Commit 88574332 authored by Mike Healy's avatar Mike Healy Committed by Herbert Xu

crypto: keembay - Add support for Keem Bay OCS AES/SM4

Add support for the AES/SM4 crypto engine included in the Offload and
Crypto Subsystem (OCS) of the Intel Keem Bay SoC, thus enabling
hardware-acceleration for the following transformations:

- ecb(aes), cbc(aes), ctr(aes), cts(cbc(aes)), gcm(aes) and cbc(aes);
  supported for 128-bit and 256-bit keys.

- ecb(sm4), cbc(sm4), ctr(sm4), cts(cbc(sm4)), gcm(sm4) and cbc(sm4);
  supported for 128-bit keys.

The driver passes crypto manager self-tests, including the extra tests
(CRYPTO_MANAGER_EXTRA_TESTS=y).
Signed-off-by: default avatarMike Healy <mikex.healy@intel.com>
Co-developed-by: default avatarDaniele Alessandrelli <daniele.alessandrelli@intel.com>
Signed-off-by: default avatarDaniele Alessandrelli <daniele.alessandrelli@intel.com>
Acked-by: default avatarMark Gross <mgross@linux.intel.com>
Signed-off-by: default avatarHerbert Xu <herbert@gondor.apana.org.au>
parent c7e34aa3
...@@ -8958,6 +8958,16 @@ M: Deepak Saxena <dsaxena@plexity.net> ...@@ -8958,6 +8958,16 @@ M: Deepak Saxena <dsaxena@plexity.net>
S: Maintained S: Maintained
F: drivers/char/hw_random/ixp4xx-rng.c F: drivers/char/hw_random/ixp4xx-rng.c
INTEL KEEM BAY OCS AES/SM4 CRYPTO DRIVER
M: Daniele Alessandrelli <daniele.alessandrelli@intel.com>
S: Maintained
F: Documentation/devicetree/bindings/crypto/intel,keembay-ocs-aes.yaml
F: drivers/crypto/keembay/Kconfig
F: drivers/crypto/keembay/Makefile
F: drivers/crypto/keembay/keembay-ocs-aes-core.c
F: drivers/crypto/keembay/ocs-aes.c
F: drivers/crypto/keembay/ocs-aes.h
INTEL MANAGEMENT ENGINE (mei) INTEL MANAGEMENT ENGINE (mei)
M: Tomas Winkler <tomas.winkler@intel.com> M: Tomas Winkler <tomas.winkler@intel.com>
L: linux-kernel@vger.kernel.org L: linux-kernel@vger.kernel.org
......
...@@ -900,4 +900,6 @@ config CRYPTO_DEV_SA2UL ...@@ -900,4 +900,6 @@ config CRYPTO_DEV_SA2UL
used for crypto offload. Select this if you want to use hardware used for crypto offload. Select this if you want to use hardware
acceleration for cryptographic algorithms on these devices. acceleration for cryptographic algorithms on these devices.
source "drivers/crypto/keembay/Kconfig"
endif # CRYPTO_HW endif # CRYPTO_HW
...@@ -51,3 +51,4 @@ obj-$(CONFIG_CRYPTO_DEV_ARTPEC6) += axis/ ...@@ -51,3 +51,4 @@ obj-$(CONFIG_CRYPTO_DEV_ARTPEC6) += axis/
obj-$(CONFIG_CRYPTO_DEV_ZYNQMP_AES) += xilinx/ obj-$(CONFIG_CRYPTO_DEV_ZYNQMP_AES) += xilinx/
obj-y += hisilicon/ obj-y += hisilicon/
obj-$(CONFIG_CRYPTO_DEV_AMLOGIC_GXL) += amlogic/ obj-$(CONFIG_CRYPTO_DEV_AMLOGIC_GXL) += amlogic/
obj-y += keembay/
config CRYPTO_DEV_KEEMBAY_OCS_AES_SM4
tristate "Support for Intel Keem Bay OCS AES/SM4 HW acceleration"
depends on OF || COMPILE_TEST
select CRYPTO_SKCIPHER
select CRYPTO_AEAD
select CRYPTO_ENGINE
help
Support for Intel Keem Bay Offload and Crypto Subsystem (OCS) AES and
SM4 cihper hardware acceleration for use with Crypto API.
Provides HW acceleration for the following transformations:
cbc(aes), ctr(aes), ccm(aes), gcm(aes), cbc(sm4), ctr(sm4), ccm(sm4)
and gcm(sm4).
Optionally, support for the following transformations can also be
enabled: ecb(aes), cts(cbc(aes)), ecb(sm4) and cts(cbc(sm4)).
config CRYPTO_DEV_KEEMBAY_OCS_AES_SM4_ECB
bool "Support for Intel Keem Bay OCS AES/SM4 ECB HW acceleration"
depends on CRYPTO_DEV_KEEMBAY_OCS_AES_SM4
help
Support for Intel Keem Bay Offload and Crypto Subsystem (OCS)
AES/SM4 ECB mode hardware acceleration for use with Crypto API.
Provides OCS version of ecb(aes) and ecb(sm4)
Intel does not recommend use of ECB mode with AES/SM4.
config CRYPTO_DEV_KEEMBAY_OCS_AES_SM4_CTS
bool "Support for Intel Keem Bay OCS AES/SM4 CTS HW acceleration"
depends on CRYPTO_DEV_KEEMBAY_OCS_AES_SM4
help
Support for Intel Keem Bay Offload and Crypto Subsystem (OCS)
AES/SM4 CBC with CTS mode hardware acceleration for use with
Crypto API.
Provides OCS version of cts(cbc(aes)) and cts(cbc(sm4)).
Intel does not recommend use of CTS mode with AES/SM4.
#
# Makefile for Intel Keem Bay OCS Crypto API Linux drivers
#
obj-$(CONFIG_CRYPTO_DEV_KEEMBAY_OCS_AES_SM4) += keembay-ocs-aes.o
keembay-ocs-aes-objs := keembay-ocs-aes-core.o ocs-aes.o
// SPDX-License-Identifier: GPL-2.0-only
/*
* Intel Keem Bay OCS AES Crypto Driver.
*
* Copyright (C) 2018-2020 Intel Corporation
*/
#include <linux/clk.h>
#include <linux/completion.h>
#include <linux/crypto.h>
#include <linux/dma-mapping.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/platform_device.h>
#include <linux/types.h>
#include <crypto/aes.h>
#include <crypto/engine.h>
#include <crypto/gcm.h>
#include <crypto/scatterwalk.h>
#include <crypto/internal/aead.h>
#include <crypto/internal/skcipher.h>
#include "ocs-aes.h"
#define KMB_OCS_PRIORITY 350
#define DRV_NAME "keembay-ocs-aes"
#define OCS_AES_MIN_KEY_SIZE 16
#define OCS_AES_MAX_KEY_SIZE 32
#define OCS_AES_KEYSIZE_128 16
#define OCS_AES_KEYSIZE_192 24
#define OCS_AES_KEYSIZE_256 32
#define OCS_SM4_KEY_SIZE 16
/**
* struct ocs_aes_tctx - OCS AES Transform context
* @engine_ctx: Engine context.
* @aes_dev: The OCS AES device.
* @key: AES/SM4 key.
* @key_len: The length (in bytes) of @key.
* @cipher: OCS cipher to use (either AES or SM4).
* @sw_cipher: The cipher to use as fallback.
* @use_fallback: Whether or not fallback cipher should be used.
*/
struct ocs_aes_tctx {
struct crypto_engine_ctx engine_ctx;
struct ocs_aes_dev *aes_dev;
u8 key[OCS_AES_KEYSIZE_256];
unsigned int key_len;
enum ocs_cipher cipher;
union {
struct crypto_sync_skcipher *sk;
struct crypto_aead *aead;
} sw_cipher;
bool use_fallback;
};
/**
* struct ocs_aes_rctx - OCS AES Request context.
* @instruction: Instruction to be executed (encrypt / decrypt).
* @mode: Mode to use (ECB, CBC, CTR, CCm, GCM, CTS)
* @src_nents: Number of source SG entries.
* @dst_nents: Number of destination SG entries.
* @src_dma_count: The number of DMA-mapped entries of the source SG.
* @dst_dma_count: The number of DMA-mapped entries of the destination SG.
* @in_place: Whether or not this is an in place request, i.e.,
* src_sg == dst_sg.
* @src_dll: OCS DMA linked list for input data.
* @dst_dll: OCS DMA linked list for output data.
* @last_ct_blk: Buffer to hold last cipher text block (only used in CBC
* mode).
* @cts_swap: Whether or not CTS swap must be performed.
* @aad_src_dll: OCS DMA linked list for input AAD data.
* @aad_dst_dll: OCS DMA linked list for output AAD data.
* @in_tag: Buffer to hold input encrypted tag (only used for
* CCM/GCM decrypt).
* @out_tag: Buffer to hold output encrypted / decrypted tag (only
* used for GCM encrypt / decrypt).
*/
struct ocs_aes_rctx {
/* Fields common across all modes. */
enum ocs_instruction instruction;
enum ocs_mode mode;
int src_nents;
int dst_nents;
int src_dma_count;
int dst_dma_count;
bool in_place;
struct ocs_dll_desc src_dll;
struct ocs_dll_desc dst_dll;
/* CBC specific */
u8 last_ct_blk[AES_BLOCK_SIZE];
/* CTS specific */
int cts_swap;
/* CCM/GCM specific */
struct ocs_dll_desc aad_src_dll;
struct ocs_dll_desc aad_dst_dll;
u8 in_tag[AES_BLOCK_SIZE];
/* GCM specific */
u8 out_tag[AES_BLOCK_SIZE];
};
/* Driver data. */
struct ocs_aes_drv {
struct list_head dev_list;
spinlock_t lock; /* Protects dev_list. */
};
static struct ocs_aes_drv ocs_aes = {
.dev_list = LIST_HEAD_INIT(ocs_aes.dev_list),
.lock = __SPIN_LOCK_UNLOCKED(ocs_aes.lock),
};
static struct ocs_aes_dev *kmb_ocs_aes_find_dev(struct ocs_aes_tctx *tctx)
{
struct ocs_aes_dev *aes_dev;
spin_lock(&ocs_aes.lock);
if (tctx->aes_dev) {
aes_dev = tctx->aes_dev;
goto exit;
}
/* Only a single OCS device available */
aes_dev = list_first_entry(&ocs_aes.dev_list, struct ocs_aes_dev, list);
tctx->aes_dev = aes_dev;
exit:
spin_unlock(&ocs_aes.lock);
return aes_dev;
}
/*
* Ensure key is 128-bit or 256-bit for AES or 128-bit for SM4 and an actual
* key is being passed in.
*
* Return: 0 if key is valid, -EINVAL otherwise.
*/
static int check_key(const u8 *in_key, size_t key_len, enum ocs_cipher cipher)
{
if (!in_key)
return -EINVAL;
/* For AES, only 128-byte or 256-byte keys are supported. */
if (cipher == OCS_AES && (key_len == OCS_AES_KEYSIZE_128 ||
key_len == OCS_AES_KEYSIZE_256))
return 0;
/* For SM4, only 128-byte keys are supported. */
if (cipher == OCS_SM4 && key_len == OCS_AES_KEYSIZE_128)
return 0;
/* Everything else is unsupported. */
return -EINVAL;
}
/* Save key into transformation context. */
static int save_key(struct ocs_aes_tctx *tctx, const u8 *in_key, size_t key_len,
enum ocs_cipher cipher)
{
int ret;
ret = check_key(in_key, key_len, cipher);
if (ret)
return ret;
memcpy(tctx->key, in_key, key_len);
tctx->key_len = key_len;
tctx->cipher = cipher;
return 0;
}
/* Set key for symmetric cypher. */
static int kmb_ocs_sk_set_key(struct crypto_skcipher *tfm, const u8 *in_key,
size_t key_len, enum ocs_cipher cipher)
{
struct ocs_aes_tctx *tctx = crypto_skcipher_ctx(tfm);
/* Fallback is used for AES with 192-bit key. */
tctx->use_fallback = (cipher == OCS_AES &&
key_len == OCS_AES_KEYSIZE_192);
if (!tctx->use_fallback)
return save_key(tctx, in_key, key_len, cipher);
crypto_sync_skcipher_clear_flags(tctx->sw_cipher.sk,
CRYPTO_TFM_REQ_MASK);
crypto_sync_skcipher_set_flags(tctx->sw_cipher.sk,
tfm->base.crt_flags &
CRYPTO_TFM_REQ_MASK);
return crypto_sync_skcipher_setkey(tctx->sw_cipher.sk, in_key, key_len);
}
/* Set key for AEAD cipher. */
static int kmb_ocs_aead_set_key(struct crypto_aead *tfm, const u8 *in_key,
size_t key_len, enum ocs_cipher cipher)
{
struct ocs_aes_tctx *tctx = crypto_aead_ctx(tfm);
/* Fallback is used for AES with 192-bit key. */
tctx->use_fallback = (cipher == OCS_AES &&
key_len == OCS_AES_KEYSIZE_192);
if (!tctx->use_fallback)
return save_key(tctx, in_key, key_len, cipher);
crypto_aead_clear_flags(tctx->sw_cipher.aead, CRYPTO_TFM_REQ_MASK);
crypto_aead_set_flags(tctx->sw_cipher.aead,
crypto_aead_get_flags(tfm) & CRYPTO_TFM_REQ_MASK);
return crypto_aead_setkey(tctx->sw_cipher.aead, in_key, key_len);
}
/* Swap two AES blocks in SG lists. */
static void sg_swap_blocks(struct scatterlist *sgl, unsigned int nents,
off_t blk1_offset, off_t blk2_offset)
{
u8 tmp_buf1[AES_BLOCK_SIZE], tmp_buf2[AES_BLOCK_SIZE];
/*
* No easy way to copy within sg list, so copy both blocks to temporary
* buffers first.
*/
sg_pcopy_to_buffer(sgl, nents, tmp_buf1, AES_BLOCK_SIZE, blk1_offset);
sg_pcopy_to_buffer(sgl, nents, tmp_buf2, AES_BLOCK_SIZE, blk2_offset);
sg_pcopy_from_buffer(sgl, nents, tmp_buf1, AES_BLOCK_SIZE, blk2_offset);
sg_pcopy_from_buffer(sgl, nents, tmp_buf2, AES_BLOCK_SIZE, blk1_offset);
}
/* Initialize request context to default values. */
static void ocs_aes_init_rctx(struct ocs_aes_rctx *rctx)
{
/* Zero everything. */
memset(rctx, 0, sizeof(*rctx));
/* Set initial value for DMA addresses. */
rctx->src_dll.dma_addr = DMA_MAPPING_ERROR;
rctx->dst_dll.dma_addr = DMA_MAPPING_ERROR;
rctx->aad_src_dll.dma_addr = DMA_MAPPING_ERROR;
rctx->aad_dst_dll.dma_addr = DMA_MAPPING_ERROR;
}
static int kmb_ocs_sk_validate_input(struct skcipher_request *req,
enum ocs_mode mode)
{
struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
int iv_size = crypto_skcipher_ivsize(tfm);
switch (mode) {
case OCS_MODE_ECB:
/* Ensure input length is multiple of block size */
if (req->cryptlen % AES_BLOCK_SIZE != 0)
return -EINVAL;
return 0;
case OCS_MODE_CBC:
/* Ensure input length is multiple of block size */
if (req->cryptlen % AES_BLOCK_SIZE != 0)
return -EINVAL;
/* Ensure IV is present and block size in length */
if (!req->iv || iv_size != AES_BLOCK_SIZE)
return -EINVAL;
/*
* NOTE: Since req->cryptlen == 0 case was already handled in
* kmb_ocs_sk_common(), the above two conditions also guarantee
* that: cryptlen >= iv_size
*/
return 0;
case OCS_MODE_CTR:
/* Ensure IV is present and block size in length */
if (!req->iv || iv_size != AES_BLOCK_SIZE)
return -EINVAL;
return 0;
case OCS_MODE_CTS:
/* Ensure input length >= block size */
if (req->cryptlen < AES_BLOCK_SIZE)
return -EINVAL;
/* Ensure IV is present and block size in length */
if (!req->iv || iv_size != AES_BLOCK_SIZE)
return -EINVAL;
return 0;
default:
return -EINVAL;
}
}
/*
* Called by encrypt() / decrypt() skcipher functions.
*
* Use fallback if needed, otherwise initialize context and enqueue request
* into engine.
*/
static int kmb_ocs_sk_common(struct skcipher_request *req,
enum ocs_cipher cipher,
enum ocs_instruction instruction,
enum ocs_mode mode)
{
struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
struct ocs_aes_rctx *rctx = skcipher_request_ctx(req);
struct ocs_aes_tctx *tctx = crypto_skcipher_ctx(tfm);
struct ocs_aes_dev *aes_dev;
int rc;
if (tctx->use_fallback) {
SYNC_SKCIPHER_REQUEST_ON_STACK(subreq, tctx->sw_cipher.sk);
skcipher_request_set_sync_tfm(subreq, tctx->sw_cipher.sk);
skcipher_request_set_callback(subreq, req->base.flags, NULL,
NULL);
skcipher_request_set_crypt(subreq, req->src, req->dst,
req->cryptlen, req->iv);
if (instruction == OCS_ENCRYPT)
rc = crypto_skcipher_encrypt(subreq);
else
rc = crypto_skcipher_decrypt(subreq);
skcipher_request_zero(subreq);
return rc;
}
/*
* If cryptlen == 0, no processing needed for ECB, CBC and CTR.
*
* For CTS continue: kmb_ocs_sk_validate_input() will return -EINVAL.
*/
if (!req->cryptlen && mode != OCS_MODE_CTS)
return 0;
rc = kmb_ocs_sk_validate_input(req, mode);
if (rc)
return rc;
aes_dev = kmb_ocs_aes_find_dev(tctx);
if (!aes_dev)
return -ENODEV;
if (cipher != tctx->cipher)
return -EINVAL;
ocs_aes_init_rctx(rctx);
rctx->instruction = instruction;
rctx->mode = mode;
return crypto_transfer_skcipher_request_to_engine(aes_dev->engine, req);
}
static void cleanup_ocs_dma_linked_list(struct device *dev,
struct ocs_dll_desc *dll)
{
if (dll->vaddr)
dma_free_coherent(dev, dll->size, dll->vaddr, dll->dma_addr);
dll->vaddr = NULL;
dll->size = 0;
dll->dma_addr = DMA_MAPPING_ERROR;
}
static void kmb_ocs_sk_dma_cleanup(struct skcipher_request *req)
{
struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
struct ocs_aes_rctx *rctx = skcipher_request_ctx(req);
struct ocs_aes_tctx *tctx = crypto_skcipher_ctx(tfm);
struct device *dev = tctx->aes_dev->dev;
if (rctx->src_dma_count) {
dma_unmap_sg(dev, req->src, rctx->src_nents, DMA_TO_DEVICE);
rctx->src_dma_count = 0;
}
if (rctx->dst_dma_count) {
dma_unmap_sg(dev, req->dst, rctx->dst_nents, rctx->in_place ?
DMA_BIDIRECTIONAL :
DMA_FROM_DEVICE);
rctx->dst_dma_count = 0;
}
/* Clean up OCS DMA linked lists */
cleanup_ocs_dma_linked_list(dev, &rctx->src_dll);
cleanup_ocs_dma_linked_list(dev, &rctx->dst_dll);
}
static int kmb_ocs_sk_prepare_inplace(struct skcipher_request *req)
{
struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
struct ocs_aes_rctx *rctx = skcipher_request_ctx(req);
struct ocs_aes_tctx *tctx = crypto_skcipher_ctx(tfm);
int iv_size = crypto_skcipher_ivsize(tfm);
int rc;
/*
* For CBC decrypt, save last block (iv) to last_ct_blk buffer.
*
* Note: if we are here, we already checked that cryptlen >= iv_size
* and iv_size == AES_BLOCK_SIZE (i.e., the size of last_ct_blk); see
* kmb_ocs_sk_validate_input().
*/
if (rctx->mode == OCS_MODE_CBC && rctx->instruction == OCS_DECRYPT)
scatterwalk_map_and_copy(rctx->last_ct_blk, req->src,
req->cryptlen - iv_size, iv_size, 0);
/* For CTS decrypt, swap last two blocks, if needed. */
if (rctx->cts_swap && rctx->instruction == OCS_DECRYPT)
sg_swap_blocks(req->dst, rctx->dst_nents,
req->cryptlen - AES_BLOCK_SIZE,
req->cryptlen - (2 * AES_BLOCK_SIZE));
/* src and dst buffers are the same, use bidirectional DMA mapping. */
rctx->dst_dma_count = dma_map_sg(tctx->aes_dev->dev, req->dst,
rctx->dst_nents, DMA_BIDIRECTIONAL);
if (rctx->dst_dma_count == 0) {
dev_err(tctx->aes_dev->dev, "Failed to map destination sg\n");
return -ENOMEM;
}
/* Create DST linked list */
rc = ocs_create_linked_list_from_sg(tctx->aes_dev, req->dst,
rctx->dst_dma_count, &rctx->dst_dll,
req->cryptlen, 0);
if (rc)
return rc;
/*
* If descriptor creation was successful, set the src_dll.dma_addr to
* the value of dst_dll.dma_addr, as we do in-place AES operation on
* the src.
*/
rctx->src_dll.dma_addr = rctx->dst_dll.dma_addr;
return 0;
}
static int kmb_ocs_sk_prepare_notinplace(struct skcipher_request *req)
{
struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
struct ocs_aes_rctx *rctx = skcipher_request_ctx(req);
struct ocs_aes_tctx *tctx = crypto_skcipher_ctx(tfm);
int rc;
rctx->src_nents = sg_nents_for_len(req->src, req->cryptlen);
if (rctx->src_nents < 0)
return -EBADMSG;
/* Map SRC SG. */
rctx->src_dma_count = dma_map_sg(tctx->aes_dev->dev, req->src,
rctx->src_nents, DMA_TO_DEVICE);
if (rctx->src_dma_count == 0) {
dev_err(tctx->aes_dev->dev, "Failed to map source sg\n");
return -ENOMEM;
}
/* Create SRC linked list */
rc = ocs_create_linked_list_from_sg(tctx->aes_dev, req->src,
rctx->src_dma_count, &rctx->src_dll,
req->cryptlen, 0);
if (rc)
return rc;
/* Map DST SG. */
rctx->dst_dma_count = dma_map_sg(tctx->aes_dev->dev, req->dst,
rctx->dst_nents, DMA_FROM_DEVICE);
if (rctx->dst_dma_count == 0) {
dev_err(tctx->aes_dev->dev, "Failed to map destination sg\n");
return -ENOMEM;
}
/* Create DST linked list */
rc = ocs_create_linked_list_from_sg(tctx->aes_dev, req->dst,
rctx->dst_dma_count, &rctx->dst_dll,
req->cryptlen, 0);
if (rc)
return rc;
/* If this is not a CTS decrypt operation with swapping, we are done. */
if (!(rctx->cts_swap && rctx->instruction == OCS_DECRYPT))
return 0;
/*
* Otherwise, we have to copy src to dst (as we cannot modify src).
* Use OCS AES bypass mode to copy src to dst via DMA.
*
* NOTE: for anything other than small data sizes this is rather
* inefficient.
*/
rc = ocs_aes_bypass_op(tctx->aes_dev, rctx->dst_dll.dma_addr,
rctx->src_dll.dma_addr, req->cryptlen);
if (rc)
return rc;
/*
* Now dst == src, so clean up what we did so far and use in_place
* logic.
*/
kmb_ocs_sk_dma_cleanup(req);
rctx->in_place = true;
return kmb_ocs_sk_prepare_inplace(req);
}
static int kmb_ocs_sk_run(struct skcipher_request *req)
{
struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
struct ocs_aes_rctx *rctx = skcipher_request_ctx(req);
struct ocs_aes_tctx *tctx = crypto_skcipher_ctx(tfm);
struct ocs_aes_dev *aes_dev = tctx->aes_dev;
int iv_size = crypto_skcipher_ivsize(tfm);
int rc;
rctx->dst_nents = sg_nents_for_len(req->dst, req->cryptlen);
if (rctx->dst_nents < 0)
return -EBADMSG;
/*
* If 2 blocks or greater, and multiple of block size swap last two
* blocks to be compatible with other crypto API CTS implementations:
* OCS mode uses CBC-CS2, whereas other crypto API implementations use
* CBC-CS3.
* CBC-CS2 and CBC-CS3 defined by:
* https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-38a-add.pdf
*/
rctx->cts_swap = (rctx->mode == OCS_MODE_CTS &&
req->cryptlen > AES_BLOCK_SIZE &&
req->cryptlen % AES_BLOCK_SIZE == 0);
rctx->in_place = (req->src == req->dst);
if (rctx->in_place)
rc = kmb_ocs_sk_prepare_inplace(req);
else
rc = kmb_ocs_sk_prepare_notinplace(req);
if (rc)
goto error;
rc = ocs_aes_op(aes_dev, rctx->mode, tctx->cipher, rctx->instruction,
rctx->dst_dll.dma_addr, rctx->src_dll.dma_addr,
req->cryptlen, req->iv, iv_size);
if (rc)
goto error;
/* Clean-up DMA before further processing output. */
kmb_ocs_sk_dma_cleanup(req);
/* For CTS Encrypt, swap last 2 blocks, if needed. */
if (rctx->cts_swap && rctx->instruction == OCS_ENCRYPT) {
sg_swap_blocks(req->dst, rctx->dst_nents,
req->cryptlen - AES_BLOCK_SIZE,
req->cryptlen - (2 * AES_BLOCK_SIZE));
return 0;
}
/* For CBC copy IV to req->IV. */
if (rctx->mode == OCS_MODE_CBC) {
/* CBC encrypt case. */
if (rctx->instruction == OCS_ENCRYPT) {
scatterwalk_map_and_copy(req->iv, req->dst,
req->cryptlen - iv_size,
iv_size, 0);
return 0;
}
/* CBC decrypt case. */
if (rctx->in_place)
memcpy(req->iv, rctx->last_ct_blk, iv_size);
else
scatterwalk_map_and_copy(req->iv, req->src,
req->cryptlen - iv_size,
iv_size, 0);
return 0;
}
/* For all other modes there's nothing to do. */
return 0;
error:
kmb_ocs_sk_dma_cleanup(req);
return rc;
}
static int kmb_ocs_aead_validate_input(struct aead_request *req,
enum ocs_instruction instruction,
enum ocs_mode mode)
{
struct crypto_aead *tfm = crypto_aead_reqtfm(req);
int tag_size = crypto_aead_authsize(tfm);
int iv_size = crypto_aead_ivsize(tfm);
/* For decrypt crytplen == len(PT) + len(tag). */
if (instruction == OCS_DECRYPT && req->cryptlen < tag_size)
return -EINVAL;
/* IV is mandatory. */
if (!req->iv)
return -EINVAL;
switch (mode) {
case OCS_MODE_GCM:
if (iv_size != GCM_AES_IV_SIZE)
return -EINVAL;
return 0;
case OCS_MODE_CCM:
/* Ensure IV is present and block size in length */
if (iv_size != AES_BLOCK_SIZE)
return -EINVAL;
return 0;
default:
return -EINVAL;
}
}
/*
* Called by encrypt() / decrypt() aead functions.
*
* Use fallback if needed, otherwise initialize context and enqueue request
* into engine.
*/
static int kmb_ocs_aead_common(struct aead_request *req,
enum ocs_cipher cipher,
enum ocs_instruction instruction,
enum ocs_mode mode)
{
struct ocs_aes_tctx *tctx = crypto_aead_ctx(crypto_aead_reqtfm(req));
struct ocs_aes_rctx *rctx = aead_request_ctx(req);
struct ocs_aes_dev *dd;
int rc;
if (tctx->use_fallback) {
struct aead_request *subreq = aead_request_ctx(req);
aead_request_set_tfm(subreq, tctx->sw_cipher.aead);
aead_request_set_callback(subreq, req->base.flags,
req->base.complete, req->base.data);
aead_request_set_crypt(subreq, req->src, req->dst,
req->cryptlen, req->iv);
aead_request_set_ad(subreq, req->assoclen);
rc = crypto_aead_setauthsize(tctx->sw_cipher.aead,
crypto_aead_authsize(crypto_aead_reqtfm(req)));
if (rc)
return rc;
return (instruction == OCS_ENCRYPT) ?
crypto_aead_encrypt(subreq) :
crypto_aead_decrypt(subreq);
}
rc = kmb_ocs_aead_validate_input(req, instruction, mode);
if (rc)
return rc;
dd = kmb_ocs_aes_find_dev(tctx);
if (!dd)
return -ENODEV;
if (cipher != tctx->cipher)
return -EINVAL;
ocs_aes_init_rctx(rctx);
rctx->instruction = instruction;
rctx->mode = mode;
return crypto_transfer_aead_request_to_engine(dd->engine, req);
}
static void kmb_ocs_aead_dma_cleanup(struct aead_request *req)
{
struct ocs_aes_tctx *tctx = crypto_aead_ctx(crypto_aead_reqtfm(req));
struct ocs_aes_rctx *rctx = aead_request_ctx(req);
struct device *dev = tctx->aes_dev->dev;
if (rctx->src_dma_count) {
dma_unmap_sg(dev, req->src, rctx->src_nents, DMA_TO_DEVICE);
rctx->src_dma_count = 0;
}
if (rctx->dst_dma_count) {
dma_unmap_sg(dev, req->dst, rctx->dst_nents, rctx->in_place ?
DMA_BIDIRECTIONAL :
DMA_FROM_DEVICE);
rctx->dst_dma_count = 0;
}
/* Clean up OCS DMA linked lists */
cleanup_ocs_dma_linked_list(dev, &rctx->src_dll);
cleanup_ocs_dma_linked_list(dev, &rctx->dst_dll);
cleanup_ocs_dma_linked_list(dev, &rctx->aad_src_dll);
cleanup_ocs_dma_linked_list(dev, &rctx->aad_dst_dll);
}
/**
* kmb_ocs_aead_dma_prepare() - Do DMA mapping for AEAD processing.
* @req: The AEAD request being processed.
* @src_dll_size: Where to store the length of the data mapped into the
* src_dll OCS DMA list.
*
* Do the following:
* - DMA map req->src and req->dst
* - Initialize the following OCS DMA linked lists: rctx->src_dll,
* rctx->dst_dll, rctx->aad_src_dll and rxtc->aad_dst_dll.
*
* Return: 0 on success, negative error code otherwise.
*/
static int kmb_ocs_aead_dma_prepare(struct aead_request *req, u32 *src_dll_size)
{
struct ocs_aes_tctx *tctx = crypto_aead_ctx(crypto_aead_reqtfm(req));
const int tag_size = crypto_aead_authsize(crypto_aead_reqtfm(req));
struct ocs_aes_rctx *rctx = aead_request_ctx(req);
u32 in_size; /* The length of the data to be mapped by src_dll. */
u32 out_size; /* The length of the data to be mapped by dst_dll. */
u32 dst_size; /* The length of the data in dst_sg. */
int rc;
/* Get number of entries in input data SG list. */
rctx->src_nents = sg_nents_for_len(req->src,
req->assoclen + req->cryptlen);
if (rctx->src_nents < 0)
return -EBADMSG;
if (rctx->instruction == OCS_DECRYPT) {
/*
* For decrypt:
* - src sg list is: AAD|CT|tag
* - dst sg list expects: AAD|PT
*
* in_size == len(CT); out_size == len(PT)
*/
/* req->cryptlen includes both CT and tag. */
in_size = req->cryptlen - tag_size;
/* out_size = PT size == CT size */
out_size = in_size;
/* len(dst_sg) == len(AAD) + len(PT) */
dst_size = req->assoclen + out_size;
/*
* Copy tag from source SG list to 'in_tag' buffer.
*
* Note: this needs to be done here, before DMA mapping src_sg.
*/
sg_pcopy_to_buffer(req->src, rctx->src_nents, rctx->in_tag,
tag_size, req->assoclen + in_size);
} else { /* OCS_ENCRYPT */
/*
* For encrypt:
* src sg list is: AAD|PT
* dst sg list expects: AAD|CT|tag
*/
/* in_size == len(PT) */
in_size = req->cryptlen;
/*
* In CCM mode the OCS engine appends the tag to the ciphertext,
* but in GCM mode the tag must be read from the tag registers
* and appended manually below
*/
out_size = (rctx->mode == OCS_MODE_CCM) ? in_size + tag_size :
in_size;
/* len(dst_sg) == len(AAD) + len(CT) + len(tag) */
dst_size = req->assoclen + in_size + tag_size;
}
*src_dll_size = in_size;
/* Get number of entries in output data SG list. */
rctx->dst_nents = sg_nents_for_len(req->dst, dst_size);
if (rctx->dst_nents < 0)
return -EBADMSG;
rctx->in_place = (req->src == req->dst) ? 1 : 0;
/* Map destination; use bidirectional mapping for in-place case. */
rctx->dst_dma_count = dma_map_sg(tctx->aes_dev->dev, req->dst,
rctx->dst_nents,
rctx->in_place ? DMA_BIDIRECTIONAL :
DMA_FROM_DEVICE);
if (rctx->dst_dma_count == 0 && rctx->dst_nents != 0) {
dev_err(tctx->aes_dev->dev, "Failed to map destination sg\n");
return -ENOMEM;
}
/* Create AAD DST list: maps dst[0:AAD_SIZE-1]. */
rc = ocs_create_linked_list_from_sg(tctx->aes_dev, req->dst,
rctx->dst_dma_count,
&rctx->aad_dst_dll, req->assoclen,
0);
if (rc)
return rc;
/* Create DST list: maps dst[AAD_SIZE:out_size] */
rc = ocs_create_linked_list_from_sg(tctx->aes_dev, req->dst,
rctx->dst_dma_count, &rctx->dst_dll,
out_size, req->assoclen);
if (rc)
return rc;
if (rctx->in_place) {
/* If this is not CCM encrypt, we are done. */
if (!(rctx->mode == OCS_MODE_CCM &&
rctx->instruction == OCS_ENCRYPT)) {
/*
* SRC and DST are the same, so re-use the same DMA
* addresses (to avoid allocating new DMA lists
* identical to the dst ones).
*/
rctx->src_dll.dma_addr = rctx->dst_dll.dma_addr;
rctx->aad_src_dll.dma_addr = rctx->aad_dst_dll.dma_addr;
return 0;
}
/*
* For CCM encrypt the input and output linked lists contain
* different amounts of data, so, we need to create different
* SRC and AAD SRC lists, even for the in-place case.
*/
rc = ocs_create_linked_list_from_sg(tctx->aes_dev, req->dst,
rctx->dst_dma_count,
&rctx->aad_src_dll,
req->assoclen, 0);
if (rc)
return rc;
rc = ocs_create_linked_list_from_sg(tctx->aes_dev, req->dst,
rctx->dst_dma_count,
&rctx->src_dll, in_size,
req->assoclen);
if (rc)
return rc;
return 0;
}
/* Not in-place case. */
/* Map source SG. */
rctx->src_dma_count = dma_map_sg(tctx->aes_dev->dev, req->src,
rctx->src_nents, DMA_TO_DEVICE);
if (rctx->src_dma_count == 0 && rctx->src_nents != 0) {
dev_err(tctx->aes_dev->dev, "Failed to map source sg\n");
return -ENOMEM;
}
/* Create AAD SRC list. */
rc = ocs_create_linked_list_from_sg(tctx->aes_dev, req->src,
rctx->src_dma_count,
&rctx->aad_src_dll,
req->assoclen, 0);
if (rc)
return rc;
/* Create SRC list. */
rc = ocs_create_linked_list_from_sg(tctx->aes_dev, req->src,
rctx->src_dma_count,
&rctx->src_dll, in_size,
req->assoclen);
if (rc)
return rc;
if (req->assoclen == 0)
return 0;
/* Copy AAD from src sg to dst sg using OCS DMA. */
rc = ocs_aes_bypass_op(tctx->aes_dev, rctx->aad_dst_dll.dma_addr,
rctx->aad_src_dll.dma_addr, req->cryptlen);
if (rc)
dev_err(tctx->aes_dev->dev,
"Failed to copy source AAD to destination AAD\n");
return rc;
}
static int kmb_ocs_aead_run(struct aead_request *req)
{
struct ocs_aes_tctx *tctx = crypto_aead_ctx(crypto_aead_reqtfm(req));
const int tag_size = crypto_aead_authsize(crypto_aead_reqtfm(req));
struct ocs_aes_rctx *rctx = aead_request_ctx(req);
u32 in_size; /* The length of the data mapped by src_dll. */
int rc;
rc = kmb_ocs_aead_dma_prepare(req, &in_size);
if (rc)
goto exit;
/* For CCM, we just call the OCS processing and we are done. */
if (rctx->mode == OCS_MODE_CCM) {
rc = ocs_aes_ccm_op(tctx->aes_dev, tctx->cipher,
rctx->instruction, rctx->dst_dll.dma_addr,
rctx->src_dll.dma_addr, in_size,
req->iv,
rctx->aad_src_dll.dma_addr, req->assoclen,
rctx->in_tag, tag_size);
goto exit;
}
/* GCM case; invoke OCS processing. */
rc = ocs_aes_gcm_op(tctx->aes_dev, tctx->cipher,
rctx->instruction,
rctx->dst_dll.dma_addr,
rctx->src_dll.dma_addr, in_size,
req->iv,
rctx->aad_src_dll.dma_addr, req->assoclen,
rctx->out_tag, tag_size);
if (rc)
goto exit;
/* For GCM decrypt, we have to compare in_tag with out_tag. */
if (rctx->instruction == OCS_DECRYPT) {
rc = memcmp(rctx->in_tag, rctx->out_tag, tag_size) ?
-EBADMSG : 0;
goto exit;
}
/* For GCM encrypt, we must manually copy out_tag to DST sg. */
/* Clean-up must be called before the sg_pcopy_from_buffer() below. */
kmb_ocs_aead_dma_cleanup(req);
/* Copy tag to destination sg after AAD and CT. */
sg_pcopy_from_buffer(req->dst, rctx->dst_nents, rctx->out_tag,
tag_size, req->assoclen + req->cryptlen);
/* Return directly as DMA cleanup already done. */
return 0;
exit:
kmb_ocs_aead_dma_cleanup(req);
return rc;
}
static int kmb_ocs_aes_sk_do_one_request(struct crypto_engine *engine,
void *areq)
{
struct skcipher_request *req =
container_of(areq, struct skcipher_request, base);
struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
struct ocs_aes_tctx *tctx = crypto_skcipher_ctx(tfm);
int err;
if (!tctx->aes_dev) {
err = -ENODEV;
goto exit;
}
err = ocs_aes_set_key(tctx->aes_dev, tctx->key_len, tctx->key,
tctx->cipher);
if (err)
goto exit;
err = kmb_ocs_sk_run(req);
exit:
crypto_finalize_skcipher_request(engine, req, err);
return 0;
}
static int kmb_ocs_aes_aead_do_one_request(struct crypto_engine *engine,
void *areq)
{
struct aead_request *req = container_of(areq,
struct aead_request, base);
struct ocs_aes_tctx *tctx = crypto_aead_ctx(crypto_aead_reqtfm(req));
int err;
if (!tctx->aes_dev)
return -ENODEV;
err = ocs_aes_set_key(tctx->aes_dev, tctx->key_len, tctx->key,
tctx->cipher);
if (err)
goto exit;
err = kmb_ocs_aead_run(req);
exit:
crypto_finalize_aead_request(tctx->aes_dev->engine, req, err);
return 0;
}
static int kmb_ocs_aes_set_key(struct crypto_skcipher *tfm, const u8 *in_key,
unsigned int key_len)
{
return kmb_ocs_sk_set_key(tfm, in_key, key_len, OCS_AES);
}
static int kmb_ocs_aes_aead_set_key(struct crypto_aead *tfm, const u8 *in_key,
unsigned int key_len)
{
return kmb_ocs_aead_set_key(tfm, in_key, key_len, OCS_AES);
}
#ifdef CONFIG_CRYPTO_DEV_KEEMBAY_OCS_AES_SM4_ECB
static int kmb_ocs_aes_ecb_encrypt(struct skcipher_request *req)
{
return kmb_ocs_sk_common(req, OCS_AES, OCS_ENCRYPT, OCS_MODE_ECB);
}
static int kmb_ocs_aes_ecb_decrypt(struct skcipher_request *req)
{
return kmb_ocs_sk_common(req, OCS_AES, OCS_DECRYPT, OCS_MODE_ECB);
}
#endif /* CONFIG_CRYPTO_DEV_KEEMBAY_OCS_AES_SM4_ECB */
static int kmb_ocs_aes_cbc_encrypt(struct skcipher_request *req)
{
return kmb_ocs_sk_common(req, OCS_AES, OCS_ENCRYPT, OCS_MODE_CBC);
}
static int kmb_ocs_aes_cbc_decrypt(struct skcipher_request *req)
{
return kmb_ocs_sk_common(req, OCS_AES, OCS_DECRYPT, OCS_MODE_CBC);
}
static int kmb_ocs_aes_ctr_encrypt(struct skcipher_request *req)
{
return kmb_ocs_sk_common(req, OCS_AES, OCS_ENCRYPT, OCS_MODE_CTR);
}
static int kmb_ocs_aes_ctr_decrypt(struct skcipher_request *req)
{
return kmb_ocs_sk_common(req, OCS_AES, OCS_DECRYPT, OCS_MODE_CTR);
}
#ifdef CONFIG_CRYPTO_DEV_KEEMBAY_OCS_AES_SM4_CTS
static int kmb_ocs_aes_cts_encrypt(struct skcipher_request *req)
{
return kmb_ocs_sk_common(req, OCS_AES, OCS_ENCRYPT, OCS_MODE_CTS);
}
static int kmb_ocs_aes_cts_decrypt(struct skcipher_request *req)
{
return kmb_ocs_sk_common(req, OCS_AES, OCS_DECRYPT, OCS_MODE_CTS);
}
#endif /* CONFIG_CRYPTO_DEV_KEEMBAY_OCS_AES_SM4_CTS */
static int kmb_ocs_aes_gcm_encrypt(struct aead_request *req)
{
return kmb_ocs_aead_common(req, OCS_AES, OCS_ENCRYPT, OCS_MODE_GCM);
}
static int kmb_ocs_aes_gcm_decrypt(struct aead_request *req)
{
return kmb_ocs_aead_common(req, OCS_AES, OCS_DECRYPT, OCS_MODE_GCM);
}
static int kmb_ocs_aes_ccm_encrypt(struct aead_request *req)
{
return kmb_ocs_aead_common(req, OCS_AES, OCS_ENCRYPT, OCS_MODE_CCM);
}
static int kmb_ocs_aes_ccm_decrypt(struct aead_request *req)
{
return kmb_ocs_aead_common(req, OCS_AES, OCS_DECRYPT, OCS_MODE_CCM);
}
static int kmb_ocs_sm4_set_key(struct crypto_skcipher *tfm, const u8 *in_key,
unsigned int key_len)
{
return kmb_ocs_sk_set_key(tfm, in_key, key_len, OCS_SM4);
}
static int kmb_ocs_sm4_aead_set_key(struct crypto_aead *tfm, const u8 *in_key,
unsigned int key_len)
{
return kmb_ocs_aead_set_key(tfm, in_key, key_len, OCS_SM4);
}
#ifdef CONFIG_CRYPTO_DEV_KEEMBAY_OCS_AES_SM4_ECB
static int kmb_ocs_sm4_ecb_encrypt(struct skcipher_request *req)
{
return kmb_ocs_sk_common(req, OCS_SM4, OCS_ENCRYPT, OCS_MODE_ECB);
}
static int kmb_ocs_sm4_ecb_decrypt(struct skcipher_request *req)
{
return kmb_ocs_sk_common(req, OCS_SM4, OCS_DECRYPT, OCS_MODE_ECB);
}
#endif /* CONFIG_CRYPTO_DEV_KEEMBAY_OCS_AES_SM4_ECB */
static int kmb_ocs_sm4_cbc_encrypt(struct skcipher_request *req)
{
return kmb_ocs_sk_common(req, OCS_SM4, OCS_ENCRYPT, OCS_MODE_CBC);
}
static int kmb_ocs_sm4_cbc_decrypt(struct skcipher_request *req)
{
return kmb_ocs_sk_common(req, OCS_SM4, OCS_DECRYPT, OCS_MODE_CBC);
}
static int kmb_ocs_sm4_ctr_encrypt(struct skcipher_request *req)
{
return kmb_ocs_sk_common(req, OCS_SM4, OCS_ENCRYPT, OCS_MODE_CTR);
}
static int kmb_ocs_sm4_ctr_decrypt(struct skcipher_request *req)
{
return kmb_ocs_sk_common(req, OCS_SM4, OCS_DECRYPT, OCS_MODE_CTR);
}
#ifdef CONFIG_CRYPTO_DEV_KEEMBAY_OCS_AES_SM4_CTS
static int kmb_ocs_sm4_cts_encrypt(struct skcipher_request *req)
{
return kmb_ocs_sk_common(req, OCS_SM4, OCS_ENCRYPT, OCS_MODE_CTS);
}
static int kmb_ocs_sm4_cts_decrypt(struct skcipher_request *req)
{
return kmb_ocs_sk_common(req, OCS_SM4, OCS_DECRYPT, OCS_MODE_CTS);
}
#endif /* CONFIG_CRYPTO_DEV_KEEMBAY_OCS_AES_SM4_CTS */
static int kmb_ocs_sm4_gcm_encrypt(struct aead_request *req)
{
return kmb_ocs_aead_common(req, OCS_SM4, OCS_ENCRYPT, OCS_MODE_GCM);
}
static int kmb_ocs_sm4_gcm_decrypt(struct aead_request *req)
{
return kmb_ocs_aead_common(req, OCS_SM4, OCS_DECRYPT, OCS_MODE_GCM);
}
static int kmb_ocs_sm4_ccm_encrypt(struct aead_request *req)
{
return kmb_ocs_aead_common(req, OCS_SM4, OCS_ENCRYPT, OCS_MODE_CCM);
}
static int kmb_ocs_sm4_ccm_decrypt(struct aead_request *req)
{
return kmb_ocs_aead_common(req, OCS_SM4, OCS_DECRYPT, OCS_MODE_CCM);
}
static inline int ocs_common_init(struct ocs_aes_tctx *tctx)
{
tctx->engine_ctx.op.prepare_request = NULL;
tctx->engine_ctx.op.do_one_request = kmb_ocs_aes_sk_do_one_request;
tctx->engine_ctx.op.unprepare_request = NULL;
return 0;
}
static int ocs_aes_init_tfm(struct crypto_skcipher *tfm)
{
const char *alg_name = crypto_tfm_alg_name(&tfm->base);
struct ocs_aes_tctx *tctx = crypto_skcipher_ctx(tfm);
struct crypto_sync_skcipher *blk;
/* set fallback cipher in case it will be needed */
blk = crypto_alloc_sync_skcipher(alg_name, 0, CRYPTO_ALG_NEED_FALLBACK);
if (IS_ERR(blk))
return PTR_ERR(blk);
tctx->sw_cipher.sk = blk;
crypto_skcipher_set_reqsize(tfm, sizeof(struct ocs_aes_rctx));
return ocs_common_init(tctx);
}
static int ocs_sm4_init_tfm(struct crypto_skcipher *tfm)
{
struct ocs_aes_tctx *tctx = crypto_skcipher_ctx(tfm);
crypto_skcipher_set_reqsize(tfm, sizeof(struct ocs_aes_rctx));
return ocs_common_init(tctx);
}
static inline void clear_key(struct ocs_aes_tctx *tctx)
{
memzero_explicit(tctx->key, OCS_AES_KEYSIZE_256);
/* Zero key registers if set */
if (tctx->aes_dev)
ocs_aes_set_key(tctx->aes_dev, OCS_AES_KEYSIZE_256,
tctx->key, OCS_AES);
}
static void ocs_exit_tfm(struct crypto_skcipher *tfm)
{
struct ocs_aes_tctx *tctx = crypto_skcipher_ctx(tfm);
clear_key(tctx);
if (tctx->sw_cipher.sk) {
crypto_free_sync_skcipher(tctx->sw_cipher.sk);
tctx->sw_cipher.sk = NULL;
}
}
static inline int ocs_common_aead_init(struct ocs_aes_tctx *tctx)
{
tctx->engine_ctx.op.prepare_request = NULL;
tctx->engine_ctx.op.do_one_request = kmb_ocs_aes_aead_do_one_request;
tctx->engine_ctx.op.unprepare_request = NULL;
return 0;
}
static int ocs_aes_aead_cra_init(struct crypto_aead *tfm)
{
const char *alg_name = crypto_tfm_alg_name(&tfm->base);
struct ocs_aes_tctx *tctx = crypto_aead_ctx(tfm);
struct crypto_aead *blk;
/* Set fallback cipher in case it will be needed */
blk = crypto_alloc_aead(alg_name, 0, CRYPTO_ALG_NEED_FALLBACK);
if (IS_ERR(blk))
return PTR_ERR(blk);
tctx->sw_cipher.aead = blk;
crypto_aead_set_reqsize(tfm,
max(sizeof(struct ocs_aes_rctx),
(sizeof(struct aead_request) +
crypto_aead_reqsize(tctx->sw_cipher.aead))));
return ocs_common_aead_init(tctx);
}
static int kmb_ocs_aead_ccm_setauthsize(struct crypto_aead *tfm,
unsigned int authsize)
{
switch (authsize) {
case 4:
case 6:
case 8:
case 10:
case 12:
case 14:
case 16:
return 0;
default:
return -EINVAL;
}
}
static int kmb_ocs_aead_gcm_setauthsize(struct crypto_aead *tfm,
unsigned int authsize)
{
return crypto_gcm_check_authsize(authsize);
}
static int ocs_sm4_aead_cra_init(struct crypto_aead *tfm)
{
struct ocs_aes_tctx *tctx = crypto_aead_ctx(tfm);
crypto_aead_set_reqsize(tfm, sizeof(struct ocs_aes_rctx));
return ocs_common_aead_init(tctx);
}
static void ocs_aead_cra_exit(struct crypto_aead *tfm)
{
struct ocs_aes_tctx *tctx = crypto_aead_ctx(tfm);
clear_key(tctx);
if (tctx->sw_cipher.aead) {
crypto_free_aead(tctx->sw_cipher.aead);
tctx->sw_cipher.aead = NULL;
}
}
static struct skcipher_alg algs[] = {
#ifdef CONFIG_CRYPTO_DEV_KEEMBAY_OCS_AES_SM4_ECB
{
.base.cra_name = "ecb(aes)",
.base.cra_driver_name = "ecb-aes-keembay-ocs",
.base.cra_priority = KMB_OCS_PRIORITY,
.base.cra_flags = CRYPTO_ALG_ASYNC |
CRYPTO_ALG_KERN_DRIVER_ONLY |
CRYPTO_ALG_NEED_FALLBACK,
.base.cra_blocksize = AES_BLOCK_SIZE,
.base.cra_ctxsize = sizeof(struct ocs_aes_tctx),
.base.cra_module = THIS_MODULE,
.base.cra_alignmask = 0,
.min_keysize = OCS_AES_MIN_KEY_SIZE,
.max_keysize = OCS_AES_MAX_KEY_SIZE,
.setkey = kmb_ocs_aes_set_key,
.encrypt = kmb_ocs_aes_ecb_encrypt,
.decrypt = kmb_ocs_aes_ecb_decrypt,
.init = ocs_aes_init_tfm,
.exit = ocs_exit_tfm,
},
#endif /* CONFIG_CRYPTO_DEV_KEEMBAY_OCS_AES_SM4_ECB */
{
.base.cra_name = "cbc(aes)",
.base.cra_driver_name = "cbc-aes-keembay-ocs",
.base.cra_priority = KMB_OCS_PRIORITY,
.base.cra_flags = CRYPTO_ALG_ASYNC |
CRYPTO_ALG_KERN_DRIVER_ONLY |
CRYPTO_ALG_NEED_FALLBACK,
.base.cra_blocksize = AES_BLOCK_SIZE,
.base.cra_ctxsize = sizeof(struct ocs_aes_tctx),
.base.cra_module = THIS_MODULE,
.base.cra_alignmask = 0,
.min_keysize = OCS_AES_MIN_KEY_SIZE,
.max_keysize = OCS_AES_MAX_KEY_SIZE,
.ivsize = AES_BLOCK_SIZE,
.setkey = kmb_ocs_aes_set_key,
.encrypt = kmb_ocs_aes_cbc_encrypt,
.decrypt = kmb_ocs_aes_cbc_decrypt,
.init = ocs_aes_init_tfm,
.exit = ocs_exit_tfm,
},
{
.base.cra_name = "ctr(aes)",
.base.cra_driver_name = "ctr-aes-keembay-ocs",
.base.cra_priority = KMB_OCS_PRIORITY,
.base.cra_flags = CRYPTO_ALG_ASYNC |
CRYPTO_ALG_KERN_DRIVER_ONLY |
CRYPTO_ALG_NEED_FALLBACK,
.base.cra_blocksize = 1,
.base.cra_ctxsize = sizeof(struct ocs_aes_tctx),
.base.cra_module = THIS_MODULE,
.base.cra_alignmask = 0,
.min_keysize = OCS_AES_MIN_KEY_SIZE,
.max_keysize = OCS_AES_MAX_KEY_SIZE,
.ivsize = AES_BLOCK_SIZE,
.setkey = kmb_ocs_aes_set_key,
.encrypt = kmb_ocs_aes_ctr_encrypt,
.decrypt = kmb_ocs_aes_ctr_decrypt,
.init = ocs_aes_init_tfm,
.exit = ocs_exit_tfm,
},
#ifdef CONFIG_CRYPTO_DEV_KEEMBAY_OCS_AES_SM4_CTS
{
.base.cra_name = "cts(cbc(aes))",
.base.cra_driver_name = "cts-aes-keembay-ocs",
.base.cra_priority = KMB_OCS_PRIORITY,
.base.cra_flags = CRYPTO_ALG_ASYNC |
CRYPTO_ALG_KERN_DRIVER_ONLY |
CRYPTO_ALG_NEED_FALLBACK,
.base.cra_blocksize = AES_BLOCK_SIZE,
.base.cra_ctxsize = sizeof(struct ocs_aes_tctx),
.base.cra_module = THIS_MODULE,
.base.cra_alignmask = 0,
.min_keysize = OCS_AES_MIN_KEY_SIZE,
.max_keysize = OCS_AES_MAX_KEY_SIZE,
.ivsize = AES_BLOCK_SIZE,
.setkey = kmb_ocs_aes_set_key,
.encrypt = kmb_ocs_aes_cts_encrypt,
.decrypt = kmb_ocs_aes_cts_decrypt,
.init = ocs_aes_init_tfm,
.exit = ocs_exit_tfm,
},
#endif /* CONFIG_CRYPTO_DEV_KEEMBAY_OCS_AES_SM4_CTS */
#ifdef CONFIG_CRYPTO_DEV_KEEMBAY_OCS_AES_SM4_ECB
{
.base.cra_name = "ecb(sm4)",
.base.cra_driver_name = "ecb-sm4-keembay-ocs",
.base.cra_priority = KMB_OCS_PRIORITY,
.base.cra_flags = CRYPTO_ALG_ASYNC |
CRYPTO_ALG_KERN_DRIVER_ONLY,
.base.cra_blocksize = AES_BLOCK_SIZE,
.base.cra_ctxsize = sizeof(struct ocs_aes_tctx),
.base.cra_module = THIS_MODULE,
.base.cra_alignmask = 0,
.min_keysize = OCS_SM4_KEY_SIZE,
.max_keysize = OCS_SM4_KEY_SIZE,
.setkey = kmb_ocs_sm4_set_key,
.encrypt = kmb_ocs_sm4_ecb_encrypt,
.decrypt = kmb_ocs_sm4_ecb_decrypt,
.init = ocs_sm4_init_tfm,
.exit = ocs_exit_tfm,
},
#endif /* CONFIG_CRYPTO_DEV_KEEMBAY_OCS_AES_SM4_ECB */
{
.base.cra_name = "cbc(sm4)",
.base.cra_driver_name = "cbc-sm4-keembay-ocs",
.base.cra_priority = KMB_OCS_PRIORITY,
.base.cra_flags = CRYPTO_ALG_ASYNC |
CRYPTO_ALG_KERN_DRIVER_ONLY,
.base.cra_blocksize = AES_BLOCK_SIZE,
.base.cra_ctxsize = sizeof(struct ocs_aes_tctx),
.base.cra_module = THIS_MODULE,
.base.cra_alignmask = 0,
.min_keysize = OCS_SM4_KEY_SIZE,
.max_keysize = OCS_SM4_KEY_SIZE,
.ivsize = AES_BLOCK_SIZE,
.setkey = kmb_ocs_sm4_set_key,
.encrypt = kmb_ocs_sm4_cbc_encrypt,
.decrypt = kmb_ocs_sm4_cbc_decrypt,
.init = ocs_sm4_init_tfm,
.exit = ocs_exit_tfm,
},
{
.base.cra_name = "ctr(sm4)",
.base.cra_driver_name = "ctr-sm4-keembay-ocs",
.base.cra_priority = KMB_OCS_PRIORITY,
.base.cra_flags = CRYPTO_ALG_ASYNC |
CRYPTO_ALG_KERN_DRIVER_ONLY,
.base.cra_blocksize = 1,
.base.cra_ctxsize = sizeof(struct ocs_aes_tctx),
.base.cra_module = THIS_MODULE,
.base.cra_alignmask = 0,
.min_keysize = OCS_SM4_KEY_SIZE,
.max_keysize = OCS_SM4_KEY_SIZE,
.ivsize = AES_BLOCK_SIZE,
.setkey = kmb_ocs_sm4_set_key,
.encrypt = kmb_ocs_sm4_ctr_encrypt,
.decrypt = kmb_ocs_sm4_ctr_decrypt,
.init = ocs_sm4_init_tfm,
.exit = ocs_exit_tfm,
},
#ifdef CONFIG_CRYPTO_DEV_KEEMBAY_OCS_AES_SM4_CTS
{
.base.cra_name = "cts(cbc(sm4))",
.base.cra_driver_name = "cts-sm4-keembay-ocs",
.base.cra_priority = KMB_OCS_PRIORITY,
.base.cra_flags = CRYPTO_ALG_ASYNC |
CRYPTO_ALG_KERN_DRIVER_ONLY,
.base.cra_blocksize = AES_BLOCK_SIZE,
.base.cra_ctxsize = sizeof(struct ocs_aes_tctx),
.base.cra_module = THIS_MODULE,
.base.cra_alignmask = 0,
.min_keysize = OCS_SM4_KEY_SIZE,
.max_keysize = OCS_SM4_KEY_SIZE,
.ivsize = AES_BLOCK_SIZE,
.setkey = kmb_ocs_sm4_set_key,
.encrypt = kmb_ocs_sm4_cts_encrypt,
.decrypt = kmb_ocs_sm4_cts_decrypt,
.init = ocs_sm4_init_tfm,
.exit = ocs_exit_tfm,
}
#endif /* CONFIG_CRYPTO_DEV_KEEMBAY_OCS_AES_SM4_CTS */
};
static struct aead_alg algs_aead[] = {
{
.base = {
.cra_name = "gcm(aes)",
.cra_driver_name = "gcm-aes-keembay-ocs",
.cra_priority = KMB_OCS_PRIORITY,
.cra_flags = CRYPTO_ALG_ASYNC |
CRYPTO_ALG_KERN_DRIVER_ONLY |
CRYPTO_ALG_NEED_FALLBACK,
.cra_blocksize = 1,
.cra_ctxsize = sizeof(struct ocs_aes_tctx),
.cra_alignmask = 0,
.cra_module = THIS_MODULE,
},
.init = ocs_aes_aead_cra_init,
.exit = ocs_aead_cra_exit,
.ivsize = GCM_AES_IV_SIZE,
.maxauthsize = AES_BLOCK_SIZE,
.setauthsize = kmb_ocs_aead_gcm_setauthsize,
.setkey = kmb_ocs_aes_aead_set_key,
.encrypt = kmb_ocs_aes_gcm_encrypt,
.decrypt = kmb_ocs_aes_gcm_decrypt,
},
{
.base = {
.cra_name = "ccm(aes)",
.cra_driver_name = "ccm-aes-keembay-ocs",
.cra_priority = KMB_OCS_PRIORITY,
.cra_flags = CRYPTO_ALG_ASYNC |
CRYPTO_ALG_KERN_DRIVER_ONLY |
CRYPTO_ALG_NEED_FALLBACK,
.cra_blocksize = 1,
.cra_ctxsize = sizeof(struct ocs_aes_tctx),
.cra_alignmask = 0,
.cra_module = THIS_MODULE,
},
.init = ocs_aes_aead_cra_init,
.exit = ocs_aead_cra_exit,
.ivsize = AES_BLOCK_SIZE,
.maxauthsize = AES_BLOCK_SIZE,
.setauthsize = kmb_ocs_aead_ccm_setauthsize,
.setkey = kmb_ocs_aes_aead_set_key,
.encrypt = kmb_ocs_aes_ccm_encrypt,
.decrypt = kmb_ocs_aes_ccm_decrypt,
},
{
.base = {
.cra_name = "gcm(sm4)",
.cra_driver_name = "gcm-sm4-keembay-ocs",
.cra_priority = KMB_OCS_PRIORITY,
.cra_flags = CRYPTO_ALG_ASYNC |
CRYPTO_ALG_KERN_DRIVER_ONLY,
.cra_blocksize = 1,
.cra_ctxsize = sizeof(struct ocs_aes_tctx),
.cra_alignmask = 0,
.cra_module = THIS_MODULE,
},
.init = ocs_sm4_aead_cra_init,
.exit = ocs_aead_cra_exit,
.ivsize = GCM_AES_IV_SIZE,
.maxauthsize = AES_BLOCK_SIZE,
.setauthsize = kmb_ocs_aead_gcm_setauthsize,
.setkey = kmb_ocs_sm4_aead_set_key,
.encrypt = kmb_ocs_sm4_gcm_encrypt,
.decrypt = kmb_ocs_sm4_gcm_decrypt,
},
{
.base = {
.cra_name = "ccm(sm4)",
.cra_driver_name = "ccm-sm4-keembay-ocs",
.cra_priority = KMB_OCS_PRIORITY,
.cra_flags = CRYPTO_ALG_ASYNC |
CRYPTO_ALG_KERN_DRIVER_ONLY,
.cra_blocksize = 1,
.cra_ctxsize = sizeof(struct ocs_aes_tctx),
.cra_alignmask = 0,
.cra_module = THIS_MODULE,
},
.init = ocs_sm4_aead_cra_init,
.exit = ocs_aead_cra_exit,
.ivsize = AES_BLOCK_SIZE,
.maxauthsize = AES_BLOCK_SIZE,
.setauthsize = kmb_ocs_aead_ccm_setauthsize,
.setkey = kmb_ocs_sm4_aead_set_key,
.encrypt = kmb_ocs_sm4_ccm_encrypt,
.decrypt = kmb_ocs_sm4_ccm_decrypt,
}
};
static void unregister_aes_algs(struct ocs_aes_dev *aes_dev)
{
crypto_unregister_aeads(algs_aead, ARRAY_SIZE(algs_aead));
crypto_unregister_skciphers(algs, ARRAY_SIZE(algs));
}
static int register_aes_algs(struct ocs_aes_dev *aes_dev)
{
int ret;
/*
* If any algorithm fails to register, all preceding algorithms that
* were successfully registered will be automatically unregistered.
*/
ret = crypto_register_aeads(algs_aead, ARRAY_SIZE(algs_aead));
if (ret)
return ret;
ret = crypto_register_skciphers(algs, ARRAY_SIZE(algs));
if (ret)
crypto_unregister_aeads(algs_aead, ARRAY_SIZE(algs));
return ret;
}
/* Device tree driver match. */
static const struct of_device_id kmb_ocs_aes_of_match[] = {
{
.compatible = "intel,keembay-ocs-aes",
},
{}
};
static int kmb_ocs_aes_remove(struct platform_device *pdev)
{
struct ocs_aes_dev *aes_dev;
aes_dev = platform_get_drvdata(pdev);
if (!aes_dev)
return -ENODEV;
unregister_aes_algs(aes_dev);
spin_lock(&ocs_aes.lock);
list_del(&aes_dev->list);
spin_unlock(&ocs_aes.lock);
crypto_engine_exit(aes_dev->engine);
return 0;
}
static int kmb_ocs_aes_probe(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
struct ocs_aes_dev *aes_dev;
struct resource *aes_mem;
int rc;
aes_dev = devm_kzalloc(dev, sizeof(*aes_dev), GFP_KERNEL);
if (!aes_dev)
return -ENOMEM;
aes_dev->dev = dev;
platform_set_drvdata(pdev, aes_dev);
rc = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(32));
if (rc) {
dev_err(dev, "Failed to set 32 bit dma mask %d\n", rc);
return rc;
}
/* Get base register address. */
aes_mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
if (!aes_mem) {
dev_err(dev, "Could not retrieve io mem resource\n");
return -ENODEV;
}
aes_dev->base_reg = devm_ioremap_resource(&pdev->dev, aes_mem);
if (IS_ERR(aes_dev->base_reg)) {
dev_err(dev, "Failed to get base address\n");
return PTR_ERR(aes_dev->base_reg);
}
/* Get and request IRQ */
aes_dev->irq = platform_get_irq(pdev, 0);
if (aes_dev->irq < 0)
return aes_dev->irq;
rc = devm_request_threaded_irq(dev, aes_dev->irq, ocs_aes_irq_handler,
NULL, 0, "keembay-ocs-aes", aes_dev);
if (rc < 0) {
dev_err(dev, "Could not request IRQ\n");
return rc;
}
INIT_LIST_HEAD(&aes_dev->list);
spin_lock(&ocs_aes.lock);
list_add_tail(&aes_dev->list, &ocs_aes.dev_list);
spin_unlock(&ocs_aes.lock);
init_completion(&aes_dev->irq_completion);
/* Initialize crypto engine */
aes_dev->engine = crypto_engine_alloc_init(dev, true);
if (!aes_dev->engine)
goto list_del;
rc = crypto_engine_start(aes_dev->engine);
if (rc) {
dev_err(dev, "Could not start crypto engine\n");
goto cleanup;
}
rc = register_aes_algs(aes_dev);
if (rc) {
dev_err(dev,
"Could not register OCS algorithms with Crypto API\n");
goto cleanup;
}
return 0;
cleanup:
crypto_engine_exit(aes_dev->engine);
list_del:
spin_lock(&ocs_aes.lock);
list_del(&aes_dev->list);
spin_unlock(&ocs_aes.lock);
return rc;
}
/* The OCS driver is a platform device. */
static struct platform_driver kmb_ocs_aes_driver = {
.probe = kmb_ocs_aes_probe,
.remove = kmb_ocs_aes_remove,
.driver = {
.name = DRV_NAME,
.of_match_table = kmb_ocs_aes_of_match,
},
};
module_platform_driver(kmb_ocs_aes_driver);
MODULE_DESCRIPTION("Intel Keem Bay Offload and Crypto Subsystem (OCS) AES/SM4 Driver");
MODULE_LICENSE("GPL");
MODULE_ALIAS_CRYPTO("cbc-aes-keembay-ocs");
MODULE_ALIAS_CRYPTO("ctr-aes-keembay-ocs");
MODULE_ALIAS_CRYPTO("gcm-aes-keembay-ocs");
MODULE_ALIAS_CRYPTO("ccm-aes-keembay-ocs");
MODULE_ALIAS_CRYPTO("cbc-sm4-keembay-ocs");
MODULE_ALIAS_CRYPTO("ctr-sm4-keembay-ocs");
MODULE_ALIAS_CRYPTO("gcm-sm4-keembay-ocs");
MODULE_ALIAS_CRYPTO("ccm-sm4-keembay-ocs");
#ifdef CONFIG_CRYPTO_DEV_KEEMBAY_OCS_AES_SM4_ECB
MODULE_ALIAS_CRYPTO("ecb-aes-keembay-ocs");
MODULE_ALIAS_CRYPTO("ecb-sm4-keembay-ocs");
#endif /* CONFIG_CRYPTO_DEV_KEEMBAY_OCS_AES_SM4_ECB */
#ifdef CONFIG_CRYPTO_DEV_KEEMBAY_OCS_AES_SM4_CTS
MODULE_ALIAS_CRYPTO("cts-aes-keembay-ocs");
MODULE_ALIAS_CRYPTO("cts-sm4-keembay-ocs");
#endif /* CONFIG_CRYPTO_DEV_KEEMBAY_OCS_AES_SM4_CTS */
// SPDX-License-Identifier: GPL-2.0-only
/*
* Intel Keem Bay OCS AES Crypto Driver.
*
* Copyright (C) 2018-2020 Intel Corporation
*/
#include <linux/dma-mapping.h>
#include <linux/interrupt.h>
#include <linux/platform_device.h>
#include <linux/slab.h>
#include <linux/swab.h>
#include <asm/byteorder.h>
#include <asm/errno.h>
#include <crypto/aes.h>
#include <crypto/gcm.h>
#include "ocs-aes.h"
#define AES_COMMAND_OFFSET 0x0000
#define AES_KEY_0_OFFSET 0x0004
#define AES_KEY_1_OFFSET 0x0008
#define AES_KEY_2_OFFSET 0x000C
#define AES_KEY_3_OFFSET 0x0010
#define AES_KEY_4_OFFSET 0x0014
#define AES_KEY_5_OFFSET 0x0018
#define AES_KEY_6_OFFSET 0x001C
#define AES_KEY_7_OFFSET 0x0020
#define AES_IV_0_OFFSET 0x0024
#define AES_IV_1_OFFSET 0x0028
#define AES_IV_2_OFFSET 0x002C
#define AES_IV_3_OFFSET 0x0030
#define AES_ACTIVE_OFFSET 0x0034
#define AES_STATUS_OFFSET 0x0038
#define AES_KEY_SIZE_OFFSET 0x0044
#define AES_IER_OFFSET 0x0048
#define AES_ISR_OFFSET 0x005C
#define AES_MULTIPURPOSE1_0_OFFSET 0x0200
#define AES_MULTIPURPOSE1_1_OFFSET 0x0204
#define AES_MULTIPURPOSE1_2_OFFSET 0x0208
#define AES_MULTIPURPOSE1_3_OFFSET 0x020C
#define AES_MULTIPURPOSE2_0_OFFSET 0x0220
#define AES_MULTIPURPOSE2_1_OFFSET 0x0224
#define AES_MULTIPURPOSE2_2_OFFSET 0x0228
#define AES_MULTIPURPOSE2_3_OFFSET 0x022C
#define AES_BYTE_ORDER_CFG_OFFSET 0x02C0
#define AES_TLEN_OFFSET 0x0300
#define AES_T_MAC_0_OFFSET 0x0304
#define AES_T_MAC_1_OFFSET 0x0308
#define AES_T_MAC_2_OFFSET 0x030C
#define AES_T_MAC_3_OFFSET 0x0310
#define AES_PLEN_OFFSET 0x0314
#define AES_A_DMA_SRC_ADDR_OFFSET 0x0400
#define AES_A_DMA_DST_ADDR_OFFSET 0x0404
#define AES_A_DMA_SRC_SIZE_OFFSET 0x0408
#define AES_A_DMA_DST_SIZE_OFFSET 0x040C
#define AES_A_DMA_DMA_MODE_OFFSET 0x0410
#define AES_A_DMA_NEXT_SRC_DESCR_OFFSET 0x0418
#define AES_A_DMA_NEXT_DST_DESCR_OFFSET 0x041C
#define AES_A_DMA_WHILE_ACTIVE_MODE_OFFSET 0x0420
#define AES_A_DMA_LOG_OFFSET 0x0424
#define AES_A_DMA_STATUS_OFFSET 0x0428
#define AES_A_DMA_PERF_CNTR_OFFSET 0x042C
#define AES_A_DMA_MSI_ISR_OFFSET 0x0480
#define AES_A_DMA_MSI_IER_OFFSET 0x0484
#define AES_A_DMA_MSI_MASK_OFFSET 0x0488
#define AES_A_DMA_INBUFFER_WRITE_FIFO_OFFSET 0x0600
#define AES_A_DMA_OUTBUFFER_READ_FIFO_OFFSET 0x0700
/*
* AES_A_DMA_DMA_MODE register.
* Default: 0x00000000.
* bit[31] ACTIVE
* This bit activates the DMA. When the DMA finishes, it resets
* this bit to zero.
* bit[30:26] Unused by this driver.
* bit[25] SRC_LINK_LIST_EN
* Source link list enable bit. When the linked list is terminated
* this bit is reset by the DMA.
* bit[24] DST_LINK_LIST_EN
* Destination link list enable bit. When the linked list is
* terminated this bit is reset by the DMA.
* bit[23:0] Unused by this driver.
*/
#define AES_A_DMA_DMA_MODE_ACTIVE BIT(31)
#define AES_A_DMA_DMA_MODE_SRC_LINK_LIST_EN BIT(25)
#define AES_A_DMA_DMA_MODE_DST_LINK_LIST_EN BIT(24)
/*
* AES_ACTIVE register
* default 0x00000000
* bit[31:10] Reserved
* bit[9] LAST_ADATA
* bit[8] LAST_GCX
* bit[7:2] Reserved
* bit[1] TERMINATION
* bit[0] TRIGGER
*/
#define AES_ACTIVE_LAST_ADATA BIT(9)
#define AES_ACTIVE_LAST_CCM_GCM BIT(8)
#define AES_ACTIVE_TERMINATION BIT(1)
#define AES_ACTIVE_TRIGGER BIT(0)
#define AES_DISABLE_INT 0x00000000
#define AES_DMA_CPD_ERR_INT BIT(8)
#define AES_DMA_OUTBUF_RD_ERR_INT BIT(7)
#define AES_DMA_OUTBUF_WR_ERR_INT BIT(6)
#define AES_DMA_INBUF_RD_ERR_INT BIT(5)
#define AES_DMA_INBUF_WR_ERR_INT BIT(4)
#define AES_DMA_BAD_COMP_INT BIT(3)
#define AES_DMA_SAI_INT BIT(2)
#define AES_DMA_SRC_DONE_INT BIT(0)
#define AES_COMPLETE_INT BIT(1)
#define AES_DMA_MSI_MASK_CLEAR BIT(0)
#define AES_128_BIT_KEY 0x00000000
#define AES_256_BIT_KEY BIT(0)
#define AES_DEACTIVATE_PERF_CNTR 0x00000000
#define AES_ACTIVATE_PERF_CNTR BIT(0)
#define AES_MAX_TAG_SIZE_U32 4
#define OCS_LL_DMA_FLAG_TERMINATE BIT(31)
/*
* There is an inconsistency in the documentation. This is documented as a
* 11-bit value, but it is actually 10-bits.
*/
#define AES_DMA_STATUS_INPUT_BUFFER_OCCUPANCY_MASK 0x3FF
/*
* During CCM decrypt, the OCS block needs to finish processing the ciphertext
* before the tag is written. For 128-bit mode this required delay is 28 OCS
* clock cycles. For 256-bit mode it is 36 OCS clock cycles.
*/
#define CCM_DECRYPT_DELAY_TAG_CLK_COUNT 36UL
/*
* During CCM decrypt there must be a delay of at least 42 OCS clock cycles
* between setting the TRIGGER bit in AES_ACTIVE and setting the LAST_CCM_GCM
* bit in the same register (as stated in the OCS databook)
*/
#define CCM_DECRYPT_DELAY_LAST_GCX_CLK_COUNT 42UL
/* See RFC3610 section 2.2 */
#define L_PRIME_MIN (1)
#define L_PRIME_MAX (7)
/*
* CCM IV format from RFC 3610 section 2.3
*
* Octet Number Contents
* ------------ ---------
* 0 Flags
* 1 ... 15-L Nonce N
* 16-L ... 15 Counter i
*
* Flags = L' = L - 1
*/
#define L_PRIME_IDX 0
#define COUNTER_START(lprime) (16 - ((lprime) + 1))
#define COUNTER_LEN(lprime) ((lprime) + 1)
enum aes_counter_mode {
AES_CTR_M_NO_INC = 0,
AES_CTR_M_32_INC = 1,
AES_CTR_M_64_INC = 2,
AES_CTR_M_128_INC = 3,
};
/**
* struct ocs_dma_linked_list - OCS DMA linked list entry.
* @src_addr: Source address of the data.
* @src_len: Length of data to be fetched.
* @next: Next dma_list to fetch.
* @ll_flags: Flags (Freeze @ terminate) for the DMA engine.
*/
struct ocs_dma_linked_list {
u32 src_addr;
u32 src_len;
u32 next;
u32 ll_flags;
} __packed;
/*
* Set endianness of inputs and outputs
* AES_BYTE_ORDER_CFG
* default 0x00000000
* bit [10] - KEY_HI_LO_SWAP
* bit [9] - KEY_HI_SWAP_DWORDS_IN_OCTWORD
* bit [8] - KEY_HI_SWAP_BYTES_IN_DWORD
* bit [7] - KEY_LO_SWAP_DWORDS_IN_OCTWORD
* bit [6] - KEY_LO_SWAP_BYTES_IN_DWORD
* bit [5] - IV_SWAP_DWORDS_IN_OCTWORD
* bit [4] - IV_SWAP_BYTES_IN_DWORD
* bit [3] - DOUT_SWAP_DWORDS_IN_OCTWORD
* bit [2] - DOUT_SWAP_BYTES_IN_DWORD
* bit [1] - DOUT_SWAP_DWORDS_IN_OCTWORD
* bit [0] - DOUT_SWAP_BYTES_IN_DWORD
*/
static inline void aes_a_set_endianness(const struct ocs_aes_dev *aes_dev)
{
iowrite32(0x7FF, aes_dev->base_reg + AES_BYTE_ORDER_CFG_OFFSET);
}
/* Trigger AES process start. */
static inline void aes_a_op_trigger(const struct ocs_aes_dev *aes_dev)
{
iowrite32(AES_ACTIVE_TRIGGER, aes_dev->base_reg + AES_ACTIVE_OFFSET);
}
/* Indicate last bulk of data. */
static inline void aes_a_op_termination(const struct ocs_aes_dev *aes_dev)
{
iowrite32(AES_ACTIVE_TERMINATION,
aes_dev->base_reg + AES_ACTIVE_OFFSET);
}
/*
* Set LAST_CCM_GCM in AES_ACTIVE register and clear all other bits.
*
* Called when DMA is programmed to fetch the last batch of data.
* - For AES-CCM it is called for the last batch of Payload data and Ciphertext
* data.
* - For AES-GCM, it is called for the last batch of Plaintext data and
* Ciphertext data.
*/
static inline void aes_a_set_last_gcx(const struct ocs_aes_dev *aes_dev)
{
iowrite32(AES_ACTIVE_LAST_CCM_GCM,
aes_dev->base_reg + AES_ACTIVE_OFFSET);
}
/* Wait for LAST_CCM_GCM bit to be unset. */
static inline void aes_a_wait_last_gcx(const struct ocs_aes_dev *aes_dev)
{
u32 aes_active_reg;
do {
aes_active_reg = ioread32(aes_dev->base_reg +
AES_ACTIVE_OFFSET);
} while (aes_active_reg & AES_ACTIVE_LAST_CCM_GCM);
}
/* Wait for 10 bits of input occupancy. */
static void aes_a_dma_wait_input_buffer_occupancy(const struct ocs_aes_dev *aes_dev)
{
u32 reg;
do {
reg = ioread32(aes_dev->base_reg + AES_A_DMA_STATUS_OFFSET);
} while (reg & AES_DMA_STATUS_INPUT_BUFFER_OCCUPANCY_MASK);
}
/*
* Set LAST_CCM_GCM and LAST_ADATA bits in AES_ACTIVE register (and clear all
* other bits).
*
* Called when DMA is programmed to fetch the last batch of Associated Data
* (CCM case) or Additional Authenticated Data (GCM case).
*/
static inline void aes_a_set_last_gcx_and_adata(const struct ocs_aes_dev *aes_dev)
{
iowrite32(AES_ACTIVE_LAST_ADATA | AES_ACTIVE_LAST_CCM_GCM,
aes_dev->base_reg + AES_ACTIVE_OFFSET);
}
/* Set DMA src and dst transfer size to 0 */
static inline void aes_a_dma_set_xfer_size_zero(const struct ocs_aes_dev *aes_dev)
{
iowrite32(0, aes_dev->base_reg + AES_A_DMA_SRC_SIZE_OFFSET);
iowrite32(0, aes_dev->base_reg + AES_A_DMA_DST_SIZE_OFFSET);
}
/* Activate DMA for zero-byte transfer case. */
static inline void aes_a_dma_active(const struct ocs_aes_dev *aes_dev)
{
iowrite32(AES_A_DMA_DMA_MODE_ACTIVE,
aes_dev->base_reg + AES_A_DMA_DMA_MODE_OFFSET);
}
/* Activate DMA and enable src linked list */
static inline void aes_a_dma_active_src_ll_en(const struct ocs_aes_dev *aes_dev)
{
iowrite32(AES_A_DMA_DMA_MODE_ACTIVE |
AES_A_DMA_DMA_MODE_SRC_LINK_LIST_EN,
aes_dev->base_reg + AES_A_DMA_DMA_MODE_OFFSET);
}
/* Activate DMA and enable dst linked list */
static inline void aes_a_dma_active_dst_ll_en(const struct ocs_aes_dev *aes_dev)
{
iowrite32(AES_A_DMA_DMA_MODE_ACTIVE |
AES_A_DMA_DMA_MODE_DST_LINK_LIST_EN,
aes_dev->base_reg + AES_A_DMA_DMA_MODE_OFFSET);
}
/* Activate DMA and enable src and dst linked lists */
static inline void aes_a_dma_active_src_dst_ll_en(const struct ocs_aes_dev *aes_dev)
{
iowrite32(AES_A_DMA_DMA_MODE_ACTIVE |
AES_A_DMA_DMA_MODE_SRC_LINK_LIST_EN |
AES_A_DMA_DMA_MODE_DST_LINK_LIST_EN,
aes_dev->base_reg + AES_A_DMA_DMA_MODE_OFFSET);
}
/* Reset PERF_CNTR to 0 and activate it */
static inline void aes_a_dma_reset_and_activate_perf_cntr(const struct ocs_aes_dev *aes_dev)
{
iowrite32(0x00000000, aes_dev->base_reg + AES_A_DMA_PERF_CNTR_OFFSET);
iowrite32(AES_ACTIVATE_PERF_CNTR,
aes_dev->base_reg + AES_A_DMA_WHILE_ACTIVE_MODE_OFFSET);
}
/* Wait until PERF_CNTR is > delay, then deactivate it */
static inline void aes_a_dma_wait_and_deactivate_perf_cntr(const struct ocs_aes_dev *aes_dev,
int delay)
{
while (ioread32(aes_dev->base_reg + AES_A_DMA_PERF_CNTR_OFFSET) < delay)
;
iowrite32(AES_DEACTIVATE_PERF_CNTR,
aes_dev->base_reg + AES_A_DMA_WHILE_ACTIVE_MODE_OFFSET);
}
/* Disable AES and DMA IRQ. */
static void aes_irq_disable(struct ocs_aes_dev *aes_dev)
{
u32 isr_val = 0;
/* Disable interrupts */
iowrite32(AES_DISABLE_INT,
aes_dev->base_reg + AES_A_DMA_MSI_IER_OFFSET);
iowrite32(AES_DISABLE_INT, aes_dev->base_reg + AES_IER_OFFSET);
/* Clear any pending interrupt */
isr_val = ioread32(aes_dev->base_reg + AES_A_DMA_MSI_ISR_OFFSET);
if (isr_val)
iowrite32(isr_val,
aes_dev->base_reg + AES_A_DMA_MSI_ISR_OFFSET);
isr_val = ioread32(aes_dev->base_reg + AES_A_DMA_MSI_MASK_OFFSET);
if (isr_val)
iowrite32(isr_val,
aes_dev->base_reg + AES_A_DMA_MSI_MASK_OFFSET);
isr_val = ioread32(aes_dev->base_reg + AES_ISR_OFFSET);
if (isr_val)
iowrite32(isr_val, aes_dev->base_reg + AES_ISR_OFFSET);
}
/* Enable AES or DMA IRQ. IRQ is disabled once fired. */
static void aes_irq_enable(struct ocs_aes_dev *aes_dev, u8 irq)
{
if (irq == AES_COMPLETE_INT) {
/* Ensure DMA error interrupts are enabled */
iowrite32(AES_DMA_CPD_ERR_INT |
AES_DMA_OUTBUF_RD_ERR_INT |
AES_DMA_OUTBUF_WR_ERR_INT |
AES_DMA_INBUF_RD_ERR_INT |
AES_DMA_INBUF_WR_ERR_INT |
AES_DMA_BAD_COMP_INT |
AES_DMA_SAI_INT,
aes_dev->base_reg + AES_A_DMA_MSI_IER_OFFSET);
/*
* AES_IER
* default 0x00000000
* bits [31:3] - reserved
* bit [2] - EN_SKS_ERR
* bit [1] - EN_AES_COMPLETE
* bit [0] - reserved
*/
iowrite32(AES_COMPLETE_INT, aes_dev->base_reg + AES_IER_OFFSET);
return;
}
if (irq == AES_DMA_SRC_DONE_INT) {
/* Ensure AES interrupts are disabled */
iowrite32(AES_DISABLE_INT, aes_dev->base_reg + AES_IER_OFFSET);
/*
* DMA_MSI_IER
* default 0x00000000
* bits [31:9] - reserved
* bit [8] - CPD_ERR_INT_EN
* bit [7] - OUTBUF_RD_ERR_INT_EN
* bit [6] - OUTBUF_WR_ERR_INT_EN
* bit [5] - INBUF_RD_ERR_INT_EN
* bit [4] - INBUF_WR_ERR_INT_EN
* bit [3] - BAD_COMP_INT_EN
* bit [2] - SAI_INT_EN
* bit [1] - DST_DONE_INT_EN
* bit [0] - SRC_DONE_INT_EN
*/
iowrite32(AES_DMA_CPD_ERR_INT |
AES_DMA_OUTBUF_RD_ERR_INT |
AES_DMA_OUTBUF_WR_ERR_INT |
AES_DMA_INBUF_RD_ERR_INT |
AES_DMA_INBUF_WR_ERR_INT |
AES_DMA_BAD_COMP_INT |
AES_DMA_SAI_INT |
AES_DMA_SRC_DONE_INT,
aes_dev->base_reg + AES_A_DMA_MSI_IER_OFFSET);
}
}
/* Enable and wait for IRQ (either from OCS AES engine or DMA) */
static int ocs_aes_irq_enable_and_wait(struct ocs_aes_dev *aes_dev, u8 irq)
{
int rc;
reinit_completion(&aes_dev->irq_completion);
aes_irq_enable(aes_dev, irq);
rc = wait_for_completion_interruptible(&aes_dev->irq_completion);
if (rc)
return rc;
return aes_dev->dma_err_mask ? -EIO : 0;
}
/* Configure DMA to OCS, linked list mode */
static inline void dma_to_ocs_aes_ll(struct ocs_aes_dev *aes_dev,
dma_addr_t dma_list)
{
iowrite32(0, aes_dev->base_reg + AES_A_DMA_SRC_SIZE_OFFSET);
iowrite32(dma_list,
aes_dev->base_reg + AES_A_DMA_NEXT_SRC_DESCR_OFFSET);
}
/* Configure DMA from OCS, linked list mode */
static inline void dma_from_ocs_aes_ll(struct ocs_aes_dev *aes_dev,
dma_addr_t dma_list)
{
iowrite32(0, aes_dev->base_reg + AES_A_DMA_DST_SIZE_OFFSET);
iowrite32(dma_list,
aes_dev->base_reg + AES_A_DMA_NEXT_DST_DESCR_OFFSET);
}
irqreturn_t ocs_aes_irq_handler(int irq, void *dev_id)
{
struct ocs_aes_dev *aes_dev = dev_id;
u32 aes_dma_isr;
/* Read DMA ISR status. */
aes_dma_isr = ioread32(aes_dev->base_reg + AES_A_DMA_MSI_ISR_OFFSET);
/* Disable and clear interrupts. */
aes_irq_disable(aes_dev);
/* Save DMA error status. */
aes_dev->dma_err_mask = aes_dma_isr &
(AES_DMA_CPD_ERR_INT |
AES_DMA_OUTBUF_RD_ERR_INT |
AES_DMA_OUTBUF_WR_ERR_INT |
AES_DMA_INBUF_RD_ERR_INT |
AES_DMA_INBUF_WR_ERR_INT |
AES_DMA_BAD_COMP_INT |
AES_DMA_SAI_INT);
/* Signal IRQ completion. */
complete(&aes_dev->irq_completion);
return IRQ_HANDLED;
}
/**
* ocs_aes_set_key() - Write key into OCS AES hardware.
* @aes_dev: The OCS AES device to write the key to.
* @key_size: The size of the key (in bytes).
* @key: The key to write.
* @cipher: The cipher the key is for.
*
* For AES @key_size must be either 16 or 32. For SM4 @key_size must be 16.
*
* Return: 0 on success, negative error code otherwise.
*/
int ocs_aes_set_key(struct ocs_aes_dev *aes_dev, u32 key_size, const u8 *key,
enum ocs_cipher cipher)
{
const u32 *key_u32;
u32 val;
int i;
/* OCS AES supports 128-bit and 256-bit keys only. */
if (cipher == OCS_AES && !(key_size == 32 || key_size == 16)) {
dev_err(aes_dev->dev,
"%d-bit keys not supported by AES cipher\n",
key_size * 8);
return -EINVAL;
}
/* OCS SM4 supports 128-bit keys only. */
if (cipher == OCS_SM4 && key_size != 16) {
dev_err(aes_dev->dev,
"%d-bit keys not supported for SM4 cipher\n",
key_size * 8);
return -EINVAL;
}
if (!key)
return -EINVAL;
key_u32 = (const u32 *)key;
/* Write key to AES_KEY[0-7] registers */
for (i = 0; i < (key_size / sizeof(u32)); i++) {
iowrite32(key_u32[i],
aes_dev->base_reg + AES_KEY_0_OFFSET +
(i * sizeof(u32)));
}
/*
* Write key size
* bits [31:1] - reserved
* bit [0] - AES_KEY_SIZE
* 0 - 128 bit key
* 1 - 256 bit key
*/
val = (key_size == 16) ? AES_128_BIT_KEY : AES_256_BIT_KEY;
iowrite32(val, aes_dev->base_reg + AES_KEY_SIZE_OFFSET);
return 0;
}
/* Write AES_COMMAND */
static inline void set_ocs_aes_command(struct ocs_aes_dev *aes_dev,
enum ocs_cipher cipher,
enum ocs_mode mode,
enum ocs_instruction instruction)
{
u32 val;
/* AES_COMMAND
* default 0x000000CC
* bit [14] - CIPHER_SELECT
* 0 - AES
* 1 - SM4
* bits [11:8] - OCS_AES_MODE
* 0000 - ECB
* 0001 - CBC
* 0010 - CTR
* 0110 - CCM
* 0111 - GCM
* 1001 - CTS
* bits [7:6] - AES_INSTRUCTION
* 00 - ENCRYPT
* 01 - DECRYPT
* 10 - EXPAND
* 11 - BYPASS
* bits [3:2] - CTR_M_BITS
* 00 - No increment
* 01 - Least significant 32 bits are incremented
* 10 - Least significant 64 bits are incremented
* 11 - Full 128 bits are incremented
*/
val = (cipher << 14) | (mode << 8) | (instruction << 6) |
(AES_CTR_M_128_INC << 2);
iowrite32(val, aes_dev->base_reg + AES_COMMAND_OFFSET);
}
static void ocs_aes_init(struct ocs_aes_dev *aes_dev,
enum ocs_mode mode,
enum ocs_cipher cipher,
enum ocs_instruction instruction)
{
/* Ensure interrupts are disabled and pending interrupts cleared. */
aes_irq_disable(aes_dev);
/* Set endianness recommended by data-sheet. */
aes_a_set_endianness(aes_dev);
/* Set AES_COMMAND register. */
set_ocs_aes_command(aes_dev, cipher, mode, instruction);
}
/*
* Write the byte length of the last AES/SM4 block of Payload data (without
* zero padding and without the length of the MAC) in register AES_PLEN.
*/
static inline void ocs_aes_write_last_data_blk_len(struct ocs_aes_dev *aes_dev,
u32 size)
{
u32 val;
if (size == 0) {
val = 0;
goto exit;
}
val = size % AES_BLOCK_SIZE;
if (val == 0)
val = AES_BLOCK_SIZE;
exit:
iowrite32(val, aes_dev->base_reg + AES_PLEN_OFFSET);
}
/*
* Validate inputs according to mode.
* If OK return 0; else return -EINVAL.
*/
static int ocs_aes_validate_inputs(dma_addr_t src_dma_list, u32 src_size,
const u8 *iv, u32 iv_size,
dma_addr_t aad_dma_list, u32 aad_size,
const u8 *tag, u32 tag_size,
enum ocs_cipher cipher, enum ocs_mode mode,
enum ocs_instruction instruction,
dma_addr_t dst_dma_list)
{
/* Ensure cipher, mode and instruction are valid. */
if (!(cipher == OCS_AES || cipher == OCS_SM4))
return -EINVAL;
if (mode != OCS_MODE_ECB && mode != OCS_MODE_CBC &&
mode != OCS_MODE_CTR && mode != OCS_MODE_CCM &&
mode != OCS_MODE_GCM && mode != OCS_MODE_CTS)
return -EINVAL;
if (instruction != OCS_ENCRYPT && instruction != OCS_DECRYPT &&
instruction != OCS_EXPAND && instruction != OCS_BYPASS)
return -EINVAL;
/*
* When instruction is OCS_BYPASS, OCS simply copies data from source
* to destination using DMA.
*
* AES mode is irrelevant, but both source and destination DMA
* linked-list must be defined.
*/
if (instruction == OCS_BYPASS) {
if (src_dma_list == DMA_MAPPING_ERROR ||
dst_dma_list == DMA_MAPPING_ERROR)
return -EINVAL;
return 0;
}
/*
* For performance reasons switch based on mode to limit unnecessary
* conditionals for each mode
*/
switch (mode) {
case OCS_MODE_ECB:
/* Ensure input length is multiple of block size */
if (src_size % AES_BLOCK_SIZE != 0)
return -EINVAL;
/* Ensure source and destination linked lists are created */
if (src_dma_list == DMA_MAPPING_ERROR ||
dst_dma_list == DMA_MAPPING_ERROR)
return -EINVAL;
return 0;
case OCS_MODE_CBC:
/* Ensure input length is multiple of block size */
if (src_size % AES_BLOCK_SIZE != 0)
return -EINVAL;
/* Ensure source and destination linked lists are created */
if (src_dma_list == DMA_MAPPING_ERROR ||
dst_dma_list == DMA_MAPPING_ERROR)
return -EINVAL;
/* Ensure IV is present and block size in length */
if (!iv || iv_size != AES_BLOCK_SIZE)
return -EINVAL;
return 0;
case OCS_MODE_CTR:
/* Ensure input length of 1 byte or greater */
if (src_size == 0)
return -EINVAL;
/* Ensure source and destination linked lists are created */
if (src_dma_list == DMA_MAPPING_ERROR ||
dst_dma_list == DMA_MAPPING_ERROR)
return -EINVAL;
/* Ensure IV is present and block size in length */
if (!iv || iv_size != AES_BLOCK_SIZE)
return -EINVAL;
return 0;
case OCS_MODE_CTS:
/* Ensure input length >= block size */
if (src_size < AES_BLOCK_SIZE)
return -EINVAL;
/* Ensure source and destination linked lists are created */
if (src_dma_list == DMA_MAPPING_ERROR ||
dst_dma_list == DMA_MAPPING_ERROR)
return -EINVAL;
/* Ensure IV is present and block size in length */
if (!iv || iv_size != AES_BLOCK_SIZE)
return -EINVAL;
return 0;
case OCS_MODE_GCM:
/* Ensure IV is present and GCM_AES_IV_SIZE in length */
if (!iv || iv_size != GCM_AES_IV_SIZE)
return -EINVAL;
/*
* If input data present ensure source and destination linked
* lists are created
*/
if (src_size && (src_dma_list == DMA_MAPPING_ERROR ||
dst_dma_list == DMA_MAPPING_ERROR))
return -EINVAL;
/* If aad present ensure aad linked list is created */
if (aad_size && aad_dma_list == DMA_MAPPING_ERROR)
return -EINVAL;
/* Ensure tag destination is set */
if (!tag)
return -EINVAL;
/* Just ensure that tag_size doesn't cause overflows. */
if (tag_size > (AES_MAX_TAG_SIZE_U32 * sizeof(u32)))
return -EINVAL;
return 0;
case OCS_MODE_CCM:
/* Ensure IV is present and block size in length */
if (!iv || iv_size != AES_BLOCK_SIZE)
return -EINVAL;
/* 2 <= L <= 8, so 1 <= L' <= 7 */
if (iv[L_PRIME_IDX] < L_PRIME_MIN ||
iv[L_PRIME_IDX] > L_PRIME_MAX)
return -EINVAL;
/* If aad present ensure aad linked list is created */
if (aad_size && aad_dma_list == DMA_MAPPING_ERROR)
return -EINVAL;
/* Just ensure that tag_size doesn't cause overflows. */
if (tag_size > (AES_MAX_TAG_SIZE_U32 * sizeof(u32)))
return -EINVAL;
if (instruction == OCS_DECRYPT) {
/*
* If input data present ensure source and destination
* linked lists are created
*/
if (src_size && (src_dma_list == DMA_MAPPING_ERROR ||
dst_dma_list == DMA_MAPPING_ERROR))
return -EINVAL;
/* Ensure input tag is present */
if (!tag)
return -EINVAL;
return 0;
}
/* Instruction == OCS_ENCRYPT */
/*
* Destination linked list always required (for tag even if no
* input data)
*/
if (dst_dma_list == DMA_MAPPING_ERROR)
return -EINVAL;
/* If input data present ensure src linked list is created */
if (src_size && src_dma_list == DMA_MAPPING_ERROR)
return -EINVAL;
return 0;
default:
return -EINVAL;
}
}
/**
* ocs_aes_op() - Perform AES/SM4 operation.
* @aes_dev: The OCS AES device to use.
* @mode: The mode to use (ECB, CBC, CTR, or CTS).
* @cipher: The cipher to use (AES or SM4).
* @instruction: The instruction to perform (encrypt or decrypt).
* @dst_dma_list: The OCS DMA list mapping output memory.
* @src_dma_list: The OCS DMA list mapping input payload data.
* @src_size: The amount of data mapped by @src_dma_list.
* @iv: The IV vector.
* @iv_size: The size (in bytes) of @iv.
*
* Return: 0 on success, negative error code otherwise.
*/
int ocs_aes_op(struct ocs_aes_dev *aes_dev,
enum ocs_mode mode,
enum ocs_cipher cipher,
enum ocs_instruction instruction,
dma_addr_t dst_dma_list,
dma_addr_t src_dma_list,
u32 src_size,
u8 *iv,
u32 iv_size)
{
u32 *iv32;
int rc;
rc = ocs_aes_validate_inputs(src_dma_list, src_size, iv, iv_size, 0, 0,
NULL, 0, cipher, mode, instruction,
dst_dma_list);
if (rc)
return rc;
/*
* ocs_aes_validate_inputs() is a generic check, now ensure mode is not
* GCM or CCM.
*/
if (mode == OCS_MODE_GCM || mode == OCS_MODE_CCM)
return -EINVAL;
/* Cast IV to u32 array. */
iv32 = (u32 *)iv;
ocs_aes_init(aes_dev, mode, cipher, instruction);
if (mode == OCS_MODE_CTS) {
/* Write the byte length of the last data block to engine. */
ocs_aes_write_last_data_blk_len(aes_dev, src_size);
}
/* ECB is the only mode that doesn't use IV. */
if (mode != OCS_MODE_ECB) {
iowrite32(iv32[0], aes_dev->base_reg + AES_IV_0_OFFSET);
iowrite32(iv32[1], aes_dev->base_reg + AES_IV_1_OFFSET);
iowrite32(iv32[2], aes_dev->base_reg + AES_IV_2_OFFSET);
iowrite32(iv32[3], aes_dev->base_reg + AES_IV_3_OFFSET);
}
/* Set AES_ACTIVE.TRIGGER to start the operation. */
aes_a_op_trigger(aes_dev);
/* Configure and activate input / output DMA. */
dma_to_ocs_aes_ll(aes_dev, src_dma_list);
dma_from_ocs_aes_ll(aes_dev, dst_dma_list);
aes_a_dma_active_src_dst_ll_en(aes_dev);
if (mode == OCS_MODE_CTS) {
/*
* For CTS mode, instruct engine to activate ciphertext
* stealing if last block of data is incomplete.
*/
aes_a_set_last_gcx(aes_dev);
} else {
/* For all other modes, just write the 'termination' bit. */
aes_a_op_termination(aes_dev);
}
/* Wait for engine to complete processing. */
rc = ocs_aes_irq_enable_and_wait(aes_dev, AES_COMPLETE_INT);
if (rc)
return rc;
if (mode == OCS_MODE_CTR) {
/* Read back IV for streaming mode */
iv32[0] = ioread32(aes_dev->base_reg + AES_IV_0_OFFSET);
iv32[1] = ioread32(aes_dev->base_reg + AES_IV_1_OFFSET);
iv32[2] = ioread32(aes_dev->base_reg + AES_IV_2_OFFSET);
iv32[3] = ioread32(aes_dev->base_reg + AES_IV_3_OFFSET);
}
return 0;
}
/* Compute and write J0 to engine registers. */
static void ocs_aes_gcm_write_j0(const struct ocs_aes_dev *aes_dev,
const u8 *iv)
{
const u32 *j0 = (u32 *)iv;
/*
* IV must be 12 bytes; Other sizes not supported as Linux crypto API
* does only expects/allows 12 byte IV for GCM
*/
iowrite32(0x00000001, aes_dev->base_reg + AES_IV_0_OFFSET);
iowrite32(__swab32(j0[2]), aes_dev->base_reg + AES_IV_1_OFFSET);
iowrite32(__swab32(j0[1]), aes_dev->base_reg + AES_IV_2_OFFSET);
iowrite32(__swab32(j0[0]), aes_dev->base_reg + AES_IV_3_OFFSET);
}
/* Read GCM tag from engine registers. */
static inline void ocs_aes_gcm_read_tag(struct ocs_aes_dev *aes_dev,
u8 *tag, u32 tag_size)
{
u32 tag_u32[AES_MAX_TAG_SIZE_U32];
/*
* The Authentication Tag T is stored in Little Endian order in the
* registers with the most significant bytes stored from AES_T_MAC[3]
* downward.
*/
tag_u32[0] = __swab32(ioread32(aes_dev->base_reg + AES_T_MAC_3_OFFSET));
tag_u32[1] = __swab32(ioread32(aes_dev->base_reg + AES_T_MAC_2_OFFSET));
tag_u32[2] = __swab32(ioread32(aes_dev->base_reg + AES_T_MAC_1_OFFSET));
tag_u32[3] = __swab32(ioread32(aes_dev->base_reg + AES_T_MAC_0_OFFSET));
memcpy(tag, tag_u32, tag_size);
}
/**
* ocs_aes_gcm_op() - Perform GCM operation.
* @aes_dev: The OCS AES device to use.
* @cipher: The Cipher to use (AES or SM4).
* @instruction: The instruction to perform (encrypt or decrypt).
* @dst_dma_list: The OCS DMA list mapping output memory.
* @src_dma_list: The OCS DMA list mapping input payload data.
* @src_size: The amount of data mapped by @src_dma_list.
* @iv: The input IV vector.
* @aad_dma_list: The OCS DMA list mapping input AAD data.
* @aad_size: The amount of data mapped by @aad_dma_list.
* @out_tag: Where to store computed tag.
* @tag_size: The size (in bytes) of @out_tag.
*
* Return: 0 on success, negative error code otherwise.
*/
int ocs_aes_gcm_op(struct ocs_aes_dev *aes_dev,
enum ocs_cipher cipher,
enum ocs_instruction instruction,
dma_addr_t dst_dma_list,
dma_addr_t src_dma_list,
u32 src_size,
const u8 *iv,
dma_addr_t aad_dma_list,
u32 aad_size,
u8 *out_tag,
u32 tag_size)
{
u64 bit_len;
u32 val;
int rc;
rc = ocs_aes_validate_inputs(src_dma_list, src_size, iv,
GCM_AES_IV_SIZE, aad_dma_list,
aad_size, out_tag, tag_size, cipher,
OCS_MODE_GCM, instruction,
dst_dma_list);
if (rc)
return rc;
ocs_aes_init(aes_dev, OCS_MODE_GCM, cipher, instruction);
/* Compute and write J0 to OCS HW. */
ocs_aes_gcm_write_j0(aes_dev, iv);
/* Write out_tag byte length */
iowrite32(tag_size, aes_dev->base_reg + AES_TLEN_OFFSET);
/* Write the byte length of the last plaintext / ciphertext block. */
ocs_aes_write_last_data_blk_len(aes_dev, src_size);
/* Write ciphertext bit length */
bit_len = src_size * 8;
val = bit_len & 0xFFFFFFFF;
iowrite32(val, aes_dev->base_reg + AES_MULTIPURPOSE2_0_OFFSET);
val = bit_len >> 32;
iowrite32(val, aes_dev->base_reg + AES_MULTIPURPOSE2_1_OFFSET);
/* Write aad bit length */
bit_len = aad_size * 8;
val = bit_len & 0xFFFFFFFF;
iowrite32(val, aes_dev->base_reg + AES_MULTIPURPOSE2_2_OFFSET);
val = bit_len >> 32;
iowrite32(val, aes_dev->base_reg + AES_MULTIPURPOSE2_3_OFFSET);
/* Set AES_ACTIVE.TRIGGER to start the operation. */
aes_a_op_trigger(aes_dev);
/* Process AAD. */
if (aad_size) {
/* If aad present, configure DMA to feed it to the engine. */
dma_to_ocs_aes_ll(aes_dev, aad_dma_list);
aes_a_dma_active_src_ll_en(aes_dev);
/* Instructs engine to pad last block of aad, if needed. */
aes_a_set_last_gcx_and_adata(aes_dev);
/* Wait for DMA transfer to complete. */
rc = ocs_aes_irq_enable_and_wait(aes_dev, AES_DMA_SRC_DONE_INT);
if (rc)
return rc;
} else {
aes_a_set_last_gcx_and_adata(aes_dev);
}
/* Wait until adata (if present) has been processed. */
aes_a_wait_last_gcx(aes_dev);
aes_a_dma_wait_input_buffer_occupancy(aes_dev);
/* Now process payload. */
if (src_size) {
/* Configure and activate DMA for both input and output data. */
dma_to_ocs_aes_ll(aes_dev, src_dma_list);
dma_from_ocs_aes_ll(aes_dev, dst_dma_list);
aes_a_dma_active_src_dst_ll_en(aes_dev);
} else {
aes_a_dma_set_xfer_size_zero(aes_dev);
aes_a_dma_active(aes_dev);
}
/* Instruct AES/SMA4 engine payload processing is over. */
aes_a_set_last_gcx(aes_dev);
/* Wait for OCS AES engine to complete processing. */
rc = ocs_aes_irq_enable_and_wait(aes_dev, AES_COMPLETE_INT);
if (rc)
return rc;
ocs_aes_gcm_read_tag(aes_dev, out_tag, tag_size);
return 0;
}
/* Write encrypted tag to AES/SM4 engine. */
static void ocs_aes_ccm_write_encrypted_tag(struct ocs_aes_dev *aes_dev,
const u8 *in_tag, u32 tag_size)
{
int i;
/* Ensure DMA input buffer is empty */
aes_a_dma_wait_input_buffer_occupancy(aes_dev);
/*
* During CCM decrypt, the OCS block needs to finish processing the
* ciphertext before the tag is written. So delay needed after DMA has
* completed writing the ciphertext
*/
aes_a_dma_reset_and_activate_perf_cntr(aes_dev);
aes_a_dma_wait_and_deactivate_perf_cntr(aes_dev,
CCM_DECRYPT_DELAY_TAG_CLK_COUNT);
/* Write encrypted tag to AES/SM4 engine. */
for (i = 0; i < tag_size; i++) {
iowrite8(in_tag[i], aes_dev->base_reg +
AES_A_DMA_INBUFFER_WRITE_FIFO_OFFSET);
}
}
/*
* Write B0 CCM block to OCS AES HW.
*
* Note: B0 format is documented in NIST Special Publication 800-38C
* https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-38c.pdf
* (see Section A.2.1)
*/
static int ocs_aes_ccm_write_b0(const struct ocs_aes_dev *aes_dev,
const u8 *iv, u32 adata_size, u32 tag_size,
u32 cryptlen)
{
u8 b0[16]; /* CCM B0 block is 16 bytes long. */
int i, q;
/* Initialize B0 to 0. */
memset(b0, 0, sizeof(b0));
/*
* B0[0] is the 'Flags Octet' and has the following structure:
* bit 7: Reserved
* bit 6: Adata flag
* bit 5-3: t value encoded as (t-2)/2
* bit 2-0: q value encoded as q - 1
*/
/* If there is AAD data, set the Adata flag. */
if (adata_size)
b0[0] |= BIT(6);
/*
* t denotes the octet length of T.
* t can only be an element of { 4, 6, 8, 10, 12, 14, 16} and is
* encoded as (t - 2) / 2
*/
b0[0] |= (((tag_size - 2) / 2) & 0x7) << 3;
/*
* q is the octet length of Q.
* q can only be an element of {2, 3, 4, 5, 6, 7, 8} and is encoded as
* q - 1 == iv[0]
*/
b0[0] |= iv[0] & 0x7;
/*
* Copy the Nonce N from IV to B0; N is located in iv[1]..iv[15 - q]
* and must be copied to b0[1]..b0[15-q].
* q == iv[0] + 1
*/
q = iv[0] + 1;
for (i = 1; i <= 15 - q; i++)
b0[i] = iv[i];
/*
* The rest of B0 must contain Q, i.e., the message length.
* Q is encoded in q octets, in big-endian order, so to write it, we
* start from the end of B0 and we move backward.
*/
i = sizeof(b0) - 1;
while (q) {
b0[i] = cryptlen & 0xff;
cryptlen >>= 8;
i--;
q--;
}
/*
* If cryptlen is not zero at this point, it means that its original
* value was too big.
*/
if (cryptlen)
return -EOVERFLOW;
/* Now write B0 to OCS AES input buffer. */
for (i = 0; i < sizeof(b0); i++)
iowrite8(b0[i], aes_dev->base_reg +
AES_A_DMA_INBUFFER_WRITE_FIFO_OFFSET);
return 0;
}
/*
* Write adata length to OCS AES HW.
*
* Note: adata len encoding is documented in NIST Special Publication 800-38C
* https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-38c.pdf
* (see Section A.2.2)
*/
static void ocs_aes_ccm_write_adata_len(const struct ocs_aes_dev *aes_dev,
u64 adata_len)
{
u8 enc_a[10]; /* Maximum encoded size: 10 octets. */
int i, len;
/*
* adata_len ('a') is encoded as follows:
* If 0 < a < 2^16 - 2^8 ==> 'a' encoded as [a]16, i.e., two octets
* (big endian).
* If 2^16 - 2^8 ≤ a < 2^32 ==> 'a' encoded as 0xff || 0xfe || [a]32,
* i.e., six octets (big endian).
* If 2^32 ≤ a < 2^64 ==> 'a' encoded as 0xff || 0xff || [a]64,
* i.e., ten octets (big endian).
*/
if (adata_len < 65280) {
len = 2;
*(__be16 *)enc_a = cpu_to_be16(adata_len);
} else if (adata_len <= 0xFFFFFFFF) {
len = 6;
*(__be16 *)enc_a = cpu_to_be16(0xfffe);
*(__be32 *)&enc_a[2] = cpu_to_be32(adata_len);
} else { /* adata_len >= 2^32 */
len = 10;
*(__be16 *)enc_a = cpu_to_be16(0xffff);
*(__be64 *)&enc_a[2] = cpu_to_be64(adata_len);
}
for (i = 0; i < len; i++)
iowrite8(enc_a[i],
aes_dev->base_reg +
AES_A_DMA_INBUFFER_WRITE_FIFO_OFFSET);
}
static int ocs_aes_ccm_do_adata(struct ocs_aes_dev *aes_dev,
dma_addr_t adata_dma_list, u32 adata_size)
{
int rc;
if (!adata_size) {
/* Since no aad the LAST_GCX bit can be set now */
aes_a_set_last_gcx_and_adata(aes_dev);
goto exit;
}
/* Adata case. */
/*
* Form the encoding of the Associated data length and write it
* to the AES/SM4 input buffer.
*/
ocs_aes_ccm_write_adata_len(aes_dev, adata_size);
/* Configure the AES/SM4 DMA to fetch the Associated Data */
dma_to_ocs_aes_ll(aes_dev, adata_dma_list);
/* Activate DMA to fetch Associated data. */
aes_a_dma_active_src_ll_en(aes_dev);
/* Set LAST_GCX and LAST_ADATA in AES ACTIVE register. */
aes_a_set_last_gcx_and_adata(aes_dev);
/* Wait for DMA transfer to complete. */
rc = ocs_aes_irq_enable_and_wait(aes_dev, AES_DMA_SRC_DONE_INT);
if (rc)
return rc;
exit:
/* Wait until adata (if present) has been processed. */
aes_a_wait_last_gcx(aes_dev);
aes_a_dma_wait_input_buffer_occupancy(aes_dev);
return 0;
}
static int ocs_aes_ccm_encrypt_do_payload(struct ocs_aes_dev *aes_dev,
dma_addr_t dst_dma_list,
dma_addr_t src_dma_list,
u32 src_size)
{
if (src_size) {
/*
* Configure and activate DMA for both input and output
* data.
*/
dma_to_ocs_aes_ll(aes_dev, src_dma_list);
dma_from_ocs_aes_ll(aes_dev, dst_dma_list);
aes_a_dma_active_src_dst_ll_en(aes_dev);
} else {
/* Configure and activate DMA for output data only. */
dma_from_ocs_aes_ll(aes_dev, dst_dma_list);
aes_a_dma_active_dst_ll_en(aes_dev);
}
/*
* Set the LAST GCX bit in AES_ACTIVE Register to instruct
* AES/SM4 engine to pad the last block of data.
*/
aes_a_set_last_gcx(aes_dev);
/* We are done, wait for IRQ and return. */
return ocs_aes_irq_enable_and_wait(aes_dev, AES_COMPLETE_INT);
}
static int ocs_aes_ccm_decrypt_do_payload(struct ocs_aes_dev *aes_dev,
dma_addr_t dst_dma_list,
dma_addr_t src_dma_list,
u32 src_size)
{
if (!src_size) {
/* Let engine process 0-length input. */
aes_a_dma_set_xfer_size_zero(aes_dev);
aes_a_dma_active(aes_dev);
aes_a_set_last_gcx(aes_dev);
return 0;
}
/*
* Configure and activate DMA for both input and output
* data.
*/
dma_to_ocs_aes_ll(aes_dev, src_dma_list);
dma_from_ocs_aes_ll(aes_dev, dst_dma_list);
aes_a_dma_active_src_dst_ll_en(aes_dev);
/*
* Set the LAST GCX bit in AES_ACTIVE Register; this allows the
* AES/SM4 engine to differentiate between encrypted data and
* encrypted MAC.
*/
aes_a_set_last_gcx(aes_dev);
/*
* Enable DMA DONE interrupt; once DMA transfer is over,
* interrupt handler will process the MAC/tag.
*/
return ocs_aes_irq_enable_and_wait(aes_dev, AES_DMA_SRC_DONE_INT);
}
/*
* Compare Tag to Yr.
*
* Only used at the end of CCM decrypt. If tag == yr, message authentication
* has succeeded.
*/
static inline int ccm_compare_tag_to_yr(struct ocs_aes_dev *aes_dev,
u8 tag_size_bytes)
{
u32 tag[AES_MAX_TAG_SIZE_U32];
u32 yr[AES_MAX_TAG_SIZE_U32];
u8 i;
/* Read Tag and Yr from AES registers. */
for (i = 0; i < AES_MAX_TAG_SIZE_U32; i++) {
tag[i] = ioread32(aes_dev->base_reg +
AES_T_MAC_0_OFFSET + (i * sizeof(u32)));
yr[i] = ioread32(aes_dev->base_reg +
AES_MULTIPURPOSE2_0_OFFSET +
(i * sizeof(u32)));
}
return memcmp(tag, yr, tag_size_bytes) ? -EBADMSG : 0;
}
/**
* ocs_aes_ccm_op() - Perform CCM operation.
* @aes_dev: The OCS AES device to use.
* @cipher: The Cipher to use (AES or SM4).
* @instruction: The instruction to perform (encrypt or decrypt).
* @dst_dma_list: The OCS DMA list mapping output memory.
* @src_dma_list: The OCS DMA list mapping input payload data.
* @src_size: The amount of data mapped by @src_dma_list.
* @iv: The input IV vector.
* @adata_dma_list: The OCS DMA list mapping input A-data.
* @adata_size: The amount of data mapped by @adata_dma_list.
* @in_tag: Input tag.
* @tag_size: The size (in bytes) of @in_tag.
*
* Note: for encrypt the tag is appended to the ciphertext (in the memory
* mapped by @dst_dma_list).
*
* Return: 0 on success, negative error code otherwise.
*/
int ocs_aes_ccm_op(struct ocs_aes_dev *aes_dev,
enum ocs_cipher cipher,
enum ocs_instruction instruction,
dma_addr_t dst_dma_list,
dma_addr_t src_dma_list,
u32 src_size,
u8 *iv,
dma_addr_t adata_dma_list,
u32 adata_size,
u8 *in_tag,
u32 tag_size)
{
u32 *iv_32;
u8 lprime;
int rc;
rc = ocs_aes_validate_inputs(src_dma_list, src_size, iv,
AES_BLOCK_SIZE, adata_dma_list, adata_size,
in_tag, tag_size, cipher, OCS_MODE_CCM,
instruction, dst_dma_list);
if (rc)
return rc;
ocs_aes_init(aes_dev, OCS_MODE_CCM, cipher, instruction);
/*
* Note: rfc 3610 and NIST 800-38C require counter of zero to encrypt
* auth tag so ensure this is the case
*/
lprime = iv[L_PRIME_IDX];
memset(&iv[COUNTER_START(lprime)], 0, COUNTER_LEN(lprime));
/*
* Nonce is already converted to ctr0 before being passed into this
* function as iv.
*/
iv_32 = (u32 *)iv;
iowrite32(__swab32(iv_32[0]),
aes_dev->base_reg + AES_MULTIPURPOSE1_3_OFFSET);
iowrite32(__swab32(iv_32[1]),
aes_dev->base_reg + AES_MULTIPURPOSE1_2_OFFSET);
iowrite32(__swab32(iv_32[2]),
aes_dev->base_reg + AES_MULTIPURPOSE1_1_OFFSET);
iowrite32(__swab32(iv_32[3]),
aes_dev->base_reg + AES_MULTIPURPOSE1_0_OFFSET);
/* Write MAC/tag length in register AES_TLEN */
iowrite32(tag_size, aes_dev->base_reg + AES_TLEN_OFFSET);
/*
* Write the byte length of the last AES/SM4 block of Payload data
* (without zero padding and without the length of the MAC) in register
* AES_PLEN.
*/
ocs_aes_write_last_data_blk_len(aes_dev, src_size);
/* Set AES_ACTIVE.TRIGGER to start the operation. */
aes_a_op_trigger(aes_dev);
aes_a_dma_reset_and_activate_perf_cntr(aes_dev);
/* Form block B0 and write it to the AES/SM4 input buffer. */
rc = ocs_aes_ccm_write_b0(aes_dev, iv, adata_size, tag_size, src_size);
if (rc)
return rc;
/*
* Ensure there has been at least CCM_DECRYPT_DELAY_LAST_GCX_CLK_COUNT
* clock cycles since TRIGGER bit was set
*/
aes_a_dma_wait_and_deactivate_perf_cntr(aes_dev,
CCM_DECRYPT_DELAY_LAST_GCX_CLK_COUNT);
/* Process Adata. */
ocs_aes_ccm_do_adata(aes_dev, adata_dma_list, adata_size);
/* For Encrypt case we just process the payload and return. */
if (instruction == OCS_ENCRYPT) {
return ocs_aes_ccm_encrypt_do_payload(aes_dev, dst_dma_list,
src_dma_list, src_size);
}
/* For Decypt we need to process the payload and then the tag. */
rc = ocs_aes_ccm_decrypt_do_payload(aes_dev, dst_dma_list,
src_dma_list, src_size);
if (rc)
return rc;
/* Process MAC/tag directly: feed tag to engine and wait for IRQ. */
ocs_aes_ccm_write_encrypted_tag(aes_dev, in_tag, tag_size);
rc = ocs_aes_irq_enable_and_wait(aes_dev, AES_COMPLETE_INT);
if (rc)
return rc;
return ccm_compare_tag_to_yr(aes_dev, tag_size);
}
/**
* ocs_create_linked_list_from_sg() - Create OCS DMA linked list from SG list.
* @aes_dev: The OCS AES device the list will be created for.
* @sg: The SG list OCS DMA linked list will be created from. When
* passed to this function, @sg must have been already mapped
* with dma_map_sg().
* @sg_dma_count: The number of DMA-mapped entries in @sg. This must be the
* value returned by dma_map_sg() when @sg was mapped.
* @dll_desc: The OCS DMA dma_list to use to store information about the
* created linked list.
* @data_size: The size of the data (from the SG list) to be mapped into the
* OCS DMA linked list.
* @data_offset: The offset (within the SG list) of the data to be mapped.
*
* Return: 0 on success, negative error code otherwise.
*/
int ocs_create_linked_list_from_sg(const struct ocs_aes_dev *aes_dev,
struct scatterlist *sg,
int sg_dma_count,
struct ocs_dll_desc *dll_desc,
size_t data_size, size_t data_offset)
{
struct ocs_dma_linked_list *ll = NULL;
struct scatterlist *sg_tmp;
unsigned int tmp;
int dma_nents;
int i;
if (!dll_desc || !sg || !aes_dev)
return -EINVAL;
/* Default values for when no ddl_desc is created. */
dll_desc->vaddr = NULL;
dll_desc->dma_addr = DMA_MAPPING_ERROR;
dll_desc->size = 0;
if (data_size == 0)
return 0;
/* Loop over sg_list until we reach entry at specified offset. */
while (data_offset >= sg_dma_len(sg)) {
data_offset -= sg_dma_len(sg);
sg_dma_count--;
sg = sg_next(sg);
/* If we reach the end of the list, offset was invalid. */
if (!sg || sg_dma_count == 0)
return -EINVAL;
}
/* Compute number of DMA-mapped SG entries to add into OCS DMA list. */
dma_nents = 0;
tmp = 0;
sg_tmp = sg;
while (tmp < data_offset + data_size) {
/* If we reach the end of the list, data_size was invalid. */
if (!sg_tmp)
return -EINVAL;
tmp += sg_dma_len(sg_tmp);
dma_nents++;
sg_tmp = sg_next(sg_tmp);
}
if (dma_nents > sg_dma_count)
return -EINVAL;
/* Allocate the DMA list, one entry for each SG entry. */
dll_desc->size = sizeof(struct ocs_dma_linked_list) * dma_nents;
dll_desc->vaddr = dma_alloc_coherent(aes_dev->dev, dll_desc->size,
&dll_desc->dma_addr, GFP_KERNEL);
if (!dll_desc->vaddr)
return -ENOMEM;
/* Populate DMA linked list entries. */
ll = dll_desc->vaddr;
for (i = 0; i < dma_nents; i++, sg = sg_next(sg)) {
ll[i].src_addr = sg_dma_address(sg) + data_offset;
ll[i].src_len = (sg_dma_len(sg) - data_offset) < data_size ?
(sg_dma_len(sg) - data_offset) : data_size;
data_offset = 0;
data_size -= ll[i].src_len;
/* Current element points to the DMA address of the next one. */
ll[i].next = dll_desc->dma_addr + (sizeof(*ll) * (i + 1));
ll[i].ll_flags = 0;
}
/* Terminate last element. */
ll[i - 1].next = 0;
ll[i - 1].ll_flags = OCS_LL_DMA_FLAG_TERMINATE;
return 0;
}
/* SPDX-License-Identifier: GPL-2.0-only */
/*
* Intel Keem Bay OCS AES Crypto Driver.
*
* Copyright (C) 2018-2020 Intel Corporation
*/
#ifndef _CRYPTO_OCS_AES_H
#define _CRYPTO_OCS_AES_H
#include <linux/dma-mapping.h>
enum ocs_cipher {
OCS_AES = 0,
OCS_SM4 = 1,
};
enum ocs_mode {
OCS_MODE_ECB = 0,
OCS_MODE_CBC = 1,
OCS_MODE_CTR = 2,
OCS_MODE_CCM = 6,
OCS_MODE_GCM = 7,
OCS_MODE_CTS = 9,
};
enum ocs_instruction {
OCS_ENCRYPT = 0,
OCS_DECRYPT = 1,
OCS_EXPAND = 2,
OCS_BYPASS = 3,
};
/**
* struct ocs_aes_dev - AES device context.
* @list: List head for insertion into device list hold
* by driver.
* @dev: OCS AES device.
* @irq: IRQ number.
* @base_reg: IO base address of OCS AES.
* @irq_copy_completion: Completion to indicate IRQ has been triggered.
* @dma_err_mask: Error reported by OCS DMA interrupts.
* @engine: Crypto engine for the device.
*/
struct ocs_aes_dev {
struct list_head list;
struct device *dev;
int irq;
void __iomem *base_reg;
struct completion irq_completion;
u32 dma_err_mask;
struct crypto_engine *engine;
};
/**
* struct ocs_dll_desc - Descriptor of an OCS DMA Linked List.
* @vaddr: Virtual address of the linked list head.
* @dma_addr: DMA address of the linked list head.
* @size: Size (in bytes) of the linked list.
*/
struct ocs_dll_desc {
void *vaddr;
dma_addr_t dma_addr;
size_t size;
};
int ocs_aes_set_key(struct ocs_aes_dev *aes_dev, const u32 key_size,
const u8 *key, const enum ocs_cipher cipher);
int ocs_aes_op(struct ocs_aes_dev *aes_dev,
enum ocs_mode mode,
enum ocs_cipher cipher,
enum ocs_instruction instruction,
dma_addr_t dst_dma_list,
dma_addr_t src_dma_list,
u32 src_size,
u8 *iv,
u32 iv_size);
/**
* ocs_aes_bypass_op() - Use OCS DMA to copy data.
* @aes_dev: The OCS AES device to use.
* @dst_dma_list: The OCS DMA list mapping the memory where input data
* will be copied to.
* @src_dma_list: The OCS DMA list mapping input data.
* @src_size: The amount of data to copy.
*/
static inline int ocs_aes_bypass_op(struct ocs_aes_dev *aes_dev,
dma_addr_t dst_dma_list,
dma_addr_t src_dma_list, u32 src_size)
{
return ocs_aes_op(aes_dev, OCS_MODE_ECB, OCS_AES, OCS_BYPASS,
dst_dma_list, src_dma_list, src_size, NULL, 0);
}
int ocs_aes_gcm_op(struct ocs_aes_dev *aes_dev,
enum ocs_cipher cipher,
enum ocs_instruction instruction,
dma_addr_t dst_dma_list,
dma_addr_t src_dma_list,
u32 src_size,
const u8 *iv,
dma_addr_t aad_dma_list,
u32 aad_size,
u8 *out_tag,
u32 tag_size);
int ocs_aes_ccm_op(struct ocs_aes_dev *aes_dev,
enum ocs_cipher cipher,
enum ocs_instruction instruction,
dma_addr_t dst_dma_list,
dma_addr_t src_dma_list,
u32 src_size,
u8 *iv,
dma_addr_t adata_dma_list,
u32 adata_size,
u8 *in_tag,
u32 tag_size);
int ocs_create_linked_list_from_sg(const struct ocs_aes_dev *aes_dev,
struct scatterlist *sg,
int sg_dma_count,
struct ocs_dll_desc *dll_desc,
size_t data_size,
size_t data_offset);
irqreturn_t ocs_aes_irq_handler(int irq, void *dev_id);
#endif
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment