/* Restore floating-point controls */
asm volatile("lfpc %0" : : "Q" (state->fpc));
if (!MACHINE_HAS_VX) {
if (flags & KERNEL_VXR_V0V7) {
/* Restore floating-point registers */
asm volatile("ld 0,%0" : : "Q" (state->fprs[0]));
asm volatile("ld 1,%0" : : "Q" (state->fprs[1]));
asm volatile("ld 2,%0" : : "Q" (state->fprs[2]));
asm volatile("ld 3,%0" : : "Q" (state->fprs[3]));
asm volatile("ld 4,%0" : : "Q" (state->fprs[4]));
asm volatile("ld 5,%0" : : "Q" (state->fprs[5]));
asm volatile("ld 6,%0" : : "Q" (state->fprs[6]));
asm volatile("ld 7,%0" : : "Q" (state->fprs[7]));
asm volatile("ld 8,%0" : : "Q" (state->fprs[8]));
asm volatile("ld 9,%0" : : "Q" (state->fprs[9]));
asm volatile("ld 10,%0" : : "Q" (state->fprs[10]));
asm volatile("ld 11,%0" : : "Q" (state->fprs[11]));
asm volatile("ld 12,%0" : : "Q" (state->fprs[12]));
asm volatile("ld 13,%0" : : "Q" (state->fprs[13]));
asm volatile("ld 14,%0" : : "Q" (state->fprs[14]));
asm volatile("ld 15,%0" : : "Q" (state->fprs[15]));
}
return;
}
/* Test and restore (load) vector registers */
asm volatile (
/*
* Test if any vector registers must be loaded and, if so,
* Test if any vector register must be loaded and, if so,
* test if all registers can be loaded at once.
*/
" tmll %[m],15\n" /* KERNEL_VXR_MASK */
" jz 20f\n" /* no work -> done */
" la 1,%[vxrs]\n" /* load load area */
" jo 18f\n" /* -> load V0..V31 */
/*
* Test if V8..V23 can be restored at once... this speeds up
* for KERNEL_VXR_MID only. Otherwise continue to split the
* range of vector registers into two halves and test them
* separately.
*/
" tmll %[m],6\n" /* KERNEL_VXR_MID */
" jo 17f\n" /* -> load V8..V23 */
/* Test and load the first half of 16 vector registers */
"1: tmll %[m],3\n" /* KERNEL_VXR_LOW */
" jz 10f\n" /* -> KERNEL_VXR_HIGH */
" jo 2f\n" /* 11 -> load V0..V15 */
" brc 4,3f\n" /* 01 -> load V0..V7 */
" brc 2,4f\n" /* 10 -> load V8..V15 */
/* Test and load the second half of 16 vector registers */
"10: tmll %[m],12\n" /* KERNEL_VXR_HIGH */
" jo 19f\n" /* 11 -> load V16..V31 */
" brc 4,11f\n" /* 01 -> load V16..V23 */
" brc 2,12f\n" /* 10 -> load V24..V31 */
" j 20f\n" /* 00 -> done */
" la 1,%[vxrs]\n" /* load restore area */
" tmll %[m],30\n" /* KERNEL_VXR */
" jz 7f\n" /* no work -> done */
" jo 5f\n" /* -> restore V0..V31 */
/*
* Below are the vstm combinations to load multiple vector
* registers at once.
* Test for special case KERNEL_FPU_MID only. In this
* case a vlm V8..V23 is the best instruction
*/
"2: .word 0xe70f,0x1000,0x0036\n" /* vlm 0,15,0(1) */
" j 10b\n" /* -> VXR_HIGH */
"3: .word 0xe707,0x1000,0x0036\n" /* vlm 0,7,0(1) */
" j 10b\n" /* -> VXR_HIGH */
"4: .word 0xe78f,0x1080,0x0036\n" /* vlm 8,15,128(1) */
" j 10b\n" /* -> VXR_HIGH */
"\n"
"11: .word 0xe707,0x1100,0x0c36\n" /* vlm 16,23,256(1) */
" j 20f\n" /* -> done */
"12: .word 0xe78f,0x1180,0x0c36\n" /* vlm 24,31,384(1) */
" j 20f\n" /* -> done */
"\n"
"17: .word 0xe787,0x1080,0x0436\n" /* vlm 8,23,128(1) */
" nill %[m],249\n" /* m &= ~VXR_MID */
" j 1b\n" /* -> VXR_LOW */
"\n"
"18: .word 0xe70f,0x1000,0x0036\n" /* vlm 0,15,0(1) */
"19: .word 0xe70f,0x1100,0x0c36\n" /* vlm 16,31,256(1) */
"20:"
:
: [vxrs] "Q" (*(struct vx_array *) &state->vxrs),
[m] "d" (state->mask)
" chi %[m],12\n" /* KERNEL_VXR_MID */
" jne 0f\n" /* -> restore V8..V23 */
" VLM 8,23,128,1\n" /* vlm %v8,%v23,128(%r1) */
" j 7f\n"
/* Test and restore the first half of 16 vector registers */
"0: tmll %[m],6\n" /* KERNEL_VXR_LOW */
" jz 3f\n" /* -> KERNEL_VXR_HIGH */
" jo 2f\n" /* 11 -> restore V0..V15 */
" brc 2,1f\n" /* 10 -> restore V8..V15 */
" VLM 0,7,0,1\n" /* vlm %v0,%v7,0(%r1) */
" j 3f\n"
"1: VLM 8,15,128,1\n" /* vlm %v8,%v15,128(%r1) */
" j 3f\n"
"2: VLM 0,15,0,1\n" /* vlm %v0,%v15,0(%r1) */
/* Test and restore the second half of 16 vector registers */
"3: tmll %[m],24\n" /* KERNEL_VXR_HIGH */
" jz 7f\n"
" jo 6f\n" /* 11 -> restore V16..V31 */
" brc 2,4f\n" /* 10 -> restore V24..V31 */
" VLM 16,23,256,1\n" /* vlm %v16,%v23,256(%r1) */
" j 7f\n"
"4: VLM 24,31,384,1\n" /* vlm %v24,%v31,384(%r1) */
" j 7f\n"
"5: VLM 0,15,0,1\n" /* vlm %v0,%v15,0(%r1) */
"6: VLM 16,31,256,1\n" /* vlm %v16,%v31,256(%r1) */
"7:"
: [vxrs] "=Q" (*(struct vx_array *) &state->vxrs)
: [m] "d" (flags)
: "1", "cc");
update_fpu_state:
/* Update current kernel VX state */
__this_cpu_write(kernel_fpu_state, state->mask);
}
EXPORT_SYMBOL(__kernel_fpu_end);
......@@ -454,7 +454,7 @@ void s390_adjust_jiffies(void)
: "Q" (info->capability), "d" (10000000), "d" (0)
: "cc"
);
kernel_fpu_end(&fpu);
kernel_fpu_end(&fpu, KERNEL_FPR);
} else
/*
* Really old machine without stsi block for basic
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment