Commit 8b7d3ec8 authored by Marek Szyprowski's avatar Marek Szyprowski Committed by Inki Dae

drm/exynos: gsc: Convert driver to IPP v2 core API

This patch adapts Exynos DRM GScaler driver to new IPP v2 core API.
The side effect of this conversion is a switch to driver component API
to register properly in the Exynos DRM core. During the conversion
driver has been adapted to support more specific compatible strings
to distinguish between Exynos5250 and Exynos5420 (different hardware
limits). Support for Exynos5433 variant has been added too
(different limits table, removed dependency on ARCH_EXYNOS5).
Signed-off-by: default avatarMarek Szyprowski <m.szyprowski@samsung.com>
Tested-by: default avatarHoegeun Kwon <hoegeun.kwon@samsung.com>
Signed-off-by: default avatarInki Dae <inki.dae@samsung.com>
parent d8cb9eea
...@@ -112,7 +112,8 @@ config DRM_EXYNOS_ROTATOR ...@@ -112,7 +112,8 @@ config DRM_EXYNOS_ROTATOR
config DRM_EXYNOS_GSC config DRM_EXYNOS_GSC
bool "GScaler" bool "GScaler"
depends on BROKEN && ARCH_EXYNOS5 && VIDEO_SAMSUNG_EXYNOS_GSC=n depends on VIDEO_SAMSUNG_EXYNOS_GSC=n
select DRM_EXYNOS_IPP
help help
Choose this option if you want to use Exynos GSC for DRM. Choose this option if you want to use Exynos GSC for DRM.
......
...@@ -266,6 +266,7 @@ static struct exynos_drm_driver_info exynos_drm_drivers[] = { ...@@ -266,6 +266,7 @@ static struct exynos_drm_driver_info exynos_drm_drivers[] = {
DRM_COMPONENT_DRIVER DRM_COMPONENT_DRIVER
}, { }, {
DRV_PTR(gsc_driver, CONFIG_DRM_EXYNOS_GSC), DRV_PTR(gsc_driver, CONFIG_DRM_EXYNOS_GSC),
DRM_COMPONENT_DRIVER
}, { }, {
&exynos_drm_platform_driver, &exynos_drm_platform_driver,
DRM_VIRTUAL_DEVICE DRM_VIRTUAL_DEVICE
......
...@@ -12,18 +12,20 @@ ...@@ -12,18 +12,20 @@
* *
*/ */
#include <linux/kernel.h> #include <linux/kernel.h>
#include <linux/component.h>
#include <linux/platform_device.h> #include <linux/platform_device.h>
#include <linux/clk.h> #include <linux/clk.h>
#include <linux/pm_runtime.h> #include <linux/pm_runtime.h>
#include <linux/mfd/syscon.h> #include <linux/mfd/syscon.h>
#include <linux/of_device.h>
#include <linux/regmap.h> #include <linux/regmap.h>
#include <drm/drmP.h> #include <drm/drmP.h>
#include <drm/exynos_drm.h> #include <drm/exynos_drm.h>
#include "regs-gsc.h" #include "regs-gsc.h"
#include "exynos_drm_drv.h" #include "exynos_drm_drv.h"
#include "exynos_drm_iommu.h"
#include "exynos_drm_ipp.h" #include "exynos_drm_ipp.h"
#include "exynos_drm_gsc.h"
/* /*
* GSC stands for General SCaler and * GSC stands for General SCaler and
...@@ -31,26 +33,10 @@ ...@@ -31,26 +33,10 @@
* input DMA reads image data from the memory. * input DMA reads image data from the memory.
* output DMA writes image data to memory. * output DMA writes image data to memory.
* GSC supports image rotation and image effect functions. * GSC supports image rotation and image effect functions.
*
* M2M operation : supports crop/scale/rotation/csc so on.
* Memory ----> GSC H/W ----> Memory.
* Writeback operation : supports cloned screen with FIMD.
* FIMD ----> GSC H/W ----> Memory.
* Output operation : supports direct display using local path.
* Memory ----> GSC H/W ----> FIMD, Mixer.
*/ */
/*
* TODO
* 1. check suspend/resume api if needed.
* 2. need to check use case platform_device_id.
* 3. check src/dst size with, height.
* 4. added check_prepare api for right register.
* 5. need to add supported list in prop_list.
* 6. check prescaler/scaler optimization.
*/
#define GSC_MAX_DEVS 4 #define GSC_MAX_CLOCKS 8
#define GSC_MAX_SRC 4 #define GSC_MAX_SRC 4
#define GSC_MAX_DST 16 #define GSC_MAX_DST 16
#define GSC_RESET_TIMEOUT 50 #define GSC_RESET_TIMEOUT 50
...@@ -65,8 +51,6 @@ ...@@ -65,8 +51,6 @@
#define GSC_SC_DOWN_RATIO_4_8 131072 #define GSC_SC_DOWN_RATIO_4_8 131072
#define GSC_SC_DOWN_RATIO_3_8 174762 #define GSC_SC_DOWN_RATIO_3_8 174762
#define GSC_SC_DOWN_RATIO_2_8 262144 #define GSC_SC_DOWN_RATIO_2_8 262144
#define GSC_REFRESH_MIN 12
#define GSC_REFRESH_MAX 60
#define GSC_CROP_MAX 8192 #define GSC_CROP_MAX 8192
#define GSC_CROP_MIN 32 #define GSC_CROP_MIN 32
#define GSC_SCALE_MAX 4224 #define GSC_SCALE_MAX 4224
...@@ -77,10 +61,9 @@ ...@@ -77,10 +61,9 @@
#define GSC_COEF_H_8T 8 #define GSC_COEF_H_8T 8
#define GSC_COEF_V_4T 4 #define GSC_COEF_V_4T 4
#define GSC_COEF_DEPTH 3 #define GSC_COEF_DEPTH 3
#define GSC_AUTOSUSPEND_DELAY 2000
#define get_gsc_context(dev) platform_get_drvdata(to_platform_device(dev)) #define get_gsc_context(dev) platform_get_drvdata(to_platform_device(dev))
#define get_ctx_from_ippdrv(ippdrv) container_of(ippdrv,\
struct gsc_context, ippdrv);
#define gsc_read(offset) readl(ctx->regs + (offset)) #define gsc_read(offset) readl(ctx->regs + (offset))
#define gsc_write(cfg, offset) writel(cfg, ctx->regs + (offset)) #define gsc_write(cfg, offset) writel(cfg, ctx->regs + (offset))
...@@ -103,51 +86,48 @@ struct gsc_scaler { ...@@ -103,51 +86,48 @@ struct gsc_scaler {
unsigned long main_vratio; unsigned long main_vratio;
}; };
/*
* A structure of scaler capability.
*
* find user manual 49.2 features.
* @tile_w: tile mode or rotation width.
* @tile_h: tile mode or rotation height.
* @w: other cases width.
* @h: other cases height.
*/
struct gsc_capability {
/* tile or rotation */
u32 tile_w;
u32 tile_h;
/* other cases */
u32 w;
u32 h;
};
/* /*
* A structure of gsc context. * A structure of gsc context.
* *
* @ippdrv: prepare initialization using ippdrv.
* @regs_res: register resources. * @regs_res: register resources.
* @regs: memory mapped io registers. * @regs: memory mapped io registers.
* @sysreg: handle to SYSREG block regmap.
* @lock: locking of operations.
* @gsc_clk: gsc gate clock. * @gsc_clk: gsc gate clock.
* @sc: scaler infomations. * @sc: scaler infomations.
* @id: gsc id. * @id: gsc id.
* @irq: irq number. * @irq: irq number.
* @rotation: supports rotation of src. * @rotation: supports rotation of src.
* @suspended: qos operations.
*/ */
struct gsc_context { struct gsc_context {
struct exynos_drm_ippdrv ippdrv; struct exynos_drm_ipp ipp;
struct drm_device *drm_dev;
struct device *dev;
struct exynos_drm_ipp_task *task;
struct exynos_drm_ipp_formats *formats;
unsigned int num_formats;
struct resource *regs_res; struct resource *regs_res;
void __iomem *regs; void __iomem *regs;
struct regmap *sysreg; const char **clk_names;
struct mutex lock; struct clk *clocks[GSC_MAX_CLOCKS];
struct clk *gsc_clk; int num_clocks;
struct gsc_scaler sc; struct gsc_scaler sc;
int id; int id;
int irq; int irq;
bool rotation; bool rotation;
bool suspended; };
/**
* struct gsc_driverdata - per device type driver data for init time.
*
* @limits: picture size limits array
* @clk_names: names of clocks needed by this variant
* @num_clocks: the number of clocks needed by this variant
*/
struct gsc_driverdata {
const struct drm_exynos_ipp_limit *limits;
int num_limits;
const char *clk_names[GSC_MAX_CLOCKS];
int num_clocks;
}; };
/* 8-tap Filter Coefficient */ /* 8-tap Filter Coefficient */
...@@ -438,25 +418,6 @@ static int gsc_sw_reset(struct gsc_context *ctx) ...@@ -438,25 +418,6 @@ static int gsc_sw_reset(struct gsc_context *ctx)
return 0; return 0;
} }
static void gsc_set_gscblk_fimd_wb(struct gsc_context *ctx, bool enable)
{
unsigned int gscblk_cfg;
if (!ctx->sysreg)
return;
regmap_read(ctx->sysreg, SYSREG_GSCBLK_CFG1, &gscblk_cfg);
if (enable)
gscblk_cfg |= GSC_BLK_DISP1WB_DEST(ctx->id) |
GSC_BLK_GSCL_WB_IN_SRC_SEL(ctx->id) |
GSC_BLK_SW_RESET_WB_DEST(ctx->id);
else
gscblk_cfg |= GSC_BLK_PXLASYNC_LO_MASK_WB(ctx->id);
regmap_write(ctx->sysreg, SYSREG_GSCBLK_CFG1, gscblk_cfg);
}
static void gsc_handle_irq(struct gsc_context *ctx, bool enable, static void gsc_handle_irq(struct gsc_context *ctx, bool enable,
bool overflow, bool done) bool overflow, bool done)
{ {
...@@ -487,10 +448,8 @@ static void gsc_handle_irq(struct gsc_context *ctx, bool enable, ...@@ -487,10 +448,8 @@ static void gsc_handle_irq(struct gsc_context *ctx, bool enable,
} }
static int gsc_src_set_fmt(struct device *dev, u32 fmt) static void gsc_src_set_fmt(struct gsc_context *ctx, u32 fmt)
{ {
struct gsc_context *ctx = get_gsc_context(dev);
struct exynos_drm_ippdrv *ippdrv = &ctx->ippdrv;
u32 cfg; u32 cfg;
DRM_DEBUG_KMS("fmt[0x%x]\n", fmt); DRM_DEBUG_KMS("fmt[0x%x]\n", fmt);
...@@ -506,6 +465,7 @@ static int gsc_src_set_fmt(struct device *dev, u32 fmt) ...@@ -506,6 +465,7 @@ static int gsc_src_set_fmt(struct device *dev, u32 fmt)
cfg |= GSC_IN_RGB565; cfg |= GSC_IN_RGB565;
break; break;
case DRM_FORMAT_XRGB8888: case DRM_FORMAT_XRGB8888:
case DRM_FORMAT_ARGB8888:
cfg |= GSC_IN_XRGB8888; cfg |= GSC_IN_XRGB8888;
break; break;
case DRM_FORMAT_BGRX8888: case DRM_FORMAT_BGRX8888:
...@@ -548,115 +508,84 @@ static int gsc_src_set_fmt(struct device *dev, u32 fmt) ...@@ -548,115 +508,84 @@ static int gsc_src_set_fmt(struct device *dev, u32 fmt)
cfg |= (GSC_IN_CHROMA_ORDER_CBCR | cfg |= (GSC_IN_CHROMA_ORDER_CBCR |
GSC_IN_YUV420_2P); GSC_IN_YUV420_2P);
break; break;
default:
dev_err(ippdrv->dev, "invalid target yuv order 0x%x.\n", fmt);
return -EINVAL;
} }
gsc_write(cfg, GSC_IN_CON); gsc_write(cfg, GSC_IN_CON);
return 0;
} }
static int gsc_src_set_transf(struct device *dev, static void gsc_src_set_transf(struct gsc_context *ctx, unsigned int rotation)
enum drm_exynos_degree degree,
enum drm_exynos_flip flip, bool *swap)
{ {
struct gsc_context *ctx = get_gsc_context(dev); unsigned int degree = rotation & DRM_MODE_ROTATE_MASK;
struct exynos_drm_ippdrv *ippdrv = &ctx->ippdrv;
u32 cfg; u32 cfg;
DRM_DEBUG_KMS("degree[%d]flip[0x%x]\n", degree, flip);
cfg = gsc_read(GSC_IN_CON); cfg = gsc_read(GSC_IN_CON);
cfg &= ~GSC_IN_ROT_MASK; cfg &= ~GSC_IN_ROT_MASK;
switch (degree) { switch (degree) {
case EXYNOS_DRM_DEGREE_0: case DRM_MODE_ROTATE_0:
if (flip & EXYNOS_DRM_FLIP_VERTICAL) if (rotation & DRM_MODE_REFLECT_Y)
cfg |= GSC_IN_ROT_XFLIP; cfg |= GSC_IN_ROT_XFLIP;
if (flip & EXYNOS_DRM_FLIP_HORIZONTAL) if (rotation & DRM_MODE_REFLECT_X)
cfg |= GSC_IN_ROT_YFLIP; cfg |= GSC_IN_ROT_YFLIP;
break; break;
case EXYNOS_DRM_DEGREE_90: case DRM_MODE_ROTATE_90:
if (flip & EXYNOS_DRM_FLIP_VERTICAL) cfg |= GSC_IN_ROT_90;
cfg |= GSC_IN_ROT_90_XFLIP; if (rotation & DRM_MODE_REFLECT_Y)
else if (flip & EXYNOS_DRM_FLIP_HORIZONTAL) cfg |= GSC_IN_ROT_XFLIP;
cfg |= GSC_IN_ROT_90_YFLIP; if (rotation & DRM_MODE_REFLECT_X)
else cfg |= GSC_IN_ROT_YFLIP;
cfg |= GSC_IN_ROT_90;
break; break;
case EXYNOS_DRM_DEGREE_180: case DRM_MODE_ROTATE_180:
cfg |= GSC_IN_ROT_180; cfg |= GSC_IN_ROT_180;
if (flip & EXYNOS_DRM_FLIP_VERTICAL) if (rotation & DRM_MODE_REFLECT_Y)
cfg &= ~GSC_IN_ROT_XFLIP; cfg &= ~GSC_IN_ROT_XFLIP;
if (flip & EXYNOS_DRM_FLIP_HORIZONTAL) if (rotation & DRM_MODE_REFLECT_X)
cfg &= ~GSC_IN_ROT_YFLIP; cfg &= ~GSC_IN_ROT_YFLIP;
break; break;
case EXYNOS_DRM_DEGREE_270: case DRM_MODE_ROTATE_270:
cfg |= GSC_IN_ROT_270; cfg |= GSC_IN_ROT_270;
if (flip & EXYNOS_DRM_FLIP_VERTICAL) if (rotation & DRM_MODE_REFLECT_Y)
cfg &= ~GSC_IN_ROT_XFLIP; cfg &= ~GSC_IN_ROT_XFLIP;
if (flip & EXYNOS_DRM_FLIP_HORIZONTAL) if (rotation & DRM_MODE_REFLECT_X)
cfg &= ~GSC_IN_ROT_YFLIP; cfg &= ~GSC_IN_ROT_YFLIP;
break; break;
default:
dev_err(ippdrv->dev, "invalid degree value %d.\n", degree);
return -EINVAL;
} }
gsc_write(cfg, GSC_IN_CON); gsc_write(cfg, GSC_IN_CON);
ctx->rotation = (cfg & GSC_IN_ROT_90) ? 1 : 0; ctx->rotation = (cfg & GSC_IN_ROT_90) ? 1 : 0;
*swap = ctx->rotation;
return 0;
} }
static int gsc_src_set_size(struct device *dev, int swap, static void gsc_src_set_size(struct gsc_context *ctx,
struct drm_exynos_pos *pos, struct drm_exynos_sz *sz) struct exynos_drm_ipp_buffer *buf)
{ {
struct gsc_context *ctx = get_gsc_context(dev);
struct drm_exynos_pos img_pos = *pos;
struct gsc_scaler *sc = &ctx->sc; struct gsc_scaler *sc = &ctx->sc;
u32 cfg; u32 cfg;
DRM_DEBUG_KMS("swap[%d]x[%d]y[%d]w[%d]h[%d]\n",
swap, pos->x, pos->y, pos->w, pos->h);
if (swap) {
img_pos.w = pos->h;
img_pos.h = pos->w;
}
/* pixel offset */ /* pixel offset */
cfg = (GSC_SRCIMG_OFFSET_X(img_pos.x) | cfg = (GSC_SRCIMG_OFFSET_X(buf->rect.x) |
GSC_SRCIMG_OFFSET_Y(img_pos.y)); GSC_SRCIMG_OFFSET_Y(buf->rect.y));
gsc_write(cfg, GSC_SRCIMG_OFFSET); gsc_write(cfg, GSC_SRCIMG_OFFSET);
/* cropped size */ /* cropped size */
cfg = (GSC_CROPPED_WIDTH(img_pos.w) | cfg = (GSC_CROPPED_WIDTH(buf->rect.w) |
GSC_CROPPED_HEIGHT(img_pos.h)); GSC_CROPPED_HEIGHT(buf->rect.h));
gsc_write(cfg, GSC_CROPPED_SIZE); gsc_write(cfg, GSC_CROPPED_SIZE);
DRM_DEBUG_KMS("hsize[%d]vsize[%d]\n", sz->hsize, sz->vsize);
/* original size */ /* original size */
cfg = gsc_read(GSC_SRCIMG_SIZE); cfg = gsc_read(GSC_SRCIMG_SIZE);
cfg &= ~(GSC_SRCIMG_HEIGHT_MASK | cfg &= ~(GSC_SRCIMG_HEIGHT_MASK |
GSC_SRCIMG_WIDTH_MASK); GSC_SRCIMG_WIDTH_MASK);
cfg |= (GSC_SRCIMG_WIDTH(sz->hsize) | cfg |= (GSC_SRCIMG_WIDTH(buf->buf.width) |
GSC_SRCIMG_HEIGHT(sz->vsize)); GSC_SRCIMG_HEIGHT(buf->buf.height));
gsc_write(cfg, GSC_SRCIMG_SIZE); gsc_write(cfg, GSC_SRCIMG_SIZE);
cfg = gsc_read(GSC_IN_CON); cfg = gsc_read(GSC_IN_CON);
cfg &= ~GSC_IN_RGB_TYPE_MASK; cfg &= ~GSC_IN_RGB_TYPE_MASK;
DRM_DEBUG_KMS("width[%d]range[%d]\n", pos->w, sc->range); if (buf->rect.w >= GSC_WIDTH_ITU_709)
if (pos->w >= GSC_WIDTH_ITU_709)
if (sc->range) if (sc->range)
cfg |= GSC_IN_RGB_HD_WIDE; cfg |= GSC_IN_RGB_HD_WIDE;
else else
...@@ -668,103 +597,39 @@ static int gsc_src_set_size(struct device *dev, int swap, ...@@ -668,103 +597,39 @@ static int gsc_src_set_size(struct device *dev, int swap,
cfg |= GSC_IN_RGB_SD_NARROW; cfg |= GSC_IN_RGB_SD_NARROW;
gsc_write(cfg, GSC_IN_CON); gsc_write(cfg, GSC_IN_CON);
return 0;
} }
static int gsc_src_set_buf_seq(struct gsc_context *ctx, u32 buf_id, static void gsc_src_set_buf_seq(struct gsc_context *ctx, u32 buf_id,
enum drm_exynos_ipp_buf_type buf_type) bool enqueue)
{ {
struct exynos_drm_ippdrv *ippdrv = &ctx->ippdrv; bool masked = !enqueue;
bool masked;
u32 cfg; u32 cfg;
u32 mask = 0x00000001 << buf_id; u32 mask = 0x00000001 << buf_id;
DRM_DEBUG_KMS("buf_id[%d]buf_type[%d]\n", buf_id, buf_type);
/* mask register set */ /* mask register set */
cfg = gsc_read(GSC_IN_BASE_ADDR_Y_MASK); cfg = gsc_read(GSC_IN_BASE_ADDR_Y_MASK);
switch (buf_type) {
case IPP_BUF_ENQUEUE:
masked = false;
break;
case IPP_BUF_DEQUEUE:
masked = true;
break;
default:
dev_err(ippdrv->dev, "invalid buf ctrl parameter.\n");
return -EINVAL;
}
/* sequence id */ /* sequence id */
cfg &= ~mask; cfg &= ~mask;
cfg |= masked << buf_id; cfg |= masked << buf_id;
gsc_write(cfg, GSC_IN_BASE_ADDR_Y_MASK); gsc_write(cfg, GSC_IN_BASE_ADDR_Y_MASK);
gsc_write(cfg, GSC_IN_BASE_ADDR_CB_MASK); gsc_write(cfg, GSC_IN_BASE_ADDR_CB_MASK);
gsc_write(cfg, GSC_IN_BASE_ADDR_CR_MASK); gsc_write(cfg, GSC_IN_BASE_ADDR_CR_MASK);
return 0;
} }
static int gsc_src_set_addr(struct device *dev, static void gsc_src_set_addr(struct gsc_context *ctx, u32 buf_id,
struct drm_exynos_ipp_buf_info *buf_info, u32 buf_id, struct exynos_drm_ipp_buffer *buf)
enum drm_exynos_ipp_buf_type buf_type)
{ {
struct gsc_context *ctx = get_gsc_context(dev);
struct exynos_drm_ippdrv *ippdrv = &ctx->ippdrv;
struct drm_exynos_ipp_cmd_node *c_node = ippdrv->c_node;
struct drm_exynos_ipp_property *property;
if (!c_node) {
DRM_ERROR("failed to get c_node.\n");
return -EFAULT;
}
property = &c_node->property;
DRM_DEBUG_KMS("prop_id[%d]buf_id[%d]buf_type[%d]\n",
property->prop_id, buf_id, buf_type);
if (buf_id > GSC_MAX_SRC) {
dev_info(ippdrv->dev, "invalid buf_id %d.\n", buf_id);
return -EINVAL;
}
/* address register set */ /* address register set */
switch (buf_type) { gsc_write(buf->dma_addr[0], GSC_IN_BASE_ADDR_Y(buf_id));
case IPP_BUF_ENQUEUE: gsc_write(buf->dma_addr[1], GSC_IN_BASE_ADDR_CB(buf_id));
gsc_write(buf_info->base[EXYNOS_DRM_PLANAR_Y], gsc_write(buf->dma_addr[2], GSC_IN_BASE_ADDR_CR(buf_id));
GSC_IN_BASE_ADDR_Y(buf_id));
gsc_write(buf_info->base[EXYNOS_DRM_PLANAR_CB],
GSC_IN_BASE_ADDR_CB(buf_id));
gsc_write(buf_info->base[EXYNOS_DRM_PLANAR_CR],
GSC_IN_BASE_ADDR_CR(buf_id));
break;
case IPP_BUF_DEQUEUE:
gsc_write(0x0, GSC_IN_BASE_ADDR_Y(buf_id));
gsc_write(0x0, GSC_IN_BASE_ADDR_CB(buf_id));
gsc_write(0x0, GSC_IN_BASE_ADDR_CR(buf_id));
break;
default:
/* bypass */
break;
}
return gsc_src_set_buf_seq(ctx, buf_id, buf_type); gsc_src_set_buf_seq(ctx, buf_id, true);
} }
static struct exynos_drm_ipp_ops gsc_src_ops = { static void gsc_dst_set_fmt(struct gsc_context *ctx, u32 fmt)
.set_fmt = gsc_src_set_fmt,
.set_transf = gsc_src_set_transf,
.set_size = gsc_src_set_size,
.set_addr = gsc_src_set_addr,
};
static int gsc_dst_set_fmt(struct device *dev, u32 fmt)
{ {
struct gsc_context *ctx = get_gsc_context(dev);
struct exynos_drm_ippdrv *ippdrv = &ctx->ippdrv;
u32 cfg; u32 cfg;
DRM_DEBUG_KMS("fmt[0x%x]\n", fmt); DRM_DEBUG_KMS("fmt[0x%x]\n", fmt);
...@@ -779,8 +644,9 @@ static int gsc_dst_set_fmt(struct device *dev, u32 fmt) ...@@ -779,8 +644,9 @@ static int gsc_dst_set_fmt(struct device *dev, u32 fmt)
case DRM_FORMAT_RGB565: case DRM_FORMAT_RGB565:
cfg |= GSC_OUT_RGB565; cfg |= GSC_OUT_RGB565;
break; break;
case DRM_FORMAT_ARGB8888:
case DRM_FORMAT_XRGB8888: case DRM_FORMAT_XRGB8888:
cfg |= GSC_OUT_XRGB8888; cfg |= (GSC_OUT_XRGB8888 | GSC_OUT_GLOBAL_ALPHA(0xff));
break; break;
case DRM_FORMAT_BGRX8888: case DRM_FORMAT_BGRX8888:
cfg |= (GSC_OUT_XRGB8888 | GSC_OUT_RB_SWAP); cfg |= (GSC_OUT_XRGB8888 | GSC_OUT_RB_SWAP);
...@@ -819,69 +685,9 @@ static int gsc_dst_set_fmt(struct device *dev, u32 fmt) ...@@ -819,69 +685,9 @@ static int gsc_dst_set_fmt(struct device *dev, u32 fmt)
cfg |= (GSC_OUT_CHROMA_ORDER_CBCR | cfg |= (GSC_OUT_CHROMA_ORDER_CBCR |
GSC_OUT_YUV420_2P); GSC_OUT_YUV420_2P);
break; break;
default:
dev_err(ippdrv->dev, "invalid target yuv order 0x%x.\n", fmt);
return -EINVAL;
} }
gsc_write(cfg, GSC_OUT_CON); gsc_write(cfg, GSC_OUT_CON);
return 0;
}
static int gsc_dst_set_transf(struct device *dev,
enum drm_exynos_degree degree,
enum drm_exynos_flip flip, bool *swap)
{
struct gsc_context *ctx = get_gsc_context(dev);
struct exynos_drm_ippdrv *ippdrv = &ctx->ippdrv;
u32 cfg;
DRM_DEBUG_KMS("degree[%d]flip[0x%x]\n", degree, flip);
cfg = gsc_read(GSC_IN_CON);
cfg &= ~GSC_IN_ROT_MASK;
switch (degree) {
case EXYNOS_DRM_DEGREE_0:
if (flip & EXYNOS_DRM_FLIP_VERTICAL)
cfg |= GSC_IN_ROT_XFLIP;
if (flip & EXYNOS_DRM_FLIP_HORIZONTAL)
cfg |= GSC_IN_ROT_YFLIP;
break;
case EXYNOS_DRM_DEGREE_90:
if (flip & EXYNOS_DRM_FLIP_VERTICAL)
cfg |= GSC_IN_ROT_90_XFLIP;
else if (flip & EXYNOS_DRM_FLIP_HORIZONTAL)
cfg |= GSC_IN_ROT_90_YFLIP;
else
cfg |= GSC_IN_ROT_90;
break;
case EXYNOS_DRM_DEGREE_180:
cfg |= GSC_IN_ROT_180;
if (flip & EXYNOS_DRM_FLIP_VERTICAL)
cfg &= ~GSC_IN_ROT_XFLIP;
if (flip & EXYNOS_DRM_FLIP_HORIZONTAL)
cfg &= ~GSC_IN_ROT_YFLIP;
break;
case EXYNOS_DRM_DEGREE_270:
cfg |= GSC_IN_ROT_270;
if (flip & EXYNOS_DRM_FLIP_VERTICAL)
cfg &= ~GSC_IN_ROT_XFLIP;
if (flip & EXYNOS_DRM_FLIP_HORIZONTAL)
cfg &= ~GSC_IN_ROT_YFLIP;
break;
default:
dev_err(ippdrv->dev, "invalid degree value %d.\n", degree);
return -EINVAL;
}
gsc_write(cfg, GSC_IN_CON);
ctx->rotation = (cfg & GSC_IN_ROT_90) ? 1 : 0;
*swap = ctx->rotation;
return 0;
} }
static int gsc_get_ratio_shift(u32 src, u32 dst, u32 *ratio) static int gsc_get_ratio_shift(u32 src, u32 dst, u32 *ratio)
...@@ -919,9 +725,9 @@ static void gsc_get_prescaler_shfactor(u32 hratio, u32 vratio, u32 *shfactor) ...@@ -919,9 +725,9 @@ static void gsc_get_prescaler_shfactor(u32 hratio, u32 vratio, u32 *shfactor)
} }
static int gsc_set_prescaler(struct gsc_context *ctx, struct gsc_scaler *sc, static int gsc_set_prescaler(struct gsc_context *ctx, struct gsc_scaler *sc,
struct drm_exynos_pos *src, struct drm_exynos_pos *dst) struct drm_exynos_ipp_task_rect *src,
struct drm_exynos_ipp_task_rect *dst)
{ {
struct exynos_drm_ippdrv *ippdrv = &ctx->ippdrv;
u32 cfg; u32 cfg;
u32 src_w, src_h, dst_w, dst_h; u32 src_w, src_h, dst_w, dst_h;
int ret = 0; int ret = 0;
...@@ -939,13 +745,13 @@ static int gsc_set_prescaler(struct gsc_context *ctx, struct gsc_scaler *sc, ...@@ -939,13 +745,13 @@ static int gsc_set_prescaler(struct gsc_context *ctx, struct gsc_scaler *sc,
ret = gsc_get_ratio_shift(src_w, dst_w, &sc->pre_hratio); ret = gsc_get_ratio_shift(src_w, dst_w, &sc->pre_hratio);
if (ret) { if (ret) {
dev_err(ippdrv->dev, "failed to get ratio horizontal.\n"); dev_err(ctx->dev, "failed to get ratio horizontal.\n");
return ret; return ret;
} }
ret = gsc_get_ratio_shift(src_h, dst_h, &sc->pre_vratio); ret = gsc_get_ratio_shift(src_h, dst_h, &sc->pre_vratio);
if (ret) { if (ret) {
dev_err(ippdrv->dev, "failed to get ratio vertical.\n"); dev_err(ctx->dev, "failed to get ratio vertical.\n");
return ret; return ret;
} }
...@@ -1039,47 +845,37 @@ static void gsc_set_scaler(struct gsc_context *ctx, struct gsc_scaler *sc) ...@@ -1039,47 +845,37 @@ static void gsc_set_scaler(struct gsc_context *ctx, struct gsc_scaler *sc)
gsc_write(cfg, GSC_MAIN_V_RATIO); gsc_write(cfg, GSC_MAIN_V_RATIO);
} }
static int gsc_dst_set_size(struct device *dev, int swap, static void gsc_dst_set_size(struct gsc_context *ctx,
struct drm_exynos_pos *pos, struct drm_exynos_sz *sz) struct exynos_drm_ipp_buffer *buf)
{ {
struct gsc_context *ctx = get_gsc_context(dev);
struct drm_exynos_pos img_pos = *pos;
struct gsc_scaler *sc = &ctx->sc; struct gsc_scaler *sc = &ctx->sc;
u32 cfg; u32 cfg;
DRM_DEBUG_KMS("swap[%d]x[%d]y[%d]w[%d]h[%d]\n",
swap, pos->x, pos->y, pos->w, pos->h);
if (swap) {
img_pos.w = pos->h;
img_pos.h = pos->w;
}
/* pixel offset */ /* pixel offset */
cfg = (GSC_DSTIMG_OFFSET_X(pos->x) | cfg = (GSC_DSTIMG_OFFSET_X(buf->rect.x) |
GSC_DSTIMG_OFFSET_Y(pos->y)); GSC_DSTIMG_OFFSET_Y(buf->rect.y));
gsc_write(cfg, GSC_DSTIMG_OFFSET); gsc_write(cfg, GSC_DSTIMG_OFFSET);
/* scaled size */ /* scaled size */
cfg = (GSC_SCALED_WIDTH(img_pos.w) | GSC_SCALED_HEIGHT(img_pos.h)); if (ctx->rotation)
cfg = (GSC_SCALED_WIDTH(buf->rect.h) |
GSC_SCALED_HEIGHT(buf->rect.w));
else
cfg = (GSC_SCALED_WIDTH(buf->rect.w) |
GSC_SCALED_HEIGHT(buf->rect.h));
gsc_write(cfg, GSC_SCALED_SIZE); gsc_write(cfg, GSC_SCALED_SIZE);
DRM_DEBUG_KMS("hsize[%d]vsize[%d]\n", sz->hsize, sz->vsize);
/* original size */ /* original size */
cfg = gsc_read(GSC_DSTIMG_SIZE); cfg = gsc_read(GSC_DSTIMG_SIZE);
cfg &= ~(GSC_DSTIMG_HEIGHT_MASK | cfg &= ~(GSC_DSTIMG_HEIGHT_MASK | GSC_DSTIMG_WIDTH_MASK);
GSC_DSTIMG_WIDTH_MASK); cfg |= GSC_DSTIMG_WIDTH(buf->buf.width) |
cfg |= (GSC_DSTIMG_WIDTH(sz->hsize) | GSC_DSTIMG_HEIGHT(buf->buf.height);
GSC_DSTIMG_HEIGHT(sz->vsize));
gsc_write(cfg, GSC_DSTIMG_SIZE); gsc_write(cfg, GSC_DSTIMG_SIZE);
cfg = gsc_read(GSC_OUT_CON); cfg = gsc_read(GSC_OUT_CON);
cfg &= ~GSC_OUT_RGB_TYPE_MASK; cfg &= ~GSC_OUT_RGB_TYPE_MASK;
DRM_DEBUG_KMS("width[%d]range[%d]\n", pos->w, sc->range); if (buf->rect.w >= GSC_WIDTH_ITU_709)
if (pos->w >= GSC_WIDTH_ITU_709)
if (sc->range) if (sc->range)
cfg |= GSC_OUT_RGB_HD_WIDE; cfg |= GSC_OUT_RGB_HD_WIDE;
else else
...@@ -1091,8 +887,6 @@ static int gsc_dst_set_size(struct device *dev, int swap, ...@@ -1091,8 +887,6 @@ static int gsc_dst_set_size(struct device *dev, int swap,
cfg |= GSC_OUT_RGB_SD_NARROW; cfg |= GSC_OUT_RGB_SD_NARROW;
gsc_write(cfg, GSC_OUT_CON); gsc_write(cfg, GSC_OUT_CON);
return 0;
} }
static int gsc_dst_get_buf_seq(struct gsc_context *ctx) static int gsc_dst_get_buf_seq(struct gsc_context *ctx)
...@@ -1111,35 +905,16 @@ static int gsc_dst_get_buf_seq(struct gsc_context *ctx) ...@@ -1111,35 +905,16 @@ static int gsc_dst_get_buf_seq(struct gsc_context *ctx)
return buf_num; return buf_num;
} }
static int gsc_dst_set_buf_seq(struct gsc_context *ctx, u32 buf_id, static void gsc_dst_set_buf_seq(struct gsc_context *ctx, u32 buf_id,
enum drm_exynos_ipp_buf_type buf_type) bool enqueue)
{ {
struct exynos_drm_ippdrv *ippdrv = &ctx->ippdrv; bool masked = !enqueue;
bool masked;
u32 cfg; u32 cfg;
u32 mask = 0x00000001 << buf_id; u32 mask = 0x00000001 << buf_id;
int ret = 0;
DRM_DEBUG_KMS("buf_id[%d]buf_type[%d]\n", buf_id, buf_type);
mutex_lock(&ctx->lock);
/* mask register set */ /* mask register set */
cfg = gsc_read(GSC_OUT_BASE_ADDR_Y_MASK); cfg = gsc_read(GSC_OUT_BASE_ADDR_Y_MASK);
switch (buf_type) {
case IPP_BUF_ENQUEUE:
masked = false;
break;
case IPP_BUF_DEQUEUE:
masked = true;
break;
default:
dev_err(ippdrv->dev, "invalid buf ctrl parameter.\n");
ret = -EINVAL;
goto err_unlock;
}
/* sequence id */ /* sequence id */
cfg &= ~mask; cfg &= ~mask;
cfg |= masked << buf_id; cfg |= masked << buf_id;
...@@ -1148,94 +923,29 @@ static int gsc_dst_set_buf_seq(struct gsc_context *ctx, u32 buf_id, ...@@ -1148,94 +923,29 @@ static int gsc_dst_set_buf_seq(struct gsc_context *ctx, u32 buf_id,
gsc_write(cfg, GSC_OUT_BASE_ADDR_CR_MASK); gsc_write(cfg, GSC_OUT_BASE_ADDR_CR_MASK);
/* interrupt enable */ /* interrupt enable */
if (buf_type == IPP_BUF_ENQUEUE && if (enqueue && gsc_dst_get_buf_seq(ctx) >= GSC_BUF_START)
gsc_dst_get_buf_seq(ctx) >= GSC_BUF_START)
gsc_handle_irq(ctx, true, false, true); gsc_handle_irq(ctx, true, false, true);
/* interrupt disable */ /* interrupt disable */
if (buf_type == IPP_BUF_DEQUEUE && if (!enqueue && gsc_dst_get_buf_seq(ctx) <= GSC_BUF_STOP)
gsc_dst_get_buf_seq(ctx) <= GSC_BUF_STOP)
gsc_handle_irq(ctx, false, false, true); gsc_handle_irq(ctx, false, false, true);
err_unlock:
mutex_unlock(&ctx->lock);
return ret;
} }
static int gsc_dst_set_addr(struct device *dev, static void gsc_dst_set_addr(struct gsc_context *ctx,
struct drm_exynos_ipp_buf_info *buf_info, u32 buf_id, u32 buf_id, struct exynos_drm_ipp_buffer *buf)
enum drm_exynos_ipp_buf_type buf_type)
{ {
struct gsc_context *ctx = get_gsc_context(dev);
struct exynos_drm_ippdrv *ippdrv = &ctx->ippdrv;
struct drm_exynos_ipp_cmd_node *c_node = ippdrv->c_node;
struct drm_exynos_ipp_property *property;
if (!c_node) {
DRM_ERROR("failed to get c_node.\n");
return -EFAULT;
}
property = &c_node->property;
DRM_DEBUG_KMS("prop_id[%d]buf_id[%d]buf_type[%d]\n",
property->prop_id, buf_id, buf_type);
if (buf_id > GSC_MAX_DST) {
dev_info(ippdrv->dev, "invalid buf_id %d.\n", buf_id);
return -EINVAL;
}
/* address register set */ /* address register set */
switch (buf_type) { gsc_write(buf->dma_addr[0], GSC_OUT_BASE_ADDR_Y(buf_id));
case IPP_BUF_ENQUEUE: gsc_write(buf->dma_addr[1], GSC_OUT_BASE_ADDR_CB(buf_id));
gsc_write(buf_info->base[EXYNOS_DRM_PLANAR_Y], gsc_write(buf->dma_addr[2], GSC_OUT_BASE_ADDR_CR(buf_id));
GSC_OUT_BASE_ADDR_Y(buf_id));
gsc_write(buf_info->base[EXYNOS_DRM_PLANAR_CB],
GSC_OUT_BASE_ADDR_CB(buf_id));
gsc_write(buf_info->base[EXYNOS_DRM_PLANAR_CR],
GSC_OUT_BASE_ADDR_CR(buf_id));
break;
case IPP_BUF_DEQUEUE:
gsc_write(0x0, GSC_OUT_BASE_ADDR_Y(buf_id));
gsc_write(0x0, GSC_OUT_BASE_ADDR_CB(buf_id));
gsc_write(0x0, GSC_OUT_BASE_ADDR_CR(buf_id));
break;
default:
/* bypass */
break;
}
return gsc_dst_set_buf_seq(ctx, buf_id, buf_type); gsc_dst_set_buf_seq(ctx, buf_id, true);
}
static struct exynos_drm_ipp_ops gsc_dst_ops = {
.set_fmt = gsc_dst_set_fmt,
.set_transf = gsc_dst_set_transf,
.set_size = gsc_dst_set_size,
.set_addr = gsc_dst_set_addr,
};
static int gsc_clk_ctrl(struct gsc_context *ctx, bool enable)
{
DRM_DEBUG_KMS("enable[%d]\n", enable);
if (enable) {
clk_prepare_enable(ctx->gsc_clk);
ctx->suspended = false;
} else {
clk_disable_unprepare(ctx->gsc_clk);
ctx->suspended = true;
}
return 0;
} }
static int gsc_get_src_buf_index(struct gsc_context *ctx) static int gsc_get_src_buf_index(struct gsc_context *ctx)
{ {
u32 cfg, curr_index, i; u32 cfg, curr_index, i;
u32 buf_id = GSC_MAX_SRC; u32 buf_id = GSC_MAX_SRC;
int ret;
DRM_DEBUG_KMS("gsc id[%d]\n", ctx->id); DRM_DEBUG_KMS("gsc id[%d]\n", ctx->id);
...@@ -1249,19 +959,15 @@ static int gsc_get_src_buf_index(struct gsc_context *ctx) ...@@ -1249,19 +959,15 @@ static int gsc_get_src_buf_index(struct gsc_context *ctx)
} }
} }
DRM_DEBUG_KMS("cfg[0x%x]curr_index[%d]buf_id[%d]\n", cfg,
curr_index, buf_id);
if (buf_id == GSC_MAX_SRC) { if (buf_id == GSC_MAX_SRC) {
DRM_ERROR("failed to get in buffer index.\n"); DRM_ERROR("failed to get in buffer index.\n");
return -EINVAL; return -EINVAL;
} }
ret = gsc_src_set_buf_seq(ctx, buf_id, IPP_BUF_DEQUEUE); gsc_src_set_buf_seq(ctx, buf_id, false);
if (ret < 0) {
DRM_ERROR("failed to dequeue.\n");
return ret;
}
DRM_DEBUG_KMS("cfg[0x%x]curr_index[%d]buf_id[%d]\n", cfg,
curr_index, buf_id);
return buf_id; return buf_id;
} }
...@@ -1270,7 +976,6 @@ static int gsc_get_dst_buf_index(struct gsc_context *ctx) ...@@ -1270,7 +976,6 @@ static int gsc_get_dst_buf_index(struct gsc_context *ctx)
{ {
u32 cfg, curr_index, i; u32 cfg, curr_index, i;
u32 buf_id = GSC_MAX_DST; u32 buf_id = GSC_MAX_DST;
int ret;
DRM_DEBUG_KMS("gsc id[%d]\n", ctx->id); DRM_DEBUG_KMS("gsc id[%d]\n", ctx->id);
...@@ -1289,11 +994,7 @@ static int gsc_get_dst_buf_index(struct gsc_context *ctx) ...@@ -1289,11 +994,7 @@ static int gsc_get_dst_buf_index(struct gsc_context *ctx)
return -EINVAL; return -EINVAL;
} }
ret = gsc_dst_set_buf_seq(ctx, buf_id, IPP_BUF_DEQUEUE); gsc_dst_set_buf_seq(ctx, buf_id, false);
if (ret < 0) {
DRM_ERROR("failed to dequeue.\n");
return ret;
}
DRM_DEBUG_KMS("cfg[0x%x]curr_index[%d]buf_id[%d]\n", cfg, DRM_DEBUG_KMS("cfg[0x%x]curr_index[%d]buf_id[%d]\n", cfg,
curr_index, buf_id); curr_index, buf_id);
...@@ -1304,215 +1005,55 @@ static int gsc_get_dst_buf_index(struct gsc_context *ctx) ...@@ -1304,215 +1005,55 @@ static int gsc_get_dst_buf_index(struct gsc_context *ctx)
static irqreturn_t gsc_irq_handler(int irq, void *dev_id) static irqreturn_t gsc_irq_handler(int irq, void *dev_id)
{ {
struct gsc_context *ctx = dev_id; struct gsc_context *ctx = dev_id;
struct exynos_drm_ippdrv *ippdrv = &ctx->ippdrv;
struct drm_exynos_ipp_cmd_node *c_node = ippdrv->c_node;
struct drm_exynos_ipp_event_work *event_work =
c_node->event_work;
u32 status; u32 status;
int buf_id[EXYNOS_DRM_OPS_MAX]; int err = 0;
DRM_DEBUG_KMS("gsc id[%d]\n", ctx->id); DRM_DEBUG_KMS("gsc id[%d]\n", ctx->id);
status = gsc_read(GSC_IRQ); status = gsc_read(GSC_IRQ);
if (status & GSC_IRQ_STATUS_OR_IRQ) { if (status & GSC_IRQ_STATUS_OR_IRQ) {
dev_err(ippdrv->dev, "occurred overflow at %d, status 0x%x.\n", dev_err(ctx->dev, "occurred overflow at %d, status 0x%x.\n",
ctx->id, status); ctx->id, status);
return IRQ_NONE; err = -EINVAL;
} }
if (status & GSC_IRQ_STATUS_OR_FRM_DONE) { if (status & GSC_IRQ_STATUS_OR_FRM_DONE) {
dev_dbg(ippdrv->dev, "occurred frame done at %d, status 0x%x.\n", int src_buf_id, dst_buf_id;
ctx->id, status);
buf_id[EXYNOS_DRM_OPS_SRC] = gsc_get_src_buf_index(ctx);
if (buf_id[EXYNOS_DRM_OPS_SRC] < 0)
return IRQ_HANDLED;
buf_id[EXYNOS_DRM_OPS_DST] = gsc_get_dst_buf_index(ctx);
if (buf_id[EXYNOS_DRM_OPS_DST] < 0)
return IRQ_HANDLED;
DRM_DEBUG_KMS("buf_id_src[%d]buf_id_dst[%d]\n",
buf_id[EXYNOS_DRM_OPS_SRC], buf_id[EXYNOS_DRM_OPS_DST]);
event_work->ippdrv = ippdrv;
event_work->buf_id[EXYNOS_DRM_OPS_SRC] =
buf_id[EXYNOS_DRM_OPS_SRC];
event_work->buf_id[EXYNOS_DRM_OPS_DST] =
buf_id[EXYNOS_DRM_OPS_DST];
queue_work(ippdrv->event_workq, &event_work->work);
}
return IRQ_HANDLED;
}
static int gsc_init_prop_list(struct exynos_drm_ippdrv *ippdrv)
{
struct drm_exynos_ipp_prop_list *prop_list = &ippdrv->prop_list;
prop_list->version = 1;
prop_list->writeback = 1;
prop_list->refresh_min = GSC_REFRESH_MIN;
prop_list->refresh_max = GSC_REFRESH_MAX;
prop_list->flip = (1 << EXYNOS_DRM_FLIP_VERTICAL) |
(1 << EXYNOS_DRM_FLIP_HORIZONTAL);
prop_list->degree = (1 << EXYNOS_DRM_DEGREE_0) |
(1 << EXYNOS_DRM_DEGREE_90) |
(1 << EXYNOS_DRM_DEGREE_180) |
(1 << EXYNOS_DRM_DEGREE_270);
prop_list->csc = 1;
prop_list->crop = 1;
prop_list->crop_max.hsize = GSC_CROP_MAX;
prop_list->crop_max.vsize = GSC_CROP_MAX;
prop_list->crop_min.hsize = GSC_CROP_MIN;
prop_list->crop_min.vsize = GSC_CROP_MIN;
prop_list->scale = 1;
prop_list->scale_max.hsize = GSC_SCALE_MAX;
prop_list->scale_max.vsize = GSC_SCALE_MAX;
prop_list->scale_min.hsize = GSC_SCALE_MIN;
prop_list->scale_min.vsize = GSC_SCALE_MIN;
return 0;
}
static inline bool gsc_check_drm_flip(enum drm_exynos_flip flip)
{
switch (flip) {
case EXYNOS_DRM_FLIP_NONE:
case EXYNOS_DRM_FLIP_VERTICAL:
case EXYNOS_DRM_FLIP_HORIZONTAL:
case EXYNOS_DRM_FLIP_BOTH:
return true;
default:
DRM_DEBUG_KMS("invalid flip\n");
return false;
}
}
static int gsc_ippdrv_check_property(struct device *dev,
struct drm_exynos_ipp_property *property)
{
struct gsc_context *ctx = get_gsc_context(dev);
struct exynos_drm_ippdrv *ippdrv = &ctx->ippdrv;
struct drm_exynos_ipp_prop_list *pp = &ippdrv->prop_list;
struct drm_exynos_ipp_config *config;
struct drm_exynos_pos *pos;
struct drm_exynos_sz *sz;
bool swap;
int i;
for_each_ipp_ops(i) {
if ((i == EXYNOS_DRM_OPS_SRC) &&
(property->cmd == IPP_CMD_WB))
continue;
config = &property->config[i]; dev_dbg(ctx->dev, "occurred frame done at %d, status 0x%x.\n",
pos = &config->pos; ctx->id, status);
sz = &config->sz;
/* check for flip */
if (!gsc_check_drm_flip(config->flip)) {
DRM_ERROR("invalid flip.\n");
goto err_property;
}
/* check for degree */
switch (config->degree) {
case EXYNOS_DRM_DEGREE_90:
case EXYNOS_DRM_DEGREE_270:
swap = true;
break;
case EXYNOS_DRM_DEGREE_0:
case EXYNOS_DRM_DEGREE_180:
swap = false;
break;
default:
DRM_ERROR("invalid degree.\n");
goto err_property;
}
/* check for buffer bound */ src_buf_id = gsc_get_src_buf_index(ctx);
if ((pos->x + pos->w > sz->hsize) || dst_buf_id = gsc_get_dst_buf_index(ctx);
(pos->y + pos->h > sz->vsize)) {
DRM_ERROR("out of buf bound.\n");
goto err_property;
}
/* check for crop */ DRM_DEBUG_KMS("buf_id_src[%d]buf_id_dst[%d]\n", src_buf_id,
if ((i == EXYNOS_DRM_OPS_SRC) && (pp->crop)) { dst_buf_id);
if (swap) {
if ((pos->h < pp->crop_min.hsize) ||
(sz->vsize > pp->crop_max.hsize) ||
(pos->w < pp->crop_min.vsize) ||
(sz->hsize > pp->crop_max.vsize)) {
DRM_ERROR("out of crop size.\n");
goto err_property;
}
} else {
if ((pos->w < pp->crop_min.hsize) ||
(sz->hsize > pp->crop_max.hsize) ||
(pos->h < pp->crop_min.vsize) ||
(sz->vsize > pp->crop_max.vsize)) {
DRM_ERROR("out of crop size.\n");
goto err_property;
}
}
}
/* check for scale */ if (src_buf_id < 0 || dst_buf_id < 0)
if ((i == EXYNOS_DRM_OPS_DST) && (pp->scale)) { err = -EINVAL;
if (swap) {
if ((pos->h < pp->scale_min.hsize) ||
(sz->vsize > pp->scale_max.hsize) ||
(pos->w < pp->scale_min.vsize) ||
(sz->hsize > pp->scale_max.vsize)) {
DRM_ERROR("out of scale size.\n");
goto err_property;
}
} else {
if ((pos->w < pp->scale_min.hsize) ||
(sz->hsize > pp->scale_max.hsize) ||
(pos->h < pp->scale_min.vsize) ||
(sz->vsize > pp->scale_max.vsize)) {
DRM_ERROR("out of scale size.\n");
goto err_property;
}
}
}
} }
return 0; if (ctx->task) {
struct exynos_drm_ipp_task *task = ctx->task;
err_property:
for_each_ipp_ops(i) {
if ((i == EXYNOS_DRM_OPS_SRC) &&
(property->cmd == IPP_CMD_WB))
continue;
config = &property->config[i]; ctx->task = NULL;
pos = &config->pos; pm_runtime_mark_last_busy(ctx->dev);
sz = &config->sz; pm_runtime_put_autosuspend(ctx->dev);
exynos_drm_ipp_task_done(task, err);
DRM_ERROR("[%s]f[%d]r[%d]pos[%d %d %d %d]sz[%d %d]\n",
i ? "dst" : "src", config->flip, config->degree,
pos->x, pos->y, pos->w, pos->h,
sz->hsize, sz->vsize);
} }
return -EINVAL; return IRQ_HANDLED;
} }
static int gsc_reset(struct gsc_context *ctx)
static int gsc_ippdrv_reset(struct device *dev)
{ {
struct gsc_context *ctx = get_gsc_context(dev);
struct gsc_scaler *sc = &ctx->sc; struct gsc_scaler *sc = &ctx->sc;
int ret; int ret;
/* reset h/w block */ /* reset h/w block */
ret = gsc_sw_reset(ctx); ret = gsc_sw_reset(ctx);
if (ret < 0) { if (ret < 0) {
dev_err(dev, "failed to reset hardware.\n"); dev_err(ctx->dev, "failed to reset hardware.\n");
return ret; return ret;
} }
...@@ -1523,166 +1064,172 @@ static int gsc_ippdrv_reset(struct device *dev) ...@@ -1523,166 +1064,172 @@ static int gsc_ippdrv_reset(struct device *dev)
return 0; return 0;
} }
static int gsc_ippdrv_start(struct device *dev, enum drm_exynos_ipp_cmd cmd) static void gsc_start(struct gsc_context *ctx)
{ {
struct gsc_context *ctx = get_gsc_context(dev);
struct exynos_drm_ippdrv *ippdrv = &ctx->ippdrv;
struct drm_exynos_ipp_cmd_node *c_node = ippdrv->c_node;
struct drm_exynos_ipp_property *property;
struct drm_exynos_ipp_config *config;
struct drm_exynos_pos img_pos[EXYNOS_DRM_OPS_MAX];
struct drm_exynos_ipp_set_wb set_wb;
u32 cfg; u32 cfg;
int ret, i;
DRM_DEBUG_KMS("cmd[%d]\n", cmd);
if (!c_node) {
DRM_ERROR("failed to get c_node.\n");
return -EINVAL;
}
property = &c_node->property;
gsc_handle_irq(ctx, true, false, true); gsc_handle_irq(ctx, true, false, true);
for_each_ipp_ops(i) { /* enable one shot */
config = &property->config[i]; cfg = gsc_read(GSC_ENABLE);
img_pos[i] = config->pos; cfg &= ~(GSC_ENABLE_ON_CLEAR_MASK |
} GSC_ENABLE_CLK_GATE_MODE_MASK);
cfg |= GSC_ENABLE_ON_CLEAR_ONESHOT;
gsc_write(cfg, GSC_ENABLE);
switch (cmd) { /* src dma memory */
case IPP_CMD_M2M: cfg = gsc_read(GSC_IN_CON);
/* enable one shot */ cfg &= ~(GSC_IN_PATH_MASK | GSC_IN_LOCAL_SEL_MASK);
cfg = gsc_read(GSC_ENABLE); cfg |= GSC_IN_PATH_MEMORY;
cfg &= ~(GSC_ENABLE_ON_CLEAR_MASK | gsc_write(cfg, GSC_IN_CON);
GSC_ENABLE_CLK_GATE_MODE_MASK);
cfg |= GSC_ENABLE_ON_CLEAR_ONESHOT;
gsc_write(cfg, GSC_ENABLE);
/* src dma memory */
cfg = gsc_read(GSC_IN_CON);
cfg &= ~(GSC_IN_PATH_MASK | GSC_IN_LOCAL_SEL_MASK);
cfg |= GSC_IN_PATH_MEMORY;
gsc_write(cfg, GSC_IN_CON);
/* dst dma memory */
cfg = gsc_read(GSC_OUT_CON);
cfg |= GSC_OUT_PATH_MEMORY;
gsc_write(cfg, GSC_OUT_CON);
break;
case IPP_CMD_WB:
set_wb.enable = 1;
set_wb.refresh = property->refresh_rate;
gsc_set_gscblk_fimd_wb(ctx, set_wb.enable);
exynos_drm_ippnb_send_event(IPP_SET_WRITEBACK, (void *)&set_wb);
/* src local path */
cfg = gsc_read(GSC_IN_CON);
cfg &= ~(GSC_IN_PATH_MASK | GSC_IN_LOCAL_SEL_MASK);
cfg |= (GSC_IN_PATH_LOCAL | GSC_IN_LOCAL_FIMD_WB);
gsc_write(cfg, GSC_IN_CON);
/* dst dma memory */
cfg = gsc_read(GSC_OUT_CON);
cfg |= GSC_OUT_PATH_MEMORY;
gsc_write(cfg, GSC_OUT_CON);
break;
case IPP_CMD_OUTPUT:
/* src dma memory */
cfg = gsc_read(GSC_IN_CON);
cfg &= ~(GSC_IN_PATH_MASK | GSC_IN_LOCAL_SEL_MASK);
cfg |= GSC_IN_PATH_MEMORY;
gsc_write(cfg, GSC_IN_CON);
/* dst local path */
cfg = gsc_read(GSC_OUT_CON);
cfg |= GSC_OUT_PATH_MEMORY;
gsc_write(cfg, GSC_OUT_CON);
break;
default:
ret = -EINVAL;
dev_err(dev, "invalid operations.\n");
return ret;
}
ret = gsc_set_prescaler(ctx, &ctx->sc, /* dst dma memory */
&img_pos[EXYNOS_DRM_OPS_SRC], cfg = gsc_read(GSC_OUT_CON);
&img_pos[EXYNOS_DRM_OPS_DST]); cfg |= GSC_OUT_PATH_MEMORY;
if (ret) { gsc_write(cfg, GSC_OUT_CON);
dev_err(dev, "failed to set prescaler.\n");
return ret;
}
gsc_set_scaler(ctx, &ctx->sc); gsc_set_scaler(ctx, &ctx->sc);
cfg = gsc_read(GSC_ENABLE); cfg = gsc_read(GSC_ENABLE);
cfg |= GSC_ENABLE_ON; cfg |= GSC_ENABLE_ON;
gsc_write(cfg, GSC_ENABLE); gsc_write(cfg, GSC_ENABLE);
}
static int gsc_commit(struct exynos_drm_ipp *ipp,
struct exynos_drm_ipp_task *task)
{
struct gsc_context *ctx = container_of(ipp, struct gsc_context, ipp);
int ret;
pm_runtime_get_sync(ctx->dev);
ctx->task = task;
ret = gsc_reset(ctx);
if (ret) {
pm_runtime_put_autosuspend(ctx->dev);
ctx->task = NULL;
return ret;
}
gsc_src_set_fmt(ctx, task->src.buf.fourcc);
gsc_src_set_transf(ctx, task->transform.rotation);
gsc_src_set_size(ctx, &task->src);
gsc_src_set_addr(ctx, 0, &task->src);
gsc_dst_set_fmt(ctx, task->dst.buf.fourcc);
gsc_dst_set_size(ctx, &task->dst);
gsc_dst_set_addr(ctx, 0, &task->dst);
gsc_set_prescaler(ctx, &ctx->sc, &task->src.rect, &task->dst.rect);
gsc_start(ctx);
return 0; return 0;
} }
static void gsc_ippdrv_stop(struct device *dev, enum drm_exynos_ipp_cmd cmd) static void gsc_abort(struct exynos_drm_ipp *ipp,
struct exynos_drm_ipp_task *task)
{ {
struct gsc_context *ctx = get_gsc_context(dev); struct gsc_context *ctx =
struct drm_exynos_ipp_set_wb set_wb = {0, 0}; container_of(ipp, struct gsc_context, ipp);
u32 cfg;
DRM_DEBUG_KMS("cmd[%d]\n", cmd); gsc_reset(ctx);
if (ctx->task) {
struct exynos_drm_ipp_task *task = ctx->task;
switch (cmd) { ctx->task = NULL;
case IPP_CMD_M2M: pm_runtime_mark_last_busy(ctx->dev);
/* bypass */ pm_runtime_put_autosuspend(ctx->dev);
break; exynos_drm_ipp_task_done(task, -EIO);
case IPP_CMD_WB:
gsc_set_gscblk_fimd_wb(ctx, set_wb.enable);
exynos_drm_ippnb_send_event(IPP_SET_WRITEBACK, (void *)&set_wb);
break;
case IPP_CMD_OUTPUT:
default:
dev_err(dev, "invalid operations.\n");
break;
} }
}
gsc_handle_irq(ctx, false, false, true); static struct exynos_drm_ipp_funcs ipp_funcs = {
.commit = gsc_commit,
.abort = gsc_abort,
};
/* reset sequence */ static int gsc_bind(struct device *dev, struct device *master, void *data)
gsc_write(0xff, GSC_OUT_BASE_ADDR_Y_MASK); {
gsc_write(0xff, GSC_OUT_BASE_ADDR_CB_MASK); struct gsc_context *ctx = dev_get_drvdata(dev);
gsc_write(0xff, GSC_OUT_BASE_ADDR_CR_MASK); struct drm_device *drm_dev = data;
struct exynos_drm_ipp *ipp = &ctx->ipp;
cfg = gsc_read(GSC_ENABLE); ctx->drm_dev = drm_dev;
cfg &= ~GSC_ENABLE_ON; drm_iommu_attach_device(drm_dev, dev);
gsc_write(cfg, GSC_ENABLE);
exynos_drm_ipp_register(drm_dev, ipp, &ipp_funcs,
DRM_EXYNOS_IPP_CAP_CROP | DRM_EXYNOS_IPP_CAP_ROTATE |
DRM_EXYNOS_IPP_CAP_SCALE | DRM_EXYNOS_IPP_CAP_CONVERT,
ctx->formats, ctx->num_formats, "gsc");
dev_info(dev, "The exynos gscaler has been probed successfully\n");
return 0;
}
static void gsc_unbind(struct device *dev, struct device *master,
void *data)
{
struct gsc_context *ctx = dev_get_drvdata(dev);
struct drm_device *drm_dev = data;
struct exynos_drm_ipp *ipp = &ctx->ipp;
exynos_drm_ipp_unregister(drm_dev, ipp);
drm_iommu_detach_device(drm_dev, dev);
} }
static const struct component_ops gsc_component_ops = {
.bind = gsc_bind,
.unbind = gsc_unbind,
};
static const unsigned int gsc_formats[] = {
DRM_FORMAT_ARGB8888,
DRM_FORMAT_XRGB8888, DRM_FORMAT_RGB565, DRM_FORMAT_BGRX8888,
DRM_FORMAT_NV12, DRM_FORMAT_NV16, DRM_FORMAT_NV21, DRM_FORMAT_NV61,
DRM_FORMAT_UYVY, DRM_FORMAT_VYUY, DRM_FORMAT_YUYV, DRM_FORMAT_YVYU,
DRM_FORMAT_YUV420, DRM_FORMAT_YVU420, DRM_FORMAT_YUV422,
};
static int gsc_probe(struct platform_device *pdev) static int gsc_probe(struct platform_device *pdev)
{ {
struct device *dev = &pdev->dev; struct device *dev = &pdev->dev;
struct gsc_driverdata *driver_data;
struct exynos_drm_ipp_formats *formats;
struct gsc_context *ctx; struct gsc_context *ctx;
struct resource *res; struct resource *res;
struct exynos_drm_ippdrv *ippdrv; int ret, i;
int ret;
ctx = devm_kzalloc(dev, sizeof(*ctx), GFP_KERNEL); ctx = devm_kzalloc(dev, sizeof(*ctx), GFP_KERNEL);
if (!ctx) if (!ctx)
return -ENOMEM; return -ENOMEM;
if (dev->of_node) { formats = devm_kzalloc(dev, sizeof(*formats) *
ctx->sysreg = syscon_regmap_lookup_by_phandle(dev->of_node, (ARRAY_SIZE(gsc_formats)), GFP_KERNEL);
"samsung,sysreg"); if (!formats)
if (IS_ERR(ctx->sysreg)) { return -ENOMEM;
dev_warn(dev, "failed to get system register.\n");
ctx->sysreg = NULL; driver_data = (struct gsc_driverdata *)of_device_get_match_data(dev);
} ctx->dev = dev;
ctx->num_clocks = driver_data->num_clocks;
ctx->clk_names = driver_data->clk_names;
for (i = 0; i < ARRAY_SIZE(gsc_formats); i++) {
formats[i].fourcc = gsc_formats[i];
formats[i].type = DRM_EXYNOS_IPP_FORMAT_SOURCE |
DRM_EXYNOS_IPP_FORMAT_DESTINATION;
formats[i].limits = driver_data->limits;
formats[i].num_limits = driver_data->num_limits;
} }
ctx->formats = formats;
ctx->num_formats = ARRAY_SIZE(gsc_formats);
/* clock control */ /* clock control */
ctx->gsc_clk = devm_clk_get(dev, "gscl"); for (i = 0; i < ctx->num_clocks; i++) {
if (IS_ERR(ctx->gsc_clk)) { ctx->clocks[i] = devm_clk_get(dev, ctx->clk_names[i]);
dev_err(dev, "failed to get gsc clock.\n"); if (IS_ERR(ctx->clocks[i])) {
return PTR_ERR(ctx->gsc_clk); dev_err(dev, "failed to get clock: %s\n",
ctx->clk_names[i]);
return PTR_ERR(ctx->clocks[i]);
}
} }
/* resource memory */ /* resource memory */
...@@ -1699,8 +1246,8 @@ static int gsc_probe(struct platform_device *pdev) ...@@ -1699,8 +1246,8 @@ static int gsc_probe(struct platform_device *pdev)
} }
ctx->irq = res->start; ctx->irq = res->start;
ret = devm_request_threaded_irq(dev, ctx->irq, NULL, gsc_irq_handler, ret = devm_request_irq(dev, ctx->irq, gsc_irq_handler, 0,
IRQF_ONESHOT, "drm_gsc", ctx); dev_name(dev), ctx);
if (ret < 0) { if (ret < 0) {
dev_err(dev, "failed to request irq.\n"); dev_err(dev, "failed to request irq.\n");
return ret; return ret;
...@@ -1709,38 +1256,22 @@ static int gsc_probe(struct platform_device *pdev) ...@@ -1709,38 +1256,22 @@ static int gsc_probe(struct platform_device *pdev)
/* context initailization */ /* context initailization */
ctx->id = pdev->id; ctx->id = pdev->id;
ippdrv = &ctx->ippdrv;
ippdrv->dev = dev;
ippdrv->ops[EXYNOS_DRM_OPS_SRC] = &gsc_src_ops;
ippdrv->ops[EXYNOS_DRM_OPS_DST] = &gsc_dst_ops;
ippdrv->check_property = gsc_ippdrv_check_property;
ippdrv->reset = gsc_ippdrv_reset;
ippdrv->start = gsc_ippdrv_start;
ippdrv->stop = gsc_ippdrv_stop;
ret = gsc_init_prop_list(ippdrv);
if (ret < 0) {
dev_err(dev, "failed to init property list.\n");
return ret;
}
DRM_DEBUG_KMS("id[%d]ippdrv[%pK]\n", ctx->id, ippdrv);
mutex_init(&ctx->lock);
platform_set_drvdata(pdev, ctx); platform_set_drvdata(pdev, ctx);
pm_runtime_use_autosuspend(dev);
pm_runtime_set_autosuspend_delay(dev, GSC_AUTOSUSPEND_DELAY);
pm_runtime_enable(dev); pm_runtime_enable(dev);
ret = exynos_drm_ippdrv_register(ippdrv); ret = component_add(dev, &gsc_component_ops);
if (ret < 0) { if (ret)
dev_err(dev, "failed to register drm gsc device.\n"); goto err_pm_dis;
goto err_ippdrv_register;
}
dev_info(dev, "drm gsc registered successfully.\n"); dev_info(dev, "drm gsc registered successfully.\n");
return 0; return 0;
err_ippdrv_register: err_pm_dis:
pm_runtime_dont_use_autosuspend(dev);
pm_runtime_disable(dev); pm_runtime_disable(dev);
return ret; return ret;
} }
...@@ -1748,13 +1279,8 @@ static int gsc_probe(struct platform_device *pdev) ...@@ -1748,13 +1279,8 @@ static int gsc_probe(struct platform_device *pdev)
static int gsc_remove(struct platform_device *pdev) static int gsc_remove(struct platform_device *pdev)
{ {
struct device *dev = &pdev->dev; struct device *dev = &pdev->dev;
struct gsc_context *ctx = get_gsc_context(dev);
struct exynos_drm_ippdrv *ippdrv = &ctx->ippdrv;
exynos_drm_ippdrv_unregister(ippdrv); pm_runtime_dont_use_autosuspend(dev);
mutex_destroy(&ctx->lock);
pm_runtime_set_suspended(dev);
pm_runtime_disable(dev); pm_runtime_disable(dev);
return 0; return 0;
...@@ -1763,19 +1289,32 @@ static int gsc_remove(struct platform_device *pdev) ...@@ -1763,19 +1289,32 @@ static int gsc_remove(struct platform_device *pdev)
static int __maybe_unused gsc_runtime_suspend(struct device *dev) static int __maybe_unused gsc_runtime_suspend(struct device *dev)
{ {
struct gsc_context *ctx = get_gsc_context(dev); struct gsc_context *ctx = get_gsc_context(dev);
int i;
DRM_DEBUG_KMS("id[%d]\n", ctx->id); DRM_DEBUG_KMS("id[%d]\n", ctx->id);
return gsc_clk_ctrl(ctx, false); for (i = ctx->num_clocks - 1; i >= 0; i--)
clk_disable_unprepare(ctx->clocks[i]);
return 0;
} }
static int __maybe_unused gsc_runtime_resume(struct device *dev) static int __maybe_unused gsc_runtime_resume(struct device *dev)
{ {
struct gsc_context *ctx = get_gsc_context(dev); struct gsc_context *ctx = get_gsc_context(dev);
int i, ret;
DRM_DEBUG_KMS("id[%d]\n", ctx->id); DRM_DEBUG_KMS("id[%d]\n", ctx->id);
return gsc_clk_ctrl(ctx, true); for (i = 0; i < ctx->num_clocks; i++) {
ret = clk_prepare_enable(ctx->clocks[i]);
if (ret) {
while (--i > 0)
clk_disable_unprepare(ctx->clocks[i]);
return ret;
}
}
return 0;
} }
static const struct dev_pm_ops gsc_pm_ops = { static const struct dev_pm_ops gsc_pm_ops = {
...@@ -1784,9 +1323,66 @@ static const struct dev_pm_ops gsc_pm_ops = { ...@@ -1784,9 +1323,66 @@ static const struct dev_pm_ops gsc_pm_ops = {
SET_RUNTIME_PM_OPS(gsc_runtime_suspend, gsc_runtime_resume, NULL) SET_RUNTIME_PM_OPS(gsc_runtime_suspend, gsc_runtime_resume, NULL)
}; };
static const struct drm_exynos_ipp_limit gsc_5250_limits[] = {
{ IPP_SIZE_LIMIT(BUFFER, .h = { 32, 4800, 8 }, .v = { 16, 3344, 8 }) },
{ IPP_SIZE_LIMIT(AREA, .h = { 16, 4800, 2 }, .v = { 8, 3344, 2 }) },
{ IPP_SIZE_LIMIT(ROTATED, .h = { 32, 2048 }, .v = { 16, 2048 }) },
{ IPP_SCALE_LIMIT(.h = { (1 << 16) / 16, (1 << 16) * 8 },
.v = { (1 << 16) / 16, (1 << 16) * 8 }) },
};
static const struct drm_exynos_ipp_limit gsc_5420_limits[] = {
{ IPP_SIZE_LIMIT(BUFFER, .h = { 32, 4800, 8 }, .v = { 16, 3344, 8 }) },
{ IPP_SIZE_LIMIT(AREA, .h = { 16, 4800, 2 }, .v = { 8, 3344, 2 }) },
{ IPP_SIZE_LIMIT(ROTATED, .h = { 16, 2016 }, .v = { 8, 2016 }) },
{ IPP_SCALE_LIMIT(.h = { (1 << 16) / 16, (1 << 16) * 8 },
.v = { (1 << 16) / 16, (1 << 16) * 8 }) },
};
static const struct drm_exynos_ipp_limit gsc_5433_limits[] = {
{ IPP_SIZE_LIMIT(BUFFER, .h = { 32, 8191, 2 }, .v = { 16, 8191, 2 }) },
{ IPP_SIZE_LIMIT(AREA, .h = { 16, 4800, 1 }, .v = { 8, 3344, 1 }) },
{ IPP_SIZE_LIMIT(ROTATED, .h = { 32, 2047 }, .v = { 8, 8191 }) },
{ IPP_SCALE_LIMIT(.h = { (1 << 16) / 16, (1 << 16) * 8 },
.v = { (1 << 16) / 16, (1 << 16) * 8 }) },
};
static struct gsc_driverdata gsc_exynos5250_drvdata = {
.clk_names = {"gscl"},
.num_clocks = 1,
.limits = gsc_5250_limits,
.num_limits = ARRAY_SIZE(gsc_5250_limits),
};
static struct gsc_driverdata gsc_exynos5420_drvdata = {
.clk_names = {"gscl"},
.num_clocks = 1,
.limits = gsc_5420_limits,
.num_limits = ARRAY_SIZE(gsc_5420_limits),
};
static struct gsc_driverdata gsc_exynos5433_drvdata = {
.clk_names = {"pclk", "aclk", "aclk_xiu", "aclk_gsclbend"},
.num_clocks = 4,
.limits = gsc_5433_limits,
.num_limits = ARRAY_SIZE(gsc_5433_limits),
};
static const struct of_device_id exynos_drm_gsc_of_match[] = { static const struct of_device_id exynos_drm_gsc_of_match[] = {
{ .compatible = "samsung,exynos5-gsc" }, {
{ }, .compatible = "samsung,exynos5-gsc",
.data = &gsc_exynos5250_drvdata,
}, {
.compatible = "samsung,exynos5250-gsc",
.data = &gsc_exynos5250_drvdata,
}, {
.compatible = "samsung,exynos5420-gsc",
.data = &gsc_exynos5420_drvdata,
}, {
.compatible = "samsung,exynos5433-gsc",
.data = &gsc_exynos5433_drvdata,
}, {
},
}; };
MODULE_DEVICE_TABLE(of, exynos_drm_gsc_of_match); MODULE_DEVICE_TABLE(of, exynos_drm_gsc_of_match);
...@@ -1800,4 +1396,3 @@ struct platform_driver gsc_driver = { ...@@ -1800,4 +1396,3 @@ struct platform_driver gsc_driver = {
.of_match_table = of_match_ptr(exynos_drm_gsc_of_match), .of_match_table = of_match_ptr(exynos_drm_gsc_of_match),
}, },
}; };
/*
* Copyright (c) 2012 Samsung Electronics Co., Ltd.
*
* Authors:
* Eunchul Kim <chulspro.kim@samsung.com>
* Jinyoung Jeon <jy0.jeon@samsung.com>
* Sangmin Lee <lsmin.lee@samsung.com>
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation; either version 2 of the License, or (at your
* option) any later version.
*/
#ifndef _EXYNOS_DRM_GSC_H_
#define _EXYNOS_DRM_GSC_H_
/*
* TODO
* FIMD output interface notifier callback.
* Mixer output interface notifier callback.
*/
#endif /* _EXYNOS_DRM_GSC_H_ */
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment