Commit 8c1dccc8 authored by Linus Torvalds's avatar Linus Torvalds

Merge tag 'core-rcu-2020-12-14' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip

Pull RCU updates from Thomas Gleixner:
 "RCU, LKMM and KCSAN updates collected by Paul McKenney.

  RCU:
   - Avoid cpuinfo-induced IPI pileups and idle-CPU IPIs

   - Lockdep-RCU updates reducing the need for __maybe_unused

   - Tasks-RCU updates

   - Miscellaneous fixes

   - Documentation updates

   - Torture-test updates

  KCSAN:
   - updates for selftests, avoiding setting watchpoints on NULL pointers

   - fix to watchpoint encoding

  LKMM:
   - updates for documentation along with some updates to example-code
     litmus tests"

* tag 'core-rcu-2020-12-14' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (72 commits)
  srcu: Take early exit on memory-allocation failure
  rcu/tree: Defer kvfree_rcu() allocation to a clean context
  rcu: Do not report strict GPs for outgoing CPUs
  rcu: Fix a typo in rcu_blocking_is_gp() header comment
  rcu: Prevent lockdep-RCU splats on lock acquisition/release
  rcu/tree: nocb: Avoid raising softirq for offloaded ready-to-execute CBs
  rcu,ftrace: Fix ftrace recursion
  rcu/tree: Make struct kernel_param_ops definitions const
  rcu/tree: Add a warning if CPU being onlined did not report QS already
  rcu: Clarify nocb kthreads naming in RCU_NOCB_CPU config
  rcu: Fix single-CPU check in rcu_blocking_is_gp()
  rcu: Implement rcu_segcblist_is_offloaded() config dependent
  list.h: Update comment to explicitly note circular lists
  rcu: Panic after fixed number of stalls
  x86/smpboot:  Move rcu_cpu_starting() earlier
  rcu: Allow rcu_irq_enter_check_tick() from NMI
  tools/memory-model: Label MP tests' producers and consumers
  tools/memory-model: Use "buf" and "flag" for message-passing tests
  tools/memory-model: Add types to litmus tests
  tools/memory-model: Add a glossary of LKMM terms
  ...
parents 1ac0884d 50df51d1
...@@ -1929,16 +1929,46 @@ The Linux-kernel CPU-hotplug implementation has notifiers that are used ...@@ -1929,16 +1929,46 @@ The Linux-kernel CPU-hotplug implementation has notifiers that are used
to allow the various kernel subsystems (including RCU) to respond to allow the various kernel subsystems (including RCU) to respond
appropriately to a given CPU-hotplug operation. Most RCU operations may appropriately to a given CPU-hotplug operation. Most RCU operations may
be invoked from CPU-hotplug notifiers, including even synchronous be invoked from CPU-hotplug notifiers, including even synchronous
grace-period operations such as ``synchronize_rcu()`` and grace-period operations such as (``synchronize_rcu()`` and
``synchronize_rcu_expedited()``. ``synchronize_rcu_expedited()``). However, these synchronous operations
do block and therefore cannot be invoked from notifiers that execute via
However, all-callback-wait operations such as ``rcu_barrier()`` are also ``stop_machine()``, specifically those between the ``CPUHP_AP_OFFLINE``
not supported, due to the fact that there are phases of CPU-hotplug and ``CPUHP_AP_ONLINE`` states.
operations where the outgoing CPU's callbacks will not be invoked until
after the CPU-hotplug operation ends, which could also result in In addition, all-callback-wait operations such as ``rcu_barrier()`` may
deadlock. Furthermore, ``rcu_barrier()`` blocks CPU-hotplug operations not be invoked from any CPU-hotplug notifier. This restriction is due
during its execution, which results in another type of deadlock when to the fact that there are phases of CPU-hotplug operations where the
invoked from a CPU-hotplug notifier. outgoing CPU's callbacks will not be invoked until after the CPU-hotplug
operation ends, which could also result in deadlock. Furthermore,
``rcu_barrier()`` blocks CPU-hotplug operations during its execution,
which results in another type of deadlock when invoked from a CPU-hotplug
notifier.
Finally, RCU must avoid deadlocks due to interaction between hotplug,
timers and grace period processing. It does so by maintaining its own set
of books that duplicate the centrally maintained ``cpu_online_mask``,
and also by reporting quiescent states explicitly when a CPU goes
offline. This explicit reporting of quiescent states avoids any need
for the force-quiescent-state loop (FQS) to report quiescent states for
offline CPUs. However, as a debugging measure, the FQS loop does splat
if offline CPUs block an RCU grace period for too long.
An offline CPU's quiescent state will be reported either:
1. As the CPU goes offline using RCU's hotplug notifier (``rcu_report_dead()``).
2. When grace period initialization (``rcu_gp_init()``) detects a
race either with CPU offlining or with a task unblocking on a leaf
``rcu_node`` structure whose CPUs are all offline.
The CPU-online path (``rcu_cpu_starting()``) should never need to report
a quiescent state for an offline CPU. However, as a debugging measure,
it does emit a warning if a quiescent state was not already reported
for that CPU.
During the checking/modification of RCU's hotplug bookkeeping, the
corresponding CPU's leaf node lock is held. This avoids race conditions
between RCU's hotplug notifier hooks, the grace period initialization
code, and the FQS loop, all of which refer to or modify this bookkeeping.
Scheduler and RCU Scheduler and RCU
~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~
......
...@@ -314,6 +314,13 @@ over a rather long period of time, but improvements are always welcome! ...@@ -314,6 +314,13 @@ over a rather long period of time, but improvements are always welcome!
shared between readers and updaters. Additional primitives shared between readers and updaters. Additional primitives
are provided for this case, as discussed in lockdep.txt. are provided for this case, as discussed in lockdep.txt.
One exception to this rule is when data is only ever added to
the linked data structure, and is never removed during any
time that readers might be accessing that structure. In such
cases, READ_ONCE() may be used in place of rcu_dereference()
and the read-side markers (rcu_read_lock() and rcu_read_unlock(),
for example) may be omitted.
10. Conversely, if you are in an RCU read-side critical section, 10. Conversely, if you are in an RCU read-side critical section,
and you don't hold the appropriate update-side lock, you -must- and you don't hold the appropriate update-side lock, you -must-
use the "_rcu()" variants of the list macros. Failing to do so use the "_rcu()" variants of the list macros. Failing to do so
......
...@@ -28,6 +28,12 @@ Follow these rules to keep your RCU code working properly: ...@@ -28,6 +28,12 @@ Follow these rules to keep your RCU code working properly:
for an example where the compiler can in fact deduce the exact for an example where the compiler can in fact deduce the exact
value of the pointer, and thus cause misordering. value of the pointer, and thus cause misordering.
- In the special case where data is added but is never removed
while readers are accessing the structure, READ_ONCE() may be used
instead of rcu_dereference(). In this case, use of READ_ONCE()
takes on the role of the lockless_dereference() primitive that
was removed in v4.15.
- You are only permitted to use rcu_dereference on pointer values. - You are only permitted to use rcu_dereference on pointer values.
The compiler simply knows too much about integral values to The compiler simply knows too much about integral values to
trust it to carry dependencies through integer operations. trust it to carry dependencies through integer operations.
......
...@@ -497,8 +497,7 @@ long -- there might be other high-priority work to be done. ...@@ -497,8 +497,7 @@ long -- there might be other high-priority work to be done.
In such cases, one uses call_rcu() rather than synchronize_rcu(). In such cases, one uses call_rcu() rather than synchronize_rcu().
The call_rcu() API is as follows:: The call_rcu() API is as follows::
void call_rcu(struct rcu_head * head, void call_rcu(struct rcu_head *head, rcu_callback_t func);
void (*func)(struct rcu_head *head));
This function invokes func(head) after a grace period has elapsed. This function invokes func(head) after a grace period has elapsed.
This invocation might happen from either softirq or process context, This invocation might happen from either softirq or process context,
......
...@@ -1870,7 +1870,7 @@ There are some more advanced barrier functions: ...@@ -1870,7 +1870,7 @@ There are some more advanced barrier functions:
These are for use with atomic RMW functions that do not imply memory These are for use with atomic RMW functions that do not imply memory
barriers, but where the code needs a memory barrier. Examples for atomic barriers, but where the code needs a memory barrier. Examples for atomic
RMW functions that do not imply are memory barrier are e.g. add, RMW functions that do not imply a memory barrier are e.g. add,
subtract, (failed) conditional operations, _relaxed functions, subtract, (failed) conditional operations, _relaxed functions,
but not atomic_read or atomic_set. A common example where a memory but not atomic_read or atomic_set. A common example where a memory
barrier may be required is when atomic ops are used for reference barrier may be required is when atomic ops are used for reference
......
...@@ -14,11 +14,13 @@ ...@@ -14,11 +14,13 @@
#include <linux/cpufreq.h> #include <linux/cpufreq.h>
#include <linux/smp.h> #include <linux/smp.h>
#include <linux/sched/isolation.h> #include <linux/sched/isolation.h>
#include <linux/rcupdate.h>
#include "cpu.h" #include "cpu.h"
struct aperfmperf_sample { struct aperfmperf_sample {
unsigned int khz; unsigned int khz;
atomic_t scfpending;
ktime_t time; ktime_t time;
u64 aperf; u64 aperf;
u64 mperf; u64 mperf;
...@@ -62,16 +64,19 @@ static void aperfmperf_snapshot_khz(void *dummy) ...@@ -62,16 +64,19 @@ static void aperfmperf_snapshot_khz(void *dummy)
s->aperf = aperf; s->aperf = aperf;
s->mperf = mperf; s->mperf = mperf;
s->khz = div64_u64((cpu_khz * aperf_delta), mperf_delta); s->khz = div64_u64((cpu_khz * aperf_delta), mperf_delta);
atomic_set_release(&s->scfpending, 0);
} }
static bool aperfmperf_snapshot_cpu(int cpu, ktime_t now, bool wait) static bool aperfmperf_snapshot_cpu(int cpu, ktime_t now, bool wait)
{ {
s64 time_delta = ktime_ms_delta(now, per_cpu(samples.time, cpu)); s64 time_delta = ktime_ms_delta(now, per_cpu(samples.time, cpu));
struct aperfmperf_sample *s = per_cpu_ptr(&samples, cpu);
/* Don't bother re-computing within the cache threshold time. */ /* Don't bother re-computing within the cache threshold time. */
if (time_delta < APERFMPERF_CACHE_THRESHOLD_MS) if (time_delta < APERFMPERF_CACHE_THRESHOLD_MS)
return true; return true;
if (!atomic_xchg(&s->scfpending, 1) || wait)
smp_call_function_single(cpu, aperfmperf_snapshot_khz, NULL, wait); smp_call_function_single(cpu, aperfmperf_snapshot_khz, NULL, wait);
/* Return false if the previous iteration was too long ago. */ /* Return false if the previous iteration was too long ago. */
...@@ -89,6 +94,9 @@ unsigned int aperfmperf_get_khz(int cpu) ...@@ -89,6 +94,9 @@ unsigned int aperfmperf_get_khz(int cpu)
if (!housekeeping_cpu(cpu, HK_FLAG_MISC)) if (!housekeeping_cpu(cpu, HK_FLAG_MISC))
return 0; return 0;
if (rcu_is_idle_cpu(cpu))
return 0; /* Idle CPUs are completely uninteresting. */
aperfmperf_snapshot_cpu(cpu, ktime_get(), true); aperfmperf_snapshot_cpu(cpu, ktime_get(), true);
return per_cpu(samples.khz, cpu); return per_cpu(samples.khz, cpu);
} }
...@@ -108,6 +116,8 @@ void arch_freq_prepare_all(void) ...@@ -108,6 +116,8 @@ void arch_freq_prepare_all(void)
for_each_online_cpu(cpu) { for_each_online_cpu(cpu) {
if (!housekeeping_cpu(cpu, HK_FLAG_MISC)) if (!housekeeping_cpu(cpu, HK_FLAG_MISC))
continue; continue;
if (rcu_is_idle_cpu(cpu))
continue; /* Idle CPUs are completely uninteresting. */
if (!aperfmperf_snapshot_cpu(cpu, now, false)) if (!aperfmperf_snapshot_cpu(cpu, now, false))
wait = true; wait = true;
} }
...@@ -118,6 +128,8 @@ void arch_freq_prepare_all(void) ...@@ -118,6 +128,8 @@ void arch_freq_prepare_all(void)
unsigned int arch_freq_get_on_cpu(int cpu) unsigned int arch_freq_get_on_cpu(int cpu)
{ {
struct aperfmperf_sample *s = per_cpu_ptr(&samples, cpu);
if (!cpu_khz) if (!cpu_khz)
return 0; return 0;
...@@ -131,6 +143,8 @@ unsigned int arch_freq_get_on_cpu(int cpu) ...@@ -131,6 +143,8 @@ unsigned int arch_freq_get_on_cpu(int cpu)
return per_cpu(samples.khz, cpu); return per_cpu(samples.khz, cpu);
msleep(APERFMPERF_REFRESH_DELAY_MS); msleep(APERFMPERF_REFRESH_DELAY_MS);
atomic_set(&s->scfpending, 1);
smp_mb(); /* ->scfpending before smp_call_function_single(). */
smp_call_function_single(cpu, aperfmperf_snapshot_khz, NULL, 1); smp_call_function_single(cpu, aperfmperf_snapshot_khz, NULL, 1);
return per_cpu(samples.khz, cpu); return per_cpu(samples.khz, cpu);
......
...@@ -794,8 +794,6 @@ void mtrr_ap_init(void) ...@@ -794,8 +794,6 @@ void mtrr_ap_init(void)
if (!use_intel() || mtrr_aps_delayed_init) if (!use_intel() || mtrr_aps_delayed_init)
return; return;
rcu_cpu_starting(smp_processor_id());
/* /*
* Ideally we should hold mtrr_mutex here to avoid mtrr entries * Ideally we should hold mtrr_mutex here to avoid mtrr entries
* changed, but this routine will be called in cpu boot time, * changed, but this routine will be called in cpu boot time,
......
...@@ -229,6 +229,7 @@ static void notrace start_secondary(void *unused) ...@@ -229,6 +229,7 @@ static void notrace start_secondary(void *unused)
#endif #endif
cpu_init_exception_handling(); cpu_init_exception_handling();
cpu_init(); cpu_init();
rcu_cpu_starting(raw_smp_processor_id());
x86_cpuinit.early_percpu_clock_init(); x86_cpuinit.early_percpu_clock_init();
preempt_disable(); preempt_disable();
smp_callin(); smp_callin();
......
...@@ -536,6 +536,7 @@ extern int panic_on_warn; ...@@ -536,6 +536,7 @@ extern int panic_on_warn;
extern unsigned long panic_on_taint; extern unsigned long panic_on_taint;
extern bool panic_on_taint_nousertaint; extern bool panic_on_taint_nousertaint;
extern int sysctl_panic_on_rcu_stall; extern int sysctl_panic_on_rcu_stall;
extern int sysctl_max_rcu_stall_to_panic;
extern int sysctl_panic_on_stackoverflow; extern int sysctl_panic_on_stackoverflow;
extern bool crash_kexec_post_notifiers; extern bool crash_kexec_post_notifiers;
......
...@@ -9,7 +9,7 @@ ...@@ -9,7 +9,7 @@
#include <linux/kernel.h> #include <linux/kernel.h>
/* /*
* Simple doubly linked list implementation. * Circular doubly linked list implementation.
* *
* Some of the internal functions ("__xxx") are useful when * Some of the internal functions ("__xxx") are useful when
* manipulating whole lists rather than single entries, as * manipulating whole lists rather than single entries, as
......
...@@ -375,6 +375,12 @@ static inline void lockdep_unregister_key(struct lock_class_key *key) ...@@ -375,6 +375,12 @@ static inline void lockdep_unregister_key(struct lock_class_key *key)
#define lockdep_depth(tsk) (0) #define lockdep_depth(tsk) (0)
/*
* Dummy forward declarations, allow users to write less ifdef-y code
* and depend on dead code elimination.
*/
extern int lock_is_held(const void *);
extern int lockdep_is_held(const void *);
#define lockdep_is_held_type(l, r) (1) #define lockdep_is_held_type(l, r) (1)
#define lockdep_assert_held(l) do { (void)(l); } while (0) #define lockdep_assert_held(l) do { (void)(l); } while (0)
......
...@@ -241,6 +241,11 @@ bool rcu_lockdep_current_cpu_online(void); ...@@ -241,6 +241,11 @@ bool rcu_lockdep_current_cpu_online(void);
static inline bool rcu_lockdep_current_cpu_online(void) { return true; } static inline bool rcu_lockdep_current_cpu_online(void) { return true; }
#endif /* #else #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU) */ #endif /* #else #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU) */
extern struct lockdep_map rcu_lock_map;
extern struct lockdep_map rcu_bh_lock_map;
extern struct lockdep_map rcu_sched_lock_map;
extern struct lockdep_map rcu_callback_map;
#ifdef CONFIG_DEBUG_LOCK_ALLOC #ifdef CONFIG_DEBUG_LOCK_ALLOC
static inline void rcu_lock_acquire(struct lockdep_map *map) static inline void rcu_lock_acquire(struct lockdep_map *map)
...@@ -253,10 +258,6 @@ static inline void rcu_lock_release(struct lockdep_map *map) ...@@ -253,10 +258,6 @@ static inline void rcu_lock_release(struct lockdep_map *map)
lock_release(map, _THIS_IP_); lock_release(map, _THIS_IP_);
} }
extern struct lockdep_map rcu_lock_map;
extern struct lockdep_map rcu_bh_lock_map;
extern struct lockdep_map rcu_sched_lock_map;
extern struct lockdep_map rcu_callback_map;
int debug_lockdep_rcu_enabled(void); int debug_lockdep_rcu_enabled(void);
int rcu_read_lock_held(void); int rcu_read_lock_held(void);
int rcu_read_lock_bh_held(void); int rcu_read_lock_bh_held(void);
...@@ -327,7 +328,7 @@ static inline void rcu_preempt_sleep_check(void) { } ...@@ -327,7 +328,7 @@ static inline void rcu_preempt_sleep_check(void) { }
#else /* #ifdef CONFIG_PROVE_RCU */ #else /* #ifdef CONFIG_PROVE_RCU */
#define RCU_LOCKDEP_WARN(c, s) do { } while (0) #define RCU_LOCKDEP_WARN(c, s) do { } while (0 && (c))
#define rcu_sleep_check() do { } while (0) #define rcu_sleep_check() do { } while (0)
#endif /* #else #ifdef CONFIG_PROVE_RCU */ #endif /* #else #ifdef CONFIG_PROVE_RCU */
......
...@@ -11,10 +11,10 @@ ...@@ -11,10 +11,10 @@
#include <linux/sched.h> #include <linux/sched.h>
#include <linux/rcupdate.h> #include <linux/rcupdate.h>
#ifdef CONFIG_DEBUG_LOCK_ALLOC
extern struct lockdep_map rcu_trace_lock_map; extern struct lockdep_map rcu_trace_lock_map;
#ifdef CONFIG_DEBUG_LOCK_ALLOC
static inline int rcu_read_lock_trace_held(void) static inline int rcu_read_lock_trace_held(void)
{ {
return lock_is_held(&rcu_trace_lock_map); return lock_is_held(&rcu_trace_lock_map);
......
...@@ -89,6 +89,8 @@ static inline void rcu_irq_enter_irqson(void) { } ...@@ -89,6 +89,8 @@ static inline void rcu_irq_enter_irqson(void) { }
static inline void rcu_irq_exit(void) { } static inline void rcu_irq_exit(void) { }
static inline void rcu_irq_exit_preempt(void) { } static inline void rcu_irq_exit_preempt(void) { }
static inline void rcu_irq_exit_check_preempt(void) { } static inline void rcu_irq_exit_check_preempt(void) { }
#define rcu_is_idle_cpu(cpu) \
(is_idle_task(current) && !in_nmi() && !in_irq() && !in_serving_softirq())
static inline void exit_rcu(void) { } static inline void exit_rcu(void) { }
static inline bool rcu_preempt_need_deferred_qs(struct task_struct *t) static inline bool rcu_preempt_need_deferred_qs(struct task_struct *t)
{ {
......
...@@ -50,6 +50,7 @@ void rcu_irq_exit(void); ...@@ -50,6 +50,7 @@ void rcu_irq_exit(void);
void rcu_irq_exit_preempt(void); void rcu_irq_exit_preempt(void);
void rcu_irq_enter_irqson(void); void rcu_irq_enter_irqson(void);
void rcu_irq_exit_irqson(void); void rcu_irq_exit_irqson(void);
bool rcu_is_idle_cpu(int cpu);
#ifdef CONFIG_PROVE_RCU #ifdef CONFIG_PROVE_RCU
void rcu_irq_exit_check_preempt(void); void rcu_irq_exit_check_preempt(void);
......
...@@ -47,9 +47,7 @@ extern spinlock_t mmlist_lock; ...@@ -47,9 +47,7 @@ extern spinlock_t mmlist_lock;
extern union thread_union init_thread_union; extern union thread_union init_thread_union;
extern struct task_struct init_task; extern struct task_struct init_task;
#ifdef CONFIG_PROVE_RCU
extern int lockdep_tasklist_lock_is_held(void); extern int lockdep_tasklist_lock_is_held(void);
#endif /* #ifdef CONFIG_PROVE_RCU */
extern asmlinkage void schedule_tail(struct task_struct *prev); extern asmlinkage void schedule_tail(struct task_struct *prev);
extern void init_idle(struct task_struct *idle, int cpu); extern void init_idle(struct task_struct *idle, int cpu);
......
...@@ -435,7 +435,6 @@ struct tcf_block { ...@@ -435,7 +435,6 @@ struct tcf_block {
struct mutex proto_destroy_lock; /* Lock for proto_destroy hashtable. */ struct mutex proto_destroy_lock; /* Lock for proto_destroy hashtable. */
}; };
#ifdef CONFIG_PROVE_LOCKING
static inline bool lockdep_tcf_chain_is_locked(struct tcf_chain *chain) static inline bool lockdep_tcf_chain_is_locked(struct tcf_chain *chain)
{ {
return lockdep_is_held(&chain->filter_chain_lock); return lockdep_is_held(&chain->filter_chain_lock);
...@@ -445,17 +444,6 @@ static inline bool lockdep_tcf_proto_is_locked(struct tcf_proto *tp) ...@@ -445,17 +444,6 @@ static inline bool lockdep_tcf_proto_is_locked(struct tcf_proto *tp)
{ {
return lockdep_is_held(&tp->lock); return lockdep_is_held(&tp->lock);
} }
#else
static inline bool lockdep_tcf_chain_is_locked(struct tcf_block *chain)
{
return true;
}
static inline bool lockdep_tcf_proto_is_locked(struct tcf_proto *tp)
{
return true;
}
#endif /* #ifdef CONFIG_PROVE_LOCKING */
#define tcf_chain_dereference(p, chain) \ #define tcf_chain_dereference(p, chain) \
rcu_dereference_protected(p, lockdep_tcf_chain_is_locked(chain)) rcu_dereference_protected(p, lockdep_tcf_chain_is_locked(chain))
......
...@@ -1566,13 +1566,11 @@ do { \ ...@@ -1566,13 +1566,11 @@ do { \
lockdep_init_map(&(sk)->sk_lock.dep_map, (name), (key), 0); \ lockdep_init_map(&(sk)->sk_lock.dep_map, (name), (key), 0); \
} while (0) } while (0)
#ifdef CONFIG_LOCKDEP
static inline bool lockdep_sock_is_held(const struct sock *sk) static inline bool lockdep_sock_is_held(const struct sock *sk)
{ {
return lockdep_is_held(&sk->sk_lock) || return lockdep_is_held(&sk->sk_lock) ||
lockdep_is_held(&sk->sk_lock.slock); lockdep_is_held(&sk->sk_lock.slock);
} }
#endif
void lock_sock_nested(struct sock *sk, int subclass); void lock_sock_nested(struct sock *sk, int subclass);
......
...@@ -37,18 +37,20 @@ ...@@ -37,18 +37,20 @@
*/ */
#define WATCHPOINT_ADDR_BITS (BITS_PER_LONG-1 - WATCHPOINT_SIZE_BITS) #define WATCHPOINT_ADDR_BITS (BITS_PER_LONG-1 - WATCHPOINT_SIZE_BITS)
/* /* Bitmasks for the encoded watchpoint access information. */
* Masks to set/retrieve the encoded data.
*/
#define WATCHPOINT_WRITE_MASK BIT(BITS_PER_LONG-1) #define WATCHPOINT_WRITE_MASK BIT(BITS_PER_LONG-1)
#define WATCHPOINT_SIZE_MASK \ #define WATCHPOINT_SIZE_MASK GENMASK(BITS_PER_LONG-2, WATCHPOINT_ADDR_BITS)
GENMASK(BITS_PER_LONG-2, BITS_PER_LONG-2 - WATCHPOINT_SIZE_BITS) #define WATCHPOINT_ADDR_MASK GENMASK(WATCHPOINT_ADDR_BITS-1, 0)
#define WATCHPOINT_ADDR_MASK \ static_assert(WATCHPOINT_ADDR_MASK == (1UL << WATCHPOINT_ADDR_BITS) - 1);
GENMASK(BITS_PER_LONG-3 - WATCHPOINT_SIZE_BITS, 0) static_assert((WATCHPOINT_WRITE_MASK ^ WATCHPOINT_SIZE_MASK ^ WATCHPOINT_ADDR_MASK) == ~0UL);
static inline bool check_encodable(unsigned long addr, size_t size) static inline bool check_encodable(unsigned long addr, size_t size)
{ {
return size <= MAX_ENCODABLE_SIZE; /*
* While we can encode addrs<PAGE_SIZE, avoid crashing with a NULL
* pointer deref inside KCSAN.
*/
return addr >= PAGE_SIZE && size <= MAX_ENCODABLE_SIZE;
} }
static inline long static inline long
......
...@@ -33,6 +33,9 @@ static bool test_encode_decode(void) ...@@ -33,6 +33,9 @@ static bool test_encode_decode(void)
unsigned long addr; unsigned long addr;
prandom_bytes(&addr, sizeof(addr)); prandom_bytes(&addr, sizeof(addr));
if (addr < PAGE_SIZE)
addr = PAGE_SIZE;
if (WARN_ON(!check_encodable(addr, size))) if (WARN_ON(!check_encodable(addr, size)))
return false; return false;
......
...@@ -29,6 +29,7 @@ ...@@ -29,6 +29,7 @@
#include <linux/slab.h> #include <linux/slab.h>
#include <linux/percpu-rwsem.h> #include <linux/percpu-rwsem.h>
#include <linux/torture.h> #include <linux/torture.h>
#include <linux/reboot.h>
MODULE_LICENSE("GPL"); MODULE_LICENSE("GPL");
MODULE_AUTHOR("Paul E. McKenney <paulmck@linux.ibm.com>"); MODULE_AUTHOR("Paul E. McKenney <paulmck@linux.ibm.com>");
...@@ -60,6 +61,7 @@ static struct task_struct **reader_tasks; ...@@ -60,6 +61,7 @@ static struct task_struct **reader_tasks;
static bool lock_is_write_held; static bool lock_is_write_held;
static bool lock_is_read_held; static bool lock_is_read_held;
static unsigned long last_lock_release;
struct lock_stress_stats { struct lock_stress_stats {
long n_lock_fail; long n_lock_fail;
...@@ -74,6 +76,7 @@ static void lock_torture_cleanup(void); ...@@ -74,6 +76,7 @@ static void lock_torture_cleanup(void);
*/ */
struct lock_torture_ops { struct lock_torture_ops {
void (*init)(void); void (*init)(void);
void (*exit)(void);
int (*writelock)(void); int (*writelock)(void);
void (*write_delay)(struct torture_random_state *trsp); void (*write_delay)(struct torture_random_state *trsp);
void (*task_boost)(struct torture_random_state *trsp); void (*task_boost)(struct torture_random_state *trsp);
...@@ -90,12 +93,13 @@ struct lock_torture_cxt { ...@@ -90,12 +93,13 @@ struct lock_torture_cxt {
int nrealwriters_stress; int nrealwriters_stress;
int nrealreaders_stress; int nrealreaders_stress;
bool debug_lock; bool debug_lock;
bool init_called;
atomic_t n_lock_torture_errors; atomic_t n_lock_torture_errors;
struct lock_torture_ops *cur_ops; struct lock_torture_ops *cur_ops;
struct lock_stress_stats *lwsa; /* writer statistics */ struct lock_stress_stats *lwsa; /* writer statistics */
struct lock_stress_stats *lrsa; /* reader statistics */ struct lock_stress_stats *lrsa; /* reader statistics */
}; };
static struct lock_torture_cxt cxt = { 0, 0, false, static struct lock_torture_cxt cxt = { 0, 0, false, false,
ATOMIC_INIT(0), ATOMIC_INIT(0),
NULL, NULL}; NULL, NULL};
/* /*
...@@ -571,6 +575,11 @@ static void torture_percpu_rwsem_init(void) ...@@ -571,6 +575,11 @@ static void torture_percpu_rwsem_init(void)
BUG_ON(percpu_init_rwsem(&pcpu_rwsem)); BUG_ON(percpu_init_rwsem(&pcpu_rwsem));
} }
static void torture_percpu_rwsem_exit(void)
{
percpu_free_rwsem(&pcpu_rwsem);
}
static int torture_percpu_rwsem_down_write(void) __acquires(pcpu_rwsem) static int torture_percpu_rwsem_down_write(void) __acquires(pcpu_rwsem)
{ {
percpu_down_write(&pcpu_rwsem); percpu_down_write(&pcpu_rwsem);
...@@ -595,6 +604,7 @@ static void torture_percpu_rwsem_up_read(void) __releases(pcpu_rwsem) ...@@ -595,6 +604,7 @@ static void torture_percpu_rwsem_up_read(void) __releases(pcpu_rwsem)
static struct lock_torture_ops percpu_rwsem_lock_ops = { static struct lock_torture_ops percpu_rwsem_lock_ops = {
.init = torture_percpu_rwsem_init, .init = torture_percpu_rwsem_init,
.exit = torture_percpu_rwsem_exit,
.writelock = torture_percpu_rwsem_down_write, .writelock = torture_percpu_rwsem_down_write,
.write_delay = torture_rwsem_write_delay, .write_delay = torture_rwsem_write_delay,
.task_boost = torture_boost_dummy, .task_boost = torture_boost_dummy,
...@@ -632,6 +642,7 @@ static int lock_torture_writer(void *arg) ...@@ -632,6 +642,7 @@ static int lock_torture_writer(void *arg)
lwsp->n_lock_acquired++; lwsp->n_lock_acquired++;
cxt.cur_ops->write_delay(&rand); cxt.cur_ops->write_delay(&rand);
lock_is_write_held = false; lock_is_write_held = false;
WRITE_ONCE(last_lock_release, jiffies);
cxt.cur_ops->writeunlock(); cxt.cur_ops->writeunlock();
stutter_wait("lock_torture_writer"); stutter_wait("lock_torture_writer");
...@@ -786,9 +797,10 @@ static void lock_torture_cleanup(void) ...@@ -786,9 +797,10 @@ static void lock_torture_cleanup(void)
/* /*
* Indicates early cleanup, meaning that the test has not run, * Indicates early cleanup, meaning that the test has not run,
* such as when passing bogus args when loading the module. As * such as when passing bogus args when loading the module.
* such, only perform the underlying torture-specific cleanups, * However cxt->cur_ops.init() may have been invoked, so beside
* and avoid anything related to locktorture. * perform the underlying torture-specific cleanups, cur_ops.exit()
* will be invoked if needed.
*/ */
if (!cxt.lwsa && !cxt.lrsa) if (!cxt.lwsa && !cxt.lrsa)
goto end; goto end;
...@@ -828,6 +840,11 @@ static void lock_torture_cleanup(void) ...@@ -828,6 +840,11 @@ static void lock_torture_cleanup(void)
cxt.lrsa = NULL; cxt.lrsa = NULL;
end: end:
if (cxt.init_called) {
if (cxt.cur_ops->exit)
cxt.cur_ops->exit();
cxt.init_called = false;
}
torture_cleanup_end(); torture_cleanup_end();
} }
...@@ -868,14 +885,17 @@ static int __init lock_torture_init(void) ...@@ -868,14 +885,17 @@ static int __init lock_torture_init(void)
goto unwind; goto unwind;
} }
if (nwriters_stress == 0 && nreaders_stress == 0) { if (nwriters_stress == 0 &&
(!cxt.cur_ops->readlock || nreaders_stress == 0)) {
pr_alert("lock-torture: must run at least one locking thread\n"); pr_alert("lock-torture: must run at least one locking thread\n");
firsterr = -EINVAL; firsterr = -EINVAL;
goto unwind; goto unwind;
} }
if (cxt.cur_ops->init) if (cxt.cur_ops->init) {
cxt.cur_ops->init(); cxt.cur_ops->init();
cxt.init_called = true;
}
if (nwriters_stress >= 0) if (nwriters_stress >= 0)
cxt.nrealwriters_stress = nwriters_stress; cxt.nrealwriters_stress = nwriters_stress;
...@@ -1038,6 +1058,10 @@ static int __init lock_torture_init(void) ...@@ -1038,6 +1058,10 @@ static int __init lock_torture_init(void)
unwind: unwind:
torture_init_end(); torture_init_end();
lock_torture_cleanup(); lock_torture_cleanup();
if (shutdown_secs) {
WARN_ON(!IS_MODULE(CONFIG_LOCK_TORTURE_TEST));
kernel_power_off();
}
return firsterr; return firsterr;
} }
......
...@@ -221,19 +221,23 @@ config RCU_NOCB_CPU ...@@ -221,19 +221,23 @@ config RCU_NOCB_CPU
Use this option to reduce OS jitter for aggressive HPC or Use this option to reduce OS jitter for aggressive HPC or
real-time workloads. It can also be used to offload RCU real-time workloads. It can also be used to offload RCU
callback invocation to energy-efficient CPUs in battery-powered callback invocation to energy-efficient CPUs in battery-powered
asymmetric multiprocessors. asymmetric multiprocessors. The price of this reduced jitter
is that the overhead of call_rcu() increases and that some
workloads will incur significant increases in context-switch
rates.
This option offloads callback invocation from the set of CPUs This option offloads callback invocation from the set of CPUs
specified at boot time by the rcu_nocbs parameter. For each specified at boot time by the rcu_nocbs parameter. For each
such CPU, a kthread ("rcuox/N") will be created to invoke such CPU, a kthread ("rcuox/N") will be created to invoke
callbacks, where the "N" is the CPU being offloaded, and where callbacks, where the "N" is the CPU being offloaded, and where
the "p" for RCU-preempt (PREEMPTION kernels) and "s" for RCU-sched the "x" is "p" for RCU-preempt (PREEMPTION kernels) and "s" for
(!PREEMPTION kernels). Nothing prevents this kthread from running RCU-sched (!PREEMPTION kernels). Nothing prevents this kthread
on the specified CPUs, but (1) the kthreads may be preempted from running on the specified CPUs, but (1) the kthreads may be
between each callback, and (2) affinity or cgroups can be used preempted between each callback, and (2) affinity or cgroups can
to force the kthreads to run on whatever set of CPUs is desired. be used to force the kthreads to run on whatever set of CPUs is
desired.
Say Y here if you want to help to debug reduced OS jitter.
Say Y here if you need reduced OS jitter, despite added overhead.
Say N here if you are unsure. Say N here if you are unsure.
config TASKS_TRACE_RCU_READ_MB config TASKS_TRACE_RCU_READ_MB
......
...@@ -533,4 +533,20 @@ static inline bool rcu_is_nocb_cpu(int cpu) { return false; } ...@@ -533,4 +533,20 @@ static inline bool rcu_is_nocb_cpu(int cpu) { return false; }
static inline void rcu_bind_current_to_nocb(void) { } static inline void rcu_bind_current_to_nocb(void) { }
#endif #endif
#if !defined(CONFIG_TINY_RCU) && defined(CONFIG_TASKS_RCU)
void show_rcu_tasks_classic_gp_kthread(void);
#else
static inline void show_rcu_tasks_classic_gp_kthread(void) {}
#endif
#if !defined(CONFIG_TINY_RCU) && defined(CONFIG_TASKS_RUDE_RCU)
void show_rcu_tasks_rude_gp_kthread(void);
#else
static inline void show_rcu_tasks_rude_gp_kthread(void) {}
#endif
#if !defined(CONFIG_TINY_RCU) && defined(CONFIG_TASKS_TRACE_RCU)
void show_rcu_tasks_trace_gp_kthread(void);
#else
static inline void show_rcu_tasks_trace_gp_kthread(void) {}
#endif
#endif /* __LINUX_RCU_H */ #endif /* __LINUX_RCU_H */
...@@ -62,7 +62,7 @@ static inline bool rcu_segcblist_is_enabled(struct rcu_segcblist *rsclp) ...@@ -62,7 +62,7 @@ static inline bool rcu_segcblist_is_enabled(struct rcu_segcblist *rsclp)
/* Is the specified rcu_segcblist offloaded? */ /* Is the specified rcu_segcblist offloaded? */
static inline bool rcu_segcblist_is_offloaded(struct rcu_segcblist *rsclp) static inline bool rcu_segcblist_is_offloaded(struct rcu_segcblist *rsclp)
{ {
return rsclp->offloaded; return IS_ENABLED(CONFIG_RCU_NOCB_CPU) && rsclp->offloaded;
} }
/* /*
......
...@@ -38,6 +38,7 @@ ...@@ -38,6 +38,7 @@
#include <asm/byteorder.h> #include <asm/byteorder.h>
#include <linux/torture.h> #include <linux/torture.h>
#include <linux/vmalloc.h> #include <linux/vmalloc.h>
#include <linux/rcupdate_trace.h>
#include "rcu.h" #include "rcu.h"
...@@ -294,6 +295,35 @@ static struct rcu_scale_ops tasks_ops = { ...@@ -294,6 +295,35 @@ static struct rcu_scale_ops tasks_ops = {
.name = "tasks" .name = "tasks"
}; };
/*
* Definitions for RCU-tasks-trace scalability testing.
*/
static int tasks_trace_scale_read_lock(void)
{
rcu_read_lock_trace();
return 0;
}
static void tasks_trace_scale_read_unlock(int idx)
{
rcu_read_unlock_trace();
}
static struct rcu_scale_ops tasks_tracing_ops = {
.ptype = RCU_TASKS_FLAVOR,
.init = rcu_sync_scale_init,
.readlock = tasks_trace_scale_read_lock,
.readunlock = tasks_trace_scale_read_unlock,
.get_gp_seq = rcu_no_completed,
.gp_diff = rcu_seq_diff,
.async = call_rcu_tasks_trace,
.gp_barrier = rcu_barrier_tasks_trace,
.sync = synchronize_rcu_tasks_trace,
.exp_sync = synchronize_rcu_tasks_trace,
.name = "tasks-tracing"
};
static unsigned long rcuscale_seq_diff(unsigned long new, unsigned long old) static unsigned long rcuscale_seq_diff(unsigned long new, unsigned long old)
{ {
if (!cur_ops->gp_diff) if (!cur_ops->gp_diff)
...@@ -754,7 +784,7 @@ rcu_scale_init(void) ...@@ -754,7 +784,7 @@ rcu_scale_init(void)
long i; long i;
int firsterr = 0; int firsterr = 0;
static struct rcu_scale_ops *scale_ops[] = { static struct rcu_scale_ops *scale_ops[] = {
&rcu_ops, &srcu_ops, &srcud_ops, &tasks_ops, &rcu_ops, &srcu_ops, &srcud_ops, &tasks_ops, &tasks_tracing_ops
}; };
if (!torture_init_begin(scale_type, verbose)) if (!torture_init_begin(scale_type, verbose))
...@@ -772,7 +802,6 @@ rcu_scale_init(void) ...@@ -772,7 +802,6 @@ rcu_scale_init(void)
for (i = 0; i < ARRAY_SIZE(scale_ops); i++) for (i = 0; i < ARRAY_SIZE(scale_ops); i++)
pr_cont(" %s", scale_ops[i]->name); pr_cont(" %s", scale_ops[i]->name);
pr_cont("\n"); pr_cont("\n");
WARN_ON(!IS_MODULE(CONFIG_RCU_SCALE_TEST));
firsterr = -EINVAL; firsterr = -EINVAL;
cur_ops = NULL; cur_ops = NULL;
goto unwind; goto unwind;
...@@ -846,6 +875,10 @@ rcu_scale_init(void) ...@@ -846,6 +875,10 @@ rcu_scale_init(void)
unwind: unwind:
torture_init_end(); torture_init_end();
rcu_scale_cleanup(); rcu_scale_cleanup();
if (shutdown) {
WARN_ON(!IS_MODULE(CONFIG_RCU_SCALE_TEST));
kernel_power_off();
}
return firsterr; return firsterr;
} }
......
...@@ -317,6 +317,7 @@ struct rcu_torture_ops { ...@@ -317,6 +317,7 @@ struct rcu_torture_ops {
void (*cb_barrier)(void); void (*cb_barrier)(void);
void (*fqs)(void); void (*fqs)(void);
void (*stats)(void); void (*stats)(void);
void (*gp_kthread_dbg)(void);
int (*stall_dur)(void); int (*stall_dur)(void);
int irq_capable; int irq_capable;
int can_boost; int can_boost;
...@@ -466,6 +467,7 @@ static struct rcu_torture_ops rcu_ops = { ...@@ -466,6 +467,7 @@ static struct rcu_torture_ops rcu_ops = {
.cb_barrier = rcu_barrier, .cb_barrier = rcu_barrier,
.fqs = rcu_force_quiescent_state, .fqs = rcu_force_quiescent_state,
.stats = NULL, .stats = NULL,
.gp_kthread_dbg = show_rcu_gp_kthreads,
.stall_dur = rcu_jiffies_till_stall_check, .stall_dur = rcu_jiffies_till_stall_check,
.irq_capable = 1, .irq_capable = 1,
.can_boost = rcu_can_boost(), .can_boost = rcu_can_boost(),
...@@ -693,6 +695,7 @@ static struct rcu_torture_ops tasks_ops = { ...@@ -693,6 +695,7 @@ static struct rcu_torture_ops tasks_ops = {
.exp_sync = synchronize_rcu_mult_test, .exp_sync = synchronize_rcu_mult_test,
.call = call_rcu_tasks, .call = call_rcu_tasks,
.cb_barrier = rcu_barrier_tasks, .cb_barrier = rcu_barrier_tasks,
.gp_kthread_dbg = show_rcu_tasks_classic_gp_kthread,
.fqs = NULL, .fqs = NULL,
.stats = NULL, .stats = NULL,
.irq_capable = 1, .irq_capable = 1,
...@@ -762,6 +765,7 @@ static struct rcu_torture_ops tasks_rude_ops = { ...@@ -762,6 +765,7 @@ static struct rcu_torture_ops tasks_rude_ops = {
.exp_sync = synchronize_rcu_tasks_rude, .exp_sync = synchronize_rcu_tasks_rude,
.call = call_rcu_tasks_rude, .call = call_rcu_tasks_rude,
.cb_barrier = rcu_barrier_tasks_rude, .cb_barrier = rcu_barrier_tasks_rude,
.gp_kthread_dbg = show_rcu_tasks_rude_gp_kthread,
.fqs = NULL, .fqs = NULL,
.stats = NULL, .stats = NULL,
.irq_capable = 1, .irq_capable = 1,
...@@ -800,6 +804,7 @@ static struct rcu_torture_ops tasks_tracing_ops = { ...@@ -800,6 +804,7 @@ static struct rcu_torture_ops tasks_tracing_ops = {
.exp_sync = synchronize_rcu_tasks_trace, .exp_sync = synchronize_rcu_tasks_trace,
.call = call_rcu_tasks_trace, .call = call_rcu_tasks_trace,
.cb_barrier = rcu_barrier_tasks_trace, .cb_barrier = rcu_barrier_tasks_trace,
.gp_kthread_dbg = show_rcu_tasks_trace_gp_kthread,
.fqs = NULL, .fqs = NULL,
.stats = NULL, .stats = NULL,
.irq_capable = 1, .irq_capable = 1,
...@@ -912,7 +917,8 @@ static int rcu_torture_boost(void *arg) ...@@ -912,7 +917,8 @@ static int rcu_torture_boost(void *arg)
oldstarttime = boost_starttime; oldstarttime = boost_starttime;
while (time_before(jiffies, oldstarttime)) { while (time_before(jiffies, oldstarttime)) {
schedule_timeout_interruptible(oldstarttime - jiffies); schedule_timeout_interruptible(oldstarttime - jiffies);
stutter_wait("rcu_torture_boost"); if (stutter_wait("rcu_torture_boost"))
sched_set_fifo_low(current);
if (torture_must_stop()) if (torture_must_stop())
goto checkwait; goto checkwait;
} }
...@@ -932,7 +938,8 @@ static int rcu_torture_boost(void *arg) ...@@ -932,7 +938,8 @@ static int rcu_torture_boost(void *arg)
jiffies); jiffies);
call_rcu_time = jiffies; call_rcu_time = jiffies;
} }
stutter_wait("rcu_torture_boost"); if (stutter_wait("rcu_torture_boost"))
sched_set_fifo_low(current);
if (torture_must_stop()) if (torture_must_stop())
goto checkwait; goto checkwait;
} }
...@@ -964,7 +971,8 @@ static int rcu_torture_boost(void *arg) ...@@ -964,7 +971,8 @@ static int rcu_torture_boost(void *arg)
} }
/* Go do the stutter. */ /* Go do the stutter. */
checkwait: stutter_wait("rcu_torture_boost"); checkwait: if (stutter_wait("rcu_torture_boost"))
sched_set_fifo_low(current);
} while (!torture_must_stop()); } while (!torture_must_stop());
/* Clean up and exit. */ /* Clean up and exit. */
...@@ -987,6 +995,7 @@ rcu_torture_fqs(void *arg) ...@@ -987,6 +995,7 @@ rcu_torture_fqs(void *arg)
{ {
unsigned long fqs_resume_time; unsigned long fqs_resume_time;
int fqs_burst_remaining; int fqs_burst_remaining;
int oldnice = task_nice(current);
VERBOSE_TOROUT_STRING("rcu_torture_fqs task started"); VERBOSE_TOROUT_STRING("rcu_torture_fqs task started");
do { do {
...@@ -1002,7 +1011,8 @@ rcu_torture_fqs(void *arg) ...@@ -1002,7 +1011,8 @@ rcu_torture_fqs(void *arg)
udelay(fqs_holdoff); udelay(fqs_holdoff);
fqs_burst_remaining -= fqs_holdoff; fqs_burst_remaining -= fqs_holdoff;
} }
stutter_wait("rcu_torture_fqs"); if (stutter_wait("rcu_torture_fqs"))
sched_set_normal(current, oldnice);
} while (!torture_must_stop()); } while (!torture_must_stop());
torture_kthread_stopping("rcu_torture_fqs"); torture_kthread_stopping("rcu_torture_fqs");
return 0; return 0;
...@@ -1022,9 +1032,11 @@ rcu_torture_writer(void *arg) ...@@ -1022,9 +1032,11 @@ rcu_torture_writer(void *arg)
bool gp_cond1 = gp_cond, gp_exp1 = gp_exp, gp_normal1 = gp_normal; bool gp_cond1 = gp_cond, gp_exp1 = gp_exp, gp_normal1 = gp_normal;
bool gp_sync1 = gp_sync; bool gp_sync1 = gp_sync;
int i; int i;
int oldnice = task_nice(current);
struct rcu_torture *rp; struct rcu_torture *rp;
struct rcu_torture *old_rp; struct rcu_torture *old_rp;
static DEFINE_TORTURE_RANDOM(rand); static DEFINE_TORTURE_RANDOM(rand);
bool stutter_waited;
int synctype[] = { RTWS_DEF_FREE, RTWS_EXP_SYNC, int synctype[] = { RTWS_DEF_FREE, RTWS_EXP_SYNC,
RTWS_COND_GET, RTWS_SYNC }; RTWS_COND_GET, RTWS_SYNC };
int nsynctypes = 0; int nsynctypes = 0;
...@@ -1143,7 +1155,8 @@ rcu_torture_writer(void *arg) ...@@ -1143,7 +1155,8 @@ rcu_torture_writer(void *arg)
!rcu_gp_is_normal(); !rcu_gp_is_normal();
} }
rcu_torture_writer_state = RTWS_STUTTER; rcu_torture_writer_state = RTWS_STUTTER;
if (stutter_wait("rcu_torture_writer") && stutter_waited = stutter_wait("rcu_torture_writer");
if (stutter_waited &&
!READ_ONCE(rcu_fwd_cb_nodelay) && !READ_ONCE(rcu_fwd_cb_nodelay) &&
!cur_ops->slow_gps && !cur_ops->slow_gps &&
!torture_must_stop() && !torture_must_stop() &&
...@@ -1155,6 +1168,8 @@ rcu_torture_writer(void *arg) ...@@ -1155,6 +1168,8 @@ rcu_torture_writer(void *arg)
rcu_ftrace_dump(DUMP_ALL); rcu_ftrace_dump(DUMP_ALL);
WARN(1, "%s: rtort_pipe_count: %d\n", __func__, rcu_tortures[i].rtort_pipe_count); WARN(1, "%s: rtort_pipe_count: %d\n", __func__, rcu_tortures[i].rtort_pipe_count);
} }
if (stutter_waited)
sched_set_normal(current, oldnice);
} while (!torture_must_stop()); } while (!torture_must_stop());
rcu_torture_current = NULL; // Let stats task know that we are done. rcu_torture_current = NULL; // Let stats task know that we are done.
/* Reset expediting back to unexpedited. */ /* Reset expediting back to unexpedited. */
...@@ -1594,7 +1609,8 @@ rcu_torture_stats_print(void) ...@@ -1594,7 +1609,8 @@ rcu_torture_stats_print(void)
sched_show_task(wtp); sched_show_task(wtp);
splatted = true; splatted = true;
} }
show_rcu_gp_kthreads(); if (cur_ops->gp_kthread_dbg)
cur_ops->gp_kthread_dbg();
rcu_ftrace_dump(DUMP_ALL); rcu_ftrace_dump(DUMP_ALL);
} }
rtcv_snap = rcu_torture_current_version; rtcv_snap = rcu_torture_current_version;
...@@ -1913,7 +1929,9 @@ static void rcu_torture_fwd_prog_nr(struct rcu_fwd *rfp, ...@@ -1913,7 +1929,9 @@ static void rcu_torture_fwd_prog_nr(struct rcu_fwd *rfp,
unsigned long stopat; unsigned long stopat;
static DEFINE_TORTURE_RANDOM(trs); static DEFINE_TORTURE_RANDOM(trs);
if (cur_ops->call && cur_ops->sync && cur_ops->cb_barrier) { if (!cur_ops->sync)
return; // Cannot do need_resched() forward progress testing without ->sync.
if (cur_ops->call && cur_ops->cb_barrier) {
init_rcu_head_on_stack(&fcs.rh); init_rcu_head_on_stack(&fcs.rh);
selfpropcb = true; selfpropcb = true;
} }
...@@ -2103,6 +2121,7 @@ static struct notifier_block rcutorture_oom_nb = { ...@@ -2103,6 +2121,7 @@ static struct notifier_block rcutorture_oom_nb = {
/* Carry out grace-period forward-progress testing. */ /* Carry out grace-period forward-progress testing. */
static int rcu_torture_fwd_prog(void *args) static int rcu_torture_fwd_prog(void *args)
{ {
int oldnice = task_nice(current);
struct rcu_fwd *rfp = args; struct rcu_fwd *rfp = args;
int tested = 0; int tested = 0;
int tested_tries = 0; int tested_tries = 0;
...@@ -2121,7 +2140,8 @@ static int rcu_torture_fwd_prog(void *args) ...@@ -2121,7 +2140,8 @@ static int rcu_torture_fwd_prog(void *args)
rcu_torture_fwd_prog_cr(rfp); rcu_torture_fwd_prog_cr(rfp);
/* Avoid slow periods, better to test when busy. */ /* Avoid slow periods, better to test when busy. */
stutter_wait("rcu_torture_fwd_prog"); if (stutter_wait("rcu_torture_fwd_prog"))
sched_set_normal(current, oldnice);
} while (!torture_must_stop()); } while (!torture_must_stop());
/* Short runs might not contain a valid forward-progress attempt. */ /* Short runs might not contain a valid forward-progress attempt. */
WARN_ON(!tested && tested_tries >= 5); WARN_ON(!tested && tested_tries >= 5);
...@@ -2137,8 +2157,8 @@ static int __init rcu_torture_fwd_prog_init(void) ...@@ -2137,8 +2157,8 @@ static int __init rcu_torture_fwd_prog_init(void)
if (!fwd_progress) if (!fwd_progress)
return 0; /* Not requested, so don't do it. */ return 0; /* Not requested, so don't do it. */
if (!cur_ops->stall_dur || cur_ops->stall_dur() <= 0 || if ((!cur_ops->sync && !cur_ops->call) ||
cur_ops == &rcu_busted_ops) { !cur_ops->stall_dur || cur_ops->stall_dur() <= 0 || cur_ops == &rcu_busted_ops) {
VERBOSE_TOROUT_STRING("rcu_torture_fwd_prog_init: Disabled, unsupported by RCU flavor under test"); VERBOSE_TOROUT_STRING("rcu_torture_fwd_prog_init: Disabled, unsupported by RCU flavor under test");
return 0; return 0;
} }
...@@ -2472,7 +2492,8 @@ rcu_torture_cleanup(void) ...@@ -2472,7 +2492,8 @@ rcu_torture_cleanup(void)
return; return;
} }
show_rcu_gp_kthreads(); if (cur_ops->gp_kthread_dbg)
cur_ops->gp_kthread_dbg();
rcu_torture_read_exit_cleanup(); rcu_torture_read_exit_cleanup();
rcu_torture_barrier_cleanup(); rcu_torture_barrier_cleanup();
rcu_torture_fwd_prog_cleanup(); rcu_torture_fwd_prog_cleanup();
...@@ -2484,13 +2505,13 @@ rcu_torture_cleanup(void) ...@@ -2484,13 +2505,13 @@ rcu_torture_cleanup(void)
torture_stop_kthread(rcu_torture_reader, torture_stop_kthread(rcu_torture_reader,
reader_tasks[i]); reader_tasks[i]);
kfree(reader_tasks); kfree(reader_tasks);
reader_tasks = NULL;
} }
if (fakewriter_tasks) { if (fakewriter_tasks) {
for (i = 0; i < nfakewriters; i++) { for (i = 0; i < nfakewriters; i++)
torture_stop_kthread(rcu_torture_fakewriter, torture_stop_kthread(rcu_torture_fakewriter,
fakewriter_tasks[i]); fakewriter_tasks[i]);
}
kfree(fakewriter_tasks); kfree(fakewriter_tasks);
fakewriter_tasks = NULL; fakewriter_tasks = NULL;
} }
...@@ -2647,7 +2668,6 @@ rcu_torture_init(void) ...@@ -2647,7 +2668,6 @@ rcu_torture_init(void)
for (i = 0; i < ARRAY_SIZE(torture_ops); i++) for (i = 0; i < ARRAY_SIZE(torture_ops); i++)
pr_cont(" %s", torture_ops[i]->name); pr_cont(" %s", torture_ops[i]->name);
pr_cont("\n"); pr_cont("\n");
WARN_ON(!IS_MODULE(CONFIG_RCU_TORTURE_TEST));
firsterr = -EINVAL; firsterr = -EINVAL;
cur_ops = NULL; cur_ops = NULL;
goto unwind; goto unwind;
...@@ -2815,6 +2835,10 @@ rcu_torture_init(void) ...@@ -2815,6 +2835,10 @@ rcu_torture_init(void)
unwind: unwind:
torture_init_end(); torture_init_end();
rcu_torture_cleanup(); rcu_torture_cleanup();
if (shutdown_secs) {
WARN_ON(!IS_MODULE(CONFIG_RCU_TORTURE_TEST));
kernel_power_off();
}
return firsterr; return firsterr;
} }
......
...@@ -658,7 +658,6 @@ ref_scale_init(void) ...@@ -658,7 +658,6 @@ ref_scale_init(void)
for (i = 0; i < ARRAY_SIZE(scale_ops); i++) for (i = 0; i < ARRAY_SIZE(scale_ops); i++)
pr_cont(" %s", scale_ops[i]->name); pr_cont(" %s", scale_ops[i]->name);
pr_cont("\n"); pr_cont("\n");
WARN_ON(!IS_MODULE(CONFIG_RCU_REF_SCALE_TEST));
firsterr = -EINVAL; firsterr = -EINVAL;
cur_ops = NULL; cur_ops = NULL;
goto unwind; goto unwind;
...@@ -681,6 +680,12 @@ ref_scale_init(void) ...@@ -681,6 +680,12 @@ ref_scale_init(void)
// Reader tasks (default to ~75% of online CPUs). // Reader tasks (default to ~75% of online CPUs).
if (nreaders < 0) if (nreaders < 0)
nreaders = (num_online_cpus() >> 1) + (num_online_cpus() >> 2); nreaders = (num_online_cpus() >> 1) + (num_online_cpus() >> 2);
if (WARN_ONCE(loops <= 0, "%s: loops = %ld, adjusted to 1\n", __func__, loops))
loops = 1;
if (WARN_ONCE(nreaders <= 0, "%s: nreaders = %d, adjusted to 1\n", __func__, nreaders))
nreaders = 1;
if (WARN_ONCE(nruns <= 0, "%s: nruns = %d, adjusted to 1\n", __func__, nruns))
nruns = 1;
reader_tasks = kcalloc(nreaders, sizeof(reader_tasks[0]), reader_tasks = kcalloc(nreaders, sizeof(reader_tasks[0]),
GFP_KERNEL); GFP_KERNEL);
if (!reader_tasks) { if (!reader_tasks) {
...@@ -712,6 +717,10 @@ ref_scale_init(void) ...@@ -712,6 +717,10 @@ ref_scale_init(void)
unwind: unwind:
torture_init_end(); torture_init_end();
ref_scale_cleanup(); ref_scale_cleanup();
if (shutdown) {
WARN_ON(!IS_MODULE(CONFIG_RCU_REF_SCALE_TEST));
kernel_power_off();
}
return firsterr; return firsterr;
} }
......
...@@ -177,11 +177,13 @@ static int init_srcu_struct_fields(struct srcu_struct *ssp, bool is_static) ...@@ -177,11 +177,13 @@ static int init_srcu_struct_fields(struct srcu_struct *ssp, bool is_static)
INIT_DELAYED_WORK(&ssp->work, process_srcu); INIT_DELAYED_WORK(&ssp->work, process_srcu);
if (!is_static) if (!is_static)
ssp->sda = alloc_percpu(struct srcu_data); ssp->sda = alloc_percpu(struct srcu_data);
if (!ssp->sda)
return -ENOMEM;
init_srcu_struct_nodes(ssp, is_static); init_srcu_struct_nodes(ssp, is_static);
ssp->srcu_gp_seq_needed_exp = 0; ssp->srcu_gp_seq_needed_exp = 0;
ssp->srcu_last_gp_end = ktime_get_mono_fast_ns(); ssp->srcu_last_gp_end = ktime_get_mono_fast_ns();
smp_store_release(&ssp->srcu_gp_seq_needed, 0); /* Init done. */ smp_store_release(&ssp->srcu_gp_seq_needed, 0); /* Init done. */
return ssp->sda ? 0 : -ENOMEM; return 0;
} }
#ifdef CONFIG_DEBUG_LOCK_ALLOC #ifdef CONFIG_DEBUG_LOCK_ALLOC
...@@ -906,7 +908,7 @@ static void __synchronize_srcu(struct srcu_struct *ssp, bool do_norm) ...@@ -906,7 +908,7 @@ static void __synchronize_srcu(struct srcu_struct *ssp, bool do_norm)
{ {
struct rcu_synchronize rcu; struct rcu_synchronize rcu;
RCU_LOCKDEP_WARN(lock_is_held(&ssp->dep_map) || RCU_LOCKDEP_WARN(lockdep_is_held(ssp) ||
lock_is_held(&rcu_bh_lock_map) || lock_is_held(&rcu_bh_lock_map) ||
lock_is_held(&rcu_lock_map) || lock_is_held(&rcu_lock_map) ||
lock_is_held(&rcu_sched_lock_map), lock_is_held(&rcu_sched_lock_map),
......
...@@ -290,7 +290,7 @@ static void show_rcu_tasks_generic_gp_kthread(struct rcu_tasks *rtp, char *s) ...@@ -290,7 +290,7 @@ static void show_rcu_tasks_generic_gp_kthread(struct rcu_tasks *rtp, char *s)
".C"[!!data_race(rtp->cbs_head)], ".C"[!!data_race(rtp->cbs_head)],
s); s);
} }
#endif /* #ifndef CONFIG_TINY_RCU */ #endif // #ifndef CONFIG_TINY_RCU
static void exit_tasks_rcu_finish_trace(struct task_struct *t); static void exit_tasks_rcu_finish_trace(struct task_struct *t);
...@@ -335,23 +335,18 @@ static void rcu_tasks_wait_gp(struct rcu_tasks *rtp) ...@@ -335,23 +335,18 @@ static void rcu_tasks_wait_gp(struct rcu_tasks *rtp)
// Start off with initial wait and slowly back off to 1 HZ wait. // Start off with initial wait and slowly back off to 1 HZ wait.
fract = rtp->init_fract; fract = rtp->init_fract;
if (fract > HZ)
fract = HZ;
for (;;) { while (!list_empty(&holdouts)) {
bool firstreport; bool firstreport;
bool needreport; bool needreport;
int rtst; int rtst;
if (list_empty(&holdouts))
break;
/* Slowly back off waiting for holdouts */ /* Slowly back off waiting for holdouts */
set_tasks_gp_state(rtp, RTGS_WAIT_SCAN_HOLDOUTS); set_tasks_gp_state(rtp, RTGS_WAIT_SCAN_HOLDOUTS);
schedule_timeout_idle(HZ/fract); schedule_timeout_idle(fract);
if (fract > 1) if (fract < HZ)
fract--; fract++;
rtst = READ_ONCE(rcu_task_stall_timeout); rtst = READ_ONCE(rcu_task_stall_timeout);
needreport = rtst > 0 && time_after(jiffies, lastreport + rtst); needreport = rtst > 0 && time_after(jiffies, lastreport + rtst);
...@@ -560,7 +555,7 @@ EXPORT_SYMBOL_GPL(rcu_barrier_tasks); ...@@ -560,7 +555,7 @@ EXPORT_SYMBOL_GPL(rcu_barrier_tasks);
static int __init rcu_spawn_tasks_kthread(void) static int __init rcu_spawn_tasks_kthread(void)
{ {
rcu_tasks.gp_sleep = HZ / 10; rcu_tasks.gp_sleep = HZ / 10;
rcu_tasks.init_fract = 10; rcu_tasks.init_fract = HZ / 10;
rcu_tasks.pregp_func = rcu_tasks_pregp_step; rcu_tasks.pregp_func = rcu_tasks_pregp_step;
rcu_tasks.pertask_func = rcu_tasks_pertask; rcu_tasks.pertask_func = rcu_tasks_pertask;
rcu_tasks.postscan_func = rcu_tasks_postscan; rcu_tasks.postscan_func = rcu_tasks_postscan;
...@@ -571,12 +566,13 @@ static int __init rcu_spawn_tasks_kthread(void) ...@@ -571,12 +566,13 @@ static int __init rcu_spawn_tasks_kthread(void)
} }
core_initcall(rcu_spawn_tasks_kthread); core_initcall(rcu_spawn_tasks_kthread);
#ifndef CONFIG_TINY_RCU #if !defined(CONFIG_TINY_RCU)
static void show_rcu_tasks_classic_gp_kthread(void) void show_rcu_tasks_classic_gp_kthread(void)
{ {
show_rcu_tasks_generic_gp_kthread(&rcu_tasks, ""); show_rcu_tasks_generic_gp_kthread(&rcu_tasks, "");
} }
#endif /* #ifndef CONFIG_TINY_RCU */ EXPORT_SYMBOL_GPL(show_rcu_tasks_classic_gp_kthread);
#endif // !defined(CONFIG_TINY_RCU)
/* Do the srcu_read_lock() for the above synchronize_srcu(). */ /* Do the srcu_read_lock() for the above synchronize_srcu(). */
void exit_tasks_rcu_start(void) __acquires(&tasks_rcu_exit_srcu) void exit_tasks_rcu_start(void) __acquires(&tasks_rcu_exit_srcu)
...@@ -598,7 +594,6 @@ void exit_tasks_rcu_finish(void) __releases(&tasks_rcu_exit_srcu) ...@@ -598,7 +594,6 @@ void exit_tasks_rcu_finish(void) __releases(&tasks_rcu_exit_srcu)
} }
#else /* #ifdef CONFIG_TASKS_RCU */ #else /* #ifdef CONFIG_TASKS_RCU */
static inline void show_rcu_tasks_classic_gp_kthread(void) { }
void exit_tasks_rcu_start(void) { } void exit_tasks_rcu_start(void) { }
void exit_tasks_rcu_finish(void) { exit_tasks_rcu_finish_trace(current); } void exit_tasks_rcu_finish(void) { exit_tasks_rcu_finish_trace(current); }
#endif /* #else #ifdef CONFIG_TASKS_RCU */ #endif /* #else #ifdef CONFIG_TASKS_RCU */
...@@ -699,16 +694,14 @@ static int __init rcu_spawn_tasks_rude_kthread(void) ...@@ -699,16 +694,14 @@ static int __init rcu_spawn_tasks_rude_kthread(void)
} }
core_initcall(rcu_spawn_tasks_rude_kthread); core_initcall(rcu_spawn_tasks_rude_kthread);
#ifndef CONFIG_TINY_RCU #if !defined(CONFIG_TINY_RCU)
static void show_rcu_tasks_rude_gp_kthread(void) void show_rcu_tasks_rude_gp_kthread(void)
{ {
show_rcu_tasks_generic_gp_kthread(&rcu_tasks_rude, ""); show_rcu_tasks_generic_gp_kthread(&rcu_tasks_rude, "");
} }
#endif /* #ifndef CONFIG_TINY_RCU */ EXPORT_SYMBOL_GPL(show_rcu_tasks_rude_gp_kthread);
#endif // !defined(CONFIG_TINY_RCU)
#else /* #ifdef CONFIG_TASKS_RUDE_RCU */ #endif /* #ifdef CONFIG_TASKS_RUDE_RCU */
static void show_rcu_tasks_rude_gp_kthread(void) {}
#endif /* #else #ifdef CONFIG_TASKS_RUDE_RCU */
//////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////////
// //
...@@ -1183,12 +1176,12 @@ static int __init rcu_spawn_tasks_trace_kthread(void) ...@@ -1183,12 +1176,12 @@ static int __init rcu_spawn_tasks_trace_kthread(void)
{ {
if (IS_ENABLED(CONFIG_TASKS_TRACE_RCU_READ_MB)) { if (IS_ENABLED(CONFIG_TASKS_TRACE_RCU_READ_MB)) {
rcu_tasks_trace.gp_sleep = HZ / 10; rcu_tasks_trace.gp_sleep = HZ / 10;
rcu_tasks_trace.init_fract = 10; rcu_tasks_trace.init_fract = HZ / 10;
} else { } else {
rcu_tasks_trace.gp_sleep = HZ / 200; rcu_tasks_trace.gp_sleep = HZ / 200;
if (rcu_tasks_trace.gp_sleep <= 0) if (rcu_tasks_trace.gp_sleep <= 0)
rcu_tasks_trace.gp_sleep = 1; rcu_tasks_trace.gp_sleep = 1;
rcu_tasks_trace.init_fract = HZ / 5; rcu_tasks_trace.init_fract = HZ / 200;
if (rcu_tasks_trace.init_fract <= 0) if (rcu_tasks_trace.init_fract <= 0)
rcu_tasks_trace.init_fract = 1; rcu_tasks_trace.init_fract = 1;
} }
...@@ -1202,8 +1195,8 @@ static int __init rcu_spawn_tasks_trace_kthread(void) ...@@ -1202,8 +1195,8 @@ static int __init rcu_spawn_tasks_trace_kthread(void)
} }
core_initcall(rcu_spawn_tasks_trace_kthread); core_initcall(rcu_spawn_tasks_trace_kthread);
#ifndef CONFIG_TINY_RCU #if !defined(CONFIG_TINY_RCU)
static void show_rcu_tasks_trace_gp_kthread(void) void show_rcu_tasks_trace_gp_kthread(void)
{ {
char buf[64]; char buf[64];
...@@ -1213,11 +1206,11 @@ static void show_rcu_tasks_trace_gp_kthread(void) ...@@ -1213,11 +1206,11 @@ static void show_rcu_tasks_trace_gp_kthread(void)
data_race(n_heavy_reader_attempts)); data_race(n_heavy_reader_attempts));
show_rcu_tasks_generic_gp_kthread(&rcu_tasks_trace, buf); show_rcu_tasks_generic_gp_kthread(&rcu_tasks_trace, buf);
} }
#endif /* #ifndef CONFIG_TINY_RCU */ EXPORT_SYMBOL_GPL(show_rcu_tasks_trace_gp_kthread);
#endif // !defined(CONFIG_TINY_RCU)
#else /* #ifdef CONFIG_TASKS_TRACE_RCU */ #else /* #ifdef CONFIG_TASKS_TRACE_RCU */
static void exit_tasks_rcu_finish_trace(struct task_struct *t) { } static void exit_tasks_rcu_finish_trace(struct task_struct *t) { }
static inline void show_rcu_tasks_trace_gp_kthread(void) {}
#endif /* #else #ifdef CONFIG_TASKS_TRACE_RCU */ #endif /* #else #ifdef CONFIG_TASKS_TRACE_RCU */
#ifndef CONFIG_TINY_RCU #ifndef CONFIG_TINY_RCU
......
This diff is collapsed.
...@@ -56,6 +56,7 @@ struct rcu_node { ...@@ -56,6 +56,7 @@ struct rcu_node {
/* Initialized from ->qsmaskinitnext at the */ /* Initialized from ->qsmaskinitnext at the */
/* beginning of each grace period. */ /* beginning of each grace period. */
unsigned long qsmaskinitnext; unsigned long qsmaskinitnext;
unsigned long ofl_seq; /* CPU-hotplug operation sequence count. */
/* Online CPUs for next grace period. */ /* Online CPUs for next grace period. */
unsigned long expmask; /* CPUs or groups that need to check in */ unsigned long expmask; /* CPUs or groups that need to check in */
/* to allow the current expedited GP */ /* to allow the current expedited GP */
...@@ -298,6 +299,7 @@ struct rcu_state { ...@@ -298,6 +299,7 @@ struct rcu_state {
/* Hierarchy levels (+1 to */ /* Hierarchy levels (+1 to */
/* shut bogus gcc warning) */ /* shut bogus gcc warning) */
int ncpus; /* # CPUs seen so far. */ int ncpus; /* # CPUs seen so far. */
int n_online_cpus; /* # CPUs online for RCU. */
/* The following fields are guarded by the root rcu_node's lock. */ /* The following fields are guarded by the root rcu_node's lock. */
......
...@@ -628,7 +628,7 @@ static void rcu_read_unlock_special(struct task_struct *t) ...@@ -628,7 +628,7 @@ static void rcu_read_unlock_special(struct task_struct *t)
set_tsk_need_resched(current); set_tsk_need_resched(current);
set_preempt_need_resched(); set_preempt_need_resched();
if (IS_ENABLED(CONFIG_IRQ_WORK) && irqs_were_disabled && if (IS_ENABLED(CONFIG_IRQ_WORK) && irqs_were_disabled &&
!rdp->defer_qs_iw_pending && exp) { !rdp->defer_qs_iw_pending && exp && cpu_online(rdp->cpu)) {
// Get scheduler to re-evaluate and call hooks. // Get scheduler to re-evaluate and call hooks.
// If !IRQ_WORK, FQS scan will eventually IPI. // If !IRQ_WORK, FQS scan will eventually IPI.
init_irq_work(&rdp->defer_qs_iw, init_irq_work(&rdp->defer_qs_iw,
......
...@@ -13,6 +13,7 @@ ...@@ -13,6 +13,7 @@
/* panic() on RCU Stall sysctl. */ /* panic() on RCU Stall sysctl. */
int sysctl_panic_on_rcu_stall __read_mostly; int sysctl_panic_on_rcu_stall __read_mostly;
int sysctl_max_rcu_stall_to_panic __read_mostly;
#ifdef CONFIG_PROVE_RCU #ifdef CONFIG_PROVE_RCU
#define RCU_STALL_DELAY_DELTA (5 * HZ) #define RCU_STALL_DELAY_DELTA (5 * HZ)
...@@ -106,6 +107,11 @@ early_initcall(check_cpu_stall_init); ...@@ -106,6 +107,11 @@ early_initcall(check_cpu_stall_init);
/* If so specified via sysctl, panic, yielding cleaner stall-warning output. */ /* If so specified via sysctl, panic, yielding cleaner stall-warning output. */
static void panic_on_rcu_stall(void) static void panic_on_rcu_stall(void)
{ {
static int cpu_stall;
if (++cpu_stall < sysctl_max_rcu_stall_to_panic)
return;
if (sysctl_panic_on_rcu_stall) if (sysctl_panic_on_rcu_stall)
panic("RCU Stall\n"); panic("RCU Stall\n");
} }
......
...@@ -59,9 +59,10 @@ torture_param(int, onoff_holdoff, 0, "Time after boot before CPU hotplugs (s)"); ...@@ -59,9 +59,10 @@ torture_param(int, onoff_holdoff, 0, "Time after boot before CPU hotplugs (s)");
torture_param(int, onoff_interval, 0, "Time between CPU hotplugs (s), 0=disable"); torture_param(int, onoff_interval, 0, "Time between CPU hotplugs (s), 0=disable");
torture_param(int, shutdown_secs, 0, "Shutdown time (ms), <= zero to disable."); torture_param(int, shutdown_secs, 0, "Shutdown time (ms), <= zero to disable.");
torture_param(int, stat_interval, 60, "Number of seconds between stats printk()s."); torture_param(int, stat_interval, 60, "Number of seconds between stats printk()s.");
torture_param(int, stutter_cpus, 5, "Number of jiffies to change CPUs under test, 0=disable"); torture_param(int, stutter, 5, "Number of jiffies to run/halt test, 0=disable");
torture_param(bool, use_cpus_read_lock, 0, "Use cpus_read_lock() to exclude CPU hotplug."); torture_param(bool, use_cpus_read_lock, 0, "Use cpus_read_lock() to exclude CPU hotplug.");
torture_param(int, verbose, 0, "Enable verbose debugging printk()s"); torture_param(int, verbose, 0, "Enable verbose debugging printk()s");
torture_param(int, weight_resched, -1, "Testing weight for resched_cpu() operations.");
torture_param(int, weight_single, -1, "Testing weight for single-CPU no-wait operations."); torture_param(int, weight_single, -1, "Testing weight for single-CPU no-wait operations.");
torture_param(int, weight_single_wait, -1, "Testing weight for single-CPU operations."); torture_param(int, weight_single_wait, -1, "Testing weight for single-CPU operations.");
torture_param(int, weight_many, -1, "Testing weight for multi-CPU no-wait operations."); torture_param(int, weight_many, -1, "Testing weight for multi-CPU no-wait operations.");
...@@ -82,6 +83,7 @@ torture_param(bool, shutdown, SCFTORT_SHUTDOWN, "Shutdown at end of torture test ...@@ -82,6 +83,7 @@ torture_param(bool, shutdown, SCFTORT_SHUTDOWN, "Shutdown at end of torture test
struct scf_statistics { struct scf_statistics {
struct task_struct *task; struct task_struct *task;
int cpu; int cpu;
long long n_resched;
long long n_single; long long n_single;
long long n_single_ofl; long long n_single_ofl;
long long n_single_wait; long long n_single_wait;
...@@ -97,12 +99,15 @@ static struct task_struct *scf_torture_stats_task; ...@@ -97,12 +99,15 @@ static struct task_struct *scf_torture_stats_task;
static DEFINE_PER_CPU(long long, scf_invoked_count); static DEFINE_PER_CPU(long long, scf_invoked_count);
// Data for random primitive selection // Data for random primitive selection
#define SCF_PRIM_SINGLE 0 #define SCF_PRIM_RESCHED 0
#define SCF_PRIM_MANY 1 #define SCF_PRIM_SINGLE 1
#define SCF_PRIM_ALL 2 #define SCF_PRIM_MANY 2
#define SCF_NPRIMS (2 * 3) // Need wait and no-wait versions of each. #define SCF_PRIM_ALL 3
#define SCF_NPRIMS 7 // Need wait and no-wait versions of each,
// except for SCF_PRIM_RESCHED.
static char *scf_prim_name[] = { static char *scf_prim_name[] = {
"resched_cpu",
"smp_call_function_single", "smp_call_function_single",
"smp_call_function_many", "smp_call_function_many",
"smp_call_function", "smp_call_function",
...@@ -136,6 +141,8 @@ static char *bangstr = ""; ...@@ -136,6 +141,8 @@ static char *bangstr = "";
static DEFINE_TORTURE_RANDOM_PERCPU(scf_torture_rand); static DEFINE_TORTURE_RANDOM_PERCPU(scf_torture_rand);
extern void resched_cpu(int cpu); // An alternative IPI vector.
// Print torture statistics. Caller must ensure serialization. // Print torture statistics. Caller must ensure serialization.
static void scf_torture_stats_print(void) static void scf_torture_stats_print(void)
{ {
...@@ -148,6 +155,7 @@ static void scf_torture_stats_print(void) ...@@ -148,6 +155,7 @@ static void scf_torture_stats_print(void)
for_each_possible_cpu(cpu) for_each_possible_cpu(cpu)
invoked_count += data_race(per_cpu(scf_invoked_count, cpu)); invoked_count += data_race(per_cpu(scf_invoked_count, cpu));
for (i = 0; i < nthreads; i++) { for (i = 0; i < nthreads; i++) {
scfs.n_resched += scf_stats_p[i].n_resched;
scfs.n_single += scf_stats_p[i].n_single; scfs.n_single += scf_stats_p[i].n_single;
scfs.n_single_ofl += scf_stats_p[i].n_single_ofl; scfs.n_single_ofl += scf_stats_p[i].n_single_ofl;
scfs.n_single_wait += scf_stats_p[i].n_single_wait; scfs.n_single_wait += scf_stats_p[i].n_single_wait;
...@@ -160,8 +168,8 @@ static void scf_torture_stats_print(void) ...@@ -160,8 +168,8 @@ static void scf_torture_stats_print(void)
if (atomic_read(&n_errs) || atomic_read(&n_mb_in_errs) || if (atomic_read(&n_errs) || atomic_read(&n_mb_in_errs) ||
atomic_read(&n_mb_out_errs) || atomic_read(&n_alloc_errs)) atomic_read(&n_mb_out_errs) || atomic_read(&n_alloc_errs))
bangstr = "!!! "; bangstr = "!!! ";
pr_alert("%s %sscf_invoked_count %s: %lld single: %lld/%lld single_ofl: %lld/%lld many: %lld/%lld all: %lld/%lld ", pr_alert("%s %sscf_invoked_count %s: %lld resched: %lld single: %lld/%lld single_ofl: %lld/%lld many: %lld/%lld all: %lld/%lld ",
SCFTORT_FLAG, bangstr, isdone ? "VER" : "ver", invoked_count, SCFTORT_FLAG, bangstr, isdone ? "VER" : "ver", invoked_count, scfs.n_resched,
scfs.n_single, scfs.n_single_wait, scfs.n_single_ofl, scfs.n_single_wait_ofl, scfs.n_single, scfs.n_single_wait, scfs.n_single_ofl, scfs.n_single_wait_ofl,
scfs.n_many, scfs.n_many_wait, scfs.n_all, scfs.n_all_wait); scfs.n_many, scfs.n_many_wait, scfs.n_all, scfs.n_all_wait);
torture_onoff_stats(); torture_onoff_stats();
...@@ -314,6 +322,13 @@ static void scftorture_invoke_one(struct scf_statistics *scfp, struct torture_ra ...@@ -314,6 +322,13 @@ static void scftorture_invoke_one(struct scf_statistics *scfp, struct torture_ra
} }
} }
switch (scfsp->scfs_prim) { switch (scfsp->scfs_prim) {
case SCF_PRIM_RESCHED:
if (IS_BUILTIN(CONFIG_SCF_TORTURE_TEST)) {
cpu = torture_random(trsp) % nr_cpu_ids;
scfp->n_resched++;
resched_cpu(cpu);
}
break;
case SCF_PRIM_SINGLE: case SCF_PRIM_SINGLE:
cpu = torture_random(trsp) % nr_cpu_ids; cpu = torture_random(trsp) % nr_cpu_ids;
if (scfsp->scfs_wait) if (scfsp->scfs_wait)
...@@ -421,6 +436,7 @@ static int scftorture_invoker(void *arg) ...@@ -421,6 +436,7 @@ static int scftorture_invoker(void *arg)
was_offline = false; was_offline = false;
} }
cond_resched(); cond_resched();
stutter_wait("scftorture_invoker");
} while (!torture_must_stop()); } while (!torture_must_stop());
VERBOSE_SCFTORTOUT("scftorture_invoker %d ended", scfp->cpu); VERBOSE_SCFTORTOUT("scftorture_invoker %d ended", scfp->cpu);
...@@ -433,8 +449,8 @@ static void ...@@ -433,8 +449,8 @@ static void
scftorture_print_module_parms(const char *tag) scftorture_print_module_parms(const char *tag)
{ {
pr_alert(SCFTORT_FLAG pr_alert(SCFTORT_FLAG
"--- %s: verbose=%d holdoff=%d longwait=%d nthreads=%d onoff_holdoff=%d onoff_interval=%d shutdown_secs=%d stat_interval=%d stutter_cpus=%d use_cpus_read_lock=%d, weight_single=%d, weight_single_wait=%d, weight_many=%d, weight_many_wait=%d, weight_all=%d, weight_all_wait=%d\n", tag, "--- %s: verbose=%d holdoff=%d longwait=%d nthreads=%d onoff_holdoff=%d onoff_interval=%d shutdown_secs=%d stat_interval=%d stutter=%d use_cpus_read_lock=%d, weight_resched=%d, weight_single=%d, weight_single_wait=%d, weight_many=%d, weight_many_wait=%d, weight_all=%d, weight_all_wait=%d\n", tag,
verbose, holdoff, longwait, nthreads, onoff_holdoff, onoff_interval, shutdown, stat_interval, stutter_cpus, use_cpus_read_lock, weight_single, weight_single_wait, weight_many, weight_many_wait, weight_all, weight_all_wait); verbose, holdoff, longwait, nthreads, onoff_holdoff, onoff_interval, shutdown, stat_interval, stutter, use_cpus_read_lock, weight_resched, weight_single, weight_single_wait, weight_many, weight_many_wait, weight_all, weight_all_wait);
} }
static void scf_cleanup_handler(void *unused) static void scf_cleanup_handler(void *unused)
...@@ -475,6 +491,7 @@ static int __init scf_torture_init(void) ...@@ -475,6 +491,7 @@ static int __init scf_torture_init(void)
{ {
long i; long i;
int firsterr = 0; int firsterr = 0;
unsigned long weight_resched1 = weight_resched;
unsigned long weight_single1 = weight_single; unsigned long weight_single1 = weight_single;
unsigned long weight_single_wait1 = weight_single_wait; unsigned long weight_single_wait1 = weight_single_wait;
unsigned long weight_many1 = weight_many; unsigned long weight_many1 = weight_many;
...@@ -487,9 +504,10 @@ static int __init scf_torture_init(void) ...@@ -487,9 +504,10 @@ static int __init scf_torture_init(void)
scftorture_print_module_parms("Start of test"); scftorture_print_module_parms("Start of test");
if (weight_single == -1 && weight_single_wait == -1 && if (weight_resched == -1 && weight_single == -1 && weight_single_wait == -1 &&
weight_many == -1 && weight_many_wait == -1 && weight_many == -1 && weight_many_wait == -1 &&
weight_all == -1 && weight_all_wait == -1) { weight_all == -1 && weight_all_wait == -1) {
weight_resched1 = 2 * nr_cpu_ids;
weight_single1 = 2 * nr_cpu_ids; weight_single1 = 2 * nr_cpu_ids;
weight_single_wait1 = 2 * nr_cpu_ids; weight_single_wait1 = 2 * nr_cpu_ids;
weight_many1 = 2; weight_many1 = 2;
...@@ -497,6 +515,8 @@ static int __init scf_torture_init(void) ...@@ -497,6 +515,8 @@ static int __init scf_torture_init(void)
weight_all1 = 1; weight_all1 = 1;
weight_all_wait1 = 1; weight_all_wait1 = 1;
} else { } else {
if (weight_resched == -1)
weight_resched1 = 0;
if (weight_single == -1) if (weight_single == -1)
weight_single1 = 0; weight_single1 = 0;
if (weight_single_wait == -1) if (weight_single_wait == -1)
...@@ -517,6 +537,10 @@ static int __init scf_torture_init(void) ...@@ -517,6 +537,10 @@ static int __init scf_torture_init(void)
firsterr = -EINVAL; firsterr = -EINVAL;
goto unwind; goto unwind;
} }
if (IS_BUILTIN(CONFIG_SCF_TORTURE_TEST))
scf_sel_add(weight_resched1, SCF_PRIM_RESCHED, false);
else if (weight_resched1)
VERBOSE_SCFTORTOUT_ERRSTRING("built as module, weight_resched ignored");
scf_sel_add(weight_single1, SCF_PRIM_SINGLE, false); scf_sel_add(weight_single1, SCF_PRIM_SINGLE, false);
scf_sel_add(weight_single_wait1, SCF_PRIM_SINGLE, true); scf_sel_add(weight_single_wait1, SCF_PRIM_SINGLE, true);
scf_sel_add(weight_many1, SCF_PRIM_MANY, false); scf_sel_add(weight_many1, SCF_PRIM_MANY, false);
...@@ -535,6 +559,11 @@ static int __init scf_torture_init(void) ...@@ -535,6 +559,11 @@ static int __init scf_torture_init(void)
if (firsterr) if (firsterr)
goto unwind; goto unwind;
} }
if (stutter > 0) {
firsterr = torture_stutter_init(stutter, stutter);
if (firsterr)
goto unwind;
}
// Worker tasks invoking smp_call_function(). // Worker tasks invoking smp_call_function().
if (nthreads < 0) if (nthreads < 0)
......
...@@ -2650,6 +2650,17 @@ static struct ctl_table kern_table[] = { ...@@ -2650,6 +2650,17 @@ static struct ctl_table kern_table[] = {
.extra2 = SYSCTL_ONE, .extra2 = SYSCTL_ONE,
}, },
#endif #endif
#if defined(CONFIG_TREE_RCU)
{
.procname = "max_rcu_stall_to_panic",
.data = &sysctl_max_rcu_stall_to_panic,
.maxlen = sizeof(sysctl_max_rcu_stall_to_panic),
.mode = 0644,
.proc_handler = proc_dointvec_minmax,
.extra1 = SYSCTL_ONE,
.extra2 = SYSCTL_INT_MAX,
},
#endif
#ifdef CONFIG_STACKLEAK_RUNTIME_DISABLE #ifdef CONFIG_STACKLEAK_RUNTIME_DISABLE
{ {
.procname = "stack_erasing", .procname = "stack_erasing",
......
...@@ -602,18 +602,29 @@ static int stutter_gap; ...@@ -602,18 +602,29 @@ static int stutter_gap;
*/ */
bool stutter_wait(const char *title) bool stutter_wait(const char *title)
{ {
int spt; ktime_t delay;
unsigned int i = 0;
bool ret = false; bool ret = false;
int spt;
cond_resched_tasks_rcu_qs(); cond_resched_tasks_rcu_qs();
spt = READ_ONCE(stutter_pause_test); spt = READ_ONCE(stutter_pause_test);
for (; spt; spt = READ_ONCE(stutter_pause_test)) { for (; spt; spt = READ_ONCE(stutter_pause_test)) {
if (!ret) {
sched_set_normal(current, MAX_NICE);
ret = true; ret = true;
}
if (spt == 1) { if (spt == 1) {
schedule_timeout_interruptible(1); schedule_timeout_interruptible(1);
} else if (spt == 2) { } else if (spt == 2) {
while (READ_ONCE(stutter_pause_test)) while (READ_ONCE(stutter_pause_test)) {
if (!(i++ & 0xffff)) {
set_current_state(TASK_INTERRUPTIBLE);
delay = 10 * NSEC_PER_USEC;
schedule_hrtimeout(&delay, HRTIMER_MODE_REL);
}
cond_resched(); cond_resched();
}
} else { } else {
schedule_timeout_interruptible(round_jiffies_relative(HZ)); schedule_timeout_interruptible(round_jiffies_relative(HZ));
} }
...@@ -629,20 +640,27 @@ EXPORT_SYMBOL_GPL(stutter_wait); ...@@ -629,20 +640,27 @@ EXPORT_SYMBOL_GPL(stutter_wait);
*/ */
static int torture_stutter(void *arg) static int torture_stutter(void *arg)
{ {
ktime_t delay;
DEFINE_TORTURE_RANDOM(rand);
int wtime; int wtime;
VERBOSE_TOROUT_STRING("torture_stutter task started"); VERBOSE_TOROUT_STRING("torture_stutter task started");
do { do {
if (!torture_must_stop() && stutter > 1) { if (!torture_must_stop() && stutter > 1) {
wtime = stutter; wtime = stutter;
if (stutter > HZ + 1) { if (stutter > 2) {
WRITE_ONCE(stutter_pause_test, 1); WRITE_ONCE(stutter_pause_test, 1);
wtime = stutter - HZ - 1; wtime = stutter - 3;
schedule_timeout_interruptible(wtime); delay = ktime_divns(NSEC_PER_SEC * wtime, HZ);
wtime = HZ + 1; delay += (torture_random(&rand) >> 3) % NSEC_PER_MSEC;
set_current_state(TASK_INTERRUPTIBLE);
schedule_hrtimeout(&delay, HRTIMER_MODE_REL);
wtime = 2;
} }
WRITE_ONCE(stutter_pause_test, 2); WRITE_ONCE(stutter_pause_test, 2);
schedule_timeout_interruptible(wtime); delay = ktime_divns(NSEC_PER_SEC * wtime, HZ);
set_current_state(TASK_INTERRUPTIBLE);
schedule_hrtimeout(&delay, HRTIMER_MODE_REL);
} }
WRITE_ONCE(stutter_pause_test, 0); WRITE_ONCE(stutter_pause_test, 0);
if (!torture_must_stop()) if (!torture_must_stop())
......
...@@ -107,7 +107,7 @@ static int errno; ...@@ -107,7 +107,7 @@ static int errno;
#endif #endif
/* errno codes all ensure that they will not conflict with a valid pointer /* errno codes all ensure that they will not conflict with a valid pointer
* because they all correspond to the highest addressable memry page. * because they all correspond to the highest addressable memory page.
*/ */
#define MAX_ERRNO 4095 #define MAX_ERRNO 4095
...@@ -231,7 +231,7 @@ struct rusage { ...@@ -231,7 +231,7 @@ struct rusage {
#define DT_SOCK 12 #define DT_SOCK 12
/* all the *at functions */ /* all the *at functions */
#ifndef AT_FDWCD #ifndef AT_FDCWD
#define AT_FDCWD -100 #define AT_FDCWD -100
#endif #endif
......
It has been said that successful communication requires first identifying
what your audience knows and then building a bridge from their current
knowledge to what they need to know. Unfortunately, the expected
Linux-kernel memory model (LKMM) audience might be anywhere from novice
to expert both in kernel hacking and in understanding LKMM.
This document therefore points out a number of places to start reading,
depending on what you know and what you would like to learn. Please note
that the documents later in this list assume that the reader understands
the material provided by documents earlier in this list.
o You are new to Linux-kernel concurrency: simple.txt
o You have some background in Linux-kernel concurrency, and would
like an overview of the types of low-level concurrency primitives
that the Linux kernel provides: ordering.txt
Here, "low level" means atomic operations to single variables.
o You are familiar with the Linux-kernel concurrency primitives
that you need, and just want to get started with LKMM litmus
tests: litmus-tests.txt
o You are familiar with Linux-kernel concurrency, and would
like a detailed intuitive understanding of LKMM, including
situations involving more than two threads: recipes.txt
o You would like a detailed understanding of what your compiler can
and cannot do to control dependencies: control-dependencies.txt
o You are familiar with Linux-kernel concurrency and the use of
LKMM, and would like a quick reference: cheatsheet.txt
o You are familiar with Linux-kernel concurrency and the use
of LKMM, and would like to learn about LKMM's requirements,
rationale, and implementation: explanation.txt
o You are interested in the publications related to LKMM, including
hardware manuals, academic literature, standards-committee
working papers, and LWN articles: references.txt
====================
DESCRIPTION OF FILES
====================
README
This file.
cheatsheet.txt
Quick-reference guide to the Linux-kernel memory model.
control-dependencies.txt
Guide to preventing compiler optimizations from destroying
your control dependencies.
explanation.txt
Detailed description of the memory model.
litmus-tests.txt
The format, features, capabilities, and limitations of the litmus
tests that LKMM can evaluate.
ordering.txt
Overview of the Linux kernel's low-level memory-ordering
primitives by category.
recipes.txt
Common memory-ordering patterns.
references.txt
Background information.
simple.txt
Starting point for someone new to Linux-kernel concurrency.
And also a reminder of the simpler approaches to concurrency!
CONTROL DEPENDENCIES
====================
A major difficulty with control dependencies is that current compilers
do not support them. One purpose of this document is therefore to
help you prevent your compiler from breaking your code. However,
control dependencies also pose other challenges, which leads to the
second purpose of this document, namely to help you to avoid breaking
your own code, even in the absence of help from your compiler.
One such challenge is that control dependencies order only later stores.
Therefore, a load-load control dependency will not preserve ordering
unless a read memory barrier is provided. Consider the following code:
q = READ_ONCE(a);
if (q)
p = READ_ONCE(b);
This is not guaranteed to provide any ordering because some types of CPUs
are permitted to predict the result of the load from "b". This prediction
can cause other CPUs to see this load as having happened before the load
from "a". This means that an explicit read barrier is required, for example
as follows:
q = READ_ONCE(a);
if (q) {
smp_rmb();
p = READ_ONCE(b);
}
However, stores are not speculated. This means that ordering is
(usually) guaranteed for load-store control dependencies, as in the
following example:
q = READ_ONCE(a);
if (q)
WRITE_ONCE(b, 1);
Control dependencies can pair with each other and with other types
of ordering. But please note that neither the READ_ONCE() nor the
WRITE_ONCE() are optional. Without the READ_ONCE(), the compiler might
fuse the load from "a" with other loads. Without the WRITE_ONCE(),
the compiler might fuse the store to "b" with other stores. Worse yet,
the compiler might convert the store into a load and a check followed
by a store, and this compiler-generated load would not be ordered by
the control dependency.
Furthermore, if the compiler is able to prove that the value of variable
"a" is always non-zero, it would be well within its rights to optimize
the original example by eliminating the "if" statement as follows:
q = a;
b = 1; /* BUG: Compiler and CPU can both reorder!!! */
So don't leave out either the READ_ONCE() or the WRITE_ONCE().
In particular, although READ_ONCE() does force the compiler to emit a
load, it does *not* force the compiler to actually use the loaded value.
It is tempting to try use control dependencies to enforce ordering on
identical stores on both branches of the "if" statement as follows:
q = READ_ONCE(a);
if (q) {
barrier();
WRITE_ONCE(b, 1);
do_something();
} else {
barrier();
WRITE_ONCE(b, 1);
do_something_else();
}
Unfortunately, current compilers will transform this as follows at high
optimization levels:
q = READ_ONCE(a);
barrier();
WRITE_ONCE(b, 1); /* BUG: No ordering vs. load from a!!! */
if (q) {
/* WRITE_ONCE(b, 1); -- moved up, BUG!!! */
do_something();
} else {
/* WRITE_ONCE(b, 1); -- moved up, BUG!!! */
do_something_else();
}
Now there is no conditional between the load from "a" and the store to
"b", which means that the CPU is within its rights to reorder them: The
conditional is absolutely required, and must be present in the final
assembly code, after all of the compiler and link-time optimizations
have been applied. Therefore, if you need ordering in this example,
you must use explicit memory ordering, for example, smp_store_release():
q = READ_ONCE(a);
if (q) {
smp_store_release(&b, 1);
do_something();
} else {
smp_store_release(&b, 1);
do_something_else();
}
Without explicit memory ordering, control-dependency-based ordering is
guaranteed only when the stores differ, for example:
q = READ_ONCE(a);
if (q) {
WRITE_ONCE(b, 1);
do_something();
} else {
WRITE_ONCE(b, 2);
do_something_else();
}
The initial READ_ONCE() is still required to prevent the compiler from
knowing too much about the value of "a".
But please note that you need to be careful what you do with the local
variable "q", otherwise the compiler might be able to guess the value
and again remove the conditional branch that is absolutely required to
preserve ordering. For example:
q = READ_ONCE(a);
if (q % MAX) {
WRITE_ONCE(b, 1);
do_something();
} else {
WRITE_ONCE(b, 2);
do_something_else();
}
If MAX is compile-time defined to be 1, then the compiler knows that
(q % MAX) must be equal to zero, regardless of the value of "q".
The compiler is therefore within its rights to transform the above code
into the following:
q = READ_ONCE(a);
WRITE_ONCE(b, 2);
do_something_else();
Given this transformation, the CPU is not required to respect the ordering
between the load from variable "a" and the store to variable "b". It is
tempting to add a barrier(), but this does not help. The conditional
is gone, and the barrier won't bring it back. Therefore, if you need
to relying on control dependencies to produce this ordering, you should
make sure that MAX is greater than one, perhaps as follows:
q = READ_ONCE(a);
BUILD_BUG_ON(MAX <= 1); /* Order load from a with store to b. */
if (q % MAX) {
WRITE_ONCE(b, 1);
do_something();
} else {
WRITE_ONCE(b, 2);
do_something_else();
}
Please note once again that each leg of the "if" statement absolutely
must store different values to "b". As in previous examples, if the two
values were identical, the compiler could pull this store outside of the
"if" statement, destroying the control dependency's ordering properties.
You must also be careful avoid relying too much on boolean short-circuit
evaluation. Consider this example:
q = READ_ONCE(a);
if (q || 1 > 0)
WRITE_ONCE(b, 1);
Because the first condition cannot fault and the second condition is
always true, the compiler can transform this example as follows, again
destroying the control dependency's ordering:
q = READ_ONCE(a);
WRITE_ONCE(b, 1);
This is yet another example showing the importance of preventing the
compiler from out-guessing your code. Again, although READ_ONCE() really
does force the compiler to emit code for a given load, the compiler is
within its rights to discard the loaded value.
In addition, control dependencies apply only to the then-clause and
else-clause of the "if" statement in question. In particular, they do
not necessarily order the code following the entire "if" statement:
q = READ_ONCE(a);
if (q) {
WRITE_ONCE(b, 1);
} else {
WRITE_ONCE(b, 2);
}
WRITE_ONCE(c, 1); /* BUG: No ordering against the read from "a". */
It is tempting to argue that there in fact is ordering because the
compiler cannot reorder volatile accesses and also cannot reorder
the writes to "b" with the condition. Unfortunately for this line
of reasoning, the compiler might compile the two writes to "b" as
conditional-move instructions, as in this fanciful pseudo-assembly
language:
ld r1,a
cmp r1,$0
cmov,ne r4,$1
cmov,eq r4,$2
st r4,b
st $1,c
The control dependencies would then extend only to the pair of cmov
instructions and the store depending on them. This means that a weakly
ordered CPU would have no dependency of any sort between the load from
"a" and the store to "c". In short, control dependencies provide ordering
only to the stores in the then-clause and else-clause of the "if" statement
in question (including functions invoked by those two clauses), and not
to code following that "if" statement.
In summary:
(*) Control dependencies can order prior loads against later stores.
However, they do *not* guarantee any other sort of ordering:
Not prior loads against later loads, nor prior stores against
later anything. If you need these other forms of ordering, use
smp_load_acquire(), smp_store_release(), or, in the case of prior
stores and later loads, smp_mb().
(*) If both legs of the "if" statement contain identical stores to
the same variable, then you must explicitly order those stores,
either by preceding both of them with smp_mb() or by using
smp_store_release(). Please note that it is *not* sufficient to use
barrier() at beginning and end of each leg of the "if" statement
because, as shown by the example above, optimizing compilers can
destroy the control dependency while respecting the letter of the
barrier() law.
(*) Control dependencies require at least one run-time conditional
between the prior load and the subsequent store, and this
conditional must involve the prior load. If the compiler is able
to optimize the conditional away, it will have also optimized
away the ordering. Careful use of READ_ONCE() and WRITE_ONCE()
can help to preserve the needed conditional.
(*) Control dependencies require that the compiler avoid reordering the
dependency into nonexistence. Careful use of READ_ONCE() or
atomic{,64}_read() can help to preserve your control dependency.
(*) Control dependencies apply only to the then-clause and else-clause
of the "if" statement containing the control dependency, including
any functions that these two clauses call. Control dependencies
do *not* apply to code beyond the end of that "if" statement.
(*) Control dependencies pair normally with other types of barriers.
(*) Control dependencies do *not* provide multicopy atomicity. If you
need all the CPUs to agree on the ordering of a given store against
all other accesses, use smp_mb().
(*) Compilers do not understand control dependencies. It is therefore
your job to ensure that they do not break your code.
This document contains brief definitions of LKMM-related terms. Like most
glossaries, it is not intended to be read front to back (except perhaps
as a way of confirming a diagnosis of OCD), but rather to be searched
for specific terms.
Address Dependency: When the address of a later memory access is computed
based on the value returned by an earlier load, an "address
dependency" extends from that load extending to the later access.
Address dependencies are quite common in RCU read-side critical
sections:
1 rcu_read_lock();
2 p = rcu_dereference(gp);
3 do_something(p->a);
4 rcu_read_unlock();
In this case, because the address of "p->a" on line 3 is computed
from the value returned by the rcu_dereference() on line 2, the
address dependency extends from that rcu_dereference() to that
"p->a". In rare cases, optimizing compilers can destroy address
dependencies. Please see Documentation/RCU/rcu_dereference.txt
for more information.
See also "Control Dependency" and "Data Dependency".
Acquire: With respect to a lock, acquiring that lock, for example,
using spin_lock(). With respect to a non-lock shared variable,
a special operation that includes a load and which orders that
load before later memory references running on that same CPU.
An example special acquire operation is smp_load_acquire(),
but atomic_read_acquire() and atomic_xchg_acquire() also include
acquire loads.
When an acquire load returns the value stored by a release store
to that same variable, then all operations preceding that store
happen before any operations following that load acquire.
See also "Relaxed" and "Release".
Coherence (co): When one CPU's store to a given variable overwrites
either the value from another CPU's store or some later value,
there is said to be a coherence link from the second CPU to
the first.
It is also possible to have a coherence link within a CPU, which
is a "coherence internal" (coi) link. The term "coherence
external" (coe) link is used when it is necessary to exclude
the coi case.
See also "From-reads" and "Reads-from".
Control Dependency: When a later store's execution depends on a test
of a value computed from a value returned by an earlier load,
a "control dependency" extends from that load to that store.
For example:
1 if (READ_ONCE(x))
2 WRITE_ONCE(y, 1);
Here, the control dependency extends from the READ_ONCE() on
line 1 to the WRITE_ONCE() on line 2. Control dependencies are
fragile, and can be easily destroyed by optimizing compilers.
Please see control-dependencies.txt for more information.
See also "Address Dependency" and "Data Dependency".
Cycle: Memory-barrier pairing is restricted to a pair of CPUs, as the
name suggests. And in a great many cases, a pair of CPUs is all
that is required. In other cases, the notion of pairing must be
extended to additional CPUs, and the result is called a "cycle".
In a cycle, each CPU's ordering interacts with that of the next:
CPU 0 CPU 1 CPU 2
WRITE_ONCE(x, 1); WRITE_ONCE(y, 1); WRITE_ONCE(z, 1);
smp_mb(); smp_mb(); smp_mb();
r0 = READ_ONCE(y); r1 = READ_ONCE(z); r2 = READ_ONCE(x);
CPU 0's smp_mb() interacts with that of CPU 1, which interacts
with that of CPU 2, which in turn interacts with that of CPU 0
to complete the cycle. Because of the smp_mb() calls between
each pair of memory accesses, the outcome where r0, r1, and r2
are all equal to zero is forbidden by LKMM.
See also "Pairing".
Data Dependency: When the data written by a later store is computed based
on the value returned by an earlier load, a "data dependency"
extends from that load to that later store. For example:
1 r1 = READ_ONCE(x);
2 WRITE_ONCE(y, r1 + 1);
In this case, the data dependency extends from the READ_ONCE()
on line 1 to the WRITE_ONCE() on line 2. Data dependencies are
fragile and can be easily destroyed by optimizing compilers.
Because optimizing compilers put a great deal of effort into
working out what values integer variables might have, this is
especially true in cases where the dependency is carried through
an integer.
See also "Address Dependency" and "Control Dependency".
From-Reads (fr): When one CPU's store to a given variable happened
too late to affect the value returned by another CPU's
load from that same variable, there is said to be a from-reads
link from the load to the store.
It is also possible to have a from-reads link within a CPU, which
is a "from-reads internal" (fri) link. The term "from-reads
external" (fre) link is used when it is necessary to exclude
the fri case.
See also "Coherence" and "Reads-from".
Fully Ordered: An operation such as smp_mb() that orders all of
its CPU's prior accesses with all of that CPU's subsequent
accesses, or a marked access such as atomic_add_return()
that orders all of its CPU's prior accesses, itself, and
all of its CPU's subsequent accesses.
Marked Access: An access to a variable that uses an special function or
macro such as "r1 = READ_ONCE(x)" or "smp_store_release(&a, 1)".
See also "Unmarked Access".
Pairing: "Memory-barrier pairing" reflects the fact that synchronizing
data between two CPUs requires that both CPUs their accesses.
Memory barriers thus tend to come in pairs, one executed by
one of the CPUs and the other by the other CPU. Of course,
pairing also occurs with other types of operations, so that a
smp_store_release() pairs with an smp_load_acquire() that reads
the value stored.
See also "Cycle".
Reads-From (rf): When one CPU's load returns the value stored by some other
CPU, there is said to be a reads-from link from the second
CPU's store to the first CPU's load. Reads-from links have the
nice property that time must advance from the store to the load,
which means that algorithms using reads-from links can use lighter
weight ordering and synchronization compared to algorithms using
coherence and from-reads links.
It is also possible to have a reads-from link within a CPU, which
is a "reads-from internal" (rfi) link. The term "reads-from
external" (rfe) link is used when it is necessary to exclude
the rfi case.
See also Coherence" and "From-reads".
Relaxed: A marked access that does not imply ordering, for example, a
READ_ONCE(), WRITE_ONCE(), a non-value-returning read-modify-write
operation, or a value-returning read-modify-write operation whose
name ends in "_relaxed".
See also "Acquire" and "Release".
Release: With respect to a lock, releasing that lock, for example,
using spin_unlock(). With respect to a non-lock shared variable,
a special operation that includes a store and which orders that
store after earlier memory references that ran on that same CPU.
An example special release store is smp_store_release(), but
atomic_set_release() and atomic_cmpxchg_release() also include
release stores.
See also "Acquire" and "Relaxed".
Unmarked Access: An access to a variable that uses normal C-language
syntax, for example, "a = b[2]";
See also "Marked Access".
...@@ -946,6 +946,23 @@ Limitations of the Linux-kernel memory model (LKMM) include: ...@@ -946,6 +946,23 @@ Limitations of the Linux-kernel memory model (LKMM) include:
carrying a dependency, then the compiler can break that dependency carrying a dependency, then the compiler can break that dependency
by substituting a constant of that value. by substituting a constant of that value.
Conversely, LKMM sometimes doesn't recognize that a particular
optimization is not allowed, and as a result, thinks that a
dependency is not present (because the optimization would break it).
The memory model misses some pretty obvious control dependencies
because of this limitation. A simple example is:
r1 = READ_ONCE(x);
if (r1 == 0)
smp_mb();
WRITE_ONCE(y, 1);
There is a control dependency from the READ_ONCE to the WRITE_ONCE,
even when r1 is nonzero, but LKMM doesn't realize this and thinks
that the write may execute before the read if r1 != 0. (Yes, that
doesn't make sense if you think about it, but the memory model's
intelligence is limited.)
2. Multiple access sizes for a single variable are not supported, 2. Multiple access sizes for a single variable are not supported,
and neither are misaligned or partially overlapping accesses. and neither are misaligned or partially overlapping accesses.
......
This diff is collapsed.
...@@ -161,26 +161,8 @@ running LKMM litmus tests. ...@@ -161,26 +161,8 @@ running LKMM litmus tests.
DESCRIPTION OF FILES DESCRIPTION OF FILES
==================== ====================
Documentation/cheatsheet.txt Documentation/README
Quick-reference guide to the Linux-kernel memory model. Guide to the other documents in the Documentation/ directory.
Documentation/explanation.txt
Describes the memory model in detail.
Documentation/litmus-tests.txt
Describes the format, features, capabilities, and limitations
of the litmus tests that LKMM can evaluate.
Documentation/recipes.txt
Lists common memory-ordering patterns.
Documentation/references.txt
Provides background reading.
Documentation/simple.txt
Starting point for someone new to Linux-kernel concurrency.
And also for those needing a reminder of the simpler approaches
to concurrency!
linux-kernel.bell linux-kernel.bell
Categorizes the relevant instructions, including memory Categorizes the relevant instructions, including memory
......
...@@ -7,7 +7,9 @@ C CoRR+poonceonce+Once ...@@ -7,7 +7,9 @@ C CoRR+poonceonce+Once
* reads from the same variable are ordered. * reads from the same variable are ordered.
*) *)
{} {
int x;
}
P0(int *x) P0(int *x)
{ {
......
...@@ -7,7 +7,9 @@ C CoRW+poonceonce+Once ...@@ -7,7 +7,9 @@ C CoRW+poonceonce+Once
* a given variable and a later write to that same variable are ordered. * a given variable and a later write to that same variable are ordered.
*) *)
{} {
int x;
}
P0(int *x) P0(int *x)
{ {
......
...@@ -7,7 +7,9 @@ C CoWR+poonceonce+Once ...@@ -7,7 +7,9 @@ C CoWR+poonceonce+Once
* given variable and a later read from that same variable are ordered. * given variable and a later read from that same variable are ordered.
*) *)
{} {
int x;
}
P0(int *x) P0(int *x)
{ {
......
...@@ -7,7 +7,9 @@ C CoWW+poonceonce ...@@ -7,7 +7,9 @@ C CoWW+poonceonce
* writes to the same variable are ordered. * writes to the same variable are ordered.
*) *)
{} {
int x;
}
P0(int *x) P0(int *x)
{ {
......
...@@ -10,7 +10,10 @@ C IRIW+fencembonceonces+OnceOnce ...@@ -10,7 +10,10 @@ C IRIW+fencembonceonces+OnceOnce
* process? This litmus test exercises LKMM's "propagation" rule. * process? This litmus test exercises LKMM's "propagation" rule.
*) *)
{} {
int x;
int y;
}
P0(int *x) P0(int *x)
{ {
......
...@@ -10,7 +10,10 @@ C IRIW+poonceonces+OnceOnce ...@@ -10,7 +10,10 @@ C IRIW+poonceonces+OnceOnce
* different process? * different process?
*) *)
{} {
int x;
int y;
}
P0(int *x) P0(int *x)
{ {
......
...@@ -7,7 +7,12 @@ C ISA2+pooncelock+pooncelock+pombonce ...@@ -7,7 +7,12 @@ C ISA2+pooncelock+pooncelock+pombonce
* (in P0() and P1()) is visible to external process P2(). * (in P0() and P1()) is visible to external process P2().
*) *)
{} {
spinlock_t mylock;
int x;
int y;
int z;
}
P0(int *x, int *y, spinlock_t *mylock) P0(int *x, int *y, spinlock_t *mylock)
{ {
......
...@@ -9,7 +9,11 @@ C ISA2+poonceonces ...@@ -9,7 +9,11 @@ C ISA2+poonceonces
* of the smp_load_acquire() invocations are replaced by READ_ONCE()? * of the smp_load_acquire() invocations are replaced by READ_ONCE()?
*) *)
{} {
int x;
int y;
int z;
}
P0(int *x, int *y) P0(int *x, int *y)
{ {
......
...@@ -11,7 +11,11 @@ C ISA2+pooncerelease+poacquirerelease+poacquireonce ...@@ -11,7 +11,11 @@ C ISA2+pooncerelease+poacquirerelease+poacquireonce
* (AKA non-rf) link, so release-acquire is all that is needed. * (AKA non-rf) link, so release-acquire is all that is needed.
*) *)
{} {
int x;
int y;
int z;
}
P0(int *x, int *y) P0(int *x, int *y)
{ {
......
...@@ -11,7 +11,10 @@ C LB+fencembonceonce+ctrlonceonce ...@@ -11,7 +11,10 @@ C LB+fencembonceonce+ctrlonceonce
* another control dependency and order would still be maintained.) * another control dependency and order would still be maintained.)
*) *)
{} {
int x;
int y;
}
P0(int *x, int *y) P0(int *x, int *y)
{ {
......
...@@ -8,7 +8,10 @@ C LB+poacquireonce+pooncerelease ...@@ -8,7 +8,10 @@ C LB+poacquireonce+pooncerelease
* to the other? * to the other?
*) *)
{} {
int x;
int y;
}
P0(int *x, int *y) P0(int *x, int *y)
{ {
......
...@@ -7,7 +7,10 @@ C LB+poonceonces ...@@ -7,7 +7,10 @@ C LB+poonceonces
* be prevented even with no explicit ordering? * be prevented even with no explicit ordering?
*) *)
{} {
int x;
int y;
}
P0(int *x, int *y) P0(int *x, int *y)
{ {
......
...@@ -8,23 +8,26 @@ C MP+fencewmbonceonce+fencermbonceonce ...@@ -8,23 +8,26 @@ C MP+fencewmbonceonce+fencermbonceonce
* is usually better to use smp_store_release() and smp_load_acquire(). * is usually better to use smp_store_release() and smp_load_acquire().
*) *)
{} {
int buf;
int flag;
}
P0(int *x, int *y) P0(int *buf, int *flag) // Producer
{ {
WRITE_ONCE(*x, 1); WRITE_ONCE(*buf, 1);
smp_wmb(); smp_wmb();
WRITE_ONCE(*y, 1); WRITE_ONCE(*flag, 1);
} }
P1(int *x, int *y) P1(int *buf, int *flag) // Consumer
{ {
int r0; int r0;
int r1; int r1;
r0 = READ_ONCE(*y); r0 = READ_ONCE(*flag);
smp_rmb(); smp_rmb();
r1 = READ_ONCE(*x); r1 = READ_ONCE(*buf);
} }
exists (1:r0=1 /\ 1:r1=0) exists (1:r0=1 /\ 1:r1=0) (* Bad outcome. *)
...@@ -10,25 +10,26 @@ C MP+onceassign+derefonce ...@@ -10,25 +10,26 @@ C MP+onceassign+derefonce
*) *)
{ {
y=z; int *p=y;
z=0; int x;
int y=0;
} }
P0(int *x, int **y) P0(int *x, int **p) // Producer
{ {
WRITE_ONCE(*x, 1); WRITE_ONCE(*x, 1);
rcu_assign_pointer(*y, x); rcu_assign_pointer(*p, x);
} }
P1(int *x, int **y) P1(int *x, int **p) // Consumer
{ {
int *r0; int *r0;
int r1; int r1;
rcu_read_lock(); rcu_read_lock();
r0 = rcu_dereference(*y); r0 = rcu_dereference(*p);
r1 = READ_ONCE(*r0); r1 = READ_ONCE(*r0);
rcu_read_unlock(); rcu_read_unlock();
} }
exists (1:r0=x /\ 1:r1=0) exists (1:r0=x /\ 1:r1=0) (* Bad outcome. *)
...@@ -11,9 +11,11 @@ C MP+polockmbonce+poacquiresilsil ...@@ -11,9 +11,11 @@ C MP+polockmbonce+poacquiresilsil
*) *)
{ {
spinlock_t lo;
int x;
} }
P0(spinlock_t *lo, int *x) P0(spinlock_t *lo, int *x) // Producer
{ {
spin_lock(lo); spin_lock(lo);
smp_mb__after_spinlock(); smp_mb__after_spinlock();
...@@ -21,7 +23,7 @@ P0(spinlock_t *lo, int *x) ...@@ -21,7 +23,7 @@ P0(spinlock_t *lo, int *x)
spin_unlock(lo); spin_unlock(lo);
} }
P1(spinlock_t *lo, int *x) P1(spinlock_t *lo, int *x) // Consumer
{ {
int r1; int r1;
int r2; int r2;
...@@ -32,4 +34,4 @@ P1(spinlock_t *lo, int *x) ...@@ -32,4 +34,4 @@ P1(spinlock_t *lo, int *x)
r3 = spin_is_locked(lo); r3 = spin_is_locked(lo);
} }
exists (1:r1=1 /\ 1:r2=0 /\ 1:r3=1) exists (1:r1=1 /\ 1:r2=0 /\ 1:r3=1) (* Bad outcome. *)
...@@ -11,16 +11,18 @@ C MP+polockonce+poacquiresilsil ...@@ -11,16 +11,18 @@ C MP+polockonce+poacquiresilsil
*) *)
{ {
spinlock_t lo;
int x;
} }
P0(spinlock_t *lo, int *x) P0(spinlock_t *lo, int *x) // Producer
{ {
spin_lock(lo); spin_lock(lo);
WRITE_ONCE(*x, 1); WRITE_ONCE(*x, 1);
spin_unlock(lo); spin_unlock(lo);
} }
P1(spinlock_t *lo, int *x) P1(spinlock_t *lo, int *x) // Consumer
{ {
int r1; int r1;
int r2; int r2;
...@@ -31,4 +33,4 @@ P1(spinlock_t *lo, int *x) ...@@ -31,4 +33,4 @@ P1(spinlock_t *lo, int *x)
r3 = spin_is_locked(lo); r3 = spin_is_locked(lo);
} }
exists (1:r1=1 /\ 1:r2=0 /\ 1:r3=1) exists (1:r1=1 /\ 1:r2=0 /\ 1:r3=1) (* Bad outcome. *)
...@@ -11,25 +11,29 @@ C MP+polocks ...@@ -11,25 +11,29 @@ C MP+polocks
* to see all prior accesses by those other CPUs. * to see all prior accesses by those other CPUs.
*) *)
{} {
spinlock_t mylock;
int buf;
int flag;
}
P0(int *x, int *y, spinlock_t *mylock) P0(int *buf, int *flag, spinlock_t *mylock) // Producer
{ {
WRITE_ONCE(*x, 1); WRITE_ONCE(*buf, 1);
spin_lock(mylock); spin_lock(mylock);
WRITE_ONCE(*y, 1); WRITE_ONCE(*flag, 1);
spin_unlock(mylock); spin_unlock(mylock);
} }
P1(int *x, int *y, spinlock_t *mylock) P1(int *buf, int *flag, spinlock_t *mylock) // Consumer
{ {
int r0; int r0;
int r1; int r1;
spin_lock(mylock); spin_lock(mylock);
r0 = READ_ONCE(*y); r0 = READ_ONCE(*flag);
spin_unlock(mylock); spin_unlock(mylock);
r1 = READ_ONCE(*x); r1 = READ_ONCE(*buf);
} }
exists (1:r0=1 /\ 1:r1=0) exists (1:r0=1 /\ 1:r1=0) (* Bad outcome. *)
...@@ -7,21 +7,24 @@ C MP+poonceonces ...@@ -7,21 +7,24 @@ C MP+poonceonces
* no ordering at all? * no ordering at all?
*) *)
{} {
int buf;
int flag;
}
P0(int *x, int *y) P0(int *buf, int *flag) // Producer
{ {
WRITE_ONCE(*x, 1); WRITE_ONCE(*buf, 1);
WRITE_ONCE(*y, 1); WRITE_ONCE(*flag, 1);
} }
P1(int *x, int *y) P1(int *buf, int *flag) // Consumer
{ {
int r0; int r0;
int r1; int r1;
r0 = READ_ONCE(*y); r0 = READ_ONCE(*flag);
r1 = READ_ONCE(*x); r1 = READ_ONCE(*buf);
} }
exists (1:r0=1 /\ 1:r1=0) exists (1:r0=1 /\ 1:r1=0) (* Bad outcome. *)
...@@ -8,21 +8,24 @@ C MP+pooncerelease+poacquireonce ...@@ -8,21 +8,24 @@ C MP+pooncerelease+poacquireonce
* pattern. * pattern.
*) *)
{} {
int buf;
int flag;
}
P0(int *x, int *y) P0(int *buf, int *flag) // Producer
{ {
WRITE_ONCE(*x, 1); WRITE_ONCE(*buf, 1);
smp_store_release(y, 1); smp_store_release(flag, 1);
} }
P1(int *x, int *y) P1(int *buf, int *flag) // Consumer
{ {
int r0; int r0;
int r1; int r1;
r0 = smp_load_acquire(y); r0 = smp_load_acquire(flag);
r1 = READ_ONCE(*x); r1 = READ_ONCE(*buf);
} }
exists (1:r0=1 /\ 1:r1=0) exists (1:r0=1 /\ 1:r1=0) (* Bad outcome. *)
...@@ -11,25 +11,29 @@ C MP+porevlocks ...@@ -11,25 +11,29 @@ C MP+porevlocks
* see all prior accesses by those other CPUs. * see all prior accesses by those other CPUs.
*) *)
{} {
spinlock_t mylock;
int buf;
int flag;
}
P0(int *x, int *y, spinlock_t *mylock) P0(int *buf, int *flag, spinlock_t *mylock) // Consumer
{ {
int r0; int r0;
int r1; int r1;
r0 = READ_ONCE(*y); r0 = READ_ONCE(*flag);
spin_lock(mylock); spin_lock(mylock);
r1 = READ_ONCE(*x); r1 = READ_ONCE(*buf);
spin_unlock(mylock); spin_unlock(mylock);
} }
P1(int *x, int *y, spinlock_t *mylock) P1(int *buf, int *flag, spinlock_t *mylock) // Producer
{ {
spin_lock(mylock); spin_lock(mylock);
WRITE_ONCE(*x, 1); WRITE_ONCE(*buf, 1);
spin_unlock(mylock); spin_unlock(mylock);
WRITE_ONCE(*y, 1); WRITE_ONCE(*flag, 1);
} }
exists (0:r0=1 /\ 0:r1=0) exists (0:r0=1 /\ 0:r1=0) (* Bad outcome. *)
...@@ -9,7 +9,10 @@ C R+fencembonceonces ...@@ -9,7 +9,10 @@ C R+fencembonceonces
* cause the resulting test to be allowed. * cause the resulting test to be allowed.
*) *)
{} {
int x;
int y;
}
P0(int *x, int *y) P0(int *x, int *y)
{ {
......
...@@ -8,7 +8,10 @@ C R+poonceonces ...@@ -8,7 +8,10 @@ C R+poonceonces
* store propagation delays. * store propagation delays.
*) *)
{} {
int x;
int y;
}
P0(int *x, int *y) P0(int *x, int *y)
{ {
......
...@@ -7,7 +7,10 @@ C S+fencewmbonceonce+poacquireonce ...@@ -7,7 +7,10 @@ C S+fencewmbonceonce+poacquireonce
* store against a subsequent store? * store against a subsequent store?
*) *)
{} {
int x;
int y;
}
P0(int *x, int *y) P0(int *x, int *y)
{ {
......
...@@ -9,7 +9,10 @@ C S+poonceonces ...@@ -9,7 +9,10 @@ C S+poonceonces
* READ_ONCE(), is ordering preserved? * READ_ONCE(), is ordering preserved?
*) *)
{} {
int x;
int y;
}
P0(int *x, int *y) P0(int *x, int *y)
{ {
......
...@@ -9,7 +9,10 @@ C SB+fencembonceonces ...@@ -9,7 +9,10 @@ C SB+fencembonceonces
* suffice, but not much else.) * suffice, but not much else.)
*) *)
{} {
int x;
int y;
}
P0(int *x, int *y) P0(int *x, int *y)
{ {
......
...@@ -8,7 +8,10 @@ C SB+poonceonces ...@@ -8,7 +8,10 @@ C SB+poonceonces
* variable that the preceding process reads. * variable that the preceding process reads.
*) *)
{} {
int x;
int y;
}
P0(int *x, int *y) P0(int *x, int *y)
{ {
......
...@@ -6,7 +6,10 @@ C SB+rfionceonce-poonceonces ...@@ -6,7 +6,10 @@ C SB+rfionceonce-poonceonces
* This litmus test demonstrates that LKMM is not fully multicopy atomic. * This litmus test demonstrates that LKMM is not fully multicopy atomic.
*) *)
{} {
int x;
int y;
}
P0(int *x, int *y) P0(int *x, int *y)
{ {
......
...@@ -8,7 +8,10 @@ C WRC+poonceonces+Once ...@@ -8,7 +8,10 @@ C WRC+poonceonces+Once
* test has no ordering at all. * test has no ordering at all.
*) *)
{} {
int x;
int y;
}
P0(int *x) P0(int *x)
{ {
......
...@@ -10,7 +10,10 @@ C WRC+pooncerelease+fencermbonceonce+Once ...@@ -10,7 +10,10 @@ C WRC+pooncerelease+fencermbonceonce+Once
* is A-cumulative in LKMM. * is A-cumulative in LKMM.
*) *)
{} {
int x;
int y;
}
P0(int *x) P0(int *x)
{ {
......
...@@ -9,7 +9,12 @@ C Z6.0+pooncelock+poonceLock+pombonce ...@@ -9,7 +9,12 @@ C Z6.0+pooncelock+poonceLock+pombonce
* by CPUs not holding that lock. * by CPUs not holding that lock.
*) *)
{} {
spinlock_t mylock;
int x;
int y;
int z;
}
P0(int *x, int *y, spinlock_t *mylock) P0(int *x, int *y, spinlock_t *mylock)
{ {
......
...@@ -8,7 +8,12 @@ C Z6.0+pooncelock+pooncelock+pombonce ...@@ -8,7 +8,12 @@ C Z6.0+pooncelock+pooncelock+pombonce
* seen as ordered by a third process not holding that lock. * seen as ordered by a third process not holding that lock.
*) *)
{} {
spinlock_t mylock;
int x;
int y;
int z;
}
P0(int *x, int *y, spinlock_t *mylock) P0(int *x, int *y, spinlock_t *mylock)
{ {
......
...@@ -14,7 +14,11 @@ C Z6.0+pooncerelease+poacquirerelease+fencembonceonce ...@@ -14,7 +14,11 @@ C Z6.0+pooncerelease+poacquirerelease+fencembonceonce
* involving locking.) * involving locking.)
*) *)
{} {
int x;
int y;
int z;
}
P0(int *x, int *y) P0(int *x, int *y)
{ {
......
...@@ -13,4 +13,5 @@ ...@@ -13,4 +13,5 @@
egrep 'Badness|WARNING:|Warn|BUG|===========|Call Trace:|Oops:|detected stalls on CPUs/tasks:|self-detected stall on CPU|Stall ended before state dump start|\?\?\? Writer stall state|rcu_.*kthread starved for|!!!' | egrep 'Badness|WARNING:|Warn|BUG|===========|Call Trace:|Oops:|detected stalls on CPUs/tasks:|self-detected stall on CPU|Stall ended before state dump start|\?\?\? Writer stall state|rcu_.*kthread starved for|!!!' |
grep -v 'ODEBUG: ' | grep -v 'ODEBUG: ' |
grep -v 'This means that this is a DEBUG kernel and it is' | grep -v 'This means that this is a DEBUG kernel and it is' |
grep -v 'Warning: unable to open an initial console' grep -v 'Warning: unable to open an initial console' |
grep -v 'NOHZ tick-stop error: Non-RCU local softirq work is pending, handler'
...@@ -169,6 +169,7 @@ identify_qemu () { ...@@ -169,6 +169,7 @@ identify_qemu () {
# Output arguments for the qemu "-append" string based on CPU type # Output arguments for the qemu "-append" string based on CPU type
# and the TORTURE_QEMU_INTERACTIVE environment variable. # and the TORTURE_QEMU_INTERACTIVE environment variable.
identify_qemu_append () { identify_qemu_append () {
echo debug_boot_weak_hash
local console=ttyS0 local console=ttyS0
case "$1" in case "$1" in
qemu-system-x86_64|qemu-system-i386) qemu-system-x86_64|qemu-system-i386)
......
...@@ -52,8 +52,7 @@ echo Results directory: $resdir/$ds ...@@ -52,8 +52,7 @@ echo Results directory: $resdir/$ds
KVM="`pwd`/tools/testing/selftests/rcutorture"; export KVM KVM="`pwd`/tools/testing/selftests/rcutorture"; export KVM
PATH=${KVM}/bin:$PATH; export PATH PATH=${KVM}/bin:$PATH; export PATH
. functions.sh . functions.sh
cpus="`identify_qemu_vcpus`" echo Using all `identify_qemu_vcpus` CPUs.
echo Using up to $cpus CPUs.
# Each pass through this loop does one command-line argument. # Each pass through this loop does one command-line argument.
for gitbr in $@ for gitbr in $@
...@@ -74,7 +73,7 @@ do ...@@ -74,7 +73,7 @@ do
# Test the specified commit. # Test the specified commit.
git checkout $i > $resdir/$ds/$idir/git-checkout.out 2>&1 git checkout $i > $resdir/$ds/$idir/git-checkout.out 2>&1
echo git checkout return code: $? "(Commit $ntry: $i)" echo git checkout return code: $? "(Commit $ntry: $i)"
kvm.sh --cpus $cpus --duration 3 --trust-make > $resdir/$ds/$idir/kvm.sh.out 2>&1 kvm.sh --allcpus --duration 3 --trust-make > $resdir/$ds/$idir/kvm.sh.out 2>&1
ret=$? ret=$?
echo kvm.sh return code $ret for commit $i from branch $gitbr echo kvm.sh return code $ret for commit $i from branch $gitbr
......
...@@ -32,7 +32,7 @@ sed -e 's/^\[[^]]*]//' < $i/console.log | ...@@ -32,7 +32,7 @@ sed -e 's/^\[[^]]*]//' < $i/console.log |
awk ' awk '
/-scale: .* gps: .* batches:/ { /-scale: .* gps: .* batches:/ {
ngps = $9; ngps = $9;
nbatches = $11; nbatches = 1;
} }
/-scale: .*writer-duration/ { /-scale: .*writer-duration/ {
......
...@@ -206,7 +206,10 @@ do ...@@ -206,7 +206,10 @@ do
kruntime=`gawk 'BEGIN { print systime() - '"$kstarttime"' }' < /dev/null` kruntime=`gawk 'BEGIN { print systime() - '"$kstarttime"' }' < /dev/null`
if test -z "$qemu_pid" || kill -0 "$qemu_pid" > /dev/null 2>&1 if test -z "$qemu_pid" || kill -0 "$qemu_pid" > /dev/null 2>&1
then then
if test $kruntime -ge $seconds -o -f "$TORTURE_STOPFILE" if test -n "$TORTURE_KCONFIG_GDB_ARG"
then
:
elif test $kruntime -ge $seconds || test -f "$TORTURE_STOPFILE"
then then
break; break;
fi fi
...@@ -223,6 +226,20 @@ do ...@@ -223,6 +226,20 @@ do
echo "ps -fp $killpid" >> $resdir/Warnings 2>&1 echo "ps -fp $killpid" >> $resdir/Warnings 2>&1
ps -fp $killpid >> $resdir/Warnings 2>&1 ps -fp $killpid >> $resdir/Warnings 2>&1
fi fi
# Reduce probability of PID reuse by allowing a one-minute buffer
if test $((kruntime + 60)) -lt $seconds && test -s "$resdir/../jitter_pids"
then
awk < "$resdir/../jitter_pids" '
NF > 0 {
pidlist = pidlist " " $1;
n++;
}
END {
if (n > 0) {
print "kill " pidlist;
}
}' | sh
fi
else else
echo ' ---' `date`: "Kernel done" echo ' ---' `date`: "Kernel done"
fi fi
......
...@@ -58,7 +58,7 @@ usage () { ...@@ -58,7 +58,7 @@ usage () {
echo " --datestamp string" echo " --datestamp string"
echo " --defconfig string" echo " --defconfig string"
echo " --dryrun sched|script" echo " --dryrun sched|script"
echo " --duration minutes" echo " --duration minutes | <seconds>s | <hours>h | <days>d"
echo " --gdb" echo " --gdb"
echo " --help" echo " --help"
echo " --interactive" echo " --interactive"
...@@ -93,7 +93,7 @@ do ...@@ -93,7 +93,7 @@ do
TORTURE_BOOT_IMAGE="$2" TORTURE_BOOT_IMAGE="$2"
shift shift
;; ;;
--buildonly) --buildonly|--build-only)
TORTURE_BUILDONLY=1 TORTURE_BUILDONLY=1
;; ;;
--configs|--config) --configs|--config)
...@@ -128,8 +128,20 @@ do ...@@ -128,8 +128,20 @@ do
shift shift
;; ;;
--duration) --duration)
checkarg --duration "(minutes)" $# "$2" '^[0-9]*$' '^error' checkarg --duration "(minutes)" $# "$2" '^[0-9][0-9]*\(s\|m\|h\|d\|\)$' '^error'
dur=$(($2*60)) mult=60
if echo "$2" | grep -q 's$'
then
mult=1
elif echo "$2" | grep -q 'h$'
then
mult=3600
elif echo "$2" | grep -q 'd$'
then
mult=86400
fi
ts=`echo $2 | sed -e 's/[smhd]$//'`
dur=$(($ts*mult))
shift shift
;; ;;
--gdb) --gdb)
...@@ -148,7 +160,7 @@ do ...@@ -148,7 +160,7 @@ do
jitter="$2" jitter="$2"
shift shift
;; ;;
--kconfig) --kconfig|--kconfigs)
checkarg --kconfig "(Kconfig options)" $# "$2" '^CONFIG_[A-Z0-9_]\+=\([ynm]\|[0-9]\+\)\( CONFIG_[A-Z0-9_]\+=\([ynm]\|[0-9]\+\)\)*$' '^error$' checkarg --kconfig "(Kconfig options)" $# "$2" '^CONFIG_[A-Z0-9_]\+=\([ynm]\|[0-9]\+\)\( CONFIG_[A-Z0-9_]\+=\([ynm]\|[0-9]\+\)\)*$' '^error$'
TORTURE_KCONFIG_ARG="$2" TORTURE_KCONFIG_ARG="$2"
shift shift
...@@ -159,7 +171,7 @@ do ...@@ -159,7 +171,7 @@ do
--kcsan) --kcsan)
TORTURE_KCONFIG_KCSAN_ARG="CONFIG_DEBUG_INFO=y CONFIG_KCSAN=y CONFIG_KCSAN_ASSUME_PLAIN_WRITES_ATOMIC=n CONFIG_KCSAN_REPORT_VALUE_CHANGE_ONLY=n CONFIG_KCSAN_REPORT_ONCE_IN_MS=100000 CONFIG_KCSAN_VERBOSE=y CONFIG_KCSAN_INTERRUPT_WATCHER=y"; export TORTURE_KCONFIG_KCSAN_ARG TORTURE_KCONFIG_KCSAN_ARG="CONFIG_DEBUG_INFO=y CONFIG_KCSAN=y CONFIG_KCSAN_ASSUME_PLAIN_WRITES_ATOMIC=n CONFIG_KCSAN_REPORT_VALUE_CHANGE_ONLY=n CONFIG_KCSAN_REPORT_ONCE_IN_MS=100000 CONFIG_KCSAN_VERBOSE=y CONFIG_KCSAN_INTERRUPT_WATCHER=y"; export TORTURE_KCONFIG_KCSAN_ARG
;; ;;
--kmake-arg) --kmake-arg|--kmake-args)
checkarg --kmake-arg "(kernel make arguments)" $# "$2" '.*' '^error$' checkarg --kmake-arg "(kernel make arguments)" $# "$2" '.*' '^error$'
TORTURE_KMAKE_ARG="$2" TORTURE_KMAKE_ARG="$2"
shift shift
...@@ -459,8 +471,11 @@ function dump(first, pastlast, batchnum) ...@@ -459,8 +471,11 @@ function dump(first, pastlast, batchnum)
print "if test -n \"$needqemurun\"" print "if test -n \"$needqemurun\""
print "then" print "then"
print "\techo ---- Starting kernels. `date` | tee -a " rd "log"; print "\techo ---- Starting kernels. `date` | tee -a " rd "log";
for (j = 0; j < njitter; j++) print "\techo > " rd "jitter_pids"
for (j = 0; j < njitter; j++) {
print "\tjitter.sh " j " " dur " " ja[2] " " ja[3] "&" print "\tjitter.sh " j " " dur " " ja[2] " " ja[3] "&"
print "\techo $! >> " rd "jitter_pids"
}
print "\twait" print "\twait"
print "\techo ---- All kernel runs complete. `date` | tee -a " rd "log"; print "\techo ---- All kernel runs complete. `date` | tee -a " rd "log";
print "else" print "else"
......
...@@ -133,7 +133,7 @@ then ...@@ -133,7 +133,7 @@ then
then then
summary="$summary Warnings: $n_warn" summary="$summary Warnings: $n_warn"
fi fi
n_bugs=`egrep -c 'BUG|Oops:' $file` n_bugs=`egrep -c '\bBUG|Oops:' $file`
if test "$n_bugs" -ne 0 if test "$n_bugs" -ne 0
then then
summary="$summary Bugs: $n_bugs" summary="$summary Bugs: $n_bugs"
......
...@@ -4,7 +4,8 @@ CONFIG_PREEMPT_VOLUNTARY=n ...@@ -4,7 +4,8 @@ CONFIG_PREEMPT_VOLUNTARY=n
CONFIG_PREEMPT=n CONFIG_PREEMPT=n
#CHECK#CONFIG_TINY_SRCU=y #CHECK#CONFIG_TINY_SRCU=y
CONFIG_RCU_TRACE=n CONFIG_RCU_TRACE=n
CONFIG_DEBUG_LOCK_ALLOC=n CONFIG_DEBUG_LOCK_ALLOC=y
CONFIG_PROVE_LOCKING=y
CONFIG_DEBUG_OBJECTS_RCU_HEAD=n CONFIG_DEBUG_OBJECTS_RCU_HEAD=n
CONFIG_DEBUG_ATOMIC_SLEEP=y CONFIG_DEBUG_ATOMIC_SLEEP=y
#CHECK#CONFIG_PREEMPT_COUNT=y #CHECK#CONFIG_PREEMPT_COUNT=y
...@@ -4,7 +4,6 @@ CONFIG_PREEMPT_VOLUNTARY=n ...@@ -4,7 +4,6 @@ CONFIG_PREEMPT_VOLUNTARY=n
CONFIG_PREEMPT=n CONFIG_PREEMPT=n
#CHECK#CONFIG_TINY_SRCU=y #CHECK#CONFIG_TINY_SRCU=y
CONFIG_RCU_TRACE=n CONFIG_RCU_TRACE=n
CONFIG_DEBUG_LOCK_ALLOC=y CONFIG_DEBUG_LOCK_ALLOC=n
CONFIG_PROVE_LOCKING=y
CONFIG_DEBUG_OBJECTS_RCU_HEAD=n CONFIG_DEBUG_OBJECTS_RCU_HEAD=n
CONFIG_PREEMPT_COUNT=n CONFIG_PREEMPT_COUNT=n
...@@ -4,8 +4,8 @@ CONFIG_HOTPLUG_CPU=y ...@@ -4,8 +4,8 @@ CONFIG_HOTPLUG_CPU=y
CONFIG_PREEMPT_NONE=y CONFIG_PREEMPT_NONE=y
CONFIG_PREEMPT_VOLUNTARY=n CONFIG_PREEMPT_VOLUNTARY=n
CONFIG_PREEMPT=n CONFIG_PREEMPT=n
CONFIG_DEBUG_LOCK_ALLOC=y CONFIG_DEBUG_LOCK_ALLOC=n
CONFIG_PROVE_LOCKING=y CONFIG_PROVE_LOCKING=n
#CHECK#CONFIG_PROVE_RCU=y #CHECK#CONFIG_PROVE_RCU=n
CONFIG_TASKS_TRACE_RCU_READ_MB=y CONFIG_TASKS_TRACE_RCU_READ_MB=y
CONFIG_RCU_EXPERT=y CONFIG_RCU_EXPERT=y
...@@ -4,8 +4,8 @@ CONFIG_HOTPLUG_CPU=y ...@@ -4,8 +4,8 @@ CONFIG_HOTPLUG_CPU=y
CONFIG_PREEMPT_NONE=n CONFIG_PREEMPT_NONE=n
CONFIG_PREEMPT_VOLUNTARY=n CONFIG_PREEMPT_VOLUNTARY=n
CONFIG_PREEMPT=y CONFIG_PREEMPT=y
CONFIG_DEBUG_LOCK_ALLOC=n CONFIG_DEBUG_LOCK_ALLOC=y
CONFIG_PROVE_LOCKING=n CONFIG_PROVE_LOCKING=y
#CHECK#CONFIG_PROVE_RCU=n #CHECK#CONFIG_PROVE_RCU=y
CONFIG_TASKS_TRACE_RCU_READ_MB=n CONFIG_TASKS_TRACE_RCU_READ_MB=n
CONFIG_RCU_EXPERT=y CONFIG_RCU_EXPERT=y
CONFIG_RCU_SCALE_TEST=y CONFIG_RCU_SCALE_TEST=y
CONFIG_PRINTK_TIME=y CONFIG_PRINTK_TIME=y
CONFIG_TASKS_RCU_GENERIC=y
CONFIG_TASKS_RCU=y
CONFIG_TASKS_TRACE_RCU=y
CONFIG_SMP=y
CONFIG_PREEMPT_NONE=y
CONFIG_PREEMPT_VOLUNTARY=n
CONFIG_PREEMPT=n
CONFIG_HZ_PERIODIC=n
CONFIG_NO_HZ_IDLE=y
CONFIG_NO_HZ_FULL=n
CONFIG_RCU_FAST_NO_HZ=n
CONFIG_RCU_NOCB_CPU=n
CONFIG_DEBUG_LOCK_ALLOC=n
CONFIG_PROVE_LOCKING=n
CONFIG_RCU_BOOST=n
CONFIG_DEBUG_OBJECTS_RCU_HEAD=n
CONFIG_RCU_EXPERT=y
CONFIG_RCU_TRACE=y
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment