Commit 81faaae4 authored by Ingo Molnar's avatar Ingo Molnar

Merge branch 'x86/pebs' into x86/unify-cpu-detect

Conflicts:
	arch/x86/Kconfig.cpu
	include/asm-x86/ds.h
Signed-off-by: default avatarIngo Molnar <mingo@elte.hu>
parents f69feff7 3c933904
......@@ -477,3 +477,21 @@ config CPU_SUP_UMC_32
depends on !64BIT
help
This enables extended support for UMC processors
config X86_DS
bool "Debug Store support"
default y
help
Add support for Debug Store.
This allows the kernel to provide a memory buffer to the hardware
to store various profiling and tracing events.
config X86_PTRACE_BTS
bool "ptrace interface to Branch Trace Store"
default y
depends on (X86_DS && X86_DEBUGCTLMSR)
help
Add a ptrace interface to allow collecting an execution trace
of the traced task.
This collects control flow changes in a (cyclic) buffer and allows
debuggers to fill in the gaps and show an execution trace of the debuggee.
......@@ -221,10 +221,11 @@ static void __cpuinit init_intel(struct cpuinfo_x86 *c)
set_cpu_cap(c, X86_FEATURE_BTS);
if (!(l1 & (1<<12)))
set_cpu_cap(c, X86_FEATURE_PEBS);
ds_init_intel(c);
}
if (cpu_has_bts)
ds_init_intel(c);
ptrace_bts_init_intel(c);
/*
* See if we have a good local APIC by checking for buggy Pentia,
......
......@@ -2,26 +2,49 @@
* Debug Store support
*
* This provides a low-level interface to the hardware's Debug Store
* feature that is used for last branch recording (LBR) and
* feature that is used for branch trace store (BTS) and
* precise-event based sampling (PEBS).
*
* Different architectures use a different DS layout/pointer size.
* The below functions therefore work on a void*.
* It manages:
* - per-thread and per-cpu allocation of BTS and PEBS
* - buffer memory allocation (optional)
* - buffer overflow handling
* - buffer access
*
* It assumes:
* - get_task_struct on all parameter tasks
* - current is allowed to trace parameter tasks
*
* Since there is no user for PEBS, yet, only LBR (or branch
* trace store, BTS) is supported.
*
*
* Copyright (C) 2007 Intel Corporation.
* Markus Metzger <markus.t.metzger@intel.com>, Dec 2007
* Copyright (C) 2007-2008 Intel Corporation.
* Markus Metzger <markus.t.metzger@intel.com>, 2007-2008
*/
#ifdef CONFIG_X86_DS
#include <asm/ds.h>
#include <linux/errno.h>
#include <linux/string.h>
#include <linux/slab.h>
#include <linux/sched.h>
#include <linux/mm.h>
/*
* The configuration for a particular DS hardware implementation.
*/
struct ds_configuration {
/* the size of the DS structure in bytes */
unsigned char sizeof_ds;
/* the size of one pointer-typed field in the DS structure in bytes;
this covers the first 8 fields related to buffer management. */
unsigned char sizeof_field;
/* the size of a BTS/PEBS record in bytes */
unsigned char sizeof_rec[2];
};
static struct ds_configuration ds_cfg;
/*
......@@ -44,378 +67,747 @@
* (interrupt occurs when write pointer passes interrupt pointer)
* - value to which counter is reset following counter overflow
*
* On later architectures, the last branch recording hardware uses
* 64bit pointers even in 32bit mode.
* Later architectures use 64bit pointers throughout, whereas earlier
* architectures use 32bit pointers in 32bit mode.
*
*
* Branch Trace Store (BTS) records store information about control
* flow changes. They at least provide the following information:
* - source linear address
* - destination linear address
* We compute the base address for the first 8 fields based on:
* - the field size stored in the DS configuration
* - the relative field position
* - an offset giving the start of the respective region
*
* Netburst supported a predicated bit that had been dropped in later
* architectures. We do not suppor it.
* This offset is further used to index various arrays holding
* information for BTS and PEBS at the respective index.
*
*
* In order to abstract from the actual DS and BTS layout, we describe
* the access to the relevant fields.
* Thanks to Andi Kleen for proposing this design.
*
* The implementation, however, is not as general as it might seem. In
* order to stay somewhat simple and efficient, we assume an
* underlying unsigned type (mostly a pointer type) and we expect the
* field to be at least as big as that type.
* On later 32bit processors, we only access the lower 32bit of the
* 64bit pointer fields. The upper halves will be zeroed out.
*/
/*
* A special from_ip address to indicate that the BTS record is an
* info record that needs to be interpreted or skipped.
*/
#define BTS_ESCAPE_ADDRESS (-1)
enum ds_field {
ds_buffer_base = 0,
ds_index,
ds_absolute_maximum,
ds_interrupt_threshold,
};
/*
* A field access descriptor
*/
struct access_desc {
unsigned char offset;
unsigned char size;
enum ds_qualifier {
ds_bts = 0,
ds_pebs
};
static inline unsigned long ds_get(const unsigned char *base,
enum ds_qualifier qual, enum ds_field field)
{
base += (ds_cfg.sizeof_field * (field + (4 * qual)));
return *(unsigned long *)base;
}
static inline void ds_set(unsigned char *base, enum ds_qualifier qual,
enum ds_field field, unsigned long value)
{
base += (ds_cfg.sizeof_field * (field + (4 * qual)));
(*(unsigned long *)base) = value;
}
/*
* The configuration for a particular DS/BTS hardware implementation.
* Locking is done only for allocating BTS or PEBS resources and for
* guarding context and buffer memory allocation.
*
* Most functions require the current task to own the ds context part
* they are going to access. All the locking is done when validating
* access to the context.
*/
struct ds_configuration {
/* the DS configuration */
unsigned char sizeof_ds;
struct access_desc bts_buffer_base;
struct access_desc bts_index;
struct access_desc bts_absolute_maximum;
struct access_desc bts_interrupt_threshold;
/* the BTS configuration */
unsigned char sizeof_bts;
struct access_desc from_ip;
struct access_desc to_ip;
/* BTS variants used to store additional information like
timestamps */
struct access_desc info_type;
struct access_desc info_data;
unsigned long debugctl_mask;
};
static spinlock_t ds_lock = __SPIN_LOCK_UNLOCKED(ds_lock);
/*
* The global configuration used by the below accessor functions
* Validate that the current task is allowed to access the BTS/PEBS
* buffer of the parameter task.
*
* Returns 0, if access is granted; -Eerrno, otherwise.
*/
static struct ds_configuration ds_cfg;
static inline int ds_validate_access(struct ds_context *context,
enum ds_qualifier qual)
{
if (!context)
return -EPERM;
if (context->owner[qual] == current)
return 0;
return -EPERM;
}
/*
* Accessor functions for some DS and BTS fields using the above
* global ptrace_bts_cfg.
* We either support (system-wide) per-cpu or per-thread allocation.
* We distinguish the two based on the task_struct pointer, where a
* NULL pointer indicates per-cpu allocation for the current cpu.
*
* Allocations are use-counted. As soon as resources are allocated,
* further allocations must be of the same type (per-cpu or
* per-thread). We model this by counting allocations (i.e. the number
* of tracers of a certain type) for one type negatively:
* =0 no tracers
* >0 number of per-thread tracers
* <0 number of per-cpu tracers
*
* The below functions to get and put tracers and to check the
* allocation type require the ds_lock to be held by the caller.
*
* Tracers essentially gives the number of ds contexts for a certain
* type of allocation.
*/
static inline unsigned long get_bts_buffer_base(char *base)
static long tracers;
static inline void get_tracer(struct task_struct *task)
{
return *(unsigned long *)(base + ds_cfg.bts_buffer_base.offset);
tracers += (task ? 1 : -1);
}
static inline void set_bts_buffer_base(char *base, unsigned long value)
static inline void put_tracer(struct task_struct *task)
{
(*(unsigned long *)(base + ds_cfg.bts_buffer_base.offset)) = value;
tracers -= (task ? 1 : -1);
}
static inline unsigned long get_bts_index(char *base)
static inline int check_tracer(struct task_struct *task)
{
return *(unsigned long *)(base + ds_cfg.bts_index.offset);
return (task ? (tracers >= 0) : (tracers <= 0));
}
static inline void set_bts_index(char *base, unsigned long value)
/*
* The DS context is either attached to a thread or to a cpu:
* - in the former case, the thread_struct contains a pointer to the
* attached context.
* - in the latter case, we use a static array of per-cpu context
* pointers.
*
* Contexts are use-counted. They are allocated on first access and
* deallocated when the last user puts the context.
*
* We distinguish between an allocating and a non-allocating get of a
* context:
* - the allocating get is used for requesting BTS/PEBS resources. It
* requires the caller to hold the global ds_lock.
* - the non-allocating get is used for all other cases. A
* non-existing context indicates an error. It acquires and releases
* the ds_lock itself for obtaining the context.
*
* A context and its DS configuration are allocated and deallocated
* together. A context always has a DS configuration of the
* appropriate size.
*/
static DEFINE_PER_CPU(struct ds_context *, system_context);
#define this_system_context per_cpu(system_context, smp_processor_id())
/*
* Returns the pointer to the parameter task's context or to the
* system-wide context, if task is NULL.
*
* Increases the use count of the returned context, if not NULL.
*/
static inline struct ds_context *ds_get_context(struct task_struct *task)
{
(*(unsigned long *)(base + ds_cfg.bts_index.offset)) = value;
struct ds_context *context;
spin_lock(&ds_lock);
context = (task ? task->thread.ds_ctx : this_system_context);
if (context)
context->count++;
spin_unlock(&ds_lock);
return context;
}
static inline unsigned long get_bts_absolute_maximum(char *base)
/*
* Same as ds_get_context, but allocates the context and it's DS
* structure, if necessary; returns NULL; if out of memory.
*
* pre: requires ds_lock to be held
*/
static inline struct ds_context *ds_alloc_context(struct task_struct *task)
{
return *(unsigned long *)(base + ds_cfg.bts_absolute_maximum.offset);
struct ds_context **p_context =
(task ? &task->thread.ds_ctx : &this_system_context);
struct ds_context *context = *p_context;
if (!context) {
context = kzalloc(sizeof(*context), GFP_KERNEL);
if (!context)
return NULL;
context->ds = kzalloc(ds_cfg.sizeof_ds, GFP_KERNEL);
if (!context->ds) {
kfree(context);
return NULL;
}
*p_context = context;
context->this = p_context;
context->task = task;
if (task)
set_tsk_thread_flag(task, TIF_DS_AREA_MSR);
if (!task || (task == current))
wrmsr(MSR_IA32_DS_AREA, (unsigned long)context->ds, 0);
get_tracer(task);
}
context->count++;
return context;
}
static inline void set_bts_absolute_maximum(char *base, unsigned long value)
/*
* Decreases the use count of the parameter context, if not NULL.
* Deallocates the context, if the use count reaches zero.
*/
static inline void ds_put_context(struct ds_context *context)
{
(*(unsigned long *)(base + ds_cfg.bts_absolute_maximum.offset)) = value;
if (!context)
return;
spin_lock(&ds_lock);
if (--context->count)
goto out;
*(context->this) = NULL;
if (context->task)
clear_tsk_thread_flag(context->task, TIF_DS_AREA_MSR);
if (!context->task || (context->task == current))
wrmsrl(MSR_IA32_DS_AREA, 0);
put_tracer(context->task);
/* free any leftover buffers from tracers that did not
* deallocate them properly. */
kfree(context->buffer[ds_bts]);
kfree(context->buffer[ds_pebs]);
kfree(context->ds);
kfree(context);
out:
spin_unlock(&ds_lock);
}
static inline unsigned long get_bts_interrupt_threshold(char *base)
/*
* Handle a buffer overflow
*
* task: the task whose buffers are overflowing;
* NULL for a buffer overflow on the current cpu
* context: the ds context
* qual: the buffer type
*/
static void ds_overflow(struct task_struct *task, struct ds_context *context,
enum ds_qualifier qual)
{
return *(unsigned long *)(base + ds_cfg.bts_interrupt_threshold.offset);
if (!context)
return;
if (context->callback[qual])
(*context->callback[qual])(task);
/* todo: do some more overflow handling */
}
static inline void set_bts_interrupt_threshold(char *base, unsigned long value)
/*
* Allocate a non-pageable buffer of the parameter size.
* Checks the memory and the locked memory rlimit.
*
* Returns the buffer, if successful;
* NULL, if out of memory or rlimit exceeded.
*
* size: the requested buffer size in bytes
* pages (out): if not NULL, contains the number of pages reserved
*/
static inline void *ds_allocate_buffer(size_t size, unsigned int *pages)
{
(*(unsigned long *)(base + ds_cfg.bts_interrupt_threshold.offset)) = value;
unsigned long rlim, vm, pgsz;
void *buffer;
pgsz = PAGE_ALIGN(size) >> PAGE_SHIFT;
rlim = current->signal->rlim[RLIMIT_AS].rlim_cur >> PAGE_SHIFT;
vm = current->mm->total_vm + pgsz;
if (rlim < vm)
return NULL;
rlim = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur >> PAGE_SHIFT;
vm = current->mm->locked_vm + pgsz;
if (rlim < vm)
return NULL;
buffer = kzalloc(size, GFP_KERNEL);
if (!buffer)
return NULL;
current->mm->total_vm += pgsz;
current->mm->locked_vm += pgsz;
if (pages)
*pages = pgsz;
return buffer;
}
static inline unsigned long get_from_ip(char *base)
static int ds_request(struct task_struct *task, void *base, size_t size,
ds_ovfl_callback_t ovfl, enum ds_qualifier qual)
{
return *(unsigned long *)(base + ds_cfg.from_ip.offset);
struct ds_context *context;
unsigned long buffer, adj;
const unsigned long alignment = (1 << 3);
int error = 0;
if (!ds_cfg.sizeof_ds)
return -EOPNOTSUPP;
/* we require some space to do alignment adjustments below */
if (size < (alignment + ds_cfg.sizeof_rec[qual]))
return -EINVAL;
/* buffer overflow notification is not yet implemented */
if (ovfl)
return -EOPNOTSUPP;
spin_lock(&ds_lock);
if (!check_tracer(task))
return -EPERM;
error = -ENOMEM;
context = ds_alloc_context(task);
if (!context)
goto out_unlock;
error = -EALREADY;
if (context->owner[qual] == current)
goto out_unlock;
error = -EPERM;
if (context->owner[qual] != NULL)
goto out_unlock;
context->owner[qual] = current;
spin_unlock(&ds_lock);
error = -ENOMEM;
if (!base) {
base = ds_allocate_buffer(size, &context->pages[qual]);
if (!base)
goto out_release;
context->buffer[qual] = base;
}
error = 0;
context->callback[qual] = ovfl;
/* adjust the buffer address and size to meet alignment
* constraints:
* - buffer is double-word aligned
* - size is multiple of record size
*
* We checked the size at the very beginning; we have enough
* space to do the adjustment.
*/
buffer = (unsigned long)base;
adj = ALIGN(buffer, alignment) - buffer;
buffer += adj;
size -= adj;
size /= ds_cfg.sizeof_rec[qual];
size *= ds_cfg.sizeof_rec[qual];
ds_set(context->ds, qual, ds_buffer_base, buffer);
ds_set(context->ds, qual, ds_index, buffer);
ds_set(context->ds, qual, ds_absolute_maximum, buffer + size);
if (ovfl) {
/* todo: select a suitable interrupt threshold */
} else
ds_set(context->ds, qual,
ds_interrupt_threshold, buffer + size + 1);
/* we keep the context until ds_release */
return error;
out_release:
context->owner[qual] = NULL;
ds_put_context(context);
return error;
out_unlock:
spin_unlock(&ds_lock);
ds_put_context(context);
return error;
}
static inline void set_from_ip(char *base, unsigned long value)
int ds_request_bts(struct task_struct *task, void *base, size_t size,
ds_ovfl_callback_t ovfl)
{
(*(unsigned long *)(base + ds_cfg.from_ip.offset)) = value;
return ds_request(task, base, size, ovfl, ds_bts);
}
static inline unsigned long get_to_ip(char *base)
int ds_request_pebs(struct task_struct *task, void *base, size_t size,
ds_ovfl_callback_t ovfl)
{
return *(unsigned long *)(base + ds_cfg.to_ip.offset);
return ds_request(task, base, size, ovfl, ds_pebs);
}
static inline void set_to_ip(char *base, unsigned long value)
static int ds_release(struct task_struct *task, enum ds_qualifier qual)
{
(*(unsigned long *)(base + ds_cfg.to_ip.offset)) = value;
struct ds_context *context;
int error;
context = ds_get_context(task);
error = ds_validate_access(context, qual);
if (error < 0)
goto out;
kfree(context->buffer[qual]);
context->buffer[qual] = 0;
current->mm->total_vm -= context->pages[qual];
current->mm->locked_vm -= context->pages[qual];
context->pages[qual] = 0;
context->owner[qual] = 0;
/*
* we put the context twice:
* once for the ds_get_context
* once for the corresponding ds_request
*/
ds_put_context(context);
out:
ds_put_context(context);
return error;
}
static inline unsigned char get_info_type(char *base)
int ds_release_bts(struct task_struct *task)
{
return *(unsigned char *)(base + ds_cfg.info_type.offset);
return ds_release(task, ds_bts);
}
static inline void set_info_type(char *base, unsigned char value)
int ds_release_pebs(struct task_struct *task)
{
(*(unsigned char *)(base + ds_cfg.info_type.offset)) = value;
return ds_release(task, ds_pebs);
}
static inline unsigned long get_info_data(char *base)
static int ds_get_index(struct task_struct *task, size_t *pos,
enum ds_qualifier qual)
{
return *(unsigned long *)(base + ds_cfg.info_data.offset);
struct ds_context *context;
unsigned long base, index;
int error;
context = ds_get_context(task);
error = ds_validate_access(context, qual);
if (error < 0)
goto out;
base = ds_get(context->ds, qual, ds_buffer_base);
index = ds_get(context->ds, qual, ds_index);
error = ((index - base) / ds_cfg.sizeof_rec[qual]);
if (pos)
*pos = error;
out:
ds_put_context(context);
return error;
}
static inline void set_info_data(char *base, unsigned long value)
int ds_get_bts_index(struct task_struct *task, size_t *pos)
{
(*(unsigned long *)(base + ds_cfg.info_data.offset)) = value;
return ds_get_index(task, pos, ds_bts);
}
int ds_get_pebs_index(struct task_struct *task, size_t *pos)
{
return ds_get_index(task, pos, ds_pebs);
}
int ds_allocate(void **dsp, size_t bts_size_in_bytes)
static int ds_get_end(struct task_struct *task, size_t *pos,
enum ds_qualifier qual)
{
size_t bts_size_in_records;
unsigned long bts;
void *ds;
struct ds_context *context;
unsigned long base, end;
int error;
context = ds_get_context(task);
error = ds_validate_access(context, qual);
if (error < 0)
goto out;
base = ds_get(context->ds, qual, ds_buffer_base);
end = ds_get(context->ds, qual, ds_absolute_maximum);
error = ((end - base) / ds_cfg.sizeof_rec[qual]);
if (pos)
*pos = error;
out:
ds_put_context(context);
return error;
}
if (!ds_cfg.sizeof_ds || !ds_cfg.sizeof_bts)
return -EOPNOTSUPP;
int ds_get_bts_end(struct task_struct *task, size_t *pos)
{
return ds_get_end(task, pos, ds_bts);
}
if (bts_size_in_bytes < 0)
return -EINVAL;
int ds_get_pebs_end(struct task_struct *task, size_t *pos)
{
return ds_get_end(task, pos, ds_pebs);
}
bts_size_in_records =
bts_size_in_bytes / ds_cfg.sizeof_bts;
bts_size_in_bytes =
bts_size_in_records * ds_cfg.sizeof_bts;
static int ds_access(struct task_struct *task, size_t index,
const void **record, enum ds_qualifier qual)
{
struct ds_context *context;
unsigned long base, idx;
int error;
if (bts_size_in_bytes <= 0)
if (!record)
return -EINVAL;
bts = (unsigned long)kzalloc(bts_size_in_bytes, GFP_KERNEL);
context = ds_get_context(task);
error = ds_validate_access(context, qual);
if (error < 0)
goto out;
if (!bts)
return -ENOMEM;
base = ds_get(context->ds, qual, ds_buffer_base);
idx = base + (index * ds_cfg.sizeof_rec[qual]);
ds = kzalloc(ds_cfg.sizeof_ds, GFP_KERNEL);
if (!ds) {
kfree((void *)bts);
return -ENOMEM;
}
error = -EINVAL;
if (idx > ds_get(context->ds, qual, ds_absolute_maximum))
goto out;
set_bts_buffer_base(ds, bts);
set_bts_index(ds, bts);
set_bts_absolute_maximum(ds, bts + bts_size_in_bytes);
set_bts_interrupt_threshold(ds, bts + bts_size_in_bytes + 1);
*record = (const void *)idx;
error = ds_cfg.sizeof_rec[qual];
out:
ds_put_context(context);
return error;
}
*dsp = ds;
return 0;
int ds_access_bts(struct task_struct *task, size_t index, const void **record)
{
return ds_access(task, index, record, ds_bts);
}
int ds_free(void **dsp)
int ds_access_pebs(struct task_struct *task, size_t index, const void **record)
{
if (*dsp) {
kfree((void *)get_bts_buffer_base(*dsp));
kfree(*dsp);
*dsp = NULL;
}
return 0;
return ds_access(task, index, record, ds_pebs);
}
int ds_get_bts_size(void *ds)
static int ds_write(struct task_struct *task, const void *record, size_t size,
enum ds_qualifier qual, int force)
{
int size_in_bytes;
struct ds_context *context;
int error;
if (!ds_cfg.sizeof_ds || !ds_cfg.sizeof_bts)
return -EOPNOTSUPP;
if (!record)
return -EINVAL;
if (!ds)
return 0;
error = -EPERM;
context = ds_get_context(task);
if (!context)
goto out;
size_in_bytes =
get_bts_absolute_maximum(ds) -
get_bts_buffer_base(ds);
return size_in_bytes;
}
if (!force) {
error = ds_validate_access(context, qual);
if (error < 0)
goto out;
}
int ds_get_bts_end(void *ds)
{
int size_in_bytes = ds_get_bts_size(ds);
error = 0;
while (size) {
unsigned long base, index, end, write_end, int_th;
unsigned long write_size, adj_write_size;
if (size_in_bytes <= 0)
return size_in_bytes;
/*
* write as much as possible without producing an
* overflow interrupt.
*
* interrupt_threshold must either be
* - bigger than absolute_maximum or
* - point to a record between buffer_base and absolute_maximum
*
* index points to a valid record.
*/
base = ds_get(context->ds, qual, ds_buffer_base);
index = ds_get(context->ds, qual, ds_index);
end = ds_get(context->ds, qual, ds_absolute_maximum);
int_th = ds_get(context->ds, qual, ds_interrupt_threshold);
return size_in_bytes / ds_cfg.sizeof_bts;
}
write_end = min(end, int_th);
int ds_get_bts_index(void *ds)
{
int index_offset_in_bytes;
/* if we are already beyond the interrupt threshold,
* we fill the entire buffer */
if (write_end <= index)
write_end = end;
if (!ds_cfg.sizeof_ds || !ds_cfg.sizeof_bts)
return -EOPNOTSUPP;
if (write_end <= index)
goto out;
index_offset_in_bytes =
get_bts_index(ds) -
get_bts_buffer_base(ds);
write_size = min((unsigned long) size, write_end - index);
memcpy((void *)index, record, write_size);
return index_offset_in_bytes / ds_cfg.sizeof_bts;
}
record = (const char *)record + write_size;
size -= write_size;
error += write_size;
int ds_set_overflow(void *ds, int method)
{
switch (method) {
case DS_O_SIGNAL:
return -EOPNOTSUPP;
case DS_O_WRAP:
return 0;
default:
return -EINVAL;
adj_write_size = write_size / ds_cfg.sizeof_rec[qual];
adj_write_size *= ds_cfg.sizeof_rec[qual];
/* zero out trailing bytes */
memset((char *)index + write_size, 0,
adj_write_size - write_size);
index += adj_write_size;
if (index >= end)
index = base;
ds_set(context->ds, qual, ds_index, index);
if (index >= int_th)
ds_overflow(task, context, qual);
}
out:
ds_put_context(context);
return error;
}
int ds_get_overflow(void *ds)
int ds_write_bts(struct task_struct *task, const void *record, size_t size)
{
return DS_O_WRAP;
return ds_write(task, record, size, ds_bts, /* force = */ 0);
}
int ds_clear(void *ds)
int ds_write_pebs(struct task_struct *task, const void *record, size_t size)
{
int bts_size = ds_get_bts_size(ds);
unsigned long bts_base;
if (bts_size <= 0)
return bts_size;
bts_base = get_bts_buffer_base(ds);
memset((void *)bts_base, 0, bts_size);
return ds_write(task, record, size, ds_pebs, /* force = */ 0);
}
set_bts_index(ds, bts_base);
return 0;
int ds_unchecked_write_bts(struct task_struct *task,
const void *record, size_t size)
{
return ds_write(task, record, size, ds_bts, /* force = */ 1);
}
int ds_read_bts(void *ds, int index, struct bts_struct *out)
int ds_unchecked_write_pebs(struct task_struct *task,
const void *record, size_t size)
{
void *bts;
return ds_write(task, record, size, ds_pebs, /* force = */ 1);
}
if (!ds_cfg.sizeof_ds || !ds_cfg.sizeof_bts)
return -EOPNOTSUPP;
static int ds_reset_or_clear(struct task_struct *task,
enum ds_qualifier qual, int clear)
{
struct ds_context *context;
unsigned long base, end;
int error;
if (index < 0)
return -EINVAL;
context = ds_get_context(task);
error = ds_validate_access(context, qual);
if (error < 0)
goto out;
if (index >= ds_get_bts_size(ds))
return -EINVAL;
base = ds_get(context->ds, qual, ds_buffer_base);
end = ds_get(context->ds, qual, ds_absolute_maximum);
bts = (void *)(get_bts_buffer_base(ds) + (index * ds_cfg.sizeof_bts));
if (clear)
memset((void *)base, 0, end - base);
memset(out, 0, sizeof(*out));
if (get_from_ip(bts) == BTS_ESCAPE_ADDRESS) {
out->qualifier = get_info_type(bts);
out->variant.jiffies = get_info_data(bts);
} else {
out->qualifier = BTS_BRANCH;
out->variant.lbr.from_ip = get_from_ip(bts);
out->variant.lbr.to_ip = get_to_ip(bts);
}
ds_set(context->ds, qual, ds_index, base);
return sizeof(*out);;
error = 0;
out:
ds_put_context(context);
return error;
}
int ds_write_bts(void *ds, const struct bts_struct *in)
int ds_reset_bts(struct task_struct *task)
{
unsigned long bts;
if (!ds_cfg.sizeof_ds || !ds_cfg.sizeof_bts)
return -EOPNOTSUPP;
if (ds_get_bts_size(ds) <= 0)
return -ENXIO;
return ds_reset_or_clear(task, ds_bts, /* clear = */ 0);
}
bts = get_bts_index(ds);
int ds_reset_pebs(struct task_struct *task)
{
return ds_reset_or_clear(task, ds_pebs, /* clear = */ 0);
}
memset((void *)bts, 0, ds_cfg.sizeof_bts);
switch (in->qualifier) {
case BTS_INVALID:
break;
int ds_clear_bts(struct task_struct *task)
{
return ds_reset_or_clear(task, ds_bts, /* clear = */ 1);
}
case BTS_BRANCH:
set_from_ip((void *)bts, in->variant.lbr.from_ip);
set_to_ip((void *)bts, in->variant.lbr.to_ip);
break;
int ds_clear_pebs(struct task_struct *task)
{
return ds_reset_or_clear(task, ds_pebs, /* clear = */ 1);
}
case BTS_TASK_ARRIVES:
case BTS_TASK_DEPARTS:
set_from_ip((void *)bts, BTS_ESCAPE_ADDRESS);
set_info_type((void *)bts, in->qualifier);
set_info_data((void *)bts, in->variant.jiffies);
break;
int ds_get_pebs_reset(struct task_struct *task, u64 *value)
{
struct ds_context *context;
int error;
default:
if (!value)
return -EINVAL;
}
bts = bts + ds_cfg.sizeof_bts;
if (bts >= get_bts_absolute_maximum(ds))
bts = get_bts_buffer_base(ds);
set_bts_index(ds, bts);
context = ds_get_context(task);
error = ds_validate_access(context, ds_pebs);
if (error < 0)
goto out;
return ds_cfg.sizeof_bts;
*value = *(u64 *)(context->ds + (ds_cfg.sizeof_field * 8));
error = 0;
out:
ds_put_context(context);
return error;
}
unsigned long ds_debugctl_mask(void)
int ds_set_pebs_reset(struct task_struct *task, u64 value)
{
return ds_cfg.debugctl_mask;
}
struct ds_context *context;
int error;
#ifdef __i386__
static const struct ds_configuration ds_cfg_netburst = {
.sizeof_ds = 9 * 4,
.bts_buffer_base = { 0, 4 },
.bts_index = { 4, 4 },
.bts_absolute_maximum = { 8, 4 },
.bts_interrupt_threshold = { 12, 4 },
.sizeof_bts = 3 * 4,
.from_ip = { 0, 4 },
.to_ip = { 4, 4 },
.info_type = { 4, 1 },
.info_data = { 8, 4 },
.debugctl_mask = (1<<2)|(1<<3)
};
context = ds_get_context(task);
error = ds_validate_access(context, ds_pebs);
if (error < 0)
goto out;
static const struct ds_configuration ds_cfg_pentium_m = {
.sizeof_ds = 9 * 4,
.bts_buffer_base = { 0, 4 },
.bts_index = { 4, 4 },
.bts_absolute_maximum = { 8, 4 },
.bts_interrupt_threshold = { 12, 4 },
.sizeof_bts = 3 * 4,
.from_ip = { 0, 4 },
.to_ip = { 4, 4 },
.info_type = { 4, 1 },
.info_data = { 8, 4 },
.debugctl_mask = (1<<6)|(1<<7)
*(u64 *)(context->ds + (ds_cfg.sizeof_field * 8)) = value;
error = 0;
out:
ds_put_context(context);
return error;
}
static const struct ds_configuration ds_cfg_var = {
.sizeof_ds = sizeof(long) * 12,
.sizeof_field = sizeof(long),
.sizeof_rec[ds_bts] = sizeof(long) * 3,
.sizeof_rec[ds_pebs] = sizeof(long) * 10
};
#endif /* _i386_ */
static const struct ds_configuration ds_cfg_core2 = {
.sizeof_ds = 9 * 8,
.bts_buffer_base = { 0, 8 },
.bts_index = { 8, 8 },
.bts_absolute_maximum = { 16, 8 },
.bts_interrupt_threshold = { 24, 8 },
.sizeof_bts = 3 * 8,
.from_ip = { 0, 8 },
.to_ip = { 8, 8 },
.info_type = { 8, 1 },
.info_data = { 16, 8 },
.debugctl_mask = (1<<6)|(1<<7)|(1<<9)
static const struct ds_configuration ds_cfg_64 = {
.sizeof_ds = 8 * 12,
.sizeof_field = 8,
.sizeof_rec[ds_bts] = 8 * 3,
.sizeof_rec[ds_pebs] = 8 * 10
};
static inline void
......@@ -429,14 +821,13 @@ void __cpuinit ds_init_intel(struct cpuinfo_x86 *c)
switch (c->x86) {
case 0x6:
switch (c->x86_model) {
#ifdef __i386__
case 0xD:
case 0xE: /* Pentium M */
ds_configure(&ds_cfg_pentium_m);
ds_configure(&ds_cfg_var);
break;
#endif /* _i386_ */
case 0xF: /* Core2 */
ds_configure(&ds_cfg_core2);
case 0x1C: /* Atom */
ds_configure(&ds_cfg_64);
break;
default:
/* sorry, don't know about them */
......@@ -445,13 +836,11 @@ void __cpuinit ds_init_intel(struct cpuinfo_x86 *c)
break;
case 0xF:
switch (c->x86_model) {
#ifdef __i386__
case 0x0:
case 0x1:
case 0x2: /* Netburst */
ds_configure(&ds_cfg_netburst);
ds_configure(&ds_cfg_var);
break;
#endif /* _i386_ */
default:
/* sorry, don't know about them */
break;
......@@ -462,3 +851,14 @@ void __cpuinit ds_init_intel(struct cpuinfo_x86 *c)
break;
}
}
void ds_free(struct ds_context *context)
{
/* This is called when the task owning the parameter context
* is dying. There should not be any user of that context left
* to disturb us, anymore. */
unsigned long leftovers = context->count;
while (leftovers--)
ds_put_context(context);
}
#endif /* CONFIG_X86_DS */
......@@ -277,6 +277,14 @@ void exit_thread(void)
tss->x86_tss.io_bitmap_base = INVALID_IO_BITMAP_OFFSET;
put_cpu();
}
#ifdef CONFIG_X86_DS
/* Free any DS contexts that have not been properly released. */
if (unlikely(current->thread.ds_ctx)) {
/* we clear debugctl to make sure DS is not used. */
update_debugctlmsr(0);
ds_free(current->thread.ds_ctx);
}
#endif /* CONFIG_X86_DS */
}
void flush_thread(void)
......@@ -438,6 +446,35 @@ int set_tsc_mode(unsigned int val)
return 0;
}
#ifdef CONFIG_X86_DS
static int update_debugctl(struct thread_struct *prev,
struct thread_struct *next, unsigned long debugctl)
{
unsigned long ds_prev = 0;
unsigned long ds_next = 0;
if (prev->ds_ctx)
ds_prev = (unsigned long)prev->ds_ctx->ds;
if (next->ds_ctx)
ds_next = (unsigned long)next->ds_ctx->ds;
if (ds_next != ds_prev) {
/* we clear debugctl to make sure DS
* is not in use when we change it */
debugctl = 0;
update_debugctlmsr(0);
wrmsr(MSR_IA32_DS_AREA, ds_next, 0);
}
return debugctl;
}
#else
static int update_debugctl(struct thread_struct *prev,
struct thread_struct *next, unsigned long debugctl)
{
return debugctl;
}
#endif /* CONFIG_X86_DS */
static noinline void
__switch_to_xtra(struct task_struct *prev_p, struct task_struct *next_p,
struct tss_struct *tss)
......@@ -448,14 +485,7 @@ __switch_to_xtra(struct task_struct *prev_p, struct task_struct *next_p,
prev = &prev_p->thread;
next = &next_p->thread;
debugctl = prev->debugctlmsr;
if (next->ds_area_msr != prev->ds_area_msr) {
/* we clear debugctl to make sure DS
* is not in use when we change it */
debugctl = 0;
update_debugctlmsr(0);
wrmsr(MSR_IA32_DS_AREA, next->ds_area_msr, 0);
}
debugctl = update_debugctl(prev, next, prev->debugctlmsr);
if (next->debugctlmsr != debugctl)
update_debugctlmsr(next->debugctlmsr);
......@@ -479,13 +509,13 @@ __switch_to_xtra(struct task_struct *prev_p, struct task_struct *next_p,
hard_enable_TSC();
}
#ifdef X86_BTS
#ifdef CONFIG_X86_PTRACE_BTS
if (test_tsk_thread_flag(prev_p, TIF_BTS_TRACE_TS))
ptrace_bts_take_timestamp(prev_p, BTS_TASK_DEPARTS);
if (test_tsk_thread_flag(next_p, TIF_BTS_TRACE_TS))
ptrace_bts_take_timestamp(next_p, BTS_TASK_ARRIVES);
#endif
#endif /* CONFIG_X86_PTRACE_BTS */
if (!test_tsk_thread_flag(next_p, TIF_IO_BITMAP)) {
......
......@@ -239,6 +239,14 @@ void exit_thread(void)
t->io_bitmap_max = 0;
put_cpu();
}
#ifdef CONFIG_X86_DS
/* Free any DS contexts that have not been properly released. */
if (unlikely(t->ds_ctx)) {
/* we clear debugctl to make sure DS is not used. */
update_debugctlmsr(0);
ds_free(t->ds_ctx);
}
#endif /* CONFIG_X86_DS */
}
void flush_thread(void)
......@@ -472,13 +480,27 @@ static inline void __switch_to_xtra(struct task_struct *prev_p,
next = &next_p->thread;
debugctl = prev->debugctlmsr;
if (next->ds_area_msr != prev->ds_area_msr) {
/* we clear debugctl to make sure DS
* is not in use when we change it */
#ifdef CONFIG_X86_DS
{
unsigned long ds_prev = 0, ds_next = 0;
if (prev->ds_ctx)
ds_prev = (unsigned long)prev->ds_ctx->ds;
if (next->ds_ctx)
ds_next = (unsigned long)next->ds_ctx->ds;
if (ds_next != ds_prev) {
/*
* We clear debugctl to make sure DS
* is not in use when we change it:
*/
debugctl = 0;
update_debugctlmsr(0);
wrmsrl(MSR_IA32_DS_AREA, next->ds_area_msr);
wrmsrl(MSR_IA32_DS_AREA, ds_next);
}
}
#endif /* CONFIG_X86_DS */
if (next->debugctlmsr != debugctl)
update_debugctlmsr(next->debugctlmsr);
......@@ -516,13 +538,13 @@ static inline void __switch_to_xtra(struct task_struct *prev_p,
memset(tss->io_bitmap, 0xff, prev->io_bitmap_max);
}
#ifdef X86_BTS
#ifdef CONFIG_X86_PTRACE_BTS
if (test_tsk_thread_flag(prev_p, TIF_BTS_TRACE_TS))
ptrace_bts_take_timestamp(prev_p, BTS_TASK_DEPARTS);
if (test_tsk_thread_flag(next_p, TIF_BTS_TRACE_TS))
ptrace_bts_take_timestamp(next_p, BTS_TASK_ARRIVES);
#endif
#endif /* CONFIG_X86_PTRACE_BTS */
}
/*
......
......@@ -554,45 +554,115 @@ static int ptrace_set_debugreg(struct task_struct *child,
return 0;
}
#ifdef X86_BTS
#ifdef CONFIG_X86_PTRACE_BTS
/*
* The configuration for a particular BTS hardware implementation.
*/
struct bts_configuration {
/* the size of a BTS record in bytes; at most BTS_MAX_RECORD_SIZE */
unsigned char sizeof_bts;
/* the size of a field in the BTS record in bytes */
unsigned char sizeof_field;
/* a bitmask to enable/disable BTS in DEBUGCTL MSR */
unsigned long debugctl_mask;
};
static struct bts_configuration bts_cfg;
#define BTS_MAX_RECORD_SIZE (8 * 3)
static int ptrace_bts_get_size(struct task_struct *child)
/*
* Branch Trace Store (BTS) uses the following format. Different
* architectures vary in the size of those fields.
* - source linear address
* - destination linear address
* - flags
*
* Later architectures use 64bit pointers throughout, whereas earlier
* architectures use 32bit pointers in 32bit mode.
*
* We compute the base address for the first 8 fields based on:
* - the field size stored in the DS configuration
* - the relative field position
*
* In order to store additional information in the BTS buffer, we use
* a special source address to indicate that the record requires
* special interpretation.
*
* Netburst indicated via a bit in the flags field whether the branch
* was predicted; this is ignored.
*/
enum bts_field {
bts_from = 0,
bts_to,
bts_flags,
bts_escape = (unsigned long)-1,
bts_qual = bts_to,
bts_jiffies = bts_flags
};
static inline unsigned long bts_get(const char *base, enum bts_field field)
{
if (!child->thread.ds_area_msr)
return -ENXIO;
base += (bts_cfg.sizeof_field * field);
return *(unsigned long *)base;
}
return ds_get_bts_index((void *)child->thread.ds_area_msr);
static inline void bts_set(char *base, enum bts_field field, unsigned long val)
{
base += (bts_cfg.sizeof_field * field);;
(*(unsigned long *)base) = val;
}
static int ptrace_bts_read_record(struct task_struct *child,
long index,
/*
* Translate a BTS record from the raw format into the bts_struct format
*
* out (out): bts_struct interpretation
* raw: raw BTS record
*/
static void ptrace_bts_translate_record(struct bts_struct *out, const void *raw)
{
memset(out, 0, sizeof(*out));
if (bts_get(raw, bts_from) == bts_escape) {
out->qualifier = bts_get(raw, bts_qual);
out->variant.jiffies = bts_get(raw, bts_jiffies);
} else {
out->qualifier = BTS_BRANCH;
out->variant.lbr.from_ip = bts_get(raw, bts_from);
out->variant.lbr.to_ip = bts_get(raw, bts_to);
}
}
static int ptrace_bts_read_record(struct task_struct *child, size_t index,
struct bts_struct __user *out)
{
struct bts_struct ret;
int retval;
int bts_end;
int bts_index;
const void *bts_record;
size_t bts_index, bts_end;
int error;
if (!child->thread.ds_area_msr)
return -ENXIO;
error = ds_get_bts_end(child, &bts_end);
if (error < 0)
return error;
if (index < 0)
return -EINVAL;
bts_end = ds_get_bts_end((void *)child->thread.ds_area_msr);
if (bts_end <= index)
return -EINVAL;
error = ds_get_bts_index(child, &bts_index);
if (error < 0)
return error;
/* translate the ptrace bts index into the ds bts index */
bts_index = ds_get_bts_index((void *)child->thread.ds_area_msr);
bts_index -= (index + 1);
if (bts_index < 0)
bts_index += bts_end;
retval = ds_read_bts((void *)child->thread.ds_area_msr,
bts_index, &ret);
if (retval < 0)
return retval;
bts_index += bts_end - (index + 1);
if (bts_end <= bts_index)
bts_index -= bts_end;
error = ds_access_bts(child, bts_index, &bts_record);
if (error < 0)
return error;
ptrace_bts_translate_record(&ret, bts_record);
if (copy_to_user(out, &ret, sizeof(ret)))
return -EFAULT;
......@@ -600,101 +670,106 @@ static int ptrace_bts_read_record(struct task_struct *child,
return sizeof(ret);
}
static int ptrace_bts_clear(struct task_struct *child)
{
if (!child->thread.ds_area_msr)
return -ENXIO;
return ds_clear((void *)child->thread.ds_area_msr);
}
static int ptrace_bts_drain(struct task_struct *child,
long size,
struct bts_struct __user *out)
{
int end, i;
void *ds = (void *)child->thread.ds_area_msr;
if (!ds)
return -ENXIO;
struct bts_struct ret;
const unsigned char *raw;
size_t end, i;
int error;
end = ds_get_bts_index(ds);
if (end <= 0)
return end;
error = ds_get_bts_index(child, &end);
if (error < 0)
return error;
if (size < (end * sizeof(struct bts_struct)))
return -EIO;
for (i = 0; i < end; i++, out++) {
struct bts_struct ret;
int retval;
error = ds_access_bts(child, 0, (const void **)&raw);
if (error < 0)
return error;
retval = ds_read_bts(ds, i, &ret);
if (retval < 0)
return retval;
for (i = 0; i < end; i++, out++, raw += bts_cfg.sizeof_bts) {
ptrace_bts_translate_record(&ret, raw);
if (copy_to_user(out, &ret, sizeof(ret)))
return -EFAULT;
}
ds_clear(ds);
error = ds_clear_bts(child);
if (error < 0)
return error;
return end;
}
static void ptrace_bts_ovfl(struct task_struct *child)
{
send_sig(child->thread.bts_ovfl_signal, child, 0);
}
static int ptrace_bts_config(struct task_struct *child,
long cfg_size,
const struct ptrace_bts_config __user *ucfg)
{
struct ptrace_bts_config cfg;
int bts_size, ret = 0;
void *ds;
int error = 0;
error = -EOPNOTSUPP;
if (!bts_cfg.sizeof_bts)
goto errout;
error = -EIO;
if (cfg_size < sizeof(cfg))
return -EIO;
goto errout;
error = -EFAULT;
if (copy_from_user(&cfg, ucfg, sizeof(cfg)))
return -EFAULT;
goto errout;
if ((int)cfg.size < 0)
return -EINVAL;
error = -EINVAL;
if ((cfg.flags & PTRACE_BTS_O_SIGNAL) &&
!(cfg.flags & PTRACE_BTS_O_ALLOC))
goto errout;
if (cfg.flags & PTRACE_BTS_O_ALLOC) {
ds_ovfl_callback_t ovfl = 0;
unsigned int sig = 0;
/* we ignore the error in case we were not tracing child */
(void)ds_release_bts(child);
bts_size = 0;
ds = (void *)child->thread.ds_area_msr;
if (ds) {
bts_size = ds_get_bts_size(ds);
if (bts_size < 0)
return bts_size;
if (cfg.flags & PTRACE_BTS_O_SIGNAL) {
if (!cfg.signal)
goto errout;
sig = cfg.signal;
ovfl = ptrace_bts_ovfl;
}
cfg.size = PAGE_ALIGN(cfg.size);
if (bts_size != cfg.size) {
ret = ptrace_bts_realloc(child, cfg.size,
cfg.flags & PTRACE_BTS_O_CUT_SIZE);
if (ret < 0)
error = ds_request_bts(child, /* base = */ 0, cfg.size, ovfl);
if (error < 0)
goto errout;
ds = (void *)child->thread.ds_area_msr;
child->thread.bts_ovfl_signal = sig;
}
if (cfg.flags & PTRACE_BTS_O_SIGNAL)
ret = ds_set_overflow(ds, DS_O_SIGNAL);
else
ret = ds_set_overflow(ds, DS_O_WRAP);
if (ret < 0)
error = -EINVAL;
if (!child->thread.ds_ctx && cfg.flags)
goto errout;
if (cfg.flags & PTRACE_BTS_O_TRACE)
child->thread.debugctlmsr |= ds_debugctl_mask();
child->thread.debugctlmsr |= bts_cfg.debugctl_mask;
else
child->thread.debugctlmsr &= ~ds_debugctl_mask();
child->thread.debugctlmsr &= ~bts_cfg.debugctl_mask;
if (cfg.flags & PTRACE_BTS_O_SCHED)
set_tsk_thread_flag(child, TIF_BTS_TRACE_TS);
else
clear_tsk_thread_flag(child, TIF_BTS_TRACE_TS);
ret = sizeof(cfg);
error = sizeof(cfg);
out:
if (child->thread.debugctlmsr)
......@@ -702,10 +777,10 @@ static int ptrace_bts_config(struct task_struct *child,
else
clear_tsk_thread_flag(child, TIF_DEBUGCTLMSR);
return ret;
return error;
errout:
child->thread.debugctlmsr &= ~ds_debugctl_mask();
child->thread.debugctlmsr &= ~bts_cfg.debugctl_mask;
clear_tsk_thread_flag(child, TIF_BTS_TRACE_TS);
goto out;
}
......@@ -714,29 +789,40 @@ static int ptrace_bts_status(struct task_struct *child,
long cfg_size,
struct ptrace_bts_config __user *ucfg)
{
void *ds = (void *)child->thread.ds_area_msr;
struct ptrace_bts_config cfg;
size_t end;
const void *base, *max;
int error;
if (cfg_size < sizeof(cfg))
return -EIO;
memset(&cfg, 0, sizeof(cfg));
error = ds_get_bts_end(child, &end);
if (error < 0)
return error;
error = ds_access_bts(child, /* index = */ 0, &base);
if (error < 0)
return error;
if (ds) {
cfg.size = ds_get_bts_size(ds);
error = ds_access_bts(child, /* index = */ end, &max);
if (error < 0)
return error;
memset(&cfg, 0, sizeof(cfg));
cfg.size = (max - base);
cfg.signal = child->thread.bts_ovfl_signal;
cfg.bts_size = sizeof(struct bts_struct);
if (ds_get_overflow(ds) == DS_O_SIGNAL)
if (cfg.signal)
cfg.flags |= PTRACE_BTS_O_SIGNAL;
if (test_tsk_thread_flag(child, TIF_DEBUGCTLMSR) &&
child->thread.debugctlmsr & ds_debugctl_mask())
child->thread.debugctlmsr & bts_cfg.debugctl_mask)
cfg.flags |= PTRACE_BTS_O_TRACE;
if (test_tsk_thread_flag(child, TIF_BTS_TRACE_TS))
cfg.flags |= PTRACE_BTS_O_SCHED;
}
cfg.bts_size = sizeof(struct bts_struct);
if (copy_to_user(ucfg, &cfg, sizeof(cfg)))
return -EFAULT;
......@@ -744,89 +830,38 @@ static int ptrace_bts_status(struct task_struct *child,
return sizeof(cfg);
}
static int ptrace_bts_write_record(struct task_struct *child,
const struct bts_struct *in)
{
int retval;
unsigned char bts_record[BTS_MAX_RECORD_SIZE];
if (!child->thread.ds_area_msr)
return -ENXIO;
BUG_ON(BTS_MAX_RECORD_SIZE < bts_cfg.sizeof_bts);
retval = ds_write_bts((void *)child->thread.ds_area_msr, in);
if (retval)
return retval;
memset(bts_record, 0, bts_cfg.sizeof_bts);
switch (in->qualifier) {
case BTS_INVALID:
break;
return sizeof(*in);
}
case BTS_BRANCH:
bts_set(bts_record, bts_from, in->variant.lbr.from_ip);
bts_set(bts_record, bts_to, in->variant.lbr.to_ip);
break;
static int ptrace_bts_realloc(struct task_struct *child,
int size, int reduce_size)
{
unsigned long rlim, vm;
int ret, old_size;
case BTS_TASK_ARRIVES:
case BTS_TASK_DEPARTS:
bts_set(bts_record, bts_from, bts_escape);
bts_set(bts_record, bts_qual, in->qualifier);
bts_set(bts_record, bts_jiffies, in->variant.jiffies);
break;
if (size < 0)
default:
return -EINVAL;
old_size = ds_get_bts_size((void *)child->thread.ds_area_msr);
if (old_size < 0)
return old_size;
ret = ds_free((void **)&child->thread.ds_area_msr);
if (ret < 0)
goto out;
size >>= PAGE_SHIFT;
old_size >>= PAGE_SHIFT;
current->mm->total_vm -= old_size;
current->mm->locked_vm -= old_size;
if (size == 0)
goto out;
rlim = current->signal->rlim[RLIMIT_AS].rlim_cur >> PAGE_SHIFT;
vm = current->mm->total_vm + size;
if (rlim < vm) {
ret = -ENOMEM;
if (!reduce_size)
goto out;
size = rlim - current->mm->total_vm;
if (size <= 0)
goto out;
}
rlim = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur >> PAGE_SHIFT;
vm = current->mm->locked_vm + size;
if (rlim < vm) {
ret = -ENOMEM;
if (!reduce_size)
goto out;
size = rlim - current->mm->locked_vm;
if (size <= 0)
goto out;
}
ret = ds_allocate((void **)&child->thread.ds_area_msr,
size << PAGE_SHIFT);
if (ret < 0)
goto out;
current->mm->total_vm += size;
current->mm->locked_vm += size;
out:
if (child->thread.ds_area_msr)
set_tsk_thread_flag(child, TIF_DS_AREA_MSR);
else
clear_tsk_thread_flag(child, TIF_DS_AREA_MSR);
return ret;
/* The writing task will be the switched-to task on a context
* switch. It needs to write into the switched-from task's BTS
* buffer. */
return ds_unchecked_write_bts(child, bts_record, bts_cfg.sizeof_bts);
}
void ptrace_bts_take_timestamp(struct task_struct *tsk,
......@@ -839,7 +874,66 @@ void ptrace_bts_take_timestamp(struct task_struct *tsk,
ptrace_bts_write_record(tsk, &rec);
}
#endif /* X86_BTS */
static const struct bts_configuration bts_cfg_netburst = {
.sizeof_bts = sizeof(long) * 3,
.sizeof_field = sizeof(long),
.debugctl_mask = (1<<2)|(1<<3)|(1<<5)
};
static const struct bts_configuration bts_cfg_pentium_m = {
.sizeof_bts = sizeof(long) * 3,
.sizeof_field = sizeof(long),
.debugctl_mask = (1<<6)|(1<<7)
};
static const struct bts_configuration bts_cfg_core2 = {
.sizeof_bts = 8 * 3,
.sizeof_field = 8,
.debugctl_mask = (1<<6)|(1<<7)|(1<<9)
};
static inline void bts_configure(const struct bts_configuration *cfg)
{
bts_cfg = *cfg;
}
void __cpuinit ptrace_bts_init_intel(struct cpuinfo_x86 *c)
{
switch (c->x86) {
case 0x6:
switch (c->x86_model) {
case 0xD:
case 0xE: /* Pentium M */
bts_configure(&bts_cfg_pentium_m);
break;
case 0xF: /* Core2 */
case 0x1C: /* Atom */
bts_configure(&bts_cfg_core2);
break;
default:
/* sorry, don't know about them */
break;
}
break;
case 0xF:
switch (c->x86_model) {
case 0x0:
case 0x1:
case 0x2: /* Netburst */
bts_configure(&bts_cfg_netburst);
break;
default:
/* sorry, don't know about them */
break;
}
break;
default:
/* sorry, don't know about them */
break;
}
}
#endif /* CONFIG_X86_PTRACE_BTS */
/*
* Called by kernel/ptrace.c when detaching..
......@@ -852,15 +946,15 @@ void ptrace_disable(struct task_struct *child)
#ifdef TIF_SYSCALL_EMU
clear_tsk_thread_flag(child, TIF_SYSCALL_EMU);
#endif
if (child->thread.ds_area_msr) {
#ifdef X86_BTS
ptrace_bts_realloc(child, 0, 0);
#endif
child->thread.debugctlmsr &= ~ds_debugctl_mask();
#ifdef CONFIG_X86_PTRACE_BTS
(void)ds_release_bts(child);
child->thread.debugctlmsr &= ~bts_cfg.debugctl_mask;
if (!child->thread.debugctlmsr)
clear_tsk_thread_flag(child, TIF_DEBUGCTLMSR);
clear_tsk_thread_flag(child, TIF_BTS_TRACE_TS);
}
#endif /* CONFIG_X86_PTRACE_BTS */
}
#if defined CONFIG_X86_32 || defined CONFIG_IA32_EMULATION
......@@ -980,7 +1074,7 @@ long arch_ptrace(struct task_struct *child, long request, long addr, long data)
/*
* These bits need more cooking - not enabled yet:
*/
#ifdef X86_BTS
#ifdef CONFIG_X86_PTRACE_BTS
case PTRACE_BTS_CONFIG:
ret = ptrace_bts_config
(child, data, (struct ptrace_bts_config __user *)addr);
......@@ -992,7 +1086,7 @@ long arch_ptrace(struct task_struct *child, long request, long addr, long data)
break;
case PTRACE_BTS_SIZE:
ret = ptrace_bts_get_size(child);
ret = ds_get_bts_index(child, /* pos = */ 0);
break;
case PTRACE_BTS_GET:
......@@ -1001,14 +1095,14 @@ long arch_ptrace(struct task_struct *child, long request, long addr, long data)
break;
case PTRACE_BTS_CLEAR:
ret = ptrace_bts_clear(child);
ret = ds_clear_bts(child);
break;
case PTRACE_BTS_DRAIN:
ret = ptrace_bts_drain
(child, data, (struct bts_struct __user *) addr);
break;
#endif
#endif /* CONFIG_X86_PTRACE_BTS */
default:
ret = ptrace_request(child, request, addr, data);
......
......@@ -2,71 +2,237 @@
* Debug Store (DS) support
*
* This provides a low-level interface to the hardware's Debug Store
* feature that is used for last branch recording (LBR) and
* feature that is used for branch trace store (BTS) and
* precise-event based sampling (PEBS).
*
* Different architectures use a different DS layout/pointer size.
* The below functions therefore work on a void*.
* It manages:
* - per-thread and per-cpu allocation of BTS and PEBS
* - buffer memory allocation (optional)
* - buffer overflow handling
* - buffer access
*
* It assumes:
* - get_task_struct on all parameter tasks
* - current is allowed to trace parameter tasks
*
* Since there is no user for PEBS, yet, only LBR (or branch
* trace store, BTS) is supported.
*
*
* Copyright (C) 2007 Intel Corporation.
* Markus Metzger <markus.t.metzger@intel.com>, Dec 2007
* Copyright (C) 2007-2008 Intel Corporation.
* Markus Metzger <markus.t.metzger@intel.com>, 2007-2008
*/
#ifndef ASM_X86__DS_H
#define ASM_X86__DS_H
#ifdef CONFIG_X86_DS
#include <linux/types.h>
#include <linux/init.h>
struct cpuinfo_x86;
struct task_struct;
/* a branch trace record entry
/*
* Request BTS or PEBS
*
* Due to alignement constraints, the actual buffer may be slightly
* smaller than the requested or provided buffer.
*
* In order to unify the interface between various processor versions,
* we use the below data structure for all processors.
* Returns 0 on success; -Eerrno otherwise
*
* task: the task to request recording for;
* NULL for per-cpu recording on the current cpu
* base: the base pointer for the (non-pageable) buffer;
* NULL if buffer allocation requested
* size: the size of the requested or provided buffer
* ovfl: pointer to a function to be called on buffer overflow;
* NULL if cyclic buffer requested
*/
enum bts_qualifier {
BTS_INVALID = 0,
BTS_BRANCH,
BTS_TASK_ARRIVES,
BTS_TASK_DEPARTS
};
typedef void (*ds_ovfl_callback_t)(struct task_struct *);
extern int ds_request_bts(struct task_struct *task, void *base, size_t size,
ds_ovfl_callback_t ovfl);
extern int ds_request_pebs(struct task_struct *task, void *base, size_t size,
ds_ovfl_callback_t ovfl);
/*
* Release BTS or PEBS resources
*
* Frees buffers allocated on ds_request.
*
* Returns 0 on success; -Eerrno otherwise
*
* task: the task to release resources for;
* NULL to release resources for the current cpu
*/
extern int ds_release_bts(struct task_struct *task);
extern int ds_release_pebs(struct task_struct *task);
/*
* Return the (array) index of the write pointer.
* (assuming an array of BTS/PEBS records)
*
* Returns -Eerrno on error
*
* task: the task to access;
* NULL to access the current cpu
* pos (out): if not NULL, will hold the result
*/
extern int ds_get_bts_index(struct task_struct *task, size_t *pos);
extern int ds_get_pebs_index(struct task_struct *task, size_t *pos);
/*
* Return the (array) index one record beyond the end of the array.
* (assuming an array of BTS/PEBS records)
*
* Returns -Eerrno on error
*
* task: the task to access;
* NULL to access the current cpu
* pos (out): if not NULL, will hold the result
*/
extern int ds_get_bts_end(struct task_struct *task, size_t *pos);
extern int ds_get_pebs_end(struct task_struct *task, size_t *pos);
/*
* Provide a pointer to the BTS/PEBS record at parameter index.
* (assuming an array of BTS/PEBS records)
*
* The pointer points directly into the buffer. The user is
* responsible for copying the record.
*
* Returns the size of a single record on success; -Eerrno on error
*
* task: the task to access;
* NULL to access the current cpu
* index: the index of the requested record
* record (out): pointer to the requested record
*/
extern int ds_access_bts(struct task_struct *task,
size_t index, const void **record);
extern int ds_access_pebs(struct task_struct *task,
size_t index, const void **record);
/*
* Write one or more BTS/PEBS records at the write pointer index and
* advance the write pointer.
*
* If size is not a multiple of the record size, trailing bytes are
* zeroed out.
*
* May result in one or more overflow notifications.
*
* If called during overflow handling, that is, with index >=
* interrupt threshold, the write will wrap around.
*
* An overflow notification is given if and when the interrupt
* threshold is reached during or after the write.
*
* Returns the number of bytes written or -Eerrno.
*
* task: the task to access;
* NULL to access the current cpu
* buffer: the buffer to write
* size: the size of the buffer
*/
extern int ds_write_bts(struct task_struct *task,
const void *buffer, size_t size);
extern int ds_write_pebs(struct task_struct *task,
const void *buffer, size_t size);
/*
* Same as ds_write_bts/pebs, but omit ownership checks.
*
* This is needed to have some other task than the owner of the
* BTS/PEBS buffer or the parameter task itself write into the
* respective buffer.
*/
extern int ds_unchecked_write_bts(struct task_struct *task,
const void *buffer, size_t size);
extern int ds_unchecked_write_pebs(struct task_struct *task,
const void *buffer, size_t size);
/*
* Reset the write pointer of the BTS/PEBS buffer.
*
* Returns 0 on success; -Eerrno on error
*
* task: the task to access;
* NULL to access the current cpu
*/
extern int ds_reset_bts(struct task_struct *task);
extern int ds_reset_pebs(struct task_struct *task);
/*
* Clear the BTS/PEBS buffer and reset the write pointer.
* The entire buffer will be zeroed out.
*
* Returns 0 on success; -Eerrno on error
*
* task: the task to access;
* NULL to access the current cpu
*/
extern int ds_clear_bts(struct task_struct *task);
extern int ds_clear_pebs(struct task_struct *task);
/*
* Provide the PEBS counter reset value.
*
* Returns 0 on success; -Eerrno on error
*
* task: the task to access;
* NULL to access the current cpu
* value (out): the counter reset value
*/
extern int ds_get_pebs_reset(struct task_struct *task, u64 *value);
/*
* Set the PEBS counter reset value.
*
* Returns 0 on success; -Eerrno on error
*
* task: the task to access;
* NULL to access the current cpu
* value: the new counter reset value
*/
extern int ds_set_pebs_reset(struct task_struct *task, u64 value);
/*
* Initialization
*/
struct cpuinfo_x86;
extern void __cpuinit ds_init_intel(struct cpuinfo_x86 *);
struct bts_struct {
u64 qualifier;
union {
/* BTS_BRANCH */
struct {
u64 from_ip;
u64 to_ip;
} lbr;
/* BTS_TASK_ARRIVES or
BTS_TASK_DEPARTS */
u64 jiffies;
} variant;
/*
* The DS context - part of struct thread_struct.
*/
struct ds_context {
/* pointer to the DS configuration; goes into MSR_IA32_DS_AREA */
unsigned char *ds;
/* the owner of the BTS and PEBS configuration, respectively */
struct task_struct *owner[2];
/* buffer overflow notification function for BTS and PEBS */
ds_ovfl_callback_t callback[2];
/* the original buffer address */
void *buffer[2];
/* the number of allocated pages for on-request allocated buffers */
unsigned int pages[2];
/* use count */
unsigned long count;
/* a pointer to the context location inside the thread_struct
* or the per_cpu context array */
struct ds_context **this;
/* a pointer to the task owning this context, or NULL, if the
* context is owned by a cpu */
struct task_struct *task;
};
/* Overflow handling mechanisms */
#define DS_O_SIGNAL 1 /* send overflow signal */
#define DS_O_WRAP 2 /* wrap around */
extern int ds_allocate(void **, size_t);
extern int ds_free(void **);
extern int ds_get_bts_size(void *);
extern int ds_get_bts_end(void *);
extern int ds_get_bts_index(void *);
extern int ds_set_overflow(void *, int);
extern int ds_get_overflow(void *);
extern int ds_clear(void *);
extern int ds_read_bts(void *, int, struct bts_struct *);
extern int ds_write_bts(void *, const struct bts_struct *);
extern unsigned long ds_debugctl_mask(void);
extern void __cpuinit ds_init_intel(struct cpuinfo_x86 *c);
/* called by exit_thread() to free leftover contexts */
extern void ds_free(struct ds_context *context);
#else /* CONFIG_X86_DS */
#define ds_init_intel(config) do {} while (0)
#endif /* CONFIG_X86_DS */
#endif /* ASM_X86__DS_H */
......@@ -20,6 +20,7 @@ struct mm_struct;
#include <asm/msr.h>
#include <asm/desc_defs.h>
#include <asm/nops.h>
#include <asm/ds.h>
#include <linux/personality.h>
#include <linux/cpumask.h>
......@@ -430,9 +431,14 @@ struct thread_struct {
unsigned io_bitmap_max;
/* MSR_IA32_DEBUGCTLMSR value to switch in if TIF_DEBUGCTLMSR is set. */
unsigned long debugctlmsr;
/* Debug Store - if not 0 points to a DS Save Area configuration;
* goes into MSR_IA32_DS_AREA */
unsigned long ds_area_msr;
#ifdef CONFIG_X86_DS
/* Debug Store context; see include/asm-x86/ds.h; goes into MSR_IA32_DS_AREA */
struct ds_context *ds_ctx;
#endif /* CONFIG_X86_DS */
#ifdef CONFIG_X86_PTRACE_BTS
/* the signal to send on a bts buffer overflow */
unsigned int bts_ovfl_signal;
#endif /* CONFIG_X86_PTRACE_BTS */
};
static inline unsigned long native_get_debugreg(int regno)
......
......@@ -80,8 +80,9 @@
#define PTRACE_SINGLEBLOCK 33 /* resume execution until next branch */
#ifndef __ASSEMBLY__
#ifdef CONFIG_X86_PTRACE_BTS
#ifndef __ASSEMBLY__
#include <asm/types.h>
/* configuration/status structure used in PTRACE_BTS_CONFIG and
......@@ -97,20 +98,20 @@ struct ptrace_bts_config {
/* actual size of bts_struct in bytes */
__u32 bts_size;
};
#endif
#endif /* __ASSEMBLY__ */
#define PTRACE_BTS_O_TRACE 0x1 /* branch trace */
#define PTRACE_BTS_O_SCHED 0x2 /* scheduling events w/ jiffies */
#define PTRACE_BTS_O_SIGNAL 0x4 /* send SIG<signal> on buffer overflow
instead of wrapping around */
#define PTRACE_BTS_O_CUT_SIZE 0x8 /* cut requested size to max available
instead of failing */
#define PTRACE_BTS_O_ALLOC 0x8 /* (re)allocate buffer */
#define PTRACE_BTS_CONFIG 40
/* Configure branch trace recording.
ADDR points to a struct ptrace_bts_config.
DATA gives the size of that buffer.
A new buffer is allocated, iff the size changes.
A new buffer is allocated, if requested in the flags.
An overflow signal may only be requested for new buffers.
Returns the number of bytes read.
*/
#define PTRACE_BTS_STATUS 41
......@@ -119,7 +120,7 @@ struct ptrace_bts_config {
Returns the number of bytes written.
*/
#define PTRACE_BTS_SIZE 42
/* Return the number of available BTS records.
/* Return the number of available BTS records for draining.
DATA and ADDR are ignored.
*/
#define PTRACE_BTS_GET 43
......@@ -139,5 +140,6 @@ struct ptrace_bts_config {
BTS records are read from oldest to newest.
Returns number of BTS records drained.
*/
#endif /* CONFIG_X86_PTRACE_BTS */
#endif /* ASM_X86__PTRACE_ABI_H */
......@@ -127,14 +127,48 @@ struct pt_regs {
#endif /* __KERNEL__ */
#endif /* !__i386__ */
#ifdef CONFIG_X86_PTRACE_BTS
/* a branch trace record entry
*
* In order to unify the interface between various processor versions,
* we use the below data structure for all processors.
*/
enum bts_qualifier {
BTS_INVALID = 0,
BTS_BRANCH,
BTS_TASK_ARRIVES,
BTS_TASK_DEPARTS
};
struct bts_struct {
__u64 qualifier;
union {
/* BTS_BRANCH */
struct {
__u64 from_ip;
__u64 to_ip;
} lbr;
/* BTS_TASK_ARRIVES or
BTS_TASK_DEPARTS */
__u64 jiffies;
} variant;
};
#endif /* CONFIG_X86_PTRACE_BTS */
#ifdef __KERNEL__
/* the DS BTS struct is used for ptrace as well */
#include <asm/ds.h>
#include <linux/init.h>
struct cpuinfo_x86;
struct task_struct;
#ifdef CONFIG_X86_PTRACE_BTS
extern void __cpuinit ptrace_bts_init_intel(struct cpuinfo_x86 *);
extern void ptrace_bts_take_timestamp(struct task_struct *, enum bts_qualifier);
#else
#define ptrace_bts_init_intel(config) do {} while (0)
#endif /* CONFIG_X86_PTRACE_BTS */
extern unsigned long profile_pc(struct pt_regs *regs);
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment